Sample records for measured stream flow

  1. Roughness, resistance, and dispersion: Relationships in small streams

    NASA Astrophysics Data System (ADS)

    Noss, Christian; Lorke, Andreas

    2016-04-01

    Although relationships between roughness, flow, and transport processes in rivers and streams have been investigated for several decades, the prediction of flow resistance and longitudinal dispersion in small streams is still challenging. Major uncertainties in existing approaches for quantifying flow resistance and longitudinal dispersion at the reach scale arise from limitations in the characterization of riverbed roughness. In this study, we characterized the riverbed roughness in small moderate-gradient streams (0.1-0.5% bed slope) and investigated its effects on flow resistance and dispersion. We analyzed high-resolution transect-based measurements of stream depth and width, which resolved the complete roughness spectrum with scales ranging from the micro to the reach scale. Independently measured flow resistance and dispersion coefficients were mainly affected by roughness at spatial scales between the median grain size and the stream width, i.e., by roughness between the micro- and the mesoscale. We also compared our flow resistance measurements with calculations using various flow resistance equations. Flow resistance in our study streams was well approximated by the equations that were developed for high gradient streams (>1%) and it was overestimated by approaches developed for sand-bed streams with a smooth riverbed or ripple bed. This article was corrected on 10 MAY 2016. See the end of the full text for details.

  2. Capacitance probe for fluid flow and volume measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a microgravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  3. Capacitance Probe for Fluid Flow and Volume Measurements

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids are disclosed, including the use of a capacitive probe for measuring the flow volume of a material within a flow stream. The capacitance probe has at least two elongate electrodes and, in a specific embodiment of the invention, has three parallel elongate electrodes with the center electrode being an extension of the center conductor of a co-axial cable. A conductance probe is also provided to provide more accurate flow volume data in response to conductivity of the material within the flow stream. A preferred embodiment of the present invention provides for a gas flow stream through a micro-gravity environment that allows for monitoring a flow volume of a fluid sample, such as a urine sample, that is entrained within the gas flow stream.

  4. Problems with indirect determinations of peak streamflows in steep, desert stream channels

    USGS Publications Warehouse

    Glancy, Patrick A.; Williams, Rhea P.

    1994-01-01

    Many peak streamflow values used in flood analyses for desert areas are derived using the Manning equation. Data used in the equation are collected after the flow has subsided, and peak flow is thereby determined indirectly. Most measurement problems and associated errors in peak-flow determinations result from (1) channel erosion or deposition that cannot be discerned or properly evaluated after the fact, (2) unsteady and non-uniform flow that rapidly changes in magnitude, and (3) appreciable sediment transport that has unknown effects on energy dissipation. High calculated velocities and Froude numbers are unacceptable to some investigators. Measurement results could be improved by recording flows with a video camera, installing a recording stream gage and recording rain gages, measuring channel scour with buried chains, analyzing measured data by multiple techniques, and supplementing indirect measurements with direct measurements of stream velocities in similar ephemeral streams.

  5. USGS tethered ACP platforms: New design means more safety and accuracy

    USGS Publications Warehouse

    Morlock, S.E.; Stewart, J.A.; Rehmel, M.S.

    2004-01-01

    The US Geological Survey has developed an innovative tethered platform that supports an Acoustic Current Profiler (ACP) in making stream-flow measurements (use of the term ACP in this article refers to a class of instruments and not a specific brand name or model). The tethered platform reduces the hazards involved in conventional methods of stream-flow measurement. The use of the platform reduces or eliminates time spent by personnel in streams and boats or on bridges and cableway and stream-flow measurement accuracy is increased.

  6. A bank-operated traveling-block cableway for stream discharge and sediment measurements

    Treesearch

    James J. Paradiso

    2000-01-01

    Streams often present a challenge for collecting flow and sediment measurements on a year-round basis. Streams that can normally be waded become hazardous during seasonal flows, either endangering hydrographers or precluding data collection completely. A hand-operated cableway permits the accurate and safe collection of discharge and sediment data from the stream bank...

  7. Stream-Groundwater Interactions Along Streams of the Eastern Sierra Nevada, California: Implications for Assessing Potential Impacts of Flow Diversions

    Treesearch

    G. Mathias Kondolf

    1989-01-01

    One of the most fundamental hydrologic determinations to be made in assessing the probable impacts of flow diversions on riparian vegetation is whether flows are gaining or losing water to groundwater in the reach of interest. Flow measurements on eight streams in the Owens River and Mono Lake basins show that stream- groundwater interactions can produce substantial...

  8. Low-flow characteristics for streams on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi, State of Hawaiʻi

    USGS Publications Warehouse

    Cheng, Chui Ling

    2016-08-03

    Statistical models were developed to estimate natural streamflow under low-flow conditions for streams with existing streamflow data at measurement sites on the Islands of Kauaʻi, Oʻahu, Molokaʻi, Maui, and Hawaiʻi. Streamflow statistics used to describe the low-flow characteristics are flow-duration discharges that are equaled or exceeded between 50 and 95 percent of the time during the 30-year base period 1984–2013. Record-augmentation techniques were applied to develop statistical models relating concurrent streamflow data at the measurement sites and long-term data from nearby continuous-record streamflow-gaging stations that were in operation during the base period and were selected as index stations. Existing data and subsequent low-flow analyses of the available data help to identify streams in under-represented geographic areas and hydrogeologic settings where additional data collection is suggested.Low-flow duration discharges were estimated for 107 measurement sites (including long-term and short-term continuous-record streamflow-gaging stations, and partial-record stations) and 27 index stations. The adequacy of statistical models was evaluated with correlation coefficients and modified Nash-Sutcliff coefficients of efficiency, and a majority of the low-flow duration-discharge estimates are satisfactory based on these regression statistics.Molokaʻi and Hawaiʻi have the fewest number of measurement sites (that are not located on ephemeral stream reaches) at which flow-duration discharges were estimated, which can be partially explained by the limited number of index stations available on these islands that could be used for record augmentation. At measurement sites on some tributary streams, low-flow duration discharges could not be estimated because no adequate correlations could be developed with the index stations. These measurement sites are located on streams where duration-discharge estimates are available at long-term stations at other locations on the main stream channel to provide at least some definition of low-flow characteristics on that stream. In terms of general natural streamflow data availability, data are scarce in the leeward areas for all five islands as many leeward streams are dry or have minimal flow. Other under-represented areas include central Oʻahu, central Maui, and southeastern Maui.

  9. Local flow measurements at the inlet spike tip of a Mach 3 supersonic cruise airplane

    NASA Technical Reports Server (NTRS)

    Johnson, H. J.; Montoya, E. J.

    1973-01-01

    The flow field at the left inlet spike tip of a YF-12A airplane was examined using at 26 deg included angle conical flow sensor to obtain measurements at free-stream Mach numbers from 1.6 to 3.0. Local flow angularity, Mach number, impact pressure, and mass flow were determined and compared with free-stream values. Local flow changes occurred at the same time as free-stream changes. The local flow usually approached the spike centerline from the upper outboard side because of spike cant and toe-in. Free-stream Mach number influenced the local flow angularity; as Mach number increased above 2.2, local angle of attack increased and local sideslip angle decreased. Local Mach number was generally 3 percent less than free-stream Mach number. Impact-pressure ratio and mass flow ratio increased as free-stream Mach number increased above 2.2, indicating a beneficial forebody compression effect. No degradation of the spike tip instrumentation was observed after more than 40 flights in the high-speed thermal environment encountered by the airplane. The sensor is rugged, simple, and sensitive to small flow changes. It can provide accurate imputs necessary to control an inlet.

  10. Flow effects on benthic stream invertebrates and ecological processes

    NASA Astrophysics Data System (ADS)

    Koprivsek, Maja; Brilly, Mitja

    2010-05-01

    Flow is the main abiotic factor in the streams. Flow affects the organisms in many direct and indirect ways. The organisms are directly affected by various hydrodynamic forces and mass transfer processes like drag forces, drift, shear stress, food and gases supply and washing metabolites away. Indirect effects on the organisms are determining and distribution of the particle size and structure of the substrate and determining the morphology of riverbeds. Flow does not affect only on individual organism, but also on many ecological effects. To expose just the most important: dispersal of the organisms, habitat use, resource acquisition, competition and predator-prey interactions. Stream invertebrates are adapted to the various flow conditions in many kinds of way. Some of them are avoiding the high flow with living in a hyporeic zone, while the others are adapted to flow with physical adaptations (the way of feeding, respiration, osmoregulation and resistance to draught), morphological adaptations (dorsoventrally flattened shape of organism, streamlined shape of organism, heterogeneous suckers, silk, claws, swimming hair, bristles and ballast gravel) or with behaviour. As the flow characteristics in a particular stream vary over a broad range of space and time scales, it is necessary to measure accurately the velocity in places where the organisms are present to determine the actual impact of flow on aquatic organisms. By measuring the mean flow at individual vertical in a single cross-section, we cannot get any information about the velocity situation close to the bottom of the riverbed where the stream invertebrates are living. Just measuring the velocity near the bottom is a major problem, as technologies for measuring the velocity and flow of natural watercourses is not adapted to measure so close to the bottom. New researches in the last two decades has shown that the thickness of laminar border layer of stones in the stream is only a few 100 micrometers, what is not enough to make a shelter for stream invertebrates. It serves as a shelter only for microorganisms, but the stream invertebrates have to avoid the swift flow or adapt to flow with adaptations described above. To understand what conditions are subject to aquatic organisms and how to adapt, it is essential. Both, knowledge of fluid dynamics in natural watercourses and ecology are needed to understand to what conditions the stream invertebrates are exposed and how they cope with them. Some investigations of near bed flow will be performed on the Glinšica stream. The acoustic Doppler velocimeter SonTek will be adapted to measure so close to the bed as possible. It is expected we should be able to measure the velocities just 0,5 cm above the bed surface. We intend to measure the velocities on a natural and on a regulated reach and then compare the results.

  11. Effects of Recent Debris Flows on Stream Ecosystems and Food Webs in Small Watersheds in the Central Klamath Mountains, NW California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; de La Fuente, J.

    2008-12-01

    Debris flows are common erosional processes in steep mountain areas throughout the world, but little is known about the long-term ecological effects of debris flows on stream ecosystems. Based on debris flow histories that were developed for each of ten tributary basins, we classified channels as having experienced recent (1997) or older (pre-1997) debris flows. Of the streams classified as older debris flow streams, three streams experienced debris flows during floods in 1964 or 1974, while two streams showed little or no evidence of debris flow activity in the 20th century. White alder (Alnus rhombifolia) was the dominant pioneer tree species in recent debris flow streams, forming localized dense patches of canopy cover. Maximum temperatures and daily temperature ranges were significantly higher in recent debris flow streams than in older debris flow streams. Debris flows resulted in a shift in food webs from allochthonous to autochthonous energy sources. Primary productivity, as measured by oxygen change during the day, was greater in recent debris flow streams, resulting in increased abundances of grazers such as the armored caddisfly Glossosoma spp. Detritivorous stoneflies were virtually absent in recent debris flow streams because of the lack of year-round, diverse sources of leaf litter. Rainbow trout (Oncorhynchus mykiss) were abundant in four of the recent debris flow streams. Poor recolonizers, such as the Pacific giant salamander (Dicamptodon tenebrosus), coastal tailed frog (Ascaphus truei), and signal crayfish (Pacifistacus leniusculus), were virtually absent in recent debris flow streams. Forest and watershed managers should consider the role of forest disturbances, such as road networks, on debris flow frequency and intensity, and the resulting ecological effects on stream ecosystems.

  12. 40 CFR Appendix E to Part 52 - Performance Specifications and, Specification Test Procedures for Monitoring Systems for Effluent...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...

  13. 40 CFR Appendix E to Part 52 - Performance Specifications and, Specification Test Procedures for Monitoring Systems for Effluent...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Specification Test Procedures for Monitoring Systems for Effluent Stream Gas Volumetric Flow Rate E Appendix E... Stream Gas Volumetric Flow Rate 1. Principle and applicability. 1.1Principle. Effluent stream gas... method is applicable to subparts which require continuous gas volumetric flow rate measurement...

  14. Techniques for estimating 7-day, 10-year low-flow characteristics for ungaged sites on streams in Mississippi

    USGS Publications Warehouse

    Telis, Pamela A.

    1992-01-01

    Mississippi State water laws require that the 7-day, 10-year low-flow characteristic (7Q10) of streams be used as a criterion for issuing wastedischarge permits to dischargers to streams and for limiting withdrawals of water from streams. This report presents techniques for estimating the 7Q10 for ungaged sites on streams in Mississippi based on the availability of baseflow discharge measurements at the site, location of nearby gaged sites on the same stream, and drainage area of the ungaged site. These techniques may be used to estimate the 7Q10 at sites on natural, unregulated or partially regulated, and non-tidal streams. Low-flow characteristics for streams in the Mississippi River alluvial plain were not estimated because the annual lowflow data exhibit decreasing trends with time. Also presented are estimates of the 7Q10 for 493 gaged sites on Mississippi streams.Techniques for estimating the 7Q10 have been developed for ungaged sites with base-flow discharge measurements, for ungaged sites on gaged streams, and for ungaged sites on ungaged streams. For an ungaged site with one or more base-flow discharge measurements, base-flow discharge data at the ungaged site are related to concurrent discharge data at a nearby gaged site. For ungaged sites on gaged streams, several methods of transferring the 7Q10 from a gaged site to an ungaged site were developed; the resulting 7Q10 values are based on drainage area prorations for the sites. For ungaged sites on ungaged streams, the 7Q10 is estimated from a map developed for. this study that shows the unit 7Q10 (7Q10 per square mile of drainage area) for ungaged basins in the State. The mapped values were estimated from the unit 7Q10 determined for nearby gaged basins, adjusted on the basis of the geology and topography of the ungaged basins.

  15. Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions

    NASA Astrophysics Data System (ADS)

    Beskow, Samuel; de Mello, Carlos Rogério; Vargas, Marcelle M.; Corrêa, Leonardo de L.; Caldeira, Tamara L.; Durães, Matheus F.; de Aguiar, Marilton S.

    2016-10-01

    Information on stream flows is essential for water resources management. The stream flow that is equaled or exceeded 90% of the time (Q90) is one the most used low stream flow indicators in many countries, and its determination is made from the frequency analysis of stream flows considering a historical series. However, stream flow gauging network is generally not spatially sufficient to meet the necessary demands of technicians, thus the most plausible alternative is the use of hydrological regionalization. The objective of this study was to couple the artificial intelligence techniques (AI) K-means, Partitioning Around Medoids (PAM), K-harmonic means (KHM), Fuzzy C-means (FCM) and Genetic K-means (GKA), with measures of low stream flow seasonality, for verification of its potential to delineate hydrologically homogeneous regions for the regionalization of Q90. For the performance analysis of the proposed methodology, location attributes from 108 watersheds situated in southern Brazil, and attributes associated with their seasonality of low stream flows were considered in this study. It was concluded that: (i) AI techniques have the potential to delineate hydrologically homogeneous regions in the context of Q90 in the study region, especially the FCM method based on fuzzy logic, and GKA, based on genetic algorithms; (ii) the attributes related to seasonality of low stream flows added important information that increased the accuracy of the grouping; and (iii) the adjusted mathematical models have excellent performance and can be used to estimate Q90 in locations lacking monitoring.

  16. Streamflow gain/loss in the Republican River basin, Nebraska, March 1989

    USGS Publications Warehouse

    Johnson, Michaela R.; Stanton, Jennifer S.; Cornwall, James F.; Landon, Matthew K.

    2002-01-01

    This arc and point data set contains streamflow measurement sites and reaches indicating streamflow gain or loss under base-flow conditions along the Republican River and tributaries in Nebraska during March 21 to 22, 1989 (Boohar and others, 1990). These measurements were made to obtain data on ground-water/surface-water interaction. Flow was visually observed to be zero, was measured, or was estimated at 136 sites. The measurements were made on the main stem of the Republican River and all flowing tributaries that enter the Republican River above Swanson Reservoir and parts of the Frenchman, Red Willow, and Medicine Creek drainages in the Nebraska part of the Republican River Basin. Tributaries were followed upstream until the first road crossing where zero flow was encountered. For selected streams, points of zero flow upstream of the first zero flow site were also checked. Streamflow gain or loss for each stream reach was calculated by subtracting the streamflow values measured at the upstream end of the reach and values for contributing tributaries from the downstream value. The data obtained reflected base-flow conditions suitable for estimating streamflow gains and losses for stream reaches between sites. This digital data set was created by manually plotting locations of streamflow measurements. These points were used to designate stream-reach segments to calculate gain/loss per river mile. Reach segments were created by manually splitting the lines from a 1:250,000 hydrography data set (Soenksen and others, 1999) at every location where the streams were measured. Each stream-reach segment between streamflow-measurement sites was assigned a unique reach number. All other lines in the hydrography data set without reach numbers were omitted. This data set was created to archive the calculated streamflow gains and losses of selected streams in part of the Republican River Basin, Nebraska in March 1989, and make the data available for use with geographic information systems (GIS). If measurement sites are used separately from reaches, the maximum scale of 1:100,000 should not be exceeded. When used in conjunction with the reach segments, the maximum scale should not exceed 1:250,000.

  17. Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA.

    Treesearch

    Justin K. Anderson; Steven M. Wondzell; Michael N. Gooseff; Roy Haggerty

    2005-01-01

    There is a need to identify measurable characteristics of stream channel morphology that vary predictably throughout stream networks and that influence patterns of hyporheic exchange flow in mountain streams. In this paper we characterize stream longitudinal profiles according to channel unit spacing and the concavity of the water surface profile. We demonstrate that...

  18. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream

    USGS Publications Warehouse

    Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim

    1998-01-01

    Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.

  19. High throughput, parallel imaging and biomarker quantification of human spermatozoa by ImageStream flow cytometry.

    PubMed

    Buckman, Clayton; George, Thaddeus C; Friend, Sherree; Sutovsky, Miriam; Miranda-Vizuete, Antonio; Ozanon, Christophe; Morrissey, Phil; Sutovsky, Peter

    2009-12-01

    Spermatid specific thioredoxin-3 protein (SPTRX-3) accumulates in the superfluous cytoplasm of defective human spermatozoa. Novel ImageStream technology combining flow cytometry with cell imaging was used for parallel quantification and visualization of SPTRX-3 protein in defective spermatozoa of five men from infertile couples. The majority of the SPTRX-3 containing cells were overwhelmingly spermatozoa with a variety of morphological defects, detectable in the ImageStream recorded images. Quantitative parameters of relative SPTRX-3 induced fluorescence measured by ImageStream correlated closely with conventional flow cytometric measurements of the same sample set and reflected the results of clinical semen evaluation. Image Stream quantification of SPTRX-3 combines and surpasses the informative value of both conventional flow cytometry and light microscopic semen evaluation. The observed patterns of the retention of SPTRX-3 in the sperm samples from infertility patients support the view that SPTRX3 is a biomarker of male infertility.

  20. Streaming reversal of energetic particles in the magnetotail during a substorm

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Williams, D. J.; Eastman, T. E.; Frank, L. A.; Akasofu, S.-I.

    1984-01-01

    A case of reversal in the streaming anisotropy of energetic ions and in the plasma flow observed from the IMP 8 spacecraft during a substorm on February 8, 1978 is studied in detail using measurements of energetic particles, plasma, and magnetic field. Four new features emerge when high time resolution data are examined in detail. The times of streaming reversal of energetic particles in different energy ranges do not coincide with the time of plasma flow reversal. Qualitatively different velocity distributions are observed in earthward and tailward plasma flows during the observed flow reversal intervals. Strong tailward streaming of energetic particles can be detected during northward magnetic field environments and, conversely, earthward streaming in southward field environments. During the period of tailward streaming of energetic particles, earthward streaming fluxes are occasionally detected.

  1. Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange

    USGS Publications Warehouse

    Harvey, Judson W.; Wagner, Brian J.; Bencala, Kenneth E.

    1996-01-01

    Stream water was locally recharged into shallow groundwater flow paths that returned to the stream (hyporheic exchange) in St. Kevin Gulch, a Rocky Mountain stream in Colorado contaminated by acid mine drainage. Two approaches were used to characterize hyporheic exchange: sub-reach-scale measurement of hydraulic heads and hydraulic conductivity to compute streambed fluxes (hydrometric approach) and reachscale modeling of in-stream solute tracer injections to determine characteristic length and timescales of exchange with storage zones (stream tracer approach). Subsurface data were the standard of comparison used to evaluate the reliability of the stream tracer approach to characterize hyporheic exchange. The reach-averaged hyporheic exchange flux (1.5 mL s−1 m−1), determined by hydrometric methods, was largest when stream base flow was low (10 L s−1); hyporheic exchange persisted when base flow was 10-fold higher, decreasing by approximately 30%. Reliability of the stream tracer approach to detect hyporheic exchange was assessed using first-order uncertainty analysis that considered model parameter sensitivity. The stream tracer approach did not reliably characterize hyporheic exchange at high base flow: the model was apparently more sensitive to exchange with surface water storage zones than with the hyporheic zone. At low base flow the stream tracer approach reliably characterized exchange between the stream and gravel streambed (timescale of hours) but was relatively insensitive to slower exchange with deeper alluvium (timescale of tens of hours) that was detected by subsurface measurements. The stream tracer approach was therefore not equally sensitive to all timescales of hyporheic exchange. We conclude that while the stream tracer approach is an efficient means to characterize surface-subsurface exchange, future studies will need to more routinely consider decreasing sensitivities of tracer methods at higher base flow and a potential bias toward characterizing only a fast component of hyporheic exchange. Stream tracer models with multiple rate constants to consider both fast exchange with streambed gravel and slower exchange with deeper alluvium appear to be warranted.

  2. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface.

  3. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6 km valley segment. For each reach, we estimated net change in discharge, gross hydrologic loss, and gross hydrologic gain from tracer dilution and mass recovery. Four series of tracer tests were performed during relatively high, intermediate, and low base flow conditions. The relative distribution of channel water along the stream was strongly related to a transition in valley structure, with a general increase in gross losses through the recession. During tracer tests at intermediate and low flows, there were frequent substantial losses of tracer mass (>10%) that could not be explained by net loss in flow over the reach, indicating that many of the study reaches were concurrently losing and gaining water. For example, one reach with little net change in discharge exchanged nearly 20% of upstream flow with gains and losses along the reach. These substantial bidirectional exchanges suggest that some channel interactions with subsurface flow paths were not measurable by net change in flow or transient storage of recovered tracer. Understanding bidirectional channel water balances in stream reaches along valleys is critical to an accurate assessment of stream solute fate and transport and to a full assessment of exchanges between the stream channel and surrounding subsurface. Copyright 2009 by the American Geophysical Union.

  4. Empirical flow parameters - a tool for hydraulic model validity assessment.

    DOT National Transportation Integrated Search

    2013-08-01

    Data in Texas from the U.S. Geological Survey (USGS) physical stream flow and channel property measurements for gaging stations in the state of Texas were used to construct relations between observed stream flow, topographic slope, mean section veloc...

  5. Mean annual runoff and peak flow estimates based on channel geometry of streams in southeastern Montana

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1983-01-01

    Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)

  6. Base-flow measurements at partial-record sites on small streams in South Carolina

    USGS Publications Warehouse

    Barker, Carroll

    1986-01-01

    This report contains site descriptions and base-flow data collected at 362 partial-record sites in South Carolina. These data include site name, site description, latitude, longitude, drainage area, instantaneous streamflow, and date of the streamflow measurement. The base-flow data can be used as an aid to estimate low flow characteristics at ungaged locations on streams in South Carolina. Partial record data collection sites were established in all physiographic provinces except the lower Coastal Plain. Data collection sites were not established in the lower Coastal Plain because of the widespread occurrence of zero during drought periods in all but the larger streams. (USGS)

  7. Method of measuring the mass flow rate of a substance entering a cocurrent fluid stream

    DOEpatents

    Cochran, Jr., Henry D.

    1978-04-11

    This invention relates to an improved method of monitoring the mass flow rate of a substance entering a cocurrent fluid stream. The method very basically consists of heating equal sections of the fluid stream above and below the point of entry of the substance to be monitored, and measuring and comparing the resulting change in temperature of the sections. Advantage is taken of the difference in thermal characteristics of the fluid and the substance to be measured to correlate temperature differences in the sections above and below the substance feed point for providing an indication of the mass flow rate of the substance.

  8. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, J.E.; Ross, H.H.

    1980-01-11

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  9. Continuous-flow free acid monitoring method and system

    DOEpatents

    Strain, James E.; Ross, Harley H.

    1981-01-01

    A free acid monitoring method and apparatus is provided for continuously measuring the excess acid present in a process stream. The disclosed monitoring system and method is based on the relationship of the partial pressure ratio of water and acid in equilibrium with an acid solution at constant temperature. A portion of the process stream is pumped into and flows through the monitor under the influence of gravity and back to the process stream. A continuous flowing sample is vaporized at a constant temperature and the vapor is subsequently condensed. Conductivity measurements of the condensate produces a nonlinear response function from which the free acid molarity of the sample process stream is determined.

  10. Magnetic transit-time flowmeter

    DOEpatents

    Forster, George A.

    1976-07-06

    The flow rate of a conducting fluid in a stream is determined by disposing two permanent-magnet flowmeters in the stream, one downstream of the other. Flow of the conducting fluid causes the generation of both d-c and a-c electrical signals, the a-c comprising flow noise. Measurement of the time delay between similarities in the a-c signals by cross-correlation methods provides a measure of the rate of flow of the fluid.

  11. Measurement of discharge using tracers

    USGS Publications Warehouse

    Kilpatrick, Frederick A.; Cobb, Ernest D.

    1984-01-01

    The development of fluorescent dyes and fluorometers that can measure these dyes at very low concentrations has made dye-dilution methods practical for measuring discharge. These methods are particularly useful for determining discharge under certain flow conditions that are unfavorable for current meter measurements. These include small streams, canals, and pipes where:Turbulence is excessive for current meter measurement but conducive to good mixing.Moving rocks and debris are damaging to any instruments placed in the flow.Cross-sectional areas or velocities are indeterminant or changing.There are some unsteady flows such as exist with storm-runoff events on small streams.The flow is physically inaccessible or unsafe.From a practical standpoint, such measurements are limited primarily to small streams due to excessively long channel mixing lengths required of larger streams. Very good accuracy can be obtained provided:Adequate mixing length and time are allowed.Careful field and laboratory techniques are employed.Dye losses are not significant.This manual describes the slug-injection and constant-rate injection methods of performing tracer-dilution measurements. Emphasis is on the use of fluorescent dyes as tracers and the equipment, field methods, and Laboratory procedures for performing such measurements. The tracer-velocity method is also briefly discussed.

  12. HOW WELL CAN YOU ESTIMATE LOW FLOW AND BANKFULL DISCHARGE FROM STREAM CHANNEL HABITAT DATA?

    EPA Science Inventory

    Modeled estimates of stream discharge are becoming more important because of reductions in the number of gauging stations and increases in flow alteration from land development and climate change. Field measurements of channel morphology are available at thousands of streams and...

  13. Measurement of discharge using tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Cobb, Ernest D.

    1985-01-01

    The development of fluorescent dyes and fluorometers that can measure these dyes at very low concentrations has made dye-dilution methods practical for measuring discharge. These methods are particularly useful for determining discharge under certain flow conditions that are unfavorable for current meter measurements. These include small streams, canals, and pipes where 1. Turbulence is excessive for current-meter measurement but conducive to good mixing. 2. Moving rocks and debris may damage instruments placed in the flow. 3. Cross-sectional areas or velocities are indeterminate or changing. 4. The flow is unsteady, such as the flow that exists with storm-runoff events on small streams and urban storm-sewer systems. 5. The flow is physically inaccessible or unsafe. From a practical standpoint, such methods are limited primarily to small streams, because of the excessively long channel-mixing lengths required for larger streams. Very good accuracy can be obtained provided that 1. Adequate mixing length and time are allowed. 2. Careful field and laboratory techniques are used. 3. Dye losses are not significant. This manual describes the slug-injection and constant-rate injection methods of performing tracer-dilution measurements. Emphasis is on the use of fluorescent dyes as tracers and the equipment, field methods, and laboratory procedures for performing such measurements. The tracer-velocity method is also briefly discussed.

  14. Streamflow, water-temperature, and specific-conductance data for selected streams draining into Lake Fryxell, lower Taylor Valley, Victoria Land, Antarctica, 1990-92

    USGS Publications Warehouse

    Von Guerard, Paul; McKnight, Diane M.; Harnish, R.A.; Gartner, J.W.; Andrews, E.D.

    1995-01-01

    During the 1990-91 and 1991-92 field seasons in Antarctica, streamflow, water-temperature, and specific-conductance data were collected on the major streams draining into Lake Fryxell. Lake Fryxell is a permanently ice-covered, closed-basin lake with 13 tributary streams. Continuous streamflow data were collected at eight sites, and periodic streamflow measurements were made at three sites. Continuous water-temperature and specific- conductance data were collected at seven sites, and periodic water-temperature and specific-conductance data were collected at all sites. Streamflow for all streams measured ranged from 0 to 0.651 cubic meter per second. Water temperatures for all streams measured ranged from 0 to 14.3 degrees Celsius. Specific conductance for all streams measured ranged from 11 to 491 microsiemens per centimeter at 25 degrees Celsius. It is probable that stream- flow in the Lake Fryxell Basin during 1990-92 was greater than average. Examination of the 22-year streamflow record in the Onyx River in the Wright Valley revealed that in 1990 streamflow began earlier than for any previous year recorded and that the peak streamflow of record was exceeded. Similar high-flow conditions occurred during the 1991-92 field season. Thus, the data collected on streams draining into Lake Fryxell during 1990-92 are representative of greater than average stream- flow conditions.

  15. Biological and physical conditions of macroinvertebrates in reference lowland streams

    NASA Astrophysics Data System (ADS)

    de Brouwer, Jan; Eekhout, Joris; Verdonschot, Piet

    2016-04-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Currently, stream restoration measures are being implemented in these degraded lowland streams, where design principles are often based on outdated relationships between biological and physical conditions. Little is known about the reference conditions in these streams. Therefore, the aim of this research is to quantify the relationships between biological and physical conditions of macroinvertebrates in reference lowland streams. The research was conducted in four near-natural lowland streams in Central Poland. Field data were obtained during a field campaign in 2011. The following data were obtained in a 50-m reach in each of the four streams: macroinvertebrate sampling, spatial habitat patterns, bathymetry, and flow-velocity. Furthermore, water level, light sensitivity and temperature sensors were installed to obtain the temporal dynamic of these streams. Macroinvertebrates were sampled in 9 different habitat types, i.e. sand, gravel, fine organic matter, stones, branches, leaves, silt, vegetation, and wood. Macroinvertebrates were determined to the highest taxonomic level possible. Data from the bathymetrical surveys were interpolated on a grid and bathymetrical metrics were determined. Flow velocity measurements were related to habitats and flow velocity metrics were determined. Analysis of the data shows that flow conditions vary among the different habitat, with a gradient from hard substrates towards soft substrates. Furthermore, the data show that stream as a unit best explains species composition, but also specific habitat conditions, such as substrate type and flow velocity, correlate with species composition. More specific, the data shows a strong effect of wood on species composition. These findings may have implications for stream restoration design, which mainly focus on large-scale reconstruction of channel planform, whereas this study shows that improvement of stream ecology should focus on the smaller habitat scale.

  16. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Treesearch

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  17. Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed

    NASA Astrophysics Data System (ADS)

    Demisse, N. S.; Bitew, M. M.; Gebremichael, M.

    2012-12-01

    The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.

  18. Modeling sediment concentration of rill flow

    NASA Astrophysics Data System (ADS)

    Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen

    2018-06-01

    Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.

  19. Low-flow profiles of the Tennessee River tributaries in Georgia

    USGS Publications Warehouse

    Carter, R.F.; Hopkins, E.H.; Perlman, H.A.

    1988-01-01

    Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The purpose of this report is to present the results of a compilation of available low flow data in the form of tables and ' 7Q10 flow profiles ' (minimum average flow for 7 consecutive days with a 10-yr recurrence interval) (7Q10 flow plotted against distance along a stream channel) for all stream reaches of the Tennessee River tributaries where sufficient data of acceptable accuracy are available. Drainage area profiles are included for all stream basins larger than 5 sq mi, except for those in a few remote areas. This report is the fifth in a series of reports that will cover all stream basins north of the Fall Line in Georgia. It includes the parts of the Tennessee River basin in Georgia. Flow records were not adjusted for diversions or other factors that cause measured flows to represent other than natural flow conditions. The 7-day minimum flow profile was omitted for stream reaches where natural flow was known to be altered significantly. (Lantz-PTT)

  20. Pitot pressure measurements in flow fields behind circular-arc nozzles with exhaust jets at subsonic free-stream Mach numbers. [langley 16 foot transonic tunnel

    NASA Technical Reports Server (NTRS)

    Mason, M. L.; Putnam, L. E.

    1979-01-01

    The flow field behind a circular arc nozzle with exhaust jet was studied at subsonic free stream Mach numbers. A conical probe was used to measure the pitot pressure in the jet and free stream regions. Pressure data were recorded for two nozzle configurations at nozzle pressure ratios of 2.0, 2.9, and 5.0. At each set of test conditions, the probe was traversed from the jet center line into the free stream region at seven data acquisition stations. The survey began at the nozzle exit and extended downstream at intervals. The pitot pressure data may be applied to the evaluation of computational flow field models, as illustrated by a comparison of the flow field data with results of inviscid jet plume theory.

  1. Flow line sampler

    DOEpatents

    Nicholls, Colin I.

    1992-07-14

    An on-line product sampling apparatus and method for measuring product samples from a product stream (12) in a flow line (14) having a sampling aperture (11), includes a sampling tube (18) for containing product samples removed from flow line (14). A piston (22) removes product samples from the product stream (12) through the sampling aperture (11) and returns samples to product stream (12). A sensor (20) communicates with sample tube (18), and senses physical properties of samples while the samples are within sample tube (18). In one embodiment, sensor (20) comprises a hydrogen transient nuclear magnetic resonance sensor for measuring physical properties of hydrogen molecules.

  2. Regional Relations in Bankfull Channel Characteristics determined from flow measurements at selected stream-gaging stations in West Virginia, 1911-2002

    USGS Publications Warehouse

    Messinger, Terence; Wiley, Jeffrey B.

    2004-01-01

    Three bankfull channel characteristics?cross-sectional area, width, and depth?were significantly correlated with drainage area in regression equations developed for two regions in West Virginia. Channel characteristics were determined from analysis of flow measurements made at 74 U.S. Geological Survey stream-gaging stations at flows between 0.5 and 5.0 times bankfull flow between 1911 and 2002. Graphical and regression analysis were used to delineate an 'Eastern Region' and a 'Western Region,' which were separated by the boundary between the Appalachian Plateaus and Valley and Ridge Physiographic Provinces. Streams that drained parts of both provinces had channel characteristics typical of the Eastern Region, and were grouped with it. Standard error for the six regression equations, three for each region, ranged between 8.7 and 16 percent. Cross-sectional area and depth were greater relative to drainage area for the Western Region than they were for the Eastern Region. Regression equations were defined for streams draining between 46.5 and 1,619 square miles for the Eastern Region, and between 2.78 and 1,354 square miles for the Western Region. Stream-gaging stations with two or more cross sections where flow had been measured at flows between 0.5 and 5.0 times the 1.5-year flow showed poor replication of channel characteristics compared to the 95-percent confidence intervals of the regression, suggesting that within-reach variability for the stream-gaging stations may be substantial. A disproportionate number of the selected stream-gaging stations were on large (drainage area greater than 100 square miles) streams in the central highlands of West Virginia, and only one stream-gaging station that met data-quality criteria was available to represent the region within about 50 miles of the Ohio River north of Parkersburg, West Virginia. Many of the cross sections were at bridges, which can change channel shape. Although the data discussed in this report may not be representative of channelcharacteristics on many or most streams, the regional equations in this report provide useful information for field identification of bankfull indicators.

  3. Low-flow profiles of the Tallapoosa River and tributaries in Georgia

    USGS Publications Warehouse

    Carter, R.F.; Hopkins, E.H.; Perlman, H.A.

    1988-01-01

    Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The report is the fourth in a series of reports presenting the results of a low flow study of all stream basins north of the Fall Line in Georgia. This report covers the part of the Tallapoosa River basin in the Piedmont province of Georgia. The low flow characteristic presented is the minimum average flow for 7 consecutive days with a 10-year recurrence interval (7Q10). The data are presented in tables and shown graphically as ' low flow profiles ' (low flow plotted against distance along a stream channel), and as ' drainage area profiles ' (drainage area plotted against distance along a stream channel). Low flow profiles were constructed by interpolation or extrapolation from points of known low flow data. Low flow profiles are included for all stream reaches where low flow data of sufficient accuracy are available to justify computation of the profiles. Drainage area profiles are included for all stream basins > 5 sq mi, except for those in a few remote areas. Flow records were not adjusted for diversions or other factors that cause measured flows to represent conditions other than natural flow. (Author 's abstract)

  4. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  5. Use of tracer injections and synoptic sampling to measure metal loading from acid mine drainage

    USGS Publications Warehouse

    Kimball, Briant A.

    1997-01-01

    Thousands of abandoned and inactive mines are located in environmentally sensitive mountain watersheds. Cost-effective remediation of the effects of metals from mining in these watersheds requires knowledge of the most significant sources of metals. The significance of a given source depends on the toxicity of a particular metal, how much of the metal enters the stream, and whether or not the metal remains in the stream in a toxic form. This discussion deals with accounting for how much metal enters the stream and whether it stays in the stream. The amount of metal entering the stream is called the mass loading and is calculated as the product of metal concentration and stream discharge. The overall effect of high metal concentrations on streams and aquatic organisms is unclear without discharge measurements.A traditional discharge measurement is obtained by dividing a stream into small sections and measuring the cross-sectional area and the average water velocity in each section. Summing the measurements of all the sections gives the discharge of the entire stream. This method works well where the channel bottom and banks are smooth. In mountain streams, however, the stream bottom typically is covered with cobbles, allowing much of the water to flow through the cobbles of the streambed where it cannot be measured by a flow meter (fig. 1). Thus, accurate discharge measurements are difficult to obtain in mountain streams, even under the best of conditions.

  6. Low-flow characteristics of streams on the Kitsap Peninsula and selected adjacent islands, Washington

    USGS Publications Warehouse

    Cummans, J.E.

    1976-01-01

    Low-flow-frequency data are tabulated for 90 streamflow sites on the Kitsap Peninsula and adjacent islands, Washington. Also listed are data for 56 additional sites which have insufficient measurements for frequency analysis but which have been observed having no flow at least once during the low-flow period. The streams drain relatively small basins; only three streams have drainage areas greater than 20.0 square miles, and only nine other streams have drainage areas greater than 10.0 square miles. Mean annual precipitation during the period 1931-60 ranged from about 25 inches near Hansville to about 70 inches near Tahuya. Low-flow-frequency curves plotted from records of streamflow at eight long-term gaging stations were used to determine data for low-flow durations of 7, 30, 60, 90, and 183 days. Regression techniques then were used to estimate low flows with frequencies up to 20 years for stations with less than 10 years of record and for miscellaneous sites where discharge measurements have been made. (Woodard-USGS)

  7. Physical and biogeochemical controls on polymictic behavior in Sierra Nevada stream pools

    NASA Astrophysics Data System (ADS)

    Lucas, R. G.; Conklin, M. H.; Tyler, S. W.; Suarez, F. I.; Moran, J. E.; Esser, B. K.

    2011-12-01

    We observed polymictic behavior in stream pools in a low gradient montane meadow in the southern Sierra Nevada mountains, California. Thermal stratification in stream pools has been observed in various environments; stratification generally persists where the buoyancy forces created by a variation in water density, as a function of water temperature, are able to overcome turbulent forces resulting from stream flow. Because the density gradient creates a relatively weak buoyancy force, low flow conditions are generally required in order to overcome the turbulent forces. In some studies, a cold water source in to the pool bottoms can help to increase the density gradient and perpetuate thermal stratification. Our study took place in Long Meadow, Sequoia National Park, California. Long Meadow lies in the Wolverton Creek watershed and is part of the Southern Sierra Critical Zone Observatory. The 1-4 m diameter and 1-2 m deep pools in our study stratified thermally during the day and mixed completely at night. The low gradient of the meadow provided low stream flows. Piezometers in the meadow indicated groundwater discharge into the meadow in the months during which stratification was observed. Radon 222 activity measured in the pools also indicated groundwater influx to the pool bottoms. We used Fluent, a computational fluid dynamics equation solver, to construct a model of one of the observed pools. Initially we attempted to model the physical mechanisms controlling thermal stratification in the pool including stream flow, groundwater discharge, solar radiation, wind speed, and air, stream and ground water temperatures. Ultimately we found the model best agreed with our observed pool temperatures when we considered the light attenuation coefficients as a function of the dissolve organic carbon (DOC) concentration. Elevated DOC concentrations are expected in low stream flow regimes associated with highly organic soils such as a montane meadow. DOC concentrations measured in samples collected from the meadow stream, pools, and ground water wells ranged from 3.09 to 5.25 mg/L. We used a power equation taken from the literature to vary the visible light attenuation with DOC values measured in the meadow system. Light attenuation coefficients determined from measured DOC concentrations ranged from 0.507 m-1 to 0.899 m-1. The results from our modeling efforts indicate that in low flow streams and rivers elevated concentrations of DOC can increase the potential for thermal stratification in stream pools.

  8. Vaporizing particle velocimeter

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor)

    1992-01-01

    A velocimeter measures flow characteristics of a flow traveling through a chamber in a given direction. Tracer particles are entrained in the flow and a source of radiant energy produces an output stream directed transversely to the chamber, having a sufficient intensity to vaporize the particles as they pass through the output stream. Each of the vaporized particles explodes to produce a shock wave and a hot core, and a flow visualization system tracks the motion of the hot cores and shock waves to measure the velocity of each tracer particle and the temperature of the flow around the tracer.

  9. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation where hyporheic fluxes cannot be accurately estimated without considering multi-scale effects. Our modeling captures the dominance of small-scale features such as bedforms that drive the majority of hyporheic flow, but it also captures how hyporheic flow is substantially modified by relatively small changes in streamflow or groundwater flow. The additional field measurements add sensitivity and power to whole stream tracer additions by improving resolution of the relative importance of storage at different scales (e.g. bar-scale versus bedform-scale). This information is critical in identifying hot spots where important biogeochemical reactions occur. In summary, interpreting multi-scale interactions in streams requires models that are physically based and that incorporate non-linear process dynamics. Such models can take advantage of increasingly comprehensive field data to integrate transport processes across spatially variable flow and geomorphic conditions. The most useful field and modeling approaches will be those that are simple enough to be easily implemented by users from various disciplines but comprehensive enough to produce meaningful predictions for a wide range of flow and geomorphic scenarios. This capability is needed to support improved strategies for protecting stream ecological health in the face of accelerating land use and climate change.

  10. Low Dimensional Study of a Supersonic Multi-Stream Jet Flow

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Berry, Matthew; Aycock-Rizzo, Halley; Glauser, Mark; Lewalle, Jacques

    2017-11-01

    In this study, the near field of a two stream supersonic jet flow is examined using low dimensional tools. The flow issues from a multi-stream nozzle as described in A near-field investigation of a supersonic, multi-stream jet: locating turbulence mechanisms through velocity and density measurements by Magstadt et al., with the bulk flow Mach number, M1, being 1.6, and the second stream Mach number, M2, reaching the sonic condition. The flow field is visualized using Particle Image Velocimetry (PIV), with frames captured at a rate of 4Hz. Time-resolved pressure measurements are made just aft of the nozzle exit, as well as in the far-field, 86.6 nozzle hydraulic diameters away from the exit plane. The methodologies used in the analysis of this flow include Proper Orthogonal Decomposition (POD), and the continuous wavelet transform. The results from this ``no deck'' case are then compared to those found in the study conducted by Berry et al. From this comparison, we draw conclusions about the effects of the presence of an aft deck on the low dimensional flow description, and near field spectral content. Supported by AFOSR Grant FA9550-15-1-0435, and AFRL, through an SBIR Grant with Spectral Energies, LLC.

  11. The Shape of the Urine Stream — From Biophysics to Diagnostics

    PubMed Central

    Wheeler, Andrew P. S.; Morad, Samir; Buchholz, Noor; Knight, Martin M.

    2012-01-01

    We develop a new computational model of capillary-waves in free-jet flows, and apply this to the problem of urological diagnosis in this first ever study of the biophysics behind the characteristic shape of the urine stream as it exits the urethral meatus. The computational fluid dynamics model is used to determine the shape of a liquid jet issuing from a non-axisymmetric orifice as it deforms under the action of surface tension. The computational results are verified with experimental modelling of the urine stream. We find that the shape of the stream can be used as an indicator of both the flow rate and orifice geometry. We performed volunteer trials which showed these fundamental correlations are also observed in vivo for male healthy volunteers and patients undergoing treatment for low flow rate. For healthy volunteers, self estimation of the flow shape provided an accurate estimation of peak flow rate (). However for the patients, the relationship between shape and flow rate suggested poor meatal opening during voiding. The results show that self measurement of the shape of the urine stream can be a useful diagnostic tool for medical practitioners since it provides a non-invasive method of measuring urine flow rate and urethral dilation. PMID:23091609

  12. Classification of California streams using combined deductive and inductive approaches: Setting the foundation for analysis of hydrologic alteration

    USGS Publications Warehouse

    Pyne, Matthew I.; Carlisle, Daren M.; Konrad, Christopher P.; Stein, Eric D.

    2017-01-01

    Regional classification of streams is an early step in the Ecological Limits of Hydrologic Alteration framework. Many stream classifications are based on an inductive approach using hydrologic data from minimally disturbed basins, but this approach may underrepresent streams from heavily disturbed basins or sparsely gaged arid regions. An alternative is a deductive approach, using watershed climate, land use, and geomorphology to classify streams, but this approach may miss important hydrological characteristics of streams. We classified all stream reaches in California using both approaches. First, we used Bayesian and hierarchical clustering to classify reaches according to watershed characteristics. Streams were clustered into seven classes according to elevation, sedimentary rock, and winter precipitation. Permutation-based analysis of variance and random forest analyses were used to determine which hydrologic variables best separate streams into their respective classes. Stream typology (i.e., the class that a stream reach is assigned to) is shaped mainly by patterns of high and mean flow behavior within the stream's landscape context. Additionally, random forest was used to determine which hydrologic variables best separate minimally disturbed reference streams from non-reference streams in each of the seven classes. In contrast to stream typology, deviation from reference conditions is more difficult to detect and is largely defined by changes in low-flow variables, average daily flow, and duration of flow. Our combined deductive/inductive approach allows us to estimate flow under minimally disturbed conditions based on the deductive analysis and compare to measured flow based on the inductive analysis in order to estimate hydrologic change.

  13. Hydrologic and water-quality conditions in the lower Apalachicola-Chattahoochee-Flint and parts of the Aucilla-Suwannee-Ochlockonee River basins in Georgia and adjacent parts of Florida and Alabama during drought conditions, July 2011

    USGS Publications Warehouse

    Gordon, Debbie W.; Peck, Michael F.; Painter, Jaime A.

    2012-01-01

    As part of the U.S. Department of the Interior sustainable water strategy, WaterSMART, the U.S. Geological Survey documented hydrologic and water-quality conditions in the lower Apalachicola-Chattahoochee-Flint and western and central Aucilla-Suwannee-Ochlockonee River basins in Alabama, Florida, and Georgia during low-flow conditions in July 2011. Moderate-drought conditions prevailed in this area during early 2011 and worsened to exceptional by June, with cumulative rainfall departures from the 1981-2010 climate normals registering deficits ranging from 17 to 27 inches. As a result, groundwater levels and stream discharges measured below median daily levels throughout most of 2011. Water-quality field properties including temperature, dissolved oxygen, specific conductance, and pH were measured at selected surface-water sites. Record-low groundwater levels measured in 12 of 43 surficial aquifer wells and 128 of 312 Upper Floridan aquifer wells during July 2011 underscored the severity of drought conditions in the study area. Most wells recorded groundwater levels below the median daily statistic, and 7 surficial aquifer wells were dry. Groundwater-level measurements taken in July 2011 were used to determine the potentiometric surface of the Upper Floridan aquifer. Groundwater generally flows to the south and toward streams except in reaches where streams discharge to the aquifer. The degree of connection between the Upper Floridan aquifer and streams decreases east of the Flint River where thick overburden hydraulically separates the aquifer from stream interaction. Hydraulic separation of the Upper Floridan aquifer from streams located east of the Flint River is shown by stream-stage altitudes that differ from groundwater levels measured in close proximity to streams. Most streams located in the study area during 2011 exhibited below normal flows (streamflows less than the 25th percentile), substantiating the severity of drought conditions that year. Streamflow and springflow measured at 202 sites along 2,122 stream miles during July 20-24, 2011, identified about 286 miles of losing streams, about 1,230 miles of gaining streams, and about 606 miles of streams with no flow. Water-quality field properties measured at 123 stream and 5 spring sites during July 2011 yielded water temperatures ranging from 20.6 to 31.6 degrees Celsius, dissolved oxygen ranging from 0.47 to 9.98 milligrams per liter, specific conductance ranging from 13 to 834 microsiemens per centimeter at 25 degrees Celsius, and pH ranging from 3.6 to 8.03.

  14. Hydrogeologic data for the Blaine aquifer and associated units in southwestern Oklahoma and northwestern Texas

    USGS Publications Warehouse

    Runkle, D.L.; Bergman, D.L.; Fabian, R.S.

    1997-01-01

    This report is a compilation of hydrogeologic data collected for an areal ground-water investigation of the Blaine aquifer and associated units in southwestern Oklahoma and northwestern Texas. The study area includes parts of Greer, Harmon, and Jackson counties in Oklahoma and parts of Childress, Collingsworth, Hall, Hardeman, and Wilbarger counties in Texas. The Blaine aquifer consists of cavernous gypsum and dolomite beds. Water from the Blaine aquifer supports a local agriculture based mainly on irrigated cotton and wheat. The purpose of the study was to determine the availability, quantity, and quality of ground water from the Blaine aquifer and associated units. This report provides a reference for some of the data that was used as input into a computer ground-water flow model that simulates ground-water flow in the Blaine aquifer. The data in this report consists of: (1) Monthly or periodic water-level measurements in 134 wells; (2) daily mean water-level measurements for 11 wells equipped with water-level recorders; (3) daily total precipitation measurements from five precipitation gages; (4) low-flow stream-discharge measurements for 89 stream sites; (5) miscellaneous stream-discharge measurements at seven stream sites; (6) chemical analyses of surface water from 78 stream sites during low-flow periods; (7) chemical analyses of ground water from 41 wells; and (8) chemical analyses of runoff water collected at five sites.

  15. Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus

    USGS Publications Warehouse

    Holtschlag, David J.

    2009-01-01

    AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.

  16. Mass flow sensor utilizing a resistance bridge

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)

    2004-01-01

    A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.

  17. Low frequency vibration induced streaming in a Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costalonga, M., E-mail: maxime.costalonga@univ-paris-diderot.fr; Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13; Brunet, P.

    When an acoustic wave propagates in a fluid, it can generate a second order flow whose characteristic time is much longer than the period of the wave. Within a range of frequency between ten and several hundred Hz, a relatively simple and versatile way to generate streaming flow is to put a vibrating object in the fluid. The flow develops vortices in the viscous boundary layer located in the vicinity of the source of vibrations, leading in turn to an outer irrotational streaming called Rayleigh streaming. Because the flow originates from non-linear time-irreversible terms of the Navier-Stokes equation, this phenomenonmore » can be used to generate efficient mixing at low Reynolds number, for instance in confined geometries. Here, we report on an experimental study of such streaming flow induced by a vibrating beam in a Hele-Shaw cell of 2 mm span using long exposure flow visualization and particle-image velocimetry measurements. Our study focuses especially on the effects of forcing frequency and amplitude on flow dynamics. It is shown that some features of this flow can be predicted by simple scaling arguments and that this vibration-induced streaming facilitates the generation of vortices.« less

  18. Streamflow measurements, basin characteristics, and streamflow statistics for low-flow partial-record stations operated in Massachusetts from 1989 through 1996

    USGS Publications Warehouse

    Ries, Kernell G.

    1999-01-01

    A network of 148 low-flow partial-record stations was operated on streams in Massachusetts during the summers of 1989 through 1996. Streamflow measurements (including historical measurements), measured basin characteristics, and estimated streamflow statistics are provided in the report for each low-flow partial-record station. Also included for each station are location information, streamflow-gaging stations for which flows were correlated to those at the low-flowpartial-record station, years of operation, and remarks indicating human influences of stream-flowsat the station. Three or four streamflow measurements were made each year for three years during times of low flow to obtain nine or ten measurements for each station. Measured flows at the low-flow partial-record stations were correlated with same-day mean flows at a nearby gaging station to estimate streamflow statistics for the low-flow partial-record stations. The estimated streamflow statistics include the 99-, 98-, 97-, 95-, 93-, 90-, 85-, 80-, 75-, 70-, 65-, 60-, 55-, and 50-percent duration flows; the 7-day, 10- and 2-year low flows; and the August median flow. Characteristics of the drainage basins for the stations that theoretically relate to the response of the station to climatic variations were measured from digital map data by use of an automated geographic information system procedure. Basin characteristics measured include drainage area; total stream length; mean basin slope; area of surficial stratified drift; area of wetlands; area of water bodies; and mean, maximum, and minimum basin elevation.Station descriptions and calculated streamflow statistics are also included in the report for the 50 continuous gaging stations used in correlations with the low-flow partial-record stations.

  19. A seepage investigation of an area at and near Oak Ridge National Laboratory, Oak Ridge, Tennessee, March through August 1993

    USGS Publications Warehouse

    Johnson, G.C.

    1996-01-01

    A seepage investigation was conducted of an area surrounding the Oak Ridge National Laboratory from March through August 1993. The project was divided into three phases: a reconnaissance to inventory and map seeps, springs, and stream-measurement sites; a high base flow seepage investigation; and a low base flow seepage investigation. The reconnaissance consisted of following each tributary to its source to inventory each site where water was issuing from the ground. Stream- measurement sites were also located along stream reaches at 500-foot intervals. A total of 822 sites were identified. A global positioning system was used to locate 483 sites to within 3- to 5-meter accuracy. The high base flow seepage investigation was conducted from April 29 through May 3, 1993, and from May 7 through May 10, 1993. During the high base flow seepage investigation, sites identified during the reconnaissance were revisited. At almost all sites with flowing water, discharge, pH, specific conductance, and temperature were recorded. Two hundred and fourteen sites were dry. The low base flow seepage investigation was conducted from August 8 through August 10, 1993, and consisted of revisiting the seeps and springs that were flowing during the high base flow seepage investigation. Stream- measurement sites were not revisited. One hundred and forty-one sites were dry.

  20. Estimates of ground-water recharge, base flow, and stream reach gains and losses in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Risley, John C.

    2002-03-19

    Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.

  1. Concentration-Discharge Behavior of Contaminants in a Stream Impacted by Acid Mine Drainage

    NASA Astrophysics Data System (ADS)

    Shaw, M. E.; Klein, M.; Herndon, E.

    2017-12-01

    Acid mine drainage (AMD) has severely degraded streams throughout the Appalachian coal region of the United States. AMD occurs when pyrite contained in coal is exposed to water and air during mining activities and oxidized to release high concentrations of sulfate, metals, and acidity into water bodies. Little is known about the concentration-discharge (CQ) relationships of solutes in AMD-impacted streams due to the complicated nature of acid mine drainage systems. For example, streams may receive inputs from multiple sources that include runoff, constructed treatment systems, and abandoned mines that bypass these systems to continue to contaminate the streams. It is important to understand the CQ relationships of contaminants in AMD-impacted streams in order to elucidate contaminant sources and to predict effects on aquatic ecosystems. Here, we study the CQ behaviors of acid and metals in a contaminated watershed in northeastern Ohio where limestone channels have been installed to remediate water draining from a mine pool into the stream. Stream chemistry was measured in samples collected once per day or once per hour during storm events, and stream flow was measured continuously at the watershed outlet. Increases in stream velocity during storm events resulted in an increase in pH (from 3 to 6) that subsequently decreased back to 3 as flow decreased. Additionally, Fe and Mn concentrations in the stream were high during baseflow (7 and 15 mg/L, respectively) and decreased with increasing discharge during storm events. These results indicate that the treatment system is only effective at neutralizing stream acidity and removing metals when water flow through the limestone channel is continuous. We infer that the acidic and metal-rich baseflow derives from upwelling of contaminated groundwater or subsurface flow from a mine pool. Ongoing studies aim to isolate the source of this baseflow contamination and evaluate the geochemical transformations that occur as it flows into the stream.

  2. Availability and Distribution of Base Flow in Lower Honokohau Stream, Island of Maui

    USGS Publications Warehouse

    Fontaine, Richard A.

    2003-01-01

    Honokohau Stream is one of the few perennial streams in the Lahaina District of West Maui. Current Honokohau water-use practices often lead to conflicts among water users, which are most evident during periods of base flow. To better manage the resource, data are needed that describe the availability and distribution of base flow in lower Honokohau Stream and how base flow is affected by streamflow diversion and return-flow practices. Flow-duration discharges for percentiles ranging from 50 to 95 percent were estimated at 13 locations on lower Honokohau Stream using data from a variety of sources. These sources included (1) available U.S. Geological Survey discharge data, (2) published summaries of Maui Land & Pineapple Company, Inc. diversion and water development-tunnel data, (3) seepage run and low-flow partial-record discharge measurements made for this study, and (4) current (2003) water diversion and return-flow practices. These flow-duration estimates provide a detailed characterization of the distribution and availability of base flow in lower Honokohau Stream. Estimates of base-flow statistics indicate the significant effect of Honokohau Ditch diversions on flow in the stream. Eighty-six percent of the total flow upstream from the ditch is diverted from the stream. Immediately downstream from the diversion dam there is no flow in the stream 91.2 percent of the time, except for minor leakage through the dam. Flow releases at the Taro Gate, from Honokohau Ditch back into the stream, are inconsistent and were found to be less than the target release of 1.55 cubic feet per second on 9 of the 10 days on which measurements were made. Previous estimates of base-flow availability downstream from the Taro Gate release range from 2.32 to 4.6 cubic feet per second (1.5 to 3.0 million gallons per day). At the two principal sites where water is currently being diverted for agricultural use in the valley (MacDonald's and Chun's Dams), base flows of 2.32 cubic feet per second (1.5 million gallons per day) are available more than 95 percent of the time at MacDonald's Dam and 80 percent of the time at Chun's Dam. Base flows of 4.6 cubic feet per second (3.0 million gallons per day) are available 65 and 56 percent of the time, respectively. A base-flow water-accounting model was developed to estimate how flow-duration discharges for 13 sites on Honokohau Stream would change in response to a variety of flow release and diversion practices. A sample application of the model indicates that there is a 1 to 1 relation between changes in flow release rates at the Taro Gate and base flow upstream from MacDonald's Dam. At Chun's Dam the relation between Taro Gate releases and base flow varies with flow-duration percentiles. At the 95th and 60th percentiles, differences in base flow at Chun's Dam would equal about 50 and 90 percent of the change at the Taro Gate.

  3. Quantifying the fate of agricultural nitrogen in an unconfined aquifer: Stream-based observations at three measurement scales

    NASA Astrophysics Data System (ADS)

    Gilmore, Troy E.; Genereux, David P.; Solomon, D. Kip; Solder, John E.; Kimball, Briant A.; Mitasova, Helena; Birgand, François

    2016-03-01

    We compared three stream-based sampling methods to study the fate of nitrate in groundwater in a coastal plain watershed: point measurements beneath the streambed, seepage blankets (novel seepage-meter design), and reach mass-balance. The methods gave similar mean groundwater seepage rates into the stream (0.3-0.6 m/d) during two 3-4 day field campaigns despite an order of magnitude difference in stream discharge between the campaigns. At low flow, estimates of flow-weighted mean nitrate concentrations in groundwater discharge ([NO3-]FWM) and nitrate flux from groundwater to the stream decreased with increasing degree of channel influence and measurement scale, i.e., [NO3-]FWM was 654, 561, and 451 µM for point, blanket, and reach mass-balance sampling, respectively. At high flow the trend was reversed, likely because reach mass-balance captured inputs from shallow transient high-nitrate flow paths while point and blanket measurements did not. Point sampling may be better suited to estimating aquifer discharge of nitrate, while reach mass-balance reflects full nitrate inputs into the channel (which at high flow may be more than aquifer discharge due to transient flow paths, and at low flow may be less than aquifer discharge due to channel-based nitrate removal). Modeling dissolved N2 from streambed samples suggested (1) about half of groundwater nitrate was denitrified prior to discharge from the aquifer, and (2) both extent of denitrification and initial nitrate concentration in groundwater (700-1300 µM) were related to land use, suggesting these forms of streambed sampling for groundwater can reveal watershed spatial relations relevant to nitrate contamination and fate in the aquifer.

  4. Arc Jet Flow Properties Determined from Laser-Induced Fluorescence of Atomic Nitrogen

    NASA Technical Reports Server (NTRS)

    Fletcher, Douglas; Wercinski, Paul F. (Technical Monitor)

    1998-01-01

    An laser-spectroscopic investigation of the thermocheMical state of arcjet flows is currently being conducted in the Aerodynamic Heating Facility (AHF) Circlet at NASA Ames Research Center. Downstream of the nozzle exit, but upstream of the test article, Laser-Induced Fluorescence (LIF) of atomic nitrogen is used to assess the nonequilibriuM distribution of flow enthalpy in the free stream. The two-photon LIF technique provides simultaneous measurements of free stream velocity, translational temperature, and nitrogen number density on the flow centerline. Along with information from facility instrumentation, these measurements allow a determination of the free stream total enthalpy, and its apportionment in to thermal, kinetic, and chemical mode contributions. Experimental results are presented and discussed for two different niti-ogen/argon test gas flow runs during which the current is varied while the pressure remains constant .

  5. U.S. stream flow measurement and data dissemination improve

    USGS Publications Warehouse

    Hirsch, Robert M.; Costa, John E.

    2004-01-01

    Stream flow information is essential for many important uses across a broad range of scales, including global water balances, engineering design, flood forecasting, reservoir operations, navigation, water supply, recreation, and environmental management. Growing populations and competing priorities for water, including preservation and restoration of aquatic habitat, are spurring demand for more accurate, timely, and accessible water data.To be most useful, stream flow information must be collected in a standardized manner, with a known accuracy, and for a long and continuous time period.

  6. Spectral measurement of nonequilibrium arc-jet free-stream flow

    NASA Technical Reports Server (NTRS)

    Gopaul, Nigel K. J. M.

    1993-01-01

    Spectra of radiation emitted by the free-stream flow of air in an arcjet wind tunnel at NASA-Ames Research Center were studied experimentally. The arcjet produces a high energy gaseous flow that is expanded to low density and low temperature to produce high velocities in the free-stream for simulating atmospheric entry conditions. The gamma and the delta band systems of nitric oxide emitted by the free stream were measured in the second order. The NO-beta band system, which is in the same spectral region as the NO-gamma and NO-delta band systems, was not present in the data. Only transitions from the lowest vibrational level of the upper state of both the NO-gamma and NO-delta band systems were observed. The rotational temperature determined from these band systems was 660 +/- 50 deg K. The maximum possible vibrational temperature was determined to be less than 850 +/- 50 deg K. The electronic temperature determined from the ratio of the intensities of the NO-gamma and NO-delta band systems was 7560 +/- 340 K. The results indicate that the arcjet free-stream flow is in thermal nonequilibrium.

  7. Low-flow profiles of the upper Oconee River and tributaries in Georgia

    USGS Publications Warehouse

    Carter, R.F.; Hopkins, E.H.; Perlman, H.A.

    1988-01-01

    Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The purpose of this report is to present the results of a compilation of available low flow data in the form of tables and ' 7Q10 flow profiles ' (minimum average flow for 7 consecutive days with a 10-yr recurrence interval)(7Q10 flow plotted against distance along a stream channel) for all streams reaches of the Upper Oconee River and tributaries in Georgia where sufficient data of acceptable accuracy are available. Drainage area profiles are included for all stream basins larger than 5 sq mi, except for those in a few remote areas. This report is the second in a series of reports that will cover all stream basins north of the Fall Line in Georgia. It includes the Oconee River basin down to and including Camp Creek at stream mile 134.53, Town Creek in Baldwin and Hancock Counties down to County Road 213-141, and Buffalo Creek in Hancock County down to the Hancock-Washington County line. Flow records were not adjusted for diversions or other factors that cause measured flows to represent other than natural flow conditions. The 7-day minimum flow profile was omitted for stream reaches where natural flow was known to be altered significantly. (Lantz-PTT)

  8. Fine particle retention within stream storage areas at base flow and in response to a storm event

    NASA Astrophysics Data System (ADS)

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, J. W.

    2017-07-01

    Fine particles (1-100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  9. Fine particle retention within stream storage areas at base flow and in response to a storm event

    USGS Publications Warehouse

    Drummond, J. D.; Larsen, L. G.; González-Pinzón, R.; Packman, A. I.; Harvey, Judson

    2017-01-01

    Fine particles (1–100 µm), including particulate organic carbon (POC) and fine sediment, influence stream ecological functioning because they may contain or have a high affinity to sorb nitrogen and phosphorus. These particles are immobilized within stream storage areas, especially hyporheic sediments and benthic biofilms. However, fine particles are also known to remobilize under all flow conditions. This combination of downstream transport and transient retention, influenced by stream geomorphology, controls the distribution of residence times over which fine particles influence stream ecosystems. The main objective of this study was to quantify immobilization and remobilization rates of fine particles in a third-order sand-and-gravel bed stream (Difficult Run, Virginia, USA) within different geomorphic units of the stream (i.e., pool, lateral cavity, and thalweg). During our field injection experiment, a thunderstorm-driven spate allowed us to observe fine particle dynamics during both base flow and in response to increased flow. Solute and fine particles were measured within stream surface waters, pore waters, sediment cores, and biofilms on cobbles. Measurements were taken at four different subsurface locations with varying geomorphology and at multiple depths. Approximately 68% of injected fine particles were retained during base flow until the onset of the spate. Retention was evident even after the spate, with 15.4% of the fine particles deposited during base flow still retained within benthic biofilms on cobbles and 14.9% within hyporheic sediment after the spate. Thus, through the combination of short-term remobilization and long-term retention, fine particles can serve as sources of carbon and nutrients to downstream ecosystems over a range of time scales.

  10. Effects of chronic pollution and water flow intermittency on stream biofilms biodegradation capacity.

    PubMed

    Rožman, Marko; Acuña, Vicenç; Petrović, Mira

    2018-02-01

    A mesocosm case study was conducted to gain understanding and practical knowledge on biofilm emerging contaminants biodegradation capacity under stressor and multiple stressor conditions. Two real life scenarios: I) biodegradation in a pristine intermittent stream experiencing acute pollution and II) biodegradation in a chronically polluted intermittent stream, were examined via a multifactorial experiment using an artificial stream facility. Stream biofilms were exposed to different water flow conditions i.e. permanent and intermittent water flow. Venlafaxine, a readily biodegradable pharmaceutical was used as a measure of biodegradation capacity while pollution was simulated by a mixture of four emerging contaminants (erythromycin, sulfisoxazole, diclofenac and imidacloprid in addition to venlafaxine) in environmentally relevant concentrations. Biodegradation kinetics monitored via LC-MS/MS was established, statistically evaluated, and used to link biodegradation with stress events. The results suggest that the effects of intermittent flow do not hinder and may even stimulate pristine biofilm biodegradation capacity. Chronic pollution completely reduced biodegradation in permanent water flow experimental treatments while no change in intermittent streams was observed. A combined effect of water flow conditions and emerging contaminants exposure on biodegradation was found. The decrease in biodegradation due to exposure to emerging contaminants is significantly greater in streams with permanent water flow suggesting that the short and medium term biodegradation capacity in intermittent systems may be preserved or even greater than in perennial streams. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Evaluation of a method of estimating low-flow frequencies from base-flow measurements at Indiana streams

    USGS Publications Warehouse

    Wilson, John Thomas

    2000-01-01

    A mathematical technique of estimating low-flow frequencies from base-flow measurements was evaluated by using data for streams in Indiana. Low-flow frequencies at low- flow partial-record stations were estimated by relating base-flow measurements to concurrent daily flows at nearby streamflow-gaging stations (index stations) for which low-flowfrequency curves had been developed. A network of long-term streamflow-gaging stations in Indiana provided a sample of sites with observed low-flow frequencies. Observed values of 7-day, 10-year low flow and 7-day, 2-year low flow were compared to predicted values to evaluate the accuracy of the method. Five test cases were used to evaluate the method under a variety of conditions in which the location of the index station and its drainage area varied relative to the partial-record station. A total of 141 pairs of streamflow-gaging stations were used in the five test cases. Four of the test cases used one index station, the fifth test case used two index stations. The number of base-flow measurements was varied for each test case to see if the accuracy of the method was affected by the number of measurements used. The most accurate and least variable results were produced when two index stations on the same stream or tributaries of the partial-record station were used. All but one value of the predicted 7-day, 10-year low flow were within 15 percent of the values observed for the long-term continuous record, and all of the predicted values of the 7-day, 2-year lowflow were within 15 percent of the observed values. This apparent accuracy, to some extent, may be a result of the small sample set of 15. Of the four test cases that used one index station, the most accurate and least variable results were produced in the test case where the index station and partial-record station were on the same stream or on streams tributary to each other and where the index station had a larger drainage area than the partial-record station. In that test case, the method tended to over predict, based on the median relative error. In 23 of 28 test pairs, the predicted 7-day, 10-year low flow was within 15 percent of the observed value; in 26 of 28 test pairs, the predicted 7-day, 2-year low flow was within 15 percent of the observed value. When the index station and partial-record station were on the same stream or streams tributary to each other and the index station had a smaller drainage area than the partial-record station, the method tended to under predict the low-flow frequencies. Nineteen of 28 predicted values of the 7-day, 10-year low flow were within 15 percent of the observed values. Twenty-five of 28 predicted values of the 7-day, 2-year low flow were within 15 percent of the observed values. When the index station and the partial-record station were on different streams, the method tended to under predict regardless of whether the index station had a larger or smaller drainage area than that of the partial-record station. Also, the variability of the relative error of estimate was greatest for the test cases that used index stations and partial-record stations from different streams. This variability, in part, may be caused by using more streamflow-gaging stations with small low-flow frequencies in these test cases. A small difference in the predicted and observed values can equate to a large relative error when dealing with stations that have small low-flow frequencies. In the test cases that used one index station, the method tended to predict smaller low-flow frequencies as the number of base-flow measurements was reduced from 20 to 5. Overall, the average relative error of estimate and the variability of the predicted values increased as the number of base-flow measurements was reduced.

  12. Estimating the gas and dye quantities for modified tracer technique measurements of stream reaeration coefficients

    USGS Publications Warehouse

    Rathbun, R.E.

    1979-01-01

    Measuring the reaeration coefficient of a stream with a modified tracer technique has been accomplished by injecting either ethylene or ethylene and propane together and a rhodamine-WT dye solution into the stream. The movement of the tracers through the stream reach after injection is described by a one-dimensional diffusion equation. The peak concentrations of the tracers at the downstream end of the reach depend on the concentrations of the tracers in the stream at the injection site, the longitudinal dispersion coefficient, the mean water velocity, the length of the reach, and the duration of the injection period. The downstream gas concentrations also depend on the gas desorption coefficients of the reach. The concentrations of the tracer gases in the stream at the injection site depend on the flow rates of the gases through the injection diffusers, the efficiency of the gas absorption process, and the stream discharge. The concentration of dye in the stream at the injection site depends on the flow rate of the dye solution, the concentration of the dye solution, and the stream discharge. Equations for estimating the gas flow rates, the quantities of the gases, the dye concentration, and the quantity of dye together with procedures for determining the variables in these equations are presented. (Woodard-USGS)

  13. Coaxial airblast atomizers

    NASA Technical Reports Server (NTRS)

    Hardalupas, Y.; Whitelaw, J. H.

    1993-01-01

    An experimental investigation was performed to quantify the characteristics of the sprays of coaxial injectors with particular emphasis on those aspects relevant to the performance of rocket engines. Measurements for coaxial air blast atomizers were obtained using air to represent the gaseous stream and water to represent the liquid stream. A wide range of flow conditions were examined for sprays with and without swirl for gaseous streams. The parameters varied include Weber number, gas flow rate, liquid flow rate, swirl, and nozzle geometry. Measurements were made with a phase Doppler velocimeter. Major conclusions of the study focused upon droplet size as a function of Weber number, effect of gas flow rate on atomization and spray spread, effect of nozzle geometry on atomization and spread, effect of swirl on atomization, spread, jet recirculation and breakup, and secondary atomization.

  14. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10 percent) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50 percent of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65 percent of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  15. Characterization of Three-Stream Jet Flow Fields

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2016-01-01

    Flow-field measurements were conducted on single-, dual- and three-stream jets using two-component and stereo Particle Image Velocimetry (PIV). The flow-field measurements complimented previous acoustic measurements. The exhaust system consisted of externally-plugged, externally-mixed, convergent nozzles. The study used bypass-to-core area ratios equal to 1.0 and 2.5 and tertiary-to-core area ratios equal to 0.6 and 1.0. Axisymmetric and offset tertiary nozzles were investigated for heated and unheated high-subsonic conditions. Centerline velocity decay rates for the single-, dual- and three-stream axisymmetric jets compared well when axial distance was normalized by an equivalent diameter based on the nozzle system total exit area. The tertiary stream had a greater impact on the mean axial velocity for the small bypass-to-core area ratio nozzles than for large bypass-to-core area ratio nozzles. Normalized turbulence intensities were similar for the single-, dual-, and three-stream unheated jets due to the small difference (10%) in the core and bypass velocities for the dual-stream jets and the low tertiary velocity (50% of the core stream) for the three-stream jets. For heated jet conditions where the bypass velocity was 65% of the core velocity, additional regions of high turbulence intensity occurred near the plug tip which were not present for the unheated jets. Offsetting the tertiary stream moved the peak turbulence intensity levels upstream relative to those for all axisymmetric jets investigated.

  16. Experimental measurements of unsteady turbulent boundary layers near separation

    NASA Technical Reports Server (NTRS)

    Simpson, R. L.

    1982-01-01

    Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.

  17. Rethinking hyporheic flow and transient storage to advance understanding of stream-catchment connections

    USGS Publications Warehouse

    Bencala, K.E.; Gooseff, M.N.; Kimball, B.A.

    2011-01-01

    Although surface water and groundwater are increasingly referred to as one resource, there remain environmental and ecosystem needs to study the 10 m to 1 km reach scale as one hydrologic system. Streams gain and lose water over a range of spatial and temporal scales. Large spatial scales (kilometers) have traditionally been recognized and studied as river-aquifer connections. Over the last 25 years hyporheic exchange flows (1-10 m) have been studied extensively. Often a transient storage model has been used to quantify the physical solute transport setting in which biogeochemical processes occur. At the longer 10 m to 1 km scale of stream reaches it is now clear that streams which gain water overall can coincidentally lose water to the subsurface. At this scale, the amounts of water transferred are not necessarily significant but the exchanges can, however, influence solute transport. The interpretation of seemingly straightforward questions about water, contaminant, and nutrient fluxes into and along a stream can be confounded by flow losses which are too small to be apparent in stream gauging and along flow paths too long to be detected in tracer experiments. We suggest basic hydrologic approaches, e.g., measurement of flow along the channel, surface and subsurface solute sampling, and routine measurements of the water table that, in our opinion, can be used to extend simple exchange concepts from the hyporheic exchange scale to a scale of stream-catchment connection. Copyright 2011 by the American Geophysical Union.

  18. Computation of records of streamflow at control structures

    USGS Publications Warehouse

    Collins, Dannie L.

    1977-01-01

    Traditional methods of computing streamflow records on large, low-gradient streams require a continuous record of water-surface slope over a natural channel reach. This slope must be of sufficient magnitude to be accuratly measured with available stage measuring devices. On highly regulated streams, this slope approaches zero during periods of low flow and accurate measurement is difficult. Methods are described to calibrate multipurpose regulating control structures to more accurately compute streamflow records on highly-regulated streams. Hydraulic theory, assuming steady, uniform flow during a computational interval, is described for five different types of flow control. The controls are: Tainter gates, hydraulic turbines, fixed spillways, navigation locks, and crest gates. Detailed calibration procedures are described for the five different controls as well as for several flow regimes for some of the controls. The instrumentation package and computer programs necessary to collect and process the field data are discussed. Two typical calibration procedures and measurement data are presented to illustrate the accuracy of the methods. (Woodard-USGS)

  19. No Snow No Flow: How Montane Stream Networks Respond to Drought

    NASA Astrophysics Data System (ADS)

    Grant, G.; Nolin, A. W.; Selker, J. S.; Lewis, S.; Hempel, L. A.; Jefferson, A.; Walter, C.; Roques, C.

    2015-12-01

    Hydrologic extremes, such as drought, offer an exceptional opportunity to explore how runoff generation mechanisms and stream networks respond to changing precipitation regimes. The winter of 2014-2015 was the warmest on record in western Oregon, US, with record low snowpacks, and was followed by an anomalously warm, dry spring, resulting in historically low streamflows. But a year like 2015 is more than an outlier meteorological year. It provides a unique opportunity to test fundamental hypotheses for how montane hydrologic systems will respond to anticipated changes in amount and timing of recharge. In particular, the volcanic Cascade Mountains represent a "landscape laboratory" comprised of two distinct runoff regimes: the surface-flow dominated Western Cascade watersheds, with flashy streamflow regimes, rapid baseflow recession, and very low summer flows; and (b) the spring-fed High Cascade watersheds, with a slow-responding streamflow regime, and a long and sustained baseflow recession that maintains late summer streamflow through deep-groundwater contributions to high volume, coldwater springs. We hypothesize that stream network response to the extremely low snowpack and recharge varies sharply in these two regions. In surface flow dominated streams, the location of channel heads can migrate downstream, contracting the network longitudinally; wetted channel width and depth contract laterally as summer recession proceeds and flows diminish. In contrast, in spring-fed streams, channel heads "jump" to the next downstream spring when upper basin spring flow diminishes to zero. Downstream of flowing springs, wetted channel width and depth contract laterally as flows recede. To test these hypotheses, we conducted a field campaign to measure changing discharge, hydraulic geometry, and channel head location in both types of watersheds throughout the summer and early fall. Multiple cross-section sites were established on 6 streams representing both flow regime types on either side of the Cascade crest. We also took Isotopic water samples to determine recharge elevations of receding streams. Taken together these measurements reveal the processes by which drainage networks contract as flows diminish - a fundamental property of montane stream systems both now and in the future.

  20. Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape

    NASA Astrophysics Data System (ADS)

    Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.

    2017-12-01

    Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and improve management of our critical water resources.

  1. Simulation of groundwater flow and streamflow depletion in the Branch Brook, Merriland River, and parts of the Mousam River watersheds in southern Maine

    USGS Publications Warehouse

    Nielsen, Martha G.; Locke, Daniel B.

    2015-01-01

    The study evaluated two different methods of calculating in-stream flow requirements for Branch Brook and the Merriland River—a set of statewide equations used to calculate monthly median flows and the MOVE.1 record-extension technique used on site-specific streamflow measurements. The August median in-stream flow requirement in the Merriland River was calculated as 7.18 ft3/s using the statewide equations but was 3.07 ft3/s using the MOVE.1 analysis. In Branch Brook, the August median in-stream flow requirements were calculated as 20.3 ft3/s using the statewide equations and 11.8 ft3/s using the MOVE.1 analysis. In each case, using site-specific data yields an estimate of in-stream flow that is much lower than an estimate the statewide equations provide.

  2. Stream channel reference sites: An illustrated guide to field technique

    Treesearch

    Cheryl C Harrelson; C. L. Rawlins; John P. Potyondy

    1994-01-01

    This document is a guide to establishing permanent reference sites for gathering data about the physical characteristics of streams and rivers. The minimum procedure consists of the following: (1) select a site, (2) map the site and location, (3) measure the channel cross-section, (4) survey a longitudinal profile of the channel, (5) measure stream flow, (6) measure...

  3. The influence of free-stream turbulence on separation of turbulent boundary layers in incompressible, two-dimensional flow

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith; Barnett, R. Joel; Fisher, Carl E.; Koukousakis, Costas E.

    1986-01-01

    Experiments were conducted to determine if free-stream turbulence scale affects separation of turbulent boundary layers. In consideration of possible interrelation between scale and intensity of turbulence, the latter characteristic also was varied and its role was evaluated. Flow over a 2-dimensional airfoil in a subsonic wind tunnel was studied with the aid of hot-wire anemometry, liquid-film flow visualization, a Preston tube, and static pressure measurements. Profiles of velocity, relative turbulence intensity, and integral scale in the boundary layer were measured. Detachment boundary was determined for various angles of attack and free-stream turbulence. The free-stream turbulence intensity and scale were found to spread into the entire turbulent boundary layer, but the effect decreased as the airfoil surface was approached. When the changes in stream turbulence were such that the boundary layer velocity profiles were unchanged, detachment location was not significantly affected by the variations of intensity and scale. Pressure distribution remained the key factor in determining detachment location.

  4. Base-flow data in the Arnold Air Force Base area, Tennessee, June and October 2002

    USGS Publications Warehouse

    Robinson, John A.; Haugh, Connor J.

    2004-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of AAFB is to support the development of aerospace systems. This mission is accomplished through test facilities at Arnold Engineering Development Center (AEDC), which occupies about 4,000 acres in the center of AAFB. Base-flow data including discharge, temperature, and specific conductance were collected for basins in and near AAFB during high base-flow and low base-flow conditions. Data representing high base-flow conditions from 109 sites were collected on June 3 through 5, 2002, when discharge measurements at sites with flow ranged from 0.005 to 46.4 ft3/s. Data representing low base-flow conditions from 109 sites were collected on October 22 and 23, 2002, when discharge measurements at sites with flow ranged from 0.02 to 44.6 ft3/s. Discharge from the basin was greater during high base-flow conditions than during low base-flow conditions. In general, major tributaries on the north side and southeastern side of the study area (Duck River and Bradley Creek, respectively) had the highest flows during the study. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining, losing, wet, dry, or unobserved for each base-flow measurement period. Gaining stream reaches were more common during the high base-flow period than during the low base-flow period. Dry stream reaches were more common during the low base-flow period than during the high base-flow period. Losing reaches were more predominant in Bradley Creek and Crumpton Creek. Values of flow per square mile for the study area of 0.55 and 0.37 (ft3/s)/mi2 were calculated using discharge data collected on June 3 through 5, 2002, and October 22 and 23, 2002, respectively. Sub-basin areas with surplus or deficient flow were defined within the basin. Drainage areas for each stream measurement site were delineated and measured from topographic maps. Change in flow per square mile for each sub-basin was calculated using data from each base-flow measurement period. The calculated values were used to define the areas of surplus or deficient flow for high and low base-flow conditions. Many areas of deficient flow were present throughout the study area under high and low base-flow conditions. Most areas of deficient flow were in the headwater basins. Fewer areas of surplus flow were present under low base-flow conditions than during the high base-flow conditions. The flow per square mile for each major tributary basin in the study area also was calculated. The values of flow per square mile for the Dry Creek, Spring Creek, and Wiley Creek basins were greatest under both high and low base-flow conditions.

  5. Development of a comprehensive watershed model applied to study stream yield under drought conditions

    USGS Publications Warehouse

    Perkins, S.P.; Sophocleous, M.

    1999-01-01

    We developed a model code to simulate a watershed's hydrology and the hydraulic response of an interconnected stream-aquifer system, and applied the model code to the Lower Republican River Basin in Kansas. The model code links two well-known computer programs: MODFLOW (modular 3-D flow model), which simulates ground water flow and stream-aquifer interaction; and SWAT (soil water assessment tool), a soil water budget simulator for an agricultural watershed. SWAT represents a basin as a collection of subbasins in terms of soil, land use, and weather data, and simulates each subbasin on a daily basis to determine runoff, percolation, evaporation, irrigation, pond seepages and crop growth. Because SWAT applies a lumped hydrologic model to each subbasin, spatial heterogeneities with respect to factors such as soil type and land use are not resolved geographically, but can instead be represented statistically. For the Republican River Basin model, each combination of six soil types and three land uses, referred to as a hydrologic response unit (HRU), was simulated with a separate execution of SWAT. A spatially weighted average was then taken over these results for each hydrologic flux and time step by a separate program, SWBAVG. We wrote a package for MOD-FLOW to associate each subbasin with a subset of aquifer grid cells and stream reaches, and to distribute the hydrologic fluxes given for each subbasin by SWAT and SWBAVG over MODFLOW's stream-aquifer grid to represent tributary flow, surface and ground water diversions, ground water recharge, and evapotranspiration from ground water. The Lower Republican River Basin model was calibrated with respect to measured ground water levels, streamflow, and reported irrigation water use. The model was used to examine the relative contributions of stream yield components and the impact on stream yield and base flow of administrative measures to restrict irrigation water use during droughts. Model results indicate that tributary flow is the dominant component of stream yield and that reduction of irrigation water use produces a corresponding increase in base flow and stream yield. However, the increase in stream yield resulting from reduced water use does not appear to be of sufficient magnitude to restore minimum desirable streamflows.

  6. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  7. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.

    2012-12-01

    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed direction of inter-meander hyporheic flow.

  8. A geographic information system tool to solve regression equations and estimate flow-frequency characteristics of Vermont Streams

    USGS Publications Warehouse

    Olson, Scott A.; Tasker, Gary D.; Johnston, Craig M.

    2003-01-01

    Estimates of the magnitude and frequency of streamflow are needed to safely and economically design bridges, culverts, and other structures in or near streams. These estimates also are used for managing floodplains, identifying flood-hazard areas, and establishing flood-insurance rates, but may be required at ungaged sites where no observed flood data are available for streamflow-frequency analysis. This report describes equations for estimating flow-frequency characteristics at ungaged, unregulated streams in Vermont. In the past, regression equations developed to estimate streamflow statistics required users to spend hours manually measuring basin characteristics for the stream site of interest. This report also describes the accompanying customized geographic information system (GIS) tool that automates the measurement of basin characteristics and calculation of corresponding flow statistics. The tool includes software that computes the accuracy of the results and adjustments for expected probability and for streamflow data of a nearby stream-gaging station that is either upstream or downstream and within 50 percent of the drainage area of the site where the flow-frequency characteristics are being estimated. The custom GIS can be linked to the National Flood Frequency program, adding the ability to plot peak-flow-frequency curves and synthetic hydrographs and to compute adjustments for urbanization.

  9. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-09-06

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of prediction of these regression equations ranges from 55.7 to 61.5 percent.Regional weighted-least-squares regression equations were developed for estimating the harmonic-mean flows by dividing the State into three low-flow regions. The Northern region uses total drainage area and the average transmissivity of the entire thickness of unconsolidated deposits as explanatory variables. The Central region uses total drainage area, the average hydraulic conductivity of the entire thickness of unconsolidated deposits, and the index of permeability and thickness of the Quaternary surficial sediments. The Southern region uses total drainage area and the percent of the basin covered by forest. The average standard error of prediction for these equations ranges from 39.3 to 66.7 percent.The regional regression equations are applicable only to stream sites with low flows unaffected by regulation and to stream sites with drainage basin characteristic values within specified limits. Caution is advised when applying the equations for basins with characteristics near the applicable limits and for basins with karst drainage features and for urbanized basins. Extrapolations near and beyond the applicable basin characteristic limits will have unknown errors that may be large. Equations are presented for use in estimating the 90-percent prediction interval of the low-flow statistics estimated by use of the regression equations at a given stream site.The regression equations are to be incorporated into the U.S. Geological Survey StreamStats Web-based application for Indiana. StreamStats allows users to select a stream site on a map and automatically measure the needed basin characteristics and compute the estimated low-flow statistics and associated prediction intervals.

  10. Discharge Measurements in Shallow Urban Streams Using a Hydroacoustic Current Meter

    USGS Publications Warehouse

    Fisher, G.T.; Morlock, S.E.; ,

    2002-01-01

    Hydroacoustic current-meter measurements were evaluated in small urban streams under a range of stages, velocities, and channel-bottom materials. Because flow in urban streams is often shallow, conventional mechanical current-meter measurements are difficult or impossible to make. The rotating-cup Price pygmy meter that is widely used by the U.S. Geological Survey and other agencies should not be used in depths below 0.20 ft and velocities less than 0.30 ft/s. The hydroacoustic device provides measurements at depths as shallow as 0.10 ft and velocities as low as 0.10 ft/s or less. Measurements using the hydroacoustic current meter were compared to conventional discharge measurements. Comparisons with Price-meter measurements were favorable within the range of flows for which the meters are rated. Based on laboratory and field tests, velocity measurements with the hydroacoustic cannot be validated below about 0.07 ft/s. However, the hydroacoustic meter provides valuable information on direction and magnitude of flow even at lower velocities, which otherwise could not be measured with conventional measurements.

  11. Landscape Characteristics and Variations in Longitudinal Stream Flow Contribution in two Headwater Semi-Arid Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Shakespeare, B.; Gooseff, M. N.

    2005-12-01

    Understanding what role particular catchment attributes (slope, aspect, landcover, and contributing area) play in the contribution of stream flow is important for land management decisions, especially in the semi-arid western areas of the United States. Our study site is paired small catchments (approximately 9 and 11 km2) in the headwaters of the Weber drainage basin in Northern Utah. These catchments are surrounded by Wasatch formation with loamy textured soils. One catchment is predominantly underlain by quartzite while the other catchment is mostly underlain by limestone. We measured lateral flow gains every 200 to 400 meters using salt dilution gauging techniques throughout the ~5 km long streams. These measurements were taken synoptically 3 times during the seasonal discharge recession (summer 2005). The flows ranged spatially from 4 L s-1 to 55 L s-1 and varied temporally by as much as 50% when comparing the same reaches. Using GIS software, landscape analysis of slope, aspect, contributing area, topographic convergence, riparian and hillslope area, and landcover was performed for each of the delineated stream reach contributing areas. The results were tested for correlations between lateral flow gains measured in the field and different landscape characteristics. Each of the synoptic events was compared with each other to explore effects of seasonal recession on the relationships between flow gain and landscape characteristics.

  12. Switch of flow direction in an Antarctic ice stream.

    PubMed

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  13. Adjustable shear stress erosion and transport flume

    DOEpatents

    Roberts, Jesse D.; Jepsen, Richard A.

    2002-01-01

    A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

  14. Pitot-Pressure Measurements in Flow Fields Behind a Rectangular Nozzle with Exhaust Jet for Free-Stream Mach Numbers of 0.00, 0.60, and 1.20

    NASA Technical Reports Server (NTRS)

    Putnam, L. E.; Mercer, C. E.

    1986-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to measure the flow field in and around the jet exhaust from a nonaxisymmetric nozzle configuration. The nozzle had a rectangular exit with a width-to-height ratio of 2.38. Pitot-pressure measurements were made at five longitudinal locations downstream of the nozzle exit. The maximum distance downstream of the exit was about 5 nozzle heights. These measurements were made at free-stream Mach numbers of 0.00, 0.60, and 1.20 with the nozzle operating at a ratio of nozzle total pressure to free-stream static pressure of 4.0. The jet exhaust was simulated with high-pressure air that had an exit total temperature essentially equal to the free-stream total temperature.

  15. Speciation and equilibrium relations of soluble aluminum in a headwater stream at base flow and during rain events

    USGS Publications Warehouse

    Burns, Douglas A.

    1989-01-01

    In a small watershed in the Shenandoah National Park, Virginia, the short-term dynamics of soluble aluminum in stream water sampled during rain events differed significantly from stream water sampled during base flow conditions. Three fractions of dissolved aluminum were measured. The inorganic monomeric fraction made up approximately two thirds of the total reactive aluminum at base flow, followed by the acid-soluble and organic monomeric fractions, respectively. Equilibrium modeling showed that hydroxide complexes were the most abundant form of inorganic monomeric aluminum followed by fluoride, free aluminum ion, and sulfate. The activity of inorganic monomeric aluminum at base flow appears to be in equilibrium with an Al(OH)3 phase with solubility intermediate between microcrystalline gibbsite and natural gibbsite. During two rain events, the concentration of all three aluminum fractions increased significantly. Available chemical evidence indicates that acidic soil water was the primary source of dissolved aluminum. As flow increased, the Al(OH)3 saturation index in the stream water increased significantly. The primary cause of the transient increase in the Al(OH)3 saturation index appears to have been the neutralization of excess H+ added by soil water through reaction with stream water HCO3− at a more rapid rate than excess inorganic monomeric aluminum could be removed from solution by hydroxide mineral precipitation. A soil water/stream water mixing model was developed based on measured changes of stream water alkalinity, silica concentration, and charge imbalance during the rain events. Model results indicate that a small amount of soil water (3–11%) was present in the stream at peak stage.

  16. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  17. Seasonal and event-scale controls on dissolved organic carbon and nitrate flushing from catchments

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.

    2005-05-01

    To explore terrestrial and aquatic linkages controlling nutrient dynamics in forested catchments, we collected high-frequency samples from 2002 to 2004 at the Sleepers River Research Watershed in northeastern Vermont USA. We measured DOC (dissolved organic carbon), SUVA (specific UV absorbance), nitrate, and major ion concentrations over a wide range of flow conditions. In addition, weekly samples since 1991 provide a longer term record of stream nutrient fluxes. During events, DOC concentrations increased with flow consistent with the flushing of a large reservoir of mobile organic carbon from forest soils. Higher concentrations of DOC and SUVA in the growing versus dormant season illustrated seasonal variation in sources, characteristics (i.e. reactivity), availability, and controls on the flushing response of organic matter from the landscape to streams. In contrast, stream nitrate concentrations increased with flow but only when catchments "wetted-up" after baseflow periods. Growing season stream nitrate responses were dependent on short-term antecedent moisture conditions indicating rapid depletion of the soil nitrate reservoir when source areas became hydrologically connected to streams. While the different response patterns emphasized variable source and biogeochemical controls in relation to flow patterns, coupled carbon and nitrogen biogeochemical processes were also important controls on stream nutrient fluxes. In particular, leaf fall was a critical time when reactive DOC from freshly decomposing litter fueled in-stream consumption of nitrate leading to sharp declines of stream nitrate concentrations. Our measurements highlight the importance of "hot spots" and "hot moments" of biogeochemical and hydrological processes that control stream responses. Furthermore, our work illustrates how carbon, nitrogen, and water cycles are coupled in catchments, and provides a conceptual model for future work aimed at modeling forest stream hydrochemistry at the catchment scale.

  18. Preparation and characterization of methacrylate hydrogels for zeta potential control

    NASA Technical Reports Server (NTRS)

    Gregonis, D. E.; Ma, S. M.; Vanwagenen, R.; Andrade, J. D.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the effects of hydrophilic coatings on electroosmotic flow. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of glass capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming potential measurements is discussed. Various silane adhesion promoters exhibited only a slight decrease in streaming potential. A coating utilizing a glycidoxy silane base upon which methylcellulose is applied affords a six-fold decrease over uncoated tubes. Hydrophilic methacrylate gels show similar streaming potential behavior, independent of the water content of the gel. By introduction of positive or negative groups into the hydrophilic methacrylate gels, a range of streaming potential values are obtained having absolute positive or negative signs.

  19. Flowing water affects fish fast-starts: escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni.

    PubMed

    Diamond, Kelly M; Schoenfuss, Heiko L; Walker, Jeffrey A; Blob, Richard W

    2016-10-01

    Experimental measurements of escape performance in fishes have typically been conducted in still water; however, many fishes inhabit environments with flow that could impact escape behavior. We examined the influences of flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni In nature, these fish must escape ambush predation while moving through streams with high-velocity flow. We measured the escape performance of juvenile gobies while exposing them to a range of water velocities encountered in natural streams and stimulating fish from three different directions. Frequency of response across treatments indicated strong effects of flow conditions and attack direction. Juvenile S. stimpsoni had uniformly high response rates for attacks from a caudal direction (opposite flow); however, response rates for attacks from a cranial direction (matching flow) decreased dramatically as flow speed increased. Mechanical stimuli produced by predators attacking in the same direction as flow might be masked by the flow environment, impairing the ability of prey to detect attacks. Thus, the likelihood of successful escape performance in fishes can depend critically on environmental context. © 2016. Published by The Company of Biologists Ltd.

  20. Availability and distribution of low flow in Anahola Stream, Kauaʻi, Hawaiʻi

    USGS Publications Warehouse

    Cheng, Chui Ling; Wolff, Reuben H.

    2012-01-01

    Anahola Stream is a perennial stream in northeast Kauaʻi, Hawaiʻi, that supports agricultural, domestic, and cultural uses within its drainage basin. Beginning in the late 19th century, Anahola streamflow was diverted by Makee Sugar Company at altitudes of 840 feet (upper intake) and 280 feet (lower intake) for irrigating sugarcane in the Keālia area. When sugarcane cultivation in the Keālia area ceased in 1988, part of the Makee Sugar Company’s surface-water collection system (Makee diversion system) in the Anahola drainage basin was abandoned. In an effort to better manage available surface-water resources, the State of Hawaiʻi Department of Hawaiian Home Lands is considering using the existing ditches in the Anahola Stream drainage basin to provide irrigation water for Native Hawaiian farmers in the area. To provide information needed for successful management of the surface-water resources, the U.S. Geological Survey investigated the availability and distribution of natural low flow in Anahola Stream and also collected low-flow data in Goldfish Stream, a stream that discharges into Kaneha Reservoir, which served as a major collection point for the Makee diversion system. Biological surveys of Anahola Stream were conducted as part of a study to determine the distribution of native and nonnative aquatic stream fauna. Results of the biological surveys indicated the presence of the following native aquatic species in Anahola Stream: ʻoʻopu ʻakupa (Sandwich Island sleeper) and ʻoʻopu naniha (Tear-drop goby) in the lower stream reaches surveyed; and ʻoʻopu nākea (Pacific river goby), ʻoʻopu nōpili (Stimpson’s goby), and ʻōpae kalaʻole (Mountain shrimp) in the middle and upper stream reaches surveyed. Nonnative aquatic species were found in all of the surveyed stream reaches along Anahola Stream. The availability and distribution of natural low flow were determined using a combination of discharge measurements made from February 2011 to May 2012 at low-flow partial-record and seepage-run stations established at locations of interest along study-area streams. Upstream of the upper intake, the estimated natural (undiverted) median flow in Anahola Stream is 2.7 million gallons per day, and the flow is expected to be greater than or equal to 0.97 million gallons per day 95 percent of the time. About 0.7 mile upstream of the lower intake and downstream from the confluence with Keaʻoʻopu Stream, the estimated natural (undiverted) median flow in Anahola Stream is 6.3 million gallons per day, and the flow is expected to be greater than or equal to 2.7 million gallons per day 95 percent of the time. In Goldfish Stream, about 0.4 mile upstream from the point of discharge into Kaneha Reservoir, the estimated natural median flow is 0.54 million gallons per day, and the flow is expected to be greater than or equal to 0.23 million gallons per day 95 percent of the time. The discharge estimates are representative of low-flow conditions in the study-area streams, and they are applicable to the base period (water years 1961–2011) over which they have been computed. The distribution of natural low flow in Anahola Stream was characterized through data collected during wet- and dry-season seepage runs. Seepage-run results show that Anahola Stream was generally a gaining stream under natural low-flow conditions. During the wet-season seepage run, Anahola Stream at the station located upstream of tributary Kaʻalula Stream had more than five times the flow that was measured upstream from the upper intake. The estimated total gain (including tributary inflow) in the 6.1-mile seepage-run reach was 6.97 million gallons per day; about 42 percent of that gain was groundwater discharge to the main channel of Anahola Stream. During the dry-season seepage run, about 34 percent of the estimated total gain of 3.93 million gallons per day in the same seepage-run reach was groundwater discharge to the main channel of Anahola Stream. A 15-percent seepage loss was estimated in a 0.3-mile reach downstream from the confluence of Anahola and Keaʻoʻopu Streams. The report summarizes scenarios that describe (1) surface-water availability under regulated conditions of Anahola Stream if the upper and lower intakes are restored in the future; and (2) amount of flow available for agricultural use at the upper intake under a variety of potential instream-flow standards that may be established by the State of Hawaiʻi for the protection of instream uses.

  1. A low cost strategy to monitor the expansion and contraction of the flowing stream network in mountainous headwater catchments

    NASA Astrophysics Data System (ADS)

    Assendelft, Rick; van Meerveld, Ilja; Seibert, Jan

    2017-04-01

    Streams are dynamic features in the landscape. The flowing stream network expands and contracts, connects and disconnects in response to rainfall events and seasonal changes in catchment wetness. Sections of the river system that experience these wet and dry cycles are often referred to as temporary streams. Temporary streams are abundant and widely distributed freshwater ecosystems. They account for more than half of the total length of the global stream network, are unique habitats and form important hydrological and ecological links between the uplands and perennial streams. However, temporary streams have been largely unstudied, especially in mountainous headwater catchments. The dynamic character of these systems makes it difficult to monitor them. We describe a low-cost, do-it-yourself strategy to monitor the occurrence of water and flow in temporary streams. We evaluate this strategy in two headwater catchments in Switzerland. The low cost sensor network consists of electrical resistivity sensors, water level switches, temperature sensors and flow sensors. These sensors are connected to Arduino microcontrollers and data loggers, which log the data every 5 minutes. The data from the measurement network are compared with observations (mapping of the temporary stream network) as well as time lapse camera data to evaluate the performance of the sensors. We look at how frequently the output of the sensors (presence and absence of water from the ER and water level data, and flow or no-flow from the flow sensors) corresponds to the observed channel state. This is done for each sensor, per sub-catchment, per precipitation event and per sensor location to determine the best sensor combination to monitor temporary streams in mountainous catchments and in which situation which sensor combination works best. The preliminary results show that the sensors and monitoring network work well. The data from the sensors corresponds with the observations and provides information on the expansion of the stream network pattern.

  2. Streamflow loss quantification for groundwater flow modeling using a wading-rod-mounted acoustic Doppler current profiler in a headwater stream

    NASA Astrophysics Data System (ADS)

    Pflügl, Christian; Hoehn, Philipp; Hofmann, Thilo

    2017-04-01

    Irrespective of the availability of various field measurement and modeling approaches, the quantification of interactions between surface water and groundwater systems remains associated with high uncertainty. Such uncertainties on stream-aquifer interaction have a high potential to misinterpret the local water budget and water quality significantly. Due to typically considerable temporal variation of stream discharge rates, it is desirable for the measurement of streamflow to reduce the measuring duration while reducing uncertainty. Streamflow measurements, according to the velocity-area method, have been performed along reaches of a losing-disconnected, subalpine headwater stream using a 2-dimensional, wading-rod-mounted acoustic Doppler current profiler (ADCP). The method was chosen, with stream morphology not allowing for boat-mounted setups, to reduce uncertainty compared to conventional, single-point streamflow measurements of similar measurement duration. Reach-averaged stream loss rates were subsequently quantified between 12 cross sections. They enabled the delineation of strongly infiltrating stream reaches and their differentiation from insignificantly infiltrating reaches. Furthermore, a total of 10 near-stream observation wells were constructed and/or equipped with pressure and temperature loggers. The time series of near-stream groundwater temperature data were cross-correlated with stream temperature time series to yield supportive qualitative information on the delineation of infiltrating reaches. Subsequently, as a reference parameterization, the hydraulic conductivity and specific yield of a numerical, steady-state model of groundwater flow, in the unconfined glaciofluvial aquifer adjacent to the stream, were inversely determined incorporating the inferred stream loss rates. Applying synthetic sets of infiltration rates, resembling increasing levels of uncertainty associated with single-point streamflow measurements of comparable duration, the same inversion procedure was run. The volume-weighted mean of the respective parameter distribution within 200 m of stream periphery deviated increasingly from the reference parameterization at increasing deviation of infiltration rates.

  3. Numerical Investigation of Double-Cone Flows with High Enthalpy Effects

    NASA Astrophysics Data System (ADS)

    Nompelis, I.; Candler, G. V.

    2009-01-01

    A numerical study of shock/shock and shock/boundary layer interactions generated by a double-cone model that is placed in a hypersonic free-stream is presented. Computational results are compared with the experimental measurements made at the CUBRC LENS facility for nitrogen flows at high enthalpy conditions. The CFD predictions agree well with surface pressure and heat-flux measurements for all but one of the double-cone cases that have been studied by the authors. Unsteadiness is observed in computations of one of the LENS cases, however for this case the experimental measurements show that the flowfield is steady. To understand this discrepancy, several double-cone experiments performed in two different facilities with both air and nitrogen as the working gas are examined in the present study. Computational results agree well with measurements made in both the AEDC tunnel 9 and the CUBRC LENS facility for double-cone flows at low free-stream Reynolds numbers where the flow is steady. It is shown that at higher free- stream pressures the double-cone simulations develop instabilities that result in an unsteady separation.

  4. Hydrologic Links Among Urbanization, Channel Morphology, Aquatic Habitat, and Macroinvertebrates in North Carolina Piedmont Streams

    NASA Astrophysics Data System (ADS)

    Giddings, E. M.

    2005-12-01

    Landscape changes associated with urbanization have been shown to alter flow regimes of streams that, in turn, alter channel morphology, aquatic habitat, and biological communities. In order to mitigate the effects of urbanization on biological communities, it is important to understand the hydrologic links between these interactions. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, 30 stream sites in the Piedmont of North Carolina (including the cities Raleigh, Greensboro, and Winston-Salem) having a range of watershed urbanization were sampled. To measure urbanization intensity, a multimetric index of watershed and riparian land use, infrastructure, and socioeconomic conditions was used. Population density ranged from 24 to 3,276 people per square kilometer; 75 percent of the sites had less than 2,000 people per square kilometer. At each site, continuous discharge record was estimated for 1 year using continuous stream-stage data, instantaneous discharge measurements, and one-dimensional hydraulic modeling. Hydrologic variability metrics were calculated to compare the magnitude, frequency, and duration of high and low flows among sites. These metrics then were correlated with measures of channel morphology, habitat, a richness-based macroinvertebrate index, and the urban-intensity index. As urban intensity in the watershed increased, the frequency of quickly rising flows increased (R2=0.55, p<0.0001), and the duration of high flows decreased (R2=0.47, p=0.0001). Along with these changes, channels became more incised; bankfull channel depths (normalized by drainage area) increased as the frequency of quickly rising flows increased (R2=0.28, p=0.006) and the duration of high flows decreased (R2=0.17, p =0.04). Additionally, streams with higher frequencies of quickly rising flows had greater percentages of sand as a dominant substrate (R2=0.19, p=0.03) and greater differences between bankfull depth and low-flow depth at summer flows (R2=0.30, p= 0.004), which is considered an indicator of flow stability. A macroinvertebrate index of sensitive taxa (the orders Ephemeroptera, Plecoptera and Trichoptera) to tolerant taxa (the family Chironomid) richness at the sampled streams declined with increases in percentages of sand (R2=0.22, p=0.008) and bankfull channel depth (R2=0.25, p=0.005) and decreases in flow stability (R2=0.43, p<0.0001), illustrating the important hydrologic links among urbanization and channel morphology, habitat, and macroinvertebrates in piedmont streams.

  5. Method and device for determining heats of combustion of gaseous hydrocarbons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J. (Inventor); Sprinkle, Danny R. (Inventor); Puster, Richard L. (Inventor)

    1988-01-01

    A method and device is provided for a quick, accurate and on-line determination of heats of combustion of gaseous hydrocarbons. First, the amount of oxygen in the carrier air stream is sensed by an oxygen sensing system. Second, three individual volumetric flow rates of oxygen, carrier stream air, and hydrocrabon test gas are introduced into a burner. The hydrocarbon test gas is fed into the burner at a volumetric flow rate, n, measured by a flowmeter. Third, the amount of oxygen in the resulting combustion products is sensed by an oxygen sensing system. Fourth, the volumetric flow rate of oxygen is adjusted until the amount of oxygen in the combustion product equals the amount of oxygen previously sensed in the carrier air stream. This equalizing volumetric flow rate is m and is measured by a flowmeter. The heat of combustion of the hydrocrabon test gas is then determined from the ratio m/n.

  6. Turbulent Mixing of Primary and Secondary Flow Streams in a Rocket-Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Cramer, J. M.; Greene, M. U.; Pal, S.; Santoro, R. J.; Turner, Jim (Technical Monitor)

    2002-01-01

    This viewgraph presentation gives an overview of the turbulent mixing of primary and secondary flow streams in a rocket-based combined cycle (RBCC) engine. A significant RBCC ejector mode database has been generated, detailing single and twin thruster configurations and global and local measurements. On-going analysis and correlation efforts include Marshall Space Flight Center computational fluid dynamics modeling and turbulent shear layer analysis. Potential follow-on activities include detailed measurements of air flow static pressure and velocity profiles, investigations into other thruster spacing configurations, performing a fundamental shear layer mixing study, and demonstrating single-shot Raman measurements.

  7. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data

    NASA Astrophysics Data System (ADS)

    Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.

    2018-04-01

    River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the temporal extent of flow intermittency varied dramatically inter-annually from 1900 to 2016, with the proportion of intermittent (weakly and strongly intermittent) streams ranging in length from 3% to nearly 100% of the river network, but there was no evidence of an increasing trend towards flow intermittency over this period. Our approach to generating spatially explicit and catchment-wide estimates of streamflow intermittency can facilitate improved ecological understanding and management of intermittent streams in Australia and around the world.

  8. 40 CFR 65.160 - Performance test and TRE index value determination records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...

  9. 40 CFR 65.160 - Performance test and TRE index value determination records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...

  10. 40 CFR 65.160 - Performance test and TRE index value determination records.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...

  11. 40 CFR 65.160 - Performance test and TRE index value determination records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the control device, the total regeneration stream mass flow during each carbon-bed regeneration cycle... each regeneration during the period of the performance test (and within 15 minutes of completion of any... the recovery system, the total regeneration stream mass flow measured at least every 15 minutes and...

  12. Network Structure as a Modulator of Disturbance Impacts in Streams

    NASA Astrophysics Data System (ADS)

    Warner, S.; Tullos, D. D.

    2017-12-01

    This study examines how river network structure affects the propagation of geomorphic and anthropogenic disturbances through streams. Geomorphic processes such as debris flows can alter channel morphology and modify habitat for aquatic biota. Anthropogenic disturbances such as road construction can interact with the geomorphology and hydrology of forested watersheds to change sediment and water inputs to streams. It was hypothesized that the network structure of streams within forested watersheds would influence the location and magnitude of the impacts of debris flows and road construction on sediment size and channel width. Longitudinal surveys were conducted every 50 meters for 11 kilometers of third-to-fifth order streams in the H.J. Andrews Experimental Forest in the Western Cascade Range of Oregon. Particle counts and channel geometry measurements were collected to characterize the geomorphic impacts of road crossings and debris flows as disturbances. Sediment size distributions and width measurements were plotted against the distance of survey locations through the network to identify variations in longitudinal trends of channel characteristics. Thresholds for the background variation in sediment size and channel width, based on the standard deviations of sample points, were developed for sampled stream segments characterized by location as well as geomorphic and land use history. Survey locations were classified as "disturbed" when they deviated beyond the reference thresholds in expected sediment sizes and channel widths, as well as flow-connected proximity to debris flows and road crossings. River network structure was quantified by drainage density and centrality of nodes upstream of survey locations. Drainage density and node centrality were compared between survey locations with similar channel characteristic classifications. Cluster analysis was used to assess the significance of survey location, proximity of survey location to debris flows and road crossings, drainage density and node centrality in predicting sediment size and channel width classifications for locations within the watershed. Results contribute to the understanding of susceptibility and responses of streams supporting critical habitat for aquatic species to debris flows and forest road disturbances.

  13. Tracing Nitrogen Sources in Forested Catchments Under Varying Flow Conditions: Seasonal and Event Scale Patterns

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Boyer, E. W.; Kendall, C.

    2004-12-01

    Our ability to assess how stream nutrient concentrations respond to biogeochemical transformations and stream flow dynamics is often limited by datasets that do not include all flow conditions that occur over event, monthly, seasonal, and yearly time scales. At the Sleepers River Research Watershed in northeastern Vermont, USA, nitrate, DOC (dissolved organic carbon), and major ion concentrations were measured on samples collected over a wide range of flow conditions from summer 2002 through summer 2004. Nutrient flushing occurred at the W-9 catchment and high-frequency sampling revealed critical insights into seasonal and event-scale controls on nutrient concentrations. In this seasonally snow-covered catchment, the earliest stage of snowmelt introduced nitrogen directly to the stream from the snowpack. As snowmelt progressed, the source of stream nitrate shifted to flushing of soil nitrate along shallow subsurface flow paths. In the growing season, nitrogen flushing to streams varied with antecedent moisture conditions. More nitrogen was available to flush to streams when antecedent moisture was lowest, and mobile nitrogen stores in the landscape regenerated under baseflow conditions on times scales as short as 7 days. Leaf fall was another critical time when coupled hydrological and biogeochemical processes controlled nutrient fluxes. With the input of labile organic carbon from freshly decomposing leaves, nitrate concentrations declined sharply in response to in-stream immobilization or denitrification. These high-resolution hydrochemical data from multiple flow regimes are identifying "hot spots" and "hot moments" of biogeochemical and hydrological processes that control nutrient fluxes in streams.

  14. Storage requirements for Arkansas streams

    USGS Publications Warehouse

    Patterson, James Lee

    1968-01-01

    The supply of good-quality surface water in Arkansas is abundant. owing to seasonal and annual variability of streamflow, however, storage must be provided to insure dependable year-round supplies in most of the State. Storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 49 continuous-record gaging stations can be obtained from tabular data in this report. Through regional analyses of streamflow data, the State was divided into three regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, the mean annual flow, and the low-flow index are known. These data are tabulated for 53 gaging stations used in the analyses and for 132 partial-record sites where only base-flow measurements have been made. Mean annual flow can be determined for any stream whose drainage lies within the State by using the runoff map in this report. Low-flow indices can be estimated by correlating base flows, determined from several discharge measurements, with concurrent flows at nearby continuous-record gaging stations, whose low-flow indices have been determined.

  15. Tracer gauge: An automated dye dilution gauging system for ice‐affected streams

    USGS Publications Warehouse

    Clow, David W.; Fleming, Andrea C.

    2008-01-01

    In‐stream flow protection programs require accurate, real‐time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in‐channel ice causes variable backwater conditions and alters the stage‐discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice‐affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root‐mean‐square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in‐stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow‐weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.

  16. Temperature Response of a Small Mountain Stream to Thunderstorm Cloud-Cover: Application of DTS Fiber-Optic Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Thayer, D.; Klatt, A. L.; Miller, S. N.; Ohara, N.

    2014-12-01

    From a hydrologic point of view, the critical zone in alpine areas contains the first interaction of living systems with water which will flow to streams and rivers that sustain lowland biomes and human civilization. A key to understanding critical zone functions is understanding the flow of energy, and we can measure temperature as a way of looking at energy transfer between related systems. In this study we installed a Distributed Temperature Sensor (DTS) and fiber-optic cable in a zero-order stream at 9,000 ft in the Medicine Bow National Forest in southern Wyoming. We measured the temperature of the stream for 17 days from June 29 to July 16; the first 12 days were mostly sunny with occasional afternoon storms, and the last 5 experienced powerful, long-lasting storms for much of the day. The DTS measurements show a seasonal warming trend of both minimum and maximum stream temperature for the first 12 days, followed by a distinct cooling trend for the five days that experienced heavy storm activity. To gain insights into the timing and mechanisms of energy flow through the critical zone systems, we analyzed the timing of stream temperature change relative to solar short-wave radiation, and compared the stream temperature temporal response to the temporal response of soil temperature adjacent to the stream. Since convective thunderstorms are a dominant summer weather pattern in sub-alpine regions in the Rocky Mountains, this study gives us further insight into interactions of critical zone processes and weather in mountain ecosystems.

  17. Low-flow profiles of the upper Savannah and Ogeechee Rivers and tributaries in Georgia

    USGS Publications Warehouse

    Carter, R.F.; Hopkins, E.H.; Perlman, H.A.

    1988-01-01

    Low flow information is provided for use in an evaluation of the capacity of streams to permit withdrawals or to accept waste loads without exceeding the limits of State water quality standards. The purpose of this report is to present the results of a compilation of available low flow data in the form of tables and ' 7Q10 flow profiles ' (minimum average flow for 7 consecutive days with a 10-yr recurrence interval)(7Q10 flow plotted against distance along a stream channel) for all streams reaches of the Upper Savannah and Ogeechee Rivers and tributaries where sufficient data of acceptable accuracy are available. Drainage area profiles are included for all stream basins larger than 5 sq mi, except for those in a few remote areas. This report is the third in a series of reports that will cover all stream basins north of the Fall Line in Georgia. It includes the Georgia part of the Savannah River basin from its headwaters down to and including McBean Creek, and Brier Creek from its headwaters down to and including Boggy Gut Creek. It also includes the Ogeechee River from its headwaters down to and including Big Creek, and Rocky Comfort Creek (tributary to Ogeechee River) down to the Glascock-Jefferson County line. Flow records were not adjusted for diversions or other factors that cause measured flows to represent other than natural flow conditions. The 7-day minimum flow profile was omitted for stream reaches where natural flow was known to be altered significantly. (Lantz-PTT)

  18. Magnitude and frequency of low flows in the Suwannee River Water Management District, Florida

    USGS Publications Warehouse

    Giese, G.L.; Franklin, M.A.

    1996-01-01

    Low-flow frequency statistics for 20 gaging stations having at least 10 years of continuous record and 31 other stations having less than 10 years of continu ous record or a series of at least two low- flow measurements are presented for unregulated streams in the Suwannee River Water Management District in north-central Florida. Statistics for the 20 continuous-record stations included are the annual and monthly minimum consecutive-day average low- flow magnitudes for 1, 3, 7, 14, and 30 consecutive days for recurrence intervals of 2, 5, 10, 20, and, for some long-term stations, 50 years, based on records available through the 1994 climatic year.Only theannual statistics are given for the 31 other stations; these are for the 7- and 30-consecutive day periods only and for recurrence intervals of 2 and 10 years only. Annual low-flow frequency statistics range from zero for many small streams to 5,500 cubic feet per second for the annual 30- consecutive-day average flow with a recurrenceinterval of 2 years for the Suwannee River near Wilcox (station 02323500). Monthly low-flow frequency statistics range from zero for many small streams to 13,800 cubic feet per second for the minimum 30-consecutive-day average flow with a 2-year recurrence interval for the month of March for the same station. Generally, low-flow characteristics of streams in the Suwannee River Water Management District are controlled by climatic, topographic, and geologic fac tors. The carbonate Floridan aquifer system underlies, or is at the surface of, the entire District. The terrane's karstic nature results in manysinkholes and springs. In some places, springs may contribute greatly to low streamflow and the contributing areas of such springs may include areasoutside the presumed surface drainage area of the springs. In other places, water may enter sinkholes within a drainage basin, then reappear in springs downstream from a gage. Many of the smaller streams in the District go dry or have no flow forseveral months in many years. In addition to the low-flow statistics, four synoptic low-flow measurement surveys were conducted on 161 sites during 1990, 1995, and 1996. Themeasurements were made to provide "snapshots" of flow conditions of streams throughout the Suwannee River Water Management District. Magnitudes of low flows during the 1990 series of measurements were in the range associated withminimum 7-consecutive-day 50-year recurrence interval to the minimum 7-consecutive-day 20-year recurrence interval, except in Taylor and Dixie Counties, where the magnitudes ranged from the minimum 7-consecutive-day 5-year flow level to the7-consecutive-day 2-year flow level. The magnitudes were all greater than the minimum 7- consecutive-day 2-year flow level during 1995 and 1996. Observations of no flow were recorded at many of the sites for all four series of measurements.

  19. The effect of free-stream turbulence on heat transfer from a flat plate

    NASA Technical Reports Server (NTRS)

    Sugawara, Sugao; Sato, Takashi; Komatsu, Hiroyasu; Osaka, Hiroichi

    1958-01-01

    Turbulence was generated by using screens, and the turbulence percentage was measured by a hot-wire anemometer both in the boundary layer and the free stream. The local heat-transfer coefficient was measured at 12 locations along the plate for the cases of various turbulence levels. The transition Reynolds number from laminar to turbulent flow decreases as the main-stream turbulence level increases. In the range of laminar heat transfer the effect of turbulence in the main flow was not great, but in the range of turbulent heat transfer the heat-transfer coefficient increases according to the increase of turbulence.

  20. A logistic regression equation for estimating the probability of a stream flowing perennially in Massachusetts

    USGS Publications Warehouse

    Bent, Gardner C.; Archfield, Stacey A.

    2002-01-01

    A logistic regression equation was developed for estimating the probability of a stream flowing perennially at a specific site in Massachusetts. The equation provides city and town conservation commissions and the Massachusetts Department of Environmental Protection with an additional method for assessing whether streams are perennial or intermittent at a specific site in Massachusetts. This information is needed to assist these environmental agencies, who administer the Commonwealth of Massachusetts Rivers Protection Act of 1996, which establishes a 200-foot-wide protected riverfront area extending along the length of each side of the stream from the mean annual high-water line along each side of perennial streams, with exceptions in some urban areas. The equation was developed by relating the verified perennial or intermittent status of a stream site to selected basin characteristics of naturally flowing streams (no regulation by dams, surface-water withdrawals, ground-water withdrawals, diversion, waste-water discharge, and so forth) in Massachusetts. Stream sites used in the analysis were identified as perennial or intermittent on the basis of review of measured streamflow at sites throughout Massachusetts and on visual observation at sites in the South Coastal Basin, southeastern Massachusetts. Measured or observed zero flow(s) during months of extended drought as defined by the 310 Code of Massachusetts Regulations (CMR) 10.58(2)(a) were not considered when designating the perennial or intermittent status of a stream site. The database used to develop the equation included a total of 305 stream sites (84 intermittent- and 89 perennial-stream sites in the State, and 50 intermittent- and 82 perennial-stream sites in the South Coastal Basin). Stream sites included in the database had drainage areas that ranged from 0.14 to 8.94 square miles in the State and from 0.02 to 7.00 square miles in the South Coastal Basin.Results of the logistic regression analysis indicate that the probability of a stream flowing perennially at a specific site in Massachusetts can be estimated as a function of (1) drainage area (cube root), (2) drainage density, (3) areal percentage of stratified-drift deposits (square root), (4) mean basin slope, and (5) location in the South Coastal Basin or the remainder of the State. Although the equation developed provides an objective means for estimating the probability of a stream flowing perennially at a specific site, the reliability of the equation is constrained by the data used to develop the equation. The equation may not be reliable for (1) drainage areas less than 0.14 square mile in the State or less than 0.02 square mile in the South Coastal Basin, (2) streams with losing reaches, or (3) streams draining the southern part of the South Coastal Basin and the eastern part of the Buzzards Bay Basin and the entire area of Cape Cod and the Islands Basins.

  1. The importance of hyporheic sediment respiration in several mid-order Michigan rivers: Comparison between methods in estimates of lotic metabolism

    USGS Publications Warehouse

    Uzarski, D.G.; Stricker, C.A.; Burton, T.M.; King, D. K.; Steinman, A.D.

    2004-01-01

    Metabolism was measured in four Michigan streams, comparing estimates made using a flow-through chamber designed to include the hyporheic zone to a 20 cm depth and a traditional closed chamber that enclosed to a 5 cm depth. Mean levels of gross primary productivity and community respiration were consistently greater in the flow-through chamber than the closed chamber in all streams. Ratios of productivity to respiration (P/R) were consistently greater in the closed chambers than the flow-through chambers. P/R ratios were consistently <1 in all streams when estimated with flow-through chambers, suggesting heterotrophic conditions. Maintenance of stream ecosystem structure and function therefore is dependent on subsidies either from the adjacent terrestrial system or upstream sources. Our results suggest that stream metabolism studies that rely on extrapolation of closed chambers to the whole reach will most likely underestimate gross primary productivity and community respiration.

  2. Quantifying Nitrogen Transport from Riparian Groundwater Seeps to a Headwater Stream in an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Redder, B.; Buda, A. R.; Kennedy, C. D.; Folmar, G.; DeWalle, D. R.; Boyer, E. W.

    2017-12-01

    Headwater streams in the Northeast region of the United States typically receive more than 50% of their base flow from groundwater, either by diffuse discharge through the streambed or by localized discharge through riparian seeps. It is very difficult to separate the individual contributions of these two groundwater fluxes to streamflow. Furthermore, riparian seeps show significant variability in discharge and nutrient concentration, adding uncertainty to estimates of groundwater-based nitrogen inputs to streams. In this study, we combined stream measurements at two different scales to quantify groundwater discharge by matrix flow through the streambed and by macropore flow through the riparian zone. The study site was a 175-m stream reach located in a heavily cultivated 45-hectare watershed in east-central Pennsylvania. Differential streamflow gauging and streambed measurements of hydraulic head gradient, hydraulic conductivity, and groundwater chemistry were used to solve for the riparian groundwater flux in a reach mass balance equation. Adopting a mass balance approach, riparian groundwater fluxes ranged from 115-205 m3 d-1, transporting 2-4 kg N d-1 of nitrate from the fractured bedrock aquifer to the stream. Air-water manometer readings from short-screened piezometers installed in the shallow streambed (30 cm) indicated slightly losing head gradients between the stream and groundwater, despite substantial (36-66%) increases in stream flow along the stream reach. Preliminary chemical data for the stream, streambed, and shallow ground water suggest that the stream is partially disconnected from the underlying aquifer and that riparian groundwater seeps supply essentially all water and nitrogen to the system. These results, along with the comparison of shallow and deep aquifer water with seep chemistry, provide insight into sources of water to riparian groundwater seeps and allow us to determine the transport and fate of nitrogen in a fractured aquifer system. The use of water isotopes and hydrometric data will be used to further test the hypothesis that this is a perched system disconnected from the aquifer below.

  3. The effects of stream channelization on bottom dwelling organisms : phase 1 report : 1974 construction season.

    DOT National Transportation Integrated Search

    1975-01-01

    Two streams being channelized under Department contracts have been monitored since June 1974. Suspended solids, flow, rainfall and benthic population measurements have been obtained at various times for each stream. At present, all but the benthic po...

  4. MEASURING BASE-FLOW CHEMISTRY AS AN INDICATOR OF REGIONAL GROUND-WATER QUALITY IN THE MID-ATLANTIC COASTAL PLAIN

    EPA Science Inventory

    Water quality in headwater (first-order) streams of the Mid-Atlantic Coastal Plain during base flow in the winter and spring is related to land use, hydrogeology, and other natural and human influences. A random survey of water quality in 174 headwater streams in the Mid-Atlantic...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Abdelaziz, Omar; Qu, Ming

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. Themore » model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.« less

  6. A Dual-Plane PIV Study of Turbulent Heat Transfer Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.

    2016-01-01

    Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.

  7. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean rivers, Segura River Basin (Spain).

    PubMed

    Belmar, Oscar; Velasco, Josefa; Martinez-Capel, Francisco

    2011-05-01

    Hydrological classification constitutes the first step of a new holistic framework for developing regional environmental flow criteria: the "Ecological Limits of Hydrologic Alteration (ELOHA)". The aim of this study was to develop a classification for 390 stream sections of the Segura River Basin based on 73 hydrological indices that characterize their natural flow regimes. The hydrological indices were calculated with 25 years of natural monthly flows (1980/81-2005/06) derived from a rainfall-runoff model developed by the Spanish Ministry of Environment and Public Works. These indices included, at a monthly or annual basis, measures of duration of droughts and central tendency and dispersion of flow magnitude (average, low and high flow conditions). Principal Component Analysis (PCA) indicated high redundancy among most hydrological indices, as well as two gradients: flow magnitude for mainstream rivers and temporal variability for tributary streams. A classification with eight flow-regime classes was chosen as the most easily interpretable in the Segura River Basin, which was supported by ANOSIM analyses. These classes can be simplified in 4 broader groups, with different seasonal discharge pattern: large rivers, perennial stable streams, perennial seasonal streams and intermittent and ephemeral streams. They showed a high degree of spatial cohesion, following a gradient associated with climatic aridity from NW to SE, and were well defined in terms of the fundamental variables in Mediterranean streams: magnitude and temporal variability of flows. Therefore, this classification is a fundamental tool to support water management and planning in the Segura River Basin. Future research will allow us to study the flow alteration-ecological response relationship for each river type, and set the basis to design scientifically credible environmental flows following the ELOHA framework.

  8. In Situ Measurement of Ground-Surface Flow Resistivity

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1984-01-01

    New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.

  9. Apparatus for measuring fluid flow

    DOEpatents

    Smith, Jack E.; Thomas, David G.

    1984-01-01

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  10. Apparatus for measuring fluid flow

    DOEpatents

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  11. Summary of and factors affecting pesticide concentrations in streams and shallow wells of the lower Susquehanna River basin, Pennsylvania and Maryland, 1993-95

    USGS Publications Warehouse

    Hainly, Robert A.; Zimmerman, Tammy M.; Loper, Connie A.; Lindsey, Bruce D.

    2001-01-01

    This report presents the detection frequency of 83 analyzed pesticides, describes the concentrations of those pesticides measured in water from streams and shallow wells, and presents conceptual models of the major factors affecting seasonal and areal patterns of pesticide concentrations in water from streams and shallow wells in the Lower Susquehanna River Basin. Seasonal and areal patterns of pesticide concentrations were observed in 577 samples and nearly 40,000 pesticide analyses collected from 155 stream sites and 169 shallow wells from 1993 to 1995. For this study, shallow wells were defined as those generally less than 200 feet deep.The most commonly detected pesticides were agricultural herbicides?atrazine, metolachlor, simazine, prometon, alachlor, and cyanazine. Atrazine and metolachlor are the two most-used agricultural pesticides in the Lower Susquehanna River Basin. Atrazine was detected in 92 percent of all the samples and in 98 percent of the stream samples. Metolachlor was detected in 83 percent of all the samples and in 95 percent of the stream samples. Nearly half of all the analyzed pesticides were not detected in any sample. Of the 45 pesticides that were detected at least once, the median concentrations of 39 of the pesticides were less than the detection limit for the individual compounds, indicating that for at least 50 percent of the samples collected, those pesticides were not detected. Only 10 (less than 0.025 percent) of the measured concentrations exceeded any established drinking-water standards; 25 concentrations exceeded 2 mg/L (micrograms per liter) and 55 concentrations exceeded 1 mg/L. None of the elevated concentrations were measured in samples collected from streams that are used for public drinking-water supplies, and 8 of the 10 were measured in storm-affected samples.The timing and rate of agricultural pesticide applications affect the seasonal and areal concentration patterns of atrazine, simazine, chlorpyrifos, and diazinon observed in water from wells and streams in the Lower Susquehanna River Basin. Average annual pesticide use for agricultural purposes and nonagricultural pesticide use indicators were used to explain seasonal and areal patterns. Elevated concentrations of some pesticides in streams during base-flow and storm-affected conditions were related to the seasonality of agricultural-use applications and local climate conditions. Agricultural-use patterns affected areal concentration patterns for the high-use pesticides, but indicators of nonagricultural use were needed to explain concentration patterns of pesticides with smaller amounts used for agricultural purposes.Bedrock type influences the movement and discharge of ground water, which in turn affects concentration patterns of pesticides. The ratio of atrazine concentrations in stream base flow to concentrations in shallow wells varied among the different general rock types found in the Lower Susquehanna River Basin. Median concentrations of atrazine in well water and stream base flow tended to be similar in individual areas underlain by carbonate bedrock, indicating the connectivity of water in streams and shallow wells in these areas. In areas underlain by noncarbonate bedrock, median concentrations of atrazine tended to be significantly higher in stream base flow than in well water. This suggests a deep ground-water system that delivers water to shallow wells and a near-surficial system that supplies base-flow water to streams. In addition to the presence or absence of carbonate bedrock, pesticide leaching potential and persistence, soil infiltration capacity, and agricultural land use affected areal patterns in detection frequency and concentration differences between samples collected from streams during base-flow conditions and shallow wells.

  12. A simple apparatus for the experimental study of non-steady flow thrust-augmenter ejector configurations

    NASA Technical Reports Server (NTRS)

    Khare, J. M.; Kentfield, J. A. C.

    1979-01-01

    A flexible, and easily modified, test rig is described which allows a one dimensional nonsteady flow stream to be generated, economically from a steady flow source of compressed air. This nonsteady flow is used as the primary stream in a nonsteady flow ejector constituting part of the test equipment. Standard piezo-electric pressure transducers etc. allow local pressures to be studied, as functions of time, in both the primary and secondary (mixed) flow portions of the apparatus. Provision is also made for measuring the primary and secondary mass flows and the thrust generated. Sample results obtained with the equipment are presented.

  13. Determination of channel change for selected streams, Maricopa County, Arizona

    USGS Publications Warehouse

    Capesius, Joseph P.; Lehman, Ted W.

    2002-01-01

    In Maricopa County, Arizona, 10 sites on seven streams were studied to determine the lateral and vertical change of the channel. Channel change was studied over time scales ranging from individual floods to decades using cross-section surveys, discharge measurements, changes in the point of zero flow, and repeat photography. All of the channels showed some change in cross-section area or hydraulic radius over the time scales studied, but the direction and mag-nitude of change varied considerably from one flow, or series of flows, to another. The documentation of cross-section geometry for streams in Maricopa County for long-term monitoring was begun in this study.

  14. Real-air data reduction procedures based on flow parameters measured in the test section of supersonic and hypersonic facilities

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1972-01-01

    Data-reduction procedures for determining free stream and post-normal shock kinetic and thermodynamic quantities are derived. These procedures are applicable to imperfect real air flows in thermochemical equilibrium for temperatures to 15 000 K and a range of pressures from 0.25 N/sq m to 1 GN/sq m. Although derived primarily to meet the immediate needs of the 6-inch expansion tube, these procedures are applicable to any supersonic or hypersonic test facility where combinations of three of the following flow parameters are measured in the test section: (1) Stagnation pressure behind normal shock; (2) freestream static pressure; (3) stagnation point heat transfer rate; (4) free stream velocity; (5) stagnation density behind normal shock; and (6) free stream density. Limitations of the nine procedures and uncertainties in calculated flow quantities corresponding to uncertainties in measured input data are discussed. A listing of the computer program is presented, along with a description of the inputs required and a sample of the data printout.

  15. ASTM F739 method for testing the permeation resistance of protective clothing materials: critical analysis with proposed changes in procedure and test-cell design.

    PubMed

    Anna, D H; Zellers, E T; Sulewski, R

    1998-08-01

    ASTM (American Society for Testing and Materials) Method F739-96 specifies a test-cell design and procedures for measuring the permeation resistance of chemical protective clothing. Among the specifications are open-loop collection stream flow rates of 0.050 to 0.150 L/min for a gaseous medium. At elevated temperatures the test must be maintained within 1 degree C of the set point. This article presents a critical analysis of the effect of the collection stream flow rate on the measured permeation rate and on the temperature uniformity within the test cell. Permeation tests were conducted on four polymeric glove materials with 44 solvents at 25 degrees C. Flow rates > 0.5 L/min were necessary to obtain accurate steady-state permeation rate (SSPR) values in 25 percent of the tests. At the lower flow rates the true SSPR typically was underestimated by a factor of two or less, but errors of up to 33-fold were observed. No clear relationship could be established between the need for a higher collection stream flow rate and either the vapor pressure or the permeation rate of the solvent, but test results suggest that poor mixing within the collection chamber was a contributing factor. Temperature gradients between the challenge and collection chambers and between the bottom and the top of the collection chamber increased with the water-bath temperature and the collection stream flow rate. Use of a test cell modified to permit deeper submersion reduced the gradients to < or = 0.5 degrees C. It is recommended that all SSPR measurements include verification of the adequacy of the collection stream flow rate. For testing at nonambient temperatures, the modified test cell described here could be used to ensure temperature uniformity throughout the cell.

  16. Experimental Acoustic Velocity Measurements in a Tidally Affected Stream

    USGS Publications Warehouse

    Storm, J.B.; ,

    2002-01-01

    The U.S. Geological Survey (USGS) constructed a continuous steamgaging station on the tidally affected Escatawpa River at Interstate 10 near Orange Grove, Mississippi, in August 2001. The gage collects water quantity parameters of stage and stream velocity, and water quality parameters of water temperature, specific conductance, and salinity. Data are transmitted to the local USGS office via the GOES satellite and are presented on a near real-time web page. Due to tidal effects, the stream has multiple flow regimes which include downstream, bi-directional, and reverse flows. Advances in acoustic technology have made it possible to gage streams of this nature where conventional methods have been unsuccessful. An experimental mount was designed in an attempt to recognize, describe, and quantify these flow regimes by using acoustic Doppler equipment.

  17. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    NASA Astrophysics Data System (ADS)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity induced diurnal effect is overlain by the stronger influence of evapotranspiration. Diurnal DOC fluctuations show daily maxima in the afternoon. While daily variations in DOC concentrations are often explained by faster in-stream biogeochemical processes during daylight, we here propose that the viscosity effect in the riparian zone could explain the afternoon peaks in DOC concentrations. Our records show that daily water temperature variations and therefore viscosity changes only occur in the near surface parts of the riparian zone, where the DOC concentrations are higher than in deeper parts of the riparian zone. We calculated, that the viscosity induced higher flow rates from the near surface parts of the riparian zone can explain the DOC concentration maxima in the afternoon. As the viscosity effect does not disappear during the growing season but is just smaller than the evapotranspiration effect, the DOC concentration pattern is not changing between the dormant and growing seasons. The different controls of diurnal fluctuations of stream-flow and water quality concentrations need to be carefully considered in order to better understand the different patterns in catchment hydrology.

  18. Urban Stormwater Runoff: A New Class of Environmental Flow Problem

    PubMed Central

    Walsh, Christopher J.; Fletcher, Tim D.; Burns, Matthew J.

    2012-01-01

    Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use. PMID:23029257

  19. Soil Microbial Community Contribution to Small Headwater Stream Metabolism.

    NASA Astrophysics Data System (ADS)

    Clapcott, J. E.; Gooderham, J. P.; Barmuta, L. A.; Davies, P. E.

    2005-05-01

    The temporal dynamics of sediment respiration were examined in seven small headwater streams in forested catchments in 2004. A strong seasonal response was observed with higher respiration rates in depositional zones than in gravel runs. The data were also examined in the context of proportional habitat distributions that highlighted the importance of high flow events in shaping whole stream metabolic budgets. This study specifically examines the question of terrestrial soil respiration contribution to whole stream metabolism by the controlled inundation of terrestrial soils. The experiment included six experimentally inundated terrestrial zones, six terrestrial controls, and six in-stream depositional zones. Sediment bacterial respiration was measured using 14C leucine incorporation and cotton strip bioassays were also employed to provide an indicative measure of sediment microbial activity. Despite high variability and exhibiting significantly lower bacterial activity than in-stream sediments, modelling using flow data and habitat mapping illustrated the important contribution of terrestrial soil respiration to the whole stream metabolic budgets of small headwater streams. In addition, microbial community composition examined using phospholipid fatty acid analysis clearly differentiated between terrestrial and aquatic communities. Freshly inundated terrestrial communities remained similar to un-inundated controls after 28 days.

  20. Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River Basin: A chemical hydrograph separation approach

    USGS Publications Warehouse

    Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.

    2014-01-01

    Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.

  1. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  2. Hydrogeologic Factors Affecting Base-Flow Yields in the Jefferson County Area, West Virginia, October-November 2007

    USGS Publications Warehouse

    Evaldi, Ronald D.; Paybins, Katherine S.; Kozar, Mark D.

    2009-01-01

    Base-flow yields at approximately the annual 75-percent-duration flow were determined for watersheds in the Jefferson County area, WV, from stream-discharge measurements made during October 31 to November 2, 2007. Five discharge measurements of Opequon Creek defined increased flow from 29,000,000 gallons per day (gal/d) at Carters Ford to 51,400,000 gal/d near Vanville. No flow was observed at 45 of 110 additional stream sites inspected, and discharge at the 65 flowing stream sites ranged from 1,940 to 17,100,000 gallons per day (gal/d). Discharge at 28 springs ranged from no flow to 2,430,000 gal/d. Base-flow yields were computed as the change in stream-channel discharge between measurement sites divided by the change in drainage area between the sites. Yields were negative for losing (influent) channel reaches and positive for gaining (effluent) reaches. Channels in 14 watersheds were determined to have lost flow ranging from -9.6 to -1,770 gallons per day per acre (gal/d/acre). Channels in 51 watersheds were determined to have gained flow ranging from 3.4 to 235,000 gal/d/acre. Water temperature at the stream sites ranged from 5.0 to 16.3 deg C (quarry pumpage), and specific conductance ranged from 51 to 881 microsiemens per centimeter (uS/cm). Water temperature at the springs ranged from 11.5 to 15.0 deg C, and specific conductance ranged from 22 to 958 uS/cm. Large springs in some watersheds in western Jefferson County are adjacent to other watersheds with little or no surface-water discharge; this is probably the result of interbasin transfer of groundwater along faults that dissect the area. Most watersheds located adjacent to the Potomac River in northeastern Jefferson County were not flowing during this study; this is most likely because the Potomac River is deeply incised, and groundwater flows directly to it rather than to the local stream systems in these areas. Except for one watershed with a yield of 651 gal/d/acre, no watersheds in northeastern Jefferson County yielded more than 305 gal/d/acre. Base-flow yields of several watersheds in south-central Jefferson County exceeded 400 gal/d/acre, and the effect of the Shenadoah River on base flows in the watershed appears to be less than that of the Potomac River in the northeastern part of the county. In the southeastern part of the county, because of steep relief and low-permeability bedrock, several streams were not flowing at the time of the study, and yields from all flowing streams were all less than 100 gal/d/acre. On the basis of historical data from 1961 through 2008, the mean and median depths to groundwater in 213 wells in western Jefferson County were 33.4 and 29.3 ft, respectively. Mean and median depths to groundwater in 69 wells in the northeastern county area were 56.0 and 55.0 ft below land surface, respectively. However, mean and median depths to groundwater in 28 wells within 1.5 miles of the Potomac River were 70.0 and 71.3 ft below land surface, respectively. Mean and median depths to groundwater in 108 wells in the south-central county area were 53.9 and 52.8 ft below land surface, respectively. Mean and median depths to groundwater of 26 wells in the southeastern county area were 86.6 and 59.5 ft below land surface, respectively.

  3. Low-flow characteristics of Indiana streams

    USGS Publications Warehouse

    Fowler, K.K.; Wilson, J.T.

    1996-01-01

    Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.

  4. Predicting nitrate discharge dynamics in mesoscale catchments using the lumped StreamGEM model and Bayesian parameter inference

    NASA Astrophysics Data System (ADS)

    Woodward, Simon James Roy; Wöhling, Thomas; Rode, Michael; Stenger, Roland

    2017-09-01

    The common practice of infrequent (e.g., monthly) stream water quality sampling for state of the environment monitoring may, when combined with high resolution stream flow data, provide sufficient information to accurately characterise the dominant nutrient transfer pathways and predict annual catchment yields. In the proposed approach, we use the spatially lumped catchment model StreamGEM to predict daily stream flow and nitrate concentration (mg L-1 NO3-N) in four contrasting mesoscale headwater catchments based on four years of daily rainfall, potential evapotranspiration, and stream flow measurements, and monthly or daily nitrate concentrations. Posterior model parameter distributions were estimated using the Markov Chain Monte Carlo sampling code DREAMZS and a log-likelihood function assuming heteroscedastic, t-distributed residuals. Despite high uncertainty in some model parameters, the flow and nitrate calibration data was well reproduced across all catchments (Nash-Sutcliffe efficiency against Log transformed data, NSL, in the range 0.62-0.83 for daily flow and 0.17-0.88 for nitrate concentration). The slight increase in the size of the residuals for a separate validation period was considered acceptable (NSL in the range 0.60-0.89 for daily flow and 0.10-0.74 for nitrate concentration, excluding one data set with limited validation data). Proportions of flow and nitrate discharge attributed to near-surface, fast seasonal groundwater and slow deeper groundwater were consistent with expectations based on catchment geology. The results for the Weida Stream in Thuringia, Germany, using monthly as opposed to daily nitrate data were, for all intents and purposes, identical, suggesting that four years of monthly nitrate sampling provides sufficient information for calibration of the StreamGEM model and prediction of catchment dynamics. This study highlights the remarkable effectiveness of process based, spatially lumped modelling with commonly available monthly stream sample data, to elucidate high resolution catchment function, when appropriate calibration methods are used that correctly handle the inherent uncertainties.

  5. Episodic acidification of small streams in the northeastern united states: Effects on fish populations

    USGS Publications Warehouse

    Baker, J.P.; Van Sickle, J.; Gagen, C.J.; DeWalle, David R.; Sharpe, W.E.; Carline, R.F.; Baldigo, Barry P.; Murdoch, Peter S.; Bath, D.W.; Kretser, W.A.; Simonin, H.A.; Wigington, P.J.

    1996-01-01

    As part of the Episodic Response Project (ERP), we studied the effects of episodic acidification on fish in 13 small streams in the northeastern United States: four streams in the Adirondack region of New York, four streams in the Catskills, New York, and five streams in the northern Appalachian Plateau, Pennsylvania. In situ bioassays with brook trout (Salvelinus fontinalis) and a forage fish species (blacknose dace (Rhinichthys atratulus], mottled sculpin (Cottus bairdi), or slimy sculpin (Cottus cognatus), depending on the region) measured direct toxicity. Movements of individual brook trout, in relation to stream chemistry, were monitored using radiotelemetry. Electrofishing surveys assessed fish community status and the density and biomass of brook trout in each stream. During low flow, all streams except one had chemical conditions considered suitable for the survival and reproduction of most fish species (median pH 6.0-7.2 during low flow; inorganic Al 100-200 ??g/L. We conclude that episodic acidification can have long-term effects on fish communities in small streams.

  6. Multi-scale measurements and modeling of denitrification in streams with varying flow and nitrate concentration in the upper Mississippi River basin, USA

    USGS Publications Warehouse

    Böhlke, John Karl; Antweiler, Ronald C.; Harvey, Judson W.; Laursen, Andrew E.; Smith, Lesley K.; Smith, Richard L.; Voytek, Mary A.

    2009-01-01

    Denitrification is an important net sink for NO3− in streams, but direct measurements are limited and in situ controlling factors are not well known. We measured denitrification at multiple scales over a range of flow conditions and NO3− concentrations in streams draining agricultural land in the upper Mississippi River basin. Comparisons of reach-scale measurements (in-stream mass transport and tracer tests) with local-scale in situ measurements (pore-water profiles, benthic chambers) and laboratory data (sediment core microcosms) gave evidence for heterogeneity in factors affecting benthic denitrification both temporally (e.g., seasonal variation in NO3− concentrations and loads, flood-related disruption and re-growth of benthic communities and organic deposits) and spatially (e.g., local stream morphology and sediment characteristics). When expressed as vertical denitrification flux per unit area of streambed (Udenit, in μmol N m−2 h−1), results of different methods for a given set of conditions commonly were in agreement within a factor of 2–3. At approximately constant temperature (~20 ± 4°C) and with minimal benthic disturbance, our aggregated data indicated an overall positive relation between Udenit (~0–4,000 μmol N m−2 h−1) and stream NO3−concentration (~20–1,100 μmol L−1) representing seasonal variation from spring high flow (high NO3−) to late summer low flow (low NO3−). The temporal dependence of Udenit on NO3−was less than first-order and could be described about equally well with power-law or saturation equations (e.g., for the unweighted dataset, Udenit ≈26 * [NO3−]0.44 or Udenit≈640 * [NO3−]/[180 + NO3−]; for a partially weighted dataset, Udenit ≈14 * [NO3−]0.54 or Udenit ≈700 * [NO3−]/[320 + NO3−]). Similar parameters were derived from a recent spatial comparison of stream denitrification extending to lower NO3− concentrations (LINX2), and from the combined dataset from both studies over 3 orders of magnitude in NO3−concentration. Hypothetical models based on our results illustrate: (1) Udenit was inversely related to denitrification rate constant (k1denit, in day−1) and vertical transfer velocity (vf,denit, in m day−1) at seasonal and possibly event time scales; (2) although k1denit was relatively large at low flow (low NO3−), its impact on annual loads was relatively small because higher concentrations and loads at high flow were not fully compensated by increases in Udenit; and (3) although NO3− assimilation and denitrification were linked through production of organic reactants, rates of NO3− loss by these processes may have been partially decoupled by changes in flow and sediment transport. Whereas k1denit and vf,denit are linked implicitly with stream depth, NO3− concentration, and(or) NO3− load, estimates of Udenit may be related more directly to field factors (including NO3− concentration) affecting denitrification rates in benthic sediments. Regional regressions and simulations of benthic denitrification in stream networks might be improved by including a non-linear relation between Udenit and stream NO3−concentration and accounting for temporal variation.

  7. Macroinvertebrate community change associated with the severity of streamflow alteration

    USGS Publications Warehouse

    Carlisle, Daren M.; Eng, Kenny; Nelson, S.M.

    2014-01-01

    Natural streamflows play a critical role in stream ecosystems, yet quantitative relations between streamflow alteration and stream health have been elusive. One reason for this difficulty is that neither streamflow alteration nor ecological responses are measured relative to their natural expectations. We assessed macroinvertebrate community condition in 25 mountain streams representing a large gradient of streamflow alteration, which we quantified as the departure of observed flows from natural expectations. Observed flows were obtained from US Geological Survey streamgaging stations and discharge records from dams and diversion structures. During low-flow conditions in September, samples of macroinvertebrate communities were collected at each site, in addition to measures of physical habitat, water chemistry and organic matter. In general, streamflows were artificially high during summer and artificially low throughout the rest of the year. Biological condition, as measured by richness of sensitive taxa (Ephemeroptera, Plecoptera and Trichoptera) and taxonomic completeness (O/E), was strongly and negatively related to the severity of depleted flows in winter. Analyses of macroinvertebrate traits suggest that taxa losses may have been caused by thermal modification associated with streamflow alteration. Our study yielded quantitative relations between the severity of streamflow alteration and the degree of biological impairment and suggests that water management that reduces streamflows during winter months is likely to have negative effects on downstream benthic communities in Utah mountain streams. 

  8. Mixing in the shear superposition micromixer: three-dimensional analysis.

    PubMed

    Bottausci, Frederic; Mezić, Igor; Meinhart, Carl D; Cardonne, Caroline

    2004-05-15

    In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.

  9. Determination of infiltration and percolation rates along a reach of the Santa Fe River near La Bajada, New Mexico

    USGS Publications Warehouse

    Thomas, Carole L.; Stewart, Amy E.; Constantz, Jim E.

    2000-01-01

    Two methods, one a surface-water method and the second a ground-water method, were used to determine infiltration and percolation rates along a 2.5-kilometer reach of the Santa Fe River near La Bajada, New Mexico. The surface-water method uses streamflow measurements and their differences along a stream reach, streamflow-loss rates, stream surface area, and evaporation rates to determine infiltration rates. The ground-water method uses heat as a tracer to monitor percolation through shallow streambed sediments. Data collection began in October 1996 and continued through December 1997. During that period the stream reach was instrumented with three streamflow gages, and temperature profiles were monitored from the stream-sediment interface to about 3 meters below the streambed at four sites along the reach. Infiltration is the downward flow of water through the stream- sediment interface. Infiltration rates ranged from 92 to 267 millimeters per day for an intense measurement period during June 26- 28, 1997, and from 69 to 256 millimeters per day during September 27-October 6, 1997. Investigators calculated infiltration rates from streamflow loss, stream surface-area measurements, and evaporation-rate estimates. Infiltration rates may be affected by unmeasured irrigation-return flow in the study reach. Although the amount of irrigation-return flow was none to very small, it may result in underestimation of infiltration rates. The infiltration portion of streamflow loss was much greater than the evaporation portion. Infiltration accounted for about 92 to 98 percent of streamflow loss. Evaporation-rate estimates ranged from 3.4 to 7.6 millimeters per day based on pan-evaporation data collected at Cochiti Dam, New Mexico, and accounted for about 2 to 8 percent of streamflow loss. Percolation is the movement of water through saturated or unsaturated sediments below the stream-sediment interface. Percolation rates ranged from 40 to 109 millimeters per day during June 26-28, 1997. Percolation rates were not calculated for the September 27-October 6, 1997, period because a late summer flood removed the temperature sensors from the streambed. Investigators used a heat-and-water flow model, VS2DH (variably saturated, two- dimensional heat), to calculate near-surface streambed infiltration and percolation rates from temperatures measured in the stream and streambed. Near the stream-sediment interface, infiltration and percolation rates are comparable. Comparison of infiltration and percolation rates showed that infiltration rates were greater than percolation rates. The method used to calculate infiltration rates accounted for net loss or gain over the entire stream reach, whereas the method used to calculate percolation was dependent on point measurements and, as applied in this study, neglected the nonvertical component of heat and water fluxes. In general, using the ground-water method was less labor intensive than making a series of streamflow measurements and relied on temperature, an easily measured property. The ground-water method also eliminated the difficulty of measuring or estimating evaporation from the water surface and was therefore more direct. Both methods are difficult to use during periods of flood flow. The ground-water method has problems with the thermocouple-wire temperature sensors washing out during flood events. The surface- water method often cannot be used because of safety concerns for personnel making wading streamflow measurements.

  10. Preliminary assessment of streamflow characteristics for selected streams at Fort Gordon, Georgia, 1999-2000

    USGS Publications Warehouse

    Stamey, Timothy C.

    2001-01-01

    In 1999, the U.S. Geological Survey, in cooperation with the U.S. Army Signal Center and Fort Gordon, began collection of periodic streamflow data at four streams on the military base to assess and estimate streamflow characteristics of those streams for potential water-supply sources. Simple and reliable methods of determining streamflow characteristics of selected streams on the military base are needed for the initial implementation of the Fort Gordon Integrated Natural Resources Management Plan. Long-term streamflow data from the Butler Creek streamflow gaging station were used along with several concurrent discharge measurements made at three selected partial-record streamflow stations on Fort Gordon to determine selected low-flow streamflow characteristics. Streamflow data were collected and analyzed using standard U.S. Geological Survey methods and computer application programs to verify the use of simple drainage area to discharge ratios, which were used to estimate the low-flow characteristics for the selected streams. Low-flow data computed based on daily mean streamflow include: mean discharges for consecutive 1-, 3-, 7-, 14-, and 30-day period and low-flow estimates of 7Q10, 30Q2, 60Q2, and 90Q2 recurrence intervals. Flow-duration data also were determined for the 10-, 30-, 50-, 70-, and 90-percent exceedence flows. Preliminary analyses of the streamflow indicate that the flow duration and selected low-flow statistics for the selected streams averages from about 0.15 to 2.27 cubic feet per square mile. The long-term gaged streamflow data indicate that the streamflow conditions for the period analyzed were in the 50- to 90-percent flow range, or in which streamflow would be exceeded about 50 to 90 percent of the time.

  11. The Breakup Mechanism and the Spray Pulsation Behavior of a Three-Stream Atomizer

    NASA Astrophysics Data System (ADS)

    Ng, Chin; Dord, Anne; Aliseda, Alberto

    2011-11-01

    In many processes of industrial importance, such as gasification, the liquid to gas mass ratio injected at the atomizer exceeds the limit of conventional two-fluid coaxial atomizers. To maximize the shear rate between the atomization gas and the liquid while maintaining a large contact area, a secondary gas stream is added at the centerline of the spray, interior to the liquid flow, which is annular in this configuration. This cylindrical gas jet has low momentum and does not contribute to the breakup process, which is still dominated by the high shear between the concentric annular liquid flow and the high momentum gas stream. The presence of two independently controlled gas streams leads to the appearance of a hydrodynamic instability that manifests itself in pulsating liquid flow rates and droplet sizes. We study the dependency of the atomization process on the relative flow rates of the three streams. We measure the size distribution, droplet number density and total liquid volumetric flow rate as a function of time, for realistic Weber and Ohnesorge numbers. Analysis of the temporal evolution of these physical variables reveals the dominant frequency of the instability and its effect on the breakup and dispersion of droplets in the spray. We present flow visualization and Phase Doppler Particle Analyzer results that provide insight into the behavior of this complex coaxial shear flow.

  12. Measurement of the aerothermodynamic state in a high enthalpy plasma wind-tunnel flow

    NASA Astrophysics Data System (ADS)

    Hermann, Tobias; Löhle, Stefan; Zander, Fabian; Fasoulas, Stefanos

    2017-11-01

    This paper presents spatially resolved measurements of absolute particle densities of N2, N2+, N, O, N+ , O+ , e- and excitation temperatures of electronic, rotational and vibrational modes of an air plasma free stream. All results are based on optical emission spectroscopy data. The measured parameters are combined to determine the local mass-specific enthalpy of the free stream. The analysis of the radiative transport, relative and absolute intensities, and spectral shape is used to determine various thermochemical parameters. The model uncertainty of each analysis method is assessed. The plasma flow is shown to be close to equilibrium. The strongest deviations from equilibrium occur for N, N+ and N2+ number densities in the free stream. Additional measurements of the local mass-specific enthalpy are conducted using a mass injection probe as well as a heat flux and total pressure probe. The agreement between all methods of enthalpy determination is good.

  13. Reconnaissance of water-quality characteristics of streams in the City of Charlotte and Mecklenburg County, North Carolina

    USGS Publications Warehouse

    Eddins, W.H.; Crawford, J.K.

    1984-01-01

    In 1979-81, water samples were collected from 119 sites on streams throughout the City of Charlotte and Mecklenburg County, North Carolina, and were analyzed for specific conductance, dissolved chloride, hardness, pH, total alkalinity, total phosphorus, trace elements, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, silver, and zinc and biological measures including dissolved oxygen, biochemical oxygen demand, fecal coliform bacteria, and fecal streptococcus bacteria. Sampling was conducted during both low flow (base flow) and high flow. Several water-quality measures including pH, total arsenic, total cadmium, total chromium, total copper, total iron, total lead, total manganese, total mercury, total silver, total zinc, dissolved oxygen, and fecal coliform bacteria at times exceeded North Carolina water-quality standards in various streams. Runoff from non-point sources appears to contribute more to the deterioration of streams in Charlotte and Mecklenburg County than point-source effluents. Urban and industrial areas contribute various trace elements. Residential and rural areas and municipal waste-water treatment plants contribute high amounts of phosphorus.

  14. Flow origin, drainage area, and hydrologic characteristics for headwater streams in the mountaintop coal-mining region of Southern West Virginia, 2000-01

    USGS Publications Warehouse

    Paybins, Katherine S.

    2003-01-01

    Characteristics of perennial and intermittent headwater streams were documented in the mountaintop removal coal-mining region of southern West Virginia in 2000?01. The perennial-flow origin points were identified in autumn during low base-flow conditions. The intermittent-flow origin points were identified in late winter and early spring during high base-flow conditions. Results of this investigation indicate that the median drainage area upstream of the origin of intermittent flow was 14.5 acres, and varied by an absolute median of 3.4 acres between the late winter measurements of 2000 and early spring measurements of 2001. Median drainage area in the northeastern part of the study unit was generally larger (20.4 acres), with a lower median basin slope (322 feet per mile) than the southwestern part of the study unit (12.9 acres and 465 feet per mile, respectively). Both of the seasons preceding the annual intermittent flow visits were much drier than normal. The West Virginia Department of Environmental Protection reports that the median size of permitted valley fills in southern West Virginia is 12.0 acres, which is comparable to the median drainage area upstream of the ephemeralintermittent flow point (14.5 acres). The maximum size of permitted fills (480 acres), however, is more than 10 times the observed maximum drainage area upstream of the ephemeral-intermittent flow point (45.3 acres), although a single valley fill may cover more than one drainage area. The median drainage area upstream of the origin of perennial flow was 40.8 acres, and varied by an absolute median of 18.0 acres between two annual autumn measurements. Only basins underlain with mostly sandstone bedrock produced perennial flow. Perennial points in the northeast part of the study unit had a larger median drainage area (70.0 acres) and a smaller median basin slope (416 feet per mile) than perennial points in the southwest part of the study unit (35.5 acres and 567 feet per mile, respectively). Some streams were totally dry for one or both of the annual October visits. Both of the seasons preceding the October visits had near normal to higher than normal precipitation. These dry streams were adjacent to perennial streams draining similarly sized areas, suggesting that local conditions at a firstorder- stream scale determine whether or not there will be perennial flow. Headwater-flow rates varied little from year to year, but there was some variation between late winter and early spring and autumn. Flow rates at intermittent points of flow origin ranged from 0.001 to 0.032 cubic feet per second, with a median of 0.017 cubic feet per second. Flow rates at perennial points of flow origin ranged from 0.001 to 0.14 cubic feet per second, with a median of 0.003 cubic feet per second.

  15. Improving H-Q rating curves in temprorary streams by using Acoustic Doppler Current meters

    NASA Astrophysics Data System (ADS)

    Marchand, P.; Salles, C.; Rodier, C.; Hernandez, F.; Gayrard, E.; Tournoud, M.-G.

    2012-04-01

    Intermittent rivers pose different challenges to stream rating due to high spatial and temporal gradients. Long dry periods, cut by short duration flush flood events explain the difficulty to obtain reliable discharge data, for low flows as well as for floods: problems occur with standard gauging, zero flow period, etc. Our study aims to test the use of an acoustic Doppler currentmeter (ADC) for improving stream rating curves in small catchments subject to large variations of discharge, solid transport and high eutrophication levels. The study is conducted at the outlet of the river Vène, a small coastal river (67 km2) located close to the city of Montpellier (France). The low flow period lasts for more than 6 month; during this period the river flow is sustained by effluents from urban sewage systems, which allows development of algae and macrophytes in the riverbed. The ADC device (Sontek ®Argonaut SW) is a pulsed Doppler current profiling system designed for measuring water velocity profiles and levels that are used to compute volumetric flow rates. It is designed for shallow waters (less than 4 meter depth). Its main advantages are its low cost and high accuracy (±1% of the measured velocity or ±0.05 m/sec, as reported by the manufacturer). The study will evaluate the improvement in rating curves in an intermittent flow context and the effect of differences in sensitivity between low and high water level, by comparing mean flow velocity obtained by ADC to direct discharges measurements. The study will also report long-term use of ADC device, by considering effects of biofilms, algae and macrophytes, as well as solid transport on the accuracy of the measurements. In conclusion, we show the possibility to improve stream rating and continuous data collection of an intermittent river by using a ADC with some precautions.

  16. Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Diercke, A.; Kuckein, C.; Verma, M.; Denker, C.

    2018-03-01

    Aim. The giant solar filament was visible on the solar surface from 2011 November 8-23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods: We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. Hα images from the Kanzelhöhe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both Hα and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results: We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands (λ171 Å, λ193 Å, λ304 Å, and λ211 Å). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of λ171 Å and λ193 Å images. In the λ304 Å wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the λ211 Å wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in Hα and EUV images is caused by different absorption processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s-1 for all wavelength bands. The highest horizontal flow speeds are identified in the λ171 Å band with flow speeds of up to 2.5 km s-1. The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15-20% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions: Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0. ''6 pixel-1. Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments. A movie associated to Fig. 6 is available at http://https://www.aanda.org

  17. Perennial flow through convergent hillslopes explains chemodynamic solute behavior in a shale headwater catchment

    NASA Astrophysics Data System (ADS)

    Herndon, E.; Steinhoefel, G.; Dere, A. L. D.; Sullivan, P. L.

    2017-12-01

    Streams experience changing hydrologic connectivity to heterogeneous water sources under different flow regimes. It remains unclear how seasonal flow paths link these different sources and regulate concentration-discharge behavior. Previous research at the Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) in central Pennsylvania, USA identified chemostatic solutes (e.g., K, Mg, Na, Cl) whose concentrations varied little across a wide range of discharge values and chemodynamic solutes (e.g., Fe and Mn) whose concentrations decreased sharply with increasing stream discharge. To elucidate inputs to the stream when concentrations of chemodynamic solutes were high, we investigated stream water and shallow groundwater (< 4 m) chemistry at the SSHCZO in early autumn when discharge was negligible. The stream consisted of isolated puddles that were chemically variable along the length of the channel but similar to underlying shallow groundwater. Chemodynamic solute concentrations in the stream and groundwater were high in the upper catchment but decreased by an order of magnitude towards the outlet. In contrast, chemostatic solute concentrations varied little. Groundwater was minimally connected to the stream in an area of upwelling near the stream headwaters; however, the water table remained over a meter below the stream bed along the rest of the channel. We conclude that well water sampled from the upper catchment is young, shallow interflow that upwells to generate metal-rich stream headwaters during the dry season. High concentrations of chemodynamic solutes measured during low discharge occur when metal-rich headwaters are flushed to the catchment outlet during periodic rain events. Interflow during the dry season originates from water that infiltrates through organic-rich swales; thus, metals in the stream at low flow are ultimately derived from convergent hillslopes where biological processes have concentrated chemodynamic elements. We infer that chemodynamic solutes are diluted at high discharge due to increased flow through planar hillslopes and inputs from regional groundwater that rises to enter the stream. This study highlights how spatially heterogeneous biogeochemistry and seasonally variable flow paths regulate concentration-discharge behavior within catchments.

  18. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    USGS Publications Warehouse

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following dam releases. Direct coupling may have occurred between streamflow and stream temperature for losing stream reaches, such that reduced streamflows facilitated increased afternoon stream temperatures and increased afternoon stream temperatures induced increased streambed losses, leading to even greater increases in both stream temperature and streamflow losses.

  19. Emergence cues of a mayfly in a high-altitude stream ecosystem: potential response to climate change.

    PubMed

    Harper, Matthew P; Peckarsky, Barbara L

    2006-04-01

    To understand the consequences of human accelerated environmental change, it is important to document the effects on natural populations of an increasing frequency of extreme climatic events. In stream ecosystems, recent climate change has resulted in extreme variation in both thermal and hydrological regimes. From 2001 to 2004, a severe drought in western United States corresponded with earlier emergence of the adult stage of the high-altitude stream mayfly, Baetis bicaudatus. Using a long-term database from a western Colorado stream, the peak emergence date of this mayfly population was predicted by both the magnitude and date of peak stream flow, and by the mean daily water temperature, suggesting that Baetis may respond to declining stream flow or increasing water temperature as proximate cues for early metamorphosis. However, in a one-year survey of multiple streams from the same drainage basin, only water temperature predicted spatial variation in the onset of emergence of this mayfly. To decouple the effects of temperature and flow, we separately manipulated these factors in flow-through microcosms and measured the timing of B. bicaudatus metamorphosis to the adult stage. Mayflies emerged sooner in a warmed-water treatment than an ambient-water treatment; but reducing flow did not accelerate the onset of mayfly emergence. Nonetheless, using warming temperatures to cue metamorphosis enables mayflies to time their emergence during the descending limb of the hydrograph when oviposition sites (protruding rocks) are becoming available. We speculate that large-scale climate changes involving warming and stream drying could cause significant shifts in the timing of mayfly metamorphosis, thereby having negative effects on populations that play an important role in stream ecosystems.

  20. Hydraulic characteristics near streamside structures along the Kenai River, Alaska

    USGS Publications Warehouse

    Dorava, Joseph M.

    1995-01-01

    Hydraulic characteristics, water velocity, depth, and flow direction were measured near eight sites along the Kenai River in southcentral Alaska. Each of the eight sites contained a different type of structure: a road-type boat launch, a canal-type boat launch, a floating dock, a rock retaining wall, a pile-supported dock, a jetty, a concrete retaining wall, and a bank stabilization project near the city of Soldotna. Measurements of hydraulic characteristics were made to determine to what extent the structures affected natural or ambient stream hydraulic characteristics. The results will be used by the Alaska Department of Fish and Game to evaluate assumptions used in their Habitat Evaluation Procedure assessment of juvenile chinook salmon habitat along the river and to improve their understanding of stream hydraulics for use in permitting potential projects. The study included structures along the Kenai River from about 12 to 42 miles upstream from the mouth. Hydraulic characteristics were measured during medium-, high-, and low-flow conditions, as measured at the Kenai River at Soldotna: (1) discharge ranged from 6,310 to 6,480 cubic feet per second during medium flow conditions that were near mean annual flow on June 9-10, 1994; (2) discharge ranged from 14,000 to 14,400 cubic feet per second during high flow conditions that were near peak annual flow conditions on August 2-3, 1994; and (3) discharge ranged from 3,470 to 3,660 cubic feet per second during open-water low-flow conditions on May 8-9, 1995. Measurements made at the structures were compared with measurements made at nearby unaffected natural sites. The floating dock, pile-supported dock, road-type boat launch, and concrete retaining wall did not significantly alter the stream channel area. These structures contributed only hydraulic-roughness type changes. The structures occupied a much smaller area than that of the wetted perimeter of the channel and thus typically had little effect on velocity, depth, or flow direction. During this investigation, many of these subtle effects could not be separated from ambient hydraulic conditions. The jetty significantly altered stream channel area and therefore affected stream hydraulics more than the other structures that were investigated. Data indicated that velocity increased from 1.9 to 5.8 feet per second near the point of the jetty during measurements in May, June, and August. Rock wall and jetty structures also divert flow away from near-shore areas in proportion to their projection lengths into the river. For the jetty, the effect on surface flow was observed downstream for a distance of about 10 times the length of the jetty's projection into the river and upstream for about 4 to 5 times the length of the projection. For the rock wall, the diversion of flow was evident for 10 to 15 feet downstream.

  1. Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams

    USGS Publications Warehouse

    Roy, A.H.; Freeman, Mary C.; Freeman, B.J.; Wenger, S.J.; Ensign, W.E.; Meyer, J.L.

    2005-01-01

    Stream biota in urban and suburban settings are thought to be impaired by altered hydrology; however, it is unknown what aspects of the hydrograph alter fish assemblage structure and which fishes are most vulnerable to hydrologic alterations in small streams. We quantified hydrologic variables and fish assemblages in 30 small streams and their subcatchments (area 8–20 km2) in the Etowah River Catchment (Georgia, USA). We stratified streams and their subcatchments into 3 landcover categories based on imperviousness (<10%, 10–20%, >20% of subcatchment), and then estimated the degree of hydrologic alteration based on synoptic measurements of baseflow yield. We derived hydrologic variables from stage gauges at each study site for 1 y (January 2003–2004). Increased imperviousness was positively correlated with the frequency of storm events and rates of the rising and falling limb of the hydrograph (i.e., storm “flashiness”) during most seasons. Increased duration of low flows associated with imperviousness only occurred during the autumn low-flow period, and this measure corresponded with increased richness of lentic tolerant species. Altered storm flows in summer and autumn were related to decreased richness of endemic, cosmopolitan, and sensitive fish species, and decreased abundance of lentic tolerant species. Species predicted to be sensitive to urbanization, based on specific life-history or habitat requirements, also were related to stormflow variables and % fine bed sediment in riffles. Overall, hydrologic variables explained 22 to 66% of the variation in fish assemblage richness and abundance. Linkages between hydrologic alteration and fish assemblages were potentially complicated by contrasting effects of elevated flows on sediment delivery and scour, and mediating effects of high stream gradient on sediment delivery from elevated flows. However, stormwater management practices promoting natural hydrologic regimes are likely to reduce the impacts of catchment imperviousness on stream fish assemblages.

  2. Flow in out-of-plane double S-bonds

    NASA Technical Reports Server (NTRS)

    Schmidt, M. C.; Whitelaw, J. H.; Yianneskis, M.

    1986-01-01

    Developing flows in two out-of-plane double S-bend configurations have been measured by laser-Doppler anemometry. The first duct had a rectangular cross-section 40mmx40mm at the inlet and consisted of a uniform area 22.5 deg. - 22.5 deg. S-duct upstream with a 22.5 deg.- 22.5 deg. S- diffuser downstream. The second duct had a circular cross-section and consisted of a 45 deg. - 45 deg. uniform area S-duct upstream with a 22.5 deg. -22.5 deg. S-diffuser downstream. In both configurations the ratio of the mean radius of curvature to the inlet hydraulic diameter was 7.0, the exit-to-inlet area ratio of the diffusers was 1.5 and the ducts were connected so that the centerline of the S-duct lay in a plane normal to that of the S-diffuser. Streamwise and cross-stream velocity components were measured in laminar flow for the rectangular duct and in turbulent flow for both configurations; measurements of the turbulence levels, cross-correlations and wall static pressures were also made in the turbulent flow cases. Secondary flows of the first kind are present in the first S-duct and they are complemented or counteracted by the secondary flows generated by the area expansion and by the curvature of the S-diffusers downstream. Cross-stream velocities with magnitudes up to 0.19 and 0.11 of the bulk velocity were measured in the laminar and turbulent flows respectively in the rectangular duct and six cross-flow vortices were evident at the exit of the duct in both flow cases. The turbulent flow in the circular duct was qualitatively similar to that in the rectangular configuration, but the cross-stream velocities measured at the exit plane were smaller in the circular geometry. The results are presented in sufficient detail and accuracy for the assessment of numerical calculation methods and are listed in tabular form for this purpose.

  3. Bed roughness of palaeo-ice streams: insights and implications for contemporary ice sheet dynamics

    NASA Astrophysics Data System (ADS)

    Falcini, Francesca; Rippin, David; Selby, Katherine; Krabbendam, Maarten

    2017-04-01

    Bed roughness is the vertical variation of elevation along a horizontal transect. It is an important control on ice stream location and dynamics, with a correspondingly important role in determining the behaviour of ice sheets. Previous studies of bed roughness have been limited to insights derived from Radio Echo Sounding (RES) profiles across parts of Antarctica and Greenland. Such an approach has been necessary due to the inaccessibility of the underlying bed. This approach has led to important insights, such as identifying a general link between smooth beds and fast ice flow, as well as rough beds and slow ice flow. However, these insights are mainly derived from relatively coarse datasets, so that links between roughness and flow are generalised and rather simplistic. Here, we explore the use of DTMs from the well-preserved footprints of palaeo-ice streams, coupled with high resolution models of palaeo-ice flow, as a tool for investigating basal controls on the behaviour of contemporary, active ice streams in much greater detail. Initially, artificial transects were set up across the Minch palaeo-ice stream (NW Scotland) to mimic RES flight lines from past studies in Antarctica. We then explored how increasing data-resolution impacted upon the roughness measurements that were derived. Our work on the Minch palaeo-ice stream indicates that different roughness signatures are associated with different glacial landforms, and we discuss the potential for using these insights to infer, from RES-based roughness measurements, the occurrence of particular landform assemblages that may exist beneath contemporary ice sheets.

  4. Investigation of air stream from combustor-liner air entry holes, 3

    NASA Technical Reports Server (NTRS)

    Aiba, T.; Nakano, T.

    1979-01-01

    Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.

  5. Storage requirements for Georgia streams

    USGS Publications Warehouse

    Carter, Robert F.

    1983-01-01

    The suitability of a stream as a source of water supply or for waste disposal may be severely limited by low flow during certain periods. A water user may be forced to provide storage facilities to supplement the natural flow if the low flow is insufficient for his needs. This report provides data for evaluating the feasibility of augmenting low streamflow by means of storage facilities. It contains tabular data on storage requirements for draft rates that are as much as 60 percent of the mean annual flow at 99 continuous-record gaging stations, and draft-storage diagrams for estimating storage requirements at many additional sites. Through analyses of streamflow data, the State was divided into four regions. Draft-storage diagrams for each region provide a means of estimating storage requirements for sites on streams where data are scant, provided the drainage area, mean annual flow, and the 7-day, 10-year low flow are known or can be estimated. These data are tabulated for the 99 gaging stations used in the analyses and for 102 partial-record sites where only base-flow measurements have been made. The draft-storage diagrams are useful not only for estimating in-channel storage required for low-flow augmentation, but also can be used for estimating the volume of off-channel storage required to retain wastewater during low-flow periods for later release. In addition, these relationships can be helpful in estimating the volume of wastewater to be disposed of by spraying on land, provided that the water disposed of in this manner is only that for which streamflow dilution water is not currently available. Mean annual flow can be determined for any stream within the State by using the runoff map in this report. Low-flow indices can be estimated by several methods, including correlation of base-flow measurements with concurrent flow at nearby continuous-record gaging stations where low-flow indices have been determined.

  6. Doppler flow imaging of cytoplasmic streaming using spectral domain phase microscopy

    NASA Astrophysics Data System (ADS)

    Choma, Michael A.; Ellerbee, Audrey K.; Yazdanfar, Siavash; Izatt, Joseph A.

    2006-03-01

    Spectral domain phase microscopy (SDPM) is a function extension of spectral domain optical coherence tomography. SDPM achieves exquisite levels of phase stability by employing common-path interferometry. We discuss the theory and limitations of Doppler flow imaging using SDPM, demonstrate monitoring the thermal contraction of a glass sample with nanometer per second velocity sensitivity, and apply this technique to measurement of cytoplasmic streaming in an Amoeba proteus pseudopod. We observe reversal of cytoplasmic flow induced by extracellular CaCl2, and report results that suggest parabolic flow of cytoplasm in the A. proteus pseudopod.

  7. Evaluating the use of drone photogrammetry for measurement of stream channel morphology and response to high flow events

    NASA Astrophysics Data System (ADS)

    Price, Katie; Ballow, William

    2015-04-01

    Traditional high-precision survey methods for stream channel measurement are labor-intensive and require wadeability or boat access to streams. These conditions limit the number of sites researchers are able to study and generally prohibit the possibility of repeat channel surveys to evaluate short-term fluctuations in channel morphology. In recent years, unmanned aerial vehicles (drones) equipped with photo and video capabilities have become widely available and affordable. Concurrently, developments in photogrammetric software offer unprecedented mapping and 3D rendering capabilities of drone-captured photography. In this study, we evaluate the potential use of drone-mounted cameras for detailed stream channel morphometric analysis. We used a relatively low-cost drone (DJI Phantom 2+ Vision) and commercially available, user friendly software (Agisoft Photscan) for photogrammetric analysis of drone-captured stream channel photography. Our test study was conducted on Proctor Creek, a highly responsive urban stream in Atlanta, Georgia, within the crystalline Piedmont region of the southeastern United States. As a baseline, we performed traditional high-precision survey methods to collect morphological measurements (e.g., bankfull and wetted width, bankfull and wetted thalweg depth) at 11 evenly-spaced transects, following USGS protocols along reaches of 20 times average channel width. We additionally used the drone to capture 200+ photos along the same reaches, concurrent with the channel survey. Using the photogrammetry software, we generated georeferenced 3D models of the stream channel, from which morphological measurements were derived from the 11 transects and compared with measurements from the traditional survey method. We additionally explored possibilities for novel morphometric characterization available from the continuous 3D surface, as an improvement on the limited number of detailed cross-sections available from standard methods. These results showed great promise for the drone photogrammetry methods, which encouraged the exploration of the possibility of repeat aerial surveys to evaluate channel response to high flow events. Repeat drone surveys were performed following a sequence of high-flow events in Proctor Creek to evaluate the possibility of using these methods for assessment of stream channel response to flooding.

  8. Characterization of Acoustic Streaming Beyond 100 MHz

    NASA Astrophysics Data System (ADS)

    Eisener, J.; Lippert, A.; Nowak, T.; Cairós, C.; Reuter, F.; Mettin, R.

    The aim of this study is to investigate acoustic streaming in water at very high ultrasonic frequencies, namely beyond 100 MHz. At such high frequencies, the dissipation length of acoustic waves shrinks considerably, and the acoustic streaming transforms from the well-known Eckart type into a Stuart-Lighthill type: While Eckart streaming is driven by a small momentum transfer along the path of a weakly damped travelling sound wave, Stuart-Lighthill streaming is generated by rather local and strong momentum transfer of a highly damped and therefore rapidly decaying wave. Then the inertia of the induced flow cannot be neglected anymore, and a potentially turbulent jet flow emerges. Here we report on streaming velocity measurements for the case where the sound is completely absorbed within a region much smaller than the generated jet. In contrast to previous work in this frequency range, where mainly surface acoustic wave transducers have been employed, we use piston-type transducers that emit vertically to the transducer surface. The acoustic streaming effects are characterized by ink front tracking and particle tracking velocimetry, and by numerical studies. The results show narrow high-speed jet flows that extend much farther into the liquid than the acoustic field. Velocities of several m/s are observed.

  9. Stream-aquifer interactions in the Straight River area, Becker and Hubbard counties, Minnesota

    USGS Publications Warehouse

    Stark, J.R.; Armstrong, David S.; Zwilling, Daniel R.

    1994-01-01

    Daily fluctuations of stream temperature are as great as 15 degrees Celsius during the summer, primarily in response to changes in air temperature. Ground-water discharge to the Straight River decreases stream temperature during the summer. Results of simulations from a stream-temperature model indicate that daily changes in stream temperature are strongly influenced by solar radiation, wind speed, stream depth, and ground-water inflow. Results of simulations from ground-water-flow and stream-temperature models developed for the investigation indicate a significant decrease in ground-water flow could result from ground-water withdrawal at rates similar to those measured during 1988. This reduction in discharge to the stream could result in an increase in stream temperature of 0.5 to 1.5 degrees Celsius. Nitrate concentrations in shallow wells screened at the water table, in some areas, are locally greater than the limit set by the Minnesota Pollution Control Agency. Nitrate concentrations in water from deeper wells and in the stream are low, generally less than 1.0 milligram per liter.

  10. Impact of stream restoration on flood waves

    NASA Astrophysics Data System (ADS)

    Sholtes, J.; Doyle, M.

    2008-12-01

    Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.

  11. Episodic acidification and changes in fish diversity in Pennsylvania headwater streams

    USGS Publications Warehouse

    Heard, R.M.; Sharpe, W.E.; Carline, R.F.; Kimmel, William G.

    1997-01-01

    Current water chemistry and fish communities in 70 Pennsylvania streams were compared with historical records to determine whether fish species richness had declined and, if so, the possible role of acidification. First-, second-, and third-order streams were selected, and stream sites sampled during the 1961-1971 survey were resampled during May and June 1994 in the Appalachian Plateaus province and during June 1995 in the Valley and Ridge province. Stream-flow was measured and a habitat assessment was completed at each site. Dominant bedrock types influencing the stream sampling site were determined for the Appalachian Plateaus streams. Episodic water chemistry was collected for 39 of the 50 Appalachian Plateaus streams and 14 of the 20 Valley and Ridge streams during the winter and spring of 1996. Thirty-eight (76%) streams of the Appalachian Plateaus province and 13 (65%) streams in the Valley and Ridge province had a loss of fish species since the 1961-1971 sampling period. Habitat scores were not related to losses of fish species. Of the 53 streams sampled during runoff episodes 22 (42%) increased in total dissolved aluminum by more than 50 ??g/L, and 31 (58%) streams decreased in pH by 0.5 units or more. Minnows (Cyprinidae) and darters (Percidae) are sensitive to acidity and were the species most often lost. Streams draining watersheds of the Appalachian Plateaus province dominated by Pottsville bedrock had more acidic water quality during base flow and storm flow sampling periods than streams dominated by Pocono bedrock. The results of this study indicate that many Pennsylvania streams have undergone an alarming reduction in fish diversity during the past 25-34 years. In many of these streams the loss in fish diversity may be attributed to episodic acidification.

  12. Techniques for Minimizing and Monitoring the Impact of Pipeline Construction on Coastal Streams

    Treesearch

    Thomas W. Mulroy; John R. Storrer; Vincent J. Semonsen; Michael L. Dungan

    1989-01-01

    This paper describes specific measures recently employed for protection of riparian resources during construction of an oil and gas pipeline that crossed coastal reaches of 23 perennial and intermittent streams between Point Conception and Gaviota in Santa Barbara County, California. Flumes were constructed to maintain stream flow; anchored straw bales and silt fences...

  13. Broadband Shock Noise in Internally-Mixed Dual-Stream Jets

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2009-01-01

    Broadband shock noise (BBSN) has been studied in some detail in single-flow jets and recently in dual-stream jets with separate flow exhaust systems. Shock noise is of great concern in these latter cases because of the noise created for the aircraft cabin by the underexpanded nozzle flow at cruise. Another case where shock noise is of concern is in the case of future supersonic aircraft that are expected to have bypass ratios small enough to justify internally mixed exhaust systems, and whose mission will push cycles to the point of imperfectly expanded flows. Dual-stream jets with internally mixed plume have some simplifying aspects relative to the separate flow jets, having a single shock structure given by the common nozzle pressure. This is used to separate the contribution of the turbulent shear layer to the broadband shock noise. Shock structure is held constant while the geometry and strength of the inner and merged shear layers are varying by changing splitter area ratio and core stream temperature. Flow and noise measurements are presented which document the efforts at separating the contribution of the inner shear layer to the broadband shock noise.

  14. Hydrologic control of nitrogen removal, storage, and export in a mountain stream

    USGS Publications Warehouse

    Hall, R.O.; Baker, M.A.; Arp, C.D.; Kocha, B.J.

    2009-01-01

    Nutrient cycling and export in streams and rivers should vary with flow regime, yet most studies of stream nutrient transformation do not include hydrologic variability. We used a stable isotope tracer of nitrogen (15N) to measure nitrate (NO3) uptake, storage, and export in a mountain stream, Spring Creek, Idaho, U.S.A. We conducted two tracer tests of 2-week duration during snowmelt and baseflow. Dissolved and particulate forms of 15N were monitored over three seasons to test the hypothesis that stream N cycling would be dominated by export during floods, and storage during low flow. Floods exported more N than during baseflow conditions; however, snowmelt floods had higher than expected demand for NO{3 because of hyporheic exchange. Residence times of benthic N during both tracer tests were longer than 100 d for ephemeral pools such as benthic algae and wood biofilms. Residence times were much longer in fine detritus, insects, and the particulate N from the hyporheic zone, showing that assimilation and hydrologic storage can be important mechanisms for retaining particulate N. Of the tracer N stored in the stream, the primary form of export was via seston during periods of high flows, produced by summer rainstorms or spring snowmelt the following year. Spring Creek is not necessarily a conduit for nutrients during high flow; hydrologic exchange between the stream and its valley represents an important storage mechanism.

  15. Measuring surface flow velocity with smartphones: potential for citizen observatories

    NASA Astrophysics Data System (ADS)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  16. Patterns and age distribution of ground-water flow to streams

    USGS Publications Warehouse

    Modica, E.; Reilly, T.E.; Pollock, D.W.

    1997-01-01

    Simulations of ground-water flow in a generic aquifer system were made to characterize the topology of ground-water flow in the stream subsystem and to evaluate its relation to deeper ground-water flow. The flow models are patterned after hydraulic characteristics of aquifers of the Atlantic Coastal Plain and are based on numerical solutions to three-dimensional, steady-state, unconfined flow. The models were used to evaluate the effects of aquifer horizontal-to-vertical hydraulic conductivity ratios, aquifer thickness, and areal recharge rates on flow in the stream subsystem. A particle tracker was used to determine flow paths in a stream subsystem, to establish the relation between ground-water seepage to points along a simulated stream and its source area of flow, and to determine ground-water residence time in stream subsystems. In a geometrically simple aquifer system with accretion, the source area of flow to streams resembles an elongated ellipse that tapers in the downgradient direction. Increased recharge causes an expansion of the stream subsystem. The source area of flow to the stream expands predominantly toward the stream headwaters. Baseflow gain is also increased along the reach of the stream. A thin aquifer restricts ground-water flow and causes the source area of flow to expand near stream headwaters and also shifts the start-of-flow to the drainage basin divide. Increased aquifer anisotropy causes a lateral expansion of the source area of flow to streams. Ground-water seepage to the stream channel originates both from near- and far-recharge locations. The range in the lengths of flow paths that terminate at a point on a stream increase in the downstream direction. Consequently, the age distribution of ground water that seeps into the stream is skewed progressively older with distance downstream. Base flow ia an integration of ground water with varying age and potentially different water quality, depending on the source within the drainage basin. The quantitative results presented indicate that this integration can have a wide and complex residence time range and source distribution.

  17. Aero-thermal investigation of a highly loaded transonic linear turbine guide vane cascade. A test case for inviscid and viscous flow computations

    NASA Astrophysics Data System (ADS)

    Arts, T.; Lambertderouvroit, M.; Rutherford, A. W.

    1990-09-01

    An experimental aerothermal investigation of a highly loaded transonic turbine nozzle guide vane mounted in a linear cascade arrangement is presented. The measurements were performed in a short duration isentropic light piston compression tube facility, allowing a correct simulation of Mach and Reynolds numbers as well as of the gas to wall temperature ratio compared to the values currently observed in modern aeroengines. The experimental program consisted of the following: (1) flow periodicity checks by means of wall static pressure measurements and Schlieren flow visualizations; (2) blade velocity distribution measurements by means of static pressure tappings; (3) blade convective heat transfer measurements by means of static pressure tappings; (4) blade convective heat transfer measurements by means of platinium thin films; (5) downstream loss coefficient and exit flow angle determinations by using a new fast traversing mechanism; and (6) free stream turbulence intensity and spectrum measurements. These different measurements were performed for several combinations of the free stream flow parameters looking at the relative effects on the aerodynamic blade performance and blade convective heat transfer of Mach number, Reynolds number, and freestream turbulence intensity.

  18. Increased Water Storage at Ice-stream Onsets: A Critical Mechanism?

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert; Choi, Hyeungu

    2007-01-01

    The interdependence of rapid ice flow, surface topography and the spatial distribution of subglacial water are examined by linking existing theories. The motivation is to investigate whether the acceleration of an ice-stream tributary contains a positive feedback that encourages the retention of subglacial water that leads to faster flow. Periodically varying surface and bed topographies are related through a linear ice-flow perturbation theory for various values of mean surface slope, perturbation amplitude and basal sliding speeds. The topographic variations lead to a periodic variation in hydraulic potential that is used to infer the tendency for subglacial water to be retained in local hydraulic potential minima. If water retention leads to enhanced basal sliding, a positive feedback loop is closed that could explain the transition from slower tributary flow to faster-streaming flow and the sustained downstream acceleration along the tributary-ice-stream system. A sensitivity study illustrates that the same range of topographic wavelengths most effectively transmitted from the bed to the surface also strongly influences the behavior of subglacial water. A lubrication index is defined to qualitatively measure the heterogeneity of the subglacial hydrologic system. Application of this index to field data shows that the transition from tributary to ice stream closely agrees with the location where subglacial water may be first stored.

  19. Regional Curves for Bankfull Channel Characteristics in the Appalachian Plateaus, West Virginia

    USGS Publications Warehouse

    Messinger, Terence

    2009-01-01

    Streams in the Appalachian Plateaus Physiographic Province in West Virginia were classified as a single region on the basis of bankfull characteristics. Regression lines for annual peak flow and drainage area measured at streamgages in the study area at recurrence intervals between 1.2 and 1.7 years fell within the 99-percent confidence interval of the regression line for bankfull flow. Channel characteristics were intermediate among those from surrounding states and regions where comparable studies have been done. The stream reaches that were surveyed were selected for apparent stability, and to represent gradients of drainage area, elevation, and mean annual precipitation. Profiles of high-water marks left by bankfull and near-bankfull peaks were surveyed, either as part of slope-area flow measurements at ungaged reaches, or to transfer known flow information to cross sections for gaged reaches. The slope-area measurements made it possible to include ungaged sites in the study, but still relate bankfull dimensions to peak flow and frequency.

  20. Streaming Potential Modeling to Understand the Identification of Hydraulically Active Fractures and Fracture-Matrix Fluid Interactions Using the Self-Potential Method

    NASA Astrophysics Data System (ADS)

    Jougnot, D.; Roubinet, D.; Linde, N.; Irving, J.

    2016-12-01

    Quantifying fluid flow in fractured media is a critical challenge in a wide variety of research fields and applications. To this end, geophysics offers a variety of tools that can provide important information on subsurface physical properties in a noninvasive manner. Most geophysical techniques infer fluid flow by data or model differencing in time or space (i.e., they are not directly sensitive to flow occurring at the time of the measurements). An exception is the self-potential (SP) method. When water flows in the subsurface, an excess of charge in the pore water that counterbalances electric charges at the mineral-pore water interface gives rise to a streaming current and an associated streaming potential. The latter can be measured with the SP technique, meaning that the method is directly sensitive to fluid flow. Whereas numerous field experiments suggest that the SP method may allow for the detection of hydraulically active fractures, suitable tools for numerically modeling streaming potentials in fractured media do not exist. Here, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid-flow and associated self-potential problems in fractured domains. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods due to computational limitations. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  1. Low pressure gas flow analysis through an effusive inlet using mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, David R.; Brown, Kenneth G.

    1988-01-01

    A mass spectrometric method for analyzing flow past and through an effusive inlet designed for use on the tethered satellite and other entering vehicles is discussed. Source stream concentrations of species in a gaseous mixture are determined using a calibration of measured mass spectral intensities versus source stream pressure for standard gas mixtures and pure gases. Concentrations are shown to be accurate within experimental error. Theoretical explanations for observed mass discrimination effects as they relate to the various flow situations in the effusive inlet and the experimental apparatus are discussed.

  2. Sediment transport under wave groups: Relative importance between nonlinear waveshape and nonlinear boundary layer streaming

    USGS Publications Warehouse

    Yu, X.; Hsu, T.-J.; Hanes, D.M.

    2010-01-01

    Sediment transport under nonlinear waves in a predominately sheet flow condition is investigated using a two-phase model. Specifically, we study the relative importance between the nonlinear waveshape and nonlinear boundary layer streaming on cross-shore sand transport. Terms in the governing equations because of the nonlinear boundary layer process are included in this one-dimensional vertical (1DV) model by simplifying the two-dimensional vertical (2DV) ensemble-averaged two-phase equations with the assumption that waves propagate without changing their form. The model is first driven by measured time series of near-bed flow velocity because of a wave group during the SISTEX99 large wave flume experiment and validated with the measured sand concentration in the sheet flow layer. Additional studies are then carried out by including and excluding the nonlinear boundary layer terms. It is found that for the grain diameter (0.24 mm) and high-velocity skewness wave condition considered here, nonlinear waveshape (e.g., skewness) is the dominant mechanism causing net onshore transport and nonlinear boundary layer streaming effect only causes an additional 36% onshore transport. However, for conditions of relatively low-wave skewness and a stronger offshore directed current, nonlinear boundary layer streaming plays a more critical role in determining the net transport. Numerical experiments further suggest that the nonlinear boundary layer streaming effect becomes increasingly important for finer grain. When the numerical model is driven by measured near-bed flow velocity in a more realistic surf zone setting, model results suggest nonlinear boundary layer processes may nearly double the onshore transport purely because of nonlinear waveshape. Copyright 2010 by the American Geophysical Union.

  3. Estimating future flood frequency and magnitude in basins affected by glacier wastage.

    DOT National Transportation Integrated Search

    2015-03-01

    We present field measurements of meteorology, hydrology and glaciers and long-term modeled projections of glacier mass balance and : stream flow informed by downscaled climate simulations. The study basins include Valdez Glacier Stream (342 km2 : ), ...

  4. Ambient groundwater flow diminishes nitrogen cycling in streams

    NASA Astrophysics Data System (ADS)

    Azizian, M.; Grant, S. B.; Rippy, M.; Detwiler, R. L.; Boano, F.; Cook, P. L. M.

    2017-12-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. We utilized a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N- cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damkohler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  5. Improving sediment transport measurements in the Erlenbach stream using a moving basket system

    NASA Astrophysics Data System (ADS)

    Rickenmann, Dieter; Turowski, Jens; Hegglin, Ramon; Fritschi, Bruno

    2010-05-01

    In the Erlenbach stream, a prealpine torrent in Switzerland, sediment transport has been monitored for more than 25 years. Sediment transporting flood events in the Erlenbach are typically of short duration with a rapid rise of discharge during summer thunderstorms, thus hampering on-site measurements. On average there are more than 20 bedload transport events per year. Near the confluence with the main valley river, there is a stream gauging station and a sediment retention basin with a capacity of about 2,000 m3. The basin is surveyed at regular intervals and after large flood events. In addition, sediment transport has been continuously monitored with a piezoelectric bedload impact sensor (PBIS) array since 1986. The sensor array is mounted flush with the surface of a check dam immediately upstream of the retention basin. The PBIS system was developed to continuously measure the intensity of bedload transport and its relation to stream discharge. To standardize the sensors, the piezoelectric crystals were replaced by geophones in 2000. The geophone measuring system has also been employed at a number of other streams. In 2008, the measuring system in the Erlenbach stream has been enhanced with an automatic system to obtain bedload samples. Movable, slot-type cubic metal baskets are mounted on a rail at the downstream wall of the large check dam above the retention basin. The metal baskets can be moved automatically and individually into the flow according to flow and bedload transport conditions (i.e. geophone recordings). The basket is stopped at the centerline of the approach flow channel of the overflow section to obtain a sediment sample during a limited time interval. The wire mesh of the basket has a spacing of 10 mm to sample all sediment particles coarser than this size (which is about the limiting grain size detected by the geophones). The weight increase due to the collected sediment is measured by weighing cells located in the basket supporting structure, and this information is used in combination with the geophone recordings to determine when to move a basket laterally away from the flow. The upgraded measuring system allows: (i) to obtain bedload samples over short sampling periods; (ii) to measure the grain size distribution of the transported material and its variation over time and with discharge; (iii) to obtain direct bedload measurements that can be used to improve the understanding of the geophone signal; and (iv) to improve the geophone calibration for the Erlenbach stream. We introduce the new measuring installations, discuss our experience from the first successful automatic sampling operations in summer 2009, and we present first results.

  6. Modeling the effects of LID practices on streams health at watershed scale

    NASA Astrophysics Data System (ADS)

    Shannak, S.; Jaber, F. H.

    2013-12-01

    Increasing impervious covers due to urbanization will lead to an increase in runoff volumes, and eventually increase flooding. Stream channels adjust by widening and eroding stream bank which would impact downstream property negatively (Chin and Gregory, 2001). Also, urban runoff drains in sediment bank areas in what's known as riparian zones and constricts stream channels (Walsh, 2009). Both physical and chemical factors associated with urbanization such as high peak flows and low water quality further stress aquatic life and contribute to overall biological condition of urban streams (Maxted et al., 1995). While LID practices have been mentioned and studied in literature for stormwater management, they have not been studied in respect to reducing potential impact on stream health. To evaluate the performance and the effectiveness of LID practices at a watershed scale, sustainable detention pond, bioretention, and permeable pavement will be modeled at watershed scale. These measures affect the storm peak flows and base flow patterns over long periods, and there is a need to characterize their effect on stream bank and bed erosion, and aquatic life. These measures will create a linkage between urban watershed development and stream conditions specifically biological health. The first phase of this study is to design and construct LID practices at the Texas A&M AgriLife Research and Extension Center-Dallas, TX to collect field data about the performance of these practices on a smaller scale. The second phase consists of simulating the performance of LID practices on a watershed scale. This simulation presents a long term model (23 years) using SWAT to evaluate the potential impacts of these practices on; potential stream bank and bed erosion, and potential impact on aquatic life in the Blunn Watershed located in Austin, TX. Sub-daily time step model simulations will be developed to simulate the effectiveness of the three LID practices with respect to reducing potential erosion from stream beds and banks by studying annual average excess shear and reducing potential impact on aquatic life by studying rapid changes and variation in flow regimes in urban streams. This study will contribute to develop a methodology that evaluates the impact of hydrological changes that occur due to urban development, on aquatic life, stream bank and bed erosion. This is an ongoing research project and results will be shared and discussed at the conference.

  7. Free-stream temperature, density, and pressure measurements in an expansion tube flow

    NASA Technical Reports Server (NTRS)

    Haggard, K. V.

    1973-01-01

    An experimental study was conducted to determine test-flow conditions in the Langley pilot model expansion tube. Measurements of temperature, density, wall pressure, pitot pressure, and shock and interface velocities were compared with theoretical calculations based on various models of the flow cycle. The vibrational temperature and integrated density of the molecular oxygen component of the flow were measured by use of vacuum ultraviolet absorption techniques. These measurements indicate both the presence and possible degree of nonequilibrium in the flow. Data are compared with several simplified models of the flow cycle, and data trends are discussed.

  8. Qcritical as a Geomorphically and Biologically Relevant Flow Threshold for Stormwater Management and Catchment-scale Stream Restoration

    NASA Astrophysics Data System (ADS)

    Hawley, R. J.; Vietz, G. J.; Wooten, M. S.

    2016-12-01

    The threshold discharge that initiates streambed mobilization (Qcritical) is one of the most mechanistically-important flows for geomorphic function and biological integrity in stream ecosystems. Increased frequency and duration of flows that exceed Qcritical are a dominant driver of geomorphic instability and excess benthic disturbance in urban/suburban streams (i.e. the urban disturbance regime). Qcritical frequency also corresponds to measures of stream integrity in reference streams, with both geomorphic stability and biological indices significantly correlated to time since a Qcritical event in one 7-y study. Indeed, reference site macroinvertebrate communities during years with atypically frequent Qcritical events were more similar to sites draining watersheds with 30% imperviousness than to reference site communities of more typical rainfall years. Despite its biophysical relevance to stream ecosystems, Qcritical is one of the most overlooked and misunderstood flows in the stormwater management and stream restoration fields. Regional stormwater policies and stream restoration design guidance are often based on the misplaced assumption that streambed erosion does not occur at sub-bankfull events (often assumed to correspond to the 1-y recurrence discharge). Using an international database of nearly 200 sites we show that Qcritical varies by several orders of magnitude as a function of streambed particle size. Qcritical in sand-dominated streams is likely to be orders of magnitude less than the 1-yr discharge, whereas Qcritical in cobble/boulder dominated streams could be much larger than the 1-yr discharge, implying that stormwater/restoration policies focused on the 1-yr event could lack efficacy in many stream settings. Qcritical is a geomorphically- and biologically-relevant discharge threshold when developing stormwater management policies intended to protect streams from excess erosion, designing watershed-scale restoration efforts to restore a more natural disturbance regime, or reconstructing stream reaches designed to restore sediment continuity. Incorporation of Qcritical into such restoration and management efforts ensures that designs are actually tailored to the mechanisms that drive channel erosion and disturbance to the benthos.

  9. Experimental Reacting Hydrogen Shear Layer Data at High Subsonic Mach Number

    NASA Technical Reports Server (NTRS)

    Chang, C. T.; Marek, C. J.; Wey, C.; Wey, C. C.

    1996-01-01

    The flow in a planar shear layer of hydrogen reacting with hot air was measured with a two-component laser Doppler velocimeter (LDV) system, a schlieren system, and OH fluorescence imaging. It was compared with a similar air-to-air case without combustion. The high-speed stream's flow speed was about 390 m/s, or Mach 0.71, and the flow speed ratio was 0.34. The results showed that a shear layer with reaction grows faster than one without; both cases are within the range of data scatter presented by the established data base. The coupling between the streamwise and the cross-stream turbulence components inside the shear layers was low, and reaction only increased it slightly. However, the shear layer shifted laterally into the lower speed fuel stream, and a more organized pattern of Reynolds stress was present in the reaction shear layer, likely as a result of the formation of a larger scale structure associated with shear layer corrugation from heat release. Dynamic pressure measurements suggest that coherent flow perturbations existed inside the shear layer and that this flow became more chaotic as the flow advected downstream. Velocity and thermal variable values are listed in this report for a computational fluid dynamics (CFD) benchmark.

  10. Burn Severity Based Stream Buffers for Post Wildfire Salvage Logging Erosion

    NASA Astrophysics Data System (ADS)

    Bone, E. D.; Robichaud, P. R.; Brooks, E. S.; Brown, R. E.

    2017-12-01

    Riparian buffers may be managed for timber harvest disturbances to decrease the risk of hillslope erosion entering stream channels during runoff events. After a wildfire, burned riparian buffers may become less efficient at infiltrating runoff and reducing sedimentation, requiring wider dimensions. Testing riparian buffers under post-wildfire conditions may provide managers guidance on how to manage post-fire salvage logging operations on hillslopes and protect water quality in adjacent streams. We tested burned, unlogged hillslopes at the 2015 North Star Fire and 2016 Cayuse Mountain Fire locations in Washington, USA for their ability to reduce runoff flows and sedimentation. Our objectives were to: 1) measure the travel distances of concentrated flows using three sediment-laden flow rates, 2) measure the change in sediment concentration as each flow moves downslope, 3) test hillslopes under high burn-severity, low burn-severity and unburned conditions, and 4) conduct experiments at 0, 1 and 2 years since the fire events. Mean total flow length at the North Star Fire in year 1 was 211% greater at low burn-severity sites than unburned sites, and 467% greater at high burn-severity sites than unburned sites. Results decreased for all burned sites in year 2; by 40% at the high burn-severity sites, and by 30% at the low burn-severity sites, with no significant changes at the unburned sites. We tested only high burn-severity sites at the Cayuse Mountain Fire in year 0 and 1 where the mean total flow length between year 0 and year 1 decreased by 65%. The results of sediment concentration changes tracked closely with the magnitude of changes in flow travel lengths between treatments. Results indicate that managers may need to increase the widths of burned stream buffers during post-wildfire salvage logging for water quality protection, but stream buffer widths may decrease with less severe burn severity and increasing elapsed time (years) since fire.

  11. Bedload Rating and Flow Competence Curves Vary With Watershed and Bed Material Parameters

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Abt, S. R.

    2003-12-01

    Bedload transport rating curves and flow competence curves (largest bedload size for specified flow) are usually not known for streams unless a large number of bedload samples has been collected and analyzed. However, this information is necessary for assessing instream flow needs and stream responses to watershed effects. This study therefore analyzed whether bedload transport rating and flow competence curves were related to stream parameters. Bedload transport rating curves and flow competence curves were obtained from extensive bedload sampling in six gravel- and cobble-bed mountain streams. Samples were collected using bedload traps and a large net sampler, both of which provide steep and relatively well-defined bedload rating and flow competence curves due to a long sampling duration, a large sampler opening and a large sampler capacity. The sampled streams have snowmelt regimes, steep (1-9%) gradients, and watersheds that are mainly forested and relatively undisturbed with basin area sizes of 8 to 105 km2. The channels are slightly incised and can contain flows of more than 1.5 times bankfull with little overbank flow. Exponents of bedload rating and flow competence curves obtained from these measurements were found to systematically increase with basin area size and decrease with the degree of channel armoring. By contrast, coefficients of bedload rating and flow competence curves decreased with basin size and increased with armoring. All of these relationships were well-defined (0.86 < r2 < 0.99). Data sets from other studies in coarse-bedded streams fit the indicated trend if the sampling device used allows measuring bedload transport rates over a wide range and if bedload supply is somewhat low. The existence of a general positive trend between bedload rating curve exponents and basin area, and a negative trend between coefficients and basin area, is confirmed by a large data set of bedload rating curves obtained from Helley-Smith samples. However, in this case, the trends only become visible as basin area sizes span a wide range (1 - 10,000 km2). The well-defined relationships obtained from the bedload trap and the large net sampler suggest that exponents and coefficients of bedload transport rating curves (and flow competence curves) are predictable from an easily obtainable parameter such as basin size. However, the relationships of bedload rating curve exponents and coefficients with basin size and armoring appear to be influenced by the sampling device used and the watershed sediment production.

  12. A stream-gaging network analysis for the 7-day, 10-year annual low flow in New Hampshire streams

    USGS Publications Warehouse

    Flynn, Robert H.

    2003-01-01

    The 7-day, 10-year (7Q10) low-flow-frequency statistic is a widely used measure of surface-water availability in New Hampshire. Regression equations and basin-characteristic digital data sets were developed to help water-resource managers determine surface-water resources during periods of low flow in New Hampshire streams. These regression equations and data sets were developed to estimate streamflow statistics for the annual and seasonal low-flow-frequency, and period-of-record and seasonal period-of-record flow durations. generalized-least-squares (GLS) regression methods were used to develop the annual 7Q10 low-flow-frequency regression equation from 60 continuous-record stream-gaging stations in New Hampshire and in neighboring States. In the regression equation, the dependent variables were the annual 7Q10 flows at the 60 stream-gaging stations. The independent (or predictor) variables were objectively selected characteristics of the drainage basins that contribute flow to those stations. In contrast to ordinary-least-squares (OLS) regression analysis, GLS-developed estimating equations account for differences in length of record and spatial correlations among the flow-frequency statistics at the various stations.A total of 93 measurable drainage-basin characteristics were candidate independent variables. On the basis of several statistical parameters that were used to evaluate which combination of basin characteristics contribute the most to the predictive power of the equations, three drainage-basin characteristics were determined to be statistically significant predictors of the annual 7Q10: (1) total drainage area, (2) mean summer stream-gaging station precipitation from 1961 to 90, and (3) average mean annual basinwide temperature from 1961 to 1990.To evaluate the effectiveness of the stream-gaging network in providing regional streamflow data for the annual 7Q10, the computer program GLSNET (generalized-least-squares NETwork) was used to analyze the network by application of GLS regression between streamflow and the climatic and basin characteristics of the drainage basin upstream from each stream-gaging station. Improvement to the predictive ability of the regression equations developed for the network analyses is measured by the reduction in the average sampling-error variance, and can be achieved by collecting additional streamflow data at existing stations. The predictive ability of the regression equations is enhanced even further with the addition of new stations to the network. Continued data collection at unregulated stream-gaging stations with less than 14 years of record resulted in the greatest cost-weighted reduction to the average sampling-error variance of the annual 7Q10 regional regression equation. The addition of new stations in basins with underrepresented values for the independent variables of the total drainage area, average mean annual basinwide temperature, or mean summer stream-gaging station precipitation in the annual 7Q10 regression equation yielded a much greater cost-weighted reduction to the average sampling-error variance than when more data were collected at existing unregulated stations. To maximize the regional information obtained from the stream-gaging network for the annual 7Q10, ranking of the streamflow data can be used to determine whether an active station should be continued or if a new or discontinued station should be activated for streamflow data collection. Thus, this network analysis can help determine the costs and benefits of continuing the operation of a particular station or activating a new station at another location to predict the 7Q10 at ungaged stream reaches. The decision to discontinue an existing station or activate a new station, however, must also consider its contribution to other water-resource analyses such as flood management, water quality, or trends in land use or climatic change.

  13. How does rapidly changing discharge during storm events affect transient storage and channel water balance in a headwater mountain stream?

    Treesearch

    Adam S. Ward; Michael N. Gooseff; Thomas J. Voltz; Michael Fitzgerald; Kamini Singha; Jay P. Zarnetske

    2013-01-01

    Measurements of transient storage in coupled surface-water and groundwater systems are widely made during base flow periods and rarely made during storm flow periods. We completed 24 sets of slug injections in three contiguous study reaches during a 1.25 year return interval storm event (discharge ranging from 21.5 to 434 L s1 ) in a net gaining headwater stream within...

  14. Water temperature, dissolved oxygen, flow, and shade measurements in the three stream sections of the Golden Trout Wilderness

    Treesearch

    Kathleen R. Matthews

    2016-01-01

    To determine the current range of water temperatures in the streams inhabited by California golden trout, Oncorhynchus mykiss aguabonita, I deployed and monitored water temperature recording probes from 2008 through 2013 in three meadows in the Golden Trout Wilderness (GTW). Ninety probes were placed in three meadow streams: Mulkey Creek in Mulkey...

  15. Jupiter's atmospheric jet streams extend thousands of kilometres deep.

    PubMed

    Kaspi, Y; Galanti, E; Hubbard, W B; Stevenson, D J; Bolton, S J; Iess, L; Guillot, T; Bloxham, J; Connerney, J E P; Cao, H; Durante, D; Folkner, W M; Helled, R; Ingersoll, A P; Levin, S M; Lunine, J I; Miguel, Y; Militzer, B; Parisi, M; Wahl, S M

    2018-03-07

    The depth to which Jupiter's observed east-west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno's gravitational measurements have revealed that Jupiter's gravitational field is north-south asymmetric, which is a signature of the planet's atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J 3 , J 5 , J 7 and J 9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000  kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J 8 and J 10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter's total mass.

  16. Optical measurement of transverse molecular diffusion in a microchannel.

    PubMed Central

    Kamholz, A E; Schilling, E A; Yager, P

    2001-01-01

    Quantitative analysis of molecular diffusion is a necessity for the efficient design of most microfluidic devices as well as an important biophysical method in its own right. This study demonstrates the rapid measurement of diffusion coefficients of large and small molecules in a microfluidic device, the T-sensor, by means of conventional epifluorescence microscopy. Data were collected by monitoring the transverse flux of analyte from a sample stream into a second stream flowing alongside it. As indicated by the low Reynolds numbers of the system (< 1), flow is laminar, and molecular transport between streams occurs only by diffusion. Quantitative determinations were made by fitting data with predictions of a one-dimensional model. Analysis was made of the flow development and its effect on the distribution of diffusing analyte using a three-dimensional modeling software package. Diffusion coefficients were measured for four fluorescently labeled molecules: fluorescein-biotin, insulin, ovalbumin, and streptavidin. The resulting values differed from accepted results by an average of 2.4%. Microfluidic system parameters can be selected to achieve accurate diffusion coefficient measurements and to optimize other microfluidic devices that rely on precise transverse transport of molecules. PMID:11259309

  17. Hyporheic zone denitrification: controls on effective reaction depth and contribution to whole-stream mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Böhlke, John Karl; Voytek, Mary A.; Scott, Durelle; Tobias, Craig R.

    2013-01-01

    Stream denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field. To demonstrate at a field site, we injected 15NO3−, Br (conservative tracer), and SF6 (gas exchange tracer) and compared measured whole-stream denitrification with in situ hyporheic denitrification in shallow and deeper flow paths of contrasting geomorphic units. Hyporheic denitrification accounted for between 1 and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (greater substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance (nirS), and measures of granular surface area and presence of anoxic microzones. The dimensionless product of the reaction rate constant and hyporheic residence time, λhzτhz define a Damköhler number, Daden-hz that was optimal in the subset of hyporheic flow paths where Daden-hz ≈ 1. Optimal conditions exclude inefficient deep pathways transport where substrates are used up and also exclude inefficient shallow pathways that require repeated hyporheic entries and exits to complete the reaction. The whole-stream reaction significance, Rs (dimensionless), was quantified by multiplying Daden-hz by the proportion of stream discharge passing through the hyporheic zone. Together these two dimensionless metrics, one flow-path scale and the other reach-scale, quantify the whole-stream significance of hyporheic denitrification. One consequence is that the effective zone of significant denitrification often differs from the full depth of the hyporheic zone, which is one reason why whole-stream denitrification rates have not previously been explained based on total hyporheic-zone metrics such as hyporheic-zone size or residence time.

  18. Estimates of Median Flows for Streams on the 1999 Kansas Surface Water Register

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    The Kansas State Legislature, by enacting Kansas Statute KSA 82a?2001 et. seq., mandated the criteria for determining which Kansas stream segments would be subject to classification by the State. One criterion for the selection as a classified stream segment is based on the statistic of median flow being equal to or greater than 1 cubic foot per second. As specified by KSA 82a?2001 et. seq., median flows were determined from U.S. Geological Survey streamflow-gaging-station data by using the most-recent 10 years of gaged data (KSA) for each streamflow-gaging station. Median flows also were determined by using gaged data from the entire period of record (all-available hydrology, AAH). Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating median flows for uncontrolled stream segments. The drainage area of the gaging stations on uncontrolled stream segments used in the regression analyses ranged from 2.06 to 12,004 square miles. A logarithmic transformation of the data was needed to develop the best linear relation for computing median flows. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. Tobit analyses of KSA data yielded a model standard error of prediction of 0.285 logarithmic units, and the best equations using Tobit analyses of AAH data had a model standard error of prediction of 0.250 logarithmic units. These regression equations and an interpolation procedure were used to compute median flows for the uncontrolled stream segments on the 1999 Kansas Surface Water Register. Measured median flows from gaging stations were incorporated into the regression-estimated median flows along the stream segments where available. The segments that were uncontrolled were interpolated using gaged data weighted according to the drainage area and the bias between the regression-estimated and gaged flow information. On controlled segments of Kansas streams, the median flow information was interpolated between gaging stations using only gaged data weighted by drainage area. Of the 2,232 total stream segments on the Kansas Surface Water Register, 34.5 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second when the KSA analysis was used. When the AAH analysis was used, 36.2 percent of the segments had an estimated median streamflow of less than 1 cubic foot per second. This report supercedes U.S. Geological Survey Water-Resources Investigations Report 02?4292.

  19. Stream-channel and watershed delineations and basin-characteristic measurements using lidar elevation data for small drainage basins within the Des Moines Lobe landform region in Iowa

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.; O'Shea, Padraic S.; Gelder, Brian K.

    2018-02-14

    Basin-characteristic measurements related to stream length, stream slope, stream density, and stream order have been identified as significant variables for estimation of flood, flow-duration, and low-flow discharges in Iowa. The placement of channel initiation points, however, has always been a matter of individual interpretation, leading to differences in stream definitions between analysts.This study investigated five different methods to define stream initiation using 3-meter light detection and ranging (lidar) digital elevation models (DEMs) data for 17 streamgages with drainage areas less than 50 square miles within the Des Moines Lobe landform region in north-central Iowa. Each DEM was hydrologically enforced and the five stream initiation methods were used to define channel initiation points and the downstream flow paths. The five different methods to define stream initiation were tested side-by-side for three watershed delineations: (1) the total drainage-area delineation, (2) an effective drainage-area delineation of basins based on a 2-percent annual exceedance probability (AEP) 12-hour rainfall, and (3) an effective drainage-area delineation based on a 20-percent AEP 12-hour rainfall.Generalized least squares regression analysis was used to develop a set of equations for sites in the Des Moines Lobe landform region for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs. A total of 17 streamgages were included in the development of the regression equations. In addition, geographic information system software was used to measure 58 selected basin-characteristics for each streamgage.Results of the regression analyses of the 15 lidar datasets indicate that the datasets that produce regional regression equations (RREs) with the best overall predictive accuracy are the National Hydrographic Dataset, Iowa Department of Natural Resources, and profile curvature of 0.5 stream initiation methods combined with the 20-percent AEP 12-hour rainfall watershed delineation method. These RREs have a mean average standard error of prediction (SEP) for 4-, 2-, and 1-percent AEP discharges of 53.9 percent and a mean SEP for all eight AEPs of 55.5 percent. Compared to the RREs developed in this study using the basin characteristics from the U.S. Geological Survey StreamStats application, the lidar basin characteristics provide better overall predictive accuracy.

  20. Overview of surface-water resources at the U.S. Coast Guard Support Center Kodiak, Alaska, 1987-89

    USGS Publications Warehouse

    Solin, G.L.

    1996-01-01

    Hydrologic data at a U.S. Coast Guard Support Center on Kodiak Island, Alaska, were collected from 1987 though 1989 to determine hydrologic conditions and if contamination of soils, ground water, or surface water has occurred. This report summarizes the surface-water-discharge data collected during the study and estimates peak, average, and low-flow values for Buskin River near its mouth. Water-discharge measurements were made at least once at 48 sites on streams in or near the Center. Discharges were measured in the Buskin River near its mouth five times during 1987-89 and ranged from 27 to 367 cubic feet per second. Tributaries of Buskin River below Buskin Lake that had discharges greater than 1 cubic foot per second include Bear Creek, Alder Creek, Magazine Creek, Devils Creek and an outlet from Lake Louise. Streams having flows generally greater than 0.1 cubic foot per second but less than 1 cubic foot per second include an unnamed tributary to Buskin River, an unnamed tributary to Lake Catherine and a drainage channel at Kodiak airport. Most other streams flowing into Buskin River, and all streams on Nyman Peninsula, usually had little or no flow except during periods of rainfall or snowmelt. During a low-flow period in February 1989, discharge measurements in Buskin River and its tributaries indicate that three reaches of Buskin River below Buskin Lake lost water to the ground-water system, whereas two reaches gained water; the net gain in streamflow attributed to ground-water inflow at a location near the mouth was estimated to be 2.2 cubic feet per second. The 100-year peak flow for Buskin River near its mouth was estimated to be 4,460 cubic feet per second. Average discharge was estimated to be 125 cubic feet per second and the 7-day 10-year low flow was estimated to be 5.8 cubic feet per second.

  1. Variations in land use and nonpoint-source contamination on the Fort Berthold Indian Reservation, west-central North Dakota, 1990-93

    USGS Publications Warehouse

    Macek-Rowland, Kathleen; Lent, Robert M.

    1996-01-01

    The effects of land-use activities on the water quality of five streams on the Fort Berthold Indian Reservation were evaluated. The five basinsevaluated were East Fork Shell Creek, Deepwater Creek, Bear Den Creek, Moccasin Creek, and Squaw Creek. East Fork Shell Creek and DeepwaterCreek Basins are located east of Lake Sakakawea and Bear Den Creek, Moccasin Creek, and Squaw Creek Basins are located west of the lake. Land-use data for the five selected basins on and adjacent to the Fort Berthold Indian Reservation were obtained for 1990-92. Discharge measurements were made and water-quality samples were collected at stations and sites on each of the five streams during October 1991 through September 1993. Analysis of land-use data indicated that prairie was the largest land-use category in the study area. More prairie acreage was found in the basins located west of Lake Sakakawea than in the basins located east of the lake. Wheat was the predominant crop in the study area. More wheat acreage was found in the basins located east of Lake Sakakawea than in the basins located west of the lake. Discharge data for the five selected streams indicated that all of thestreams were ephemeral and had many days of no flow during the study period. High flows were usually the result of spring runoff or intense storms over the basins. East Fork Shell Creek and Deepwater Creek with larger basins and flatter stream slopes had high flows characterized by rapidly rising flows and gradually receding flows. In contrast, Bear DenCreek, Moccasin Creek, and Squaw Creek with smaller basins and steeper stream slopes had high flows characterized by rapidly rising flows and receding flows of shorter duration. Analysis of water-quality samples indicated concentrations of nitrogen, phosphorus, and total organic carbon varied throughout the study area. Nitrogen concentrations were larger in the streams located east of LakeSakakawea than in the streams located west of the lake. The largest nitrogen concentrations in all of the streams occurred during the nongrowing periods.Phosphorus (orthophosphate and total phosphorus)concentrations were larger in the streams located east of Lake Sakakawea than in the streams located west of the lake. The larger orthophosphateconcentrations in the eastern streams may be indicative of insecticide application in the eastern streams' basins. Total organic carbon concentrations were fairly consistent in all five streams. Water-quality samples were analyzed for the pesticides atrazine, carbofuran, cyanazine, and 2,4-D by using immunoassay testing. Pesticide concentrations above the minimum reporting levels were more prevalent insamples from streams located east of Lake Sakakawea than in the streams located west of the lake. The eastern streams drain areas where herbicides were applied to crops. Fecal-bacteria concentrations were larger in the streams located west of Lake Sakakawea, where prairie is more dominant, than in the streams located east of the lake. The larger concentrations and loads were associated with intense storm events and the presence of livestock.

  2. Calibration of HYPULSE for hypervelocity air flows corresponding to flight Mach numbers 13.5, 15, and 17

    NASA Technical Reports Server (NTRS)

    Calleja, John; Tamagno, Jose

    1993-01-01

    A series of air calibration tests were performed in GASL's HYPULSE facility in order to more accurately determine test section flow conditions for flows simulating total enthalpies in the Mach 13 to 17 range. Present calibration data supplements previous data and includes direct measurement of test section pitot and static pressure, acceleration tube wall pressure and heat transfer, and primary and secondary incident shock velocities. Useful test core diameters along with the corresponding free-stream conditions and usable testing times were determined. For the M13.5 condition, in-stream static pressure surveys showed the temporal and spacial uniformity of this quantity across the useful test core. In addition, finite fringe interferograms taken of the free-stream flow at the test section did not indicate the presence of any 'strong' wave system for any of the conditions investigated.

  3. The flow field of an underexpanded H2 jet coaxially injected into a hot free or ducted supersonic jet of air or nitrogen

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1977-01-01

    Experimental data obtained in an investigation of the mixing of an underexpanded hydrogen jet in a supersonic flow both with and without combustion are presented. Tests were conducted in a Mach 2 test stream with both air and nitrogen as test media. Total temperature of the test stream was 2170 K, and static exit pressure was about one atmosphere. The static pressure at the exit of the hydrogen injector's Mach 2 nozzle was about two atmospheres. Primary measurements included shadowgraphs and pitot pressure surveys of the flow field. Pitot surveys and wall static pressures were measured for the case where the entire flow was shrouded. The results are compared to similar experimental data and theoretical predictions for the matched pressure case.

  4. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight comprehensive data report. Volume 2: Laser velocimeter data, static pressures and shadowgraph photos

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.

    1984-01-01

    Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Mean velocity and turbulence velocity measurements of 25 selected flow conditions were performed employing a laser Doppler velocimeter. Static pressure measurements were made to define the actual convergence-divergence condition. Test point definition, tabulation of aerodynamic test conditions, velocity histograms, and shadowgraph photographs are presented. Flow visualization through shadowgraph photography can contribute to the development of an analytical prediction model for shock noise from coannular plug nozzles.

  5. Iron charge states observed in the solar wind

    NASA Technical Reports Server (NTRS)

    Ipavich, F. M.; Galvin, A. B.; Gloeckler, G.; Hovestadt, D.; Klecker, B.; Scholer, M.

    1983-01-01

    Solar wind measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-3 are reported. The low energy section of approx the ULECA sensor selects particles by their energy per charge (over the range 3.6 keV/Q to 30 keV/Q) and simultaneously measures their total energy with two low-noise solid state detectors. Solar wind Fe charge state measurements from three time periods of high speed solar wind occurring during a post-shock flow and a coronal hole-associated high speed stream are presented. Analysis of the post-shock flow solar wind indicates the charge state distributions for Fe were peaked at approx +16, indicative of an unusually high coronal temperature (3,000,000 K). In contrast, the Fe charge state distribution observed in a coronal hole-associated high speed stream peaks at approx -9, indicating a much lower coronal temperature (1,400,000 K). This constitutes the first reported measurements of iron charge states in a coronal hole-associated high speed stream.

  6. Global characteristics of stream flow seasonality and variability

    USGS Publications Warehouse

    Dettinger, M.D.; Diaz, Henry F.

    2000-01-01

    Monthly stream flow series from 1345 sites around the world are used to characterize geographic differences in the seasonality and year-to-year variability of stream flow. Stream flow seasonality varies regionally, depending on the timing of maximum precipitation, evapotranspiration, and contributions from snow and ice. Lags between peaks of precipitation and stream flow vary smoothly from long delays in high-latitude and mountainous regions to short delays in the warmest sectors. Stream flow is most variable from year to year in dry regions of the southwest United States and Mexico, the Sahel, and southern continents, and it varies more (relatively) than precipitation in the same regions. Tropical rivers have the steadiest flows. El Nin??o variations are correlated with stream flow in many parts of the Americas, Europe, and Australia. Many stream flow series from North America, Europe, and the Tropics reflect North Pacific climate, whereas series from the eastern United States, Europe, and tropical South America and Africa reflect North Atlantic climate variations.

  7. Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development.

    PubMed

    Heilweil, Victor M; Grieve, Paul L; Hynek, Scott A; Brantley, Susan L; Solomon, D Kip; Risser, Dennis W

    2015-04-07

    The environmental impacts of shale-gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply wells, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shale-gas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 μg L(-1) were observed, with four streams ≥ 5 μg L(-1). Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess groundwater contamination from shale-gas development.

  8. Method to support Total Maximum Daily Load development using hydrologic alteration as a surrogate to address aquatic life impairment in New Jersey streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Riskin, Melissa L.; Reilly, Pamela A.; Colarullo, Susan J.

    2013-01-01

    More than 300 ambient monitoring sites in New Jersey have been identified by the New Jersey Department of Environmental Protection (NJDEP) in its integrated water-quality monitoring and assessment report (that is, the 305(b) Report on general water quality and 303(d) List of waters that do not support their designated uses) as being impaired with respect to aquatic life; however, no unambiguous stressors (for example, nutrients or bacteria) have been identified. Because of the indeterminate nature of the broad range of possible impairments, surrogate measures that more holistically encapsulate the full suite of potential environmental stressors need to be developed. Streamflow alteration resulting from anthropogenic changes in the landscape is one such surrogate. For example, increases in impervious surface cover (ISC) commonly cause increases in surface runoff, which can result in “flashy” hydrology and other changes in the stream corridor that are associated with streamflow alteration. The NJDEP has indicated that methodologies to support a hydrologically based Total Maximum Daily Load (hydro-TMDL) need to be developed in order to identify hydrologic targets that represent a minimal percent deviation from a baseline condition (“minimally altered”) as a surrogate measure to meet criteria in support of designated uses. The primary objective of this study was to develop an applicable hydro-TMDL approach to address aquatic-life impairments associated with hydrologic alteration for New Jersey streams. The U.S. Geological Survey, in cooperation with the NJDEP, identified 51 non- to moderately impaired gaged streamflow sites in the Raritan River Basin for evaluation. Quantile regression (QR) analysis was used to compare flow and precipitation records and identify baseline hydrographs at 37 of these sites. At sites without an appropriately long period of record (POR) or where a baseline hydrograph could not be identified with QR, a rainfall-runoff model was used to develop simulated baseline hydrographs. The hydro-TMDL approach provided an opportunity to evaluate proportional differences in flow attributes between observed and baseline hydrographs and to develop complementary flow-ecology response relations at a subset of Raritan River Basin sites where available flow and ecological information overlapped. The New Jersey Stream Classification Tool (NJSCT) was used to determine the stream class of all 51 study sites by using either an observed or a simulated baseline hydrograph. Two New Jersey stream classes (A and C) were evaluated to help characterize the unique hydrology of the Raritan River Basin. In general, class C streams (1.99–40.7 square miles) had smaller drainage areas than class A streams (0.7–785 square miles). Many of the non-impaired and moderately impaired class A and C streams in the Raritan River Basin were found to have significant hydrologic alteration as indicated by numerous flow values that fell outside the established 25th-to-75th- and the more conservative 40th-to-60th-percentile boundaries. However, percent deviations for the class C streams (defined as moderately stable streams with moderately high base-flow contributions) were, in general, much larger than those for the class A streams (defined as semiflashy streams characterized by moderately low base flow). The greater deviations for class C streams in the hydro-TMDL assessments likely resulted from comparisons that were based solely on simulated baseline hydrographs, which were developed without considering any anthropogenic influences in the basin. In contrast, comparisons for many of the class A streams were made by using an observed baseline, which already includes an implicit level of ISC and other human influences on the landscape. By using the hydro-TMDL approach, numerous flow deviations were identified that were indicative of streams that are highly regulated by reservoirs or dams, streams that are affected by increasing amounts of surface runoff resulting from ISC, and streams that are affected by water abstraction (that is, groundwater or surface-water withdrawals used for agricultural and human supply). Eight of the reservoir- and (or) dam-affected sites showed flow deviations that are indicative of flow-managed systems. For example, indices that account for the timing and magnitude of high and low flows were often found to fall outside the 25th-to-75th-percentile range. In general, at regulated class C streams, annual summer low flows are arriving later and tend to be lower, and high flows are arriving earlier with higher magnitudes of longer duration. At class A streams, high and low flows are arriving later with an overall increase in discharge with respect to the prereservoir baseline conditions. The drainage basins of eight of the study sites had large values of ISC (>10 percent), most likely as a result of expanding urban development. In general, the magnitude and frequency of high flows at class A and C sites with high ISC are increasing and were commonly found to fall outside the 25th-to-75th-percentile range. Additionally, magnitudes of low flows are becoming lower and, although the timing of high flows was highly variable, low-flow events appeared to be arriving earlier than would be expected under normal low-flow conditions. Three of the study sites appeared to be affected by hydrologic changes associated with water abstraction. At these sites, the timing of flows appeared to be altered. For example, low flows tended to arrive earlier and high flows arrived later at two of the three sites. Additionally, the magnitude and duration of low flows were commonly less than the 25th-percentile value and the duration of high flows appeared to increase. A reduced set of hydrologic and ecological variables was used to develop univariate and multivariate flow-ecology response models for the aquatic-invertebrate assemblage. Many hydrologic variables accounting for the duration, magnitude, frequency, and timing of flows were significantly correlated with ecological response. Multiple linear regression (MLR) models were developed to provide a more holistic evaluation of the combined effects of hydrologic alteration and to identify models with two or three hydrologic variables that account for a significant proportion of the variability in invertebrate-assemblage condition as represented by assemblage metric scores. MLR models, derived on the basis of hydrologic attributes, accounted for 35 to 75 percent of the variability in assemblage condition. The hydro-TMDL method developed herein for non- to moderately impaired Raritan River Basin streams utilizes a “surrogate” approach in place of the traditional “pollutant of concern” approach commonly used for TMDL development. Managers can use the results obtained by using the hydro-TMDL method to offset the effects of impervious-surface runoff and altered streamflow and to implement measures designed to achieve the necessary load reductions for the “pollutant of concern” (that is, percentage deviations of stream-class-specific flow-index values outside the established 25th-to-75th-percentile range). In this case, such deviations could represent all or a subset of the altered flow indices that prevent the stream from meeting designated aquatic-life criteria. This hydro-TMDL uses a reference, or attainment stream approach for developing the TMDL endpoint. That is, either observed or simulated baseline hydrographs were selected as appropriate reference conditions on the basis of results of QR analysis and watershed modeling procedures, respectively. For any stream in the Raritan River Basin evaluated as part of this study, the hydro-TMDL can be expressed as the greatest amount of deviation in flow a stream can exhibit without violating the stream’s designated aquatic-life criteria. Use of this surrogate approach is appropriate because flows that fall outside the established percentile ranges are ultimately a function of many anthropogenic modifications of the landscape, including the amount of stormwater runoff generated from impervious surfaces within a given basin, the presence of manmade structures designed to retain or divert water, the magnitude of ground- and surface-water abstraction, and the presence of water-supply processes implemented to support human needs. In addition, the stream-type-specific flow indices used as the basis for the hydro-TMDL approach are useful for representing the hydrologic conditions of class A and C streams/basins because they incorporate the full spectrum of flow conditions (very low to very high) that occur in the stream system over a long period of time, as well as those flow properties that change as a result of seasonal variation. Ultimately, an estimate of the maximum percentage flow reduction that could be allowed will be needed to address the aquatic-life impairments in many of the study streams in the Raritan River Basin and will be necessary for identifying appropriate target flow conditions for hydro-TMDL implementation. As described in this report, a target flow value equal to the 25th- or 75th-percentile flow rate could be selected as the point useful for setting specific hydrologic targets. This selection, however, is a management decision that could vary depending on the designated use of the stream or other regulatory factors (for example, water-supply protection, trout production, antidegradation policies, or special protection designations). In New Jersey streams where no unambiguous stressors can be identified, State monitoring agencies, such as the NJDEP, could choose to require the implementation of a flow-based TMDL that not only supports designated uses, but meets the regulatory requirements under the Clean Water Act, and represents a balance between water supply intended to meet human needs and the conservation of ecosystem integrity.

  9. Data on the solute concentration within the subsurface flows of Little Lost Man Creek in response to a transport experiment, Redwood National Park, northwest California

    USGS Publications Warehouse

    Zellweger, Gary W.; Kennedy, V.C.; Bencala, K.E.; Avanzino, R.J.; Jackman, A.P.; Triska, F.J.

    1986-01-01

    A solute transport experiment was conducted on a 327-m reach of Little Lost Man Creek, a small stream in Humboldt County, California. Solutes were injected for 20 days. Chloride was used as a conservative tracer; lithium, potassium, and strontium were used as reactive tracers. In addition, nitrate and phosphate were added as biological reactants. Eighteen shallow wells were dug along the length of the study reach, 1-10 m laterally from the edge of the stream. The wells and sites in the stream were monitored for the injected solutes during and after the injection. Solute concentrations in the wells and stream are indicative of transport properties of stream and subsurface channel flow. This report presents the results of the analyses of the well samples and chemical data relevant to the interpretation of hydrological and chemical interaction between the stream and adjacent channel subsurface flows in the streambed. Calculations of the percentage of streamwater in the wellwater were made from conservative tracer measurements. The composition of wellwater ranged from 47% to 100% streamwater with most values above 90%. The time for water to travel from the beginning of the study reach to the wells was approximately three times as great as the travel time in the stream at the same distance down the reach. The three conclusions that can be drawn are (1) water in the stream exchanges extensively with water in the rest of the channel; (2) the interstitial water in the channel gravels achieves almost the same composition as the stream; and (3) under low flow conditions the stream gravels contain a significant portion of the stream volume. Plots of normalized chloride, lithium, and strontium concentrations at three stream sites are included. (Author 's abstract)

  10. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    DOE PAGES

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; ...

    2015-02-23

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes ormore » complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s -1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s −1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 s -1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Furthermore, measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.« less

  11. Quantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Churchfield, M. J.; Lee, S.; Clifton, A.

    2015-02-01

    Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this LOS velocity in multiple radial directions in order to estimate horizontal and vertical winds. The method relies on the assumption of homogeneous flow across the region sampled by the beams. Using such a system in inhomogeneous flow, such as wind turbine wakes or complex terrain, will result in errors. To quantify the errors expected from such violation of the assumption of horizontal homogeneity, we simulate inhomogeneous flow in the atmospheric boundary layer, notably stably stratified flow past a wind turbine, with a mean wind speed of 6.5 m s-1 at the turbine hub-height of 80 m. This slightly stable case results in 15° of wind direction change across the turbine rotor disk. The resulting flow field is sampled in the same fashion that a lidar samples the atmosphere with the DBS approach, including the lidar range weighting function, enabling quantification of the error in the DBS observations. The observations from the instruments located upwind have small errors, which are ameliorated with time averaging. However, the downwind observations, particularly within the first two rotor diameters downwind from the wind turbine, suffer from errors due to the heterogeneity of the wind turbine wake. Errors in the stream-wise component of the flow approach 30% of the hub-height inflow wind speed close to the rotor disk. Errors in the cross-stream and vertical velocity components are also significant: cross-stream component errors are on the order of 15% of the hub-height inflow wind speed (1.0 m s-1) and errors in the vertical velocity measurement exceed the actual vertical velocity. By three rotor diameters downwind, DBS-based assessments of wake wind speed deficits based on the stream-wise velocity can be relied on even within the near wake within 1.0 m s-1 (or 15% of the hub-height inflow wind speed), and the cross-stream velocity error is reduced to 8% while vertical velocity estimates are compromised. Measurements of inhomogeneous flow such as wind turbine wakes are susceptible to these errors, and interpretations of field observations should account for this uncertainty.

  12. Comparison of Three Model Concepts for Streaming Potential in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huisman, J. A.; Satenahalli, P.; Zimmermann, E.; Vereecken, H.

    2017-12-01

    Streaming potential is the electric potential generated by fluid flow in a charged porous medium. Although streaming potential in saturated conditions is well understood, there still is considerable debate about the adequate modelling of streaming potential signals in unsaturated soil because different concepts are available to estimate the effective excess charge in unsaturated conditions. In particular, some studies have relied on the volumetric excess charge, whereas others proposed to use the flux-averaged excess charge derived from the water retention or relative permeability function. The aim of this study is to compare measured and modelled streaming potential signals for two different flow experiments with sand. The first experiment is a primary gravity drainage of a long column equipped with non-polarizing electrodes and tensiometers, as presented in several previous studies. Expected differences between the three concepts for the effective excess charge are only moderate for this set-up. The second experiment is a primary drainage of a short soil column equipped with non-polarizing electrodes and tensiometers using applied pressure, where differences between the three concepts are expected to be larger. A comparison of the experimental results with a coupled model of streaming potential for 1D flow problems will provide insights in the ability of the three model concepts for effective excess charge to describe observed streaming potentials.

  13. Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin

    USGS Publications Warehouse

    Graczyk, David J.; Robertson, Dale M.; Rose, William J.; Steur, Jeffrey J.

    2000-01-01

    In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream ob- servers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality, a combination of manual and automated sampling methods have commonly been used manual methods when flow is relatively stable and automated methods when flow is rapidly changing. Auto- mated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to be an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1). also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about $25- $50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.

  14. Regional ground-water discharge to large streams in the upper coastal plain of South Carolina and parts of North Carolina and Georgia

    USGS Publications Warehouse

    Aucott, W.R.; Meadows, R.S.; Patterson, G.G.

    1987-01-01

    Base flow was computed to estimate discharge from regional aquifers for six large streams in the upper Coastal Plain of South Carolina and parts of North Carolina and Georgia. Aquifers that sustain the base flow of both large and small streams are stratified into shallow and deep flow systems. Base-flow during dry conditions on main stems of large streams was assumed to be the discharge from the deep groundwater flow system. Six streams were analyzed: the Savannah, South and North Fork Edisto, Lynches, Pee Dee, and the Luber Rivers. Stream reaches in the Upper Coastal Plain were studied because of the relatively large aquifer discharge in these areas in comparison to the lower Coastal Plain. Estimates of discharge from the deep groundwater flow system to the six large streams averaged 1.8 cu ft/sec/mi of stream and 0.11 cu ft/sec/sq mi of surface drainage area. The estimates were made by subtracting all tributary inflows from the discharge gain between two gaging stations on a large stream during an extreme low-flow period. These estimates pertain only to flow in the deep groundwater flow system. Shallow flow systems and total base flow are > flow in the deep system. (USGS)

  15. Incorporating seepage losses into the unsteady streamflow equations for simulating intermittent flow along mountain front streams

    USGS Publications Warehouse

    Niswonger, R.G.; Prudic, David E.; Pohll, G.; Constantz, J.

    2005-01-01

    Seepage losses along numerous mountain front streams that discharge intermittently onto alluvial fans and piedmont alluvial plains are an important source of groundwater in the Basin and Range Province of the Western United States. Determining the distribution of seepage loss along mountain front streams is important when assessing groundwater resources of the region. Seepage loss along a mountain front stream in northern Nevada was evaluated using a one-dimensional unsteady streamflow model. Seepage loss was incorporated into the spatial derivatives of the streamflow equations. Because seepage loss from streams is dependent on stream depth, wetted perimeter, and streambed properties, a two-dimensional variably saturated flow model was used to develop a series of relations between seepage loss and stream depth for each reach. This method works when streams are separated from groundwater by variably saturated sediment. Two periods of intermittent flow were simulated to evaluate the modeling approach. The model reproduced measured flow and seepage losses along the channel. Seepage loss in the spring of 2000 was limited to the upper reaches on the alluvial plain and totaled 196,000 m3, whereas 64% of the seepage loss in the spring of 2004 occurred at the base of the alluvial plain and totaled 273,000 m3. A greater seepage loss at the base of the piedmont alluvial plain is attributed to increased streambed hydraulic conductivity caused by less armoring of the channel. The modeling approach provides a method for quantifying and distributing seepage loss along mountain front streams that cross alluvial fans or piedmont alluvial plains. Copyright 2005 by the American Geophysical Union.

  16. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    PubMed

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Hydrologic response of streams restored with check dams in the Chiricahua Mountains, Arizona

    USGS Publications Warehouse

    Norman, Laura M.; Brinkerhoff, Fletcher C.; Gwilliam, Evan; Guertin, D. Phillip; Callegary, James B.; Goodrich, David C.; Nagler, Pamela L.; Gray, Floyd

    2016-01-01

    In this study, hydrological processes are evaluated to determine impacts of stream restoration in the West Turkey Creek, Chiricahua Mountains, southeast Arizona, during a summer-monsoon season (June–October of 2013). A paired-watershed approach was used to analyze the effectiveness of check dams to mitigate high flows and impact long-term maintenance of hydrologic function. One watershed had been extensively altered by the installation of numerous small check dams over the past 30 years, and the other was untreated (control). We modified and installed a new stream-gauging mechanism developed for remote areas, to compare the water balance and calculate rainfall–runoff ratios. Results show that even 30 years after installation, most of the check dams were still functional. The watershed treated with check dams has a lower runoff response to precipitation compared with the untreated, most notably in measurements of peak flow. Concerns that downstream flows would be reduced in the treated watershed, due to storage of water behind upstream check dams, were not realized; instead, flow volumes were actually higher overall in the treated stream, even though peak flows were dampened. We surmise that check dams are a useful management tool for reducing flow velocities associated with erosion and degradation and posit they can increase baseflow in aridlands.

  18. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of removal of riparian vegetation. Because debris flow frequency increases following road construction and timber harvest, the long-term biological effects of debris flows on stream ecosystems, including anadromous fish populations, needs to be considered in forest management decisions.

  19. The transference of heat from a hot plate to an air stream

    NASA Technical Reports Server (NTRS)

    Elias, Franz

    1931-01-01

    The object of the present study was to define experimentally the field of temperature and velocity in a heated flat plate when exposed to an air stream whose direction is parallel to it, then calculate therefrom the heat transference and the friction past the flat plate, and lastly, compare the test data with the mathematical theory. To ensure comparable results, we were to actually obtain or else approximate: a) two-dimensional flow; b) constant plate temperature in the direction of the stream. To approximate the flow in two dimensions, we chose a relatively wide plate and measured the velocity and temperature in the median plane.

  20. Electrokinetic instability micromixing.

    PubMed

    Oddy, M H; Santiago, J G; Mikkelsen, J C

    2001-12-15

    We have developed an electrokinetic process to rapidly stir micro- and nanoliter volume solutions for microfluidic bioanalytical applications. We rapidly stir microflow streams by initiating a flow instability, which we have observed in sinusoidally oscillating, electroosmotic channel flows. As the effect occurs within an oscillating electroosmotic flow, we refer to it here as an electrokinetic instability (EKI). The rapid stretching and folding of material lines associated with this instability can be used to stir fluid streams with Reynolds numbers of order unity, based on channel depth and rms electroosmotic velocity. This paper presents a preliminary description of the EKI and the design and fabrication of two micromixing devices capable of rapidly stirring two fluid streams using this flow phenomenon. A high-resolution CCD camera is used to record the stirring and diffusion of fluorescein from an initially unmixed configuration. Integration of fluorescence intensity over measurement volumes (voxels) provides a measure of the degree to which two streams are mixed to within the length scales of the voxels. Ensemble-averaged probability density functions and power spectra of the instantaneous spatial intensity profiles are used to quantify the mixing processes. Two-dimensional spectral bandwidths of the mixing images are initially anisotropic for the unmixed configuration, broaden as the stirring associated with the EKI rapidly stretches and folds material lines (adding high spatial frequencies to the concentration field), and then narrow to a relatively isotropic spectrum at the well-mixed conditions.

  1. Stream Response to an Extreme Defoliation Event

    NASA Astrophysics Data System (ADS)

    Gold, A.; Loffredo, J.; Addy, K.; Bernhardt, E. S.; Berdanier, A. B.; Schroth, A. W.; Inamdar, S. P.; Bowden, W. B.

    2017-12-01

    Extreme climatic events are known to profoundly impact stream flow and stream fluxes. These events can also exert controls on insect outbreaks, which may create marked changes in stream characteristics. The invasive Gypsy Moth (Lymantria dispar dispar) experiences episodic infestations based on extreme climatic conditions within the northeastern U.S. In most years, gypsy moth populations are kept in check by diseases. In 2016 - after successive years of unusually warm, dry spring and summer weather -gypsy moth caterpillars defoliated over half of Rhode Island's 160,000 forested ha. No defoliation of this magnitude had occurred for more than 30 years. We examined one RI headwater stream's response to the defoliation event in 2016 compared with comparable data in 2014 and 2015. Stream temperature and flow was gauged continuously by USGS and dissolved oxygen (DO) was measured with a YSI EXO2 sonde every 30 minutes during a series of deployments in the spring, summer and fall from 2014-2016. We used the single station, open channel method to estimate stream metabolism metrics. We also assessed local climate and stream temperature data from 2009-2016. We observed changes in stream responses during the defoliation event that suggest changes in ET, solar radiation and heat flux. Although the summer of 2016 had more drought stress (PDSI) than previous years, stream flow occurred throughout the summer, in contrast to several years with lower drought stress when stream flow ceased. Air temperature in 2016 was similar to prior years, but stream temperature was substantially higher than the prior seven years, likely due to the loss of canopy shading. DO declined dramatically in 2016 compared to prior years - more than the rising stream temperatures would indicate. Gross Primary Productivity was significantly higher during the year of the defoliation, indicating more total fixation of inorganic carbon from photo-autotrophs. In 2016, Ecosystem Respiration was also higher and Net Ecosystem Productivity indicated it is a heterotrophic stream. Extreme events and fluctuations in climate patterns in the region are expected to increase suggesting that further work on the effects of insect defoliation on forested streams is warranted.

  2. Determination of the Particle Content of Flowing Gases. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Rouillard, E. A.

    The bibliography is intended to provide a comprehensive source of information on the sampling and monitoring of particulates in flowing gas streams. It also includes methods of measurement which were initially applied to the measurement of dust in still atmospheres, but which either have been or may be used in the future for measurements in…

  3. Applications of turbidity monitoring to forest management in California.

    PubMed

    Harris, Richard R; Sullivan, Kathleen; Cafferata, Peter H; Munn, John R; Faucher, Kevin M

    2007-09-01

    Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring.

  4. Natural and Diverted Low-Flow Duration Discharges for Streams Affected by the Waiahole Ditch System, Windward O`ahu, Hawai`i

    USGS Publications Warehouse

    Yeung, Chiu W.; Fontaine, Richard A.

    2007-01-01

    For nearly a century, the Waiahole Ditch System has diverted an average of approximately 27 million gallons per day of water from the wet, northeastern part of windward O`ahu, Hawai`i, to the dry, central part of the island to meet irrigation needs. The system intercepts large amounts of dike-impounded ground water at high altitudes (above approximately 700 to 800 ft) that previously discharged to Waiahole (and its tributaries Waianu and Uwao), Waikane, and Kahana Streams through seeps and springs. Diversion of this ground water has significantly diminished low flows in these streams. Estimates of natural and diverted flows are needed by water managers for (1) setting permanent instream flow standards to protect, enhance, and reestablish beneficial instream uses of water in the diverted streams and (2) allocating the diverted water for instream and offstream uses. Data collected before construction of the Waiahole Ditch System reflect natural (undiverted) flow conditions. Natural low-flow duration discharges for percentiles ranging from 50 to 99 percent were estimated for four sites at altitudes of 75 to 320 feet in Waiahole Stream (and its tributaries Waianu and Uwao Streams), for six sites at altitudes of 10 to 220 feet in Waikane Stream, and for three sites at altitudes of 30 to 80 feet in Kahana Stream. Among the available low-flow estimates along each affected stream, the highest natural Q50 (median) flows on Waiahole (altitude 250 ft), Waianu (altitude 75 ft), Waikane (altitude 75 ft), and Kahana Streams (altitude 30 ft) are 13, 7.0, 5.5, and 22 million gallons per day, respectively. Q50 (median) is just one of five duration percentiles presented in this report to quantify low-flow discharges. All flow-duration estimates were adjusted to a common period of 1960-2004 (called the base period). Natural flow-duration estimates compared favorably with limited pre-ditch streamflow data available for Waiahole and Kahana Streams. Data collected since construction of the ditch system reflect diverted flow conditions, which can be further divided into pre-release and post-release periods - several flow releases to Waiahole, Waianu, and Waikane Streams were initiated between December 1994 and October 2002. Comparison of pre-release to natural flows indicate that the effects of the Waiahole Ditch System diversion are consistently greater at lower low-flow conditions (Q99 to Q90) than at higher low-flow conditions (Q75 to Q50). Results also indicate that the effects of the diversion become less significant as the streams gain additional ground water at lower altitudes. For Waiahole Stream, pre-release flows range from 25 to 28 percent of natural flows at an altitude of 250 feet and from 19 to 20 percent at an altitude of 320 feet. For Waikane Stream, pre-release flows range from 30 to 46 percent of natural flows at an altitude of 10 feet and from 7 to 19 percent at an altitude of 220 feet. For Kahana Stream, pre-release flows range from 65 to 72 percent of natural flows at an altitude of 30 feet and from 58 to 71 percent at an altitude of 80 feet. Estimates of post-release flows were compared with estimates of natural flows to assess how closely current streamflows are to natural conditions. For Waianu Stream, post-release flows at an altitude of 75 feet are 41 to 46 percent lower than corresponding natural flows. For Waikane Stream, post-release flows at an altitude of 75 feet are within 12 percent of the corresponding natural flows. Comparisons of pre-release and post-release flows for Waikane Stream at altitudes of 10 to 220 feet were used to assess downstream changes in flow along the stream reach where flow releases were made. For a particular stream altitude, proportions of pre-release to post-release flows associated with median flows are consistently greater than proportions associated with lower low flows because the relative effect of the flow release is smaller at higher low flows. Similarly, for a particular f

  5. Using the PDSI to Estimate Summer Stream Discharge in the Greater Yellowstone Ecosystem: Implications for 20th Century Riparian Habitat Variability

    NASA Astrophysics Data System (ADS)

    Persico, L.; Meyer, G. A.

    2013-12-01

    Small streams at lower elevations in the Greater Yellowstone Ecosystem (GYE) create riparian habitat in an otherwise dry environment. Riparian area can be expanded by beaver damming, which increases channel wetted area and local water tables, and allows fine-grained organic-rich sediment to accumulate. However, increases can be countered by severe drought. The loss of riparian area is potentially greatest in small basins dependent on snowpack for base flow, where prolonged severe drought may reduce base flow to zero. Discharge records are often lacking for basins < 20 km^2, making it difficult to directly examine how climate has impacted flow. The Palmer Drought Severity Index (PDSI) is a useful proxy for large-scale variations in available moisture. PDSI values for climate divisions are estimated from spatially weighted weather station measurements of temperature and precipitation. We use divisional PDSI values to estimate discharge on GYE small streams since 1900. USGS stream-gauge sites were regressed with the corresponding PDSI for each climate division. We also use a regional (2.5° by 2.5°) reconstruction of the PDSI based on 30 tree ring chronologies (Cook et al., 2004) to estimate discharge during the most severe two and ten year droughts (AD 1150-1151 and 805-796, respectively) during the Medieval Climatic Anomaly (MCA). The MCA is a period of high climate variability and widespread drought in the GYE. Significant correlations between stream discharge and the PDSI occur during the late summer and early fall and the strongest correlation between discharge and the PDSI occurs for the 3-month PDSI average centered on August. Stream-gauge records with bootstrapped correlation values greater than 0.65 were chosen for regression analyses. To estimate stream flows for ungauged stream reaches, stepwise multiple regression analyses were performed using measured stream flows and independent basin characteristics. Basin area and mean elevation are significant predictors of discharge (α < 0.05). The 1930s Dust Bowl drought was one of the most severe droughts in the past 300 years; from 1934-1935, average August discharge was reduced by 25-40% with respect to the anomalously wet early 20th century pluvial. Discharge estimates using reconstructed PDSI values for the 2- and 10-year MCA droughts (PDSI = -6 and -5, respectively) indicate that 60% of stream reaches where beaver were active in the late Holocene became ephemeral in these droughts. This analysis is supported by observations during the extreme drought of the 2000s, when ephemeral flow occurred along streams with known historical beaver activity in northern Yellowstone. Model predictions indicate that by 2030-2039 the GYE will endure persistent severe drought (mean annual PDSI = -4 to -6) (Dai, 2011), thus riparian area is likely to decrease in the coming decades. The early 20th century has been suggested to be an ideal reference for riparian habitat restoration despite anomalously wet conditions unlike current or likely future climate. Future efforts to restore riparian habitat by reducing elk browsing and increasing beaver damming will be hampered by reduced flows on small streams.

  6. Effects of land use and sample location on nitrate-stream flow hysteresis descriptors during storm events

    USGS Publications Warehouse

    Feinson, Lawrence S.; Gibs, Jacob; Imbrigiotta, Thomas E.; Garrett, Jessica D.

    2016-01-01

    The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet-visible spectrophotometric sensors at water-quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in-stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2-stream discharge (N-Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.

  7. An experimental study of reactive turbulent mixing

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.; Marek, C. J.; Strehlow, R. A.

    1977-01-01

    An experimental study of two coaxial gas streams, which react very rapidly, was performed to investigate the mixing characteristics of turbulent flow fields. The center stream consisted of a CO-N2 mixture and the outer annular stream consisted of air vitiated by H2 combustion. The streams were at equal velocity (50 m/sec) and temperature (1280 K). Turbulence measurements were obtained using hot film anemometry. A sampling probe was used to obtain time averaged gas compositions. Six different turbulence generators were placed in the annular passage to alter the flow field mixing characteristics. The turbulence generators affected the bulk mixing of the streams and the extent of CO conversion to different degrees. The effects can be related to the average eddy size (integral scale) and the bulk mixing. Higher extents of conversion of CO to CO2 were found be increasing the bulk mixing and decreasing the average eddy size.

  8. Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2012-01-01

    Relating watershed structure to streamflow generation is a primary focus of hydrology. However, comparisons of longitudinal variability in stream discharge with adjacent valley structure have been rare, resulting in poor understanding of the distribution of the hydrologic mechanisms that cause variability in streamflow generation along valleys. This study explores detailed surveys of stream base flow across a gauged, 23 km2 mountain watershed. Research objectives were (1) to relate spatial variability in base flow to fundamental elements of watershed structure, primarily topographic contributing area, and (2) to assess temporal changes in the spatial patterns of those relationships during a seasonal base flow recession. We analyzed spatiotemporal variability in base flow using (1) summer hydrographs at the study watershed outlet and 5 subwatershed outlets and (2) longitudinal series of discharge measurements every ~100 m along the streams of the 3 largest subwatersheds (1200 to 2600 m in valley length), repeated 2 to 3 times during base flow recession. Reaches within valley segments of 300 to 1200 m in length tended to demonstrate similar streamflow generation characteristics. Locations of transitions between these segments were consistent throughout the recession, and tended to be collocated with abrupt longitudinal transitions in valley slope or hillslope-riparian characteristics. Both within and among subwatersheds, correlation between the spatial distributions of streamflow and topographic contributing area decreased during the recession, suggesting a general decrease in the influence of topography on stream base flow contributions. As topographic controls on base flow evidently decreased, multiple aspects of subsurface structure were likely to have gained influence.

  9. Groundwater/surface-water interaction in central Sevier County, Tennessee, October 2015–2016

    USGS Publications Warehouse

    Carmichael, John K.; Johnson, Gregory C.

    2017-12-14

    The U.S. Geological Survey evaluated the interaction of groundwater and surface water in the central part of Sevier County, Tennessee, from October 2015 through October 2016. Stream base flow was surveyed in December 2015 and in July and October 2016 to evaluate losing and gaining stream reaches along three streams in the area. During a July 2016 synoptic survey, groundwater levels were measured in wells screened in the Cambrian-Ordovician aquifer to define the potentiometric surface in the area. The middle and lower reaches of the Little Pigeon River and the middle reaches of Middle Creek and the West Prong Little Pigeon River were gaining streams at base-flow conditions. The lower segments of the West Prong Little Pigeon River and Middle Creek were losing reaches under base-flow conditions, with substantial flow losses in the West Prong Little Pigeon River and complete subsurface diversion of flow in Middle Creek through a series of sinkholes that developed in the streambed and adjacent flood plain beginning in 2010. The potentiometric surface of the Cambrian-Ordovician aquifer showed depressed water levels in the area where loss of flow occurred in the lower reaches of West Prong Little Pigeon River and Middle Creek. Continuous dewatering activities at a rock quarry located in this area appear to have lowered groundwater levels by as much as 180 feet, which likely is the cause of flow losses observed in the two streams, and a contributing factor to the development of sinkholes at Middle Creek near Collier Drive.

  10. A Day in the Life of the Suwannee River: Lagrangian Sampling of Process Rates Along the River Continuum

    NASA Astrophysics Data System (ADS)

    Cohen, M. J.; Hensley, R. T.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    A key organizing idea in stream ecology is the river continuum concept (RCC) which makes testable predictions about network-scale variation in metabolic and community attributes. Using high resolution (ca. 0.1 Hz) Lagrangian sampling of a wide suite of solutes - including nitrate, fDOM, dissolved oyxgen and specific conductance, we sampled the river continuum from headwaters to the sea in the Suwannee River (Florida, USA). We specifically sought to test two predictions that follow from the RCC: first, that changes in metabolism and hydraulics lead to progressive reduction in total N retention but greater diel variation with increasing stream order; and second, that variation in metabolic and nutrient processing rates is larger across stream orders than between low order streams. In addition to providing a novel test of theory, these measurements enabled new insights into the evolution of water quality through a complex landscape, in part because main-stem profiles were obtained for both high and historically low flow conditions. We observed strong evidence of metabolism and nutrient retention at low flow. Both the rate of uptake velocity and the mass retention per unit area declined with increasing stream order, and declined dramatically at high flow. Clear evidence for time varying retention (i.e., diel variation) was observed at low flow, but was masked or absent at high flow. In this geologically complex river - with alluvial, spring-fed, and blackwater headwater streams - variation across low-order streams was large, suggesting the presence of many river continuua across the network. This application of longitudinal sampling and inference underscores the utility of changing reference frames to draw new insights, but also highlights some of the challenges that need to be considered and, where possible, controlled.

  11. Ambient groundwater flow diminishes nitrate processing in the hyporheic zone of streams

    NASA Astrophysics Data System (ADS)

    Azizian, Morvarid; Boano, Fulvio; Cook, Perran L. M.; Detwiler, Russell L.; Rippy, Megan A.; Grant, Stanley B.

    2017-05-01

    Modeling and experimental studies demonstrate that ambient groundwater reduces hyporheic exchange, but the implications of this observation for stream N-cycling is not yet clear. Here we utilize a simple process-based model (the Pumping and Streamline Segregation or PASS model) to evaluate N-cycling over two scales of hyporheic exchange (fluvial ripples and riffle-pool sequences), ten ambient groundwater and stream flow scenarios (five gaining and losing conditions and two stream discharges), and three biogeochemical settings (identified based on a principal component analysis of previously published measurements in streams throughout the United States). Model-data comparisons indicate that our model provides realistic estimates for direct denitrification of stream nitrate, but overpredicts nitrification and coupled nitrification-denitrification. Riffle-pool sequences are responsible for most of the N-processing, despite the fact that fluvial ripples generate 3-11 times more hyporheic exchange flux. Across all scenarios, hyporheic exchange flux and the Damköhler Number emerge as primary controls on stream N-cycling; the former regulates trafficking of nutrients and oxygen across the sediment-water interface, while the latter quantifies the relative rates of organic carbon mineralization and advective transport in streambed sediments. Vertical groundwater flux modulates both of these master variables in ways that tend to diminish stream N-cycling. Thus, anthropogenic perturbations of ambient groundwater flows (e.g., by urbanization, agricultural activities, groundwater mining, and/or climate change) may compromise some of the key ecosystem services provided by streams.

  12. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution

    NASA Astrophysics Data System (ADS)

    Rice, Jacelyn; Westerhoff, Paul

    2017-08-01

    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  13. A framework to assess the impacts of climate change on stream health indicators in Michigan watersheds

    NASA Astrophysics Data System (ADS)

    Woznicki, S. A.; Nejadhashemi, A. P.; Tang, Y.; Wang, L.

    2016-12-01

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a baseline of 1980-2000 to 2020-2040. Flow regime variables representing variability, duration of extreme events, and timing of low and high flow events were sensitive to changes in climate. The stream health indicators were relatively insensitive to changing climate at the watershed scale. However, there were many instances of individual reaches that were projected to experience declines in stream health. Using the probability of stream health decline coupled with the magnitude of the decline, maps of vulnerable stream ecosystems were developed, which can be used in the watershed management decision-making process.

  14. Flow of ground water through fractured carbonate rocks in the Prairie du Chien-Jordan Aquifer, southeastern Minnesota

    USGS Publications Warehouse

    Ruhl, J.F.

    1989-01-01

    Contamination of groundwater from point and nonpoint sources (such as landfills, feedlots, agricultural chemicals applied to fields, and septic systems) is a recognized problem in the karst area of southeastern Minnesota. The US Geological Survey, in cooperation with the Minnesota Department of Natural Resources and the Legislative Commission on Minnesota Resources, Began a study in October 1987 to improve the understanding of local groundwater flow through karst terrain in southeastern Minnesota. The objectives of the study are to: (1) describe the orientations of systematic rock fractures and solution channels of the Prairie du Chien Group of Ordovician-age carbonate rocks in southeastern Minnesota, and, if possible, to define the principal and minor axes of these orientations; and (2) evaluate the effect of fractures and solution channels in the Prairie du Chien Group on the local flow of groundwater. Groundwater in the Upper Carbonate aquifer regionally flows toward the periphery of the aquifer and locally flows into streams and bedrock valleys. The hydraulic gradient in this aquifer generally is greatest near areas of groundwater seepage to streams. Regional groundwater flow in the Prairie du Chien-Jordan aquifer generally is to the south and east in much of Fillmore and Houston Counties and in the southern parts of Olmsted and Winona Counties. Groundwater seepage to selected streams was evaluated by current-meter measurements of downstream gains or losses of streamflow and by an experimental approach based on radon activity in streams. The activity of radon in groundwater ranges from two to four orders of magnitude greater than the activity in surface water; therefore, groundwater seepage to streams generally increases the in-stream radon activity.

  15. Modeling pesticide loadings from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zhang, M.

    2016-12-01

    The Sacramento-San Joaquin Delta is an ecologically rich, hydrologically complex area that serves as the hub of California's water supply. However, pesticides have been routinely detected in the Delta waterways, with concentrations exceeding the benchmark for the protection of aquatic life. Pesticide loadings into the Delta are partially attributed to the San Joaquin watershed, a highly productive agricultural watershed located upstream. Therefore, this study aims to simulate pesticide loadings to the Delta by applying the Soil and Water Assessment Tool (SWAT) model to the San Joaquin watershed, under the support of the USDA-ARS Delta Area-Wide Pest Management Program. Pesticide use patterns in the San Joaquin watershed were characterized by combining the California Pesticide Use Reporting (PUR) database and GIS analysis. Sensitivity/uncertainty analyses and multi-site calibration were performed in the simulation of stream flow, sediment, and pesticide loads along the San Joaquin River. Model performance was evaluated using a combination of graphic and quantitative measures. Preliminary results indicated that stream flow was satisfactorily simulated along the San Joaquin River and the major eastern tributaries, whereas stream flow was less accurately simulated in the western tributaries, which are ephemeral small streams that peak during winter storm events and are mainly fed by irrigation return flow during the growing season. The most sensitive parameters to stream flow were CN2, SOL_AWC, HRU_SLP, SLSUBBSN, SLSOIL, GWQMN and GW_REVAP. Regionalization of parameters is important as the sensitivity of parameters vary significantly spatially. In terms of evaluation metric, NSE tended to overrate model performance when compared to PBIAS. Anticipated results will include (1) pesticide use pattern analysis, (2) calibration and validation of stream flow, sediment, and pesticide loads, and (3) characterization of spatial patterns and temporal trends of pesticide yield.

  16. Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance

    USGS Publications Warehouse

    Harvey, Judson W.; Fuller, Christopher C.

    1998-01-01

    We determined the role of the hyporheic zone (the subsurface zone where stream water and shallow groundwater mix) in enhancing microbially mediated oxidation of dissolved manganese (to form manganese precipitates) in a drainage basin contaminated by copper mining. The fate of manganese is of overall importance to water quality in Pinal Creek Basin, Arizona, because manganese reactions affect the transport of trace metals. The basin-scale role of the hyporheic zone is difficult to quantify because stream-tracer studies do not always reliably characterize the cumulative effects of the hyporheic zone. This study determined cumulative effects of hyporheic reactions in Pinal Creek basin by characterizing manganese uptake at several spatial scales (stream-reach scale, hyporheic-flow-path scale, and sediment-grain scale). At the stream-reach scale a one-dimensional stream-transport model (including storage zones to represent hyporheic flow paths) was used to determine a reach-averaged time constant for manganese uptake in hyporheic zones, 1/λs, of 1.3 hours, which was somewhat faster but still similar to manganese uptake time constants that were measured directly in centimeter-scale hyporheic flow paths (1/λh= 2.6 hours), and in laboratory batch experiments using streambed sediment (1/λ = 2.7 hours). The modeled depths of subsurface storage zones (ds = 4–17 cm) and modeled residence times of water in storage zones (ts = 3–12 min) were both consistent with direct measurements in hyporheic flow paths (dh = 0–15 cm, th = 1–25 min). There was also good agreement between reach-scale modeling and direct measurements of the percentage removal of dissolved manganese in hyporheic flow paths (fs = 8.9%, andfh = 9.3%rpar;. Manganese uptake experiments in the laboratory using sediment from Pinal Creek demonstrated (through comparison of poisoned and unpoisoned treatments) that the manganese removal process was enhanced by microbially mediated oxidation. The cumulative effect of hyporheic exchange in Pinal Creek basin was to remove approximately 20% of the dissolved manganese flowing out of the drainage basin. Our results illustrate that the cumulative significance of reactive uptake in the hyporheic zone depends on the balance between chemical reaction rates, hyporheic porewater residence time, and turnover of streamflow through hyporheic flow paths. The similarity between the hyporheic reaction timescale (1/λs ≈ 1.3 hours), and the hyporheic porewater residence timescale (ts ≈ 8 min) ensured that there was adequate time for the reaction to progress. Furthermore, it was the similarity between the turnover length for stream water flow through hyporheic flow paths (Ls = stream velocity/storage-zone exchange coefficient ≈ 1.3 km) and the length of Pinal Creek (L ≈ 7 km), which ensured that all stream water passed through hyporheic flow paths several times. As a means to generalize our findings to other sites where similar types of hydrologic and chemical information are available, we suggest a cumulative significance index for hyporheic reactions, Rs = λstsL/Ls (dimensionless); higher values indicate a greater potential for hyporheic reactions to influence geochemical mass balance. Our experience in Pinal Creek basin suggests that values of Rs > 0.2 characterize systems where hyporheic reactions are likely to influence geochemical mass balance at the drainage-basin scale.

  17. Can Seismic Observations of Bed Conditions on Ice Streams Help Constrain Parameters in Ice Flow Models?

    NASA Astrophysics Data System (ADS)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2017-11-01

    We investigate correlations between seismically derived estimates of basal acoustic impedance and basal slipperiness values obtained from a surface-to-bed inversion using a Stokes ice flow model. Using high-resolution measurements along several seismic profiles on Pine Island Glacier (PIG), we find no significant correlation at kilometer scale between acoustic impedance and either retrieved basal slipperiness or basal drag. However, there is a stronger correlation when comparing average values along the individual profiles. We hypothesize that the correlation appears at the length scales over which basal variations are important to large-scale ice sheet flow. Although the seismic technique is sensitive to the material properties of the bed, at present there is no clear way of incorporating high-resolution seismic measurements of bed properties on ice streams into ice flow models. We conclude that more theoretical work needs to be done before constraints on mechanical conditions at the ice-bed interface from acoustic impedance measurements can be of direct use to ice sheet models.

  18. Hysteretic behavior of stage-discharge relationships in urban streams

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Lindner, G. A.

    2009-12-01

    Reliable stage-discharge relationships or rating curves are of critical importance for accurate calculation of streamflow and maintenance of long-term flow records. Urban streams offer particular challenges for the maintenance of accurate rating curves. It is often difficult or impossible to collect direct discharge measurements at high flows, many of which are generated by short-duration high-intensity summer thunderstorms, both because of dangerous conditions in the channel and also because the stream rises and falls so rapidly that field crews cannot reach sites in time and sometimes cannot make measurements rapidly enough to keep pace with changing water levels even when they are on site during a storm. Work in urban streams in the Baltimore metropolitan area has shown that projection of rating curves beyond the range of measured flows can lead to overestimation of flood peaks by as much as 100%, and these can only be corrected when adequate field data are available to support modeling efforts. Even moderate flows that are above safe wading depth and velocity may best be estimated using hydraulic models. Current research for NSF CNH project 0709659 includes the application of 2-d depth-averaged hydraulic models to match existing rating curves over a range of low to moderate flows and to extend rating curves for higher flows, based on field collection of high-water marks. Although it is generally assumed that stage-discharge relationships are single-valued, we find that modeling results in small urban streams often generate hysteretic relationships, with higher discharges on the rising limb of the hydrograph than on the falling limb. The difference between discharges for the same stage on the rising and falling limb can be on the order of 20-30% even for in-channel flows that are less than 1 m deep. As safety considerations dictate that it is preferable to make direct discharge measurements on the falling limb of the hydrograph, the higher direct measurements used in many rating curves probably have been collected on the falling limb and therefore may not capture the correct stage-discharge relationship for the rising limb. In some cases model results selected only from the falling limb are able to match the existing rating curve very closely. Although hysteresis may be explained with reference to the innate properties of the flood wave, other factors also lead to hysteretic behavior. Downstream constrictions and obstructions associated with urban infrastructure may cause substantial backwater effects, particularly during flood flows. Flood conditions at tributary confluences also can exert a controlling influence upstream. Based on our results we recommend that at some sites it is advisable to develop separate rating curves for the rising and falling limbs, and to develop a range of modeling scenarios for predicting the range of potential uncertainty.

  19. Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, L. N.; College of Sciences, China Jiliang University, Hangzhou 310018; Ma, Z. W., E-mail: zwma@zju.edu.cn

    2014-07-15

    The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvénmore » resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β < β{sub s}, but decreases if β > β{sub s}. The existence of the specific value β{sub s} can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β{sub s} increases with increase of the streaming flow strength.« less

  20. Modelling rating curves using remotely sensed LiDAR data

    USGS Publications Warehouse

    Nathanson, Marcus; Kean, Jason W.; Grabs, Thomas J.; Seibert, Jan; Laudon, Hjalmar; Lyon, Steve W.

    2012-01-01

    Accurate stream discharge measurements are important for many hydrological studies. In remote locations, however, it is often difficult to obtain stream flow information because of the difficulty in making the discharge measurements necessary to define stage-discharge relationships (rating curves). This study investigates the feasibility of defining rating curves by using a fluid mechanics-based model constrained with topographic data from an airborne LiDAR scanning. The study was carried out for an 8m-wide channel in the boreal landscape of northern Sweden. LiDAR data were used to define channel geometry above a low flow water surface along the 90-m surveyed reach. The channel topography below the water surface was estimated using the simple assumption of a flat streambed. The roughness for the modelled reach was back calculated from a single measurment of discharge. The topographic and roughness information was then used to model a rating curve. To isolate the potential influence of the flat bed assumption, a 'hybrid model' rating curve was developed on the basis of data combined from the LiDAR scan and a detailed ground survey. Whereas this hybrid model rating curve was in agreement with the direct measurements of discharge, the LiDAR model rating curve was equally in agreement with the medium and high flow measurements based on confidence intervals calculated from the direct measurements. The discrepancy between the LiDAR model rating curve and the low flow measurements was likely due to reduced roughness associated with unresolved submerged bed topography. Scanning during periods of low flow can help minimize this deficiency. These results suggest that combined ground surveys and LiDAR scans or multifrequency LiDAR scans that see 'below' the water surface (bathymetric LiDAR) could be useful in generating data needed to run such a fluid mechanics-based model. This opens a realm of possibility to remotely sense and monitor stream flows in channels in remote locations.

  1. A comparison of coarse bedload transport measured with bedload traps and Helley Smith samplers

    Treesearch

    Kristin Bunte; Steven R. Abt; John P. Potyondy; Kurt W. Swingle

    2008-01-01

    Gravel bedload transport rates were measured at eight study sites in coarse-bedded Rocky Mountain streams using 4-6 bedload traps deployed across the stream width and a 76 by 76 mm opening Helley Smith sampler. Transport rates obtained from bedload traps increased steeply with flow which resulted in steep and well-defined transport rating curves with exponents of 8 to...

  2. Environmental flows in the context of unconventional natural gas development in the Marcellus Shale

    DOE PAGES

    Buchanan, Brian P.; Auerbach, Daniel A.; McManamay, Ryan A.; ...

    2017-01-04

    Quantitative flow-ecology relationships are needed to evaluate how water withdrawals for unconventional natural gas development may impact aquatic ecosystems. Addressing this need, we studied current patterns of hydrologic alteration in the Marcellus Shale region and related the estimated flow alteration to fish community measures. We then used these empirical flow-ecology relationships to evaluate alternative surface water withdrawals and environmental flow rules. Reduced high-flow magnitude, dampened rates of change, and increased low-flow magnitudes were apparent regionally, but changes in many of the flow metrics likely to be sensitive to withdrawals also showed substantial regional variation. Fish community measures were significantly relatedmore » to flow alteration, including declines in species richness with diminished annual runoff, winter low-flow, and summer median-flow. In addition, the relative abundance of intolerant taxa decreased with reduced winter high-flow and increased flow constancy, while fluvial specialist species decreased with reduced winter and annual flows. Stream size strongly mediated both the impact of withdrawal scenarios and the protection afforded by environmental flow standards. Under the most intense withdrawal scenario, 75% of reference headwaters and creeks (drainage areas <99 km 2) experienced at least 78% reduction in summer flow, whereas little change was predicted for larger rivers. Moreover, the least intense withdrawal scenario still reduced summer flows by at least 21% for 50% of headwaters and creeks. The observed 90th quantile flow-ecology relationships indicate that such alteration could reduce species richness by 23% or more. Seasonally varying environmental flow standards and high fixed minimum flows protected the most streams from hydrologic alteration, but common minimum flow standards left numerous locations vulnerable to substantial flow alteration. This study clarifies how additional water demands in the region may adversely affect freshwater biological integrity. Furthermore, the results make clear that policies to limit or prevent water withdrawals from smaller streams can reduce the risk of ecosystem impairment.« less

  3. Environmental flows in the context of unconventional natural gas development in the Marcellus Shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Brian P.; Auerbach, Daniel A.; McManamay, Ryan A.

    Quantitative flow-ecology relationships are needed to evaluate how water withdrawals for unconventional natural gas development may impact aquatic ecosystems. Addressing this need, we studied current patterns of hydrologic alteration in the Marcellus Shale region and related the estimated flow alteration to fish community measures. We then used these empirical flow-ecology relationships to evaluate alternative surface water withdrawals and environmental flow rules. Reduced high-flow magnitude, dampened rates of change, and increased low-flow magnitudes were apparent regionally, but changes in many of the flow metrics likely to be sensitive to withdrawals also showed substantial regional variation. Fish community measures were significantly relatedmore » to flow alteration, including declines in species richness with diminished annual runoff, winter low-flow, and summer median-flow. In addition, the relative abundance of intolerant taxa decreased with reduced winter high-flow and increased flow constancy, while fluvial specialist species decreased with reduced winter and annual flows. Stream size strongly mediated both the impact of withdrawal scenarios and the protection afforded by environmental flow standards. Under the most intense withdrawal scenario, 75% of reference headwaters and creeks (drainage areas <99 km 2) experienced at least 78% reduction in summer flow, whereas little change was predicted for larger rivers. Moreover, the least intense withdrawal scenario still reduced summer flows by at least 21% for 50% of headwaters and creeks. The observed 90th quantile flow-ecology relationships indicate that such alteration could reduce species richness by 23% or more. Seasonally varying environmental flow standards and high fixed minimum flows protected the most streams from hydrologic alteration, but common minimum flow standards left numerous locations vulnerable to substantial flow alteration. This study clarifies how additional water demands in the region may adversely affect freshwater biological integrity. Furthermore, the results make clear that policies to limit or prevent water withdrawals from smaller streams can reduce the risk of ecosystem impairment.« less

  4. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, N.; Parker, G.W.; DeLong, L.L.

    1987-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes.Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas.This manual describes the slug-injection and constant-rate injection methods of performing gas-tracer desorption measurements. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients.

  5. Apparatus for continuously referenced analysis of reactive components in solution

    DOEpatents

    Bostick, William D.; Denton, Mark S.; Dinsmore, Stanley R.

    1981-01-01

    A continuously referenced apparatus for measuring the concentration of a reactive chemical species in solution comprises in combination conduit means for introducing a sample solution, means for introducing one or more reactants into a sample solution, a reaction zone in fluid communication with said conduit means wherein a first chemical reaction occurs between said species and reactants, and a stream separator disposed within the conduit means for separating the sample solution into a sample stream and a reference stream. An enzymatic reactor is disposed in fluid communication with only the sample stream wherein a second reaction takes place between the said reactants, species, and reactor enzymes causing the consumption or production of an indicator species in just the sample stream. Measurement means such as a photometric system are disposed in communication with the sample and reference streams, and the outputs of the measurement means are compared to provide a blanked measurement of the concentration of indicator species. A peristaltic pump is provided to equalize flow through the apparatus by evacuation. The apparatus is particularly suitable for measurement of isoenzymes in body tissues or fluids.

  6. Influence of observers and stream flow on northern two-lined salamander (Eurycea bislineata bislineata) relative abundance estimates in Acadia and Shenandoah National Parks, USA

    USGS Publications Warehouse

    Crocker, J.B.; Bank, M.S.; Loftin, C.S.; Jung Brown, R.E.

    2007-01-01

    We investigated effects of observers and stream flow on Northern Two-Lined Salamander (Eurycea bislineata bislineata) counts in streams in Acadia (ANP) and Shenandoah National Parks (SNP). We counted salamanders in 22 ANP streams during high flow (May to June 2002) and during low flow (July 2002). We also counted salamanders in SNP in nine streams during high flow (summer 2003) and 11 streams during low flow (summers 2001?02, 2004). In 2002, we used a modified cover-controlled active search method with a first and second observer. In succession, observers turned over 100 rocks along five 1-m belt transects across the streambed. The difference between observers in total salamander counts was not significant. We counted fewer E. b. bislineata during high flow conditions, confirming that detection of this species is reduced during high flow periods and that assessment of stream salamander relative abundance is likely more reliable during low or base flow conditions.

  7. Carbon Isotope Composition as an Indicator of DOC Sources to a Stream During Events in a Temperate Forested Catchment

    NASA Astrophysics Data System (ADS)

    Doctor, D. H.; Sebestyen, S. D.; Aiken, G. R.; Shanley, J. B.; Kendall, C.; Boyer, E. W.

    2006-12-01

    Increased DOC flux in streams and rivers is commonly observed during high runoff regimes, however DOC concentrations alone do not provide information about multiple sources or pathways of DOC to streams. In an effort to gain this information, we measured DOC concentrations and stable carbon isotope composition (δ13C-DOC) on samples collected at high-frequency during events at Sleepers River Research Watershed in Vermont, USA. During snowmelt and storm events, peaks in stream DOC concentration (up to 10.5 mg/L) were coincident with peaks in flow. Stream water δ13C-DOC measurements ranged between -23.7‰ and - 28.9‰ and indicated changing sources of DOC during events; the highest δ13C-DOC values occurred consistently at the lowest flows, and the lowest δ13C-DOC values occurred with peaks in discharge. Water samples collected from shallow wells and stacked soil lysimeters showed the highest DOC concentrations in the most shallow (<0.5 m) lysimeter waters, and the lowest concentrations in the deeper (>1.5 m) well waters. Wells and lysimeters exhibited a range of δ13C-DOC values similar to those observed in the stream; however, samples collected from shallow horizons at nested wells and lysimeters consistently showed lower δ13C-DOC values than those from greater depths. Maple leaf litter collected from across the watershed provided an end-member of fresh organic material, with average δ13C composition of -31.3±0.7‰ (n=57), which is lower than the lowest measured DOC values in any of the stream, well, or lysimeter waters. A subset of stream waters were fractionated onto XAD4 and XAD8 resins; the hydrophobic acid fraction (XAD8) had consistently lower δ13C values than the transphilic acid fraction (XAD4), and both of these were lower than those of the bulk DOC. Samples with lower δ13C-DOC values also exhibited higher SUVA-254 values, i.e. greater aromaticity. Thus, lower δ13C-DOC values are interpreted as an indicator of relatively "fresh", more aromatic and more biologically labile material while higher δ13C-DOC values indicate relatively more degraded material. Since lower δ13C-DOC values were observed in the shallowest well and lysimeter waters and in stream water during periods of highest DOC flux, we surmise that fresh DOC is mobilized to the stream along relatively shallow flowpaths during high flows, and that a second source of more degraded DOC supplies background concentrations to the stream at lower flows.

  8. Hydrologic data for the Big Spring basin, Clayton County, Iowa, water year 1990

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Kuzniar, R.L.; Kolpin, D.; Harvey, C.A.

    1992-01-01

    During a low-flow seepage study, May 29 and 30,1990, the measured discharge lost by streams in the basin was 8.56 cubic feet per second, the measured dissolved nitrogen load lost was 0.29 ton per day, and the measured atrazine load lost was 0.028 pound per day. The total measured discharge and total dissolved nitrogen load leaving the basin in streams were 3.63 cubic feet per second and about 0.04 ton per day, respectively.

  9. Measurement of filtration rates by infaunal bivalves in a recirculating flume

    USGS Publications Warehouse

    Cole, B.E.; Thompson, J.K.; Cloern, J.E.

    1992-01-01

    A flume system and protocol for measuring the filtration rate of infaunal bivalves is described. Assemblages of multi-sized clams, at natural densities and in normal filter-feeding positions, removed phytoplankton suspended in a unidirectional flow of water. The free-stream velocity and friction velocity of the flow, and bottom roughness height were similar to those in natural estuarine waters. Continuous variations in phytoplankton (Chroomonas salinay) cell density were used to measure the filtration rate of the suspension-feeding clam Potamocorbula amurensis for periods of 2 to 28 h. Filtration rates of P. amurensis varied from 100 to 580 liters (gd)-1 over a free-stream velocity range of 9 to 25 cm s-1. Phytoplankton loss rates were usually constant throughout the experiments. Our results suggest that suspension-feeding by infaunal bivalves is sensitive to flow velocity. ?? 1992 Springer-Verlag.

  10. Challenges and Opportunities of Long-Term Continuous Stream Metabolism Measurements at the National Ecological Observatory Network

    NASA Astrophysics Data System (ADS)

    Goodman, K. J.; Lunch, C. K.; Baxter, C.; Hall, R.; Holtgrieve, G. W.; Roberts, B. J.; Marcarelli, A. M.; Tank, J. L.

    2013-12-01

    Recent advances in dissolved oxygen sensing and modeling have made continuous measurements of whole-stream metabolism relatively easy to make, allowing ecologists to quantify and evaluate stream ecosystem health at expanded temporal and spatial scales. Long-term monitoring of continuous stream metabolism will enable a better understanding of the integrated and complex effects of anthropogenic change (e.g., land-use, climate, atmospheric deposition, invasive species, etc.) on stream ecosystem function. In addition to their value in the particular streams measured, information derived from long-term data will improve the ability to extrapolate from shorter-term data. With the need to better understand drivers and responses of whole-stream metabolism come difficulties in interpreting the results. Long-term trends will encompass physical changes in stream morphology and flow regime (e.g., variable flow conditions and changes in channel structure) combined with changes in biota. Additionally long-term data sets will require an organized database structure, careful quantification of errors and uncertainties, as well as propagation of error as a result of the calculation of metabolism metrics. Parsing of continuous data and the choice of modeling approaches can also have a large influence on results and on error estimation. The two main modeling challenges include 1) obtaining unbiased, low-error daily estimates of gross primary production (GPP) and ecosystem respiration (ER), and 2) interpreting GPP and ER measurements over extended time periods. The National Ecological Observatory Network (NEON), in partnership with academic and government scientists, has begun to tackle several of these challenges as it prepares for the collection and calculation of 30 years of continuous whole-stream metabolism data. NEON is a national-scale research platform that will use consistent procedures and protocols to standardize measurements across the United States, providing long-term, high-quality, open-access data from a connected network to address large-scale change. NEON infrastructure will support 36 aquatic sites across 19 ecoclimatic domains. Sites include core sites, which remain for 30 years, and relocatable sites, which move to capture regional gradients. NEON will measure continuous whole-stream metabolism in conjunction with aquatic, terrestrial and airborne observations, allowing researchers to link stream ecosystem function with landscape and climatic drivers encompassing short to long time periods (i.e., decades).

  11. Fine sediment in pools: An index of how sediment is affecting a stream channel

    Treesearch

    Tom Lisle; Sue Hilton

    1991-01-01

    One of the basic issues facing managers of fisheries watersheds is how inputs of sediment affect stream channels. In some cases we can measure and even roughly predict effects of land use on erosion and delivery of sediment from hillslopes to streams. But we are at a loss about how a given increase in sediment load will affect channel morphology, flow conditions, and...

  12. Median and Low-Flow Characteristics for Streams under Natural and Diverted Conditions, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    2005-01-01

    Flow-duration statistics under natural (undiverted) and diverted flow conditions were estimated for gaged and ungaged sites on 21 streams in northeast Maui, Hawaii. The estimates were made using the optimal combination of continuous-record gaging-station data, low-flow measurements, and values determined from regression equations developed as part of this study. Estimated 50- and 95-percent flow duration statistics for streams are presented and the analyses done to develop and evaluate the methods used in estimating the statistics are described. Estimated streamflow statistics are presented for sites where various amounts of streamflow data are available as well as for locations where no data are available. Daily mean flows were used to determine flow-duration statistics for continuous-record stream-gaging stations in the study area following U.S. Geological Survey established standard methods. Duration discharges of 50- and 95-percent were determined from total flow and base flow for each continuous-record station. The index-station method was used to adjust all of the streamflow records to a common, long-term period. The gaging station on West Wailuaiki Stream (16518000) was chosen as the index station because of its record length (1914-2003) and favorable geographic location. Adjustments based on the index-station method resulted in decreases to the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow computed on the basis of short-term records that averaged 7, 3, 4, and 1 percent, respectively. For the drainage basin of each continuous-record gaged site and selected ungaged sites, morphometric, geologic, soil, and rainfall characteristics were quantified using Geographic Information System techniques. Regression equations relating the non-diverted streamflow statistics to basin characteristics of the gaged basins were developed using ordinary-least-squares regression analyses. Rainfall rate, maximum basin elevation, and the elongation ratio of the basin were the basin characteristics used in the final regression equations for 50-percent duration total flow and base flow. Rainfall rate and maximum basin elevation were used in the final regression equations for the 95-percent duration total flow and base flow. The relative errors between observed and estimated flows ranged from 10 to 20 percent for the 50-percent duration total flow and base flow, and from 29 to 56 percent for the 95-percent duration total flow and base flow. The regression equations developed for this study were used to determine the 50-percent duration total flow, 50-percent duration base flow, 95-percent duration total flow, and 95-percent duration base flow at selected ungaged diverted and undiverted sites. Estimated streamflow, prediction intervals, and standard errors were determined for 48 ungaged sites in the study area and for three gaged sites west of the study area. Relative errors were determined for sites where measured values of 95-percent duration discharge of total flow were available. East of Keanae Valley, the 95-percent duration discharge equation generally underestimated flow, and within and west of Keanae Valley, the equation generally overestimated flow. Reduction in 50- and 95-percent flow-duration values in stream reaches affected by diversions throughout the study area average 58 to 60 percent.

  13. Voice of the Rivers: Quantifying the Sound of Rivers into Streamflow and Using the Audio for Education and Outreach

    NASA Astrophysics Data System (ADS)

    Santos, J.

    2014-12-01

    I have two goals with my research. 1. I proposed that sound recordings can be used to detect the amount of water flowing in a particular river, which could then be used to measure stream flow in rivers that have no instrumentation. My locations are in remote watersheds where hand instrumentation is the only means to collect data. I record 15 minute samples, at varied intervals, of the streams with a stereo microphone suspended above the river perpendicular to stream flow forming a "profile" of the river that can be compared to other stream-flow measurements of these areas over the course of a year. Through waveform analysis, I found a distinct voice for each river and I am quantifying the sound to track the flow based on amplitude, pitch, and wavelengths that these rivers produce. 2. Additionally, I plan to also use my DVD quality sound recordings with professional photos and HD video of these remote sites in education, outreach, and therapeutic venues. The outreach aspect of my research follows my goal of bridging communication between researchers and the public. Wyoming rivers are unique in that we export 85% of our water downstream. I would also like to take these recordings to schools, set up speakers in the four corners of a classroom and let the river flow as the teacher presents on water science. Immersion in an environment can help the learning experience of students. I have seen firsthand the power of drawing someone into an environment through sound and video. I will have my river sounds with me at AGU presented as an interactive touch-screen sound experience.

  14. Estimates of streamflow characteristics for selected small streams, Baker River basin, Washington

    USGS Publications Warehouse

    Williams, John R.

    1987-01-01

    Regression equations were used to estimate streamflow characteristics at eight ungaged sites on small streams in the Baker River basin in the North Cascade Mountains, Washington, that could be suitable for run-of-the-river hydropower development. The regression equations were obtained by relating known streamflow characteristics at 25 gaging stations in nearby basins to several physical and climatic variables that could be easily measured in gaged or ungaged basins. The known streamflow characteristics were mean annual flows, 1-, 3-, and 7-day low flows and high flows, mean monthly flows, and flow duration. Drainage area and mean annual precipitation were not the most significant variables in all the regression equations. Variance in the low flows and the summer mean monthly flows was reduced by including an index of glacierized area within the basin as a third variable. Standard errors of estimate of the regression equations ranged from 25 to 88%, and the largest errors were associated with the low flow characteristics. Discharge measurements made at the eight sites near midmonth each month during 1981 were used to estimate monthly mean flows at the sites for that period. These measurements also were correlated with concurrent daily mean flows from eight operating gaging stations. The correlations provided estimates of mean monthly flows that compared reasonably well with those estimated by the regression analyses. (Author 's abstract)

  15. Jupiter’s atmospheric jet streams extend thousands of kilometres deep

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Galanti, E.; Hubbard, W. B.; Stevenson, D. J.; Bolton, S. J.; Iess, L.; Guillot, T.; Bloxham, J.; Connerney, J. E. P.; Cao, H.; Durante, D.; Folkner, W. M.; Helled, R.; Ingersoll, A. P.; Levin, S. M.; Lunine, J. I.; Miguel, Y.; Militzer, B.; Parisi, M.; Wahl, S. M.

    2018-03-01

    The depth to which Jupiter’s observed east–west jet streams extend has been a long-standing question. Resolving this puzzle has been a primary goal for the Juno spacecraft, which has been in orbit around the gas giant since July 2016. Juno’s gravitational measurements have revealed that Jupiter’s gravitational field is north–south asymmetric, which is a signature of the planet’s atmospheric and interior flows. Here we report that the measured odd gravitational harmonics J3, J5, J7 and J9 indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000  kilometres. By inverting the measured gravity values into a wind field, we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J8 and J10 resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure. These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter’s total mass.

  16. Application of the Hydroecological Integrity Assessment Process for Missouri Streams

    USGS Publications Warehouse

    Kennen, Jonathan G.; Henriksen, James A.; Heasley, John; Cade, Brian S.; Terrell, James W.

    2009-01-01

    Natural flow regime concepts and theories have established the justification for maintaining or restoring the range of natural hydrologic variability so that physiochemical processes, native biodiversity, and the evolutionary potential of aquatic and riparian assemblages can be sustained. A synthesis of recent research advances in hydroecology, coupled with stream classification using hydroecologically relevant indices, has produced the Hydroecological Integrity Assessment Process (HIP). HIP consists of (1) a regional classification of streams into hydrologic stream types based on flow data from long-term gaging-station records for relatively unmodified streams, (2) an identification of stream-type specific indices that address 11 subcomponents of the flow regime, (3) an ability to establish environmental flow standards, (4) an evaluation of hydrologic alteration, and (5) a capacity to conduct alternative analyses. The process starts with the identification of a hydrologic baseline (reference condition) for selected locations, uses flow data from a stream-gage network, and proceeds to classify streams into hydrologic stream types. Concurrently, the analysis identifies a set of non-redundant and ecologically relevant hydrologic indices for 11 subcomponents of flow for each stream type. Furthermore, regional hydrologic models for synthesizing flow conditions across a region and the development of flow-ecology response relations for each stream type can be added to further enhance the process. The application of HIP to Missouri streams identified five stream types ((1) intermittent, (2) perennial runoff-flashy, (3) perennial runoff-moderate baseflow, (4) perennial groundwater-stable, and (5) perennial groundwater-super stable). Two Missouri-specific computer software programs were developed: (1) a Missouri Hydrologic Assessment Tool (MOHAT) which is used to establish a hydrologic baseline, provide options for setting environmental flow standards, and compare past and proposed hydrologic alterations; and (2) a Missouri Stream Classification Tool (MOSCT) designed for placing previously unclassified streams into one of the five pre-defined stream types.

  17. Cross-Stream PIV Measurements of Jets With Internal Lobed Mixers

    NASA Technical Reports Server (NTRS)

    Bridges, James; Wernet, Mark P.

    2004-01-01

    With emphasis being placed on enhanced mixing of jet plumes for noise reduction and on predictions of jet noise based upon turbulent kinetic energy, unsteady measurements of jet plumes are a very important part of jet noise studies. Given that hot flows are of most practical interest, optical techniques such as Particle Image Velocimetry (PIV) are applicable. When the flow has strong azimuthal features, such as those generated by chevrons or lobed mixers, traditional PIV, which aligns the measurement plane parallel to the dominant flow direction is very inefficient, requiring many planes of data to be acquired and stacked up to produce the desired flow cross-sections. This paper presents PIV data acquired in a plane normal to the jet axis, directly measuring the cross-stream gradients and features of an internally mixed nozzle operating at aircraft engine flow conditions. These nozzle systems included variations in lobed mixer penetration, lobe count, lobe scalloping, and nozzle length. Several cases validating the accuracy of the PIV data are examined along with examples of its use in answering questions about the jet noise generation processes in these nozzles. Of most interest is the relationship of low frequency aft-directed noise with turbulence kinetic energy and mean velocity.

  18. Hillslope-riparian-stream connectivity and flow directions at the Panola Mountain Research Watershed

    NASA Astrophysics Data System (ADS)

    van Meerveld, Ilja; Seibert, Jan; Peters, Jake

    2015-04-01

    The question how water travels from rainfall to the stream network has engaged hydrologists for decades as it determines the streamflow response to rainfall and stream water quality. In order to obtain a better understanding of water's journey from the hillslope to the stream, and in particular the effects of rainfall amount, bedrock topography and variations in soil depth on hillslope subsurface flow pathways and hillslope-riparian zone-stream connectivity, we analyzed data from 26 groundwater wells in a hillslope-riparian study area in the Panola Mountain Research Watershed, Georgia, USA. The water levels in the riparian zone were sustained throughout the wet winter period, while the wells on the hillslope showed very peaky and short-lived responses. Perched groundwater on the hillslope either developed across almost the entire hillslope or not at all, suggesting that either the majority of the hillslope became connected to the stream or that no connection was established. There were clear differences in the timing of the groundwater responses, with water levels near the stream and on the upper hillslope rising earlier than on the lower hillslope and midslope. The midslope with deep soils played a critical role in the establishment of hillslope-stream connectivity. A sharp increase in water level was measured at the lower hillslope wells and in some riparian wells when connectivity between the hillslope and the riparian zone was established. Sustained streamflow (more than 0.5 mm/h for more than 12 h) occurred only when the hillslope was connected to the stream. The groundwater flow directions were highly variable across the midslope with deep soils: the flow directions followed the local bedrock topography when perched groundwater levels were low and the surface topography when groundwater levels were higher. The flow directions could even point in the general upslope direction but followed the local bedrock topography. This suggests that first the bedrock hollow filled but that once water levels were higher and saturation was more widespread, the flow directions followed the surface topography and were downslope. This competing influence of the surface and bedrock topography was not observed in the riparian zone, where the flow directions were either downslope or changed from a combined downslope and downstream direction towards a more downslope direction during events.

  19. Estimating the Magnitude and Frequency of Floods in Small Urban Streams in South Carolina, 2001

    USGS Publications Warehouse

    Feaster, Toby D.; Guimaraes, Wladimir B.

    2004-01-01

    The magnitude and frequency of floods at 20 streamflowgaging stations on small, unregulated urban streams in or near South Carolina were estimated by fitting the measured wateryear peak flows to a log-Pearson Type-III distribution. The period of record (through September 30, 2001) for the measured water-year peak flows ranged from 11 to 25 years with a mean and median length of 16 years. The drainage areas of the streamflow-gaging stations ranged from 0.18 to 41 square miles. Based on the flood-frequency estimates from the 20 streamflow-gaging stations (13 in South Carolina; 4 in North Carolina; and 3 in Georgia), generalized least-squares regression was used to develop regional regression equations. These equations can be used to estimate the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows for small urban streams in the Piedmont, upper Coastal Plain, and lower Coastal Plain physiographic provinces of South Carolina. The most significant explanatory variables from this analysis were mainchannel length, percent impervious area, and basin development factor. Mean standard errors of prediction for the regression equations ranged from -25 to 33 percent for the 10-year recurrence-interval flows and from -35 to 54 percent for the 100-year recurrence-interval flows. The U.S. Geological Survey has developed a Geographic Information System application called StreamStats that makes the process of computing streamflow statistics at ungaged sites faster and more consistent than manual methods. This application was developed in the Massachusetts District and ongoing work is being done in other districts to develop a similar application using streamflow statistics relative to those respective States. Considering the future possibility of implementing StreamStats in South Carolina, an alternative set of regional regression equations was developed using only main channel length and impervious area. This was done because no digital coverages are currently available for basin development factor and, therefore, it could not be included in the StreamStats application. The average mean standard error of prediction for the alternative equations was 2 to 5 percent larger than the standard errors for the equations that contained basin development factor. For the urban streamflow-gaging stations in South Carolina, measured water-year peak flows were compared with those from an earlier urban flood-frequency investigation. The peak flows from the earlier investigation were computed using a rainfall-runoff model. At many of the sites, graphical comparisons indicated that the variance of the measured data was much less than the variance of the simulated data. Several statistical tests were applied to compare the variances and the means of the measured and simulated data for each site. The results indicated that the variances were significantly different for 11 of the 13 South Carolina streamflow-gaging stations. For one streamflow-gaging station, the test for normality, which is one of the assumptions of the data when comparing variances, indicated that neither the measured data nor the simulated data were distributed normally; therefore, the test for differences in the variances was not used for that streamflow-gaging station. Another statistical test was used to test for statistically significant differences in the means of the measured and simulated data. The results indicated that for 5 of the 13 urban streamflowgaging stations in South Carolina there was a statistically significant difference in the means of the two data sets. For comparison purposes and to test the hypothesis that there may have been climatic differences between the period in which the measured peak-flow data were measured and the period for which historic rainfall data were used to compute the simulated peak flows, 16 rural streamflow-gaging stations with long-term records were reviewed using similar techniques as those used for the measured an

  20. Controls on streamflow intermittence in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kampf, S. K.; Puntenney, K.; Martin, C.; Weber, R.; Gerlich, J.; Hammond, J. C.; Lefsky, M. A.

    2017-12-01

    Intermittent streams comprise more than 60% of the channel length in semiarid northern Colorado, yet little is known about their flow magnitude and timing. We used field surveys, stream sensors, and remote sensing to quantify spatial and temporal patterns of streamflow intermittence in the Cache la Poudre basin in 2016-2017. To evaluate potential controls on streamflow intermittence, we delineated the drainage area to each monitored point and quantified the catchment's mean precipitation, temperature, snow persistence, slope, aspect, vegetation type, soil type, and bedrock geology. During the period of study, most streams below 2500 m elevation and <550 mm mean annual precipitation were intermittent, with flow only during the early spring and summer. In these drier low elevation areas, flow duration generally increased with precipitation and snow persistence. Locally, the type of bedrock geology and location of streams relative to faults affected flow duration. Above 2500 m, nearly all streams with drainage areas >1 km2 had perennial flow, whereas nearly all streams with drainage areas <1 km2 had intermittent flow. For the high elevation intermittent streams, stream locations often differed substantially from the locations mapped in standard GIS data products. Initial analyses have identified no clearly quantifiable controls on flow duration of high elevation streams, but field observations indicate subsurface flow paths are important contributors to surface streams.

  1. 40 CFR 98.154 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the concentrations of the process samples. (b) The mass flow of the product stream containing the HFC... concentration and volumetric flow rate determined by measurement of volumetric flow rate using EPA Method 2, 2A... volumetric flow rate at the inlet or by a metering device for HFC-23 sent to the device. Determine a new...

  2. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.

    PubMed

    Sebok, Eva; Engesgaard, Peter; Duque, Carlos

    2017-08-24

    This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.

  3. Tracing seasonal groundwater contributions to stream flow using a suite of environmental isotopes

    NASA Astrophysics Data System (ADS)

    Pritchard, J. L.; Herczeg, A. L.; Lamontagne, S.

    2003-04-01

    Groundwater discharge to streams is important for delivering essential solutes to maintain ecosystem health and flow throughout dry seasons. However, managing the groundwater components of stream flow is difficult because several sources of water can contribute, including delayed drainage from bank storage and regional groundwater. In this study we assessed the potential for a variety of environmental tracers to discriminate between different sources of water to stream flow. A case study comparing Cl-, delta O-18 &delta H-2, Rn-222 and 87Sr/86Sr to investigate the spatial and temporal variability of groundwater inputs to stream flow was conducted in the Wollombi Brook Catchment (SE Australia). The objectives were to characterise the three potential sources of water to stream flow (surface water, groundwater from the near-stream sandy alluvial aquifer system, and groundwater from the regional sandstone aquifer system) and estimate their relative contributions to stream discharge at flood recession and baseflow. Surface water was sampled at various locations along the Wollombi Brook and from its tributaries during flood recession (Mar-01) and under baseflow conditions (Oct-01). Alluvial groundwater was sampled from a piezometer network and regional groundwater from deeper bores in the lower to mid-catchment biannually over two years to characterise these potential sources of water to stream flow. Chloride identified specific reaches of the catchment that were either subjected to evaporation or received regional groundwater contributions to stream flow. The water isotopes verified which of these reaches were dominated by evaporation versus groundwater contributions. They also revealed that the predominant sources of water to stream flow during flood recession were either rainfall and storm runoff or regional groundwater, and that during baseflow the predominant source of water to stream flow was alluvial groundwater. Radon showed that there was a greater proportion of groundwater contributing to stream flow in the upper part of the catchment than the lower catchment during both flood recession and baseflow. Strontium isotopes showed that regional groundwater contributed less than 10% to stream flow in all parts of the catchment under baseflow conditions.

  4. Further development and testing of the metabolic gas analyzer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Continued development of a metabolic monitor utilizing a mass spectrometer and digital computer to perform measurements and data reduction, is reported. The device prints-out breath-by-breath values for 02 consumption, C02 production, minute volume and tidal volume. The flow is measured by introduction of a tracer gas to the expired gas stream. Design modifications to reduce pressure drop in the flow splitter to one inch of water at 600 liters/min flow and to extend the range of linear flow measurement to 1000 liters/min are discussed.

  5. Spatio-temporal variation of stream-aquifer interaction: Effect of a weir construction in Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyeonju; Koo, Min-Ho; Kim, Kisu; Kim, Yongcheol

    2015-04-01

    The Four Major Rivers Restoration Project was conducted to secure sufficient water resources, introduce comprehensive flood control measures, and improve water quality while restore the river ecosystem in Korea. The dredging of river bed and the installation of 16 weirs were done in Han, Geum, Yeongsan, and Nakdong rivers from late 2010 to early 2012 as a part of the project. Groundwater data obtained from 213 groundwater monitoring wells near the four major rivers were used to analyze the impacts of weir construction on the nearby groundwater flow system. The groundwater level and chemical characteristics were analyzed to investigate how the groundwater flow system and water quality changed after the weir construction. The results showed that groundwater level rose immediately following the rise of stream stage after the weir construction. Also, the hydrologic condition of the stream in some upland of the weirs was changed from a gaining to a losing stream. Consequently, the direction of groundwater flow was changed from perpendicular to parallel to the stream, and it swapped the groundwater in the downstream of the weir for the water recharged from the stream. Considering the results, some groundwater quality is expected to be changed and become similar to that of the stream, although the change has been not observed yet. Therefore, both further monitoring of the groundwater quality and hydrogeochemical analysis are required for quantitatively evaluating the effect of the weir.

  6. Velocity Statistics and Spectra in Three-Stream Jets

    NASA Technical Reports Server (NTRS)

    Ecker, Tobias; Lowe, K. Todd; Ng, Wing F.; Henderson, Brenda; Leib, Stewart

    2016-01-01

    Velocimetry measurements were obtained in three-stream jets at the NASA Glenn Research Center Nozzle Acoustics Test Rig using the time-resolved Doppler global velocimetry technique. These measurements afford exceptional frequency response, to 125 kHz bandwidth, in order to study the detailed dynamics of turbulence in developing shear flows. Mean stream-wise velocity is compared to measurements acquired using particle image velocimetry for validation. Detailed results for convective velocity distributions throughout an axisymmetric plume and the thick side of a plume with an offset third-stream duct are provided. The convective velocity results exhibit that, as expected, the eddy speeds are reduced on the thick side of the plume compared to the axisymmetric case. The results indicate that the time-resolved Doppler global velocimetry method holds promise for obtaining results valuable to the implementation and refinement of jet noise prediction methods being developed for three-stream jets.

  7. An investigation into the mechanisms of drag reduction of a boat tailed base cavity on a blunt based body

    NASA Astrophysics Data System (ADS)

    Kehs, Joshua Paul

    It is well documented in the literature that boat-tailed base cavities reduce the drag on blunt based bodies. The majority of the previous work has been focused on the final result, namely reporting the resulting drag reduction or base pressure increase without examining the methods in which such a device changes the fluid flow to enact such end results. The current work investigates the underlying physical means in which these devices change the flow around the body so as to reduce the overall drag. A canonical model with square cross section was developed for the purpose of studying the flow field around a blunt based body. The boat-tailed base cavity tested consisted of 4 panels of length equal to half the width of the body extending from the edges of the base at an angle towards the models center axis of 12°. Drag and surface pressure measurements were made at Reynolds numbers based on width from 2.3x105 to 3.6x10 5 in the Clarkson University high-speed wind tunnel over a range of pitch and yaw angles. Cross-stream hotwire wake surveys were used to identify wake width and turbulence intensities aft of the body at Reynolds numbers of 2.3x105 to 3.0x105. Particle Image Velocimetry (PIV) was used to quantify the flow field in the wake of the body, including the mean flow, vorticity, and turbulence measurements. The results indicated that the boat-tailed aft cavity decreases the drag significantly due to increased pressure on the base. Hotwire measurements indicated a reduction in wake width as well as a reduction in turbulence in the wake. PIV measurements indicated a significant reduction in wake turbulence and revealed that there exists a co-flowing stream that exits the cavity parallel to the free stream, reducing the shear in the flow at the flow separation point. The reduction in shear at the separation point indicated the method by which the turbulence was reduced. The reduction in turbulence combined with the reduction in wake size provided the mechanism of drag reduction by limiting the rate of entrainment of fluid in the recirculating wake to the free stream and by limiting the area over which this entrainment occurs.

  8. GIS-aided low flow mapping

    NASA Astrophysics Data System (ADS)

    Saghafian, B.; Mohammadi, A.

    2003-04-01

    Most studies involving water resources allocation, water quality, hydropower generation, and allowable water withdrawal and transfer require estimation of low flows. Normally, frequency analysis on at-station D-day low flow data is performed to derive various T-yr return period values. However, this analysis is restricted to the location of hydrometric stations where the flow discharge is measured. Regional analysis is therefore conducted to relate the at-station low flow quantiles to watershed characteristics. This enables the transposition of low flow quantiles to ungauged sites. Nevertheless, a procedure to map the regional regression relations for the entire stream network, within the bounds of the relations, is particularly helpful when one studies and weighs alternative sites for certain water resources project. In this study, we used a GIS-aided procedure for low flow mapping in Gilan province, part of northern region in Iran. Gilan enjoys a humid climate with an average of 1100 mm annual precipitation. Although rich in water resources, the highly populated area is quite dependent on minimum amount of water to sustain the vast rice farming and to maintain required flow discharge for quality purposes. To carry out the low flow analysis, a total of 36 hydrometric stations with sufficient and reliable discharge data were identified in the region. The average area of the watersheds was 250 sq. km. Log Pearson type 3 was found the best distribution for flow durations over 60 days, while log normal fitted well the shorter duration series. Low flows with return periods of 2, 5, 10, 25, 50, and 100 year were then computed. Cluster analysis identified two homogeneous areas. Although various watershed parameters were examined in factor analysis, the results showed watershed area, length of the main stream, and annual precipitation were the most effective low flow parameters. The regression equations were then mapped with the aid of GIS based on flow accumulation maps and the corresponding spatially averaged values of other parameters over the upslope area of all stream pixels exceeding a certain threshold area. Such map clearly shows the spatial variation of low flow quantiles along the stream network and enables the study of low flow profiles along any stream.

  9. Plasma momentum meter for momentum flux measurements

    DOEpatents

    Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.

    1993-08-24

    An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.

  10. The prediction of noise and installation effects of high-subsonic dual-stream jets in flight

    NASA Astrophysics Data System (ADS)

    Saxena, Swati

    Both military and civil aircraft in service generate high levels of noise. One of the major contributors to this noise generated from the aircraft is the jet engine exhaust. This makes the study of jet noise and methods to reduce jet noise an active research area with the aim of designing quieter military and commercial aircraft. The current stringent aircraft noise regulations imposed by the Federal Aviation Administration (FAA) and other international agencies, have further raised the need to perform accurate jet noise calculations for more reliable estimation of the jet noise sources. The main aim of the present research is to perform jet noise simulations of single and dual-stream jets with engineering accuracy and assess forward flight effects on the jet noise. Installation effects such as caused by the pylon are also studied using a simplified pylon nozzle configuration. Due to advances in computational power, it has become possible to perform turbulent flow simulations of high speed jets, which leads to more accurate noise predictions. In the present research, a hybrid unsteady RANS-LES parallel multi-block structured grid solver called EAGLEJet is written to perform the nozzle flow calculations. The far-field noise calculation is performed using solutions to the Ffowcs Williams and Hawkings equation. The present calculations use meshes with 5 to 11 million grid points and require about three weeks of computing time with about 100 processors. A baseline single stream convergent nozzle and a dual-stream coaxial convergent nozzle are used for the flow and noise analysis. Calculations for the convergent nozzle are performed at a high subsonic jet Mach number of Mj = 0.9, which is similar to the operating conditions for commercial aircraft engines. A parallel flow gives the flight effect, which is simulated with a co-flow Mach number, Mcf varying from 0.0 to 0.28. The grid resolution effects, statistical properties of the turbulence and the heated jet effects ( TTR = 2.7) are studied and related to the noise characteristics of the jet. Both flow and noise predictions show good agreement with PIV and microphone measurements. The potential core lengths and nozzle wall boundary characteristics are studied to understand the differences between the numerical potential core lengths as compared to experiments. The flight velocity exponent, m is calculated from the noise reduction in overall sound pressure levels (OASPL, dB) and relative velocity (V j -- Vcf) at all jet inlet (angular) angles. The variation of the exponent, m at lower (50° to 90°) and higher aft inlet angles (120° to 150°) is studied and compared with available measurements. Previous studies have shown a different variation of the exponent with inlet angles while the current numerical data match well with recent experiments conducted on the same nozzle geometry. Today, turbofans are the most efficient engines in service used in almost all major commercial aircraft. Turbofans have a dual-stream exhaust nozzle with primary and secondary flow whose flow and noise characteristics are different from that of single stream jets. A Boeing-designed coaxial nozzle, with area ratio of As/Ap = 3.0, is used to study dual-stream jet noise in the present research. In this configuration, the primary nozzle extends beyond the secondary nozzle, which is representative of large turbofan engines in commercial service. The flow calculations are performed at high subsonic Mach numbers in the primary and secondary nozzles (Mpj = 0.85, Msj = 0.95) with heated core flow, TTRp = 2.26 and unheated fan flow, TTRs = 1.0. The co-flow of Mcf = 0.2 is used. The subscript p, s and amb represent the primary (core) nozzle, the secondary (fan) nozzle, and the ambient flow conditions, respectively. The statistical properties in the primary and secondary shear layers are studied and compared with those of the single stream jets. It has been found that the eddy convection velocity is lower in dual-stream jets as compared to the single stream jet operating at a similar jet exit Mach number. The phase velocity is higher in the secondary shear layer as compared to primary shear layer. The noise measurements agree well with the predicted data and noise reduction is observed in the presence of co-flow. The variation of the flight velocity exponent is calculated as a function of nozzle inlet angle. The value of the exponent at higher inlet angles is lower as compared to the single stream jets. This suggests that the noise levels are less affected in the peak noise direction in the presence of co-flow in dual-stream jets as compared to single stream jets. Two reference velocities: primary jet exit velocity Vpj and mixed velocity Vmix are considered which result in different absolute values of the exponents. Scaling of the jet spectra is performed at different inlet angles and good collapse has been obtained between the spectra. The installation effects on jet noise are studied using a simplified pylon structure with a dual-stream nozzle. In the presence of a pylon, the azimuthal symmetry of the nozzle is lost and thus the flow characteristics are different as compared to the baseline nozzle. This will result in different noise characteristics of the installed jet.

  11. Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.

    PubMed

    Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan

    2015-09-01

    To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Full Equations (FEQ) model for the solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures

    USGS Publications Warehouse

    Franz, Delbert D.; Melching, Charles S.

    1997-01-01

    The Full EQuations (FEQ) model is a computer program for solution of the full, dynamic equations of motion for one-dimensional unsteady flow in open channels and through control structures. A stream system that is simulated by application of FEQ is subdivided into stream reaches (branches), parts of the stream system for which complete information on flow and depth are not required (dummy branches), and level-pool reservoirs. These components are connected by special features; that is, hydraulic control structures, including junctions, bridges, culverts, dams, waterfalls, spillways, weirs, side weirs, and pumps. The principles of conservation of mass and conservation of momentum are used to calculate the flow and depth throughout the stream system resulting from known initial and boundary conditions by means of an implicit finite-difference approximation at fixed points (computational nodes). The hydraulic characteristics of (1) branches including top width, area, first moment of area with respect to the water surface, conveyance, and flux coefficients and (2) special features (relations between flow and headwater and (or) tail-water elevations, including the operation of variable-geometry structures) are stored in function tables calculated in the companion program, Full EQuations UTiLities (FEQUTL). Function tables containing other information used in unsteady-flow simulation (boundary conditions, tributary inflows or outflows, gate settings, correction factors, characteristics of dummy branches and level-pool reservoirs, and wind speed and direction) are prepared by the user as detailed in this report. In the iterative solution scheme for flow and depth throughout the stream system, an interpolation of the function tables corresponding to the computational nodes throughout the stream system is done in the model. FEQ can be applied in the simulation of a wide range of stream configurations (including loops), lateral-inflow conditions, and special features. The accuracy and convergence of the numerical routines in the model are demonstrated for the case of laboratory measurements of unsteady flow in a sewer pipe. Verification of the routines in the model for field data on the Fox River in northeastern Illinois also is briefly discussed. The basic principles of unsteady-flow modeling and the relation between steady flow and unsteady flow are presented. Assumptions and the limitations of the model also are presented. The schematization of the stream system and the conversion of the physical characteristics of the stream reaches and a wide range of special features into function tables for model applications are described. The modified dynamic-wave equation used in FEQ for unsteady flow in curvilinear channels with drag on minor hydraulic structures and channel constrictions determined from an equivalent energy slope is developed. The matrix equation relating flows and depths at computational nodes throughout the stream system by the continuity (conservation of mass) and modified dynamic-wave equations is illustrated for four sequential examples. The solution of the matrix equation by Newton's method is discussed. Finally, the input for FEQ and the error messages and warnings issued are presented.

  13. Bioassessment in nonperennial streams: Hydrologic stability influences assessment validity

    NASA Astrophysics Data System (ADS)

    Mazor, R. D.; Stein, E. D.; Schiff, K.; Ode, P.; Rehn, A.

    2011-12-01

    Nonperennial streams pose a challenge for bioassessment, as assessment tools developed in perennial streams may not work in these systems. For example, indices of biotic integrity (IBIs) developed in perennial streams may give improper indications of impairment in nonperennial streams, or may be unstable. We sampled benthic macroinvertebrates from 12 nonperennial streams in southern California. In addition, we deployed loggers to obtain continuous measures of flow. 3 sites were revisited over 2 years. For each site, we calculated several metrics, IBIs, and O/E scores to determine if assessments were consistent and valid throughout the summer. Hydrology varied widely among the streams, with several streams drying between sampling events. IBIs suggested good ecological health at the beginning of the study, but declined sharply at some sites. Multivariate ordination suggested that, despite differences among sites, changes in community structure were similar, with shifts from Ephemeroptera, Plecoptera, and Trichoptera to Coleoptera and more tolerant organisms. Site revisits revealed a surprising level of variability, as 2 of the 3 revisited sites had perennial or near-perennial flow in the second year of sampling. IBI scores were more consistent in streams with stable hydrographs than in those with strongly intermittent hydrographs. These results suggest that nonperennial streams can be monitored successfully, but they may require short index periods and distinct metrics from those used in perennial streams. In addition, better approaches to mapping nonperennial streams are required.

  14. Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration

    USGS Publications Warehouse

    Sievert, Nicholas A.; Paukert, Craig P.; Tsang, Yin-Phan; Infante, Dana M.

    2016-01-01

    Understanding the future impacts of climate and land use change are critical for long-term biodiversity conservation. We developed and compared two indices to assess the vulnerability of stream fish in Missouri, USA based on species environmental tolerances, rarity, range size, dispersal ability and on the average connectivity of the streams occupied by each species. These two indices differed in how environmental tolerance was classified (i.e., vulnerability to habitat alteration, changes in stream temperature, and changes to flow regimes). Environmental tolerance was classified based on measured species responses to habitat alteration, and extremes in stream temperatures and flow conditions for one index, while environmental tolerance for the second index was based on species’ traits. The indices were compared to determine if vulnerability scores differed by index or state listing status. We also evaluated the spatial distribution of species classified as vulnerable to habitat alteration, changes in stream temperature, and change in flow regimes. Vulnerability scores were calculated for all 133 species with the trait association index, while only 101 species were evaluated using the species response index, because 32 species lacked data to analyze for a response. Scores from the trait association index were greater than the species response index. This is likely due to the species response index's inability to evaluate many rare species, which generally had high vulnerability scores for the trait association index. The indices were consistent in classifying vulnerability to habitat alteration, but varied in their classification of vulnerability due to increases in stream temperature and alterations to flow regimes, likely because extremes in current climate may not fully capture future conditions and their influence on stream fish communities. Both indices showed higher mean vulnerability scores for listed species than unlisted species, which provided a coarse measure of validation. Our indices classified species identified as being in need of conservation by the state of Missouri as highly vulnerable. The distribution of vulnerable species in Missouri showed consistent patterns between indices, with the more forest-dominated, groundwater fed streams in the Ozark subregion generally having higher numbers and proportions of vulnerable species per site than subregions that were agriculturally dominated with more overland flow. These results suggest that both indices will identify similar habitats as conservation action targets despite discrepancies in the classification of vulnerable species. Our vulnerability assessment provides a framework that can be refined and used in other regions.

  15. Hydrodynamic Suppression of Soot Formation in Laminar Coflowing Jet Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Effects of flow (hydrodynamic) properties on limiting conditions for soot-free laminar non-premixed hydrocarbon/air flames (called laminar soot-point conditions) were studied, emphasizing non-buoyant laminar coflowing jet diffusion flames. Effects of air/fuel-stream velocity ratios were of particular interest; therefore, the experiments were carried out at reduced pressures to minimize effects of flow acceleration due to the intrusion of buoyancy. Test conditions included reactant temperatures of 300 K; ambient pressures of 3.7-49 8 kPa; methane-, acetylene-, ethylene-, propane-, and methane-fueled flames burning in coflowing air with fuel-port diameters of 1.7, 3.2, and 6.4 mm, fuel jet Reynolds numbers of 18-121; air coflow velocities of 0-6 m/s; and air/fuel-stream velocity ratios of 0.003-70. Measurements included laminar soot-point flame lengths, laminar soot-point fuel flow rates, and laminar liftoff conditions. The measurements show that laminar soot-point flame lengths and fuel flow rates can be increased, broadening the range of fuel flow rates where the flames remain soot free, by increasing air/fuel-stream velocity ratios. The mechanism of this effect involves the magnitude and direction of flow velocities relative to the flame sheet where increased air/fuel-stream velocity ratios cause progressive reduction of flame residence times in the fuel-rich soot-formation region. The range of soot-free conditions is limited by both liftoff, particularly at low pressures, and the intrusion of effects of buoyancy on effective air/fuel-stream velocity ratios, particularly at high pressures. Effective correlations of laminar soot- and smoke-point flame lengths were also found in terms of a corrected fuel flow rate parameter, based on simplified analysis of laminar jet diffusion flame structure. The results show that laminar smoke-point flame lengths in coflowing air environments are roughly twice as long as soot-free (blue) flames under comparable conditions due to the presence of luminous soot particles under fuel-lean conditions when smoke-point conditions are approached. This is very similar to earlier findings concerning differences between laminar smoke- and sootpoint flame lengths in still environments.

  16. Streamflow losses in the Black Hills of western South Dakota

    USGS Publications Warehouse

    Hortness, Jon E.; Driscoll, Daniel G.

    1998-01-01

    Losses occur in numerous streams that cross outcrops of various sedimentary rocks that are exposed around the periphery of the Black Hills of South Dakota. These streamflow losses are recognized as an important source of local recharge to regional bedrock aquifers. Most streams lose all of their flow up to some threshold rate. Streamflow is maintained through a loss zone when the threshold is exceeded. Streamflow records for 86 measurement sites are used to determine bedrock loss thresholds for 24 area streams, which have individual loss thresholds that range from negligible (no loss) to as much as 50 cubic feet per second. In addition, insights are provided regarding springflow that occurs in the immediate vicinity of selected loss zones. Most losses occur to outcrops of the Madison Limestone and Minnelusa Formation. Losses to the Deadwood Formation probably are minimal. Losses to the Minnekahta Limestone generally are small; however, they are difficult to quantify because of potential losses to extensive alluvial deposits that commonly are located near Minnekahta outcrops. Loss thresholds for each stream are shown to be relatively constant, without measurable effects from streamflow rates or duration of flow through the loss zones. Calculated losses for measurements made during high-flow conditions generally have larger variability than calculated losses for low-flow conditions; however, consistent relations between losses and streamflow have not been identified. Some of this variability results from the inability to account for tributary inflows and changes in storage. Calculated losses are shown to decrease, in some cases, during periods of extended flow through loss zones. Decreased 'net' losses, however, generally can be attributed to springflow (ground-water discharge) within a loss zone, which may occur during prolonged periods of wet climatic conditions. Losses to unsaturated alluvial deposits located adjacent to the stream channels are found to have significant effects on determination of bedrock losses. Large losses occur in filling initial storage in unsaturated alluvial deposits downstream from loss zones, when bedrock loss thresholds are first exceeded. Losses to alluvial deposits in the range of tens of cubic feet per second and alluvial storage capacities in the range of hundreds of acre-feet are documented. Significant changes in loss thresholds for Grace Coolidge Creek, Spring Creek, and Whitewood Creek are documented. Introduction of large quantities of fine-grained sediments into these stream channels may have affected loss thresholds for various periods of time.

  17. Effects of basin size on low-flow stream chemistry and subsurface contact time in the neversink river watershed, New York

    USGS Publications Warehouse

    Wolock, D.M.; Fan, J.; Lawrence, G.B.

    1997-01-01

    The effects of basin size on low-flow stream chemistry and subsurface contact time were examined for a part of the Neversink River watershed in southern New York State. Acid neutralizing capacity (ANC), the sum of base cation concentrations (SBC), pH and concentrations of total aluminum (Al), dissolved organic carbon (DOC) and silicon (Si) were measured during low stream flow at the outlets of nested basins ranging in size from 0.2 to 166.3 km2. ANC, SBC, pH, Al and DOC showed pronounced changes as basin size increased from 0.2 to 3 km2, but relatively small variations were observed as basin size increased beyond 3 km2. An index of subsurface contact time computed from basin topography and soil hydraulic conductivity also showed pronounced changes as basin size increased from 0.2 to 3 km2 and smaller changes as basin size increased beyond 3 km2. These results suggest that basin size affects low-flow stream chemistry because of the effects of basin size on subsurface contact time. ?? 1997 by John Wiley & Sons, Ltd.

  18. Streaming potential of superhydrophobic microchannels.

    PubMed

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modeling the Effects of Onsite Wastewater Treatment Systems on Nitrate Loads Using SWAT in an Urban Watershed of Metropolitan Atlanta.

    PubMed

    Hoghooghi, Nahal; Radcliffe, David E; Habteselassie, Mussie Y; Jeong, Jaehak

    2017-05-01

    Onsite wastewater treatment systems (OWTSs) can be a source of nitrogen (N) pollution in both surface and ground waters. In metropolitan Atlanta, GA, >26% of homes are on OWTSs. In a previous article, we used the Soil Water Assessment Tool to model the effect of OWTSs on stream flow in the Big Haynes Creek Watershed in metropolitan Atlanta. The objective of this study was to estimate the effect of OWTSs, including failing systems, on nitrate as N (NO-N) load in the same watershed. Big Haynes Creek has a drainage area of 44 km with mainly urban land use (67%), and most of the homes use OWTSs. A USGS gauge station where stream flow was measured daily and NO-N concentrations were measured monthly was used as the outlet. The model was simulated for 12 yr. Overall, the model showed satisfactory daily stream flow and NO-N loads with Nash-Sutcliffe coefficients of 0.62 and 0.58 for the calibration period and 0.67 and 0.33 for the validation period at the outlet of the Big Haynes Watershed. Onsite wastewater treatment systems caused an average increase in NO-N load of 23% at the watershed scale and 29% at the outlet of a subbasin with the highest density of OWTSs. Failing OWTSs were estimated to be 1% of the total systems and did not have a large impact on stream flow or NO-N load. The NO-N load was 74% of the total N load in the watershed, indicating the important effect of OWTSs on stream loads in this urban watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Estimation of low-flow statistics at ungaged sites on streams in the Lower Hudson River Basin, New York, from data in geographic information systems

    USGS Publications Warehouse

    Randall, Allan D.; Freehafer, Douglas A.

    2017-08-02

    A variety of watershed properties available in 2015 from geographic information systems were tested in regression equations to estimate two commonly used statistical indices of the low flow of streams, namely the lowest flows averaged over 7 consecutive days that have a 1 in 10 and a 1 in 2 chance of not being exceeded in any given year (7-day, 10-year and 7-day, 2-year low flows). The equations were based on streamflow measurements in 51 watersheds in the Lower Hudson River Basin of New York during the years 1958–1978, when the number of streamflow measurement sites on unregulated streams was substantially greater than in subsequent years. These low-flow indices are chiefly a function of the area of surficial sand and gravel in the watershed; more precisely, 7-day, 10-year and 7-day, 2-year low flows both increase in proportion to the area of sand and gravel deposited by glacial meltwater, whereas 7-day, 2-year low flows also increase in proportion to the area of postglacial alluvium. Both low-flow statistics are also functions of mean annual runoff (a measure of net water input to the watershed from precipitation) and area of swamps and poorly drained soils in or adjacent to surficial sand and gravel (where groundwater recharge is unlikely and riparian water loss to evapotranspiration is substantial). Small but significant refinements in estimation accuracy resulted from the inclusion of two indices of stream geometry, channel slope and length, in the regression equations. Most of the regression analysis was undertaken with the ordinary least squares method, but four equations were replicated by using weighted least squares to provide a more realistic appraisal of the precision of low-flow estimates. The most accurate estimation equations tested in this study explain nearly 84 and 87 percent of the variation in 7-day, 10-year and 7-day, 2-year low flows, respectively, with standard errors of 0.032 and 0.050 cubic feet per second per square mile. The equations use natural values of streamflow and watershed properties; logarithmic transformations yielded less accurate equations inconsistent with some conceptualized relationships.

  1. Increasing synchrony of high temperature and low flow in western North American streams: Double trouble for coldwater biota?

    Treesearch

    Ivan Arismendi; Mohammad Safeeq; Sherri L. Johnson; Jason B Dunham; Roy Haggerty

    2013-01-01

    Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and...

  2. Model based hydropower gate operation for mitigation of CSO impacts by means of river base flow increase.

    PubMed

    Achleitner, S; De Toffol, S; Engelhard, C; Rauch, W

    2005-01-01

    In river stretches being subjected to flow regulation, usually for the purpose of energy production (e.g. Hydropower) or flood protection (river barrage), a special measure can be taken against the effect of combined sewer overflows (CSOs). The basic idea is the temporal increase of the river base flow (during storm weather) as an in-stream measure for mitigation of CSO spilling. The focus is the mitigation of the negative effect of acute pollution of substances. The measure developed can be seen as an application of the classic real time control (RTC) concept onto the river system. Upstream gate operation is to be based on real time monitoring and forecasting of precipitation. The main objective is the development of a model based predictive control system for the gate operation, by modelling of the overall wastewater system (incl. the receiving water). The main emphasis is put on the operational strategy and the appropriate short-term forecast of spilling events. The potential of the measure is tested for the application of the operational strategy and its ecological and economic feasibility. The implementation of such an in-stream measure into the hydropower's operational scheme is unique. Advantages are (a) the additional in-stream dilution of acute pollutants entering the receiving water and (b) the resulting minimization of the required CSO storage volume.

  3. Development of stream-subsurface flow module in sub-daily simulation of Escherichia coli using SWAT

    NASA Astrophysics Data System (ADS)

    Kim, Minjeong; Boithias, Laurie; Cho, Kyung Hwa; Silvera, Norbert; Thammahacksa, Chanthamousone; Latsachack, Keooudone; Rochelle-Newall, Emma; Sengtaheuanghoung, Oloth; Pierret, Alain; Pachepsky, Yakov A.; Ribolzi, Olivier

    2017-04-01

    Water contaminated with pathogenic bacteria poses a large threat to public health, especially in the rural areas in the tropics where sanitation and drinking water facilities are often lacking. Several studies have used the Soil and Water Assessment Tool (SWAT) to predict the export of in-stream bacteria at a watershed-scale. However, SWAT is limited to in-stream processes, such as die-off, resuspension and, deposition; and it is usually implemented on a daily time step using the SCS Curve Number method, making it difficult to explore the dynamic fate and transport of bacteria during short but intense events such as flash floods in tropical humid montane headwaters. To address these issues, this study implemented SWAT on an hourly time step using the Green-Ampt infiltration method, and tested the effects of subsurface flow (LATQ+GWQ in SWAT) on bacterial dynamics. We applied the modified SWAT model to the 60-ha Houay Pano catchment in Northern Laos, using sub-daily rainfall and discharge measurements, electric conductivity-derived fractions of overland and subsurface flows, suspended sediments concentrations, and the number of fecal indicator organism Escherichia coli monitored at the catchment outlet from 2011 to 2013. We also took into account land use change by delineating the watershed with the 3-year composite land use map. The results show that low subsurface flow of less than 1 mm recovered the underestimation of E. coli numbers during the dry season, while high subsurface flow caused an overestimation during the wet season. We also found that it is more reasonable to apply the stream-subsurface flow interaction to simulate low in-stream bacteria counts. Using fecal bacteria to identify and understand the possible interactions between overland and subsurface flows may well also provide some insight into the fate of other bacteria, such as those involved in biogeochemical fluxes both in-stream and in the adjacent soils and hyporheic zones.

  4. Klinkenberg effect in hydrodynamics of gas flow through anisotropic porous materials

    NASA Astrophysics Data System (ADS)

    Wałowski, Grzegorz; Filipczak, Gabriel

    2017-10-01

    This study discusses results of experiments on hydrodynamic assessment of gas flow through backbone (skeletal) porous materials with an anisotropic structure. The research was conducted upon materials of diversified petrographic characteristics, both natural origin (rocky, pumice) and process materials (char and coke). The study was conducted for a variety of hydrodynamic conditions, using air, as well as for nitrogen and carbon dioxide. The basis for assessing hydrodynamics of gas flow through porous material was a gas stream that results from the pressure forcing such flow. The results of measurements indicate a clear impact of the type of material on the gas permeability, and additionally - as a result of their anisotropic internal structure - to a significant effect of the flow direction on the value of gas stream.

  5. Large wood mobility processes in low-order Chilean river channels

    NASA Astrophysics Data System (ADS)

    Iroumé, Andrés; Mao, Luca; Andreoli, Andrea; Ulloa, Héctor; Ardiles, María Paz

    2015-01-01

    Large wood (LW) mobility was studied over several time periods in channel segments of four low-order mountain streams, southern Chile. All wood pieces found within the bankfull channels and on the streambanks extending into the channel with dimensions more than 10 cm in diameter and 1 m in length were measured and their position was referenced. Thirty six percent of measured wood pieces were tagged to investigate log mobility. All segments were first surveyed in summer and then after consecutive rainy winter periods. Annual LW mobility ranged between 0 and 28%. Eighty-four percent of the moved LW had diameters ≤ 40 cm and 92% had lengths ≤ 7 m. Large wood mobility was higher in periods when maximum water level (Hmax) exceeded channel bankfull depth (HBk) than in periods with flows less than HBk, but the difference was not statistically significant. Dimensions of moved LW showed no significant differences between periods with flows exceeding and with flows less than bankfull stage. Statistically significant relationships were found between annual LW mobility (%) and unit stream power (for Hmax) and Hmax/HBk. The mean diameter of transported wood pieces per period was significantly correlated with unit stream power for H15% and H50% (the level above which the flow remains for 15 and 50% of the time, respectively). These results contribute to an understanding of the complexity of LW mobilization processes in mountain streams and can be used to assess and prevent potential damage caused by LW mobilization during floods.

  6. 3D Numerical simulation of bed morphological responses to complex in-streamstructures

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Liu, X.

    2017-12-01

    In-stream structures are widely used in stream restoration for both hydraulic and ecologicalpurposes. The geometries of the structures are usually designed to be extremely complex andirregular, so as to provide nature-like physical habitat. The aim of this study is to develop anumerical model to accurately predict the bed-load transport and the morphological changescaused by the complex in-stream structures. This model is developed in the platform ofOpenFOAM. In the hydrodynamics part, it utilizes different turbulence models to capture thedetailed turbulence information near the in-stream structures. The technique of immersedboundary method (IBM) is efficiently implemented in the model to describe the movable bendand the rigid solid body of in-stream structures. With IBM, the difficulty of mesh generation onthe complex geometry is greatly alleviated, and the bed surface deformation is able to becoupled in to flow system. This morphodynamics model is firstly validated by simple structures,such as the morphology of the scour in log-vane structure. Then it is applied in a more complexstructure, engineered log jams (ELJ), which consists of multiple logs piled together. Thenumerical results including turbulence flow information and bed morphological responses areevaluated against the experimental measurement within the exact same flow condition.

  7. Endocrine disrupting compounds in streams in Israel and the Palestinian West Bank: Implications for transboundary basin management.

    PubMed

    Dotan, Pniela; Yeshayahu, Maayan; Odeh, Wa'd; Gordon-Kirsch, Nina; Groisman, Ludmila; Al-Khateeb, Nader; Abed Rabbo, Alfred; Tal, Alon; Arnon, Shai

    2017-12-15

    Endocrine disrupting compounds (EDCs) frequently enter surface waters via discharges from wastewater treatment plants (WWTPs), as well as from industrial and agricultural activities, creating environmental and health concerns. In this study, selected EDCs were measured in water and sediments along two transboundary streams flowing from the Palestinian Authority (PA) into Israel (the Zomar-Alexander and Hebron-Beer Sheva Streams). We assessed how the complicated conflict situation between Israel and the PA and the absence of a coordinated strategy and joint stream management commission influence effective EDC control. Both streams receive raw Palestinian wastewater in their headwaters, which flows through rural areas and is treated via sediment settling facilities after crossing the 1949 Armistice Agreement Line. Four sampling campaigns were conducted over two years, with concentrations of selected EDCs measured in both the water and the sediments. Results show asymmetrical pollution profiles due to socio-economic differences and contrasting treatment capacities. No in-stream attenuation was observed along the stream and in the sediments within the Palestinian region. After sediment settling in treatment facilities at the Israeli border, however, significant reductions in the EDC concentrations were measured both in the sediments and in the water. Differences in sedimentation technologies had a substantial effect on EDC removal at the treatment location, positively affecting the streams' ability to further remove EDCs downstream. The prevailing approach to addressing the Israeli-Palestinian transboundary wastewater contamination reveals a narrow perspective among water managers who on occasion only take local interests into consideration, with interventions focused solely on improving stream water quality in isolated segments. Application of the "proximity principle" through the establishment of WWTPs at contamination sources constitutes a preferable strategy for reducing contamination by EDCs and other pollutants to ensure minimization of public health risks due to the pollution of streams and underlying potable groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Rehabilitation of a debris-flow prone mountain stream in southwestern China - Strategies, effects and implications

    NASA Astrophysics Data System (ADS)

    Yu, Guo-an; Huang, He Qing; Wang, Zhaoyin; Brierley, Gary; Zhang, Kang

    2012-01-01

    SummaryRehabilitation of Shengou Creek, a small, steep mountain stream in southwestern China that is prone to debris flows, started more than 30 years ago through an integrated program of engineering applications (check dams and guiding dikes), biological measures (reforestation), and social measures (reducing human disturbance). Small and medium-sized check dams and guiding dikes were constructed on key upper and middle sections of the creek to stabilize hillslopes and channel bed. Meanwhile, Leucaena leucocephala, a drought-tolerant, fast-growing, and highly adaptive plant species, was introduced to promote vegetation recovery in the watershed. The collective community structure of tree, shrub, and herb assemblages in the artificial L. leucocephala forest, which developed after 7 years, enhanced soil structure and drastically reduced soil erosion on hillslopes. Cultivation of steep land was strictly controlled in the basin, and some inhabitants were encouraged to move from upstream areas to downstream towns to reduce disturbance. These integrated measures reduced sediment supply from both hillslopes and upstream channels, preventing sediment-related hazards. The development of natural streambed resistance structures (mainly step-pool systems) and luxuriant riparian vegetation aided channel stability, diversity of stream habitat, and ecological maintenance in the creek. These findings are compared with Jiangjia and Xiaobaini Ravines, two adjacent non-rehabilitated debris-flow streams which have climate and geomorphologic conditions similar to Shengou Creek. Habitat diversity indices, taxa richness, biodiversity, and bio-community indices are much higher in Shengou Creek relative to Jiangjia and Xiaobaini Ravines, attesting to the effectiveness of rehabilitation measures.

  9. Monitoring of stage and velocity, for computation of discharge in the Summit Conduit near Summit, Illinois, 2010-2012

    USGS Publications Warehouse

    Johnson, Kevin K.; Goodwin, Greg E.

    2013-01-01

    Lake Michigan diversion accounting is the process used by the U. S. Army Corps of Engineers to quantify the amount of water that is diverted from the Lake Michigan watershed into the Illinois and Mississippi River Basins. A network of streamgages within the Chicago area waterway system monitor tributary river flows and the major river flow on the Chicago Sanitary and Ship Canal near Lemont as one of the instrumental tools used for Lake Michigan diversion accounting. The mean annual discharges recorded by these streamgages are used as additions or deductions to the mean annual discharge recorded by the main stream gaging station currently used in the Lake Michigan diversion accounting process, which is the Chicago Sanitary and Ship Canal near Lemont, Illinois (station number 05536890). A new stream gaging station, Summit Conduit near Summit, Illinois (station number 414757087490401), was installed on September 23, 2010, for the purpose of monitoring stage, velocity, and discharge through the Summit Conduit for the U.S. Army Corps of Engineers in accordance with Lake Michigan diversion accounting. Summit Conduit conveys flow from a small part of the lower Des Plaines River watershed underneath the Des Plaines River directly into the Chicago Sanitary and Ship Canal. Because the Summit Conduit discharges into the Chicago Sanitary and Ship Canal upstream from the stream gaging station at Lemont, Illinois, but does not contain flow diverted from the Lake Michigan watershed, it is considered a flow deduction to the discharge measured by the Lemont stream gaging station in the Lake Michigan diversion accounting process. This report offers a technical summary of the techniques and methods used for the collection and computation of the stage, velocity, and discharge data at the Summit Conduit near Summit, Illinois stream gaging station for the 2011 and 2012 Water Years. The stream gaging station Summit Conduit near Summit, Illinois (station number 414757087490401) is an example of a nonstandard stream gage. Traditional methods of equating stage to discharge historically were not effective. Examples of the nonstandard conditions include the converging tributary flows directly upstream of the gage; the trash rack and walkway near the opening of the conduit introducing turbulence and occasionally entraining air bubbles into the flow; debris within the conduit creating conditions of variable backwater and the constant influx of smaller debris that escapes the trash rack and catches or settles in the conduit and on the equipment. An acoustic Doppler velocity meter was installed to measure stage and velocity to compute discharge. The stage is used to calculate area based the stage-area rating. The index-velocity from the acoustic Doppler velocity meter is applied to the velocity-velocity rating and the product of the two rated values is a rated discharge by the index-velocity method. Nonstandard site conditions prevalent at the Summit Conduit stream gaging station generally are overcome through the index-velocity method. Despite the difficulties in gaging and measurements, improvements continue to be made in data collection, transmission, and measurements. Efforts to improve the site and to improve the ratings continue to improve the quality and quantity of the data available for Lake Michigan diversion accounting.

  10. Dissolved oxygen concentration profiles in the hyporheic zone through the use of a high density fiber optic measurement network

    NASA Astrophysics Data System (ADS)

    Reeder, W. J.; Quick, A. M.; Farrell, T. B.; Benner, S. G.; Feris, K. P.; Tonina, D.

    2013-12-01

    The hyporheic zone (HZ) is a potentially important source of the potent greenhouse gas, nitrous oxide (N2O); stream processes may account for up to 10% of global anthropogenic N2O emissions. However, mechanistic understanding and predictive quantification of this gas flux is hampered by complex temporally and spatially variable interactions between flow dynamics and biogeochemical processes. Reactive inorganic nitrogen (Nr) is typically present at low concentrations in natural stream waters, but many rural and urban streams suffer from an excess of Nr, typically in the form of ammonium (NH4+) and nitrate (NO3-). These reactive species are either assimilated by living biomass or transformed by microbial processes. The two primary microbial transformations of Nr are nitrification (NH4+ to NO3-) and denitrification (NO3- to N2). Denitrification, which occurs almost exclusively in the anoxic zone of the HZ, permanently removes between 30-70% of all Nr entering streams, other mechanisms may retain nitrogen. The mass transport of reactive species (i.e. O2, NO3- and N2O) by hyporheic flow strongly influences reaction rates, residence times, and subsequent N2O flux. By extension, stream flow and channel morphology presumably control, and may be effective predictors of, N2O generation rates. By recreating the stream processes in the University of Idaho flume, we are able to control the bed morphology, fluxes and residence times through the HZ and concentrations of Nr from exogenous (stream water) and endogenous (organic material in the streambed) sources. For the present experiment, the flume was divided into three streams, each with different morphologies (3, 6 and 9cm dunes) and all using the same source water. Stream water for this first experimental phase had no significant loading of Nr. As such, all reaction products were the result of endogenous sources of Nr. To measure dissolved oxygen (DO) concentrations we deployed 120 channels of a novel, fiber-optic optode system which was coupled with an advanced optical multiplexer that allowed us to cycle continuously through all 120 channels. Using this approach, we were able to accurately map the evolution and extent of the anoxic regions within the HZ and demonstrate that bed morphology exhibits significant control over residence times and the spatial temporal evolution of the anoxic region. In addition to the DO measurements, we deployed 240 Rhizon water samplers to extract pore water, which we used to measure Nr and N2O concentrations, and an ion Clark-type electrode sensor to measure N2O concentrations at the streambed surface (results discussed separately). Integrating these various results will allow us to refine the existing models for N2O emissions from urban and rural streams.

  11. Measuring flood discharge in unstable stream channels using ground-penetrating radar

    USGS Publications Warehouse

    Spicer, K.R.; Costa, J.E.; Placzek, G.

    1997-01-01

    Field experiments were conducted to test the ability of ground-penetrating radar (GPR) to measure stream-channel cross sections at high flows without the necessity of placing instruments in the water. Experiments were conducted at four U.S. Geological Survey gaging stations in southwest Washington State. With the GPR antenna suspended above the water surface from a bridge or cableway, traverses were made across stream channels to collect radar profile plots of the streambed. Subsequent measurements of water depth were made using conventional depth-measuring equipment (weight and tape) and were used to calculate radar signal velocities. Other streamflow-parameter data were collected to examine their relation to radar signal velocity and to claritv of streambed definition. These initial tests indicate that GPR is capable of producing a reasonably accurate (??20%) stream-channel profile and discharge far more quickly than conventional stream-gaging procedures, while avoiding the problems and hazards associated with placing instruments in the water.

  12. Optical calorimetry in microfluidic droplets.

    PubMed

    Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I

    2018-05-29

    A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.

  13. Automatic tracer-dilution method used for stage-discharge ratings and streamflow hydrographs on small Iowa streams

    USGS Publications Warehouse

    Soenksen, P.J.

    1990-01-01

    Tracer-dilution discharge measurements were made during 14 flow periods at six stations from 1986 through 1988 water years. Ratings were developed at three stations with the aid of these measurements. A loop rating was identified at one station during rapidly-changing flow conditions. Incomplete mixing and dye loss to sediment apparently were problems at some stations. Stage hydrographs were recorded for 38 flows at seven stations. Limited data on background fluorescence during high flows were also obtained.

  14. Groundwater, springs, and stream flow generation in an alpine meadow of a tropical glacierized catchment

    NASA Astrophysics Data System (ADS)

    Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.

    2013-12-01

    Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by discharge measurements and isotopic mixing. However, we expect that as streams flow down through extensive meadows and wetlands in many Cordillera Blanca valleys, meadow groundwater is a more significant contributor to streamflow. Results from this small, high meadow in Llanganuco will be compared to a larger and lower-elevation meadow system in the Quilcayhuanca valley.

  15. A technique for measuring hypersonic flow velocity profiles

    NASA Technical Reports Server (NTRS)

    Gartrell, L. R.

    1973-01-01

    A technique for measuring hypersonic flow velocity profiles is described. This technique utilizes an arc-discharge-electron-beam system to produce a luminous disturbance in the flow. The time of flight of this disturbance was measured. Experimental tests were conducted in the Langley pilot model expansion tube. The measured velocities were of the order of 6000 m/sec over a free-stream density range from 0.000196 to 0.00186 kg/cu m. The fractional error in the velocity measurements was less than 5 percent. Long arc discharge columns (0.356 m) were generated under hypersonic flow conditions in the expansion-tube modified to operate as an expansion tunnel.

  16. Strong wave/mean-flow coupling in baroclinic acoustic streaming

    NASA Astrophysics Data System (ADS)

    Chini, Greg; Michel, Guillaume

    2017-11-01

    Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.

  17. Quantifying the production of dissolved organic nitrogen in headwater streams using 15N tracer additions

    Treesearch

    Laura T. Johnson; Jennifer L. Tank; Robert O. Hall; Patrick J. Mullholland; Stephen K. Hamilton; H. Maurice Valett; Jackson R. Webster; Melody J. Bernot; William H. McDowell; Bruce J. Peterson; Suzanne M. Thomas

    2013-01-01

    Most nitrogen (N) assimilation in lake and marine ecosystems is often subsequently released via autochthonous dissolved organic nitrogen (DON) production, but autochthonous DON production has yet to be quantified in flowing waters. We measured in-stream DON production following 24 h 15N-nitrate (NO3-...

  18. 40 CFR 98.426 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... measure CO2 concentration. (7) The location of the flow meter in your process chain in relation to the... through subsequent flow meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons...

  19. Microhabitat and biology of Sphaerium striatinum in a central New York stream

    USGS Publications Warehouse

    Dittman, Dawn E.; Johnson, James H.; Nack, Christopher C.

    2018-01-01

    In many lotic systems, drastic declines in freshwater bivalve populations, including fingernail clams (Sphaeriidae), have created concerns about biodiversity and future ecosystem services. We examined the local occurrence of the historically common fingernail clam, Sphaerium striatinum, in a central New York stream. We sampled the density of sphaeriids and measured the associated habitat variables (substrate, depth, water flow) to test within-stream multivariate benthic microhabitat association. Size distribution, density, and diel feeding periodicity were measured as focal aspects of fingernail clam biology and ecology. S. striatinum tended to be found in microhabitats that had harder substrates and faster flow. The Labrador Creek fingernail clam local population had positive indicators (size distribution, density). There was significant diel periodicity in feeding behavior. The clams fed most actively during the 0400–0800 h periods. This kind of behavioral periodicity can indicate a significant ecological interaction between predators and bivalve prey. Increased understanding of the behavioral ecology of small native freshwater bivalves in an unimpacted headwater stream is a fundamental building block for development of overall ecological conservation goals for freshwater bivalves and their lotic habitats.

  20. Groundwater recharge in Wisconsin--Annual estimates for 1970-99 using streamflow data

    USGS Publications Warehouse

    Gebert, Warren A.; Walker, John F.; Hunt, Randall J.

    2011-01-01

    The groundwater component of streamflow is important because it is indicative of the sustained flow of a stream during dry periods, is often of better quality, and has a smaller range of temperatures, than surface contributions to streamflow. All three of these characteristics are important to the health of aquatic life in a stream. If recharge to the aquifers is to be preserved or enhanced, it is important to understand the present partitioning of total streamflow into base flow and stormflow. Additionally, an estimate of groundwater recharge is important for understanding the flows within a groundwater system-information important for water availability/sustainability or other assessments. The U.S. Geological Survey operates numerous continuous-record streamflow-gaging stations (Hirsch and Norris, 2001), which can be used to provide estimates of average annual base flow. In addition to these continuous record sites, Gebert and others (2007) showed that having a few streamflow measurements in a basin can appreciably reduce the error in a base-flow estimate for that basin. Therefore, in addition to the continuous-record gaging stations, a substantial number of low-flow partial-record sites (6 to 15 discharge measurements) and miscellaneous-measurement sites (1 to 3 discharge measurements) that were operated during 1964-90 throughout the State were included in this work to provide additional insight into spatial distribution of annual base flow and, in turn, groundwater recharge.

  1. Analysis of low flows and selected methods for estimating low-flow characteristics at partial-record and ungaged stream sites in western Washington

    USGS Publications Warehouse

    Curran, Christopher A.; Eng, Ken; Konrad, Christopher P.

    2012-01-01

    Regional low-flow regression models for estimating Q7,10 at ungaged stream sites are developed from the records of daily discharge at 65 continuous gaging stations (including 22 discontinued gaging stations) for the purpose of evaluating explanatory variables. By incorporating the base-flow recession time constant τ as an explanatory variable in the regression model, the root-mean square error for estimating Q7,10 at ungaged sites can be lowered to 72 percent (for known values of τ), which is 42 percent less than if only basin area and mean annual precipitation are used as explanatory variables. If partial-record sites are included in the regression data set, τ must be estimated from pairs of discharge measurements made during continuous periods of declining low flows. Eight measurement pairs are optimal for estimating τ at partial-record sites, and result in a lowering of the root-mean square error by 25 percent. A low-flow survey strategy that includes paired measurements at partial-record sites requires additional effort and planning beyond a standard strategy, but could be used to enhance regional estimates of τ and potentially reduce the error of regional regression models for estimating low-flow characteristics at ungaged sites.

  2. Estimation of snow and glacier melt contribution to Liddar stream in a mountainous catchment, western Himalaya: an isotopic approach.

    PubMed

    Jeelani, Gh; Shah, Rouf A; Jacob, Noble; Deshpande, Rajendrakumar D

    2017-03-01

    Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5-66 %) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (∼51 %) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5 %). However, the monthly contribution of glacier melt to stream flow reaches up to 19 % in September during years of less persistent snow pack.

  3. Documentation of a computer program to simulate stream-aquifer relations using a modular, finite-difference, ground-water flow model

    USGS Publications Warehouse

    Prudic, David E.

    1989-01-01

    Computer models are widely used to simulate groundwater flow for evaluating and managing the groundwater resource of many aquifers, but few are designed to also account for surface flow in streams. A computer program was written for use in the US Geological Survey modular finite difference groundwater flow model to account for the amount of flow in streams and to simulate the interaction between surface streams and groundwater. The new program is called the Streamflow-Routing Package. The Streamflow-Routing Package is not a true surface water flow model, but rather is an accounting program that tracks the flow in one or more streams which interact with groundwater. The program limits the amount of groundwater recharge to the available streamflow. It permits two or more streams to merge into one with flow in the merged stream equal to the sum of the tributary flows. The program also permits diversions from streams. The groundwater flow model with the Streamflow-Routing Package has an advantage over the analytical solution in simulating the interaction between aquifer and stream because it can be used to simulate complex systems that cannot be readily solved analytically. The Streamflow-Routing Package does not include a time function for streamflow but rather streamflow entering the modeled area is assumed to be instantly available to downstream reaches during each time period. This assumption is generally reasonable because of the relatively slow rate of groundwater flow. Another assumption is that leakage between streams and aquifers is instantaneous. This assumption may not be reasonable if the streams and aquifers are separated by a thick unsaturated zone. Documentation of the Streamflow-Routing Package includes data input instructions; flow charts, narratives, and listings of the computer program for each of four modules; and input data sets and printed results for two test problems, and one example problem. (Lantz-PTT)

  4. Development of an aerodynamic measurement system for hypersonic rarefied flows

    NASA Astrophysics Data System (ADS)

    Ozawa, T.; Fujita, K.; Suzuki, T.

    2015-01-01

    A hypersonic rarefied wind tunnel (HRWT) has lately been developed at Japan Aerospace Exploration Agency in order to improve the prediction of rarefied aerodynamics. Flow characteristics of hypersonic rarefied flows have been investigated experimentally and numerically. By conducting dynamic pressure measurements with pendulous models and pitot pressure measurements, we have probed flow characteristics in the test section. We have also improved understandings of hypersonic rarefied flows by integrating a numerical approach with the HRWT measurement. The development of the integration scheme between HRWT and numerical approach enables us to estimate the hypersonic rarefied flow characteristics as well as the direct measurement of rarefied aerodynamics. Consequently, this wind tunnel is capable of generating 25 mm-core flows with the free stream Mach number greater than 10 and Knudsen number greater than 0.1.

  5. Trends in Streamflow Characteristics at Long-Term Gaging Stations, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2004-01-01

    The surface-water resources of Hawaii have significant cultural, aesthetic, ecologic, and economic importance. Proper management of the surface-water resources of the State requires an understanding of the long- and short-term variability in streamflow characteristics that may occur. The U.S. Geological Survey maintains a network of stream-gaging stations in Hawaii, including a number of stations with long-term streamflow records that can be used to evaluate long-term trends and short-term variability in flow characteristics. The overall objective of this study is to obtain a better understanding of long-term trends and variations in streamflow on the islands of Hawaii, Maui, Molokai, Oahu, and Kauai, where long-term stream-gaging stations exist. This study includes (1) an analysis of long-term trends in flows (both total flow and estimated base flow) at 16 stream-gaging stations, (2) a description of patterns in trends within the State, and (3) discussion of possible regional factors (including rainfall) that are related to the observed trends and variations. Results of this study indicate the following: 1. From 1913 to 2002 base flows generally decreased in streams for which data are available, and this trend is consistent with the long-term downward trend in annual rainfall over much of the State during that period. 2. Monthly mean base flows generally were above the long-term average from 1913 to the early 1940s and below average after the early 1940s to 2002, and this pattern is consistent with the detected downward trends in base flows from 1913 to 2002. 3. Long-term downward trends in base flows of streams may indicate a reduction in ground-water discharge to streams caused by a long-term decrease in ground-water storage and recharge. 4. From 1973 to 2002, trends in streamflow were spatially variable (up in some streams and down in others) and, with a few exceptions, generally were not statistically significant. 5. Short-term variability in streamflow is related to the seasons and to the EL Ni?o-Southern Oscillation phenomenon that may be partly modulated by the phase of the Pacific Decadal Oscillation. 6. At almost all of the long-term stream-gaging stations considered in this study, average total flow (and to a lesser extent average base flow) during the winter months of January to March tended to be low following El Ni?o periods and high following La Ni?a periods, and this tendency was accentuated during positive phases of the Pacific Decadal Oscillation. 7. The El Ni?o-Southern Oscillation phenomenon occurs at a relatively short time scale (a few to several years) and appears to be more strongly related to processes controlling rainfall and direct runoff than ground-water storage and base flow. Long-term downward trends in base flows of streams may indicate a reduction in ground-water storage and recharge. Because ground water provides about 99 percent of Hawaii's domestic drinking water, a reduction in ground-water storage and recharge has serious implications for drinking-water availability. In addition, reduction in stream base flows may reduce habitat availability for native stream fauna and water availability for irrigation purposes. Further study is needed to determine (1) whether the downward trends in base flows from 1913 to 2002 will continue or whether the observed pattern is part of a long-term cycle in which base flows may eventually return to levels measured during 1913 to the early 1940s, (2) the physical causes for the detected trends and variations in streamflow, and (3) whether regional climate indicators successfully can be used to predict streamflow trends and variations throughout the State. These needs for future study underscore the importance of maintaining a network of long-term-trend stream-gaging stations in Hawaii.

  6. Experimental investigation of shock-cell noise reduction for dual-stream nozzles in simulated flight comprehensive data report. Volume 1: Test nozzles and acoustic data

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.

    1984-01-01

    Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Acoustic behavior as a function of nozzle flow passage geometry was measured. The acoustic data consist primarily of 1/3 octave band sound pressure levels and overall sound pressure levels. Detailed schematics and geometric characteristics of the six scale model nozzle configurations and acoustic test point definitions are presented. Tabulation of aerodynamic test conditions and a computer listing of the measured acoustic data are displayed.

  7. Regionalization of winter low-flow characteristics of Tennessee streams

    USGS Publications Warehouse

    Bingham, R.H.

    1986-01-01

    Procedures were developed for estimating winter (December-April) low flows at ungaged stream sites in Tennessee based on surface geology and drainage area size. One set of equations applies to West Tennessee streams, and another set applies to Middle and East Tennessee streams. The equations do not apply to streams where flow is significantly altered by the activities of man. Standard errors of estimate of equations for West Tennessee are 22% - 35% and for middle and East Tennessee 31% - 36%. Statistical analyses indicate that summer low-flow characteristics are the same as annual low-flow characteristics, and that winter low flows are larger than annual low flows. Streamflow-recession indexes, in days per log cycle of decrease in discharge, were used to account for effects of geology on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that contribute to streamflows during periods of no surface runoff. Streamflow-recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)

  8. Quantitative measurement of stream respiration using the resazurin-resorufin system

    NASA Astrophysics Data System (ADS)

    Gonzalez Pinzon, R. A.; Acker, S.; Haggerty, R.; Myrold, D.

    2011-12-01

    After three decades of active research in hydrology and stream ecology, the relationship between stream solute transport, metabolism and nutrient dynamics is still unresolved. These knowledge gaps obscure the function of stream ecosystems and how they interact with other landscape processes. To date, measuring rates of stream metabolism is accomplished with techniques that have vast uncertainties and are not spatially representative. These limitations mask the role of metabolism in nutrient processing. Clearly, more robust techniques are needed to develop mechanistic relationships that will ultimately improve our fundamental understanding of in-stream processes and how streams interact with other ecosystems. We investigated the "metabolic window of detection" of the Resazurin (Raz)-Resorufin (Rru) system (Haggerty et al., 2008, 2009). Although previous results have shown that the transformation of Raz to Rru is strongly correlated with respiration, a quantitative relationship between them is needed. We investigated this relationship using batch experiments with pure cultures (aerobic and anaerobic) and flow-through columns with incubated sediments from four different streams. The results suggest that the Raz-Rru system is a suitable approach that will enable hydrologists and stream ecologists to measure in situ and in vivo respiration at different scales, thus opening a reliable alternative to investigate how solute transport and stream metabolism control nutrient processing.

  9. Variability, trends, and teleconnections of stream flows with large-scale climate signals in the Omo-Ghibe River Basin, Ethiopia.

    PubMed

    Degefu, Mekonnen Adnew; Bewket, Woldeamlak

    2017-04-01

    This study assesses variability, trends, and teleconnections of stream flow with large-scale climate signals (global sea surface temperatures (SSTs)) for the Omo-Ghibe River Basin of Ethiopia. Fourteen hydrological indices of variability and extremes were defined from daily stream flow data series and analyzed for two common periods, which are 1972-2006 for 5 stations and 1982-2006 for 15 stations. The Mann-Kendall's test was used to detect trends at 0.05 significance level, and simple correlation analysis was applied to evaluate associations between the selected stream flow indices and SSTs. We found weak and mixed (upward and downward) trend signals for annual and wet (Kiremt) season flows. Indices generated for high-flow (flood) magnitudes showed the same weak trend signals. However, trend tests for flood frequencies and low-flow magnitudes showed little evidences of increasing change. It was also found that El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the major anomalies affecting stream flow variability in the Omo-Ghibe Basin. The strongest associations are observed between ENSO/Niño3.4 and the stream flow in August and September, mean Kiremt flow (July-September), and flood frequency (peak over threshold on average three peaks per year (POT3_Fre)). The findings of this study provide a general overview on the long-term stream flow variability and predictability of stream flows for the Omo-Ghibe River Basin.

  10. Evaluating ecological effects of small-scale agricultural diversions on stream flow in Coastal California

    NASA Astrophysics Data System (ADS)

    Deitch, M. J.; Kondolf, G. M.; Merenlender, A. M.

    2005-05-01

    In the absence of summer precipitation, grape growers in the California wine country often pump water directly from the stream for frost protection, irrigation, and heat protection. Managers may not be able to evaluate the impacts of the many small diversions on flow or anadromous salmonid habitat because of the uncertainty of human water needs. Building on previous research to predict diversion impacts on streamflow, we monitored flow in Franz Creek (a third-order stream draining 40 km2 in Sonoma County) to evaluate our model, and then measured water coverage in riffles and pools to quantify the change in salmonid habitat that these diversions would cause. Our model reasonably predicted flow decreases from diversion for frost protection: flow decreased by up to 80% on each cold morning, causing 50% riffle loss. Though it was not indicated in our model, the loss of habitat on hot summer days (suggesting diversion for heat protection) was also dramatic: levels dropped suddenly, reducing volume in intermittent pools by over 50%. Both changes in flow led to sudden reductions in habitat, suggesting that diversions are a major impediment to salmonid restoration in the region.

  11. The effects of forcing on a single stream shear layer and its parent boundary layer

    NASA Technical Reports Server (NTRS)

    Haw, Richard C.; Foss, John F.

    1990-01-01

    Forcing and its effect on fluid flows has become an accepted tool in the study and control of flow systems. It has been used both as a diagnostic tool, to explore the development and interaction of coherent structures, and as a method of controlling the behavior of the flow. A number of forcing methods have been used in order to provide a perturbation to the flow; among these are the use of an oscillating trailing edge, acoustically driven slots, external acoustic forcing, and mechanical piston methods. The effect of a planar mechanical piston forcing on a single stream shear layer is presented; it can be noted that this is one of the lesser studied free shear layers. The single stream shear layer can be characterized by its primary flow velocity scale and the thickness of the separating boundary layer. The velocity scale is constant over the length of the flow field; theta (x) can be used as a width scale to characterize the unforced shear layer. In the case of the forced shear layer the velocity field is a function of phase time and definition of a width measure becomes somewhat problematic.

  12. Three-Dimensional Numerical Modelling of Flow and Sediment Transport for Field Scale Application of Stream Barbs at Sawmill Creek, Ottawa

    NASA Astrophysics Data System (ADS)

    Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.

    2009-05-01

    Stream barbs (a type of submerged groyne or spur dike) are low-profile linear rock structures that prevent the erosion of stream banks by redirecting high velocity flow away from the bank. Stream barbs are becoming a popular method for stream bank protection as they can be built at a relatively low cost and provide added ecological benefit. The design and construction of stream barbs in Sawmill Creek, a small urban stream in the city of Ottawa, Canada, will serve as a demonstration project for the use of barbs as a bank stabilization technique that will contribute to the rehabilitation of urban creeks while reducing erosion threats to property and infrastructure. As well as providing bank protection, these structures promote vegetated stream banks, create resting pools and scour holes for fish habitat, and increase bio-diversity for aquatic species. Despite these benefits, stream barbs are not a common means of stream bank protection in Canada, due largely to a lack of suitable design guidelines. The overall goal of stream habitat restoration in incising channel systems should be to accelerate natural processes of channel equilibrium recovery, riparian re-vegetation, and stream-floodplain interaction. Incorporating stream barbs, instead of traditional bank protection measures, attempts to achieve these goals. A three-dimensional numerical model: 'Simulation in Intakes with Multiblock option' (SSIIM), was used to model the effects of placing a series of stream barbs along an unstable section of Sawmill Creek. The average bankfull depth, width, and discharge of the creek are 1.2 m, 7.5 m, and 9 m3/s respectively. The model was used to assess various design alternatives for a series of seven stream barbs at two consecutive channel bends requiring stabilization measures along their outer banks. Design criteria were principally based on the reduction of velocity, shear stress and subsequent erosion at the outside bank of each bend, and on the relocation of a new thalweg towards the centre of the channel, away from the outside bank. Sawmill Creek has the added complexity of having predominately clay bed and banks. The erosional behaviour of cohesive sediments such as clay is difficult to model correctly, due to the complex site-specific physio- chemical properties of clay particles. Following the construction of the proposed barbs at our field test site this summer (2009), and data collection the following spring and summer, we hope to advance the current knowledge of cohesive sediment transport processes in a complicated three-dimensional turbulent flow field. For the present modelling effort, erodibility of the consolidated clay bed and bank material was estimated based on establishing an entrainment threshold at near-bankfull conditions. The focus of this research is on (i) the unique site conditions and environmental protection requirements, (ii) design methodology, and (iii) results of the numerical simulation. The three-dimensional numerical model was capable of reproducing the expected distribution of secondary flow in a channel bend, the unique three- dimensional flow field resulting from a series of submerged structures and the associated patterns of soil erosion and deposition. The numerical modelling also demonstrated to be a useful tool for optimizing barb design for stream bank protection at the proposed field test site. Modelling results confirmed that in the vicinity of the barbs, the addition of the proposed barb layout achieved substantial reduction in erosion (up to 98 %), bed shear stress (up to 59 %) and streamwise velocity (up to 51 %).

  13. Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges

    NASA Astrophysics Data System (ADS)

    Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile

    2015-04-01

    Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross-sections. The data from field measurements was combined with detailed water quality analysis and processed by data analysis with Matlab to produce more holistic information about the behavior, mixing and dilution of possible contaminants at the river. Moreover, the results can be used to improve water sampling procedures for more representative sampling and to plan continuous monitoring site locations and measuring device mounting places.

  14. Melting beneath Greenland outlet glaciers and ice streams

    NASA Astrophysics Data System (ADS)

    Alexander, David; Perrette, Mahé; Beckmann, Johanna

    2015-04-01

    Basal melting of fast-flowing Greenland outlet glaciers and ice streams due to frictional heating at the ice-bed interface contributes significantly to total glacier mass balance and subglacial meltwater flux, yet modelling this basal melt process in Greenland has received minimal research attention. A one-dimensional dynamic ice-flow model is calibrated to the present day longitudinal profiles of 10 major Greenland outlet glaciers and ice streams (including the Jakobshavn Isbrae, Petermann Glacier and Helheim Glacier) and is validated against published ice flow and surface elevation measurements. Along each longitudinal profile, basal melt is calculated as a function of ice flow velocity and basal shear stress. The basal shear stress is dependent on the effective pressure (difference between ice overburden pressure and water pressure), basal roughness and a sliding parametrization. Model output indicates that where outlet glaciers and ice streams terminate into the ocean with either a small floating ice tongue or no floating tongue whatsoever, the proportion of basal melt to total melt (surface, basal and submarine melt) is 5-10% (e.g. Jakobshavn Isbrae; Daugaard-Jensen Glacier). This proportion is, however, negligible where larger ice tongues lose mass mostly by submarine melt (~1%; e.g. Nioghalvfjerdsfjorden Glacier). Modelled basal melt is highest immediately upvalley of the grounding line, with contributions typically up to 20-40% of the total melt for slippery beds and up to 30-70% for resistant beds. Additionally, modelled grounding line and calving front migration inland for all outlet glaciers and ice streams of hundreds of metres to several kilometres occurs. Including basal melt due to frictional heating in outlet glacier and ice stream models is important for more accurately modelling mass balance and subglacial meltwater flux, and therefore, more accurately modelling outlet glacier and ice stream dynamics and responses to future climate change.

  15. Concentration-discharge relationships in headwater streams of the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Hunsaker, Carolyn T.; Johnson, Dale W.

    2017-09-01

    We examined stream water concentration-discharge relationships for eight small, forest watersheds ranging in elevation from 1485 to 2465 m in the southern Sierra Nevada. These headwater streams revealed nearly chemostatic behavior by current definitions for K+, Ca2+, Mg2+, Na+, Cl-, and SO42- in most cases but not for NH4+, NO3-, or ortho-P. The latter ions were somewhat enriched during high flows. All ions studied showed a dilution process at lower flows (<50 L s-1) with the concentration-discharge relationship being more chemostatic at higher flows. While previous studies in the Sierra Nevada have reported peak concentrations of NH4+, NO3-, and SO42- during snowmelt, the headwater systems of the Kings River Experimental Watersheds experience peak concentrations of these ions during the fall rains after the dry summer. These forested watersheds span the rain-snow transition zone, are 49-228 ha in size, and have soils derived from granite. A statistically significant relationship between soils and stream water concentrations for ortho-P, Ca2+, and Na+ strongly suggests that soil chemistry has a major influence on stream water chemistry. Factors controlling stream water NH4+, NO3-, and SO42- concentrations are less clear, but one possible source of spikes in these ions during storm events is input from O-horizon runoff where high concentrations were measured. Overall, stream water concentration-discharge relationships for these Sierran watersheds are similar to those found in other watershed systems (nearly chemostatic); however, the dominant processes controlling these relationships are probably localized because of different watershed characteristics like soil chemistry, vegetation cover, hydrologic flow paths, and weather patterns.

  16. Constraints upon the Response of Fish and Crayfish to Environmental Flow Releases in a Regulated Headwater Stream Network

    PubMed Central

    Chester, Edwin T.; Matthews, Ty G.; Howson, Travis J.; Johnston, Kerrylyn; Mackie, Jonathon K.; Strachan, Scott R.; Robson, Belinda J.

    2014-01-01

    In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer–term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006–2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human–made dispersal barriers downstream need to be identified and ameliorated, to allow native fish to fulfil their life cycles in these headwater streams. PMID:24647407

  17. StreamStats: A water resources web application

    USGS Publications Warehouse

    Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.

    2008-01-01

    Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations. Streamflow measurements are collected systematically over a period of years at partial-record stations to estimate peak-flow or low-flow statistics. Streamflow measurements usually are collected at miscellaneous-measurement stations for specific hydrologic studies with various objectives.StreamStats is a Web-based Geographic Information System (GIS) application that was created by the USGS, in cooperation with Environmental Systems Research Institute, Inc. (ESRI)1, to provide users with access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats functionality is based on ESRI’s ArcHydro Data Model and Tools, described on the Web at http://resources.arcgis.com/en/communities/hydro/01vn0000000s000000.htm. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection stations and user-selected ungaged sites. It also allows users to identify stream reaches that are upstream and downstream from user-selected sites, and to identify and obtain information for locations along the streams where activities that may affect streamflow conditions are occurring. This functionality can be accessed through a map-based user interface that appears in the user’s Web browser, or individual functions can be requested remotely as Web services by other Web or desktop computer applications. StreamStats can perform these analyses much faster than historically used manual techniques.StreamStats was designed so that each state would be implemented as a separate application, with a reliance on local partnerships to fund the individual applications, and a goal of eventual full national implementation. Idaho became the first state to implement StreamStats in 2003. By mid-2008, 14 states had applications available to the public, and 18 other states were in various stages of implementation.

  18. Geohydrology of, and simulation of ground-water flow in, the Milford-Souhegan glacial-drift aquifer, Milford, New Hampshire

    USGS Publications Warehouse

    Harte, P.T.; Mack, Thomas J.

    1992-01-01

    Hydrogeologic data collected since 1990 were assessed and a ground-water-flow model was refined in this study of the Milford-Souhegan glacial-drift aquifer in Milford, New Hampshire. The hydrogeologic data collected were used to refine estimates of hydraulic conductivity and saturated thickness of the aquifer, which were previously calculated during 1988-90. In October 1990, water levels were measured at 124 wells and piezometers, and at 45 stream-seepage sites on the main stem of the Souhegan River, and on small tributary streams overlying the aquifer to improve an understanding of ground-water-flow patterns and stream-seepage gains and losses. Refinement of the ground-water-flow model included a reduction in the number of active cells in layer 2 in the central part of the aquifer, a revision of simulated hydraulic conductivity in model layers 2 and representing the aquifer, incorporation of a new block-centered finite-difference ground-water-flow model, and incorporation of a new solution algorithm and solver (a preconditioned conjugate-gradient algorithm). Refinements to the model resulted in decreases in the difference between calculated and measured heads at 22 wells. The distribution of gains and losses of stream seepage calculated in simulation with the refined model is similar to that calculated in the previous model simulation. The contributing area to the Savage well, under average pumping conditions, decreased by 0.021 square miles from the area calculated in the previous model simulation. The small difference in the contrib- uting recharge area indicates that the additional data did not enhance model simulation and that the conceptual framework for the previous model is accurate.

  19. Flow-covariate prediction of stream pesticide concentrations.

    PubMed

    Mosquin, Paul L; Aldworth, Jeremy; Chen, Wenlin

    2018-01-01

    Potential peak functions (e.g., maximum rolling averages over a given duration) of annual pesticide concentrations in the aquatic environment are important exposure parameters (or target quantities) for ecological risk assessments. These target quantities require accurate concentration estimates on nonsampled days in a monitoring program. We examined stream flow as a covariate via universal kriging to improve predictions of maximum m-day (m = 1, 7, 14, 30, 60) rolling averages and the 95th percentiles of atrazine concentration in streams where data were collected every 7 or 14 d. The universal kriging predictions were evaluated against the target quantities calculated directly from the daily (or near daily) measured atrazine concentration at 32 sites (89 site-yr) as part of the Atrazine Ecological Monitoring Program in the US corn belt region (2008-2013) and 4 sites (62 site-yr) in Ohio by the National Center for Water Quality Research (1993-2008). Because stream flow data are strongly skewed to the right, 3 transformations of the flow covariate were considered: log transformation, short-term flow anomaly, and normalized Box-Cox transformation. The normalized Box-Cox transformation resulted in predictions of the target quantities that were comparable to those obtained from log-linear interpolation (i.e., linear interpolation on the log scale) for 7-d sampling. However, the predictions appeared to be negatively affected by variability in regression coefficient estimates across different sample realizations of the concentration time series. Therefore, revised models incorporating seasonal covariates and partially or fully constrained regression parameters were investigated, and they were found to provide much improved predictions in comparison with those from log-linear interpolation for all rolling average measures. Environ Toxicol Chem 2018;37:260-273. © 2017 SETAC. © 2017 SETAC.

  20. Flume experiments elucidate relationships between stream morphology, hyporheic residence time, and nitrous oxide production

    NASA Astrophysics Data System (ADS)

    Quick, Annika; Farrell, Tiffany B.; Reeder, William Jeffrey; Feris, Kevin P.; Tonina, Daniele; Benner, Shawn G.

    2015-04-01

    The hyporheic zone is a potentially important producer of nitrous oxide, a powerful greenhouse gas. The location and magnitude of nitrous oxide generation within the hyporheic zone involves complex interactions between multiple nitrogen species, redox conditions, microbial communities, and hydraulics. To better understand nitrous oxide generation and emissions from streams, we conducted large-scale flume experiments in which we monitored pore waters along hyporheic flow paths within stream dune structures. Measurements of dissolved oxygen, ammonia, nitrate, nitrite, and dissolved nitrous oxide showed distinct spatial relationships reflecting redox changes along flow paths. Using residence times along a flow path, clear trends in oxygen conditions and nitrogen species were observed. Three dune sizes were modeled, resulting in a range of residence times, carbon reactivity levels and respiration rates. We found that the magnitude and location of nitrous oxide production in the hyporheic zone is related to nitrate loading, dune morphology, and residence time. Specifically, increasing exogenous nitrate levels in surface water to approximately 3 mg/L resulted in an increase in dissolved N2O concentrations greater than 500% (up to 10 µg/L N-N2O) in distinct zones of specific residence times. We also found, however, that dissolved N2O concentrations decreased to background levels further along the flow path due to either reduction of nitrous oxide to dinitrogen gas or degassing. The decrease in measurable N2O along a flow path strongly suggests an important relationship between dune morphology, residence time, and nitrous oxide emissions from within stream sediments. Relating streambed morphology and loading of nitrogen species allows for prediction of nitrous oxide production in the hyporheic zone of natural systems.

  1. Mean-flow measurements of the flow field diffusing bend

    NASA Technical Reports Server (NTRS)

    Mcmillan, O. J.

    1982-01-01

    Time-average measurements of the low-speed turbulent flow in a diffusing bend are presented. The experimental geometry consists of parallel top and bottom walls and curved diverging side walls. The turning of the center line of this channel is 40 deg, the area ratio is 1.5 and the ratios of height and center-line length to throat width are 1.5 and 3, respectively. The diffusing bend is preceded and followed by straight constant area sections. The inlet boundary layers on the parallel walls are artificially thickened and occupy about 30% of the channel height; those on the side walls develop naturally and are about half as thick. The free-stream speed at the inlet was approximately 30 m/sec for all the measurements. Inlet boundary layer mean velocity and turbulence intensity profiles are presented, as are data for wall static pressures, and at six cross sections, surveys of the velocity-vector and static-pressure fields. The dominant feature of the flow field is a pair of counter-rotating streamwise vortices formed by the cross-stream pressure gradient in the bend on which an overall deceleration is superimposed.

  2. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities formore » each plasma flow are determined.« less

  3. Wedge and Conical Probes for the Instantaneous Measurement of Free-Stream Flow Quantities at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Bobbitt, Percy J.; Maglieri, Domenic J.; Banks, Daniel W.; Fuchs, Aaron W.

    2011-01-01

    Wedge and conical shaped probes for the measurement of free-stream flow quantities at supersonic speeds have been tested in both wind tunnel and flight. These probes have improved capabilities over similar ones used in the past. Through the use of miniature pressure sensors, that are located inside the probes, they are able to provide instantaneous measurements of a time-varying environment. Detailed herein are the results of the tests in NASA Langley Researcher Center s Unitary Plan Wind Tunnel (UPWT) at Mach numbers of 1.6, 1.8 and 2.0, as well as flight tests carried out at the NASA Dryden Flight Research Center (DFRC) on its F-15 aircraft up to Mach numbers of 1.9. In the flight tests the probes were attached to a fixture on the underside of the F-15 fuselage. Problems controlling the velocity of the flow through the conical probe, required for accurate temperature measurements, are noted, as well as some calibration problems of the miniature pressure sensors that impact the accuracy of the measurements.

  4. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1989-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed whereby a radioactive tracer gas was injected into a stream-the principle being that the tracer gas would be desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. This manual describes the slug-injection and constant-rate-injection methods of measuring gas-tracer desorption. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, on methods of injection, sampling, and analysis, and on techniques for computing desorption and reaeration coefficients.

  5. Physical controls and predictability of stream hyporheic flow evaluated with a multiscale model

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Detty, Joel; Aubeneau, Antoine; Packman, Aaron I.

    2012-01-01

    Improved predictions of hyporheic exchange based on easily measured physical variables are needed to improve assessment of solute transport and reaction processes in watersheds. Here we compare physically based model predictions for an Indiana stream with stream tracer results interpreted using the Transient Storage Model (TSM). We parameterized the physically based, Multiscale Model (MSM) of stream-groundwater interactions with measured stream planform and discharge, stream velocity, streambed hydraulic conductivity and porosity, and topography of the streambed at distinct spatial scales (i.e., ripple, bar, and reach scales). We predicted hyporheic exchange fluxes and hyporheic residence times using the MSM. A Continuous Time Random Walk (CTRW) model was used to convert the MSM output into predictions of in stream solute transport, which we compared with field observations and TSM parameters obtained by fitting solute transport data. MSM simulations indicated that surface-subsurface exchange through smaller topographic features such as ripples was much faster than exchange through larger topographic features such as bars. However, hyporheic exchange varies nonlinearly with groundwater discharge owing to interactions between flows induced at different topographic scales. MSM simulations showed that groundwater discharge significantly decreased both the volume of water entering the subsurface and the time it spent in the subsurface. The MSM also characterized longer timescales of exchange than were observed by the tracer-injection approach. The tracer data, and corresponding TSM fits, were limited by tracer measurement sensitivity and uncertainty in estimates of background tracer concentrations. Our results indicate that rates and patterns of hyporheic exchange are strongly influenced by a continuum of surface-subsurface hydrologic interactions over a wide range of spatial and temporal scales rather than discrete processes.

  6. Use of radars to monitor stream discharge by noncontact methods

    USGS Publications Warehouse

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods. Time series of surface velocity obtained by different radars in the Cowlitz River experiment also show small‐amplitude pulsations not found in stage records that reflect tidal energy at the gauging station. Noncontact discharge measurements made during a flood on 30 January 2004 agreed with the rated discharge to within 5%. Measurement at both field sites confirm that lognormal velocity profiles exist for a wide range of flows in these rivers, and mean velocity is approximately 0.85 times measured surface velocity. Noncontact methods of flow measurement appear to (1) be as accurate as conventional methods, (2) obtain data when standard contact methods are dangerous or cannot be obtained, and (3) provide insight into flow dynamics not available from detailed stage records alone.

  7. Direct and indirect influence of parental bedrock on streambed microbial community structure in forested streams.

    PubMed

    Mosher, Jennifer J; Findlay, Robert H

    2011-11-01

    A correlative study was performed to determine if variation in streambed microbial community structure in low-order forested streams can be directly or indirectly linked to the chemical nature of the parental bedrock of the environments through which the streams flow. Total microbial and photosynthetic biomass (phospholipid phosphate [PLP] and chlorophyll a), community structure (phospholipid fatty acid analysis), and physical and chemical parameters were measured in six streams, three located in sandstone and three in limestone regions of the Bankhead National Forest in northern Alabama. Although stream water flowing through the two different bedrock types differed significantly in chemical composition, there were no significant differences in total microbial and photosynthetic biomass in the sediments. In contrast, sedimentary microbial community structure differed between the bedrock types and was significantly correlated with stream water ion concentrations. A pattern of seasonal variation in microbial community structure was also observed. Further statistical analysis indicated dissolved organic matter (DOM) quality, which was previously shown to be influenced by geological variation, correlated with variation in bacterial community structure. These results indicate that the geology of underlying bedrock influences benthic microbial communities directly via changes in water chemistry and also indirectly via stream water DOM quality.

  8. Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.; Poff, N. LeRoy

    2015-01-01

    Longer, drier summers projected for arid and semi-arid regions of western North America under climate change are likely to have enormous consequences for water resources and river-dependent ecosystems. Many climate change scenarios for this region involve decreases in mean annual streamflow, late summer precipitation and late-summer streamflow in the coming decades. Intermittent streams are already common in this region, and it is likely that minimum flows will decrease and some perennial streams will shift to intermittent flow under climate-driven changes in timing and magnitude of precipitation and runoff, combined with increases in temperature. To understand current intermittency among streams and analyze the potential for streams to shift from perennial to intermittent under a warmer climate, we analyzed historic flow records from streams in the Upper Colorado River Basin (UCRB). Approximately two-thirds of 115 gaged stream reaches included in our analysis are currently perennial and the rest have some degree of intermittency. Dry years with combinations of high temperatures and low precipitation were associated with more zero-flow days. Mean annual flow was positively related to minimum flows, suggesting that potential future declines in mean annual flows will correspond with declines in minimum flows. The most important landscape variables for predicting low flow metrics were precipitation, percent snow, potential evapotranspiration, soils, and drainage area. Perennial streams in the UCRB that have high minimum-flow variability and low mean flows are likely to be most susceptible to increasing streamflow intermittency in the future.

  9. Water flow pathway and the organic carbon discharge during rain storm events in a coniferous forested head watershed, Tokyo, central Japan

    NASA Astrophysics Data System (ADS)

    Moriizumi, Mihoko; Terajima, Tomomi

    2010-05-01

    The current intense discussion of the green house effect, that has been one of the main focuses on the carbon cycle in environmental systems of the earth, seems to be weakened the importance related to the effect of carbonic materials on substance movement in the aquatic environments; though it has just begun to be referred recently. Because dissolved organic carbon (DOC) in stream flows believes to play a main role of the carbon cycle in the fresh water environment, seasonal changes in DOC discharge were investigated in catchments with various scale and land use, especially in forested catchments which are one of the important sources of DOC. In order to understand the fundamental characteristics of the discharge of dissolved organic materials, stream flows, DOC, and fulvic acid like materials (FA) included in stream flows were measured in a coniferous forested head watershed. The watershed is located at the southeast edge of the Kanto mountain and is 40 km west of Tokyo with the elevation from 720 to 820 m and mean slope gradient of 38 degrees. Geology of the watershed is underlain by the sequence of mud and sand stones in Jurassic and the soil in the watershed is Cambisol (Inceptisols). The watershed composes of a dense cypress and cedar forest of 45 years old with poor understory vegetation. Observations were carried out for 6 rain storms of which the total precipitations ranged between 16.2 and 117.4 mm. The magnitude of the storms was classified into small, middle, and big events on the basis of the total precipitation of around 20, 40, and more than 70 mm. Stream flows were collected during the storm events by 1 hour interval and were passed through the 0.45 μm filters, and then the DOC concentrations in the flows were measured with a total organic carbon analyzer. The relative concentrations of fulvic acid (FA) in the flows were monitored with three dimensional excitations emission matrix fluorescence spectroscopy, because fulvic acid shows distinctive fluorescence peaks at around the excitation wave length of 340 nm and emission wave length of 440 nm. The timing of the peaks in DOC and FA occurred simultaneously or within 30 minutes prior to those in the stream flows. The relationship between DOC and stream flow showed linear correlations with various gradients in each event. However, the relationship between FA and stream flow showed the linear correlations only for the small and middle events and clockwise hysteresis relations occurred in the big storm events. The relationship between DOC and FA showed the linear correlations both for the extracted water of the shallow soil and for stream base flow composed mostly of groundwater discharge. However, the relationship in the storm flow closely distributed at that in the extracted water of the shallow soil. This thing reveals that DOC and FA were mainly flashed out from the shallow soil during the rain storm events. The quick rising and recession of the fulvic acid was likely provided by quick rain water discharge through the surface or near surface of the slope. However, the overland flow were rare in the watershed during the rain storms. This indicates that the rapid shallow subsurface flow, passed mainly through preferential flow pathways at the slope surface within the loose litter and root-permeated zone, was the main cause of the difference in discharge regimes between DOC and FA. The shallow subsurface flow may have flushed the FA in the near-surface of the soil, and then the relatively predominant discharge of DOC must have been caused during the big rain storm event.

  10. Estimating natural monthly streamflows in California and the likelihood of anthropogenic modification

    USGS Publications Warehouse

    Carlisle, Daren M.; Wolock, David M.; Howard, Jeannette K.; Grantham, Theodore E.; Fesenmyer, Kurt; Wieczorek, Michael

    2016-12-12

    Because natural patterns of streamflow are a fundamental property of the health of streams, there is a critical need to quantify the degree to which human activities have modified natural streamflows. A requirement for assessing streamflow modification in a given stream is a reliable estimate of flows expected in the absence of human influences. Although there are many techniques to predict streamflows in specific river basins, there is a lack of approaches for making predictions of natural conditions across large regions and over many decades. In this study conducted by the U.S. Geological Survey, in cooperation with The Nature Conservancy and Trout Unlimited, the primary objective was to develop empirical models that predict natural (that is, unaffected by land use or water management) monthly streamflows from 1950 to 2012 for all stream segments in California. Models were developed using measured streamflow data from the existing network of streams where daily flow monitoring occurs, but where the drainage basins have minimal human influences. Widely available data on monthly weather conditions and the physical attributes of river basins were used as predictor variables. Performance of regional-scale models was comparable to that of published mechanistic models for specific river basins, indicating the models can be reliably used to estimate natural monthly flows in most California streams. A second objective was to develop a model that predicts the likelihood that streams experience modified hydrology. New models were developed to predict modified streamflows at 558 streamflow monitoring sites in California where human activities affect the hydrology, using basin-scale geospatial indicators of land use and water management. Performance of these models was less reliable than that for the natural-flow models, but results indicate the models could be used to provide a simple screening tool for identifying, across the State of California, which streams may be experiencing anthropogenic flow modification.

  11. Environmental controls on drainage behavior of an ephemeral stream

    USGS Publications Warehouse

    Blasch, K.W.; Ferré, T.P.A.; Vrugt, J.A.

    2010-01-01

    Streambed drainage was measured at the cessation of 26 ephemeral streamflow events in Rillito Creek, Tucson, Arizona from August 2000 to June 2002 using buried time domain reflectometry (TDR) probes. An unusual drainage response was identified, which was characterized by sharp drainage from saturation to near field capacity at each depth with an increased delay between depths. We simulated the drainage response using a variably saturated numerical flow model representing a two-layer system with a high permeability layer overlying a lower permeability layer. Both the observed data and the numerical simulation show a strong correlation between the drainage velocity and the temperature of the stream water. A linear combination of temperature and the no-flow period preceding flow explained about 90% of the measured variations in drainage velocity. Evaluation of this correlative relationship with the one-dimensional numerical flow model showed that the observed temperature fluctuations could not reproduce the magnitude of variation in the observed drainage velocity. Instead, the model results indicated that flow duration exerts the most control on drainage velocity, with the drainage velocity decreasing nonlinearly with increasing flow duration. These findings suggest flow duration is a primary control of water availability for plant uptake in near surface sediments of an ephemeral stream, an important finding for estimating the ecological risk of natural or engineered changes to streamflow patterns. Correlative analyses of soil moisture data, although easy and widely used, can result in erroneous conclusions of hydrologic cause—effect relationships, and demonstrating the need for joint physically-based numerical modeling and data synthesis for hypothesis testing to support quantitative risk analysis.

  12. Fluvial sediments a summary of source, transportation, deposition, and measurement of sediment discharge

    USGS Publications Warehouse

    Colby, B.R.

    1963-01-01

    This paper presents a broad but undetailed picture of fluvial sediments in streams, reservoirs, and lakes and includes a discussion of the processes involved in the movement of sediment by flowing water. Sediment is fragmental material that originates from the chemical or physical disintegration of rocks. The disintegration products may have many different shapes and may range in size from large boulders to colloidal particles. In general, they retain about the same mineral composition as the parent rocks. Rock fragments become fluvial sediment when they are entrained in a stream of water. The entrainment may occur as sheet erosion from land surfaces, particularly for the fine particles, or as channel erosion after the surface runoff has accumulated in streams. Fluvial sediments move in streams as bedload (particles moving within a few particle diameters of the streambed) or as suspended sediment in the turbulent flow. The discharge of bedload varies with several factors, which may include particle size and a type of effective shear on the surface of the streambed. The discharge of suspended sediment depends partly on concentration of moving sediment near the streambed and hence on discharge of bedload. However, the concentration of fine sediment near the streambed varies widely, even for equal flows, and, therefore, the discharge of fine sediment normally cannot be computed theoretically. The discharge of suspended sediment also depends on velocity, turbulence, depth of flow, and fall velocity of the particles. In general, the coarse sediment transported by a stream moves intermittently and is discharged at a rate that depends on properties of the flow and of the sediment. If an ample supply of coarse sediment is available at the surface of the streambed, the discharge of the coarse sediment, such as sand, can be roughly computed from properties of the available sediment and of the flow. On the other hand, much of the fine sediment in a stream usually moves nearly continuously at about the velocity of the flow, and even low flows can transport large amounts of fine sediment. Hence, the discharge of fine sediments, being largely dependent on the availability of fine sediment upstream rather than on the properties of the sediment and of the flow at a cross section, can seldom be computed from properties, other than concentrations based directly on samples, that can be observed at the cross section. Sediment particles continually change their positions in the flow; some fall to the streambed, and others are removed from the bed. Sediment deposits form locally or over large areas if the volume rate at which particles settle to the bed exceeds the volume rate at which particles are removed from the bed. In general, large particles are deposited more readily than small particles, whether the point of deposition is behind a rock, on a flood plain, within a stream channel, or at the entrance to a reservoir, a lake, or the ocean. Most samplers used for sediment observations collect a water-sediment mixture from the water surface to within a few tenths of a foot of the streambed. They thus sample most of the suspended sediment, especially if the flow is deep or if the sediment is mostly fine; but they exclude the bedload and some of the suspended sediment in a layer near the streambed where the suspended-sediment concentrations are highest. Measured sediment discharges are usually based on concentrations that are averages of several individual sediment samples for a cross section. If enough average concentrations for a cross section have been determined, the measured sediment discharge can be computed by interpolating sediment concentrations between sampling times. If only occasional samples were collected, an average relation between sediment discharge and flow can be used with a flow-duration curve to compute roughly the average or the total sediment discharges for any periods of time for which the flow-duration c

  13. Planar measurement of flow field parameters in a nonreacting supersonic combustor using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1990-01-01

    A nonintrusive optical technique, laser-induced iodine fluorescence, has been used to obtain planar measurements of flow field parameters in the supersonic mixing flow field of a nonreacting supersonic combustor. The combustor design used in this work was configured with staged transverse sonic injection behind a rearward-facing step into a Mach 2.07 free stream. A set of spatially resolved measurements of temperature and injectant mole fraction has been generated. These measurements provide an extensive and accurate experimental data set required for the validation of computational fluid dynamic codes developed for the calculation of highly three-dimensional combustor flow fields.

  14. Generalized additive regression models of discharge and mean velocity associated with direct-runoff conditions in Texas: Utility of the U.S. Geological Survey discharge measurement database

    USGS Publications Warehouse

    Asquith, William H.; Herrmann, George R.; Cleveland, Theodore G.

    2013-01-01

    A database containing more than 17,700 discharge values and ancillary hydraulic properties was assembled from summaries of discharge measurement records for 424 U.S. Geological Survey streamflow-gauging stations (stream gauges) in Texas. Each discharge exceeds the 90th-percentile daily mean streamflow as determined by period-of-record, stream-gauge-specific, flow-duration curves. Each discharge therefore is assumed to represent discharge measurement made during direct-runoff conditions. The hydraulic properties of each discharge measurement included concomitant cross-sectional flow area, water-surface top width, and reported mean velocity. Systematic and statewide investigation of these data in pursuit of regional models for the estimation of discharge and mean velocity has not been previously attempted. Generalized additive regression modeling is used to develop readily implemented procedures by end-users for estimation of discharge and mean velocity from select predictor variables at ungauged stream locations. The discharge model uses predictor variables of cross-sectional flow area, top width, stream location, mean annual precipitation, and a generalized terrain and climate index (OmegaEM) derived for a previous flood-frequency regionalization study. The mean velocity model uses predictor variables of discharge, top width, stream location, mean annual precipitation, and OmegaEM. The discharge model has an adjusted R-squared value of about 0.95 and a residual standard error (RSE) of about 0.22 base-10 logarithm (cubic meters per second); the mean velocity model has an adjusted R-squared value of about 0.67 and an RSE of about 0.063 fifth root (meters per second). Example applications and computations using both regression models are provided. - See more at: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-5584.0000635#sthash.jhGyPxgZ.dpuf

  15. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; Jaafar, Othman; Deo, Ravinesh C.; Kisi, Ozgur; Adamowski, Jan; Quilty, John; El-Shafie, Ahmed

    2016-11-01

    Monthly stream-flow forecasting can yield important information for hydrological applications including sustainable design of rural and urban water management systems, optimization of water resource allocations, water use, pricing and water quality assessment, and agriculture and irrigation operations. The motivation for exploring and developing expert predictive models is an ongoing endeavor for hydrological applications. In this study, the potential of a relatively new data-driven method, namely the extreme learning machine (ELM) method, was explored for forecasting monthly stream-flow discharge rates in the Tigris River, Iraq. The ELM algorithm is a single-layer feedforward neural network (SLFNs) which randomly selects the input weights, hidden layer biases and analytically determines the output weights of the SLFNs. Based on the partial autocorrelation functions of historical stream-flow data, a set of five input combinations with lagged stream-flow values are employed to establish the best forecasting model. A comparative investigation is conducted to evaluate the performance of the ELM compared to other data-driven models: support vector regression (SVR) and generalized regression neural network (GRNN). The forecasting metrics defined as the correlation coefficient (r), Nash-Sutcliffe efficiency (ENS), Willmott's Index (WI), root-mean-square error (RMSE) and mean absolute error (MAE) computed between the observed and forecasted stream-flow data are employed to assess the ELM model's effectiveness. The results revealed that the ELM model outperformed the SVR and the GRNN models across a number of statistical measures. In quantitative terms, superiority of ELM over SVR and GRNN models was exhibited by ENS = 0.578, 0.378 and 0.144, r = 0.799, 0.761 and 0.468 and WI = 0.853, 0.802 and 0.689, respectively and the ELM model attained lower RMSE value by approximately 21.3% (relative to SVR) and by approximately 44.7% (relative to GRNN). Based on the findings of this study, several recommendations were suggested for further exploration of the ELM model in hydrological forecasting problems.

  16. The Regulation of a Spatially Heterogeneous Externality: Tradable Groundwater Permits to Protect Streams

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.; Brozovic, N.

    2012-12-01

    Groundwater pumping from aquifers can reduce the flow of surface water in nearby streams through a process known as stream depletion. In the United States, recent awareness of this externality has led to intra- and inter-state conflict and rapidly-changing water management policies and institutions. A factor that complicates the design of groundwater management policies to protect streams is the spatial heterogeneity of the stream depletion externality; the marginal damage of groundwater use on stream flows depends crucially on the location of pumping relative to streams. Under these circumstances, economic theory predicts that spatially differentiated policies can achieve an aggregate reduction in stream depletion cost effectively. However, whether spatially differentiated policies offer significant abatement cost savings and environmental improvements over simpler, alternative policies is an empirical question. In this paper, we analyze whether adopting a spatially differentiated groundwater permit system can lead to significant savings in compliance costs while meeting targets on stream protection. Using a population data set of active groundwater wells in the Nebraska portion of the Republican River Basin, we implement an optimization model of each well owner's crop choice, land use, and irrigation decisions to determine the distribution of regulatory costs. We model the externality of pumping on streams by employing an analytical solution from the hydrology literature that determines reductions in stream flow caused by groundwater pumping over space and time. The economic and hydrologic model components are then combined into one optimization framework, which allows us to measure farmer abatement costs and stream flow benefits under a constrained optimal market that features spatially differentiated, tradable groundwater permits. We compare this outcome to the efficiency of alternative second-best policies, including spatially uniform permit markets and pumping restrictions based on geographic zones. Our analysis considers static policies for which abatement is fixed over time, as well as dynamic policies that allow abatement to vary over time and future compliance costs to be subject to a discount rate. We find that if current levels of stream flow in the Republican River Basin are held fixed, regulators can generate most of the potential abatement cost savings by establishing a one-to-one tradable permit system that does not account for spatial heterogeneity. We obtain this surprising result because the agronomic and climatic parameters in our data set that determine farmer abatement costs are spatially correlated with hydrologic parameters that determine the marginal damage of groundwater use on streams. However, we also find that if future legal or ecological circumstances require regulators to increase significantly the protection of streams from current levels, spatially differentiated policies will generate sizable cost savings compared to policies that ignore spatial heterogeneity.

  17. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : a new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, E.; Tardif, E.; Glover, P. W.; Ruel, J.; Hadjigeorgiou, J.

    2009-12-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient Cs is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of CO2. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.

  18. Measuring the DC electrokinetic coupling coefficient of porous rock samples in the laboratory : A new apparatus

    NASA Astrophysics Data System (ADS)

    Walker, Emilie; Tardif, Eric; Glover, Paul; Ruel, Jean; Lalande, Guillaume; Hadjigeorgiou, John

    2010-05-01

    Electro-kinetic properties of rocks allow the generation of an electric potential by the flow of an aqueous fluid through a porous media. The electrical potential is called the streaming potential, and the streaming potential coupling coefficient is the ratio of the generated electric potential to the pressure difference that causes the fluid flow. The streaming potential coupling coefficient for rocks is described in the steady-state regime by the well known Helmholtz-Smoluchowski equation, and is supported by a relatively small body of experimental data. However, the electrokinetic coupling coefficient measurement is important for the further development of different area of expertise such as reservoir prospection and monitoring, volcano and earthquake monitoring and the underground sequestration of carbon dioxide. We have designed, constructed and tested a new experimental cell that is capable of measuring the DC streaming potential of consolidated and unconsolidated porous media. The new cell is made from stainless steel, perspex and other engineering polymers. Cylindrical samples of 25.4 mm can be placed in a deformable rubber sleeve and subjected to a radial confining pressure of compressed nitrogen up to 4.5 MPa. Actively degassed aqueous fluids can be flowed by an Agilent 1200 series binary pump (2 to 10 mL/min). A maximum input fluid pressure of 2.5 MPa can be applied, with a maximum exit pressure of 1 MPa to ensure sample saturation is stable and to reduce gas bubbles. The pressures each side of the sample are measured by high stability pressure transducers (Omega PX302-300GV), previously calibrated by a high precision differential pressure transducer Endress and Hauser Deltabar S PMD75. The streaming potentials are measured with Harvard Apparatus LF-1 and LF-2 Ag/AgCl non-polarising miniature electrodes. An axial pressure is applied (1 to 6.5 MPa) to counteract the radial pressure and provide additional axial load with a hydraulic piston. It is our intention to complete the testing of the cell and to use it to measure the electrokinetic properties of porous rocks in the DC regime in order to provide sufficient data to improve the theories and models of DC streaming potentials.

  19. Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Diplas, Panayiotis

    2008-01-01

    SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The research suggests ways of improving the modeling practices for ecosystem management studies.

  20. Incorporating a Watershed-Based Summary Field Exercise into an Introductory Hydrogeology Course

    ERIC Educational Resources Information Center

    Fryar, Alan E.; Thompson, Karen E.; Hendricks, Susan P.; White, David S.

    2010-01-01

    We have developed and implemented a summary field exercise for an introductory hydrogeology course without a laboratory section. This exercise builds on lectures and problem sets that use pre-existing field data. During one day in April, students measure hydraulic heads, stream and spring flow, and stream-bed seepage within the rural watershed of…

  1. Unsteady Heat Transfer in Channel Flow using Small-Scale Vorticity Concentrations Effected by a Vibrating Reed

    NASA Astrophysics Data System (ADS)

    Hidalgo, Pablo; Glezer, Ari

    2011-11-01

    Heat transfer enhancement by small-scale vorticity concentrations that are induced within the core flow of a mm-scale heated channel are investigated experimentally. These small-scale motions are engendered by the cross stream vibrations of a streamwise cantilevered reed that spans most of the channel's width. The interactions between the reed the core flow over a range of flow rates lead to the formation, shedding, and advection of time-periodic vorticity concentrations that interact with the wall boundary layers, and increase cross stream mixing of the core flow. Heating of the channel walls is controlled using microfabricated serpentine resistive heaters embedded with streamwise arrays of temperature sensors. It is shown that the actuation disrupts the thermal boundary layers and result in significant enhancement of the local and global heat transfer along the channel compared to the baseline flow in the absence of the reed. The effect of the reed on the cross flow is measured using high resolution particle image velocimetry (PIV), and the reed motion is characterized using a laser-based position sensor. The blockage induced by the presence of the reed and its cross stream motion is characterized using detailed streamwise pressure distributions. Supported by DARPA and UTRC.

  2. Dynamic rating curve assessment in hydrometric stations and calculation of the associated uncertainties : Quality and monitoring indicators

    NASA Astrophysics Data System (ADS)

    Morlot, Thomas; Perret, Christian; Favre, Anne-Catherine

    2013-04-01

    Whether we talk about safety reasons, energy production or regulation, water resources management is one of EDF's (French hydropower company) main concerns. To meet these needs, since the fifties EDF-DTG operates a hydrometric network that includes more than 350 hydrometric stations. The data collected allow real time monitoring of rivers (hydro meteorological forecasts at points of interests), as well as hydrological studies and the sizing of structures. Ensuring the quality of stream flow data is a priority. A rating curve is an indirect method of estimating the discharge in rivers based on water level measurements. The value of discharge obtained thanks to the rating curve is not entirely accurate due to the constant changes of the river bed morphology, to the precision of the gaugings (direct and punctual discharge measurements) and to the quality of the tracing. As time goes on, the uncertainty of the estimated discharge from a rating curve « gets older » and increases: therefore the final level of uncertainty remains particularly difficult to assess. Moreover, the current EDF capacity to produce a rating curve is not suited to the frequency of change of the stage-discharge relationship. The actual method does not take into consideration the variation of the flow conditions and the modifications of the river bed which occur due to natural processes such as erosion, sedimentation and seasonal vegetation growth. In order to get the most accurate stream flow data and to improve their reliability, this study undertakes an original « dynamic» method to compute rating curves based on historical gaugings from a hydrometric station. A curve is computed for each new gauging and a model of uncertainty is adjusted for each of them. The model of uncertainty takes into account the inaccuracies in the measurement of the water height, the quality of the tracing, the uncertainty of the gaugings and the aging of the confidence intervals calculated with a variographic analysis. These rating curves enable to provide values of stream flow taking into account the variability of flow conditions, while providing a model of uncertainties resulting from the aging of the rating curves. By taking into account the variability of the flow conditions and the life of the hydrometric station, this original dynamic method can answer important questions in the field of hydrometry such as « How many gaugings a year have to be made so as to produce stream flow data with an average uncertainty of X% ? » and « When and in which range of water flow do we have to realize those gaugings ? ». KEY WORDS : Uncertainty, Rating curve, Hydrometric station, Gauging, Variogram, Stream Flow

  3. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  4. Evaluation of Topographic wetness index and catchment characteristics on spatially and temporally variable streams across an elevation gradient

    NASA Astrophysics Data System (ADS)

    Martin, C.

    2017-12-01

    Topography can be used to delineate streams and quantify the topographic control on hydrological processes of a watershed because geomorphologic processes have shaped the topography and streams of a catchment over time. Topographic Wetness index (TWI) is a common index used for delineating stream networks by predicting location of saturation excess overland flow, but is also used for other physical attributes of a watershed such as soil moisture, groundwater level, and vegetation patterns. This study evaluates how well TWI works across an elevation gradient and the relationships between the active drainage network of four headwater watersheds at various elevations in the Colorado Front Range to topography, geology, climate, soils, elevation, and vegetation in attempt to determine the controls on streamflow location and duration. The results suggest that streams prefer to flow along a path of least resistance which including faults and permeable lithology. Permeable lithologies created more connectivity of stream networks during higher flows but during lower flows dried up. Streams flowing over impermeable lithologies had longer flow duration. Upslope soil hydraulic conductivity played a role on stream location, where soils with low hydraulic conductivity had longer flow duration than soils with higher hydraulic conductivity.Finally TWI thresholds ranged from 5.95 - 10.3 due to changes in stream length and to factors such as geology and soil. TWI had low accuracy for the lowest elevation site due to the greatest change of stream length. In conclusion, structural geology, upslope soil texture, and the permeability of the underlying lithology influenced where the stream was flowing and for how long. Elevation determines climate which influences the hydrologic processes occurring at the watersheds and therefore affects the duration and timing of streams at different elevations. TWI is an adequate tool for delineating streams because results suggest topography has a primary control on the stream locations, but because intermittent streams change throughout the year a algorithm needs to be created to correspond to snow melt and rain events. Also geology indices and soil indices need be considered in addition to topography to have the most accurate derived stream network.

  5. Prospects for Nonlinear Laser Diagnostics in the Jet Noise Laboratory

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; Hart, Roger C.; Fletcher, mark T.; Balla, R. Jeffrey; Henderson, Brenda S.

    2007-01-01

    Two experiments were conducted to test whether optical methods, which rely on laser beam coherence, would be viable for off-body flow measurement in high-density, compressible-flow wind tunnels. These tests measured the effects of large, unsteady density gradients on laser diagnostics like laser-induced thermal acoustics (LITA). The first test was performed in the Low Speed Aeroacoustics Wind Tunnel (LSAWT) of NASA Langley Research Center's Jet Noise Laboratory (JNL). This flow facility consists of a dual-stream jet engine simulator (with electric heat and propane burners) exhausting into a simulated flight stream, reaching Mach numbers up to 0.32. A laser beam transited the LSAWT flow field and was imaged with a high-speed gated camera to measure beam steering and transverse mode distortion. A second, independent test was performed on a smaller laboratory jet (Mach number < 1.2 and mass flow rate < 0.1 kg/sec). In this test, time-averaged LITA velocimetry and thermometry were performed at the jet exit plane, where the effect of unsteady density gradients is observed on the LITA signal. Both experiments show that LITA (and other diagnostics relying on beam overlap or coherence) faces significant hurdles in the high-density, compressible, and turbulent flow environments similar to those of the JNL.

  6. Measurements of store forces and moments and cavity pressures for a generic store in and near a box cavity at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Stallings, Robert L., Jr.; Plentovich, E. B.; Tracy, M. B.; Hemsch, Michael J.

    1995-01-01

    An experimental force and moment study was conducted in the Langley 8-Foot Transonic Pressure Tunnel for a generic store in and near rectangular box cavities contained in a flat-plate configuration at subsonic and transonic speeds. Surface pressures were measured inside the cavities and on the flat plate. The length-to-height ratios were 5.42, 6.25, 10.83, and 12.50. The corresponding width-to-height ratios were 2.00, 2.00, 4.00, and 4.00. The free-stream Mach number range was from 0.20 to 0.95. Surface pressure measurements inside the cavities indicated that the flow fields for the shallow cavities were either closed or transitional near the transitional/closed boundary. For the deep cavities, the flow fields were either open or near the open/transitional boundary. The presence of the store did not change the type of flow field and had only small effects on the pressure distributions. For transitional or open transitional flow fields, increasing the free-stream Mach number resulted in large reductions in pitching-moment coefficient. Values of pitching-moment coefficient were always much greater for closed flow fields than for open flow fields.

  7. Stream Intermittency Sensors Monitor the Onset and Duration of Stream Flow Along a Channel Network During Storms

    NASA Astrophysics Data System (ADS)

    Jensen, C.; McGuire, K. J.

    2017-12-01

    Headwater streams are spatially extensive, accounting for a majority of global stream length, and supply downstream water bodies with water, sediment, organic matter, and pollutants. Much of this transmission occurs episodically during storms when stream flow and connectivity are high. Many headwaters are temporary streams that expand and contract in length in response to storms and seasonality. Understanding where and when streams carry flow is critical for conserving headwaters and protecting downstream water quality, but storm events are difficult to study in small catchments. The rise and fall of stream flow occurs rapidly in headwaters, making observation of the entire stream network difficult. Stream intermittency sensors that detect the presence or absence of water can reveal wetting and drying patterns over short time scales. We installed 50 intermittency sensors along the channel network of a small catchment (35 ha) in the Valley and Ridge of southwest Virginia. Previous work shows stream length is highly variable in this shale catchment, as the drainage density spans two orders of magnitude. The sensors record data every 15 minutes for one year to capture different seasons, antecedent moisture conditions, and precipitation rates. We seek to determine whether hysteresis between stream flow and network length occurs on the rising and falling limbs of events and if reach-scale characteristics such as valley width explain spatial patterns of flow duration. Our results indicate reaches with a wide, sediment-filled valley floor carry water for shorter periods of time than confined channel segments with steep valley side slopes. During earlier field mapping surveys, we only observed flow in a few of the tributaries for the wettest conditions mapped. The sensors now show that these tributaries flow more frequently during much smaller storms, but only for brief periods of time (< 1 hour). The high temporal sampling resolution of the sensors permits a more realistic estimate of flow duration in temporary streams, which field surveys may, otherwise, underestimate. Such continuous datasets on stream network length will allow researchers to more accurately assess the value of headwater reaches for contributions to environmental services such as aquatic habitat, hyporheic exchange, and mass fluxes of solutes.

  8. Quantifying nutrient sources in an upland catchment using multiple chemical and isotopic tracers

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Boyer, E. W.; Shanley, J. B.; Doctor, D. H.; Kendall, C.; Aiken, G. R.

    2006-12-01

    To explore processes that control the temporal variation of nutrients in surface waters, we measured multiple environmental tracers at the Sleepers River Research Watershed, an upland catchment in northeastern Vermont, USA. Using a set of high-frequency stream water samples, we quantified the variation of nutrients over a range of stream flow conditions with chemical and isotopic tracers of water, nitrate, and dissolved organic carbon (DOC). Stream water concentrations of nitrogen (predominantly in the forms of nitrate and dissolved organic nitrogen) and DOC reflected mixing of water contributed from distinct sources in the forested landscape. Water isotopic signatures and end-member mixing analysis revealed when solutes entered the stream from these sources and that the sources were linked to the stream by preferential shallow subsurface and overland flow paths. Results from the tracers indicated that freshly-leached, terrestrial organic matter was the overwhelming source of high DOC concentrations in stream water. In contrast, in this region where atmospheric nitrogen deposition is chronically elevated, the highest concentrations of stream nitrate were attributable to atmospheric sources that were transported via melting snow and rain fall. These findings are consistent with a conceptual model of the landscape in which coupled hydrological and biogeochemical processes interact to control stream solute variability over time.

  9. Design concept of a cryogenic distillation column cascade for a ITER scale fusion reactor

    NASA Astrophysics Data System (ADS)

    Yamanishi, Toshihiko; Enoeda, Mikio; Okuno, Kenji

    1994-07-01

    A column cascade has been proposed for the fuel cycle of a ITER scale fusion reactor. The proposed cascade consists of three columns and has significant features: either top or bottom product is prior to the other for each column; it is avoided to withdraw side streams as products or feeds of down stream columns; and there is no recycle steam between the columns. In addition, the product purity of the cascade can be maintained against the changes of flow rates and compositions of feed streams just by adjusting the top and bottom flow rates. The control system has been designed for each column in the cascade. A key component in the prior product stream was selected, and the analysis method of this key component was proposed. The designed control system never brings instability as long as the concentration of the key component is measured with negligible time lag. The time lag for the measurement considerably affects the stability of the control system. A significant conclusion by the simulation in this work is that permissible time for the measurement is about 0.5 hour to obtain stable control. Hence, the analysis system using the gas chromatography is valid for control of the columns.

  10. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled boundary shear stresses were used to evaluate which flows are responsible for the most mobilization of the bed, and therefore, habitat maintenance. Evaluation of the magnitude and frequency of bed-sediment entrainment shows that most of the habitat maintenance results from flows that occur on average about 4 to 7 days a year. Our analysis documents the geomorphic and hydrologic dynamics that form and maintain habitats in a warmwater stream in the Ozarks. The range of flows that occurs on this stream can be partitioned into those that sustain habitat by providing the combinations of depth and velocity that stream organisms live with most of the time, and those flows that surpass sediment entrainment thresholds, alter stream geomorphology, and therefore maintain habitat. The quantitative relations show sensitivity of habitats to flow variation, but do not address how flow may vary in the future, or the extent to which stream geomorphology may be affected by variations in sediment supply.

  11. Application of Integral Pumping Tests to estimate the influence of losing streams on groundwater quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Schirmer, M.

    2009-05-01

    Urban streams receive effluents of wastewater treatment plants and untreated wastewater during combined sewer overflow events. In the case of losing streams substances, which originate from wastewater, can reach the groundwater and deteriorate its quality. The estimation of mass flow rates Mex from losing streams to the groundwater is important to support groundwater management strategies, but is a challenging task. Variable inflow of wastewater with time-dependent concentrations of wastewater constituents causes a variable water composition in urban streams. Heterogeneities in the structure of the streambed and the connected aquifer lead, in combination with this variable water composition, to heterogeneous concentration patterns of wastewater constituents in the vicinity of urban streams. Groundwater investigation methods based on conventional point sampling may yield unreliable results under these conditions. Integral Pumping Tests (IPT) can overcome the problem of heterogeneous concentrations in an aquifer by increasing the sampled volume. Long-time pumping (several days) and simultaneous sampling yields reliable average concentrations Cav and mass flow rates Mcp for virtual control planes perpendicular to the natural flow direction. We applied the IPT method in order to estimate Mex of a stream section in Leipzig (Germany). The investigated stream is strongly influenced by combined sewer overflow events. Four pumping wells were installed up- and downstream of the stream section and operated for a period of five days. The study was focused on four inorganic (potassium, chloride, nitrate and sulfate) and two organic (caffeine and technical-nonylphenol) wastewater constituents with different transport properties. The obtained concentration-time series were used in combination with a numerical flow model to estimate Mcp of the respective wells. The difference of the Mcp's between up- and downstream wells yields Mex of wastewater constituents that increase downstream of the stream. In order to confirm the obtained Mcp's concentrations of additional measurements in the investigated stream were compared with the concentrations in the groundwater up- and downstream of the stream section. The results revealed increased Mcp's downstream of the stream section for chloride, potassium and nitrate, whereas Mcp of sulfate was decreased. Micropollutants caffeine and technical-nonylphenol showed decreased Mcp's downstream of the stream section in 75 % of the cases. Values of Mex could only be given for chloride, potassium, nitrate and caffeine. The comparison of concentrations in the stream with those in the groundwater points to the streambed as a zone where mass accumulation and degradation processes occur. The obtained results imply that the applied method can provide reliable data about the influence of losing streams on groundwater quality.

  12. Flow pathways in the Slapton Wood catchment using temperature as a tracer

    NASA Astrophysics Data System (ADS)

    Birkinshaw, Stephen J.; Webb, Bruce

    2010-03-01

    SummaryThis study investigates the potential of temperature as a tracer to provide insights into flow pathways. The approach couples fieldwork and modelling experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil temperature, spring temperature, and the stream temperature and use was made of an existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant flow in this hollow is a result of subsurface stormflow, and previous work has suggested that the water flows vertically down through the soil and then subsurface stormflow occurs at the soil/bedrock interface where the water is deflected laterally. The depth of the subsurface stormflow was previously thought to be around 2.2 m. However, analysis of the new spring, stream and soil temperature data suggests a deeper pathway for the subsurface stormflow. Modelling of water flow and heat transport was carried out using SHETRAN and this was calibrated to reproduce the water flow in the entire Slapton Wood catchment and soil temperatures in the Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow with two different soil depths. A depth of 2.2 m, based on previous knowledge, was unable to reproduce the Eastergrounds spring temperature. A depth of 3.7 m produced an excellent comparison between measured and simulated stream and spring temperatures in the Eastergrounds Hollow. This work suggests that the depth of the flow pathways that produce the subsurface stormflow are deeper than previously thought. It also provides a demonstration on the use of temperature as a tracer to understand flow pathways.

  13. The effect of flow data resolution on sediment yield estimation and channel design

    NASA Astrophysics Data System (ADS)

    Rosburg, Tyler T.; Nelson, Peter A.; Sholtes, Joel S.; Bledsoe, Brian P.

    2016-07-01

    The decision to use either daily-averaged or sub-daily streamflow records has the potential to impact the calculation of sediment transport metrics and stream channel design. Using bedload and suspended load sediment transport measurements collected at 138 sites across the United States, we calculated the effective discharge, sediment yield, and half-load discharge using sediment rating curves over long time periods (median record length = 24 years) with both daily-averaged and sub-daily streamflow records. A comparison of sediment transport metrics calculated with both daily-average and sub-daily stream flow data at each site showed that daily-averaged flow data do not adequately represent the magnitude of high stream flows at hydrologically flashy sites. Daily-average stream flow data cause an underestimation of sediment transport and sediment yield (including the half-load discharge) at flashy sites. The degree of underestimation was correlated with the level of flashiness and the exponent of the sediment rating curve. No consistent relationship between the use of either daily-average or sub-daily streamflow data and the resultant effective discharge was found. When used in channel design, computed sediment transport metrics may have errors due to flow data resolution, which can propagate into design slope calculations which, if implemented, could lead to unwanted aggradation or degradation in the design channel. This analysis illustrates the importance of using sub-daily flow data in the calculation of sediment yield in urbanizing or otherwise flashy watersheds. Furthermore, this analysis provides practical charts for estimating and correcting these types of underestimation errors commonly incurred in sediment yield calculations.

  14. Transport of sediment through a channel network during a post-fire debris flow

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.

    2017-12-01

    Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So debris flows are really effective at removing sediment from headwaters, but at some scale (between 3th and 4th order channels) they are equally effective at depositing sediment. In these lower reaches the geomorphic legacy of the post-wildfire debris flow is about how channel sediment is distributed rather than how much volume is stored.

  15. Groundwater Discharge along a Channelized Coastal Plain Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffusemore » discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.« less

  16. Streamflow Measurements in North-Central Nebraska, November 2006

    USGS Publications Warehouse

    Peterson, Steven M.; Strauch, Kellan R.

    2007-01-01

    Streamflow measurements were made during November of 2006 in the Elkhorn and Loup River basins and selected streams in the Niobrara and Platte River basins in north-central Nebraska. At these 531 sites, flows ranging from no flow to 2,600 ft3/s were measured or observed. The data are presented in a table along with the quality of measurement and the method that was used. Maps show the location of the study area and the sites.

  17. Electrochemical Aptamer-Based Sensors for Rapid Point-of-Use Monitoring of the Mycotoxin Ochratoxin A Directly in a Food Stream.

    PubMed

    Somerson, Jacob; Plaxco, Kevin W

    2018-04-15

    The ability to measure the concentration of specific small molecules continuously and in real-time in complex sample streams would impact many areas of agriculture, food safety, and food production. Monitoring for mycotoxin taint in real time during food processing, for example, could improve public health. Towards this end, we describe here an inexpensive electrochemical DNA-based sensor that supports real-time monitor of the mycotoxin ochratoxin A in a flowing stream of foodstuffs.

  18. Geomorphic controls on hyporheic exchange flow in mountain streams.

    Treesearch

    T. Kasahara; S.M. Wondzell

    2003-01-01

    Hyporheic exchange flows were simulated using MODFLOW and MODPATH to estimate relative effects of channel morphologic features on the extent of the hyporheic zone, on hyporheic exchange flow, and on the residence time of stream water in the hyporheic zone. Four stream reaches were compared in order to examine the influence of stream size and channel constraint. Within...

  19. Experimental study of streaming flows associated with ultrasonic levitators

    NASA Astrophysics Data System (ADS)

    Trinh, E. H.; Robey, J. L.

    1994-11-01

    Steady-state acoustic streaming flow patterns have been observed during the operation of a variety of resonant single-axis ultrasonic levitators in a gaseous environment and in the 20-37 kHz frequency range. Light sheet illumination and scattering from smoke particles have revealed primary streaming flows which display different characteristics at low and high sound pressure levels. Secondary macroscopic streaming cells around levitated samples are superimposed on the primary streaming flow pattern generated by the standing wave. These recorded flows are quite reproducible, and are qualitatively the same for a variety of levitator physical geometries. An onset of flow instability can also be recorded in nonisothermal systems, such as levitated spot-heated samples when the resonance conditions are not exactly satisfied. A preliminary qualitative interpretation of these experimental results is presented in terms of the superposition of three discrete sets of circulation cells operating on different spatial scales. These relevant length scales are the acoustic wavelength, the levitated sample size, and finally the acoustic boundary layer thickness. This approach fails, however, to explain the streaming flow-field morphology around liquid drops levitated on Earth. Observation of the interaction between the flows cells and the levitated samples also suggests the existence of a steady-state torque induced by the streaming flows.

  20. The effect of bedload transport rates on bedform and planform morphological development in a laboratory meandering stream under varying flow conditions

    NASA Astrophysics Data System (ADS)

    Sullivan, C.; Good, R. G. R.; Binns, A. D.

    2017-12-01

    Sediment transport processes in streams provides valuable insight into the temporal evolution of planform and bedform geometry. The majority of previous experimental research in the literature has focused on bedload transport and corresponding bedform development in rectangular, confined channels, which does not consider planform adjustment processes in streams. In contrast, research conducted with laboratory streams having movable banks can investigate planform development in addition to bedform development, which is more representative of natural streams. The goal of this research is to explore the relationship between bedload transport rates and the morphological adjustments in meandering streams. To accomplish this, a series of experimental runs were conducted in a 5.6 m by 1.9 m river basin flume at the University of Guelph to analyze the bedload impacts on bed formations and planform adjustments in response to varying flow conditions. In total, three experimental runs were conducted: two runs using steady state conditions and one run using unsteady flow conditions in the form of a symmetrical hydrograph implementing quasi steady state flow. The runs were performed in a series of time-steps in order to monitor the evolution of the stream morphology and the bedload transport rates. Structure from motion (SfM) was utilized to capture the channel morphology after each time-step, and Agisoft PhotoScan software was used to produce digital elevation models to analyze the morphological evolution of the channel with time. Bedload transport rates were quantified using a sediment catch at the end of the flume. Although total flow volumes were similar for each run, the morphological evolution and bedload transport rates in each run varied. The observed bedload transport rates from the flume are compared with existing bedload transport formulas to assess their accuracy with respect to sediment transport in unconfined meandering channels. The measured sediment transport rates varied from the existing equations, which can be attributed to the sediment characteristics, planform morphology and bed formations. The results from this research provide greater knowledge of morphological processes in natural meandering streams to improve the capabilities of computational modelling and river engineering practice.

  1. Fingerprinting Dissolved Organic Carbon (DOC) Sources with Specific UV Absorbance (SUVA) and Fluorescence

    NASA Astrophysics Data System (ADS)

    van Verseveld, W. J.; Lajtha, K.; McDonnell, J. J.

    2007-12-01

    DOC is an important water quality constituent because it is an important food source for stream biota, it plays a significant role in metal toxicity and transport, and protects aquatic organisms by absorbing visible and UV light. However, sources of stream DOC and changes in DOC quality at storm and seasonal scales remain poorly understood. We characterized DOC concentrations and SUVA (as an indicator of aromaticity) at the plot, hillslope and catchment scale during and between five storm events over the period Fall 2004 until Spring 2005, in WS10, H.J. Andrews, Oregon, USA. This study site has hillslopes that issue directly into the stream. This enabled us to compare a trenched hillslope response to the stream response without the influence of a riparian zone. The main result of this study was that SUVA in addition to DOC was needed to fingerprint sources of DOC. Stream water and lateral subsurface flow showed a clockwise DOC and SUVA hysteresis pattern. Both organic horizon water and transient groundwater were characterized by high DOC concentrations and SUVA values, while DOC concentrations and SUVA values in soil water decreased with depth in the soil profile. This indicates transient groundwater was an important contributor to high DOC concentrations and SUVA values during storm events. During the falling limb of the hydrograph deep soil water and seepage groundwater based on SUVA values contributed significantly to lateral subsurface flow and stream water. Preliminary results showed that fluorescence of stream water and lateral subsurface flow continuously measured with a fluorometer was significantly related to UV-absorbance during a December storm event. Finally, SUVA of lateral subsurface flow was lower than SUVA of stream water at the seasonal scale, indicating a difference in mixing of water sources at the hillslope and catchment scale. Overall, our results show that SUVA and fluorescence are useful tracers for fingerprinting DOC sources.

  2. Response of Tropical Stream Fish Assemblages to Small Hydropower Induced Flow Alteration in the Western Ghats of Karnataka, India.

    NASA Astrophysics Data System (ADS)

    Rao, S. T.

    2016-12-01

    Alteration of natural flow regime is considered as one of the major threats to tropical stream fish assemblages as it alters the physio-chemical and micro-habitat features of the river. Flow alteration induced by Small hydro-power (SHP) plants disrupts the flow regime by flow diversion and regulation. The effects of flow alteration on tropical stream fish assemblages, especially in the Western Ghats of India is largely understudied. Such a knowledge is imperative to set limits on flow alteration as SHPs in the Western Ghats are being planned at an unprecedented rate with exemption from environment impact assessments and backing in the form of government subsidies and carbon credits. This study aimed to understand the response of fish assemblages to SHP induced flow alteration in a regulated and unregulated tributary of the Yettinahole River in the Western Ghats of Karnataka. The study intended to quantify the natural and altered flow regime using automated periodic depth measurements, its effect on micro-habitats and environmental variables and finally, understand how fish assemblages respond to such changes. The response of fish assemblage was measured in terms of catch-per-site, species-regime associations and ecological distance between the regimes. The study used a space for time substitution approach and found that the altered flow regime dampened the diurnal and seasonal patterns of natural flow regime. The altered flow regime influenced variations in water quality, micro-habitat heterogeneity and fish assemblage response, each characteristic of the type of flow alteration. The natural flow regime was found to have a higher catch-per-site and strong associations with endemic and niche-specific taxa. Compositional dissimilarities, in terms of ecological distance were observed between the altered and the natural flow regime. Dewatered or flow diverted regime contained species with lentic affinities while an overall low catch-per-site and weak species-regime association was found in the flow regulated regime. The study highlights the importance of natural flow regime in maintaining native biodiversity and suggests the need for cumulative impact assessments for setting limits on flow alteration.

  3. Low-flow characteristics for selected streams in Indiana

    USGS Publications Warehouse

    Fowler, Kathleen K.; Wilson, John T.

    2015-01-01

    The management and availability of Indiana’s water resources increase in importance every year. Specifically, information on low-flow characteristics of streams is essential to State water-management agencies. These agencies need low-flow information when working with issues related to irrigation, municipal and industrial water supplies, fish and wildlife protection, and the dilution of waste. Industrial, municipal, and other facilities must obtain National Pollutant Discharge Elimination System (NPDES) permits if their discharges go directly to surface waters. The Indiana Department of Environmental Management (IDEM) requires low-flow statistics in order to administer the NPDES permit program. Low-flow-frequency characteristics were computed for 272 continuous-record stations. The information includes low-flow-frequency analysis, flow-duration analysis, and harmonic mean for the continuous-record stations. For those stations affected by some form of regulation, low-flow frequency curves are based on the longest period of homogeneous record under current conditions. Low-flow-frequency values and harmonic mean flow (if sufficient data were available) were estimated for the 166 partial-record stations. Partial-record stations are ungaged sites where streamflow measurements were made at base flow.

  4. Estimated Perennial Streams of Idaho and Related Geospatial Datasets

    USGS Publications Warehouse

    Rea, Alan; Skinner, Kenneth D.

    2009-01-01

    The perennial or intermittent status of a stream has bearing on many regulatory requirements. Because of changing technologies over time, cartographic representation of perennial/intermittent status of streams on U.S. Geological Survey (USGS) topographic maps is not always accurate and (or) consistent from one map sheet to another. Idaho Administrative Code defines an intermittent stream as one having a 7-day, 2-year low flow (7Q2) less than 0.1 cubic feet per second. To establish consistency with the Idaho Administrative Code, the USGS developed regional regression equations for Idaho streams for several low-flow statistics, including 7Q2. Using these regression equations, the 7Q2 streamflow may be estimated for naturally flowing streams anywhere in Idaho to help determine perennial/intermittent status of streams. Using these equations in conjunction with a Geographic Information System (GIS) technique known as weighted flow accumulation allows for an automated and continuous estimation of 7Q2 streamflow at all points along a stream, which in turn can be used to determine if a stream is intermittent or perennial according to the Idaho Administrative Code operational definition. The selected regression equations were applied to create continuous grids of 7Q2 estimates for the eight low-flow regression regions of Idaho. By applying the 0.1 ft3/s criterion, the perennial streams have been estimated in each low-flow region. Uncertainty in the estimates is shown by identifying a 'transitional' zone, corresponding to flow estimates of 0.1 ft3/s plus and minus one standard error. Considerable additional uncertainty exists in the model of perennial streams presented in this report. The regression models provide overall estimates based on general trends within each regression region. These models do not include local factors such as a large spring or a losing reach that may greatly affect flows at any given point. Site-specific flow data, assuming a sufficient period of record, generally would be considered to represent flow conditions better at a given site than flow estimates based on regionalized regression models. The geospatial datasets of modeled perennial streams are considered a first-cut estimate, and should not be construed to override site-specific flow data.

  5. Gravel Transport Measured With Bedload Traps in Mountain Streams: Field Data Sets to be Published

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Swingle, K. W.; Abt, S. R.; Ettema, R.; Cenderelli, D. A.

    2017-12-01

    Direct, accurate measurements of coarse bedload transport exist for only a few streams worldwide, because the task is laborious and requires a suitable device. However, sets of accurate field data would be useful for reference with unsampled sites and as a basis for model developments. The authors have carefully measured gravel transport and are compiling their data sets for publication. To ensure accurate measurements of gravel bedload in wadeable flow, the designed instrument consisted of an unflared aluminum frame (0.3 x 0.2 m) large enough for entry of cobbles. The attached 1 m or longer net with a 4 mm mesh held large bedload volumes. The frame was strapped onto a ground plate anchored onto the channel bed. This setup avoided involuntary sampler particle pick-up and enabled long sampling times, integrating over fluctuating transport. Beveled plates and frames facilitated easy particle entry. Accelerating flow over smooth plates compensated for deceleration within the net. Spacing multiple frames by 1 m enabled sampling much of the stream width. Long deployment, and storage of sampled bedload away from the frame's entrance, were attributes of traps rather than samplers; hence the name "bedload traps". The authors measured gravel transport with 4-6 bedload traps per cross-section at 10 mountain streams in CO, WY, and OR, accumulating 14 data sets (>1,350 samples). In 10 data sets, measurements covered much of the snowmelt high-flow season yielding 50-200 samples. Measurement time was typically 1 hour but ranged from 3 minutes to 3 hours, depending on transport intensity. Measuring back-to-back provided 6 to 10 samples over a 6 to 10-hour field day. Bedload transport was also measured with a 3-inch Helley-Smith sampler. The data set provides fractional (0.5 phi) transport rates in terms of particle mass and number for each bedload trap in the cross-section, the largest particle size, as well as total cross-sectional gravel transport rates. Ancillary field data include stage, discharge, long-term flow records if available, surface and subsurface sediment sizes, as well as longitudinal and cross-sectional site surveys. Besides transport relations, incipient motion conditions, hysteresis, and lateral variation, the data provide a reliable modeling basis to test insights and hypotheses regarding bedload transport.

  6. Effects of Large Wood on River-Floodplain Connectivity in a Headwater Appalachian Stream

    NASA Astrophysics Data System (ADS)

    Keys, T.; Govenor, H.; Jones, C. N.; Hession, W. C.; Scott, D.; Hester, E. T.

    2017-12-01

    Large wood (LW) plays an important, yet often undervalued role in stream ecosystems. Traditionally, LW has been removed from streams for aesthetic, navigational, and flood mitigation purposes. However, extensive research over the last three decades has directly linked LW to critical ecosystem functions including habitat provisioning, stream geomorphic stability, and water quality improvements; and as such, LW has increasingly been implemented in stream restoration activities. One of the proposed benefits to this restoration approach is that LW increases river-floodplain connectivity, potentially decreasing downstream flood peaks and improving water quality. Here, we conducted two experiential floods (i.e., one with and one without LW) in a headwater, agricultural stream to explore the effect of LW on river-floodplain connectivity and resulting hydrodynamic processes. During each flood, we released an equal amount of water to the stream channel, measured stream discharge at upstream and downstream boundaries, and measured inundation depth at multiple locations across the floodplain. We then utilized a 2-dimensional hydrodynamic model (HEC-RAS) to simulate floodplain hydrodynamics. We first calibrated the model using observations from the two experimental floods. Then, we utilized the calibrated model to evaluate differing LW placement strategies and effects under various flow conditions. Results show that the addition of LW to the channel decreased channel velocity and increased inundation extent, inundation depth, and floodplain velocity. Differential placement of LW along the stream impacted the levels of floodplain discharge, primarily due to the geomorphic characteristics of the stream. Finally, we examined the effects of LW on floodplain hydrodynamics across a synthetic flow record, and found that the magnitude of river-floodplain connectivity decreased as recurrence interval increased, with limited impacts on storm events with a recurrence interval of 25 years or greater. These findings suggest that LW plays a substantial role in river-floodplain connectivity of headwater streams and associated ecosystem services.

  7. Experimental reductions in stream flow alter litter processing and consumer subsidies in headwater streams

    Treesearch

    Robert M. Northington; Jackson R. Webster

    2017-01-01

    SummaryForested headwater streams are connected to their surrounding catchments by a reliance on terrestrial subsidies. Changes in precipitation patterns and stream flow represent a potential disruption in stream ecosystem function, as the delivery of terrestrial detritus to aquatic consumers and...

  8. Measurements of forces, moments, and pressures on a generic store separating from a box cavity at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Stallings, Robert L., Jr.; Wilcox, Floyd J., Jr.; Forrest, Dana K.

    1991-01-01

    An experimental investigation was conducted to measure the forces, moments, and pressure distributions on the generic store separating from a rectangular box cavity contained in a flat plate surface at supersonic speeds. Pressure distributions inside the cavity and oil flow and vapor-screen photographs of the cavity flow field were also obtained. The measurements were obtained for the store separating from a flat plate surface, from two shallow cavities having length to depth ratios (L/h) of 16.778 and 12.073, and from a deep cavity having L/h = 6.730. Measurements for the shallow cavities were obtained both with and without rectangular doors attached to sides of the cavities. The tests were conducted at free stream Mach numbers of 1.69, 2.00 and 2.65 for a free stream Reynolds number per foot of 2 x 10(exp 6). Presented here are a discussion of the results, a complete tabulation of the pressure data, figures of both the pressure and force and moment data, and representative oil flow and vapor screen photographs.

  9. Using high-frequency nitrogen and carbon measurements to decouple temporal dynamics of catchment and in-stream transport and reaction processes in a headwater stream

    NASA Astrophysics Data System (ADS)

    Blaen, P.; Riml, J.; Khamis, K.; Krause, S.

    2017-12-01

    Within river catchments across the world, headwater streams represent important sites of nutrient transformation and uptake due to their high rates of microbial community processing and relative abundance in the landscape. However, separating the combined influence of in-stream transport and reaction processes from the overall catchment response can be difficult due to spatio-temporal variability in nutrient and organic matter inputs, flow regimes, and reaction rates. Recent developments in optical sensor technologies enable high-frequency, in situ nutrient measurements, and thus provide opportunities for greater insights into in-stream processes. Here, we use in-stream observations of hourly nitrate (NO3-N), dissolved organic carbon (DOC) and dissolved oxygen (DO) measurements from paired in situ sensors that bound a 1 km headwater stream reach in a mixed-use catchment in central England. We employ a spectral approach to decompose (1) variances in solute loading from the surrounding landscape, and (2) variances in reach-scale in-stream nutrient transport and reaction processes. In addition, we estimate continuous rates of reach-scale NO3-N and DOC assimilation/dissimilation, ecosystem respiration and primary production. Comparison of these results over a range of hydrological conditions (baseflow, variable storm events) and timescales (event-based, diel, seasonal) facilitates new insights into the physical and biogeochemical processes that drive in-stream nutrient dynamics in headwater streams.

  10. A commercialized, continuous flow fiber optic sensor for trichloroethylene and haloforms

    NASA Technical Reports Server (NTRS)

    Wells, James C.; Johnson, Mark D.

    1994-01-01

    Purus, Inc. has commercialized a fiber optic chemical sensor using technology developed by Lawrence Livermore National Laboratory and licensed from The University of California. The basis for the sensor is the development of color within a reagent when exposed to an analyte. The sensor consists of an optrode, reagent delivery and recover system, fiber optic transmitter-receiver, controller, and display. Reagent is pumped through the optrode. Analyte diffuses across a gas permeable membrane and reacts with the reagent to form a colored product. The colored product is detected by measuring the absorbance of light from a 568 nm diode. Reagents are currently available for TCE and trihalomethanes. Initial reagent chemistry is based on the Fujiwara alkaline pyridine reaction. The optrode contacts only gas streams, but the volatility of the current analytes also allows measurements of aqueous streams, without being affected by aqueous interferents that are non-volatile. Sensitivity of the sensor has been demonstrated to 5 ppb aqueous solutions and 0.1 ppmv in flowing gas streams.

  11. 78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY: Environmental... Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also is announcing that... Development. The report describes best practices for the deployment of continuous temperature and flow sensors...

  12. Characterization of Interactions between Surface Water and Near-Stream Groundwater along Fish Creek, Teton County, Wyoming, by Using Heat as a Tracer

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Wheeler, Jerrod D.; Essaid, Hedeff I.

    2009-01-01

    Fish Creek, a tributary of the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Local residents began observing an increase in the growth of algae and aquatic plants in the stream during the last decade. Due to the known importance of groundwater to surface water in the area, the U.S. Geological Survey (USGS), in cooperation with the Teton Conservation District, conducted a study to characterize the interactions between surface water and near-stream groundwater along Fish Creek. The study has two main objectives: (1) develop an improved spatial and temporal understanding of water flow (fluxes) between surface water and groundwater, and (2) use a two-dimensional groundwater-flow and heat-transport model to interpret observed temperature and hydraulic-head distributions and to describe groundwater flow near Fish Creek. The study is intended to augment hydrologic information derived from previously published results of a seepage investigation on Fish Creek. Seepage measurements provide spatially averaged gains and losses over an entire reach for one point in time, whereas continuous temperature and water-level measurements provide continuous estimates of gain and loss at a specific location. Stage, water-level, and temperature data were collected from surface water and from piezometers completed in an alluvial aquifer at three cross sections on Fish Creek at Teton Village, Resor's Bridge, and Wilson from October 2004 to October 2006. The flow and energy (heat) transport model VS2DH was used to simulate flow through the streambed of Fish Creek at the Teton Village cross section from April 15 to October 14, 2006, (183 recharge periods) and at the Resor's Bridge and Wilson cross sections from June 6, 2005, to October 14, 2006 (496 recharge periods). A trial-and-error technique was used to determine the best match between simulated and measured data. These results were then used to calibrate the cross-sectional models and determine horizontal and vertical hydraulic conductivities. The fluxes of groundwater into the stream or fluxes of stream water into the alluvial aquifer were estimated by using the calibrated VS2DH model for each cross section. Results of the simulations indicated that surface water/groundwater interaction and hydraulic properties were different at the three cross sections. At the most upstream cross section, Teton Village, Fish Creek flowed intermittently and continually gained relatively large quantities of water from April through September. During other times of the year, the stream was dry near the cross section. Saturated hydraulic conductivity set at 1x10-4 m/s in both the horizontal and vertical directions resulted in the best match between simulated and measured temperatures. The Resor's Bridge cross section, about midway between the other two cross sections, was near the point where perennial flow begins. At this cross section, the stream gained water from groundwater during high flow in late spring and summer, was near equilibrium with groundwater during August and September, and lost water to groundwater during the remainder of the year. Horizontal hydraulic conductivity set at 5x10-5 m/s and vertical hydraulic conductivity set at 1x10-5 m/s resulted in the best match between simulated and measured temperatures. The Wilson cross section, the most downstream site, was at USGS streamflow-gaging station 13016450. This part of the stream is perennial and was almost always gaining a small volume of water from groundwater. Saturated hydraulic conductivity set at 1x10-4 m/s in the horizontal direction and at 5x10-6 m/s in the vertical direction resulted in the best match between simulated and measured temperatures. Quantitative values of the flux from groundwater into surface water were estimated by using VS2DH and ranged from 1.1 to 6.6 cubic meters per day (m3/d) at the Teton Village cross section, from -3.8 to 7.4 m3/d at t

  13. Method For Enhanced Gas Monitoring In High Density Flow Streams

    DOEpatents

    Von Drasek, William A.; Mulderink, Kenneth A.; Marin, Ovidiu

    2005-09-13

    A method for conducting laser absorption measurements in high temperature process streams having high levels of particulate matter is disclosed. An impinger is positioned substantially parallel to a laser beam propagation path and at upstream position relative to the laser beam. Beam shielding pipes shield the beam from the surrounding environment. Measurement is conducted only in the gap between the two shielding pipes where the beam propagates through the process gas. The impinger facilitates reduced particle presence in the measurement beam, resulting in improved SNR (signal-to-noise) and improved sensitivity and dynamic range of the measurement.

  14. System and method for measuring particles in a sample stream of a flow cytometer using a low power laser source

    DOEpatents

    Graves, Steven W; Habbersett, Robert C

    2013-10-22

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  15. System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

    DOEpatents

    Graves, Steven W.; Habbersett, Robert C.

    2014-07-01

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  16. System and method for measuring particles in a sample stream of a flow cytometer or the like

    DOEpatents

    Graves, Steven W.; Habberset, Robert C.

    2010-11-16

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  17. System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source

    DOEpatents

    Graves, Steven W.; Habbersett, Robert C.

    2016-11-15

    A system and method for analyzing a particle in a sample stream of a flow cytometer or the like. The system has a light source, such as a laser pointer module, for generating a low powered light beam and a fluidics apparatus which is configured to transport particles in the sample stream at substantially low velocity through the light beam for interrogation. Detectors, such as photomultiplier tubes, are configured to detect optical signals generated in response to the light beam impinging the particles. Signal conditioning circuitry is connected to each of the detectors to condition each detector output into electronic signals for processing and is designed to have a limited frequency response to filter high frequency noise from the detector output signals.

  18. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.

    2012-07-01

    During rain events, herbicides can be transported from their point of application to surface waters, where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may vary considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. Water samples were collected at different locations in the catchment (overland flow, tile drains and open channel) for two months after application in 2009, with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not reach the channel directly, but was retained in small depressions in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and storm drains for road and farmyard runoff acted as additional shortcuts to the stream. Although fast flow processes such as overland and macropore flow reduce the influence of the herbicide's chemical properties on transport due to short travel times, sorption properties influenced the herbicide transfer from ponding overland flow to tile drains (macropore flow). However, no influence of sorption was observed during the mobilisation of the herbicides from soil to overland flow. These observations on the role of herbicide properties contradict previous findings to some degree. Furthermore, they demonstrate that valuable insight can be gained by making spatially detailed observations along the flow paths.

  19. Low-flow characteristics of streams in Virginia

    USGS Publications Warehouse

    Hayes, Donald C.

    1991-01-01

    Streamflow data were collected and low-flow characteristics computed for 715 gaged sites in Virginia Annual minimum average 7-consecutive-day flows range from 0 to 2,195 cubic feet per second for a 2-year recurrence interval and from 0 to 1,423 cubic feet per second for a 10-year recurrence interval. Drainage areas range from 0.17 to 7,320 square miles. Existing and discontinued gaged sites are separated into three types: long-term continuous-record sites, short-term continuous-record sites, and partial-record sites. Low-flow characteristics for long-term continuous-record sites are determined from frequency curves of annual minimum average 7-consecutive-day flows . Low-flow characteristics for short-term continuous-record sites are estimated by relating daily mean base-flow discharge values at a short-term site to concurrent daily mean discharge values at nearby long-term continuous-record sites having similar basin characteristics . Low-flow characteristics for partial-record sites are estimated by relating base-flow measurements to daily mean discharge values at long-term continuous-record sites. Information from the continuous-record sites and partial-record sites in Virginia are used to develop two techniques for estimating low-flow characteristics at ungaged sites. A flow-routing method is developed to estimate low-flow values at ungaged sites on gaged streams. Regional regression equations are developed for estimating low-flow values at ungaged sites on ungaged streams. The flow-routing method consists of transferring low-flow characteristics from a gaged site, either upstream or downstream, to a desired ungaged site. A simple drainage-area proration is used to transfer values when there are no major tributaries between the gaged and ungaged sites. Standard errors of estimate for108 test sites are 19 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 52 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval . A more complex transfer method must be used when major tributaries enter the stream between the gaged and ungaged sites. Twenty-four stream networks are analyzed, and predictions are made for 84 sites. Standard errors of estimate are 15 percent of the mean for estimates of low-flow characteristics having a 2-year recurrence interval and 22 percent of the mean for estimates of low-flow characteristics having a 10-year recurrence interval. Regional regression equations were developed for estimating low-flow values at ungaged sites on ungaged streams. The State was divided into eight regions on the basis of physiography and geographic grouping of the residuals computed in regression analyses . Basin characteristics that were significant in the regression analysis were drainage area, rock type, and strip-mined area. Standard errors of prediction range from 60 to139 percent for estimates of low-flow characteristics having a 2-year recurrence interval and 90 percent to 172 percent for estimates of low-flow characteristics having a 10-year recurrence interval.

  20. Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.

    2006-01-01

    Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The regression equations are not valid in watersheds with upstream regulation, diversions, or mining activities. Watersheds with karst features need close examination as to the applicability of the regression-equation results.

  1. Channel geometry change of a first-order stream after a small debris flow in Ashio Mountains of central Japan

    NASA Astrophysics Data System (ADS)

    Hattanji, T.; Wasklewicz, T.

    2006-12-01

    We examined geometry change of a steep first-order channel with a laserscanner before and after a small debris flow. The study site is located in chert area, Ashio Mountains, Japan. On August 12, 2005, a 20-year storm event with maximum 1-hour rainfall of 75.4 mm/h triggered a small landslide at a steep channel head. The sliding material moved as a debris flow along the first-order channel (C3) to the mouth. We successfully measured high-resolution channel topography with the Leica Geosystems High-Definition Surveying Laser Scanner before (April 30) and after the debris-flow event (October 9-11). Width, depth and other related parameters were measured for 30 selected cross sections. Bankfull stage of this first-order channel after the debris-flow event is much higher than two-year flood stage. The magnitude of channel geometry change varies non-linearly in downstream direction. The non-linear variability is attributed to differences in stream bed and bank characteristics. Bedrock-channel reach is less impacted by the debris flow. The largest magnitude changes in the channel geometry parameters occur along colluvially confined channel reaches.

  2. Aerodynamic parameters from distributed heterogeneous CNT hair sensors with a feedforward neural network.

    PubMed

    Magar, Kaman Thapa; Reich, Gregory W; Kondash, Corey; Slinker, Keith; Pankonien, Alexander M; Baur, Jeffery W; Smyers, Brian

    2016-11-10

    Distributed arrays of artificial hair sensors have bio-like sensing capabilities to obtain spatial and temporal surface flow information which is an important aspect of an effective fly-by-feel system. The spatiotemporal surface flow measurement enables further exploration of additional flow features such as flow stagnation, separation, and reattachment points. Due to their inherent robustness and fault tolerant capability, distributed arrays of hair sensors are well equipped to assess the aerodynamic and flow states in adverse conditions. In this paper, a local flow measurement from an array of artificial hair sensors in a wind tunnel experiment is used with a feedforward artificial neural network to predict aerodynamic parameters such as lift coefficient, moment coefficient, free-stream velocity, and angle of attack on an airfoil. We find the prediction error within 6% and 10% for lift and moment coefficients. The error for free-stream velocity and angle of attack were within 0.12 mph and 0.37 degrees. Knowledge of these parameters are key to finding the real time forces and moments which paves the way for effective control design to increase flight agility, stability, and maneuverability.

  3. Assessing the Vulnerability of Streams to Increased Frequency and Severity of Low Flows in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Konrad, C. P.

    2014-12-01

    A changing climate poses risks to the availability and quality of water resources. Among the risks, increased frequency and severity of low flow periods in streams would be significant for many in-stream and out-of-stream uses of water. While down-scaled climate projections serve as the basis for understanding impacts of climate change on hydrologic systems, a robust framework for risk assessment incorporates multiple dimensions of risks including the vulnerability of hydrologic systems to climate change impacts. Streamflow records from the southeastern US were examined to assess the vulnerability of streams to increased frequency and severity of low flows. Long-term (>50 years) records provide evidence of more frequent and severe low flows in more streams than would be expected from random chance. Trends in low flows appear to be a result of changes in the temporal distribution rather than the annual amount of preciptation and/or in evaporation. Base flow recession provides an indicator of a stream's vulnerability to such changes. Linkages between streamflow patterns across temporal scales can be used for understanding and asessing stream responses to the various possible expressions of a changing climate.

  4. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    NASA Astrophysics Data System (ADS)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  5. Effectiveness of streamside management zones on water quality: pretreatment measurements

    Treesearch

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; E. Treasure

    2008-01-01

    The objective of this paired watershed study is to quantify the effects of upland forest harvesting and Streamside Management Zones (SMZs) on stream water quantity and quality in North Carolina. Four watersheds ranging from 12 to 28 hectares (i.e., two on Hill Forest and two on Umstead Research Farm) with perennial stream channels were gauged for flow monitoring and...

  6. Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington

    USGS Publications Warehouse

    Curran, Janet H.; Wohl, Ellen E.

    2003-01-01

    Total flow resistance, measured as Darcy-Weisbach f, in 20 step-pool channels with large woody debris (LWD) in Washington, ranged from 5 to 380 during summer low flows. Step risers in the study streams consist of either (1) large and relatively immobile woody debris, bedrock, or roots that form fixed, or “forced,” steps, or (2) smaller and relatively mobile wood or clasts, or a mixture of both, arranged across the channel by the stream. Flow resistance in step-pool channels may be partitioned into grain, form, and spill resistance. Grain resistance is calculated as a function of particle size, and form resistance is calculated as large woody debris drag. Combined, grain and form resistance account for less than 10% of the total flow resistance. We initially assumed that the substantial remaining portion is spill resistance attributable to steps. However, measured step characteristics could not explain between-reach variations in flow resistance. This suggests that other factors may be significant; the coefficient of variation of the hydraulic radius explained 43% of the variation in friction factors between streams, for example. Large woody debris generates form resistance on step treads and spill resistance at step risers. Because the form resistance of step-pool channels is relatively minor compared to spill resistance and because wood in steps accentuates spill resistance by increasing step height, we suggest that wood in step risers influences channel hydraulics more than wood elsewhere in the channel. Hence, the distribution and function, not just abundance, of large woody debris is critical in steep, step-pool channels.

  7. Response of hot element flush wall gauges in oscillating laminar flow

    NASA Technical Reports Server (NTRS)

    Giddings, T. A.; Cook, W. J.

    1986-01-01

    The time dependent response characteristics of flush-mounted hot element gauges used as instruments to measure wall shear stress in unsteady periodic air flows were investigated. The study was initiated because anomalous results were obtained from the gauges in oscillating turbulent flows for the phase relation of the wall shear stress variation, indicating possible gauge response problems. Flat plate laminar oscillating turbulent flows characterized by a mean free stream velocity with a superposed sinusoidal variation were performed. Laminar rather than turbulent flows were studied, because a numerical solution for the phase angle between the free stream velocity and the wall shear stress variation that is known to be correct can be obtained. The focus is on comparing the phase angle indicated by the hot element gauges with corresponding numerical prediction for the phase angle, since agreement would indicate that the hot element gauges faithfully follow the true wall shear stress variation.

  8. Investigation of flow fields within large scale hypersonic inlet models

    NASA Technical Reports Server (NTRS)

    Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.

    1973-01-01

    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.

  9. Changes in streamflow characteristics in Wisconsin as related to precipitation and land use

    USGS Publications Warehouse

    Gebert, Warren A.; Garn, Herbert S.; Rose, William J.

    2016-01-19

    Streamflow characteristics were determined for 15 longterm streamflow-gaging stations for the periods 1915–2008, 1915–68, and 1969–2008 to identify trends. Stations selected represent flow characteristics for the major river basins in Wisconsin. Trends were statistically significant at the 95 percent confidence level at 13 of the 15 streamflow-gaging stations for various streamflow characteristics for 1915–2008. Most trends indicated increases in low flows for streams with agriculture as the dominant land use. The three most important findings are: increases in low flows and average flows in agricultural watersheds, decreases in flood peak discharge for many streams in both agricultural and forested watersheds, and climatic change occurred with increasing annual precipitation and changes in monthly occurrence of precipitation. When the 1915–68 period is compared to the 1969–2008 period, the annual 7-day low flow increased an average of 60 percent for nine streams in agricultural areas as compared to a 15 percent increase for the five forested streams. Average annual flow for the same periods increased 23 percent for the agriculture streams and 0.6 percent for the forested streams. The annual flood peak discharge for the same periods decreased 15 percent for agriculture streams and 8 percent for forested streams. The largest increase in the annual 7-day low flow was 117 percent, the largest increase in annual average flow was 41 percent, and the largest decrease in annual peak discharge was 51 percent. The trends in streamflow characteristics affect frequency characteristics, which are used for a variety of design and compliance purposes. The frequencies for the 1969–2008 period were compared to frequencies for the 1915–68 period. The 7-day, 10-year (Q7, 10) low flow increased 91 percent for nine agricultural streams, while the five forested streams had an increase of 18 percent. The 100-year flood peak discharge decreased an average of 15 percent for streams in the agriculture area and 27 percent for streams in the forested area. Increases in low flow for agriculture streams are attributed to changes in agricultural practices and land use as well as increased precipitation. The decrease in annual flood peak discharge with increased annual precipitation is less clear, but is attributed to increased infiltration from changes in agricultural practices and climatic changes. For future low-flow studies, the 1969–2008 period should be used to determine low-flow characteristics since it represents current (2014) conditions and was generally free of significant trends.

  10. Baseflow separation in a premontane transitional rainforest using stable isotope techniques

    NASA Astrophysics Data System (ADS)

    Miller, G. R.; DuMont, A.; Roark, E.; Cahill, A. T.; Brumbelow, J. K.

    2013-12-01

    Hydrologic, geologic, and biologic processes are critical to understanding the ecosystem in the tropical premontane transitional forests of Costa Rica. Precipitation is significantly lower during the dry season, and incoming rainfall can be completely intercepted and re-evaporated by the canopy during light events. These canopy processes can affect the rates of runoff and infiltration by changing the quantity and timing of rainfall reaching the ground surface. However, the resulting partitioning of stream water sources between event-water and baseflow from groundwater is not well quantified due to limited accessibility and complex subsurface conditions. This study focuses on research conducted at the Texas A&M Soltis Center for Education and Research, near San Ramón, Costa Rica. We have monitored a 2.2 ha watershed there, measuring precipitation and transpiration rates for over two years, and groundwater levels and stream flow rates for nearly one year. Precipitation rates for the watershed averaged 4.4 m/yr since 2010. Stream flow (runoff, spring flow, and baseflow) averaged 0.09 m^3/sec during the 2012-2013 wet seasons. At 1.2 mm/day, transpiration was a relatively minor component of the water budget. Over a 40-day span during summer 2013, we collected a combination of daily and rain-event based samples from locations throughout the watershed. Sources included: the main stream and two small tributaries, groundwater from piezometers, pore water from suction lysimeters, throughfall and stemflow from under canopy collection systems, and xylem water from 8 tree species across the watershed. We then measured stable isotope fractions (δ18O and δD) in the water using a Picarro L2120i CRDS. Isotope ratios for all surface water averaged -5.50‰ for δ18O and -28.00‰ for δD, while that measured under baseflow conditions were -5.45‰ for δ18O and -29.18‰ for δD. These results indicate that baseflow is the dominate source of stream water even in the wet season. We additionally conclude that despite the ubiquity of low permeability Andisols in this watershed, groundwater transport to the stream is characterized by short residence times attributable to macropore/fracture flow in the subsurface.

  11. Integrating the pulse of the riverscape and landscape: modelling stream metabolism using continuous dissolved oxygen measurements

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Birkel, C.; Malcolm, I.; Tetzlaff, D.

    2013-12-01

    Stream metabolism is a fundamental pulse of the watershed which reflects both the in-stream environment and its connectivity with the wider landscape. We used high quality, continuous (15 minute), long-term (>3 years) measurement of stream dissolved oxygen (DO) concentrations to estimate photosynthetic productivity (P) and system respiration (R) in forest and moorland reaches of an upland stream with peaty soils. We calibrated a simple five parameter numerical oxygen mass balance model driven by radiation, stream and air temperature, stream depth and re-aeration capacity. This used continuous 24-hour periods for the whole time series to identify behavioural simulations where DO simulations were re-produced sufficiently well to be considered reasonable representations of ecosystem functioning. Results were evaluated using a seasonal Regional Sensitivity Analysis and a co-linearity index for parameter sensitivity. This showed that >95 % of the behavioural models for the moorland and forest sites were identifiable and able to infer in-stream processes from the DO time series for almost half of all measured days at both sites. Days when the model failed to simulate DO levels successfully provided invaluable insight into time periods when other factors are likely to disrupt in-stream metabolic processes; these include (a) flood events when scour reduces the biomass of benthic primary producers, (b) periods of high water colour in higher summer/autumn flows and (c) low flow periods when hyporheic respiration is evident. Monthly P/R ratios <1 indicate a heterotrophic system with both sites exhibiting similar temporal patterns; with a maximum in February and a second peak during summer months. However, the estimated net ecosystem productivity (NPP) suggests that the moorland reach without riparian tree cover is likely to be a much larger source of carbon to the atmosphere (122 mmol C m-2 d-1) compared to the forested reach (64 mmol C m-2 d-1). The study indicates the value of integrating field and modelling studies of stream metabolism as a means of understanding the dynamic interactions of the riverscape and its surrounding landscape.

  12. TREHS: An open-access software tool for investigating and evaluating temporary river regimes as a first step for their ecological status assessment.

    PubMed

    Gallart, Francesc; Cid, Núria; Latron, Jérôme; Llorens, Pilar; Bonada, Núria; Jeuffroy, Justin; Jiménez-Argudo, Sara-María; Vega, Rosa-María; Solà, Carolina; Soria, Maria; Bardina, Mònica; Hernández-Casahuga, Antoni-Josep; Fidalgo, Aránzazu; Estrela, Teodoro; Munné, Antoni; Prat, Narcís

    2017-12-31

    When the regime of a river is not perennial, there are four main difficulties with the use of hydrographs for assessing hydrological alteration: i) the main hydrological features relevant for biological communities are not quantitative (discharges) but qualitative (phases such as flowing water, stagnant pools or lack of surface water), ii) stream flow records do not inform on the temporal occurrence of stagnant pools, iii) as most of the temporary streams are ungauged, their regime has to be evaluated by alternative methods such as remote sensing or citizen science, and iv) the biological quality assessment of the ecological status of a temporary stream must follow a sampling schedule and references adapted to the flow- pool-dry regime. To overcome these challenges within an operational approach, the freely available software tool TREHS has been developed within the EU LIFE TRIVERS project. This software permits the input of information from flow simulations obtained with any rainfall-runoff model (to set an unimpacted reference stream regime) and compares this with the information obtained from flow gauging records (if available) and interviews with local people, as well as instantaneous observations by individuals and interpretation of ground-level or aerial photographs. Up to six metrics defining the permanence of water flow, the presence of stagnant pools and their temporal patterns of occurrence are used to determine natural and observed river regimes and to assess the degree of hydrological alteration. A new regime classification specifically designed for temporary rivers was developed using the metrics that measure the relative permanence of the three main phases: flow, disconnected pools and dry stream bed. Finally, the software characterizes the differences between the natural and actual regimes, diagnoses the hydrological status (degree of hydrological alteration), assesses the significance and robustness of the diagnosis and recommends the best periods for biological quality samplings. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)

    EPA Science Inventory

    The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

  14. Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows

    PubMed Central

    Kumar, Haribalan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2011-01-01

    Study of mixing is important in understanding transport of submicron sized particles in the acinar region of the lung. In this article, we investigate transport in view of advective mixing utilizing Lagrangian particle tracking techniques: tracer advection, stretch rate and dispersion analysis. The phenomenon of steady streaming in an oscillatory flow is found to hold the key to the origin of kinematic mixing in the alveolus, the alveolar mouth and the alveolated duct. This mechanism provides the common route to folding of material lines and surfaces in any region of the acinar flow, and has no bearing on whether the geometry is expanding or if flow separates within the cavity or not. All analyses consistently indicate a significant decrease in mixing with decreasing Reynolds number (Re). For a given Re, dispersion is found to increase with degree of alveolation, indicating that geometry effects are important. These effects of Re and geometry can also be explained by the streaming mechanism. Based on flow conditions and resultant convective mixing measures, we conclude that significant convective mixing in the duct and within an alveolus could originate only in the first few generations of the acinar tree as a result of nonzero inertia, flow asymmetry, and large Keulegan–Carpenter (KC) number. PMID:21580803

  15. Combined effects of hydrologic alteration and cyprinid fish in mediating biogeochemical processes in a Mediterranean stream.

    PubMed

    Rubio-Gracia, Francesc; Almeida, David; Bonet, Berta; Casals, Frederic; Espinosa, Carmen; Flecker, Alexander S; García-Berthou, Emili; Martí, Eugènia; Tuulaikhuu, Baigal-Amar; Vila-Gispert, Anna; Zamora, Lluis; Guasch, Helena

    2017-12-01

    Flow regimes are important drivers of both stream community and biogeochemical processes. However, the interplay between community and biogeochemical responses under different flow regimes in streams is less understood. In this study, we investigated the structural and functional responses of periphyton and macroinvertebrates to different densities of the Mediterranean barbel (Barbus meridionalis, Cyprinidae) in two stream reaches differing in flow regime. The study was conducted in Llémena Stream, a small calcareous Mediterranean stream with high nutrient levels. We selected a reach with permanent flow (permanent reach) and another subjected to flow regulation (regulated reach) with periods of flow intermittency. At each reach, we used in situ cages to generate 3 levels of fish density. Cages with 10 barbels were used to simulate high fish density (>7indm -2 ); cages with open sides were used as controls (i.e. exposed to actual fish densities of each stream reach) thus having low fish density; and those with no fish were used to simulate the disappearance of fish that occurs with stream drying. Differences in fish density did not cause significant changes in periphyton biomass and macroinvertebrate density. However, phosphate uptake by periphyton was enhanced in treatments lacking fish in the regulated reach with intermittent flow but not in the permanent reach, suggesting that hydrologic alteration hampers the ability of biotic communities to compensate for the absence of fish. This study indicates that fish density can mediate the effects of anthropogenic alterations such as flow intermittence derived from hydrologic regulation on stream benthic communities and associated biogeochemical processes, at least in eutrophic streams. Copyright © 2017. Published by Elsevier B.V.

  16. Advanced computational multi-fluid dynamics: a new model for understanding electrokinetic phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.

    2009-04-01

    We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well, but a good understanding of the local reservoir geology will be required to identify signals caused by the front. The streaming potential measured at a well will be maximized in low-permeability reservoirs produced at a high rate, and in thick reservoirs with low shale content.

  17. Morphological divergence and flow-induced phenotypic plasticity in a native fish from anthropogenically altered stream habitats.

    PubMed

    Franssen, Nathan R; Stewart, Laura K; Schaefer, Jacob F

    2013-11-01

    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change.

  18. Low-flow characteristics of streams in the Puget Sound region, Washington

    USGS Publications Warehouse

    Hidaka, F.T.

    1973-01-01

    Periods of low streamflow are usually the most critical factor in relation to most water uses. The purpose of this report is to present data on low-flow characteristics of streams in the Puget Sound region, Washington, and to briefly explain some of the factors that influence low flow in the various basins. Presented are data on low-flow frequencies of streams in the Puget Sound region, as gathered at 150 gaging stations. Four indexes were computed from the flow-flow-frequency curves and were used as a basis to compare the low-flow characteristics of the streams. The indexes are the (1) low-flow-yield index, expressed in unit runoff per square mile; (2) base-flow index, or the ratio of the median 7-day low flow to the average discharge; (3) slope index, or slope of annual 7-day low-flow-frequency curve; and (4) spacing index, or spread between the 7-day and 183-day low-flow-frequency curves. The indexes showed a wide variation between streams due to the complex interrelation between climate, topography, and geology. The largest low-flow-yield indexes determined--greater than 1.5 cfs (cubic feet per second) per square mile--were for streams that head at high altitudes in the Cascade and Olympic Mountains and have their sources at glaciers. The smallest low-flow-yield indexes--less than 0.5 cfs per square mile--were for the small streams that drain the lowlands adjacent to Puget Sound. Indexes between the two extremes were for nonglacial streams that head at fairly high altitudes in areas of abundant precipitation. The base-flow index has variations that can be attributed to a basin's hydrogeology, with very little influence from climate. The largest base-flow indexes were obtained for streams draining permeable unconsolidated glacial and alluvial sediments in parts of the lowlands adjacent to Puget Sound. Large volume of ground water in these materials sustain flows during late summer. The smallest indexes were computed for streams draining areas underlain by relatively impermeable igneous, sedimentary, and metamorphic rocks or by relatively impermeable glacial till. Melt water from snow and ice influences the index for streams which originate at glaciers, and result in fairly large indexes--0.25 or greater. The slope index is influenced principally by the character of the geologic materials that underlie the basin. The largest slope indexes were computed for small streams that drain areas underlain by compact glacial till or consolidated sedimentary rocks. In contrast, lowland streams that flow through areas underlain by unconsolidated alluvia and glacial deposits have the smallest indexes. Small slope indexes also are characteristic of glacial streams and show the moderating effect of the snow and ice storage in the high mountain basins. The spacing indexes are similar to the slope indexes in that they are affected by the character of the geologic materials underlying a basin. The largest spacing indexes are characteristic of small streams whose basins are underlain by glacial till or by consolidated sedimentary rocks. The smallest indexes were computed for some lowland streams draining areas underlain by permeable glacial and alluvial sediments. The indexes do not appear to have a definite relation to each other. The low-flow-yield indexes are not related to either the slope or spacing indexes because snow and ice storage has a great influence on the low-flow-yield index, while the character of the geologic materials influences the slope and spacing indexes. A relation exists between the slope and spacing indexes but many anomalies occur that cannot be explained by the geology of the basins.

  19. Opportunities and challenges for the application of SP measurements to monitor subsurface flow (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.

    2013-12-01

    Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into freshwater aquifers is a global problem, threatening the water supply of millions of people in coastal settlements. Abstraction rates could be much more efficiently managed if encroaching saline water could be detected before it arrived at the borehole. However, current monitoring is based largely on borehole conductivity measurements, which requires a dense network of monitoring boreholes to map the saline front. Recent laboratory and field experiments suggest that the concentration gradient associated with the front generates an SP signal which can be detected at an abstraction well prior to the arrival of the front, potentially allowing monitoring using a comparatively cheap array of non-polarising borehole electrodes. Current challenges in interpreting SP measurements for subsurface flow are also discussed, particularly the use of models to predict the values of C and Q. The importance of accounting for the pore-level distribution of flow and excess charge in such models is emphasised, and a way forward is suggested in which pore-scale network models, used previously to predict relative permeability and capillary pressure, are extended to include charge transport at the pore-level.

  20. Inferring Aquifer Transmissivity from River Flow Data

    NASA Astrophysics Data System (ADS)

    Trichakis, Ioannis; Pistocchi, Alberto

    2016-04-01

    Daily streamflow data is the measurable result of many different hydrological processes within a basin; therefore, it includes information about all these processes. In this work, recession analysis applied to a pan-European dataset of measured streamflow was used to estimate hydrogeological parameters of the aquifers that contribute to the stream flow. Under the assumption that base-flow in times of no precipitation is mainly due to groundwater, we estimated parameters of European shallow aquifers connected with the stream network, and identified on the basis of the 1:1,500,000 scale Hydrogeological map of Europe. To this end, Master recession curves (MRCs) were constructed based on the RECESS model of the USGS for 1601 stream gauge stations across Europe. The process consists of three stages. Firstly, the model analyses the stream flow time-series. Then, it uses regression to calculate the recession index. Finally, it infers characteristics of the aquifer from the recession index. During time-series analysis, the model identifies those segments, where the number of successive recession days is above a certain threshold. The reason for this pre-processing lies in the necessity for an adequate number of points when performing regression at a later stage. The recession index derives from the semi-logarithmic plot of stream flow over time, and the post processing involves the calculation of geometrical parameters of the watershed through a GIS platform. The program scans the full stream flow dataset of all the stations. For each station, it identifies the segments with continuous recession that exceed a predefined number of days. When the algorithm finds all the segments of a certain station, it analyses them and calculates the best linear fit between time and the logarithm of flow. The algorithm repeats this procedure for the full number of segments, thus it calculates many different values of recession index for each station. After the program has found all the recession segments, it performs calculations to determine the expression for the MRC. Further processing of the MRCs can yield estimates of transmissivity or response time representative of the aquifers upstream of the station. These estimates can be useful for large scale (e.g. continental) groundwater modelling. The above procedure allowed calculating values of transmissivity for a large share of European aquifers, ranging from Tmin = 4.13E-04 m²/d to Tmax = 8.12E+03 m²/d, with an average value Taverage = 9.65E+01 m²/d. These results are in line with the literature, indicating that the procedure may provide realistic results for large-scale groundwater modelling. In this contribution we present the results in the perspective of their application for the parameterization of a pan-European bi-dimensional shallow groundwater flow model.

  1. Complex Catchment Processes that Control Stream Nitrogen and Organic Matter Concentrations in a Northeastern USA Upland Catchment

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Shanley, J. B.; Pellerin, B.; Saraceno, J.; Aiken, G. R.; Boyer, E. W.; Doctor, D. H.; Kendall, C.

    2009-05-01

    There is a need to understand the coupled biogeochemical and hydrological processes that control stream hydrochemistry in upland forested catchments. At watershed 9 (W-9) of the Sleepers River Research Watershed in the northeastern USA, we use high-frequency sampling, environmental tracers, end-member mixing analysis, and stream reach mass balances to understand dynamic factors affect forms and concentrations of nitrogen and organic matter in streamflow. We found that rates of stream nitrate processing changed during autumn baseflow and that up to 70% of nitrate inputs to a stream reach were retained. At the same time, the stream reach was a net source of the dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) fractions of dissolved organic matter (DOM). The in-stream nitrate loss and DOM gains are examples of hot moments of biogeochemical transformations during autumn when deciduous litter fall increases DOM availability. As hydrological flowpaths changed during rainfall events, the sources and transformations of nitrate and DOM differed from baseflow. For example, during storm flow we measured direct inputs of unprocessed atmospheric nitrate to streams that were as large as 30% of the stream nitrate loading. At the same time, stream DOM composition shifted to reflect inputs of reactive organic matter from surficial upland soils. The transport of atmospheric nitrate and reactive DOM to streams underscores the importance of quantifying source variation during short-duration stormflow events. Building upon these findings we present a conceptual model of interacting ecosystem processes that control the flow of water and nutrients to streams in a temperate upland catchment.

  2. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis

    USDA-ARS?s Scientific Manuscript database

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to asse...

  3. The long term response of stream flow to climatic warming in headwater streams of interior Alaska

    Treesearch

    Jeremy B. Jones; Amanda J. Rinehart

    2010-01-01

    Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...

  4. Physical Heterogeneity Increases Biofilm Resource Use and Its Molecular Diversity in Stream Mesocosms

    PubMed Central

    Singer, Gabriel; Besemer, Katharina; Schmitt-Kopplin, Philippe; Hödl, Iris; Battin, Tom J.

    2010-01-01

    Background Evidence increasingly shows that stream ecosystems greatly contribute to global carbon fluxes. This involves a tight coupling between biofilms, the dominant form of microbial life in streams, and dissolved organic carbon (DOC), a very significant pool of organic carbon on Earth. Yet, the interactions between microbial biodiversity and the molecular diversity of resource use are poorly understood. Methodology/Principal Findings Using six 40-m-long streamside flumes, we created a gradient of streambed landscapes with increasing spatial flow heterogeneity to assess how physical heterogeneity, inherent to streams, affects biofilm diversity and DOC use. We determined bacterial biodiversity in all six landscapes using 16S-rRNA fingerprinting and measured carbon uptake from glucose and DOC experimentally injected to all six flumes. The diversity of DOC molecules removed from the water was determined from ultrahigh-resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS). Bacterial beta diversity, glucose and DOC uptake, and the molecular diversity of DOC use all increased with increasing flow heterogeneity. Causal modeling and path analyses of the experimental data revealed that the uptake of glucose was largely driven by physical processes related to flow heterogeneity, whereas biodiversity effects, such as complementarity, most likely contributed to the enhanced uptake of putatively recalcitrant DOC compounds in the streambeds with higher flow heterogeneity. Conclusions/Significance Our results suggest biophysical mechanisms, including hydrodynamics and microbial complementarity effects, through which physical heterogeneity induces changes of resource use and carbon fluxes in streams. These findings highlight the importance of fine-scale streambed heterogeneity for microbial biodiversity and ecosystem functioning in streams, where homogenization and loss of habitats increasingly reduce biodiversity. PMID:20376323

  5. Methods for estimating flow-duration curve and low-flow frequency statistics for ungaged locations on small streams in Minnesota

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Lorenz, David L.; Sanocki, Chris A.; Czuba, Christiana R.

    2015-12-24

    Equations developed in this study apply only to stream locations where flows are not substantially affected by regulation, diversion, or urbanization. All equations presented in this study will be incorporated into StreamStats, a web-based geographic information system tool developed by the U.S. Geological Survey. StreamStats allows users to obtain streamflow statistics, basin characteristics, and other information for user-selected locations on streams through an interactive map.

  6. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Simon, Terrence W.

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.

  7. Bypass Transitional Flow Calculations Using a Navier-Stokes Solver and Two-Equation Models

    NASA Technical Reports Server (NTRS)

    Liuo, William W.; Shih, Tsan-Hsing; Povinelli, L. A. (Technical Monitor)

    2000-01-01

    Bypass transitional flows over a flat plate were simulated using a Navier-Stokes solver and two equation models. A new model for the bypass transition, which occurs in cases with high free stream turbulence intensity (TI), is described. The new transition model is developed by including an intermittency correction function to an existing two-equation turbulence model. The advantages of using Navier-Stokes equations, as opposed to boundary-layer equations, in bypass transition simulations are also illustrated. The results for two test flows over a flat plate with different levels of free stream turbulence intensity are reported. Comparisons with the experimental measurements show that the new model can capture very well both the onset and the length of bypass transition.

  8. Highly Variable Cycle Exhaust Model Test (HVC10)

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Wernet, Mark; Podboy, Gary; Bozak, Rick

    2010-01-01

    Results from acoustic and flow-field studies using the Highly Variable Cycle Exhaust (HVC) model were presented. The model consisted of a lobed mixer on the core stream, an elliptic nozzle on the fan stream, and an ejector. For baseline comparisons, the fan nozzle was replaced with a round nozzle and the ejector doors were removed from the model. Acoustic studies showed far-field noise levels were higher for the HVC model with the ejector than for the baseline configuration. Results from Particle Image Velocimetry (PIV) studies indicated that large flow separation regions occurred along the ejector doors, thus restricting flow through the ejector. Phased array measurements showed noise sources located near the ejector doors for operating conditions where tones were present in the acoustic spectra.

  9. Resonance and streaming of armored microbubbles

    NASA Astrophysics Data System (ADS)

    Spelman, Tamsin; Bertin, Nicolas; Stephen, Olivier; Marmottant, Philippe; Lauga, Eric

    2015-11-01

    A new experimental technique involves building a hollow capsule which partially encompasses a microbubble, creating an ``armored microbubble'' with long lifespan. Under acoustic actuation, such bubble produces net streaming flows. In order to theoretically model the induced flow, we first extend classical models of free bubbles to describe the streaming flow around a spherical body for any known axisymmetric shape oscillation. A potential flow model is then employed to determine the resonance modes of the armored microbubble. We finally use a more detailed viscous model to calculate the surface shape oscillations at the experimental driving frequency, and from this we predict the generated streaming flows.

  10. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, J.R.

    1997-03-18

    An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.

  11. Perched groundwater-surface interactions and their consequences in stream flow generation in a semi-arid headwater catchment

    NASA Astrophysics Data System (ADS)

    Molenat, Jerome; Bouteffeha, Maroua; Raclot, Damien; Bouhlila, Rachida

    2013-04-01

    In semi-arid headwater catchment, it is usually admitted that stream flow comes predominantly from Hortonian overland flow (infiltration excess overland flow). Consequently, subsurface flow processes, and especially perched or shallow groundwater flow, have not been studied extensively. Here we made the assumption that perched groundwater flow could play a significant role in stream flow generation in semi-arid catchment. To test this assumption, we analyzed stream flow time series of a headwater catchment in the Tunisian Cap Bon region and quantified the flow fraction coming from groundwater discharge and that from overland flow. Furthermore, the dynamics of the perched groundwater was analyzed, by focusing on the different perched groundwater-surface interaction processes : diffuse and local infiltration, diffuse exfiltration, and direct groundwater discharge to the stream channel. This work is based on the 2.6 km² Kamech catchment (Tunisia), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Results show that even though Hortonian overland flow was the main hydrological process governing the stream flow generation, groundwater discharge contribution to the stream channel annually accounted for from 10% to 20 % depending on the year. Furthermore, at some periods, rising of groundwater table to the soil surface in bottom land areas provided evidences of the occurrence of saturation excess overland flow processes during some storm events. Reference Voltz , M. and Albergel , J., 2002. OMERE : Observatoire Méditerranéen de l'Environnement Rural et de l'Eau - Impact des actions anthropiques sur les transferts de masse dans les hydrosystèmes méditerranéens ruraux. Proposition d'Observatoire de Recherche en Environnement, Ministère de la Recherche.

  12. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicers.

    PubMed

    Corsi, S R; Hall, D W; Geis, S W

    2001-07-01

    Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.

  13. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicer

    USGS Publications Warehouse

    Corsi, Steven; Hall, David W.; Geis, Steven W.

    2001-01-01

    Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox® were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.

  14. Characterization and classification of invertebrates as indicators of flow permanence in headwater streams

    EPA Science Inventory

    Headwater streams represent a large proportion of river networks and many have temporary flow. Litigation has questioned whether these streams are jurisdictional under the Clean Water Act. Our goal was to identify indicators of flow permanence by comparing invertebrate assemblage...

  15. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously the flow into and within a granular medium composed of spherical and non-spherical shapes under wave forcing. It is concluded that variations in grain shape orientation within a bed appear to control the amount of flow that can be accumulated by the pores, which was illustrated in a conceptual model.

  16. IMPACTS OF LAND USE ON HYDROLOGIC FLOW PERMANENCE IN HEADWATER STREAMS

    EPA Science Inventory

    Extensive urbanization in the watershed can alter the stream hydrology by increasing peak runoff frequency and reducing base flows, causing subsequent impairment of stream community structure. In addition, development effectively eliminates some headwater streams, being piped an...

  17. Effects of Land-Use Changes and Ground-Water Withdrawals on Stream Base Flow, Pocono Creek Watershed, Monroe County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.

    2008-01-01

    The Pocono Creek watershed drains 46.5 square miles in eastern Monroe County, Pa. Between 2000 and 2020, the population of Monroe County is expected to increase by 70 percent, which will result in substantial changes in land-use patterns. An evaluation of the effect of reduced recharge from land-use changes and additional ground-water withdrawals on stream base flow was done by the U.S. Geological Survey (USGS) in cooperation with the U.S. Environmental Protection Agency (USEPA) and the Delaware River Basin Commission as part of the USEPA?s Framework for Sustainable Watershed Management Initiative. Two models were used. A Soil and Water Assessment Tool (SWAT) model developed by the USEPA provided areal recharge values for 2000 land use and projected full buildout land use. The USGS MODFLOW-2000 ground-water-flow model was used to estimate the effect of reduced recharge from changes in land use and additional ground-water withdrawals on stream base flow. This report describes the ground-water-flow-model simulations. The Pocono Creek watershed is underlain by sedimentary rock of Devonian age, which is overlain by a veneer of glacial deposits. All water-supply wells are cased into and derive water from the bedrock. In the ground-water-flow model, the surficial geologic units were grouped into six categories: (1) moraine deposits, (2) stratified drift, (3) lake deposits, (4) outwash, (5) swamp deposits, and (6) undifferentiated deposits. The unconsolidated surficial deposits are not used as a source of water. The ground-water and surface-water systems are well connected in the Pocono Creek watershed. Base flow measured on October 13, 2004, at 27 sites for model calibration showed that streams gained water between all sites measured except in the lower reach of Pocono Creek. The ground-water-flow model included the entire Pocono Creek watershed. Horizontally, the modeled area was divided into a 53 by 155 cell grid with 6,060 active cells. Vertically, the modeled area was discretized into four layers. Layers 1 and 2 represented the unconsolidated surficial deposits where they are present and bedrock where the surficial deposits are absent. Layer 3 represented shallow bedrock and was 200 ft (feet) thick. Layer 4 represented deep bedrock and was 300 ft thick. A total of 873 cells representing streams were assigned to layer 1. Recharge rates for model calibration were provided by the USEPA SWAT model for 2000 land-use conditions. Recharge rates for 2000 for the 29 subwatersheds in the SWAT model ranged from 6.11 to 22.66 inches per year. Because the ground-water-flow model was calibrated to base-flow data collected on October 13, 2004, the 2000 recharge rates were multiplied by 1.18 so the volume of recharge was equal to the volume of streamflow measured at the mouth of Pocono Creek. During model calibration, adjustments were made to aquifer hydraulic conductivity and streambed conductance. Simulated base flows and hydraulic heads were compared to measured base flows and hydraulic heads using the root mean squared error (RMSE) between measured and simulated values. The RMSE of the calibrated model for base flow was 4.7 cubic feet per second for 27 locations, and the RMSE for hydraulic heads for 15 locations was 35 ft. The USEPA SWAT model was used to provide areal recharge values for 2000 and full buildout land-use conditions. The change in recharge ranged from an increase of 37.8 percent to a decrease of 60.8 percent. The ground-water-flow model was used to simulate base flow for 2000 and full buildout land-use conditions using steady-state simulations. The decrease in simulated base flow ranged from 3.8 to 63 percent at the streamflow-measurement sites. Simulated base flow at streamflow-gaging station Pocono Creek above Wigwam Run near Stroudsburg, Pa. (01441495), decreased 25 percent. This is in general agreement with the SWAT model, which estimated a 30.6-percent loss in base flow at the streamflow-gaging station.

  18. An experimental trace gas investigation of fluid transport and mixing in a circular-to-rectangular transition duct

    NASA Technical Reports Server (NTRS)

    Reichert, B. A.; Hingst, W. R.; Okiishi, T. H.

    1991-01-01

    An ethylene trace gas technique was used to map out fluid transport and mixing within a circular to rectangular transition duct. Ethylene gas was injected at several points in a cross stream plane upstream of the transition duct. Ethylene concentration contours were determined at several cross stream measurement planes spaced axially within the duct. The flow involved a uniform inlet flow at a Mach number level of 0.5. Statistical analyses were used to quantitatively interpret the trace gas results. Also, trace gas data were considered along with aerodynamic and surface flow visualization results to ascertain transition duct flow phenomena. Convection of wall boundary layer fluid by vortices produced regions of high total pressure loss in the duct. The physical extent of these high loss regions is governed by turbulent diffusion.

  19. Turbine endwall two-cylinder program. [wind tunnel and water tunnel investigation of three dimensional separation of fluid flow

    NASA Technical Reports Server (NTRS)

    Langston, L. S.

    1980-01-01

    Progress is reported in an effort to study the three dimensional separation of fluid flow around two isolated cylinders mounted on an endwall. The design and performance of a hydrogen bubble generator for water tunnel tests to determine bulk flow properties and to measure main stream velocity and boundary layer thickness are described. Although the water tunnel tests are behind schedule because of inlet distortion problems, tests are far enough along to indicate cylinder spacing, wall effects and low Reynolds number behavior, all of which impacted wind tunnel model design. The construction, assembly, and operation of the wind tunnel and the check out of its characteristics are described. An off-body potential flow program was adapted to calculate normal streams streamwise pressure gradients at the saddle point locations.

  20. Effects of water removal on a Hawaiian stream ecosystem

    USGS Publications Warehouse

    Kinzie, R. A.; Chong, C.; Devrell, J.; Lindstrom, D.; Wolff, R.

    2006-01-01

    A 3-year study of Wainiha River on Kaua'i, Hawai'i, was carried out to determine the impact that water removal had on key stream ecosystem parameters and functions. The study area included a diversion dam for a hydroelectric plant that removes water at an elevation of 213 m and returns it to the stream about 6 km downstream at an elevation of 30 m. There were two high-elevation sites, one with undiverted flow and one with reduced flow, and two low-elevation sites, one with reduced flow and one with full flow restored. Monthly samples were taken of instream and riparian invertebrates and plants. When samples from similar elevations were compared, dewatered sites had lower concentrations of benthic photosynthetic pigments than full-flow sites, and benthic ash-free dry mass (AFDM) was higher at the two low-elevation sites regardless of flow. Benthic chlorophyll a (chl a) and AFDM were higher in summer months than in the winter. Benthic invertebrate abundance was highest at the full-flow, low-elevation site and benthic invertebrate biomass was highest at the full-flow, high-elevation site. Season had only marginal effects on abundance and biomass of benthic invertebrates. Diversity of benthic invertebrates was higher at the more-downstream sites. Abundance of drifting invertebrates was highest at the site above the diversion dam and generally higher in winter than in summer months. Biomass of drifting invertebrates was also highest at the above-dam site but there was little seasonal difference. Almost all parameters measured were lowest at the site just downstream of the diversion dam. The biotic parameters responded only weakly to flows that had occurred up to 1 month before the measurements were made. Flow, elevation, and season interact in complex ways that impact ecosystem parameters and functions, but water diversion can override all these environmental factors. ?? 2006 by University of Hawai'i Press All rights reserved.

  1. Characterising the dynamics of surface water-groundwater interactions in intermittent and ephemeral streams using streambed thermal signatures

    NASA Astrophysics Data System (ADS)

    Rau, Gabriel C.; Halloran, Landon J. S.; Cuthbert, Mark O.; Andersen, Martin S.; Acworth, R. Ian; Tellam, John H.

    2017-09-01

    Ephemeral and intermittent flow in dryland stream channels infiltrates into sediments, replenishes groundwater resources and underpins riparian ecosystems. However, the spatiotemporal complexity of the transitory flow processes that occur beneath such stream channels are poorly observed and understood. We develop a new approach to characterise the dynamics of surface water-groundwater interactions in dryland streams using pairs of temperature records measured at different depths within the streambed. The approach exploits the fact that the downward propagation of the diel temperature fluctuation from the surface depends on the sediment thermal diffusivity. This is controlled by time-varying fractions of air and water contained in streambed sediments causing a contrast in thermal properties. We demonstrate the usefulness of this method with multi-level temperature and pressure records of a flow event acquired using 12 streambed arrays deployed along a ∼ 12 km dryland channel section. Thermal signatures clearly indicate the presence of water and characterise the vertical flow component as well as the occurrence of horizontal hyporheic flow. We jointly interpret thermal signatures as well as surface and groundwater levels to distinguish four different hydrological regimes: [A] dry channel, [B] surface run-off, [C] pool-riffle sequence, and [D] isolated pools. The occurrence and duration of the regimes depends on the rate at which the infiltrated water redistributes in the subsurface which, in turn, is controlled by the hydraulic properties of the variably saturated sediment. Our results have significant implications for understanding how transitory flows recharge alluvial sediments, influence water quality and underpin dryland ecosystems.

  2. Experimental and numerical investigation of Acoustic streaming (Eckart streaming)

    NASA Astrophysics Data System (ADS)

    Dridi, Walid; Botton, Valery; Henry, Daniel; Ben Hadid, Hamda

    The application of sound waves in the bulk of a fluid can generate steady or quasi-steady flows reffered to as Acoustic streaming flows. We can distinguish two kind of acoustic streaming: The Rayleigh Streaming is generated when a standing acoustic waves interfere with solid walls to give birth to an acoustic boundary layer. Steady recirculations are then driven out of the boundary layer and can be used in micro-gravity, where the free convection is too weak or absent, to enhance the convective heat or mass transfer and cooling the electronic devises [1]. The second kind is the Eckart streaming, which is a flow generated far from the solid boundaries, it can be used to mix a chemical solutions [2], and to drive a viscous liquids in channels [3-4], in micro-gravity area. Our study focuses on the Eckart streaming configuration, which is investigated both numerical and experimental means. The experimental configuration is restricted to the case of a cylindrical non-heated cavity full of water or of a water+glycerol mixture. At the middle of one side of the cavity, a plane ultrasonic transducer generates a 2MHz wave; an absorber is set at the opposite side of the cavity to avoid any reflections. The velocity field is measured with a standard PIV system. [1] P. Vainshtein, M. Fichman and C. Gutfinger, "Acoustic enhancement of heat transfer between two parallel plates", International Journal of Heat and Mass Transfert, 1995, 38(10), 1893. [2] C. Suri, K. Tekenaka, H. Yanagida, Y. Kojima and K. Koyama, "Chaotic mixing generated by acoustic streaming", Ultrasonics, 2002, 40, 393 [3] O.V. Rudenko and A.A. Sukhorukov, "Nonstationnary Eckart streaming and pumping of liquid in ultrasonic field", Acoustical Physics, 1998, 44, 653. [4] Kenneth D. Frampton, Shawn E. Martin and Keith Minor, "The scaling of acoustic streaming for application in micro-fluidic devices", Applied Acoustics, 2003, 64,681

  3. Bed-material entrainment and associated transportation infrastructure problems in streams of the Edwards Plateau, central Texas

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Asquith, William H.

    2008-01-01

    The Texas Department of Transportation commonly builds and maintains low-water crossings (LWCs) over streams in the Edwards Plateau in Central Texas. LWCs are low-height structures, typically constructed of concrete and asphalt, that provide acceptable passage over seasonal rivers or streams with relatively low normal-depth flow. They are designed to accommodate flow by roadway overtopping during high-flow events. The streams of the Edwards Plateau are characterized by cobble- and gravel-sized bed material and highly variable flow regimes. Low base flows that occur most of the time occasionally are interrupted by severe floods. The floods entrain and transport substantial loads of bed material in the stream channels. As a result, LWCs over streams in the Edwards Plateau are bombarded and abraded by bed material during floods and periodically must be maintained or even replaced.

  4. Acoustic tests of duct-burning turbofan jet noise simulation

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Stringas, E. J.; Brausch, J. F.; Staid, P. S.; Heck, P. H.; Latham, D.

    1978-01-01

    The results of a static acoustic and aerodynamic performance, model-scale test program on coannular unsuppressed and multielement fan suppressed nozzle configurations are summarized. The results of the static acoustic tests show a very beneficial interaction effect. When the measured noise levels were compared with the predicted noise levels of two independent but equivalent conical nozzle flow streams, noise reductions for the unsuppressed coannular nozzles were of the order of 10 PNdB; high levels of suppression (8 PNdB) were still maintained even when only a small amount of core stream flow was used. The multielement fan suppressed coannular nozzle tests showed 15 PNdB noise reductions and up to 18 PNdB noise reductions when a treated ejector was added. The static aerodynamic performance tests showed that the unsuppressed coannular plug nozzles obtained gross thrust coefficients of 0.972, with 1.2 to 1.7 percent lower levels for the multielement fan-suppressed coannular flow nozzles. For the first time anywhere, laser velocimeter velocity profile measurements were made on these types of nozzle configurations and with supersonic heated flow conditions. Measurements showed that a very rapid decay in the mean velocity occurs for the nozzle tested.

  5. Geology, Streamflow, and Water Chemistry of the Talufofo Stream Basin, Saipan, Northern Mariana Islands

    USGS Publications Warehouse

    Izuka, Scot K.; Ewart, Charles J.

    1995-01-01

    A study of the geology, streamflow, and water chemistry of Talufofo Stream Basin, Saipan, Commonwealth of the Northern Mariana Islands, was undertaken to determine the flow characteristics of Talufofo Stream and the relation to the geology of the drainage basin. The Commonwealth government is exploring the feasibility of using water from Talufofo Stream to supplement Saipan's stressed municipal water supply. Streamflow records from gaging stations on the principal forks of Talufofo Stream indicate that peak streamflows and long-term average flow are higher at the South Fork gaging station than at the Middle Fork gaging station because the drainage area of the South Fork gaging station is larger, but persistent base flow from ground-water discharge during dry weather is greater in the Middle Fork gaging station. The sum of the average flows at the Middle Fork and South Fork gaging stations, plus an estimate of the average flow at a point in the lower reaches of the North Fork, is about 2.96 cubic feet per second or 1.91 million gallons per day. Although this average represents the theoretical maximum long-term draft rate possible from the Talufofo Stream Basin if an adequate reservoir can be built, the actual amount of surface water available will be less because of evaporation, leaks, induced infiltration, and reservoir-design constraints. Base-flow characteristics, such as stream seepage and spring discharge, are related to geology of the basin. Base flow in the Talufofo Stream Basin originates as discharge from springs near the base of limestones located in the headwaters of Talufofo Stream, flows over low-permeability volcanic rocks in the middle reaches, and seeps back into the high-permeability limestones in the lower reaches. Water sampled from Talufofo Stream during base flow had high dissolved-calcium concentrations (between 35 and 98 milligrams per liter), characteristic of water from a limestone aquifer. Concentrations of potassium, sodium, and chloride ions in water samples from Talufofo Stream are characteristic of water draining a heavily vegetated basin near the ocean. The streamflow and water-chemistry data indicate that discharge from springs is in hydraulic connection with the limestone aquifer near the headwaters of the basin. The base flow therefore is subject to stresses placed on the nearby limestone ground-water system. Pumping from wells in the limestones at the headwaters of Talufofo Stream Basin may decrease spring flow in Talufofo Stream.

  6. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high-elevation saturated zone. Total average daily ground-water discharge from the high-elevation saturated zone upstream of 1,200 feet altitude is greater than 38 million gallons per day, all of which is eventually removed from the streams by surface-water diversion systems. Perennial streamflow has been measured at altitudes greater than 3,000 feet in several of the streams. Discharge from the high-elevation saturated zone is persistent even during periods of little rainfall. The total average annual streamflow of the gaged streams east of Keanae Valley is about 109 million gallons per day at about 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast nor at higher altitudes. All of the base flow measured east of Keanae Valley represents ground-water discharge from the vertically extensive freshwater-lens system. Total average daily ground-water discharge to gaged streams upstream of 1,200 feet altitude is about 27 million gallons per day. About 19 million gallons per day of ground water discharges through the Kula and Hana Volcanics between about 500 feet and 1,300 feet altitude in the gaged stream sub-basins. About 13 million gallons per day of this discharge is in Hanawi Stream. The total ground-water discharge above 500 feet altitude in this part of the study area is greater than 56 million gallons per day.

  7. Challenging the distributed temperature sensing technique for estimating groundwater discharge to streams through controlled artificial point source experiment

    NASA Astrophysics Data System (ADS)

    Lauer, F.; Frede, H.-G.; Breuer, L.

    2012-04-01

    Spatially confined groundwater discharge can contribute significantly to stream discharge. Distributed fibre optic temperature sensing (DTS) of stream water has been successfully used to localize- and quantify groundwater discharge from this type "point sources" (PS) in small first-order streams. During periods when stream and groundwater temperatures differ PS appear as abrupt step in longitudinal stream water temperature distribution. Based on stream temperature observation up- and downstream of a point source and estimated or measured groundwater temperature the proportion of groundwater inflow to stream discharge can be quantified using simple mixing models. However so far this method has not been quantitatively verified, nor has a detailed uncertainty analysis of the method been conducted. The relative accuracy of this method is expected to decrease nonlinear with decreasing proportions of lateral inflow. Furthermore it depends on the temperature differences (ΔT) between groundwater and surface water and on the accuracy of temperature measurement itself. The latter could be affected by different sources of errors. For example it has been shown that a direct impact of solar radiation on fibre optic cables can lead to errors in temperature measurements in small streams due to low water depth. Considerable uncertainty might also be related to the determination of groundwater temperature through direct measurements or derived from the DTS signal. In order to directly validate the method and asses it's uncertainty we performed a set of artificial point source experiments with controlled lateral inflow rates to a natural stream. The experiments were carried out at the Vollnkirchener Bach, a small head water stream in Hessen, Germany in November and December 2011 during a low flow period. A DTS system was installed along a 1.2 km sub reach of the stream. Stream discharge was measured using a gauging flume installed directly upstream of the artificial PS. Lateral inflow was simulated using a pumping system connected to a 2 m3 water tank. Pumping rates were controlled using a magnetic inductive flowmeter and kept constant for a time period of 30 minutes to 1.5 hours depending on the simulated inflow rate. Different temperatures of lateral inflow were adjusted by heating the water in the tank (for summer experiments a cooling by ice cubes could be realized). With this setup, different proportions of lateral inflow to stream flow ranging from 2 to 20%, could be simulated for different ΔT's (2-7° C) between stream- and inflowing water. Results indicate that the estimation of groundwater discharge through DTS is working properly, but that the method is very sensitive to the determination of the PS groundwater temperature. The span of adjusted ΔT and inflow rates of the artificial system are currently used to perform a thorough uncertainty analysis of the DTS method and to derive thresholds for detection limits.

  8. Simulation of groundwater and surface-water flow in the upper Deschutes Basin, Oregon

    USGS Publications Warehouse

    Gannett, Marshall W.; Lite, Kenneth E.; Risley, John C.; Pischel, Esther M.; La Marche, Jonathan L.

    2017-10-20

    This report describes a hydrologic model for the upper Deschutes Basin in central Oregon developed using the U.S. Geological Survey (USGS) integrated Groundwater and Surface-Water Flow model (GSFLOW). The upper Deschutes Basin, which drains much of the eastern side of the Cascade Range in Oregon, is underlain by large areas of permeable volcanic rock. That permeability, in combination with the large annual precipitation at high elevations, results in a substantial regional aquifer system and a stream system that is heavily groundwater dominated.The upper Deschutes Basin is also an area of expanding population and increasing water demand for public supply and agriculture. Surface water was largely developed for agricultural use by the mid-20th century, and is closed to additional appropriations. Consequently, water users look to groundwater to satisfy the growing demand. The well‑documented connection between groundwater and the stream system, and the institutional and legal restrictions on streamflow depletion by wells, resulted in the Oregon Water Resources Department (OWRD) instituting a process whereby additional groundwater pumping can be permitted only if the effects to streams are mitigated, for example, by reducing permitted surface-water diversions. Implementing such a program requires understanding of the spatial and temporal distribution of effects to streams from groundwater pumping. A groundwater model developed in the early 2000s by the USGS and OWRD has been used to provide insights into the distribution of streamflow depletion by wells, but lacks spatial resolution in sensitive headwaters and spring areas.The integrated model developed for this project, based largely on the earlier model, has a much finer grid spacing allowing resolution of sensitive headwater streams and important spring areas, and simulates a more complete set of surface processes as well as runoff and groundwater flow. In addition, the integrated model includes improved representation of subsurface geology and explicitly simulates the effects of hydrologically important fault zones not included in the previous model.The upper Deschutes Basin GSFLOW model was calibrated using an iterative trial and error approach using measured water-level elevations (water levels) from 800 wells, 144 of which have time series of 10 or more measurements. Streamflow was calibrated using data from 21 gage locations. At 14 locations where measured flows are heavily influenced by reservoir operations and irrigation diversions, so called “naturalized” flows, with the effects of reservoirs and diversion removed, developed by the Bureau of Reclamation, were used for calibration. Surface energy and moisture processes such as solar radiation, snow accumulation and melting, and evapotranspiration were calibrated using national datasets as well as data from long-term measurement sites in the basin. The calibrated Deschutes GSFLOW model requires daily precipitation, minimum and maximum air temperature data, and monthly data describing groundwater pumping and artificial recharge from leaking irrigation canals (which are a significant source of groundwater recharge).The calibrated model simulates the geographic distribution of hydraulic head over the 5,000 ft range measured in the basin, with a median absolute residual of about 53 ft. Temporal variations in head resulting from climate cycles, pumping, and canal leakage are well simulated over the model area. Simulated daily streamflow matches gaged flows or calculated naturalized flows for streams including the Crooked and Metolius Rivers, and lower parts of the mainstem Deschutes River. Seasonal patterns of runoff are less well fit in some upper basin streams. Annual water balances of streamflow are good over most of the model domain. Model fit and overall capabilities are appropriate for the objectives of the project.The integrated model results confirm findings from other studies and models indicating that most streamflow in the upper Deschutes Basin comes directly from groundwater discharge. The integrated model provides additional insights about the components of streamflow including direct groundwater discharge to streams, interflow, groundwater discharge to the land surface (Dunnian flow), and direct runoff (Hortonian flow). The new model provides improved capability for exploring the timing and distribution of streamflow capture by wells, and the hydrologic response to changes in other external stresses such as canal operation, irrigation, and drought. Because the model uses basic meteorological data as the primary input; and simulates surface energy and moisture balances, groundwater recharge and flow, and all components of streamflow; it is well suited for exploring the hydrologic response to climate change, although no such simulations are included in this report.The model was developed as a tool for future application; however, example simulations are provided in this report. In the example simulations, the model is used to explore the influence of well location and geologic structure on stream capture by pumping wells. Wells were simulated at three locations within a 12-mi area close to known groundwater discharge areas and crossed by a regional fault zone. Simulations indicate that the magnitude and timing of stream capture from pumping is largely controlled by the geographic location of the wells, but that faults can have a large influence on the propagation of pumping stresses.

  9. Traveltime and longitudinal dispersion in Illinois streams

    USGS Publications Warehouse

    Graf, Julia B.

    1986-01-01

    Twenty-seven measurements of traveltime and longitudinal dispersion in 10 Illinois streams made from 1975 to 1982 provide data needed for estimating traveltime of peak concentration of a conservative solute, traveltime of the leading edge of a solute cloud, peak concentration resulting from injection of a given quantity of solute, and passage time of solute past a given point on a stream. These four variables can be estimated graphically for each stream from distance of travel and either discharge at the downstream end of the reach or flow-duration frequency. From equations developed from field measurements, the traveltime and dispersion characteristics also can be estimated for other unregulated streams in Illinois that have drainage areas less than about 1,500 square miles. For unmeasured streams, traveltime of peak concentration and of the leading edge of the cloud are related to discharge at the downstream end of the reach and to distance of travel. For both measured and unmeasured streams, peak concentration and passage time are best estimated from the relation of each to traveltime. In measured streams, dispersion efficiency is greater than that predicted by Fickian diffusion theory. The rate of decrease in peak concentration with traveltime is about equal to the rate of increase in passage time. Average velocity in a stream reach, given by the velocity of the center of solute mass in that reach, can be estimated from an equation developed from measured values. The equation relates average reach velocity to discharge at the downstream end of the reach. Average reach velocities computed for 9 of the 10 streams from available equations that are based on hydraulic-geometry relations are high relative to measured values. The estimating equation developed from measured velocities provides estimates of average reach velocity that are closer to measured velocities than are those computed using equations developed from hydraulic-geometry relations.

  10. Measurements of coarse particulate organic matter transport in steep mountain streams and estimates of decadal CPOM exports

    NASA Astrophysics Data System (ADS)

    Bunte, Kristin; Swingle, Kurt W.; Turowski, Jens M.; Abt, Steven R.; Cenderelli, Daniel A.

    2016-08-01

    Coarse particulate organic matter (CPOM) provides a food source for benthic organisms, and the fluvial transport of CPOM is one of the forms in which carbon is exported from a forested basin. However, little is known about transport dynamics of CPOM, its relation to discharge, and its annual exports from mountain streams. Much of this knowledge gap is due to sampling difficulties. In this study, CPOM was sampled over one-month snowmelt high flow seasons in two high-elevation, subalpine, streams in the Rocky Mountains. Bedload traps developed for sampling gravel bedload were found to be suitable samplers for CPOM transport. CPOM transport rates were well related to flow in consecutive samples but showed pronounced hysteresis over the diurnal fluctuations of flow, between consecutive days, and over the rising and falling limbs of the high-flow season. In order to compute annual CPOM load, hysteresis effects require intensive sampling and establishing separate rating curves for all rising and falling limbs. Hysteresis patterns of CPOM transport relations identified in the well-sampled study streams may aid with estimates of CPOM transport and export in less well-sampled Rocky Mountain streams. Transport relations for CPOM were similar among three high elevation mountain stream with mainly coniferous watersheds. Differences among streams can be qualitatively attributed to differences in CPOM contributions from litter fall, from the presence of large woody debris, its grinding into CPOM sized particles by gravel-cobble bedload transport, hillslope connectivity, drainage density, and biological consumption. CPOM loads were 3.6 and 3.2 t/yr for the two Rocky Mountain streams. Adjusted to reflect decadal averages, values increased to 11.3 and 10.2 t/yr. CPOM yields related to the entire watershed were 2.7 and 4 kg/ha/yr for the years studied, but both streams exported similar amounts of 6.5 and 6.6 kg/ha/yr when taking the forested portion of the watershed into account. To reflect decadal averages, CPOM yields per basin area were adjusted to 8.6 and 12.6 kg/ha/yr and to 21 kg/ha/yr for the forested watershed parts. CPOM yield may be more meaningfully characterized if annual CPOM loads are normalized by the area of a seam along the stream banks together with the stream surface area rather than by the forested or total watershed area.

  11. Designing ecological flows to gravely braided rivers in alpine environments

    NASA Astrophysics Data System (ADS)

    Egozi, R.; Ashmore, P.

    2009-04-01

    Designing ecological flows in gravelly braided streams requires estimating the channel forming discharge in order to maintain the braided reach physical (allocation of flow and bed load) and ecological (maintaining the habitat diversity) functions. At present, compared to single meander streams, there are fewer guiding principles for river practitioners that can be used to manage braided streams. Insight into braiding morphodynamics using braiding intensity indices allows estimation of channel forming discharge. We assess variation in braiding intensity by mapping the total number of channels (BIT) and the number of active (transporting bed load) channels (BIA) at different stages of typical diurnal melt-water hydrographs in a pro-glacial braided river, Sunwapta River, Canada. Results show that both BIA and BIT vary with flow stage but over a limited range of values. Furthermore, maximum BIT occurs below peak discharge. At this stage there is a balance between channel merging from inundation and occupation of new channels as the stage rises. This stage is the channel forming discharge because above this stage the existing braided pattern cannot discharge the volume of water without causing morphological changes (e.g., destruction of bifurcations, channel avulsion). Estimation of the channel forming discharge requires a set of braiding intensity measurements over a range of flow stages. The design of ecological flows must take into consideration flow regime characteristics rather than just the channel forming discharge magnitude.

  12. A comparison of methods for deriving solute flux rates using long-term data from streams in the mirror lake watershed

    USGS Publications Warehouse

    Bukaveckas, P.A.; Likens, G.E.; Winter, T.C.; Buso, D.C.

    1998-01-01

    Calculation of chemical flux rates for streams requires integration of continuous measurements of discharge with discrete measurements of solute concentrations. We compared two commonly used methods for interpolating chemistry data (time-averaging and flow-weighting) to determine whether discrepancies between the two methods were large relative to other sources of error in estimating flux rates. Flux rates of dissolved Si and SO42- were calculated from 10 years of data (1981-1990) for the NW inlet and Outlet of Mirror Lake and for a 40-day period (March 22 to April 30, 1993) during which we augmented our routine (weekly) chemical monitoring with collection of daily samples. The time-averaging method yielded higher estimates of solute flux during high-flow periods if no chemistry samples were collected corresponding to peak discharge. Concentration-discharge relationships should be used to interpolate stream chemistry during changing flow conditions if chemical changes are large. Caution should be used in choosing the appropriate time-scale over which data are pooled to derive the concentration-discharge regressions because the model parameters (slope and intercept) were found to be sensitive to seasonal and inter-annual variation. Both methods approximated solute flux to within 2-10% for a range of solutes that were monitored during the intensive sampling period. Our results suggest that errors arising from interpolation of stream chemistry data are small compared with other sources of error in developing watershed mass balances.

  13. Development of ultrasonic electrostatic microjets for distributed propulsion and microflight

    NASA Astrophysics Data System (ADS)

    Amirparviz, Babak

    This dissertation details the first attempt to design and fabricate a distributed micro propulsion system based on acoustic streaming. A novel micro propulsion method is suggested by combining Helmholtz resonance, acoustic streaming and flow entrainment and thrust augmentation. In this method, oscillatory motion of an electrostatically actuated diaphragm creates a high frequency acoustic field inside the cavity of a Helmholtz resonator. The initial fluid motion velocity is amplified by the Helmholtz resonator structure and creates a jet flow at the exit nozzle. Acoustic streaming is the phenomenon responsible for primary jet stream creation. Primary jets produced by a few resonators can be combined in an ejector configuration to induce flow entrainment and thrust augmentation. Basic governing equations for the electrostatic actuator, deformation of the diaphragm and the fluid flow inside the resonator are derived. These equations are linearized and used to derive an equivalent electrical circuit model for the operation of the device. Numerical solution of the governing equations and simulation of the circuit model are used to predict the performance of the experimental systems. Thrust values as high as 30.3muN are expected per resonator. A micro machined electrostatically-driven high frequency Helmholtz resonator prototype is designed and fabricated. A new micro fabrication technique is developed for bulk micromachining and in particular fabrication of the resonator. Geometric stops for wet anisotropic etching of silicon are introduced for the fist time for structure formation. Arrays of high frequency (>60kHz) micro Helmholtz resonators are fabricated. In one sample more than 1000 resonators cover the surface of a four-inch silicon wafer and in effect convert it to a distributed propulsion system. A high yield (>85%) micro fabrication process is presented for realization of this propulsion system taking advantage of newly developed deep glass micromachining and lithography on thin (15mum) silicon methods. Extensive test and characterization are performed on the micro jets using current frequency component analysis, laser interferometry, acoustic measurements, hot-wire anemometers, video particle imaging and load cells. The occurrence of acoustic streaming at jet nozzles is verified and flow velocities exceeding 1m/s are measured at the 15mum x 330mum jet exit nozzle.

  14. Riparian indicators of flow frequency in a tropical montante stream network

    Treesearch

    Andrew S. Pike; Frederick N. Scatena

    2010-01-01

    Many field indicators have been used to approximate the magnitude and frequency of flows in a variety of streams and rivers, yet due to a scarcity of long-term flow records in tropical mountain streams, little to no work has been done to establish such relationships between field features and the flow regime in these environments. Furthermore, the transition between...

  15. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change

    PubMed Central

    Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E.; Safeeq, Mohammad; Skaugset, Arne E.

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change. PMID:26295478

  16. Local variability mediates vulnerability of trout populations to land use and climate change

    USGS Publications Warehouse

    Penaluna, Brooke E.; Dunham, Jason B.; Railsback, Steve F.; Arismendi, Ivan; Johnson, Sherri L.; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E.

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007–2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  17. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change.

    PubMed

    Penaluna, Brooke E; Dunham, Jason B; Railsback, Steve F; Arismendi, Ivan; Johnson, Sherri L; Bilby, Robert E; Safeeq, Mohammad; Skaugset, Arne E

    2015-01-01

    Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii) to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007-2011), and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat) mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year), but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  18. Using heat to characterize streambed water flux variability in four stream reaches

    USGS Publications Warehouse

    Essaid, H.I.; Zamora, C.M.; McCarthy, K.A.; Vogel, J.R.; Wilson, J.T.

    2008-01-01

    Estimates of streambed water flux are needed for the interpretation of streambed chemistry and reactions. Continuous temperature and head monitoring in stream reaches within four agricultural watersheds (Leary Weber Ditch, IN; Maple Creek, NE; DR2 Drain, WA; and Merced River, CA) allowed heat to be used as a tracer to study the temporal and spatial variability of fluxes through the streambed. Synoptic methods (seepage meter and differential discharge measurements) were compared with estimates obtained by using heat as a tracer. Water flux was estimated by modeling one-dimensional vertical flow of water and heat using the model VS2DH. Flux was influenced by physical heterogeneity of the stream channel and temporal variability in stream and ground-water levels. During most of the study period (April-December 2004), flux was upward through the streambeds. At the IN, NE, and CA sites, high-stage events resulted in rapid reversal of flow direction inducing short-term surface-water flow into the streambed. During late summer at the IN site, regional ground-water levels dropped, leading to surface-water loss to ground water that resulted in drying of the ditch. Synoptic measurements of flux generally supported the model flux estimates. Water flow through the streambed was roughly an order of magnitude larger in the humid basins (IN and NE) than in the arid basins (WA and CA). Downward flux, in response to sudden high streamflows, and seasonal variability in flux was most pronounced in the humid basins and in high conductivity zones in the streambed. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  19. Characteristics of water quality and streamflow, Passaic River basin above Little Falls, New Jersey

    USGS Publications Warehouse

    Anderson, Peter W.; Faust, Samuel Denton

    1973-01-01

    The findings of a problem-oriented river-system investigation of the water-quality and streamflow characteristics of the Passaic River above Little Falls, N.J. (drainage area 762 sq mi) are described. Information on streamflow duration, time-of-travel measurements, and analyses of chemical, biochemical, and physical water quality are summarized. This information is used to define relations between water quality, streamflow, geology, and environmental development in the basin's hydrologic system. The existence, nature, and magnitude of long-term trends in stream quality--as measured by dissolved solids, chloride, dissolved oxygen, biochemical oxygen demand, ammonia, nitrate, and turbidity--and in streamflow toward either improvement or deterioration are appraised at selected sites within the river system. The quality of streams in the upper Passaic River basin in northeastern New Jersey is shown to be deteriorating with time. For example, biochemical oxygen demand, an indirect measure of organic matter in a stream, is increasing at most stream-quality sampling sites. Similarly, the dissolved-solids content, a measure of inorganic matter, also is increasing. These observations suggest that the Passaic River system is being used more and more as a medium for the disposal of industrial and municipal waste waters. Dissolved oxygen, an essential ingredient for the natural purification of streams receiving waste discharges, is undersaturated (that is, below theoretical solubility levels) at all sampling sites and is decreasing with time at most sites. This is another indication of the general deterioration of stream quality in the upper basin. It also indicates that the ability of the river system to receive, transport, and assimilate wastes, although exceeded now only for short periods during the summer months, may be exceeded more continually in the future if present trends hold. Decreasing ratios of ammonia to nitrate in a downstream direction on the main stem Passaic River suggests that nitrification (the biochemical conversion of ammonia to nitrate) as well as microbiological decomposition of organic matter (waste waters) is contributing to the continued and increasing undersaturation of dissolved oxygen in the river system. Passaic River streams are grouped into five general regions of isochemical quality on the basis of predominant constituents and dissolved-solids content during low flows. The predominant cations in all but one region are calcium and magnesium (exceeding 50 percent of total cations) ; in that region, where man's activities probably have altered the natural stream waters, the percentage of sodium and potassium equals that of calcium and magnesium. In two of the five regions, the predominant anion is bicarbonate; a combination of sulfate, chloride, and nitrate is predominant in the other three regions. Dissolved-solids content during low flows generally ranges from 100 to 600 milligrams per liter. Several time-of-travel measurements within the basin are reported. These data provide reasonable estimates of the time required for soluble contaminants to pass through particular parts of the river system. For example, the peak concentration of a contaminant injected into the river system at Chatham during extreme low flow would be expected to travel to Little Falls, about 31 miles, in about 13 days; but at medium flow, in about 5 days.

  20. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity

    USGS Publications Warehouse

    Lapham, Wayne W.

    1989-01-01

    The use of temperature profiles beneath streams to determine rates of vertical ground-water flow and effective vertical hydraulic conductivity of sediments was evaluated at three field sites by use of a model that numerically solves the partial differential equation governing simultaneous vertical flow of fluid and heat in the Earth. The field sites are located in Hardwick and New Braintree, Mass., and in Dover, N.J. In New England, stream temperature varies from about 0 to 25 ?C (degrees Celsius) during the year. This stream-temperature fluctuation causes ground-water temperatures beneath streams to fluctuate by more than 0.1 ?C during a year to a depth of about 35 ft (feet) in fine-grained sediments and to a depth of about 50 ft in coarse-grained sediments, if ground-water velocity is 0 ft/d (foot per day). Upward flow decreases the depth affected by stream-temperature fluctuation, and downward flow increases the depth. At the site in Hardwick, Mass., ground-water flow was upward at a rate of less than 0.01 ft/d. The maximum effective vertical hydraulic conductivity of the sediments underlying this site is 0.1 ft/d. Ground-water velocities determined at three locations at the site in New Braintree, Mass., where ground water discharges naturally from the underlying aquifer to the Ware River, ranged from 0.10 to 0.20 ft/d upward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.4 to 17.1 ft/d. Ground-water velocities determined at three locations at the Dover, N.J., site, where infiltration from the Rockaway River into the underlying sediments occurs because of pumping, were 1.5 ft/d downward. The effective vertical hydraulic conductivity of the sediments underlying this site ranged from 2.2 to 2.5 ft/d. Independent estimates of velocity at two of the three sites are in general agreement with the velocities determined using temperature profiles. The estimates of velocities and conductivities derived from the temperature measurements generally fall within the ranges of expected rates of flow in, and conductivities of, the sediments encountered at the test sites. Application of the method at the three test sites demonstrates the feasibility of using the method to determine the rate of ground-water flow between a stream and underlying sediments and the effective vertical hydraulic conductivity of the sediments.

  1. Dynamics of current-use pesticides in the agricultural model basin

    NASA Astrophysics Data System (ADS)

    Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    The southeast of the Pampas plains is a zone with intensive agricultural activities; this zone is highly irrigated by wetlands, rivers and many streams. The stream flow dynamics are strongly related to the regional humidity, mainly given by runoff water and phreatic surface level, and can change dramatically during storm events. In this sense, it is important to study the fluctuations in the loads and mass of current-use pesticide (CUPs) to examine the influence of hydrologic and seasonal variability on the response of pesticide levels. The objective of this work was to determine the maximum loads reached of ∑CUPs and mass of CUPs associated with the flow dynamic in surface waters of "El Crespo" stream. "El Crespo" stream is only influenced by farming activities, with intensive crop systems upstream (US) and extensive livestock production downstream (DS). It is an optimal site for pesticide monitoring studies since there are no urban or industrial inputs into the system. Water samples were collected monthly from October 2014 to October 2015 in the UP and DN sites using 1 L polypropylene bottles and stored at -20°C until analysis. The samples were analyzed using liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The stream flow was measured during the sampling times in both sites, covering low base-flow and high base-flow periods. The most frequently detected residues (>40%) were glyphosate and its metabolite AMPA, atrazine, acetochlor, metolachlor, 2,4-D, metsulfuron methyl, fluorocloridone, imidacloprid, tebuconazole and epoxiconazole. The mean concentrations of ∑CUPs during the sampling period were 1.62µg/L and 1.66µg/L in UP site and DN site, respectively. The highest levels of ∑CUPs were 4.03 µg/L in UP site during spring 2014 and 2.53 µg/L in DN site during winter 2014. The mass of ∑CUPs showed a direct relation between low base flow and high base flow periods. During high base flow during spring 2014, the stream discharge showed peak of 6.16 mt3/s and 6.77 mt3/s, in UP and DN site, respectively; where the total loads of ∑CUPs were 3.7 µg/L and 2.88 µg/L and the associated mass were 22.74 and 19.54 µg/s, in UP and DN site, respectively. During low base flow the discharge were lower than 1 mt3/s and the total loads of ∑CUPs were variable between 1-3 µg/L, but the mass never were higher than 3 µg/s. The intensive rain during the spring 2014, were the mainly factor that influence the stream flow and pesticide dynamics in the model basin

  2. Natural flow regimes of the Ozark-Ouachita Interior Highlands region

    USGS Publications Warehouse

    Leasure, D. R.; Magoulick, Daniel D.; Longing, S. D.

    2016-01-01

    Natural flow regimes represent the hydrologic conditions to which native aquatic organisms are best adapted. We completed a regional river classification and quantitative descriptions of each natural flow regime for the Ozark–Ouachita Interior Highlands region of Arkansas, Missouri and Oklahoma. On the basis of daily flow records from 64 reference streams, seven natural flow regimes were identified with mixture model cluster analysis: Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent Flashy. Sets of flow metrics were selected that best quantified nine ecologically important components of these natural flow regimes. An uncertainty analysis was performed to avoid selecting metrics strongly affected by measurement uncertainty that can result from short periods of record. Measurement uncertainties (bias, precision and accuracy) were assessed for 170 commonly used flow metrics. The ranges of variability expected for select flow metrics under natural conditions were quantified for each flow regime to provide a reference for future assessments of hydrologic alteration. A random forest model was used to predict the natural flow regimes of all stream segments in the study area based on climate and catchment characteristics, and a map was produced. The geographic distribution of flow regimes suggested distinct ecohydrological regions that may be useful for conservation planning. This project provides a hydrologic foundation for future examination of flow–ecology relationships in the region. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  3. Large wood debris recruitment on differing riparian landforms along a Gulf Coastal Plain (USA) stream: a comparison of large floods and average flows

    Treesearch

    Stephen W. Golladay; Juliann M. Battle; Brian J. Palik

    2007-01-01

    In southeastern Coastal Plain streams, wood debris can be very abundant and is recruited from extensive forested floodplains. Despite importance of wood debris, there have been few opportunities to examine recruitment and redistribution of wood in an undisturbed setting, particularly in the southeastern Coastal Plain. Following extensive flooding in 1994, measurements...

  4. Effects of Surface-Water Diversions on Habitat Availability for Native Macrofauna, Northeast Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.; Wolff, Reuben H.

    2005-01-01

    Effects of surface-water diversions on habitat availability for native stream fauna (fish, shrimp, and snails) are described for 21 streams in northeast Maui, Hawaii. Five streams (Waikamoi, Honomanu, Wailuanui, Kopiliula, and Hanawi Streams) were chosen as representative streams for intensive study. On each of the five streams, three representative reaches were selected: (1) immediately upstream of major surface-water diversions, (2) midway to the coast, and (3) near the coast. This study focused on five amphidromous native aquatic species (alamoo, nopili, nakea, opae, and hihiwai) that are abundant in the study area. The Physical Habitat Simulation (PHABSIM) System, which incorporates hydrology, stream morphology and microhabitat preferences to explore relations between streamflow and habitat availability, was used to simulate habitat/discharge relations for various species and life stages, and to provide quantitative habitat comparisons at different streamflows of interest. Hydrologic data, collected over a range of low-flow discharges, were used to calibrate hydraulic models of selected transects across the streams. The models were then used to predict water depth and velocity (expressed as a Froude number) over a range of discharges up to estimates of natural median streamflow. The biological importance of the stream hydraulic attributes was then assessed with the statistically derived suitability criteria for each native species and life stage that were developed as part of this study to produce a relation between discharge and habitat availability. The final output was expressed as a weighted habitat area of streambed for a representative stream reach. PHABSIM model results are presented to show the area of estimated usable bed habitat over a range of streamflows relative to natural conditions. In general, the models show a continuous decrease in habitat for all modeled species as streamflow is decreased from natural conditions. The PHABSIM modeling results from the intensively studied streams were normalized to develop relations between the relative amount of diversion from a stream and the resulting relative change in habitat in the stream. These relations can be used to estimate changes in habitat for diverted streams in the study area that were not intensively studied. The relations indicate that the addition of even a small amount of water to a dry stream has a significant effect on the amount of habitat available. Equations relating stream base-flow changes to habitat changes can be used to provide an estimate of the relative habitat change in the study area streams for which estimates of diverted and natural median base flow have been determined but for which detailed habitat models were not developed. Stream water temperatures, which could have an effect on stream ecology and taro cultivation, were measured in five streams in the study area. In general, the stream temperatures measured at any of the monitoring sites were not elevated enough, based on currently available information, to adversely effect the growth or mortality of native aquatic macrofauna or to cause wetland taro to be susceptible to fungi and associated rotting diseases.

  5. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.

    PubMed

    Hart, Roger C; Herring, G C; Balla, R Jeffrey

    2007-06-15

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  6. Study of Basin Recession Characteristics and Groundwater Storage Properties

    NASA Astrophysics Data System (ADS)

    Yen-Bo, Chen; Cheng-Haw, Lee

    2017-04-01

    Stream flow and groundwater storage are freshwater resources that human live on.In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part of this study is about recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, stream flow and base flow recession characteristics are parameterized. The second part of this study is about groundwater storage. Among main basin in southern Taiwan, there are sufficient stream flow and precipitation gaging station data about Kao-Ping River basin and extensive drainage data, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Results of this study showed that the recession time of stream flow is related to initial flow rate of the recession events. The recession time index is lower when the flow is stream flow, not base flow, and the recession time index is higher in low flow steady flow period than in normal recession condition. By applying hydrological period conceptual model, groundwater storage could explicitly be analyzed and compared with precipitation, by only using stream flow data. Keywords: stream flow, base flow, recession characteristics, groundwater storage

  7. Comparison of Hydrologic and Water-Quality Characteristics of Two Native Tallgrass Prairie Streams with Agricultural Streams in Missouri and Kansas

    USGS Publications Warehouse

    Heimann, David C.

    2009-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, to analyze and compare hydrologic and water-quality characteristics of tallgrass prairie and agricultural basins located within the historical distribution of tallgrass prairie in Missouri and Kansas. Streamflow and water-quality data from two remnant, tallgrass prairie basins (East Drywood Creek at Prairie State Park, Missouri, and Kings Creek near Manhattan, Kansas) were compared to similar data from agricultural basins in Missouri and Kansas. Prairie streams, especially Kings Creek in eastern Kansas, received a higher percentage of base flow and a lower percentage of direct runoff than similar-sized agricultural streams in the region. A larger contribution of direct runoff from the agricultural streams made them much flashier than prairie streams. During 22 years of record, the Kings Creek base-flow component averaged 66 percent of total flow, but base flow was only 16 to 26 percent of flows at agricultural sites of various record periods. The large base-flow component likely is the result of greater infiltration of precipitation in prairie soils and the resulting greater contribution of groundwater to streamflow. The 1- and 3-day annual maximum flows were significantly greater at three agricultural sites than at Kings Creek. The effects of flashier agricultural streams on native aquatic biota are unknown, but may be an important factor in the sustainability of some native aquatic species. There were no significant differences in the distribution of dissolved-oxygen concentrations at prairie and agricultural sites, and some samples from most sites fell below the 5 milligrams per liter Missouri and Kansas standard for the protection of aquatic life. More than 10 percent of samples from the East Drywood Creek prairie stream were less than this standard. These data indicate low dissolved-oxygen concentrations during summer low-flow periods may be a natural phenomenon for small prairie streams in the Osage Plains. Nutrient concentrations including total nitrogen, ammonia, nitrate, and total phosphorus were significantly less in base-flow and runoff samples from prairie streams than from agricultural streams. The total nitrogen concentration at all sites other than one of two prairie sampling sites were, on occasion, above the U.S. Environmental Protection Agency recommended criterion for total nitrogen for the prevention of nutrient enrichment, and typically were above this recommended criterion in runoff samples at all sites. Nitrate and total phosphorus concentrations in samples from the prairie streams generally were below the U.S. Environmental Protection Agency recommended nutrient criteria in base-flow and runoff samples, whereas samples from agricultural sites generally were below the criteria in base-flow samples and generally above in runoff samples. The lower concentrations of nutrient species in prairie streams is likely because prairies are not fertilized like agricultural basins and prairie basins are able to retain nutrients better than agricultural basins. This retention is enhanced by increased infiltration of precipitation into the prairie soils, decreased surface runoff, and likely less erosion than in agricultural basins. Streamflow in the small native prairie streams had more days of zero flow and lower streamflow yields than similar-sized agricultural streams. The prairie streams were at zero flow about 50 percent of the time, and the agricultural streams were at zero flow 25 to 35 percent of the time. Characteristics of the prairie basins that could account for the greater periods of zero flow and lower yields when compared to agricultural streams include greater infiltration, greater interception and evapotranspiration, shallower soils, and possible greater seepage losses in the prairie basins. Another difference between the prairie and agricultural strea

  8. Surface-water quality, Twin Ponies watershed, Pottawattamie and Mills counties, Iowa

    USGS Publications Warehouse

    Detroy, Mark G.

    1981-01-01

    It is probable that the variations between constituent concentrations in samples collected during runoff and those collected during low flow will be similar after grade-stabilization structures have been constructed on streams and after land-treatment measures have been implemented in the watershed as proposed by the U.S. Soil Conservation Service. Grade-stabilization structures should reduce gully and channel erosion in the watershed by dissipating the erosive energy of streamflow during significant runoff. Land-treatment measures to be implemented in conjunction with the project would help reduce sediment yield to stream channels. With the impoundments~ a decrease in velocity of the in-flowing water should produce a decrease of both the suspended~sediment concentrations and the chemical and biological constituents associated with the suspended sediMent in the impounded water.

  9. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, Joe R.

    1997-01-01

    An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).

  10. Field testing and adaptation of a methodology to measure "in-stream" values in the Tongue River, northern Great Plains (NGP) region

    USGS Publications Warehouse

    Bovee, Ken D.; Gore, James A.; Silverman, Arnold J.

    1978-01-01

    A comprehensive, multi-component in-stream flow methodology was developed and field tested in the Tongue River in southeastern Montana. The methodology incorporates a sensitivity for the flow requirements of a wide variety of in-stream uses, and the flexibility to adjust flows to accommodate seasonal and sub-seasonal changes in the flow requirements for different areas. In addition, the methodology provides the means to accurately determine the magnitude of the water requirement for each in-stream use. The methodology can be a powerful water management tool in that it provides the flexibility and accuracy necessary in water use negotiations and evaluation of trade-offs. In contrast to most traditional methodologies, in-stream flow requirements were determined by additive independent methodologies developed for: 1) fisheries, including spawning, rearing, and food production; 2) sediment transport; 3) the mitigation of adverse impacts of ice; and 4) evapotranspiration losses. Since each flow requirement varied in important throughout the year, the consideration of a single in-stream use as a basis for a flow recommendation is inadequate. The study shows that the base flow requirement for spawning shovelnose sturgeon was 13.0 m3/sec. During the same period of the year, the flow required to initiate the scour of sediment from pools is 18.0 m3/sec, with increased scour efficiency occurring at flows between 20.0 and 25.0 m3/sec. An over-winter flow of 2.83 m3/sec. would result in the loss of approximately 80% of the riffle areas to encroachment by surface ice. At the base flow for insect production, approximately 60% of the riffle area is lost to ice. Serious damage to the channel could be incurred from ice jams during the spring break-up period. A flow of 12.0 m3/sec. is recommended to alleviate this problem. Extensive ice jams would be expected at the base rearing and food production levels. The base rearing flow may be profoundly influenced by the loss of streamflow to transpiration. Transpiration losses to riparian vegetation ranged from 0.78 m3/sec. in April, to 1.54 m3/sec. in July, under drought conditions. Requirement for irrigation were estimated to range from 5.56 m3/sec. in May to 7.97 m3/sec. in July, under drought conditions. It was concluded that flow requirements to satisfy monthly water losses to transpiration must be added to the base fishery flows to provide adequate protection to the resources in the lower reaches of the river. Integration of the in-stream requirements for various use components shows that a base flow of at least 23.6 m3/sec. must be reserved during the month of June to initiate scour of sediment from pools, provide spawning habitat to shovelnose sturgeon, and to accommodate water losses from the system. In comparison, a base flow of 3.85 m3/sec. would be required during early February to provide fish rearing habitat and insect productivity, and to prevent excessive loss of food production areas to surface ice formation. During mid to late February, a flow of 12 m3/sec. would be needed to facilitate ice break-up and prevent ice jams from forming. Following break-up, the base flow would again be 3.85 m3/sec. until the start of spawning season.

  11. Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey

    USGS Publications Warehouse

    Watson, Kara M.; McHugh, Amy R.

    2014-01-01

    Regional regression equations were developed for estimating monthly flow-duration and monthly low-flow frequency statistics for ungaged streams in Coastal Plain and non-coastal regions of New Jersey for baseline and current land- and water-use conditions. The equations were developed to estimate 87 different streamflow statistics, which include the monthly 99-, 90-, 85-, 75-, 50-, and 25-percentile flow-durations of the minimum 1-day daily flow; the August–September 99-, 90-, and 75-percentile minimum 1-day daily flow; and the monthly 7-day, 10-year (M7D10Y) low-flow frequency. These 87 streamflow statistics were computed for 41 continuous-record streamflow-gaging stations (streamgages) with 20 or more years of record and 167 low-flow partial-record stations in New Jersey with 10 or more streamflow measurements. The regression analyses used to develop equations to estimate selected streamflow statistics were performed by testing the relation between flow-duration statistics and low-flow frequency statistics for 32 basin characteristics (physical characteristics, land use, surficial geology, and climate) at the 41 streamgages and 167 low-flow partial-record stations. The regression analyses determined drainage area, soil permeability, average April precipitation, average June precipitation, and percent storage (water bodies and wetlands) were the significant explanatory variables for estimating the selected flow-duration and low-flow frequency statistics. Streamflow estimates were computed for two land- and water-use conditions in New Jersey—land- and water-use during the baseline period of record (defined as the years a streamgage had little to no change in development and water use) and current land- and water-use conditions (1989–2008)—for each selected station using data collected through water year 2008. The baseline period of record is representative of a period when the basin was unaffected by change in development. The current period is representative of the increased development of the last 20 years (1989–2008). The two different land- and water-use conditions were used as surrogates for development to determine whether there have been changes in low-flow statistics as a result of changes in development over time. The State was divided into two low-flow regression regions, the Coastal Plain and the non-coastal region, in order to improve the accuracy of the regression equations. The left-censored parametric survival regression method was used for the analyses to account for streamgages and partial-record stations that had zero flow values for some of the statistics. The average standard error of estimate for the 348 regression equations ranged from 16 to 340 percent. These regression equations and basin characteristics are presented in the U.S. Geological Survey (USGS) StreamStats Web-based geographic information system application. This tool allows users to click on an ungaged site on a stream in New Jersey and get the estimated flow-duration and low-flow frequency statistics. Additionally, the user can click on a streamgage or partial-record station and get the “at-site” streamflow statistics. The low-flow characteristics of a stream ultimately affect the use of the stream by humans. Specific information on the low-flow characteristics of streams is essential to water managers who deal with problems related to municipal and industrial water supply, fish and wildlife conservation, and dilution of wastewater.

  12. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  13. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...

  14. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  15. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  16. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...

  17. 40 CFR Table 3 to Subpart Mmm of... - Monitoring Requirements for Control Devices a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Carbon adsorber (regenerative) Stream flow monitoring device, and 1. Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) 1. For each regeneration cycle, record the total regeneration stream mass or volumetric flow. Carbon bed temperature monitoring device 2. Temperature of carbon...

  18. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  19. 40 CFR Table 13 to Subpart G of... - Wastewater-Monitoring Requirements for Control Devices

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Carbon adsorber (regenerative) Integrating regeneration stream flow monitoring device having an accuracy of ±10 percent, and Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle(s) For each regeneration cycle, record the total regeneration stream mass or volumetric flow...

  20. The Western U.S. Drought: How Bad Is It?

    NASA Astrophysics Data System (ADS)

    Piechota, Thomas; Timilsena, Janek; Tootle, Glenn; Hidalgo, Hugo

    2004-08-01

    Historical stream flow records and the forecast for 2004 make the current (lpar1999-2004) drought in the southwestern United States the worst one in the past 80 years for portions of the Upper Colorado River Basin (UCRB). For the Colorado River (near Cisco, Utah), the cumulative stream flow deficit (departure from long term mean) for the current drought is almost 11 km3, or approximately 2 years of average stream flow. Although the current drought is the most significant, based on stream flow records, is it the worst ever?

  1. Documentation of the Streamflow-Routing (SFR2) Package to Include Unsaturated Flow Beneath Streams - A Modification to SFR1

    USGS Publications Warehouse

    Niswonger, Richard G.; Prudic, David E.

    2005-01-01

    Many streams in the United States, especially those in semiarid regions, have reaches that are hydraulically disconnected from underlying aquifers. Ground-water withdrawals have decreased water levels in valley aquifers beneath streams, increasing the occurrence of disconnected streams and aquifers. The U.S. Geological Survey modular ground-water model (MODFLOW-2000) can be used to model these interactions using the Streamflow-Routing (SFR1) Package. However, the approach does not consider unsaturated flow between streams and aquifers and may not give realistic results in areas with significantly deep unsaturated zones. This documentation describes a method for extending the capabilities of MODFLOW-2000 by incorporating the ability to simulate unsaturated flow beneath streams. A kinematic-wave approximation to Richards' equation was solved by the method of characteristics to simulate unsaturated flow beneath streams in SFR1. This new package, called SFR2, includes all the capabilities of SFR1 and is designed to be used with MODFLOW-2000. Unlike SFR1, seepage loss from the stream may be restricted by the hydraulic conductivity of the unsaturated zone. Unsaturated flow is simulated independently of saturated flow within each model cell corresponding to a stream reach whenever the water table (head in MODFLOW) is below the elevation of the streambed. The relation between unsaturated hydraulic conductivity and water content is defined by the Brooks-Corey function. Unsaturated flow variables specified in SFR2 include saturated and initial water contents; saturated vertical hydraulic conductivity; and the Brooks-Corey exponent. These variables are defined independently for each stream reach. Unsaturated flow in SFR2 was compared to the U.S. Geological Survey's Variably Saturated Two-Dimensional Flow and Transport (VS2DT) Model for two test simulations. For both test simulations, results of the two models were in good agreement with respect to the magnitude and downward progression of a wetting front through an unsaturated column. A third hypothetical simulation is presented that includes interaction between a stream and aquifer separated by an unsaturated zone. This simulation is included to demonstrate the utility of unsaturated flow in SFR2 with MODFLOW-2000. This report includes a description of the data input requirements for simulating unsaturated flow in SFR2.

  2. Effectiveness of the New Hampshire stream-gaging network in providing regional streamflow information

    USGS Publications Warehouse

    Olson, Scott A.

    2003-01-01

    The stream-gaging network in New Hampshire was analyzed for its effectiveness in providing regional information on peak-flood flow, mean-flow, and low-flow frequency. The data available for analysis were from stream-gaging stations in New Hampshire and selected stations in adjacent States. The principles of generalized-least-squares regression analysis were applied to develop regional regression equations that relate streamflow-frequency characteristics to watershed characteristics. Regression equations were developed for (1) the instantaneous peak flow with a 100-year recurrence interval, (2) the mean-annual flow, and (3) the 7-day, 10-year low flow. Active and discontinued stream-gaging stations with 10 or more years of flow data were used to develop the regression equations. Each stream-gaging station in the network was evaluated and ranked on the basis of how much the data from that station contributed to the cost-weighted sampling-error component of the regression equation. The potential effect of data from proposed and new stream-gaging stations on the sampling error also was evaluated. The stream-gaging network was evaluated for conditions in water year 2000 and for estimated conditions under various network strategies if an additional 5 years and 20 years of streamflow data were collected. The effectiveness of the stream-gaging network in providing regional streamflow information could be improved for all three flow characteristics with the collection of additional flow data, both temporally and spatially. With additional years of data collection, the greatest reduction in the average sampling error of the regional regression equations was found for the peak- and low-flow characteristics. In general, additional data collection at stream-gaging stations with unregulated flow, relatively short-term record (less than 20 years), and drainage areas smaller than 45 square miles contributed the largest cost-weighted reduction to the average sampling error of the regional estimating equations. The results of the network analyses can be used to prioritize the continued operation of active stations, the reactivation of discontinued stations, or the activation of new stations to maximize the regional information content provided by the stream-gaging network. Final decisions regarding altering the New Hampshire stream-gaging network would require the consideration of the many uses of the streamflow data serving local, State, and Federal interests.

  3. Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.

    1994-01-01

    The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.

  4. Two tales of legacy effects on stream nutrient behaviour

    NASA Astrophysics Data System (ADS)

    Bieroza, M.; Heathwaite, A. L.

    2017-12-01

    Intensive agriculture has led to large-scale land use conversion, shortening of flow pathways and increased loads of nutrients in streams. This legacy results in gradual build-up of nutrients in agricultural catchments: in soil for phosphorus (biogeochemical legacy) and in the unsaturated zone for nitrate (hydrologic legacy), controlling the water quality in the long-term. Here we investigate these effects on phosphorus and nitrate stream concentrations using high-frequency (10-5 - 100 Hz) sampling with in situ wet-chemistry analysers and optical sensors. Based on our 5 year study, we observe that storm flow responses differ for both nutrients: phosphorus shows rapid increases (up to 3 orders of magnitude) in concentrations with stream flow, whereas nitrate shows both dilution and concentration effects with increasing flow. However, the range of nitrate concentrations change is narrow (up to 2 times the mean) and reflects chemostatic behaviour. We link these nutrient responses with their dominant sources and flow pathways in the catchment. Nitrate from agriculture (with the peak loading in 1983) is stored in the unsaturated zone of the Penrith Sandstone, which can reach up to 70 m depth. Thus nitrate legacy is related to a hydrologic time lag with long travel times in the unsaturated zone. Phosphorus is mainly sorbed to soil particles, therefore it is mobilised rapidly during rainfall events (biogeochemical legacy). The phosphorus stream response will however depend on how well connected is the stream to the catchment sources (driven by soil moisture distribution) and biogeochemical activity (driven by temperature), leading to both chemostatic and non-chemostatic responses, alternating on a storm-to-storm and seasonal basis. Our results also show that transient within-channel storage is playing an important role in delivery of phosphorus, providing an additional time lag component. These results show, that consistent agricultural legacy in the catchment (high historical loads of nutrients) has different effects on nutrients stream responses, depending on their dominant sources and pathways. Both types of time lags, biogeochemical for phosphorus and hydrologic for nitrate, need to be taken into account when designing and evaluating the effectiveness of the agri-environmental mitigation measures.

  5. Groundwater exchanges near a channelized versus unmodified stream mouth discharging to a subalpine lake

    USGS Publications Warehouse

    Constantz, James; Naranjo, Ramon C.; Niswonger, Richard G.; Allander, Kip K.; Neilson, B.; Rosenberry, Donald O.; Smith, David W.; Rosecrans, C.; Stonestrom, David A.

    2016-01-01

    The terminus of a stream flowing into a larger river, pond, lake, or reservoir is referred to as the stream-mouth reach or simply the stream mouth. The terminus is often characterized by rapidly changing thermal and hydraulic conditions that result in abrupt shifts in surface water/groundwater (sw/gw) exchange patterns, creating the potential for unique biogeochemical processes and ecosystems. Worldwide shoreline development is changing stream-lake interfaces through channelization of stream mouths, i.e., channel straightening and bank stabilization to prevent natural meandering at the shoreline. In the central Sierra Nevada (USA), Lake Tahoe's shoreline has an abundance of both “unmodified” (i.e., not engineered though potentially impacted by broader watershed engineering) and channelized stream mouths. Two representative stream mouths along the lake's north shore, one channelized and one unmodified, were selected to compare and contrast water and heat exchanges. Hydraulic and thermal properties were monitored during separate campaigns in September 2012 and 2013 and sw/gw exchanges were estimated within the stream mouth-shoreline continuum. Heat-flow and water-flow patterns indicated clear differences in the channelized versus the unmodified stream mouth. For the channelized stream mouth, relatively modulated, cool-temperature, low-velocity longitudinal streambed flows discharged offshore beneath warmer buoyant lakeshore water. In contrast, a seasonal barrier bar formed across the unmodified stream mouth, creating higher-velocity subsurface flow paths and higher diurnal temperature variations relative to shoreline water. As a consequence, channelization altered sw/gw exchanges potentially altering biogeochemical processing and ecological systems in and near the stream mouth.

  6. Assessment of electrical conductivity as a surrogate measurement for water samples in a tracer injection experiment

    USDA-ARS?s Scientific Manuscript database

    The transport behavior of solutes in streams depends on chemical, physical, biological, and hydrodynamic processes. Although it is a very complex system, it is known that this behavior is greatly influenced by surface and subsurface flows. For this reason, tracer injection in the water flows is one ...

  7. Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska

    USGS Publications Warehouse

    McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.

    2018-01-01

    Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (<15 cm fork length (FL)) consumed mostly aquatic invertebrates early in the summer, and terrestrial invertebrates later in summer, while larger fish (>15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.

  8. Genetic assessment of the effects of streamscape succession on coho salmon Oncorhynchus kisutch colonization in recently deglaciated streams

    USGS Publications Warehouse

    Scribner, Kim T.; Soiseth, Chad; McGuire, Jeffrey J.; Sage, Kevin; Thorsteinson, Lyman K.; Nielsen, J. L.; Knudsen, E.

    2017-01-01

    Measures of genetic diversity within and among populations and historical geomorphological data on stream landscapes were used in model simulations based on approximate Bayesian computation (ABC) to examine hypotheses of the relative importance of stream features (geomorphology and age) associated with colonization events and gene flow for coho salmon Oncorhynchus kisutch breeding in recently deglaciated streams (50–240 years b.p.) in Glacier Bay National Park (GBNP), Alaska. Population estimates of genetic diversity including heterozygosity and allelic richness declined significantly and monotonically from the oldest and largest to youngest and smallest GBNP streams. Interpopulation variance in allele frequency increased with increasing distance between streams (r = 0·435, P < 0·01) and was inversely related to stream age (r = –0·281, P < 0·01). The most supported model of colonization involved ongoing or recent (<10 generations before sampling) colonization originating from large populations outside Glacier Bay proper into all other GBNP streams sampled. Results here show that sustained gene flow from large source populations is important to recently established O. kisutch metapopulations. Studies that document how genetic and demographic characteristics of newly founded populations vary associated with successional changes in stream habitat are of particular importance to and have significant implications for, restoration of declining or repatriation of extirpated populations in other regions of the species' native range.

  9. Investigation of a supersonic cruise fighter model flow field

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Bare, E. A.

    1985-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to survey the flow field around a model of a supersonic cruise fighter configuration. Local values of angle of attack, side flow, Mach number, and total pressure ratio were measured with a single multi-holed probe in three survey areas on a model previously used for nacelle/nozzle integration investigations. The investigation was conducted at Mach numbers of 0.6, 0.9, and 1.2, and at angles of attack from 0 deg to 10 deg. The purpose of the investigation was to provide a base of experimental data with which theoretically determined data can be compared. To that end the data are presented in tables as well as graphically, and a complete description of the model geometry is included as fuselage cross sections and wing span stations. Measured local angles of attack were generally greater than free stream angle of attack above the wing and generally smaller below. There were large spanwise local angle-of-attack and side flow gradients above the wing at the higher free stream angles of attack.

  10. A statistical method to predict flow permanence in dryland streams from time series of stream temperature

    USGS Publications Warehouse

    Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David

    2017-01-01

    Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.

  11. Laurentide glacial landscapes: the role of ice streams

    USGS Publications Warehouse

    Patterson, C.J.

    1998-01-01

    Glacial landforms of the North American prairie can be divided into two suites that result from different styles of ice flow: 1) a lowland suite of level-to-streamlined till consistent with formation beneath ice streams, and 2) an upland and lobe-margin suite of thick, hummocky till and glacial thrust blocks consistent with formation at ice-stream and ice-lobe margins. Southern Laurentide ice lobes hypothetically functioned as outlets of ice streams. Broad branching lowlands bounded by escarpments mark the stable positions of the ice streams that fed the lobes. If the lobes and ice streams were similar to modern ice streams, their fast flow was facilitated by high subglacial water pressure. Favorable geology and topography in the midcontinent encouraged nonuniform ice flow and controlled the location of ice streams and outlet lobes.

  12. Direct measurements of lift and drag on shallowly submerged cobbles in steep streams: Implications for flow resistance and sediment transport

    NASA Astrophysics Data System (ADS)

    Lamb, Michael P.; Brun, Fanny; Fuller, Brian M.

    2017-09-01

    Steep mountain streams have higher resistance to flow and lower sediment transport rates than expected by comparison with low gradient rivers, and often these differences are attributed to reduced near-bed flow velocities and stresses associated with form drag on channel forms and immobile boulders. However, few studies have directly measured drag and lift forces acting on bed sediment for shallow flows over coarse sediment, which ultimately control sediment transport rates and grain-scale flow resistance. Here we report on particle lift and drag force measurements in flume experiments using a planar, fixed cobble bed over a wide range of channel slopes (0.004 < S < 0.3) and water discharges. Drag coefficients are similar to previous findings for submerged particles (CD ˜ 0.7) but increase significantly for partially submerged particles. In contrast, lift coefficients decrease from near unity to zero as the flow shallows and are strongly negative for partially submerged particles, indicating a downward force that pulls particles toward the bed. Fluctuating forces in lift and drag decrease with increasing relative roughness, and they scale with the depth-averaged velocity squared rather than the bed shear stress. We find that, even in the absence of complex bed topography, shallow flows over coarse sediment are characterized by high flow resistance because of grain drag within a roughness layer that occupies a significant fraction of the total flow depth, and by heightened critical Shields numbers and reduced sediment fluxes because of reduced lift forces and reduced turbulent fluctuations.

  13. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    NASA Technical Reports Server (NTRS)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  14. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge

    USGS Publications Warehouse

    Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.

    1994-01-01

    We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration, indicating that 95% of the loss within the study reach represented groundwater recharge.

  15. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis

    Treesearch

    Ying Ouyang; Prem B. Parajuli; Yide Li; Theodor D. Leininger; Gary Feng

    2017-01-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature...

  16. Evidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China

    Treesearch

    Z. Zhou; Y. Ouyang; Z. Qiu; G. Zhou; M. Lin; Y. Li

    2017-01-01

    Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis...

  17. Superamphiphobic Silicon-Nanowire-Embedded Microsystem and In-Contact Flow Performance of Gas and Liquid Streams.

    PubMed

    Ko, Dong-Hyeon; Ren, Wurong; Kim, Jin-Oh; Wang, Jun; Wang, Hao; Sharma, Siddharth; Faustini, Marco; Kim, Dong-Pyo

    2016-01-26

    Gas and liquid streams are invariably separated either by a solid wall or by a membrane for heat or mass transfer between the gas and liquid streams. Without the separating wall, the gas phase is present as bubbles in liquid or, in a microsystem, as gas plugs between slugs of liquid. Continuous and direct contact between the two moving streams of gas and liquid is quite an efficient way of achieving heat or mass transfer between the two phases. Here, we report a silicon nanowire built-in microsystem in which a liquid stream flows in contact with an underlying gas stream. The upper liquid stream does not penetrate into the lower gas stream due to the superamphiphobic nature of the silicon nanowires built into the bottom wall, thereby preserving the integrity of continuous gas and liquid streams, although they are flowing in contact. Due to the superamphiphobic nature of silicon nanowires, the microsystem provides the best possible interfacial mass transfer known to date between flowing gas and liquid phases, which can achieve excellent chemical performance in two-phase organic syntheses.

  18. An assessment of low flows in streams in northeastern Wyoming

    USGS Publications Warehouse

    Armentrout, G.W.; Wilson, J.F.

    1987-01-01

    Low flows were assessed and summarized in the following basins in northeastern Wyoming: Little Bighorn, Tongue, Powder, Little Missouri, Belle Fourche, Cheyenne, and Niobrara River, and about 200 river miles of the North Platte River and its tributaries. Only existing data from streamflow stations and miscellaneous observation sites during the period, 1930-80, were used. Data for a few stations in Montana and South Dakota were used in the analysis. Data were available for 56 perennial streams, 38 intermittent streams, and 34 ephemeral streams. The distribution of minimum observed flows of record at all stations and sites and the 7-day, 10-year low flows at mountain stations and main-stem plains stations are shown on a map. Seven day low flows were determined by fitting the log Pearsons Type III distribution to the data; results are tabulated only for the stations with at least 10 years of record that included at least one major drought. Most streams that originate in the foothills and plains have no flow during part of every year, and are typical of much of the study area. For stations on these streams , the frequency of the annual maximum number of consecutive days of no flow was determined, as an indicator of the likelihood of extended periods of no flow or drought. For estimates at ungaged sites on streams in the Bighorn Mountains only, a simple regression of 7-day, 10-year low flow on drainage area has a standard error of 64%, based on 19 stations with drainage areas of 2 to 200 sq mi. The 7-day, 10-year low flow in main-stem streams can be interpolated from graphs of 7-day, 10-year low flow versus distance along the main channel. Additional studies of low flow are needed. The data base, particularly synoptic baseflow information, needs considerable expansion. Also, the use of storage-analysis procedures should be considered as a means of assessing the availability of water in streams that otherwise are fully appropriated or that are ephemeral. (Author 's abstract)

  19. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs.

    PubMed

    Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A

    2010-06-01

    The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.

  20. Biological, morphological, and chemical characteristics of Wailuku River, Hawaii

    USGS Publications Warehouse

    Yee, J.J.; Ewart, C.J.

    1986-01-01

    Biological, morphological, and chemical data on Wailuku River were collected to assess its water quality characteristics. Biological measurements included evaluation of benthic invertebrates, periphyton, phytoplankton and coliform bacteria. Morphological measurements consisted of channel surveys and particle size determination of bed materials. Chemical quality measurements, made monthly at two sampling stations, included water temperature, pH, specific conductance, dissolved solids concentration, turbidity, dissolved oxygen, nitrogen, phosphorus , and minor elements. Biological and chemical data indicated relatively clean water compared to similar streams in conterminous United States. The number and types of benthic organisms are low in Wailuku River. This is due mainly to channel gradient and flow velocities rather than to chemical toxicity. Periphyton data also indicate unpolluted water of low to moderate primary productivity. Diatoms are the dominant organisms observed in the periphyton samples. Coliform bacteria densities are typical of mountain streams in Hawaii that are essentially unaffected by human activities. The streambed is formed of lava flows from Mauna Loa volcano, and the stream channel is characterized by a series of plunge pools and waterfalls. The longitudinal slope ranges from 5% at midreaches to 8% at the headwater regions. There is no broad flood plain at the mouth of the stream. The stream channel is generally a narrow steep-sided trapezoid with an irregular base. Streambanks are composed of fine to very coarse-grained material. Channel depth increases from 6 ft at the headwaters to 40 ft at Hilo. The width also increases from 60 ft at the highest study site to 220 ft at the Hilo site near the mouth of the river. (Author 's abstract)

  1. Effects of a flood pulse on exchange flows along a sinuous stream

    NASA Astrophysics Data System (ADS)

    Käser, D.; Brunner, P.; Renard, P.; Perrochet, P.; Schirmer, M.; Hunkeler, D.

    2012-04-01

    Flood pulses are important events for river ecosystems: they create hydrological interactions at the terrestrial/aquatic interface that fuel biological productivity and shape the hyporheic-riparian habitats. For example, floods promote faunal activity and decomposition by increasing the supply of oxygenated water in downwelling areas, while the following recession periods tend to provide stable thermal conditions favoured by fish or insects in areas of groundwater upwelling. This 3-D modelling study investigates the effect of stream stage transience (with events characterised by their intensity and duration) on hydrological exchanges between the surface and the near-stream subsurface. It evaluates, in particular, its effect on streams of varying sinuosity by quantifying the dynamic response of: (1) subsurface flow paths, (2) the exchange pattern at the sediment-water interface, and (3) integrative measures such as total exchange flux and total storage. Understanding geomorphological controls on groundwater/surface water interactions is attractive because topography is generally better constrained than subsurface parameters, and can be used in data-poor situations. The numerical model represents a hypothetical alluvial plain limited by impervious bedrock on all four sides, and in which the channel meanders according to the sine-generated curve of Langbein and Leopold (1966). As the model (HydroGeoSphere) couples surface and subsurface flow, the stream stage transience is imposed by a fluctuating head at the channel inlet. Preliminary results show that a simple rectangular flood pulse in an idealised sinuous stream without additional complexity can generate multiple flow direction reversals at a single point in the channel. The initial conditions of the groundwater table, the channel sinuosity and the time characteristics of the flood pulse all control exchange flow features in different ways. Results are also compared with 'bank storage' analytical solutions that typically assume a straight channel. The discussion covers an evaluation of this work with respect to previous studies that considered the influence of sinuosity on interfacial exchange flows. It addresses the issue of steady vs. transient exchanges, which is of uppermost importance at the operational scale of river restoration schemes. Langbein WB, Leopold LB. 1966. River meanders - theory of minimum variance. U.S. Geol. Surv. Prof. Pap. 422-H: 15 p.

  2. Regionalization of low-flow characteristics of Tennessee streams

    USGS Publications Warehouse

    Bingham, R.H.

    1986-01-01

    Procedures for estimating 3-day 2-year, 3-day 10-year, 3-day 20-year, and 7-day 10-year low flows at ungaged stream sites in Tennessee are based on surface geology and drainage area size. One set of equations applies to west Tennessee streams, and another set applies to central and east Tennessee streams. The equations do not apply to streams where flow is significantly altered by activities of man. Standard errors of estimate of equations for west Tennessee are 24 to 32% and for central and east Tennessee 31 to 35%. Streamflow recession indexes, in days/log cycle, are used to account for effects of geology of the drainage basin on low flow of streams. The indexes in Tennessee range from 32 days/log cycle for clay and shale to 350 days/log cycle for gravel and sand, indicating different aquifer characteristics of the geologic units that sustain streamflows during periods of no surface runoff. Streamflow recession rate depends primarily on transmissivity and storage characteristics of the aquifers, and the average distance from stream channels to basin divides. Geology and drainage basin size are the most significant variables affecting low flow in Tennessee streams according to regression analyses. (Author 's abstract)

  3. Characterizing Sub-Daily Flow Regimes: Implications of Hydrologic Resolution on Ecohydrology Studies

    DOE PAGES

    Bevelhimer, Mark S.; McManamay, Ryan A.; O'Connor, B.

    2014-05-26

    Natural variability in flow is a primary factor controlling geomorphic and ecological processes in riverine ecosystems. Within the hydropower industry, there is growing pressure from environmental groups and natural resource managers to change reservoir releases from daily peaking to run-of-river operations on the basis of the assumption that downstream biological communities will improve under a more natural flow regime. In this paper, we discuss the importance of assessing sub-daily flows for understanding the physical and ecological dynamics within river systems. We present a variety of metrics for characterizing sub-daily flow variation and use these metrics to evaluate general trends amongmore » streams affected by peaking hydroelectric projects, run-of-river projects and streams that are largely unaffected by flow altering activities. Univariate and multivariate techniques were used to assess similarity among different stream types on the basis of these sub-daily metrics. For comparison, similar analyses were performed using analogous metrics calculated with mean daily flow values. Our results confirm that sub-daily flow metrics reveal variation among and within streams that are not captured by daily flow statistics. Using sub-daily flow statistics, we were able to quantify the degree of difference between unaltered and peaking streams and the amount of similarity between unaltered and run-of-river streams. The sub-daily statistics were largely uncorrelated with daily statistics of similar scope. Furthermore, on short temporal scales, sub-daily statistics reveal the relatively constant nature of unaltered streamreaches and the highly variable nature of hydropower-affected streams, whereas daily statistics show just the opposite over longer temporal scales.« less

  4. An analytical method for assessing the spatial and temporal variation of juvenile Atlantic salmon habitat in an upland Scottish river.

    NASA Astrophysics Data System (ADS)

    Buddendorf, B.; Fabris, L.; Malcolm, I.; Lazzaro, G.; Tetzlaff, D.; Botter, G.; Soulsby, C.

    2016-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Stream hydrodynamics have a strong influence on habitat quality and affect the distribution and density of juvenile salmon. As stream hydrodynamics directly relate to stream flow variability and channel morphology, the effects of hydroclimatic drivers on the spatial and temporal variability of habitat suitability can be assessed. Critical Displacement Velocity (CDV), which describes the velocity at which fish can no longer hold station, is one potential approach for characterising habitat suitability. CDV is obtained using an empirical formula that depends on fish size and stream temperature. By characterising the proportion of a reach below CDV it is possible to assess the suitable area. We demonstrate that a generic analytical approach based on field survey and hydraulic modelling can provide insights on the interactions between flow regime and average suitable area (SA) for juvenile salmon that could be extended to other aquatic species. Analytical functions are used to model the pdf of stream flow p(q) and the relationship between flow and suitable area SA(q). Theoretically these functions can assume any form. Here we used a gamma distribution to model p(q) and a gamma function to model SA(q). Integrating the product of these functions we obtain an analytical expression of SA. Since parameters of p(q) can be estimated from meteorological and flow measurements, they can be used directly to predict the effect of flow regime on SA. We show the utility of the approach with reference to 6 electrofishing sites in a single river system where long term (50 years) data on spatially distributed juvenile salmon densities are available.

  5. Modeled streamflow metrics on small, ungaged stream reaches in the Upper Colorado River Basin

    USGS Publications Warehouse

    Reynolds, Lindsay V.; Shafroth, Patrick B.

    2016-01-20

    Modeling streamflow is an important approach for understanding landscape-scale drivers of flow and estimating flows where there are no streamgage records. In this study conducted by the U.S. Geological Survey in cooperation with Colorado State University, the objectives were to model streamflow metrics on small, ungaged streams in the Upper Colorado River Basin and identify streams that are potentially threatened with becoming intermittent under drier climate conditions. The Upper Colorado River Basin is a region that is critical for water resources and also projected to experience large future climate shifts toward a drying climate. A random forest modeling approach was used to model the relationship between streamflow metrics and environmental variables. Flow metrics were then projected to ungaged reaches in the Upper Colorado River Basin using environmental variables for each stream, represented as raster cells, in the basin. Last, the projected random forest models of minimum flow coefficient of variation and specific mean daily flow were used to highlight streams that had greater than 61.84 percent minimum flow coefficient of variation and less than 0.096 specific mean daily flow and suggested that these streams will be most threatened to shift to intermittent flow regimes under drier climate conditions. Map projection products can help scientists, land managers, and policymakers understand current hydrology in the Upper Colorado River Basin and make informed decisions regarding water resources. With knowledge of which streams are likely to undergo significant drying in the future, managers and scientists can plan for stream-dependent ecosystems and human water users.

  6. Velocity measurements in the plume of an arcjet engine

    NASA Technical Reports Server (NTRS)

    Pivirotto, T. J.; Deininger, W. D.

    1987-01-01

    A nonintrusive technique has been used to conduct a radial survey in the flow field of an arcjet engine plume. The technique measures the Doppler shift of an optically thin line resulting from recombination and relaxation processes in the high Mach number stream, in order to determine flow velocities. Atom temperature can also be calculated from the same Doppler-broadened line widths, when these shifts are measured with a scanning Fabry-Perot spectrometer whose design is presented in detail.

  7. Spatial variability of herbicide mobilisation and transport at catchment scale: insights from a field experiment

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Camenzuli, L.; Hirzel, G.; Krauss, M.; Lück, A.; Stamm, C.

    2012-02-01

    During rain events, herbicides can be transported from their point of application to surface waters where they may harm aquatic organisms. Since the spatial pattern of mobilisation and transport is heterogeneous, the contributions of different fields to the herbicide load in the stream may differ considerably within one catchment. Therefore, the prediction of contributing areas could help to target mitigation measures efficiently to those locations where they reduce herbicide pollution the most. Such spatial predictions require sufficient insight into the underlying transport processes. To improve the understanding of the process chain of herbicide mobilisation on the field and the subsequent transport through the catchment to the stream, we performed a controlled herbicide application on corn fields in a small agricultural catchment (ca. 1 km2) with intensive crop production in the Swiss Plateau. For two months after application in 2009, water samples were taken at different locations in the catchment (overland flow, tile drains and open channel) with a high temporal resolution during rain events. We also analysed soil samples from the experimental fields and measured discharge, groundwater level, soil moisture and the occurrence of overland flow at several locations. Several rain events with varying intensities and magnitudes occurred during the study period. Overland flow and erosion were frequently observed in the entire catchment. Infiltration excess and saturation excess overland flow were both observed. However, the main herbicide loss event was dominated by infiltration excess. This is in contrast to earlier studies in the Swiss Plateau, demonstrating that saturation excess overland flow was the dominant process. Despite the frequent and wide-spread occurrence of overland flow, most of this water did not directly reach the channel. It mostly got retained in small sinks in the catchment. From there, it reached the stream via macropores and tile drains. Manholes of the drainage system and catch basins for road and farmyard runoff acted as additional shortcuts to the stream. Although fast flow processes like overland and macropore flow reduce the influence of herbicide properties due to short travel times, sorption properties influenced the herbicide transfer from ponding overland flow to tile drains (macropore flow). However, no influence of sorption was observed during the mobilisation of the herbicides from soil to overland flow. These two observations on the role of herbicide properties contradict, to some degrees, previous findings. They demonstrate that valuable insight can be gained by spatially detailed observations along the flow paths.

  8. Dynamics of groundwater-surface water interactions in urban streams

    NASA Astrophysics Data System (ADS)

    Musolff, A.; Schmidt, C.; Fleckenstein, J. H.

    2010-12-01

    In industrialized countries the majority of streams and rivers have been subject to changes in the hydrological regime and alteration of the channel morphology. Urban streams are typically characterized by “flashier” hydrographs as a result of more direct runoff from impervious surfaces. Channel structure and complexity are often impaired compared to pristine streams. As a consequence the potential for bedform-driven water flow in the streambed is reduced. The downward transport of oxygen by advective flow in the streambed is known to be of great ecological importance for the hyporheic macro and micro fauna and facilitates nutrient cycling and the degradation of organic pollutants. We studied the dynamics of groundwater-surface water exchange of two anthropogenically impacted streams in urban areas to examine the effects of variable hydrologic boundary conditions on water flux and redox conditions in the streambed. The first stream is fed by groundwater as well as storm-water from a large industrial area. Here, we monitored the variability of vertical hydraulic gradients, streambed temperature and redox conditions in the streambed over the course of 5 months. The second stream is frequently polluted by combined sewer overflows (CSO) from an urban watershed. Here, we measured the vertical hydraulic gradients, streambed temperature and electrical conductivity (EC) in the stream, the streambed and in the adjacent aquifer. Both streams are characterized by strong variations in hydraulic gradients due to the dynamic hydrographs as well as the variations in total head in the shallow aquifer. Therefore, magnitude and direction of water flux through the streambed changed significantly over time. At the first site long-term variations of redox conditions in the shallow streambed (0.1 m) were related to the direction of water fluxes. Downward water flow resulted in increased redox potentials. However, the high short-term variability of redox conditions could not be directly attributed to changes in the hydraulic conditions. At the second site, increased EC in the shallow aquifer was related to seasonally losing conditions (associated with low water tables in summer) and the resulting groundwater recharge. Sudden increases in stream stage due to rain events and subsequent CSO resulted in altered streambed water fluxes, as evidenced by the disturbance of vertical streambed temperature profiles down to a depth of 0.3 m. Both, short-term and long-term variations in hydraulic gradients between the stream, the streambed and the groundwater were found to influence the magnitude and direction of water fluxes. Flashy flow events influence the water flux in the streambed very rapidly. However, changes in redox potential in the streambed require losing conditions over time scales longer than the duration of a typical high flow event. As a consequence, the complexity of water exchange in the streambed should be carefully monitored, both in space and time. Our results indicate that variable hydraulic gradients may induce intense exchange fluxes between the stream and streambed in urban streams and may compensate some of the negative consequences of degraded channels with limited bedform-driven flow.

  9. Effects of channel constriction on upstream steering of flow around Locke Island, Columbia River, Washington

    NASA Astrophysics Data System (ADS)

    Loy, G. E.; Furbish, D. J.; Covey, A.

    2010-12-01

    Landsliding of the White Bluffs along the Columbia River in Washington State has constricted the width of the river on one side of Locke Island, a two-kilometer long island positioned in the middle of the channel. Associated changes in flow are thought to be causing relatively rapid erosion of Locke Island on the constricted side. This island is of cultural significance to Native American tribes of south-central Washington, so there are social as well as scientific reasons to understand how the alteration of stream channel processes resulting from the landsliding might be influencing observed erosion rates. Simple hydrodynamic calculations suggest that the constriction on one side of the island creates an upstream backwater effect. As a consequence a cross-stream pressure gradient upstream of the island results in steering of flow around the island into the unobstructed thread. This diversion of water decreases the discharge through the constriction. Therefore, flow velocities within the constriction are not necessarily expected to be higher than those in the unobstructed thread, contrary to initial reports suggesting that higher velocities within the constriction are the main cause of erosion. We set up streamtable experiments with lapse rate imaging to illustrate the backwater effects of the channel constriction and the associated cross-stream steering of flow around a model island. Our experiments are scaled by channel roughness and slope rather than geometrically, as the main focus is to understand the mechanical behavior of flow in this type of island-landslide system. In addition, we studied the stream velocities and flow steering as well as the magnitude of the backwater effect in both the constricted and unobstructed channels using tracer particles in the time-lapse images. These experimental data are compared with calculated upstream backwater distances determined from the known water-surface slope, flow depth, total discharge, and bed roughness. Furthermore, this experimental work will inform subsequent numerical modeling of flow and field-based measurements at Locke Island.

  10. Morphological assessment of reconstructed lowland streams in the Netherlands

    NASA Astrophysics Data System (ADS)

    Eekhout, Joris P. C.; Hoitink, Antonius J. F.; de Brouwer, Jan H. F.; Verdonschot, Piet F. M.

    2015-07-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three reconstructed streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realise water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.

  11. Morphological Assessment of Reconstructed Lowland Streams in the Netherlands

    NASA Astrophysics Data System (ADS)

    Hoitink, T.; Eekhout, J.; de Brouwer, J.; Verdonschot, P.

    2014-12-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Re-meandering is the common practice in restoring these lowland streams. Three lowland streams were monitored during the initial two years after construction of a new channel. The monitoring program included morphological surveys, sediment sampling, habitat pattern surveys, and discharge and water level measurements. Adjustments of the longitudinal bed profile formed the main morphological response. These adjustments were most likely caused by a lack of longitudinal connectivity of the streams as a whole, interrupting transport of sediment at locations of weirs and culverts. Bank erosion was observed only in a limited number of channel bends, and was often related to floodplain heterogeneity. Longitudinal channel bed adjustments and bank erosion were mainly caused by exogenous influences. In channel bends, the cross-sectional shape transformed from trapezoidal to the typical asymmetrical shape as found in meandering rivers. This behaviour can be attributed to an autogenous response to the prevailing flow conditions. Due to the prevailing fine sediment characteristics, bed material is readily set in motion and is being transported during the entire year. The existing design principles fail to address the initial morphological development after reconstruction. An evaluation of pre-set targets to realize water depth and flow velocity ranges shows the current procedures to be deficient. Based on this unfavourable evaluation, and the two-dimensional nature of habitat patterns needed to improve the conditions for stream organisms, we recommend to predict morphological developments as part of the design procedures for lowland stream restoration in the Netherlands.

  12. International Critical Zone Science: Opportunities to Build a Global Understanding of Land-Water Linkages

    NASA Astrophysics Data System (ADS)

    McDowell, W. H.

    2015-12-01

    Critical Zone science examines the structure and properties of the thin veneer that links surface properties to deep geology, at time scales of seconds to millennia. One of the fundamental premises of the US Critical Zone Observatories program is that CZOs should include some measurements made in common at all sites, as these common measurements will enable us to make stronger inferences about how the structure and function of the critical zone interact to drive key processes such as soil formation, stream flow generation, and nutrient export. Recent advances in real-time sensors provide new opportunities to address some fundamental questions about how hillslope soils and streams are linked. Data from the Luquillo Critical Zone Observatory in Puerto Rico, for example, document a previously undescribed transition, or flipping, of stream and soil biogeochemistry in a tropical rain forest. Under typical conditions, soil moisture is high and soil oxygen content is often low, especially at depth. Streams, in contrast, are typically near oxygen saturation. Under severe drought, however, oxygen increases dramatically in soil air and declines to values that are well below saturation in streams. This flipping in redox conditions suggests that despite the strong hydrologic connection between hillslope and stream, gas dynamics and potentially solute dynamics are decoupled along the flow path. The international CZO community has the opportunity to develop a suite of sensor arrays to document soil air, groundwater chemistry, and stream water chemistry. Progress towards realizing the potential of these international networks to develop coherent sensor programs will be addressed based on the current status of sensor deployments in CZO networks in the US, China, and Europe.

  13. Pharmaceutical modulation of diffusion potentials at aqueous-aqueous boundaries under laminar flow conditions.

    PubMed

    Collins, Courtney J; Strutwolf, Jörg; Arrigan, Damien W M

    2011-04-01

    In this work, the modulation of the diffusion potential formed at the microfluidic aqueous-aqueous boundary by a pharmaceutical substance is presented. Co-flowing aqueous streams in a microchannel were used to form the stable boundary between the streams. Measurement of the open circuit potential between two silver/silver chloride electrodes enabled the diffusion potential at the boundary to be determined, which is concentration dependent. Experimental results for protonated propranolol as well as tetrapropylammonium are presented. This concept may be useful as a strategy for the detection of drug substances. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hyporheic zone influences on concentration-discharge relationships in a headwater sandstone stream

    NASA Astrophysics Data System (ADS)

    Hoagland, Beth; Russo, Tess A.; Gu, Xin; Hill, Lillian; Kaye, Jason; Forsythe, Brandon; Brantley, Susan L.

    2017-06-01

    Complex subsurface flow dynamics impact the storage, routing, and transport of water and solutes to streams in headwater catchments. Many of these hydrogeologic processes are indirectly reflected in observations of stream chemistry responses to rain events, also known as concentration-discharge (CQ) relations. Identifying the relative importance of subsurface flows to stream CQ relationships is often challenging in headwater environments due to spatial and temporal variability. Therefore, this study combines a diverse set of methods, including tracer injection tests, cation exchange experiments, geochemical analyses, and numerical modeling, to map groundwater-surface water interactions along a first-order, sandstone stream (Garner Run) in the Appalachian Mountains of central Pennsylvania. The primary flow paths to the stream include preferential flow through the unsaturated zone ("interflow"), flow discharging from a spring, and groundwater discharge. Garner Run stream inherits geochemical signatures from geochemical reactions occurring along each of these flow paths. In addition to end-member mixing effects on CQ, we find that the exchange of solutes, nutrients, and water between the hyporheic zone and the main stream channel is a relevant control on the chemistry of Garner Run. CQ relationships for Garner Run were compared to prior results from a nearby headwater catchment overlying shale bedrock (Shale Hills). At the sandstone site, solutes associated with organo-mineral associations in the hyporheic zone influence CQ, while CQ trends in the shale catchment are affected by preferential flow through hillslope swales. The difference in CQ trends document how the lithology and catchment hydrology control CQ relationships.

  15. Distribution of Amphipods (Gammarus nipponensis Ueno) Among Mountain Headwater Streams with Different Legacies of Debris Flow Occurrence

    EPA Science Inventory

    To understand the impacts of debris flows on the distribution of an amphipod with limited dispersal ability in the context of stream networks, we surveyed the presence of Gammarus nipponensis in 87 headwater streams with different legacies of debris flow occurrence within an 8.5-...

  16. Application of new point measurement device to quantify groundwater-surface water interactions

    NASA Astrophysics Data System (ADS)

    Cremeans, M. M.; Devlin, J. F.; McKnight, U. S.; Bjerg, P. L.

    2018-04-01

    The streambed point velocity probe (SBPVP) measures in situ groundwater velocities at the groundwater-surface water interface without reliance on hydraulic conductivity, porosity, or hydraulic gradient information. The tool operates on the basis of a mini-tracer test that occurs on the probe surface. The SBPVP was used in a meander of the Grindsted Å (stream), Denmark, to determine the distribution of flow through the streambed. These data were used to calculate the contaminant mass discharge of chlorinated ethenes into the stream. SBPVP data were compared with velocities estimated from hydraulic head and temperature gradient data collected at similar scales. Spatial relationships of water flow through the streambed were found to be similar by all three methods, and indicated a heterogeneous pattern of groundwater-surface water exchange. The magnitudes of estimated flow varied to a greater degree. It was found that pollutants enter the stream in localized regions of high flow which do not always correspond to the locations of highest pollutant concentration. The results show the combined influence of flow and concentration on contaminant discharge and illustrate the advantages of adopting a flux-based approach to risk assessment at the groundwater-surface water interface. Chlorinated ethene mass discharges, expressed in PCE equivalents, were determined to be up to 444 kg/yr (with SBPVP data) which compared well with independent estimates of mass discharge up to 438 kg/yr (with mini-piezometer data from the streambed) and up to 372 kg/yr crossing a control plane on the streambank (as determined in a previous, independent study).

  17. Predicting spatial distribution of postfire debris flows and potential consequences for native trout in headwater streams

    USGS Publications Warehouse

    Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.

    2015-01-01

    Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.

  18. Evaluation of groundwater and surface-water interactions in the Caddo Nation Tribal Jurisdictional Area, Caddo County, Oklahoma, 2010-13

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2014-01-01

    Streamflows, springs, and wetlands are important natural and cultural resources to the Caddo Nation. Consequently, the Caddo Nation is concerned about the vulnerability of the Rush Springs aquifer to overdrafting and whether the aquifer will continue to be a viable source of water to tribal members and other local residents in the future. Interest in the long-term viability of local water resources has resulted in ongoing development of a comprehensive water plan by the Caddo Nation. As part of a multiyear project with the Caddo Nation to provide information and tools to better manage and protect water resources, the U.S. Geological Survey studied the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. The Caddo Nation Tribal Jurisdictional Area is located in southwestern Oklahoma, primarily in Caddo County. Underlying the Caddo Nation Tribal Jurisdictional Area is the Permian-age Rush Springs aquifer. Water from the Rush Springs aquifer is used for irrigation, public, livestock and aquaculture, and other supply purposes. Groundwater from the Rush Springs aquifer also is withdrawn by domestic (self-supplied) wells, although domestic use was not included in the water-use summary in this report. Perennial streamflow in many streams and creeks overlying the Rush Springs aquifer, such as Cobb Creek, Lake Creek, and Willow Creek, originates from springs and seeps discharging from the aquifer. This report provides information on the evaluation of groundwater and surface-water resources in the Caddo Nation Jurisdictional Area, and in particular, information that describes the hydraulic connection between the Rush Springs aquifer and springs and streams overlying the aquifer. This report also includes data and analyses of base flow, evidence for groundwater and surface-water interactions, locations of springs and wetland areas, groundwater flows interpreted from potentiometric-surface maps, and hydrographs of water levels monitored in the Caddo Nation Tribal Jurisdictional Area from 2010 to 2013. Flow in streams overlying the Rush Springs aquifer, on average, were composed of 50 percent base flow in most years. Monthly mean base flow appeared to maintain streamflows throughout each year, but periods of zero flow were documented in daily hydrographs at each measured site, typically in the summer months. A pneumatic slug-test technique was used at 15 sites to determine the horizontal hydraulic conductivity of streambed sediments in streams overlying the Rush Springs aquifer. Converting horizontal hydraulic conductivities (Kh) from the slug-test analyses to vertical hydraulic conductivities (Kv) by using a ratio of Kv/Kh = 0.1 resulted in estimates of vertical streambed hydraulic conductivity ranging from 0.1 to 8.6 feet per day. Data obtained from a hydraulic potentiomanometer in streambed sediments and streams in August 2012 indicate that water flow was from the streambed sediments to the stream (gaining) at 6 of 15 sites, and that water flow was from the stream to the streambed sediments (losing) at 9 of 15 sites. The groundwater and surface-water interaction data collected at the Cobb Creek near Eakly, Okla., streamflow gaging station (07325800), indicate that the bedrock groundwater, alluvial groundwater, and surface-water resources are closely connected. Because of this hydrologic connection, large perennial streams in the study area may change from gaining to losing streams in the summer. The timing and severity of this change from a gaining to a losing condition probably is affected by the local or regional withdrawal of groundwater for irrigation in the summer growing season. Wells placed closer to streams have a greater and more immediate effect on alluvial groundwater levels and stream stages than wells placed farther from streams. Large-capacity irrigation wells, even those completed hundreds of feet below land surface in the bedrock aquifer, can induce surface-water flow from nearby streams by lowering alluvial groundwater levels below the stream altitude. Twenty-five new springs visible from public roads and paths were documented during a survey of springs in 2011. Most of the springs are in upland draws on the flanks of topographic ridges. Wetlands primarily were identified by using a combination of data sources including the National Wetlands Inventory, Soil Survey Geographic database frequently flooded soils maps, and aerial photographs. Regional flow directions were determined by analysis of water levels measured in 29 wells completed in the Rush 2 Springs aquifer in Caddo County and the Caddo Nation Tribal Jurisdictional Area. Water levels were monitored every 30 minutes in five wells by using a vented pressure transducer and a data-collection platform with real-time transmitting equipment in each well. Those five wells ranged in depth from 210 to 350 feet. Water levels in these five wells indicate that there was a decrease in water storage in the Rush Springs aquifer from October 2010 to June 2013.

  19. A set-up for simultaneous measurement of second harmonic generation and streaming potential and some test applications.

    PubMed

    Lützenkirchen, Johannes; Scharnweber, Tim; Ho, Tuan; Striolo, Alberto; Sulpizi, Marialore; Abdelmonem, Ahmed

    2018-06-15

    We present a measurement cell that allows simultaneous measurement of second harmonic generation (SHG) and streaming potential (SP) at mineral-water interfaces with flat specimen that are suitable for non-linear optical (NLO) studies. The set-up directly yields SHG data for the interface of interest and can also be used to obtain information concerning the influence of flow on NLO signals from that interface. The streaming potential is at present measured against a reference substrate (PTFE). The properties of this inert reference can be independently determined for the same conditions. With the new cell, for the first time the SHG signal and the SP for flat surfaces have been simultaneously measured on the same surface. This can in turn be used to unambiguously relate the two observations for identical solution composition. The SHG test of the cell with a fluorite sample confirmed previously observed differences in NLO signal under flow vs. no flow conditions in sum frequency generation (SFG) investigations. As a second test surface, an inert ("hydrophobic") OTS covered sapphire-c electrolyte interface was studied to verify the zeta-potential measurements with the new cell. For this system we obtained combined zeta-potential/SHG data in the vicinity of the point of zero charge, which were found to be proportional to each other as expected. Furthermore, on the accessible time scales of the SHG measurements no effects of flow, flow velocity and stopped flow occurred on the interfacial water structure. This insensitivity to flow for the inert surface was corroborated by concomitant molecular dynamics simulations. Finally, the set-up was used for simultaneous measurements of the two properties as a function of pH in automated titrations with an oxidic surface. Different polarization combinations obtained in two separate titrations, yielded clearly different SHG data, while under identical conditions zeta-potentials were exactly reproduced. The polarization combination that is characteristic for dipoles perpendicular to the surface scaled with the zeta-potentials over the pH-range studied, while the other did not. The work provides an advanced approach for investigating liquid/surface interactions which play a major role in our environment. The set-up can be upgraded for SFG studies, which will allow more detailed studies on the chemistry and the water structure at a given interface, but also the combined study of specific adsorption including kinetics in combination with electrokinetics. Such investigations are crucial for the basic understanding of many environmental processes from aquatic to atmospheric systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Ultrasonic-generated fluid velocity with Sovereign WhiteStar micropulse and continuous phacoemulsification.

    PubMed

    Steinert, Roger F; Schafer, Mark E

    2006-02-01

    To evaluate and compare ultrasonic turbulence created by conventional and micropulse ultrasound technology. Sonora Medical Systems, Longmont, Colorado, USA. A high-resolution digital ultrasound probe imaged the zone around a phacoemulsification tip. Doppler analysis allowed determination of flow. The fluid velocity was measured at 4 levels of ultrasound power at a constant flow, comparing the ultrasonic conditions of continuous energy to WhiteStar micropulses. In addition to the normal baseline irrigation and aspiration, fluid movement was detected directly below the phaco tip, produced by a nonlinear effect known as acoustic streaming. Acoustic streaming increased with increased phacoemulsification power for both conditions. At each of the 4 levels of power, fluid velocity away from the tip was less with micropulse technology than with continuous phacoemulsification. The demonstrated decrease in acoustic streaming flow away from the phaco tip with Sovereign WhiteStar micropulse technology compared to conventional ultrasound provides an objective explanation for clinical observations of increased stability of nuclear fragments at the tip and less turbulence in the anterior chamber during phacoemulsification. This methodology can be used to examine and compare fluid flow and turbulence under a variety of clinically relevant conditions.

Top