Sample records for measurement error methods

  1. Measurement System Characterization in the Presence of Measurement Errors

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.

    2012-01-01

    In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.

  2. A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data.

    PubMed

    Agogo, George O; van der Voet, Hilko; van 't Veer, Pieter; Ferrari, Pietro; Muller, David C; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A; Boshuizen, Hendriek C

    2016-10-13

    Measurement error in self-reported dietary intakes is known to bias the association between dietary intake and a health outcome of interest such as risk of a disease. The association can be distorted further by mismeasured confounders, leading to invalid results and conclusions. It is, however, difficult to adjust for the bias in the association when there is no internal validation data. We proposed a method to adjust for the bias in the diet-disease association (hereafter, association), due to measurement error in dietary intake and a mismeasured confounder, when there is no internal validation data. The method combines prior information on the validity of the self-report instrument with the observed data to adjust for the bias in the association. We compared the proposed method with the method that ignores the confounder effect, and with the method that ignores measurement errors completely. We assessed the sensitivity of the estimates to various magnitudes of measurement error, error correlations and uncertainty in the literature-reported validation data. We applied the methods to fruits and vegetables (FV) intakes, cigarette smoking (confounder) and all-cause mortality data from the European Prospective Investigation into Cancer and Nutrition study. Using the proposed method resulted in about four times increase in the strength of association between FV intake and mortality. For weakly correlated errors, measurement error in the confounder minimally affected the hazard ratio estimate for FV intake. The effect was more pronounced for strong error correlations. The proposed method permits sensitivity analysis on measurement error structures and accounts for uncertainties in the reported validity coefficients. The method is useful in assessing the direction and quantifying the magnitude of bias in the association due to measurement errors in the confounders.

  3. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    PubMed

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  4. Correcting AUC for Measurement Error.

    PubMed

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  5. A toolkit for measurement error correction, with a focus on nutritional epidemiology

    PubMed Central

    Keogh, Ruth H; White, Ian R

    2014-01-01

    Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers and measures of dietary intake. Measurement error typically results in biased estimates of exposure-disease associations, the severity and nature of the bias depending on the form of the error. To correct for the effects of measurement error, information additional to the main study data is required. Ideally, this is a validation sample in which the true exposure is observed. However, in many situations, it is not feasible to observe the true exposure, but there may be available one or more repeated exposure measurements, for example, blood pressure or dietary intake recorded at two time points. The aim of this paper is to provide a toolkit for measurement error correction using repeated measurements. We bring together methods covering classical measurement error and several departures from classical error: systematic, heteroscedastic and differential error. The correction methods considered are regression calibration, which is already widely used in the classical error setting, and moment reconstruction and multiple imputation, which are newer approaches with the ability to handle differential error. We emphasize practical application of the methods in nutritional epidemiology and other fields. We primarily consider continuous exposures in the exposure-outcome model, but we also outline methods for use when continuous exposures are categorized. The methods are illustrated using the data from a study of the association between fibre intake and colorectal cancer, where fibre intake is measured using a diet diary and repeated measures are available for a subset. © 2014 The Authors. PMID:24497385

  6. Probing-error compensation using 5 degree of freedom force/moment sensor for coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Lee, Minho; Cho, Nahm-Gyoo

    2013-09-01

    A new probing and compensation method is proposed to improve the three-dimensional (3D) measuring accuracy of 3D shapes, including irregular surfaces. A new tactile coordinate measuring machine (CMM) probe with a five-degree of freedom (5-DOF) force/moment sensor using carbon fiber plates was developed. The proposed method efficiently removes the anisotropic sensitivity error and decreases the stylus deformation and the actual contact point estimation errors that are major error components of shape measurement using touch probes. The relationship between the measuring force and estimation accuracy of the actual contact point error and stylus deformation error are examined for practical use of the proposed method. The appropriate measuring force condition is presented for the precision measurement.

  7. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    NASA Astrophysics Data System (ADS)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  8. Deep data fusion method for missile-borne inertial/celestial system

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Chen, Xiaofei; Lu, Jiazhen; Zhang, Hao

    2018-05-01

    Strap-down inertial-celestial integrated navigation system has the advantages of autonomy and high precision and is very useful for ballistic missiles. The star sensor installation error and inertial measurement error have a great influence for the system performance. Based on deep data fusion, this paper establishes measurement equations including star sensor installation error and proposes the deep fusion filter method. Simulations including misalignment error, star sensor installation error, IMU error are analyzed. Simulation results indicate that the deep fusion method can estimate the star sensor installation error and IMU error. Meanwhile, the method can restrain the misalignment errors caused by instrument errors.

  9. Bayesian adjustment for measurement error in continuous exposures in an individually matched case-control study.

    PubMed

    Espino-Hernandez, Gabriela; Gustafson, Paul; Burstyn, Igor

    2011-05-14

    In epidemiological studies explanatory variables are frequently subject to measurement error. The aim of this paper is to develop a Bayesian method to correct for measurement error in multiple continuous exposures in individually matched case-control studies. This is a topic that has not been widely investigated. The new method is illustrated using data from an individually matched case-control study of the association between thyroid hormone levels during pregnancy and exposure to perfluorinated acids. The objective of the motivating study was to examine the risk of maternal hypothyroxinemia due to exposure to three perfluorinated acids measured on a continuous scale. Results from the proposed method are compared with those obtained from a naive analysis. Using a Bayesian approach, the developed method considers a classical measurement error model for the exposures, as well as the conditional logistic regression likelihood as the disease model, together with a random-effect exposure model. Proper and diffuse prior distributions are assigned, and results from a quality control experiment are used to estimate the perfluorinated acids' measurement error variability. As a result, posterior distributions and 95% credible intervals of the odds ratios are computed. A sensitivity analysis of method's performance in this particular application with different measurement error variability was performed. The proposed Bayesian method to correct for measurement error is feasible and can be implemented using statistical software. For the study on perfluorinated acids, a comparison of the inferences which are corrected for measurement error to those which ignore it indicates that little adjustment is manifested for the level of measurement error actually exhibited in the exposures. Nevertheless, a sensitivity analysis shows that more substantial adjustments arise if larger measurement errors are assumed. In individually matched case-control studies, the use of conditional logistic regression likelihood as a disease model in the presence of measurement error in multiple continuous exposures can be justified by having a random-effect exposure model. The proposed method can be successfully implemented in WinBUGS to correct individually matched case-control studies for several mismeasured continuous exposures under a classical measurement error model.

  10. Error simulation of paired-comparison-based scaling methods

    NASA Astrophysics Data System (ADS)

    Cui, Chengwu

    2000-12-01

    Subjective image quality measurement usually resorts to psycho physical scaling. However, it is difficult to evaluate the inherent precision of these scaling methods. Without knowing the potential errors of the measurement, subsequent use of the data can be misleading. In this paper, the errors on scaled values derived form paired comparison based scaling methods are simulated with randomly introduced proportion of choice errors that follow the binomial distribution. Simulation results are given for various combinations of the number of stimuli and the sampling size. The errors are presented in the form of average standard deviation of the scaled values and can be fitted reasonably well with an empirical equation that can be sued for scaling error estimation and measurement design. The simulation proves paired comparison based scaling methods can have large errors on the derived scaled values when the sampling size and the number of stimuli are small. Examples are also given to show the potential errors on actually scaled values of color image prints as measured by the method of paired comparison.

  11. Mixtures of Berkson and classical covariate measurement error in the linear mixed model: Bias analysis and application to a study on ultrafine particles.

    PubMed

    Deffner, Veronika; Küchenhoff, Helmut; Breitner, Susanne; Schneider, Alexandra; Cyrys, Josef; Peters, Annette

    2018-05-01

    The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.

    PubMed

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing

    2018-01-15

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.

  13. On using summary statistics from an external calibration sample to correct for covariate measurement error.

    PubMed

    Guo, Ying; Little, Roderick J; McConnell, Daniel S

    2012-01-01

    Covariate measurement error is common in epidemiologic studies. Current methods for correcting measurement error with information from external calibration samples are insufficient to provide valid adjusted inferences. We consider the problem of estimating the regression of an outcome Y on covariates X and Z, where Y and Z are observed, X is unobserved, but a variable W that measures X with error is observed. Information about measurement error is provided in an external calibration sample where data on X and W (but not Y and Z) are recorded. We describe a method that uses summary statistics from the calibration sample to create multiple imputations of the missing values of X in the regression sample, so that the regression coefficients of Y on X and Z and associated standard errors can be estimated using simple multiple imputation combining rules, yielding valid statistical inferences under the assumption of a multivariate normal distribution. The proposed method is shown by simulation to provide better inferences than existing methods, namely the naive method, classical calibration, and regression calibration, particularly for correction for bias and achieving nominal confidence levels. We also illustrate our method with an example using linear regression to examine the relation between serum reproductive hormone concentrations and bone mineral density loss in midlife women in the Michigan Bone Health and Metabolism Study. Existing methods fail to adjust appropriately for bias due to measurement error in the regression setting, particularly when measurement error is substantial. The proposed method corrects this deficiency.

  14. Error measuring system of rotary Inductosyn

    NASA Astrophysics Data System (ADS)

    Liu, Chengjun; Zou, Jibin; Fu, Xinghe

    2008-10-01

    The inductosyn is a kind of high-precision angle-position sensor. It has important applications in servo table, precision machine tool and other products. The precision of inductosyn is calibrated by its error. It's an important problem about the error measurement in the process of production and application of the inductosyn. At present, it mainly depends on the method of artificial measurement to obtain the error of inductosyn. Therefore, the disadvantages can't be ignored such as the high labour intensity of the operator, the occurrent error which is easy occurred and the poor repeatability, and so on. In order to solve these problems, a new automatic measurement method is put forward in this paper which based on a high precision optical dividing head. Error signal can be obtained by processing the output signal of inductosyn and optical dividing head precisely. When inductosyn rotating continuously, its zero position error can be measured dynamically, and zero error curves can be output automatically. The measuring and calculating errors caused by man-made factor can be overcome by this method, and it makes measuring process more quickly, exactly and reliably. Experiment proves that the accuracy of error measuring system is 1.1 arc-second (peak - peak value).

  15. Measurement error is often neglected in medical literature: a systematic review.

    PubMed

    Brakenhoff, Timo B; Mitroiu, Marian; Keogh, Ruth H; Moons, Karel G M; Groenwold, Rolf H H; van Smeden, Maarten

    2018-06-01

    In medical research, covariates (e.g., exposure and confounder variables) are often measured with error. While it is well accepted that this introduces bias and imprecision in exposure-outcome relations, it is unclear to what extent such issues are currently considered in research practice. The objective was to study common practices regarding covariate measurement error via a systematic review of general medicine and epidemiology literature. Original research published in 2016 in 12 high impact journals was full-text searched for phrases relating to measurement error. Reporting of measurement error and methods to investigate or correct for it were quantified and characterized. Two hundred and forty-seven (44%) of the 565 original research publications reported on the presence of measurement error. 83% of these 247 did so with respect to the exposure and/or confounder variables. Only 18 publications (7% of 247) used methods to investigate or correct for measurement error. Consequently, it is difficult for readers to judge the robustness of presented results to the existence of measurement error in the majority of publications in high impact journals. Our systematic review highlights the need for increased awareness about the possible impact of covariate measurement error. Additionally, guidance on the use of measurement error correction methods is necessary. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Systematic review of statistical approaches to quantify, or correct for, measurement error in a continuous exposure in nutritional epidemiology.

    PubMed

    Bennett, Derrick A; Landry, Denise; Little, Julian; Minelli, Cosetta

    2017-09-19

    Several statistical approaches have been proposed to assess and correct for exposure measurement error. We aimed to provide a critical overview of the most common approaches used in nutritional epidemiology. MEDLINE, EMBASE, BIOSIS and CINAHL were searched for reports published in English up to May 2016 in order to ascertain studies that described methods aimed to quantify and/or correct for measurement error for a continuous exposure in nutritional epidemiology using a calibration study. We identified 126 studies, 43 of which described statistical methods and 83 that applied any of these methods to a real dataset. The statistical approaches in the eligible studies were grouped into: a) approaches to quantify the relationship between different dietary assessment instruments and "true intake", which were mostly based on correlation analysis and the method of triads; b) approaches to adjust point and interval estimates of diet-disease associations for measurement error, mostly based on regression calibration analysis and its extensions. Two approaches (multiple imputation and moment reconstruction) were identified that can deal with differential measurement error. For regression calibration, the most common approach to correct for measurement error used in nutritional epidemiology, it is crucial to ensure that its assumptions and requirements are fully met. Analyses that investigate the impact of departures from the classical measurement error model on regression calibration estimates can be helpful to researchers in interpreting their findings. With regard to the possible use of alternative methods when regression calibration is not appropriate, the choice of method should depend on the measurement error model assumed, the availability of suitable calibration study data and the potential for bias due to violation of the classical measurement error model assumptions. On the basis of this review, we provide some practical advice for the use of methods to assess and adjust for measurement error in nutritional epidemiology.

  17. Reference-free error estimation for multiple measurement methods.

    PubMed

    Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga

    2018-01-01

    We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.

  18. Methods and apparatus for reducing peak wind turbine loads

    DOEpatents

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  19. Interval sampling methods and measurement error: a computer simulation.

    PubMed

    Wirth, Oliver; Slaven, James; Taylor, Matthew A

    2014-01-01

    A simulation study was conducted to provide a more thorough account of measurement error associated with interval sampling methods. A computer program simulated the application of momentary time sampling, partial-interval recording, and whole-interval recording methods on target events randomly distributed across an observation period. The simulation yielded measures of error for multiple combinations of observation period, interval duration, event duration, and cumulative event duration. The simulations were conducted up to 100 times to yield measures of error variability. Although the present simulation confirmed some previously reported characteristics of interval sampling methods, it also revealed many new findings that pertain to each method's inherent strengths and weaknesses. The analysis and resulting error tables can help guide the selection of the most appropriate sampling method for observation-based behavioral assessments. © Society for the Experimental Analysis of Behavior.

  20. A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM

    PubMed Central

    Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei

    2018-01-01

    Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model’s performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models’ performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors. PMID:29342942

  1. Error analysis and correction of lever-type stylus profilometer based on Nelder-Mead Simplex method

    NASA Astrophysics Data System (ADS)

    Hu, Chunbing; Chang, Suping; Li, Bo; Wang, Junwei; Zhang, Zhongyu

    2017-10-01

    Due to the high measurement accuracy and wide range of applications, lever-type stylus profilometry is commonly used in industrial research areas. However, the error caused by the lever structure has a great influence on the profile measurement, thus this paper analyzes the error of high-precision large-range lever-type stylus profilometry. The errors are corrected by the Nelder-Mead Simplex method, and the results are verified by the spherical surface calibration. It can be seen that this method can effectively reduce the measurement error and improve the accuracy of the stylus profilometry in large-scale measurement.

  2. An in-situ measuring method for planar straightness error

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie

    2018-01-01

    According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.

  3. Application of round grating angle measurement composite error amendment in the online measurement accuracy improvement of large diameter

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Yu, Xiaofen; Li, Qinzhao; Zheng, Yu

    2008-10-01

    The paper aiming at the influence factor of round grating dividing error, rolling-wheel produce eccentricity and surface shape errors provides an amendment method based on rolling-wheel to get the composite error model which includes all influence factors above, and then corrects the non-circle measurement angle error of the rolling-wheel. We make soft simulation verification and have experiment; the result indicates that the composite error amendment method can improve the diameter measurement accuracy with rolling-wheel theory. It has wide application prospect for the measurement accuracy higher than 5 μm/m.

  4. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    NASA Astrophysics Data System (ADS)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  5. Error of the slanted edge method for measuring the modulation transfer function of imaging systems.

    PubMed

    Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu

    2018-03-01

    The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.

  6. A Comparison of Three Methods for Computing Scale Score Conditional Standard Errors of Measurement. ACT Research Report Series, 2013 (7)

    ERIC Educational Resources Information Center

    Woodruff, David; Traynor, Anne; Cui, Zhongmin; Fang, Yu

    2013-01-01

    Professional standards for educational testing recommend that both the overall standard error of measurement and the conditional standard error of measurement (CSEM) be computed on the score scale used to report scores to examinees. Several methods have been developed to compute scale score CSEMs. This paper compares three methods, based on…

  7. Measurement system and model for simultaneously measuring 6DOF geometric errors.

    PubMed

    Zhao, Yuqiong; Zhang, Bin; Feng, Qibo

    2017-09-04

    A measurement system to simultaneously measure six degree-of-freedom (6DOF) geometric errors is proposed. The measurement method is based on a combination of mono-frequency laser interferometry and laser fiber collimation. A simpler and more integrated optical configuration is designed. To compensate for the measurement errors introduced by error crosstalk, element fabrication error, laser beam drift, and nonparallelism of two measurement beam, a unified measurement model, which can improve the measurement accuracy, is deduced and established using the ray-tracing method. A numerical simulation using the optical design software Zemax is conducted, and the results verify the correctness of the model. Several experiments are performed to demonstrate the feasibility and effectiveness of the proposed system and measurement model.

  8. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter.

    PubMed

    Bae, Youngchul

    2016-05-23

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  9. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    PubMed Central

    Bae, Youngchul

    2016-01-01

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision. PMID:27223291

  10. Computational fluid dynamics analysis and experimental study of a low measurement error temperature sensor used in climate observation.

    PubMed

    Yang, Jie; Liu, Qingquan; Dai, Wei

    2017-02-01

    To improve the air temperature observation accuracy, a low measurement error temperature sensor is proposed. A computational fluid dynamics (CFD) method is implemented to obtain temperature errors under various environmental conditions. Then, a temperature error correction equation is obtained by fitting the CFD results using a genetic algorithm method. The low measurement error temperature sensor, a naturally ventilated radiation shield, a thermometer screen, and an aspirated temperature measurement platform are characterized in the same environment to conduct the intercomparison. The aspirated platform served as an air temperature reference. The mean temperature errors of the naturally ventilated radiation shield and the thermometer screen are 0.74 °C and 0.37 °C, respectively. In contrast, the mean temperature error of the low measurement error temperature sensor is 0.11 °C. The mean absolute error and the root mean square error between the corrected results and the measured results are 0.008 °C and 0.01 °C, respectively. The correction equation allows the temperature error of the low measurement error temperature sensor to be reduced by approximately 93.8%. The low measurement error temperature sensor proposed in this research may be helpful to provide a relatively accurate air temperature result.

  11. Nonlinear analysis and dynamic compensation of stylus scanning measurement with wide range

    NASA Astrophysics Data System (ADS)

    Hui, Heiyang; Liu, Xiaojun; Lu, Wenlong

    2011-12-01

    Surface topography is an important geometrical feature of a workpiece that influences its quality and functions such as friction, wearing, lubrication and sealing. Precision measurement of surface topography is fundamental for product quality characterizing and assurance. Stylus scanning technique is a widely used method for surface topography measurement, and it is also regarded as the international standard method for 2-D surface characterizing. Usually surface topography, including primary profile, waviness and roughness, can be measured precisely and efficiently by this method. However, by stylus scanning method to measure curved surface topography, the nonlinear error is unavoidable because of the difference of horizontal position of the actual measured point from given sampling point and the nonlinear transformation process from vertical displacement of the stylus tip to angle displacement of the stylus arm, and the error increases with the increasing of measuring range. In this paper, a wide range stylus scanning measurement system based on cylindrical grating interference principle is constructed, the originations of the nonlinear error are analyzed, the error model is established and a solution to decrease the nonlinear error is proposed, through which the error of the collected data is dynamically compensated.

  12. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Mao, Cuili; Lu, Rongsheng; Liu, Zhijian

    2018-07-01

    In fringe projection profilometry, the phase errors caused by the nonlinear intensity response of digital projectors needs to be correctly compensated. In this paper, a multi-frequency inverse-phase method is proposed. The theoretical model of periodical phase errors is analyzed. The periodical phase errors can be adaptively compensated in the wrapped maps by using a set of fringe patterns. The compensated phase is then unwrapped with multi-frequency method. Compared with conventional methods, the proposed method can greatly reduce the periodical phase error without calibrating measurement system. Some simulation and experimental results are presented to demonstrate the validity of the proposed approach.

  13. Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes

    ERIC Educational Resources Information Center

    Zavorsky, Gerald S.

    2010-01-01

    Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…

  14. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.

    PubMed

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-12-12

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  15. Analysis of measured data of human body based on error correcting frequency

    NASA Astrophysics Data System (ADS)

    Jin, Aiyan; Peipei, Gao; Shang, Xiaomei

    2014-04-01

    Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.

  16. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.

    PubMed

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-09-03

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.

  17. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

    PubMed Central

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  18. Precise method of compensating radiation-induced errors in a hot-cathode-ionization gauge with correcting electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeki, Hiroshi, E-mail: saeki@spring8.or.jp; Magome, Tamotsu, E-mail: saeki@spring8.or.jp

    2014-10-06

    To compensate pressure-measurement errors caused by a synchrotron radiation environment, a precise method using a hot-cathode-ionization-gauge head with correcting electrode, was developed and tested in a simulation experiment with excess electrons in the SPring-8 storage ring. This precise method to improve the measurement accuracy, can correctly reduce the pressure-measurement errors caused by electrons originating from the external environment, and originating from the primary gauge filament influenced by spatial conditions of the installed vacuum-gauge head. As the result of the simulation experiment to confirm the performance reducing the errors caused by the external environment, the pressure-measurement error using this method wasmore » approximately less than several percent in the pressure range from 10{sup −5} Pa to 10{sup −8} Pa. After the experiment, to confirm the performance reducing the error caused by spatial conditions, an additional experiment was carried out using a sleeve and showed that the improved function was available.« less

  19. Covariate Measurement Error Correction Methods in Mediation Analysis with Failure Time Data

    PubMed Central

    Zhao, Shanshan

    2014-01-01

    Summary Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This paper focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error and error associated with temporal variation. The underlying model with the ‘true’ mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling design. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. PMID:25139469

  20. Covariate measurement error correction methods in mediation analysis with failure time data.

    PubMed

    Zhao, Shanshan; Prentice, Ross L

    2014-12-01

    Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This article focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error, and error associated with temporal variation. The underlying model with the "true" mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling designs. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. © 2014, The International Biometric Society.

  1. Backward-gazing method for measuring solar concentrators shape errors.

    PubMed

    Coquand, Mathieu; Henault, François; Caliot, Cyril

    2017-03-01

    This paper describes a backward-gazing method for measuring the optomechanical errors of solar concentrating surfaces. It makes use of four cameras placed near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. Simple data processing then allows reconstructing the slope and shape errors of the surfaces. The originality of the method is enforced by the use of generalized quad-cell formulas and approximate mathematical relations between the slope errors of the mirrors and their reflected wavefront in the case of sun-tracking heliostats at high-incidence angles. Numerical simulations demonstrate that the measurement accuracy is compliant with standard requirements of solar concentrating optics in the presence of noise or calibration errors. The method is suited to fine characterization of the optical and mechanical errors of heliostats and their facets, or to provide better control for real-time sun tracking.

  2. Lock-in amplifier error prediction and correction in frequency sweep measurements.

    PubMed

    Sonnaillon, Maximiliano Osvaldo; Bonetto, Fabian Jose

    2007-01-01

    This article proposes an analytical algorithm for predicting errors in lock-in amplifiers (LIAs) working with time-varying reference frequency. Furthermore, a simple method for correcting such errors is presented. The reference frequency can be swept in order to measure the frequency response of a system within a given spectrum. The continuous variation of the reference frequency produces a measurement error that depends on three factors: the sweep speed, the LIA low-pass filters, and the frequency response of the measured system. The proposed error prediction algorithm is based on the final value theorem of the Laplace transform. The correction method uses a double-sweep measurement. A mathematical analysis is presented and validated with computational simulations and experimental measurements.

  3. Considerations for analysis of time-to-event outcomes measured with error: Bias and correction with SIMEX.

    PubMed

    Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A

    2018-04-15

    For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Improved motor control method with measurements of fiber optics gyro (FOG) for dual-axis rotational inertial navigation system (RINS).

    PubMed

    Song, Tianxiao; Wang, Xueyun; Liang, Wenwei; Xing, Li

    2018-05-14

    Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier's roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Ke; Li Yanqiu; Wang Hai

    Characterization of measurement accuracy of the phase-shifting point diffraction interferometer (PS/PDI) is usually performed by two-pinhole null test. In this procedure, the geometrical coma and detector tilt astigmatism systematic errors are almost one or two magnitude higher than the desired accuracy of PS/PDI. These errors must be accurately removed from the null test result to achieve high accuracy. Published calibration methods, which can remove the geometrical coma error successfully, have some limitations in calibrating the astigmatism error. In this paper, we propose a method to simultaneously calibrate the geometrical coma and detector tilt astigmatism errors in PS/PDI null test. Basedmore » on the measurement results obtained from two pinhole pairs in orthogonal directions, the method utilizes the orthogonal and rotational symmetry properties of Zernike polynomials over unit circle to calculate the systematic errors introduced in null test of PS/PDI. The experiment using PS/PDI operated at visible light is performed to verify the method. The results show that the method is effective in isolating the systematic errors of PS/PDI and the measurement accuracy of the calibrated PS/PDI is 0.0088{lambda} rms ({lambda}= 632.8 nm).« less

  6. Quantum error correction for continuously detected errors with any number of error channels per qubit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Charlene; Wiseman, Howard; Jacobs, Kurt

    2004-08-01

    It was shown by Ahn, Wiseman, and Milburn [Phys. Rev. A 67, 052310 (2003)] that feedback control could be used as a quantum error correction process for errors induced by weak continuous measurement, given one perfectly measured error channel per qubit. Here we point out that this method can be easily extended to an arbitrary number of error channels per qubit. We show that the feedback protocols generated by our method encode n-2 logical qubits in n physical qubits, thus requiring just one more physical qubit than in the previous case.

  7. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide.

    PubMed

    Qibo, Feng; Bin, Zhang; Cunxing, Cui; Cuifang, Kuang; Yusheng, Zhai; Fenglin, You

    2013-11-04

    A simple method for simultaneously measuring the 6DOF geometric motion errors of the linear guide was proposed. The mechanisms for measuring straightness and angular errors and for enhancing their resolution are described in detail. A common-path method for measuring the laser beam drift was proposed and it was used to compensate the errors produced by the laser beam drift in the 6DOF geometric error measurements. A compact 6DOF system was built. Calibration experiments with certain standard measurement meters showed that our system has a standard deviation of 0.5 µm in a range of ± 100 µm for the straightness measurements, and standard deviations of 0.5", 0.5", and 1.0" in the range of ± 100" for pitch, yaw, and roll measurements, respectively.

  8. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    PubMed

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  9. Error analysis applied to several inversion techniques used for the retrieval of middle atmospheric constituents from limb-scanning MM-wave spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Puliafito, E.; Bevilacqua, R.; Olivero, J.; Degenhardt, W.

    1992-01-01

    The formal retrieval error analysis of Rodgers (1990) allows the quantitative determination of such retrieval properties as measurement error sensitivity, resolution, and inversion bias. This technique was applied to five numerical inversion techniques and two nonlinear iterative techniques used for the retrieval of middle atmospheric constituent concentrations from limb-scanning millimeter-wave spectroscopic measurements. It is found that the iterative methods have better vertical resolution, but are slightly more sensitive to measurement error than constrained matrix methods. The iterative methods converge to the exact solution, whereas two of the matrix methods under consideration have an explicit constraint, the sensitivity of the solution to the a priori profile. Tradeoffs of these retrieval characteristics are presented.

  10. Analysis of difference between direct and geodetic mass balance measurements at South Cascade Glacier, Washington

    USGS Publications Warehouse

    Krimmel, R.M.

    1999-01-01

    Net mass balance has been measured since 1958 at South Cascade Glacier using the 'direct method,' e.g. area averages of snow gain and firn and ice loss at stakes. Analysis of cartographic vertical photography has allowed measurement of mass balance using the 'geodetic method' in 1970, 1975, 1977, 1979-80, and 1985-97. Water equivalent change as measured by these nearly independent methods should give similar results. During 1970-97, the direct method shows a cumulative balance of about -15 m, and the geodetic method shows a cumulative balance of about -22 m. The deviation between the two methods is fairly consistent, suggesting no gross errors in either, but rather a cumulative systematic error. It is suspected that the cumulative error is in the direct method because the geodetic method is based on a non-changing reference, the bedrock control, whereas the direct method is measured with reference to only the previous year's summer surface. Possible sources of mass loss that are missing from the direct method are basal melt, internal melt, and ablation on crevasse walls. Possible systematic measurement errors include under-estimation of the density of lost material, sinking stakes, or poorly represented areas.

  11. A new method to make 2-D wear measurements less sensitive to projection differences of cemented THAs.

    PubMed

    The, Bertram; Flivik, Gunnar; Diercks, Ron L; Verdonschot, Nico

    2008-03-01

    Wear curves from individual patients often show unexplained irregular wear curves or impossible values (negative wear). We postulated errors of two-dimensional wear measurements are mainly the result of radiographic projection differences. We tested a new method that makes two-dimensional wear measurements less sensitive for radiograph projection differences of cemented THAs. The measurement errors that occur when radiographically projecting a three-dimensional THA were modeled. Based on the model, we developed a method to reduce the errors, thus approximating three-dimensional linear wear values, which are less sensitive for projection differences. An error analysis was performed by virtually simulating 144 wear measurements under varying conditions with and without application of the correction: the mean absolute error was reduced from 1.8 mm (range, 0-4.51 mm) to 0.11 mm (range, 0-0.27 mm). For clinical validation, radiostereometric analysis was performed on 47 patients to determine the true wear at 1, 2, and 5 years. Subsequently, wear was measured on conventional radiographs with and without the correction: the overall occurrence of errors greater than 0.2 mm was reduced from 35% to 15%. Wear measurements are less sensitive to differences in two-dimensional projection of the THA when using the correction method.

  12. CME Velocity and Acceleration Error Estimates Using the Bootstrap Method

    NASA Technical Reports Server (NTRS)

    Michalek, Grzegorz; Gopalswamy, Nat; Yashiro, Seiji

    2017-01-01

    The bootstrap method is used to determine errors of basic attributes of coronal mass ejections (CMEs) visually identified in images obtained by the Solar and Heliospheric Observatory (SOHO) mission's Large Angle and Spectrometric Coronagraph (LASCO) instruments. The basic parameters of CMEs are stored, among others, in a database known as the SOHO/LASCO CME catalog and are widely employed for many research studies. The basic attributes of CMEs (e.g. velocity and acceleration) are obtained from manually generated height-time plots. The subjective nature of manual measurements introduces random errors that are difficult to quantify. In many studies the impact of such measurement errors is overlooked. In this study we present a new possibility to estimate measurements errors in the basic attributes of CMEs. This approach is a computer-intensive method because it requires repeating the original data analysis procedure several times using replicate datasets. This is also commonly called the bootstrap method in the literature. We show that the bootstrap approach can be used to estimate the errors of the basic attributes of CMEs having moderately large numbers of height-time measurements. The velocity errors are in the vast majority small and depend mostly on the number of height-time points measured for a particular event. In the case of acceleration, the errors are significant, and for more than half of all CMEs, they are larger than the acceleration itself.

  13. A new measurement method of profile tolerance for the LAMOST focal plane

    NASA Astrophysics Data System (ADS)

    Zhou, Zengxiang; Jin, Yi; Zhai, Chao; Xing, Xiaozheng

    2008-07-01

    There were a few methods taken in the profile tolerance measurement of the LAMOST Focal Plane Plate. One of the methods was to use CMM (Coordinate Measurement Machine) to measure the points on the small Focal Plane Plate and calculate the points whether or not in the tolerance zone. In this process there are some small shortcomings. The measuring point positions on the Focal Plane Plate are not the actual installation location of the optical fiber positioning system. In order to eliminate these principle errors, a measuring mandrel is inserted into the unit-holes, and the precision for the mandrel with the hole is controlled in the high level. Then measure the center of the precise target ball which is placed on the measuring mandrel by CMM. At last, fit a sphere surface with the measuring center points of the target ball and analyze the profile tolerance of the Focal Plane Plate. This process will be more in line with the actual installation location of the optical fiber positioning system. When use this method to judge the profile tolerance can provide the reference date for maintaining the ultra error unit-holes on the Focal Plane Plate. But when insert the measuring mandrel into the unit hole, there are manufacturing errors in the measuring mandrel, target ball and assembly errors. All these errors will bring the influence in the measurement. In the paper, an impact evaluation assesses the intermediate process with all these errors through experiments. And the experiment results show that there are little influence when use the target ball and the measuring mandrel in the measurement of the profile tolerance. Instead, there are more advantages than many past use of measuring methods.

  14. Application of genetic algorithm in the evaluation of the profile error of archimedes helicoid surface

    NASA Astrophysics Data System (ADS)

    Zhu, Lianqing; Chen, Yunfang; Chen, Qingshan; Meng, Hao

    2011-05-01

    According to minimum zone condition, a method for evaluating the profile error of Archimedes helicoid surface based on Genetic Algorithm (GA) is proposed. The mathematic model of the surface is provided and the unknown parameters in the equation of surface are acquired through least square method. Principle of GA is explained. Then, the profile error of Archimedes Helicoid surface is obtained through GA optimization method. To validate the proposed method, the profile error of an Archimedes helicoid surface, Archimedes Cylindrical worm (ZA worm) surface, is evaluated. The results show that the proposed method is capable of correctly evaluating the profile error of Archimedes helicoid surface and satisfy the evaluation standard of the Minimum Zone Method. It can be applied to deal with the measured data of profile error of complex surface obtained by three coordinate measurement machines (CMM).

  15. Measurement uncertainty evaluation of conicity error inspected on CMM

    NASA Astrophysics Data System (ADS)

    Wang, Dongxia; Song, Aiguo; Wen, Xiulan; Xu, Youxiong; Qiao, Guifang

    2016-01-01

    The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performance. According to the new generation geometrical product specification(GPS), the error and its measurement uncertainty should be evaluated together. The mathematical model of the minimum zone conicity error is established and an improved immune evolutionary algorithm(IIEA) is proposed to search for the conicity error. In the IIEA, initial antibodies are firstly generated by using quasi-random sequences and two kinds of affinities are calculated. Then, each antibody clone is generated and they are self-adaptively mutated so as to maintain diversity. Similar antibody is suppressed and new random antibody is generated. Because the mathematical model of conicity error is strongly nonlinear and the input quantities are not independent, it is difficult to use Guide to the expression of uncertainty in the measurement(GUM) method to evaluate measurement uncertainty. Adaptive Monte Carlo method(AMCM) is proposed to estimate measurement uncertainty in which the number of Monte Carlo trials is selected adaptively and the quality of the numerical results is directly controlled. The cone parts was machined on lathe CK6140 and measured on Miracle NC 454 Coordinate Measuring Machine(CMM). The experiment results confirm that the proposed method not only can search for the approximate solution of the minimum zone conicity error(MZCE) rapidly and precisely, but also can evaluate measurement uncertainty and give control variables with an expected numerical tolerance. The conicity errors computed by the proposed method are 20%-40% less than those computed by NC454 CMM software and the evaluation accuracy improves significantly.

  16. Error analysis in inverse scatterometry. I. Modeling.

    PubMed

    Al-Assaad, Rayan M; Byrne, Dale M

    2007-02-01

    Scatterometry is an optical technique that has been studied and tested in recent years in semiconductor fabrication metrology for critical dimensions. Previous work presented an iterative linearized method to retrieve surface-relief profile parameters from reflectance measurements upon diffraction. With the iterative linear solution model in this work, rigorous models are developed to represent the random and deterministic or offset errors in scatterometric measurements. The propagation of different types of error from the measurement data to the profile parameter estimates is then presented. The improvement in solution accuracies is then demonstrated with theoretical and experimental data by adjusting for the offset errors. In a companion paper (in process) an improved optimization method is presented to account for unknown offset errors in the measurements based on the offset error model.

  17. Use of units of measurement error in anthropometric comparisons.

    PubMed

    Lucas, Teghan; Henneberg, Maciej

    2017-09-01

    Anthropometrists attempt to minimise measurement errors, however, errors cannot be eliminated entirely. Currently, measurement errors are simply reported. Measurement errors should be included into analyses of anthropometric data. This study proposes a method which incorporates measurement errors into reported values, replacing metric units with 'units of technical error of measurement (TEM)' by applying these to forensics, industrial anthropometry and biological variation. The USA armed forces anthropometric survey (ANSUR) contains 132 anthropometric dimensions of 3982 individuals. Concepts of duplication and Euclidean distance calculations were applied to the forensic-style identification of individuals in this survey. The National Size and Shape Survey of Australia contains 65 anthropometric measurements of 1265 women. This sample was used to show how a woman's body measurements expressed in TEM could be 'matched' to standard clothing sizes. Euclidean distances show that two sets of repeated anthropometric measurements of the same person cannot be matched (> 0) on measurements expressed in millimetres but can in units of TEM (= 0). Only 81 women can fit into any standard clothing size when matched using centimetres, with units of TEM, 1944 women fit. The proposed method can be applied to all fields that use anthropometry. Units of TEM are considered a more reliable unit of measurement for comparisons.

  18. Research on the method of improving the accuracy of CMM (coordinate measuring machine) testing aspheric surface

    NASA Astrophysics Data System (ADS)

    Cong, Wang; Xu, Lingdi; Li, Ang

    2017-10-01

    Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial-grade coordinate system nominal measurement accuracy PV value of 7 microns to 4microns, Which effectively improves the grinding efficiency of aspheric mirrors and verifies the correctness of the method. This paper also investigates the error detection and operation control method, the error calibration of the CMM and the random error calibration of the CMM .

  19. Evaluation of Acoustic Doppler Current Profiler measurements of river discharge

    USGS Publications Warehouse

    Morlock, S.E.

    1996-01-01

    The standard deviations of the ADCP measurements ranged from approximately 1 to 6 percent and were generally higher than the measurement errors predicted by error-propagation analysis of ADCP instrument performance. These error-prediction methods assume that the largest component of ADCP discharge measurement error is instrument related. The larger standard deviations indicate that substantial portions of measurement error may be attributable to sources unrelated to ADCP electronics or signal processing and are functions of the field environment.

  20. Compensation for positioning error of industrial robot for flexible vision measuring system

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  1. Intra-rater reliability and agreement of various methods of measurement to assess dorsiflexion in the Weight Bearing Dorsiflexion Lunge Test (WBLT) among female athletes.

    PubMed

    Langarika-Rocafort, Argia; Emparanza, José Ignacio; Aramendi, José F; Castellano, Julen; Calleja-González, Julio

    2017-01-01

    To examine the intra-observer reliability and agreement between five methods of measurement for dorsiflexion during Weight Bearing Dorsiflexion Lunge Test and to assess the degree of agreement between three methods in female athletes. Repeated measurements study design. Volleyball club. Twenty-five volleyball players. Dorsiflexion was evaluated using five methods: heel-wall distance, first toe-wall distance, inclinometer at tibia, inclinometer at Achilles tendon and the dorsiflexion angle obtained by a simple trigonometric function. For the statistical analysis, agreement was studied using the Bland-Altman method, the Standard Error of Measurement and the Minimum Detectable Change. Reliability analysis was performed using the Intraclass Correlation Coefficient. Measurement methods using the inclinometer had more than 6° of measurement error. The angle calculated by trigonometric function had 3.28° error. The reliability of inclinometer based methods had ICC values < 0.90. Distance based methods and trigonometric angle measurement had an ICC values > 0.90. Concerning the agreement between methods, there was from 1.93° to 14.42° bias, and from 4.24° to 7.96° random error. To assess DF angle in WBLT, the angle calculated by a trigonometric function is the most repeatable method. The methods of measurement cannot be used interchangeably. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Flexible methods for segmentation evaluation: results from CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2014-01-01

    Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.

  3. Model selection for marginal regression analysis of longitudinal data with missing observations and covariate measurement error.

    PubMed

    Shen, Chung-Wei; Chen, Yi-Hau

    2015-10-01

    Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Measurement Error and Environmental Epidemiology: A Policy Perspective

    PubMed Central

    Edwards, Jessie K.; Keil, Alexander P.

    2017-01-01

    Purpose of review Measurement error threatens public health by producing bias in estimates of the population impact of environmental exposures. Quantitative methods to account for measurement bias can improve public health decision making. Recent findings We summarize traditional and emerging methods to improve inference under a standard perspective, in which the investigator estimates an exposure response function, and a policy perspective, in which the investigator directly estimates population impact of a proposed intervention. Summary Under a policy perspective, the analysis must be sensitive to errors in measurement of factors that modify the effect of exposure on outcome, must consider whether policies operate on the true or measured exposures, and may increasingly need to account for potentially dependent measurement error of two or more exposures affected by the same policy or intervention. Incorporating approaches to account for measurement error into such a policy perspective will increase the impact of environmental epidemiology. PMID:28138941

  5. Regression-assisted deconvolution.

    PubMed

    McIntyre, Julie; Stefanski, Leonard A

    2011-06-30

    We present a semi-parametric deconvolution estimator for the density function of a random variable biX that is measured with error, a common challenge in many epidemiological studies. Traditional deconvolution estimators rely only on assumptions about the distribution of X and the error in its measurement, and ignore information available in auxiliary variables. Our method assumes the availability of a covariate vector statistically related to X by a mean-variance function regression model, where regression errors are normally distributed and independent of the measurement errors. Simulations suggest that the estimator achieves a much lower integrated squared error than the observed-data kernel density estimator when models are correctly specified and the assumption of normal regression errors is met. We illustrate the method using anthropometric measurements of newborns to estimate the density function of newborn length. Copyright © 2011 John Wiley & Sons, Ltd.

  6. Metrological Software Test for Simulating the Method of Determining the Thermocouple Error in Situ During Operation

    NASA Astrophysics Data System (ADS)

    Chen, Jingliang; Su, Jun; Kochan, Orest; Levkiv, Mariana

    2018-04-01

    The simplified metrological software test (MST) for modeling the method of determining the thermocouple (TC) error in situ during operation is considered in the paper. The interaction between the proposed MST and a temperature measuring system is also reflected in order to study the error of determining the TC error in situ during operation. The modelling studies of the random error influence of the temperature measuring system, as well as interference magnitude (both the common and normal mode noises) on the error of determining the TC error in situ during operation using the proposed MST, have been carried out. The noise and interference of the order of 5-6 μV cause the error of about 0.2-0.3°C. It is shown that high noise immunity is essential for accurate temperature measurements using TCs.

  7. Error model of geomagnetic-field measurement and extended Kalman-filter based compensation method

    PubMed Central

    Ge, Zhilei; Liu, Suyun; Li, Guopeng; Huang, Yan; Wang, Yanni

    2017-01-01

    The real-time accurate measurement of the geomagnetic-field is the foundation to achieving high-precision geomagnetic navigation. The existing geomagnetic-field measurement models are essentially simplified models that cannot accurately describe the sources of measurement error. This paper, on the basis of systematically analyzing the source of geomagnetic-field measurement error, built a complete measurement model, into which the previously unconsidered geomagnetic daily variation field was introduced. This paper proposed an extended Kalman-filter based compensation method, which allows a large amount of measurement data to be used in estimating parameters to obtain the optimal solution in the sense of statistics. The experiment results showed that the compensated strength of the geomagnetic field remained close to the real value and the measurement error was basically controlled within 5nT. In addition, this compensation method has strong applicability due to its easy data collection and ability to remove the dependence on a high-precision measurement instrument. PMID:28445508

  8. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.

  9. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2009-12-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  10. Influence of OPD in wavelength-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan

    2010-03-01

    Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.

  11. Head repositioning accuracy to neutral: a comparative study of error calculation.

    PubMed

    Hill, Robert; Jensen, Pål; Baardsen, Tor; Kulvik, Kristian; Jull, Gwendolen; Treleaven, Julia

    2009-02-01

    Deficits in cervical proprioception have been identified in subjects with neck pain through the measure of head repositioning accuracy (HRA). Nevertheless there appears to be no general consensus regarding the construct of measurement of error used for calculating HRA. This study investigated four different mathematical methods of measurement of error to determine if there were any differences in their ability to discriminate between a control group and subjects with a whiplash associated disorder. The four methods for measuring cervical joint position error were calculated using a previous data set consisting of 50 subjects with whiplash complaining of dizziness (WAD D), 50 subjects with whiplash not complaining of dizziness (WAD ND) and 50 control subjects. The results indicated that no one measure of HRA uniquely detected or defined the differences between the whiplash and control groups. Constant error (CE) was significantly different between the whiplash and control groups from extension (p<0.05). Absolute errors (AEs) and root mean square errors (RMSEs) demonstrated differences between the two WAD groups in rotation trials (p<0.05). No differences were seen with variable error (VE). The results suggest that a combination of AE (or RMSE) and CE are probably the most suitable measures for analysis of HRA.

  12. Error Modelling for Multi-Sensor Measurements in Infrastructure-Free Indoor Navigation

    PubMed Central

    Ruotsalainen, Laura; Kirkko-Jaakkola, Martti; Rantanen, Jesperi; Mäkelä, Maija

    2018-01-01

    The long-term objective of our research is to develop a method for infrastructure-free simultaneous localization and mapping (SLAM) and context recognition for tactical situational awareness. Localization will be realized by propagating motion measurements obtained using a monocular camera, a foot-mounted Inertial Measurement Unit (IMU), sonar, and a barometer. Due to the size and weight requirements set by tactical applications, Micro-Electro-Mechanical (MEMS) sensors will be used. However, MEMS sensors suffer from biases and drift errors that may substantially decrease the position accuracy. Therefore, sophisticated error modelling and implementation of integration algorithms are key for providing a viable result. Algorithms used for multi-sensor fusion have traditionally been different versions of Kalman filters. However, Kalman filters are based on the assumptions that the state propagation and measurement models are linear with additive Gaussian noise. Neither of the assumptions is correct for tactical applications, especially for dismounted soldiers, or rescue personnel. Therefore, error modelling and implementation of advanced fusion algorithms are essential for providing a viable result. Our approach is to use particle filtering (PF), which is a sophisticated option for integrating measurements emerging from pedestrian motion having non-Gaussian error characteristics. This paper discusses the statistical modelling of the measurement errors from inertial sensors and vision based heading and translation measurements to include the correct error probability density functions (pdf) in the particle filter implementation. Then, model fitting is used to verify the pdfs of the measurement errors. Based on the deduced error models of the measurements, particle filtering method is developed to fuse all this information, where the weights of each particle are computed based on the specific models derived. The performance of the developed method is tested via two experiments, one at a university’s premises and another in realistic tactical conditions. The results show significant improvement on the horizontal localization when the measurement errors are carefully modelled and their inclusion into the particle filtering implementation correctly realized. PMID:29443918

  13. Error analysis in stereo vision for location measurement of 3D point

    NASA Astrophysics Data System (ADS)

    Li, Yunting; Zhang, Jun; Tian, Jinwen

    2015-12-01

    Location measurement of 3D point in stereo vision is subjected to different sources of uncertainty that propagate to the final result. For current methods of error analysis, most of them are based on ideal intersection model to calculate the uncertainty region of point location via intersecting two fields of view of pixel that may produce loose bounds. Besides, only a few of sources of error such as pixel error or camera position are taken into account in the process of analysis. In this paper we present a straightforward and available method to estimate the location error that is taken most of source of error into account. We summed up and simplified all the input errors to five parameters by rotation transformation. Then we use the fast algorithm of midpoint method to deduce the mathematical relationships between target point and the parameters. Thus, the expectations and covariance matrix of 3D point location would be obtained, which can constitute the uncertainty region of point location. Afterwards, we turned back to the error propagation of the primitive input errors in the stereo system and throughout the whole analysis process from primitive input errors to localization error. Our method has the same level of computational complexity as the state-of-the-art method. Finally, extensive experiments are performed to verify the performance of our methods.

  14. Flexible methods for segmentation evaluation: Results from CT-based luggage screening

    PubMed Central

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2017-01-01

    BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346

  15. GPS measurement error gives rise to spurious 180 degree turning angles and strong directional biases in animal movement data.

    PubMed

    Hurford, Amy

    2009-05-20

    Movement data are frequently collected using Global Positioning System (GPS) receivers, but recorded GPS locations are subject to errors. While past studies have suggested methods to improve location accuracy, mechanistic movement models utilize distributions of turning angles and directional biases and these data present a new challenge in recognizing and reducing the effect of measurement error. I collected locations from a stationary GPS collar, analyzed a probabilistic model and used Monte Carlo simulations to understand how measurement error affects measured turning angles and directional biases. Results from each of the three methods were in complete agreement: measurement error gives rise to a systematic bias where a stationary animal is most likely to be measured as turning 180 degrees or moving towards a fixed point in space. These spurious effects occur in GPS data when the measured distance between locations is <20 meters. Measurement error must be considered as a possible cause of 180 degree turning angles in GPS data. Consequences of failing to account for measurement error are predicting overly tortuous movement, numerous returns to previously visited locations, inaccurately predicting species range, core areas, and the frequency of crossing linear features. By understanding the effect of GPS measurement error, ecologists are able to disregard false signals to more accurately design conservation plans for endangered wildlife.

  16. Tearing-off method based on single carbon nanocoil for liquid surface tension measurement

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Pan, Lujun; Deng, Chenghao; Li, Chengwei

    2016-11-01

    A single carbon nanocoil (CNC) is used as a highly sensitive mechanical sensor to measure the surface tension coefficient of deionized water and alcohol in the tearing-off method. The error can be constrained to within 3.8%. Conversely, the elastic spring constant of a CNC can be accurately measured using a liquid, and the error is constrained to within 3.2%. Compared with traditional methods, the CNC is used as a ring and a sensor at the same time, which may simplify the measurement device and reduce error, also all measurements can be performed under a very low liquid dosage owing to the small size of the CNC.

  17. Normal contour error measurement on-machine and compensation method for polishing complex surface by MRF

    NASA Astrophysics Data System (ADS)

    Chen, Hua; Chen, Jihong; Wang, Baorui; Zheng, Yongcheng

    2016-10-01

    The Magnetorheological finishing (MRF) process, based on the dwell time method with the constant normal spacing for flexible polishing, would bring out the normal contour error in the fine polishing complex surface such as aspheric surface. The normal contour error would change the ribbon's shape and removal characteristics of consistency for MRF. Based on continuously scanning the normal spacing between the workpiece and the finder by the laser range finder, the novel method was put forward to measure the normal contour errors while polishing complex surface on the machining track. The normal contour errors was measured dynamically, by which the workpiece's clamping precision, multi-axis machining NC program and the dynamic performance of the MRF machine were achieved for the verification and security check of the MRF process. The unit for measuring the normal contour errors of complex surface on-machine was designed. Based on the measurement unit's results as feedback to adjust the parameters of the feed forward control and the multi-axis machining, the optimized servo control method was presented to compensate the normal contour errors. The experiment for polishing 180mm × 180mm aspherical workpiece of fused silica by MRF was set up to validate the method. The results show that the normal contour error was controlled in less than 10um. And the PV value of the polished surface accuracy was improved from 0.95λ to 0.09λ under the conditions of the same process parameters. The technology in the paper has been being applied in the PKC600-Q1 MRF machine developed by the China Academe of Engineering Physics for engineering application since 2014. It is being used in the national huge optical engineering for processing the ultra-precision optical parts.

  18. A NEW METHOD TO QUANTIFY AND REDUCE THE NET PROJECTION ERROR IN WHOLE-SOLAR-ACTIVE-REGION PARAMETERS MEASURED FROM VECTOR MAGNETOGRAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falconer, David A.; Tiwari, Sanjiv K.; Moore, Ronald L.

    Projection errors limit the use of vector magnetograms of active regions (ARs) far from the disk center. In this Letter, for ARs observed up to 60° from the disk center, we demonstrate a method for measuring and reducing the projection error in the magnitude of any whole-AR parameter that is derived from a vector magnetogram that has been deprojected to the disk center. The method assumes that the center-to-limb curve of the average of the parameter’s absolute values, measured from the disk passage of a large number of ARs and normalized to each AR’s absolute value of the parameter atmore » central meridian, gives the average fractional projection error at each radial distance from the disk center. To demonstrate the method, we use a large set of large-flux ARs and apply the method to a whole-AR parameter that is among the simplest to measure: whole-AR magnetic flux. We measure 30,845 SDO /Helioseismic and Magnetic Imager vector magnetograms covering the disk passage of 272 large-flux ARs, each having whole-AR flux >10{sup 22} Mx. We obtain the center-to-limb radial-distance run of the average projection error in measured whole-AR flux from a Chebyshev fit to the radial-distance plot of the 30,845 normalized measured values. The average projection error in the measured whole-AR flux of an AR at a given radial distance is removed by multiplying the measured flux by the correction factor given by the fit. The correction is important for both the study of the evolution of ARs and for improving the accuracy of forecasts of an AR’s major flare/coronal mass ejection productivity.« less

  19. A novel diagnosis method for a Hall plates-based rotary encoder with a magnetic concentrator.

    PubMed

    Meng, Bumin; Wang, Yaonan; Sun, Wei; Yuan, Xiaofang

    2014-07-31

    In the last few years, rotary encoders based on two-dimensional complementary metal oxide semiconductors (CMOS) Hall plates with a magnetic concentrator have been developed to measure contactless absolute angle. There are various error factors influencing the measuring accuracy, which are difficult to locate after the assembly of encoder. In this paper, a model-based rapid diagnosis method is presented. Based on an analysis of the error mechanism, an error model is built to compare minimum residual angle error and to quantify the error factors. Additionally, a modified particle swarm optimization (PSO) algorithm is used to reduce the calculated amount. The simulation and experimental results show that this diagnosis method is feasible to quantify the causes of the error and to reduce iteration significantly.

  20. Precise Positioning Method for Logistics Tracking Systems Using Personal Handy-Phone System Based on Mahalanobis Distance

    NASA Astrophysics Data System (ADS)

    Yokoi, Naoaki; Kawahara, Yasuhiro; Hosaka, Hiroshi; Sakata, Kenji

    Focusing on the Personal Handy-phone System (PHS) positioning service used in physical distribution logistics, a positioning error offset method for improving positioning accuracy is invented. A disadvantage of PHS positioning is that measurement errors caused by the fluctuation of radio waves due to buildings around the terminal are large, ranging from several tens to several hundreds of meters. In this study, an error offset method is developed, which learns patterns of positioning results (latitude and longitude) containing errors and the highest signal strength at major logistic points in advance, and matches them with new data measured in actual distribution processes according to the Mahalanobis distance. Then the matching resolution is improved to 1/40 that of the conventional error offset method.

  1. An analysis of the least-squares problem for the DSN systematic pointing error model

    NASA Technical Reports Server (NTRS)

    Alvarez, L. S.

    1991-01-01

    A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.

  2. Error compensation for thermally induced errors on a machine tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krulewich, D.A.

    1996-11-08

    Heat flow from internal and external sources and the environment create machine deformations, resulting in positioning errors between the tool and workpiece. There is no industrially accepted method for thermal error compensation. A simple model has been selected that linearly relates discrete temperature measurements to the deflection. The biggest problem is how to locate the temperature sensors and to determine the number of required temperature sensors. This research develops a method to determine the number and location of temperature measurements.

  3. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  4. Performance of bias-correction methods for exposure measurement error using repeated measurements with and without missing data.

    PubMed

    Batistatou, Evridiki; McNamee, Roseanne

    2012-12-10

    It is known that measurement error leads to bias in assessing exposure effects, which can however, be corrected if independent replicates are available. For expensive replicates, two-stage (2S) studies that produce data 'missing by design', may be preferred over a single-stage (1S) study, because in the second stage, measurement of replicates is restricted to a sample of first-stage subjects. Motivated by an occupational study on the acute effect of carbon black exposure on respiratory morbidity, we compare the performance of several bias-correction methods for both designs in a simulation study: an instrumental variable method (EVROS IV) based on grouping strategies, which had been recommended especially when measurement error is large, the regression calibration and the simulation extrapolation methods. For the 2S design, either the problem of 'missing' data was ignored or the 'missing' data were imputed using multiple imputations. Both in 1S and 2S designs, in the case of small or moderate measurement error, regression calibration was shown to be the preferred approach in terms of root mean square error. For 2S designs, regression calibration as implemented by Stata software is not recommended in contrast to our implementation of this method; the 'problematic' implementation of regression calibration although substantially improved with use of multiple imputations. The EVROS IV method, under a good/fairly good grouping, outperforms the regression calibration approach in both design scenarios when exposure mismeasurement is severe. Both in 1S and 2S designs with moderate or large measurement error, simulation extrapolation severely failed to correct for bias. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Error Analysis of Indirect Broadband Monitoring of Multilayer Optical Coatings using Computer Simulations

    NASA Astrophysics Data System (ADS)

    Semenov, Z. V.; Labusov, V. A.

    2017-11-01

    Results of studying the errors of indirect monitoring by means of computer simulations are reported. The monitoring method is based on measuring spectra of reflection from additional monitoring substrates in a wide spectral range. Special software (Deposition Control Simulator) is developed, which allows one to estimate the influence of the monitoring system parameters (noise of the photodetector array, operating spectral range of the spectrometer and errors of its calibration in terms of wavelengths, drift of the radiation source intensity, and errors in the refractive index of deposited materials) on the random and systematic errors of deposited layer thickness measurements. The direct and inverse problems of multilayer coatings are solved using the OptiReOpt library. Curves of the random and systematic errors of measurements of the deposited layer thickness as functions of the layer thickness are presented for various values of the system parameters. Recommendations are given on using the indirect monitoring method for the purpose of reducing the layer thickness measurement error.

  6. Research on effects of phase error in phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Hongjun; Wang, Zhao; Zhao, Hong; Tian, Ailing; Liu, Bingcai

    2007-12-01

    Referring to phase-shifting interferometry technology, the phase shifting error from the phase shifter is the main factor that directly affects the measurement accuracy of the phase shifting interferometer. In this paper, the resources and sorts of phase shifting error were introduction, and some methods to eliminate errors were mentioned. Based on the theory of phase shifting interferometry, the effects of phase shifting error were analyzed in detail. The Liquid Crystal Display (LCD) as a new shifter has advantage as that the phase shifting can be controlled digitally without any mechanical moving and rotating element. By changing coded image displayed on LCD, the phase shifting in measuring system was induced. LCD's phase modulation characteristic was analyzed in theory and tested. Based on Fourier transform, the effect model of phase error coming from LCD was established in four-step phase shifting interferometry. And the error range was obtained. In order to reduce error, a new error compensation algorithm was put forward. With this method, the error can be obtained by process interferogram. The interferogram can be compensated, and the measurement results can be obtained by four-step phase shifting interferogram. Theoretical analysis and simulation results demonstrate the feasibility of this approach to improve measurement accuracy.

  7. Video error concealment using block matching and frequency selective extrapolation algorithms

    NASA Astrophysics Data System (ADS)

    P. K., Rajani; Khaparde, Arti

    2017-06-01

    Error Concealment (EC) is a technique at the decoder side to hide the transmission errors. It is done by analyzing the spatial or temporal information from available video frames. It is very important to recover distorted video because they are used for various applications such as video-telephone, video-conference, TV, DVD, internet video streaming, video games etc .Retransmission-based and resilient-based methods, are also used for error removal. But these methods add delay and redundant data. So error concealment is the best option for error hiding. In this paper, the error concealment methods such as Block Matching error concealment algorithm is compared with Frequency Selective Extrapolation algorithm. Both the works are based on concealment of manually error video frames as input. The parameter used for objective quality measurement was PSNR (Peak Signal to Noise Ratio) and SSIM(Structural Similarity Index). The original video frames along with error video frames are compared with both the Error concealment algorithms. According to simulation results, Frequency Selective Extrapolation is showing better quality measures such as 48% improved PSNR and 94% increased SSIM than Block Matching Algorithm.

  8. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation.

    PubMed

    Yang, Jie; Liu, Qingquan; Dai, Wei; Ding, Renhui

    2016-08-01

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors with a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.

  9. Fluid dynamic design and experimental study of an aspirated temperature measurement platform used in climate observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie, E-mail: yangjie396768@163.com; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044; Liu, Qingquan

    Due to the solar radiation effect, current air temperature sensors inside a thermometer screen or radiation shield may produce measurement errors that are 0.8 °C or higher. To improve the observation accuracy, an aspirated temperature measurement platform is designed. A computational fluid dynamics (CFD) method is implemented to analyze and calculate the radiation error of the aspirated temperature measurement platform under various environmental conditions. Then, a radiation error correction equation is obtained by fitting the CFD results using a genetic algorithm (GA) method. In order to verify the performance of the temperature sensor, the aspirated temperature measurement platform, temperature sensors withmore » a naturally ventilated radiation shield, and a thermometer screen are characterized in the same environment to conduct the intercomparison. The average radiation errors of the sensors in the naturally ventilated radiation shield and the thermometer screen are 0.44 °C and 0.25 °C, respectively. In contrast, the radiation error of the aspirated temperature measurement platform is as low as 0.05 °C. This aspirated temperature sensor allows the radiation error to be reduced by approximately 88.6% compared to the naturally ventilated radiation shield, and allows the error to be reduced by a percentage of approximately 80% compared to the thermometer screen. The mean absolute error and root mean square error between the correction equation and experimental results are 0.032 °C and 0.036 °C, respectively, which demonstrates the accuracy of the CFD and GA methods proposed in this research.« less

  10. The determination of carbon dioxide concentration using atmospheric pressure ionization mass spectrometry/isotopic dilution and errors in concentration measurements caused by dryers.

    PubMed

    DeLacy, Brendan G; Bandy, Alan R

    2008-01-01

    An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.

  11. Optical surface pressure measurements: Accuracy and application field evaluation

    NASA Astrophysics Data System (ADS)

    Bukov, A.; Mosharov, V.; Orlov, A.; Pesetsky, V.; Radchenko, V.; Phonov, S.; Matyash, S.; Kuzmin, M.; Sadovskii, N.

    1994-07-01

    Optical pressure measurement (OPM) is a new pressure measurement method rapidly developed in several aerodynamic research centers: TsAGI (Russia), Boeing, NASA, McDonnell Douglas (all USA), and DLR (Germany). Present level of OPM-method provides its practice as standard experimental method of aerodynamic investigations in definite application fields. Applications of OPM-method are determined mainly by its accuracy. The accuracy of OPM-method is determined by the errors of three following groups: (1) errors of the luminescent pressure sensor (LPS) itself, such as uncompensated temperature influence, photo degradation, temperature and pressure hysteresis, variation of the LPS parameters from point to point on the model surface, etc.; (2) errors of the measurement system, such as noise of the photodetector, nonlinearity and nonuniformity of the photodetector, time and temperature offsets, etc.; and (3) methodological errors, owing to displacement and deformation of the model in an airflow, a contamination of the model surface, scattering of the excitation and luminescent light from the model surface and test section walls, etc. OPM-method allows getting total error of measured pressure not less than 1 percent. This accuracy is enough to visualize the pressure field and allows determining total and distributed aerodynamic loads and solving some problems of local aerodynamic investigations at transonic and supersonic velocities. OPM is less effective at low subsonic velocities (M less than 0.4), and for precise measurements, for example, an airfoil optimization. Current limitations of the OPM-method are discussed on an example of the surface pressure measurements and calculations of the integral loads on the wings of canard-aircraft model. The pressure measurement system and data reduction methods used on these tests are also described.

  12. Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool

    NASA Astrophysics Data System (ADS)

    Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo

    2017-05-01

    Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.

  13. Accounting for the measurement error of spectroscopically inferred soil carbon data for improved precision of spatial predictions.

    PubMed

    Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B

    2018-08-01

    Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle.

    PubMed

    Ruuska, Salla; Hämäläinen, Wilhelmiina; Kajava, Sari; Mughal, Mikaela; Matilainen, Pekka; Mononen, Jaakko

    2018-03-01

    The aim of the present study was to evaluate empirically confusion matrices in device validation. We compared the confusion matrix method to linear regression and error indices in the validation of a device measuring feeding behaviour of dairy cattle. In addition, we studied how to extract additional information on classification errors with confusion probabilities. The data consisted of 12 h behaviour measurements from five dairy cows; feeding and other behaviour were detected simultaneously with a device and from video recordings. The resulting 216 000 pairs of classifications were used to construct confusion matrices and calculate performance measures. In addition, hourly durations of each behaviour were calculated and the accuracy of measurements was evaluated with linear regression and error indices. All three validation methods agreed when the behaviour was detected very accurately or inaccurately. Otherwise, in the intermediate cases, the confusion matrix method and error indices produced relatively concordant results, but the linear regression method often disagreed with them. Our study supports the use of confusion matrix analysis in validation since it is robust to any data distribution and type of relationship, it makes a stringent evaluation of validity, and it offers extra information on the type and sources of errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Wavefront-aberration measurement and systematic-error analysis of a high numerical-aperture objective

    NASA Astrophysics Data System (ADS)

    Liu, Zhixiang; Xing, Tingwen; Jiang, Yadong; Lv, Baobin

    2018-02-01

    A two-dimensional (2-D) shearing interferometer based on an amplitude chessboard grating was designed to measure the wavefront aberration of a high numerical-aperture (NA) objective. Chessboard gratings offer better diffraction efficiencies and fewer disturbing diffraction orders than traditional cross gratings. The wavefront aberration of the tested objective was retrieved from the shearing interferogram using the Fourier transform and differential Zernike polynomial-fitting methods. Grating manufacturing errors, including the duty-cycle and pattern-deviation errors, were analyzed with the Fourier transform method. Then, according to the relation between the spherical pupil and planar detector coordinates, the influence of the distortion of the pupil coordinates was simulated. Finally, the systematic error attributable to grating alignment errors was deduced through the geometrical ray-tracing method. Experimental results indicate that the measuring repeatability (3σ) of the wavefront aberration of an objective with NA 0.4 was 3.4 mλ. The systematic-error results were consistent with previous analyses. Thus, the correct wavefront aberration can be obtained after calibration.

  16. The identification and repair of anomalous measurements in the measurement of big diameter based on rolling-wheel method

    NASA Astrophysics Data System (ADS)

    Chen, Haiou; Yu, Xiaofen

    2011-05-01

    Rolling-wheel method is an effective way of measuring big diameter. After amending the temperature error and pressure error, the uncertainty of measurement can not be φ =5um/m stably because of the influence of skid. The traditional method of identifying skid loses sight of the influences of the unstable motor speed, the appearance form error and the eccentric of installation of the big axis and rolling wheel and so on, so the method has its limitation. In this paper, a new method of multiple identification and repair is introduced, namely n diameters are measured and Chauvenet standard is used for identifying the anomalous measurements one by one, and then the average value of the remaining data is used for repairing identified anomalous measurements, and the next round identification and repair is carried out until the accuracy requirement of the measurement is satisfied. The result of experiments indicates that the method can identify anomalous measurements whose offsets caused by the skid are greater than 0.2φ , and the uncertainty of measurement has improved substantially.

  17. Certification of ICI 1012 optical data storage tape

    NASA Technical Reports Server (NTRS)

    Howell, J. M.

    1993-01-01

    ICI has developed a unique and novel method of certifying a Terabyte optical tape. The tape quality is guaranteed as a statistical upper limit on the probability of uncorrectable errors. This is called the Corrected Byte Error Rate or CBER. We developed this probabilistic method because of two reasons why error rate cannot be measured directly. Firstly, written data is indelible, so one cannot employ write/read tests such as used for magnetic tape. Secondly, the anticipated error rates need impractically large samples to measure accurately. For example, a rate of 1E-12 implies only one byte in error per tape. The archivability of ICI 1012 Data Storage Tape in general is well characterized and understood. Nevertheless, customers expect performance guarantees to be supported by test results on individual tapes. In particular, they need assurance that data is retrievable after decades in archive. This paper describes the mathematical basis, measurement apparatus and applicability of the certification method.

  18. Analysis and compensation of synchronous measurement error for multi-channel laser interferometer

    NASA Astrophysics Data System (ADS)

    Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong

    2017-05-01

    Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s-1, the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay.

  19. Can we obtain the coefficient of restitution from the sound of a bouncing ball?

    NASA Astrophysics Data System (ADS)

    Heckel, Michael; Glielmo, Aldo; Gunkelmann, Nina; Pöschel, Thorsten

    2016-03-01

    The coefficient of restitution may be determined from the sound signal emitted by a sphere bouncing repeatedly off the ground. Although there is a large number of publications exploiting this method, so far, there is no quantitative discussion of the error related to this type of measurement. Analyzing the main error sources, we find that even tiny deviations of the shape from the perfect sphere may lead to substantial errors that dominate the overall error of the measurement. Therefore, we come to the conclusion that the well-established method to measure the coefficient of restitution through the emitted sound is applicable only for the case of nearly perfect spheres. For larger falling height, air drag may lead to considerable error, too.

  20. Modified slanted-edge method for camera modulation transfer function measurement using nonuniform fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Duan, Yaxuan; Xu, Songbo; Yuan, Suochao; Chen, Yongquan; Li, Hongguang; Da, Zhengshang; Gao, Limin

    2018-01-01

    ISO 12233 slanted-edge method experiences errors using fast Fourier transform (FFT) in the camera modulation transfer function (MTF) measurement due to tilt angle errors in the knife-edge resulting in nonuniform sampling of the edge spread function (ESF). In order to resolve this problem, a modified slanted-edge method using nonuniform fast Fourier transform (NUFFT) for camera MTF measurement is proposed. Theoretical simulations for images with noise at a different nonuniform sampling rate of ESF are performed using the proposed modified slanted-edge method. It is shown that the proposed method successfully eliminates the error due to the nonuniform sampling of the ESF. An experimental setup for camera MTF measurement is established to verify the accuracy of the proposed method. The experiment results show that under different nonuniform sampling rates of ESF, the proposed modified slanted-edge method has improved accuracy for the camera MTF measurement compared to the ISO 12233 slanted-edge method.

  1. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  2. A novel validation and calibration method for motion capture systems based on micro-triangulation.

    PubMed

    Nagymáté, Gergely; Tuchband, Tamás; Kiss, Rita M

    2018-06-06

    Motion capture systems are widely used to measure human kinematics. Nevertheless, users must consider system errors when evaluating their results. Most validation techniques for these systems are based on relative distance and displacement measurements. In contrast, our study aimed to analyse the absolute volume accuracy of optical motion capture systems by means of engineering surveying reference measurement of the marker coordinates (uncertainty: 0.75 mm). The method is exemplified on an 18 camera OptiTrack Flex13 motion capture system. The absolute accuracy was defined by the root mean square error (RMSE) between the coordinates measured by the camera system and by engineering surveying (micro-triangulation). The original RMSE of 1.82 mm due to scaling error was managed to be reduced to 0.77 mm while the correlation of errors to their distance from the origin reduced from 0.855 to 0.209. A simply feasible but less accurate absolute accuracy compensation method using tape measure on large distances was also tested, which resulted in similar scaling compensation compared to the surveying method or direct wand size compensation by a high precision 3D scanner. The presented validation methods can be less precise in some respects as compared to previous techniques, but they address an error type, which has not been and cannot be studied with the previous validation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A Method of Calculating Motion Error in a Linear Motion Bearing Stage

    PubMed Central

    Khim, Gyungho; Park, Chun Hong; Oh, Jeong Seok

    2015-01-01

    We report a method of calculating the motion error of a linear motion bearing stage. The transfer function method, which exploits reaction forces of individual bearings, is effective for estimating motion errors; however, it requires the rail-form errors. This is not suitable for a linear motion bearing stage because obtaining the rail-form errors is not straightforward. In the method described here, we use the straightness errors of a bearing block to calculate the reaction forces on the bearing block. The reaction forces were compared with those of the transfer function method. Parallelism errors between two rails were considered, and the motion errors of the linear motion bearing stage were measured and compared with the results of the calculations, revealing good agreement. PMID:25705715

  4. Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements

    NASA Technical Reports Server (NTRS)

    Buehrle, R. D.; Young, C. P., Jr.

    1995-01-01

    This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.

  5. A Unified Approach to Measurement Error and Missing Data: Overview and Applications

    ERIC Educational Resources Information Center

    Blackwell, Matthew; Honaker, James; King, Gary

    2017-01-01

    Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…

  6. Comparing Graphical and Verbal Representations of Measurement Error in Test Score Reports

    ERIC Educational Resources Information Center

    Zwick, Rebecca; Zapata-Rivera, Diego; Hegarty, Mary

    2014-01-01

    Research has shown that many educators do not understand the terminology or displays used in test score reports and that measurement error is a particularly challenging concept. We investigated graphical and verbal methods of representing measurement error associated with individual student scores. We created four alternative score reports, each…

  7. [Determination of the error of aerosol extinction coefficient measured by DOAS].

    PubMed

    Si, Fu-qi; Liu, Jian-guo; Xie, Pin-hua; Zhang, Yu-jun; Wang, Mian; Liu, Wen-qing; Hiroaki, Kuze; Liu, Cheng; Nobuo, Takeuchi

    2006-10-01

    The method of defining the error of aerosol extinction coefficient measured by differential optical absorption spectroscopy (DOAS) is described. Some factors which could bring errors to result, such as variation of source, integral time, atmospheric turbulence, calibration of system parameter, displacement of system, and back scattering of particles, are analyzed. The error of aerosol extinction coefficient, 0.03 km(-1), is determined by theoretical analysis and practical measurement.

  8. A Rapid Method to Achieve Aero-Engine Blade Form Detection

    PubMed Central

    Sun, Bin; Li, Bing

    2015-01-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces. PMID:26039420

  9. A rapid method to achieve aero-engine blade form detection.

    PubMed

    Sun, Bin; Li, Bing

    2015-06-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces.

  10. A measurement fusion method for nonlinear system identification using a cooperative learning algorithm.

    PubMed

    Xia, Youshen; Kamel, Mohamed S

    2007-06-01

    Identification of a general nonlinear noisy system viewed as an estimation of a predictor function is studied in this article. A measurement fusion method for the predictor function estimate is proposed. In the proposed scheme, observed data are first fused by using an optimal fusion technique, and then the optimal fused data are incorporated in a nonlinear function estimator based on a robust least squares support vector machine (LS-SVM). A cooperative learning algorithm is proposed to implement the proposed measurement fusion method. Compared with related identification methods, the proposed method can minimize both the approximation error and the noise error. The performance analysis shows that the proposed optimal measurement fusion function estimate has a smaller mean square error than the LS-SVM function estimate. Moreover, the proposed cooperative learning algorithm can converge globally to the optimal measurement fusion function estimate. Finally, the proposed measurement fusion method is applied to ARMA signal and spatial temporal signal modeling. Experimental results show that the proposed measurement fusion method can provide a more accurate model.

  11. Error Analysis and Validation for Insar Height Measurement Induced by Slant Range

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Li, T.; Fan, W.; Geng, X.

    2018-04-01

    InSAR technique is an important method for large area DEM extraction. Several factors have significant influence on the accuracy of height measurement. In this research, the effect of slant range measurement for InSAR height measurement was analysis and discussed. Based on the theory of InSAR height measurement, the error propagation model was derived assuming no coupling among different factors, which directly characterise the relationship between slant range error and height measurement error. Then the theoretical-based analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of slant range error to height measurement. In addition, the simulation validation of InSAR error model induced by slant range was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were further discussed and evaluated.

  12. Method for Real-Time Model Based Structural Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Urnes, James M., Sr. (Inventor); Smith, Timothy A. (Inventor); Reichenbach, Eric Y. (Inventor)

    2015-01-01

    A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.

  13. Robust estimation of partially linear models for longitudinal data with dropouts and measurement error.

    PubMed

    Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing

    2016-12-20

    Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Yu, Chao; Cai, Miaomiao

    2017-04-01

    GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic

  15. Instrumental variables vs. grouping approach for reducing bias due to measurement error.

    PubMed

    Batistatou, Evridiki; McNamee, Roseanne

    2008-01-01

    Attenuation of the exposure-response relationship due to exposure measurement error is often encountered in epidemiology. Given that error cannot be totally eliminated, bias correction methods of analysis are needed. Many methods require more than one exposure measurement per person to be made, but the `group mean OLS method,' in which subjects are grouped into several a priori defined groups followed by ordinary least squares (OLS) regression on the group means, can be applied with one measurement. An alternative approach is to use an instrumental variable (IV) method in which both the single error-prone measure and an IV are used in IV analysis. In this paper we show that the `group mean OLS' estimator is equal to an IV estimator with the group mean used as IV, but that the variance estimators for the two methods are different. We derive a simple expression for the bias in the common estimator which is a simple function of group size, reliability and contrast of exposure between groups, and show that the bias can be very small when group size is large. We compare this method with a new proposal (group mean ranking method), also applicable with a single exposure measurement, in which the IV is the rank of the group means. When there are two independent exposure measurements per subject, we propose a new IV method (EVROS IV) and compare it with Carroll and Stefanski's (CS IV) proposal in which the second measure is used as an IV; the new IV estimator combines aspects of the `group mean' and `CS' strategies. All methods are evaluated in terms of bias, precision and root mean square error via simulations and a dataset from occupational epidemiology. The `group mean ranking method' does not offer much improvement over the `group mean method.' Compared with the `CS' method, the `EVROS' method is less affected by low reliability of exposure. We conclude that the group IV methods we propose may provide a useful way to handle mismeasured exposures in epidemiology with or without replicate measurements. Our finding may also have implications for the use of aggregate variables in epidemiology to control for unmeasured confounding.

  16. SU-E-J-88: The Study of Setup Error Measured by CBCT in Postoperative Radiotherapy for Cervical Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runxiao, L; Aikun, W; Xiaomei, F

    2015-06-15

    Purpose: To compare two registration methods in the CBCT guided radiotherapy for cervical carcinoma, analyze the setup errors and registration methods, determine the margin required for clinical target volume(CTV) extending to planning target volume(PTV). Methods: Twenty patients with cervical carcinoma were enrolled. All patients were underwent CT simulation in the supine position. Transfering the CT images to the treatment planning system and defining the CTV, PTV and the organs at risk (OAR), then transmit them to the XVI workshop. CBCT scans were performed before radiotherapy and registered to planning CT images according to bone and gray value registration methods. Comparedmore » two methods and obtain left-right(X), superior-inferior(Y), anterior-posterior (Z) setup errors, the margin required for CTV to PTV were calculated. Results: Setup errors were unavoidable in postoperative cervical carcinoma irradiation. The setup errors measured by method of bone (systemic ± random) on X(1eft.right),Y(superior.inferior),Z(anterior.posterior) directions were(0.24±3.62),(0.77±5.05) and (0.13±3.89)mm, respectively, the setup errors measured by method of grey (systemic ± random) on X(1eft-right), Y(superior-inferior), Z(anterior-posterior) directions were(0.31±3.93), (0.85±5.16) and (0.21±4.12)mm, respectively.The spatial distributions of setup error was maximum in Y direction. The margins were 4 mm in X axis, 6 mm in Y axis, 4 mm in Z axis respectively.These two registration methods were similar and highly recommended. Conclusion: Both bone and grey registration methods could offer an accurate setup error. The influence of setup errors of a PTV margin would be suggested by 4mm, 4mm and 6mm on X, Y and Z directions for postoperative radiotherapy for cervical carcinoma.« less

  17. ALGORITHM TO REDUCE APPROXIMATION ERROR FROM THE COMPLEX-VARIABLE BOUNDARY-ELEMENT METHOD APPLIED TO SOIL FREEZING.

    USGS Publications Warehouse

    Hromadka, T.V.; Guymon, G.L.

    1985-01-01

    An algorithm is presented for the numerical solution of the Laplace equation boundary-value problem, which is assumed to apply to soil freezing or thawing. The Laplace equation is numerically approximated by the complex-variable boundary-element method. The algorithm aids in reducing integrated relative error by providing a true measure of modeling error along the solution domain boundary. This measure of error can be used to select locations for adding, removing, or relocating nodal points on the boundary or to provide bounds for the integrated relative error of unknown nodal variable values along the boundary.

  18. Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Zheng, Yuejiu; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Li, Jianqiu

    2018-02-01

    Sate of charge (SOC) estimation is generally acknowledged as one of the most important functions in battery management system for lithium-ion batteries in new energy vehicles. Though every effort is made for various online SOC estimation methods to reliably increase the estimation accuracy as much as possible within the limited on-chip resources, little literature discusses the error sources for those SOC estimation methods. This paper firstly reviews the commonly studied SOC estimation methods from a conventional classification. A novel perspective focusing on the error analysis of the SOC estimation methods is proposed. SOC estimation methods are analyzed from the views of the measured values, models, algorithms and state parameters. Subsequently, the error flow charts are proposed to analyze the error sources from the signal measurement to the models and algorithms for the widely used online SOC estimation methods in new energy vehicles. Finally, with the consideration of the working conditions, choosing more reliable and applicable SOC estimation methods is discussed, and the future development of the promising online SOC estimation methods is suggested.

  19. Long-term continuous acoustical suspended-sediment measurements in rivers - Theory, application, bias, and error

    USGS Publications Warehouse

    Topping, David J.; Wright, Scott A.

    2016-05-04

    It is commonly recognized that suspended-sediment concentrations in rivers can change rapidly in time and independently of water discharge during important sediment‑transporting events (for example, during floods); thus, suspended-sediment measurements at closely spaced time intervals are necessary to characterize suspended‑sediment loads. Because the manual collection of sufficient numbers of suspended-sediment samples required to characterize this variability is often time and cost prohibitive, several “surrogate” techniques have been developed for in situ measurements of properties related to suspended-sediment characteristics (for example, turbidity, laser-diffraction, acoustics). Herein, we present a new physically based method for the simultaneous measurement of suspended-silt-and-clay concentration, suspended-sand concentration, and suspended‑sand median grain size in rivers, using multi‑frequency arrays of single-frequency side‑looking acoustic-Doppler profilers. The method is strongly grounded in the extensive scientific literature on the incoherent scattering of sound by random suspensions of small particles. In particular, the method takes advantage of theory that relates acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We develop the theory and methods, and demonstrate the application of the method at six study sites on the Colorado River and Rio Grande, where large numbers of suspended-sediment samples have been collected concurrently with acoustic attenuation and backscatter measurements over many years. The method produces acoustical measurements of suspended-silt-and-clay and suspended-sand concentration (in units of mg/L), and acoustical measurements of suspended-sand median grain size (in units of mm) that are generally in good to excellent agreement with concurrent physical measurements of these quantities in the river cross sections at these sites. In addition, detailed, step-by-step procedures are presented for the general river application of the method.Quantification of errors in sediment-transport measurements made using this acoustical method is essential if the measurements are to be used effectively, for example, to evaluate uncertainty in long-term sediment loads and budgets. Several types of error analyses are presented to evaluate (1) the stability of acoustical calibrations over time, (2) the effect of neglecting backscatter from silt and clay, (3) the bias arising from changes in sand grain size, (4) the time-varying error in the method, and (5) the influence of nonrandom processes on error. Results indicate that (1) acoustical calibrations can be stable for long durations (multiple years), (2) neglecting backscatter from silt and clay can result in unacceptably high bias, (3) two frequencies are likely required to obtain sand-concentration measurements that are unbiased by changes in grain size, depending on site-specific conditions and acoustic frequency, (4) relative errors in silt-and-clay- and sand-concentration measurements decrease substantially as concentration increases, and (5) nonrandom errors may arise from slow changes in the spatial structure of suspended sediment that affect the relations between concentration in the acoustically ensonified part of the cross section and concentration in the entire river cross section. Taken together, the error analyses indicate that the two-frequency method produces unbiased measurements of suspended-silt-and-clay and sand concentration, with errors that are similar to, or larger than, those associated with conventional sampling methods.

  20. Precision of a CAD/CAM-engineered surgical template based on a facebow for orthognathic surgery: an experiment with a rapid prototyping maxillary model.

    PubMed

    Lee, Jae-Won; Lim, Se-Ho; Kim, Moon-Key; Kang, Sang-Hoon

    2015-12-01

    We examined the precision of a computer-aided design/computer-aided manufacturing-engineered, manufactured, facebow-based surgical guide template (facebow wafer) by comparing it with a bite splint-type orthognathic computer-aided design/computer-aided manufacturing-engineered surgical guide template (bite wafer). We used 24 rapid prototyping (RP) models of the craniofacial skeleton with maxillary deformities. Twelve RP models each were used for the facebow wafer group and the bite wafer group (experimental group). Experimental maxillary orthognathic surgery was performed on the RP models of both groups. Errors were evaluated through comparisons with surgical simulations. We measured the minimum distances from 3 planes of reference to determine the vertical, lateral, and anteroposterior errors at specific measurement points. The measured errors were compared between experimental groups using a t test. There were significant intergroup differences in the lateral error when we compared the absolute values of the 3-D linear distance, as well as vertical, lateral, and anteroposterior errors between experimental groups. The bite wafer method exhibited little lateral error overall and little error in the anterior tooth region. The facebow wafer method exhibited very little vertical error in the posterior molar region. The clinical precision of the facebow wafer method did not significantly exceed that of the bite wafer method. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Chapter 11: Sample Design Cross-Cutting Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Khawaja, M. Sami; Rushton, Josh

    Evaluating an energy efficiency program requires assessing the total energy and demand saved through all of the energy efficiency measures provided by the program. For large programs, the direct assessment of savings for each participant would be cost-prohibitive. Even if a program is small enough that a full census could be managed, such an undertaking would almost always be an inefficient use of evaluation resources. The bulk of this chapter describes methods for minimizing and quantifying sampling error. Measurement error and regression error are discussed in various contexts in other chapters.

  2. Methods for accurate estimation of net discharge in a tidal channel

    USGS Publications Warehouse

    Simpson, M.R.; Bland, R.

    2000-01-01

    Accurate estimates of net residual discharge in tidally affected rivers and estuaries are possible because of recently developed ultrasonic discharge measurement techniques. Previous discharge estimates using conventional mechanical current meters and methods based on stage/discharge relations or water slope measurements often yielded errors that were as great as or greater than the computed residual discharge. Ultrasonic measurement methods consist of: 1) the use of ultrasonic instruments for the measurement of a representative 'index' velocity used for in situ estimation of mean water velocity and 2) the use of the acoustic Doppler current discharge measurement system to calibrate the index velocity measurement data. Methods used to calibrate (rate) the index velocity to the channel velocity measured using the Acoustic Doppler Current Profiler are the most critical factors affecting the accuracy of net discharge estimation. The index velocity first must be related to mean channel velocity and then used to calculate instantaneous channel discharge. Finally, discharge is low-pass filtered to remove the effects of the tides. An ultrasonic velocity meter discharge-measurement site in a tidally affected region of the Sacramento-San Joaquin Rivers was used to study the accuracy of the index velocity calibration procedure. Calibration data consisting of ultrasonic velocity meter index velocity and concurrent acoustic Doppler discharge measurement data were collected during three time periods. Two sets of data were collected during a spring tide (monthly maximum tidal current) and one of data collected during a neap tide (monthly minimum tidal current). The relative magnitude of instrumental errors, acoustic Doppler discharge measurement errors, and calibration errors were evaluated. Calibration error was found to be the most significant source of error in estimating net discharge. Using a comprehensive calibration method, net discharge estimates developed from the three sets of calibration data differed by less than an average of 4 cubic meters per second, or less than 0.5% of a typical peak tidal discharge rate of 750 cubic meters per second.

  3. Soil pH Errors Propagation from Measurements to Spatial Predictions - Cost Benefit Analysis and Risk Assessment Implications for Practitioners and Modelers

    NASA Astrophysics Data System (ADS)

    Owens, P. R.; Libohova, Z.; Seybold, C. A.; Wills, S. A.; Peaslee, S.; Beaudette, D.; Lindbo, D. L.

    2017-12-01

    The measurement errors and spatial prediction uncertainties of soil properties in the modeling community are usually assessed against measured values when available. However, of equal importance is the assessment of errors and uncertainty impacts on cost benefit analysis and risk assessments. Soil pH was selected as one of the most commonly measured soil properties used for liming recommendations. The objective of this study was to assess the error size from different sources and their implications with respect to management decisions. Error sources include measurement methods, laboratory sources, pedotransfer functions, database transections, spatial aggregations, etc. Several databases of measured and predicted soil pH were used for this study including the United States National Cooperative Soil Survey Characterization Database (NCSS-SCDB), the US Soil Survey Geographic (SSURGO) Database. The distribution of errors among different sources from measurement methods to spatial aggregation showed a wide range of values. The greatest RMSE of 0.79 pH units was from spatial aggregation (SSURGO vs Kriging), while the measurement methods had the lowest RMSE of 0.06 pH units. Assuming the order of data acquisition based on the transaction distance i.e. from measurement method to spatial aggregation the RMSE increased from 0.06 to 0.8 pH units suggesting an "error propagation". This has major implications for practitioners and modeling community. Most soil liming rate recommendations are based on 0.1 pH unit increments, while the desired soil pH level increments are based on 0.4 to 0.5 pH units. Thus, even when the measured and desired target soil pH are the same most guidelines recommend 1 ton ha-1 lime, which translates in 111 ha-1 that the farmer has to factor in the cost-benefit analysis. However, this analysis need to be based on uncertainty predictions (0.5-1.0 pH units) rather than measurement errors (0.1 pH units) which would translate in 555-1,111 investment that need to be assessed against the risk. The modeling community can benefit from such analysis, however, error size and spatial distribution for global and regional predictions need to be assessed against the variability of other drivers and impact on management decisions.

  4. Causal inference with measurement error in outcomes: Bias analysis and estimation methods.

    PubMed

    Shu, Di; Yi, Grace Y

    2017-01-01

    Inverse probability weighting estimation has been popularly used to consistently estimate the average treatment effect. Its validity, however, is challenged by the presence of error-prone variables. In this paper, we explore the inverse probability weighting estimation with mismeasured outcome variables. We study the impact of measurement error for both continuous and discrete outcome variables and reveal interesting consequences of the naive analysis which ignores measurement error. When a continuous outcome variable is mismeasured under an additive measurement error model, the naive analysis may still yield a consistent estimator; when the outcome is binary, we derive the asymptotic bias in a closed-form. Furthermore, we develop consistent estimation procedures for practical scenarios where either validation data or replicates are available. With validation data, we propose an efficient method for estimation of average treatment effect; the efficiency gain is substantial relative to usual methods of using validation data. To provide protection against model misspecification, we further propose a doubly robust estimator which is consistent even when either the treatment model or the outcome model is misspecified. Simulation studies are reported to assess the performance of the proposed methods. An application to a smoking cessation dataset is presented.

  5. Addressing Phase Errors in Fat-Water Imaging Using a Mixed Magnitude/Complex Fitting Method

    PubMed Central

    Hernando, D.; Hines, C. D. G.; Yu, H.; Reeder, S.B.

    2012-01-01

    Accurate, noninvasive measurements of liver fat content are needed for the early diagnosis and quantitative staging of nonalcoholic fatty liver disease. Chemical shift-based fat quantification methods acquire images at multiple echo times using a multiecho spoiled gradient echo sequence, and provide fat fraction measurements through postprocessing. However, phase errors, such as those caused by eddy currents, can adversely affect fat quantification. These phase errors are typically most significant at the first echo of the echo train, and introduce bias in complex-based fat quantification techniques. These errors can be overcome using a magnitude-based technique (where the phase of all echoes is discarded), but at the cost of significantly degraded signal-to-noise ratio, particularly for certain choices of echo time combinations. In this work, we develop a reconstruction method that overcomes these phase errors without the signal-to-noise ratio penalty incurred by magnitude fitting. This method discards the phase of the first echo (which is often corrupted) while maintaining the phase of the remaining echoes (where phase is unaltered). We test the proposed method on 104 patient liver datasets (from 52 patients, each scanned twice), where the fat fraction measurements are compared to coregistered spectroscopy measurements. We demonstrate that mixed fitting is able to provide accurate fat fraction measurements with high signal-to-noise ratio and low bias over a wide choice of echo combinations. PMID:21713978

  6. Maintaining tumor targeting accuracy in real-time motion compensation systems for respiration-induced tumor motion.

    PubMed

    Malinowski, Kathleen; McAvoy, Thomas J; George, Rohini; Dieterich, Sonja; D'Souza, Warren D

    2013-07-01

    To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥ 3 mm), and always (approximately once per minute). Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization.

  7. Irregular analytical errors in diagnostic testing - a novel concept.

    PubMed

    Vogeser, Michael; Seger, Christoph

    2018-02-23

    In laboratory medicine, routine periodic analyses for internal and external quality control measurements interpreted by statistical methods are mandatory for batch clearance. Data analysis of these process-oriented measurements allows for insight into random analytical variation and systematic calibration bias over time. However, in such a setting, any individual sample is not under individual quality control. The quality control measurements act only at the batch level. Quantitative or qualitative data derived for many effects and interferences associated with an individual diagnostic sample can compromise any analyte. It is obvious that a process for a quality-control-sample-based approach of quality assurance is not sensitive to such errors. To address the potential causes and nature of such analytical interference in individual samples more systematically, we suggest the introduction of a new term called the irregular (individual) analytical error. Practically, this term can be applied in any analytical assay that is traceable to a reference measurement system. For an individual sample an irregular analytical error is defined as an inaccuracy (which is the deviation from a reference measurement procedure result) of a test result that is so high it cannot be explained by measurement uncertainty of the utilized routine assay operating within the accepted limitations of the associated process quality control measurements. The deviation can be defined as the linear combination of the process measurement uncertainty and the method bias for the reference measurement system. Such errors should be coined irregular analytical errors of the individual sample. The measurement result is compromised either by an irregular effect associated with the individual composition (matrix) of the sample or an individual single sample associated processing error in the analytical process. Currently, the availability of reference measurement procedures is still highly limited, but LC-isotope-dilution mass spectrometry methods are increasingly used for pre-market validation of routine diagnostic assays (these tests also involve substantial sets of clinical validation samples). Based on this definition/terminology, we list recognized causes of irregular analytical error as a risk catalog for clinical chemistry in this article. These issues include reproducible individual analytical errors (e.g. caused by anti-reagent antibodies) and non-reproducible, sporadic errors (e.g. errors due to incorrect pipetting volume due to air bubbles in a sample), which can both lead to inaccurate results and risks for patients.

  8. An analysis of temperature-induced errors for an ultrasound distance measuring system. M. S. Thesis

    NASA Technical Reports Server (NTRS)

    Wenger, David Paul

    1991-01-01

    The presentation of research is provided in the following five chapters. Chapter 2 presents the necessary background information and definitions for general work with ultrasound and acoustics. It also discusses the basis for errors in the slant range measurements. Chapter 3 presents a method of problem solution and an analysis of the sensitivity of the equations to slant range measurement errors. It also presents various methods by which the error in the slant range measurements can be reduced to improve overall measurement accuracy. Chapter 4 provides a description of a type of experiment used to test the analytical solution and provides a discussion of its results. Chapter 5 discusses the setup of a prototype collision avoidance system, discusses its accuracy, and demonstrates various methods of improving the accuracy along with the improvements' ramifications. Finally, Chapter 6 provides a summary of the work and a discussion of conclusions drawn from it. Additionally, suggestions for further research are made to improve upon what has been presented here.

  9. Concerning the Video Drift Method to Measure Double Stars

    NASA Astrophysics Data System (ADS)

    Nugent, Richard L.; Iverson, Ernest W.

    2015-05-01

    Classical methods to measure position angles and separations of double stars rely on just a few measurements either from visual observations or photographic means. Visual and photographic CCD observations are subject to errors from the following sources: misalignments from eyepiece/camera/barlow lens/micrometer/focal reducers, systematic errors from uncorrected optical distortions, aberrations from the telescope system, camera tilt, magnitude and color effects. Conventional video methods rely on calibration doubles and graphically calculating the east-west direction plus careful choice of select video frames stacked for measurement. Atmospheric motion is one of the larger sources of error in any exposure/measurement method which is on the order of 0.5-1.5. Ideally, if a data set from a short video can be used to derive position angle and separation, with each data set self-calibrating independent of any calibration doubles or star catalogues, this would provide measurements of high systematic accuracy. These aims are achieved by the video drift method first proposed by the authors in 2011. This self calibrating video method automatically analyzes 1,000's of measurements from a short video clip.

  10. Influence of ECG measurement accuracy on ECG diagnostic statements.

    PubMed

    Zywietz, C; Celikag, D; Joseph, G

    1996-01-01

    Computer analysis of electrocardiograms (ECGs) provides a large amount of ECG measurement data, which may be used for diagnostic classification and storage in ECG databases. Until now, neither error limits for ECG measurements have been specified nor has their influence on diagnostic statements been systematically investigated. An analytical method is presented to estimate the influence of measurement errors on the accuracy of diagnostic ECG statements. Systematic (offset) errors will usually result in an increase of false positive or false negative statements since they cause a shift of the working point on the receiver operating characteristics curve. Measurement error dispersion broadens the distribution function of discriminative measurement parameters and, therefore, usually increases the overlap between discriminative parameters. This results in a flattening of the receiver operating characteristics curve and an increase of false positive and false negative classifications. The method developed has been applied to ECG conduction defect diagnoses by using the proposed International Electrotechnical Commission's interval measurement tolerance limits. These limits appear too large because more than 30% of false positive atrial conduction defect statements and 10-18% of false intraventricular conduction defect statements could be expected due to tolerated measurement errors. To assure long-term usability of ECG measurement databases, it is recommended that systems provide its error tolerance limits obtained on a defined test set.

  11. Mismeasurement and the resonance of strong confounders: correlated errors.

    PubMed

    Marshall, J R; Hastrup, J L; Ross, J S

    1999-07-01

    Confounding in epidemiology, and the limits of standard methods of control for an imperfectly measured confounder, have been understood for some time. However, most treatments of this problem are based on the assumption that errors of measurement in confounding and confounded variables are independent. This paper considers the situation in which a strong risk factor (confounder) and an inconsequential but suspected risk factor (confounded) are each measured with errors that are correlated; the situation appears especially likely to occur in the field of nutritional epidemiology. Error correlation appears to add little to measurement error as a source of bias in estimating the impact of a strong risk factor: it can add to, diminish, or reverse the bias induced by measurement error in estimating the impact of the inconsequential risk factor. Correlation of measurement errors can add to the difficulty involved in evaluating structures in which confounding and measurement error are present. In its presence, observed correlations among risk factors can be greater than, less than, or even opposite to the true correlations. Interpretation of multivariate epidemiologic structures in which confounding is likely requires evaluation of measurement error structures, including correlations among measurement errors.

  12. A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series.

    PubMed

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan

    2015-07-17

    Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS.

  13. A Method for Oscillation Errors Restriction of SINS Based on Forecasted Time Series

    PubMed Central

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Jia, Chun; Wang, Qiufan

    2015-01-01

    Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors. The innovative method gains multiple sets of navigation solutions with different phase delays in virtue of the forecasted time series acquired through the measurement data of the inertial measurement unit (IMU). With the help of curve-fitting based on least square method, the forecasted time series is obtained while distinguishing and removing small angular motion interference in the process of initial alignment. Finally, the periodic oscillation errors are restricted on account of the principle of eliminating the periodic oscillation signal with a half-wave delay by mean value. Simulation and test results show that the method has good performance in restricting the Schuler, Foucault, and Earth oscillation errors of SINS. PMID:26193283

  14. Maintaining tumor targeting accuracy in real-time motion compensation systems for respiration-induced tumor motion

    PubMed Central

    Malinowski, Kathleen; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D’Souza, Warren D.

    2013-01-01

    Purpose: To determine how best to time respiratory surrogate-based tumor motion model updates by comparing a novel technique based on external measurements alone to three direct measurement methods. Methods: Concurrently measured tumor and respiratory surrogate positions from 166 treatment fractions for lung or pancreas lesions were analyzed. Partial-least-squares regression models of tumor position from marker motion were created from the first six measurements in each dataset. Successive tumor localizations were obtained at a rate of once per minute on average. Model updates were timed according to four methods: never, respiratory surrogate-based (when metrics based on respiratory surrogate measurements exceeded confidence limits), error-based (when localization error ≥3 mm), and always (approximately once per minute). Results: Radial tumor displacement prediction errors (mean ± standard deviation) for the four schema described above were 2.4 ± 1.2, 1.9 ± 0.9, 1.9 ± 0.8, and 1.7 ± 0.8 mm, respectively. The never-update error was significantly larger than errors of the other methods. Mean update counts over 20 min were 0, 4, 9, and 24, respectively. Conclusions: The same improvement in tumor localization accuracy could be achieved through any of the three update methods, but significantly fewer updates were required when the respiratory surrogate method was utilized. This study establishes the feasibility of timing image acquisitions for updating respiratory surrogate models without direct tumor localization. PMID:23822413

  15. Different grades MEMS accelerometers error characteristics

    NASA Astrophysics Data System (ADS)

    Pachwicewicz, M.; Weremczuk, J.

    2017-08-01

    The paper presents calibration effects of two different MEMS accelerometers of different price and quality grades and discusses different accelerometers errors types. The calibration for error determining is provided by reference centrifugal measurements. The design and measurement errors of the centrifuge are discussed as well. It is shown that error characteristics of the sensors are very different and it is not possible to use simple calibration methods presented in the literature in both cases.

  16. Clinical measuring system for the form and position errors of circular workpieces using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Tan, Jiubin; Qiang, Xifu; Ding, Xuemei

    1991-08-01

    Optical sensors have two notable advantages in modern precision measurement. One is that they can be used in nondestructive measurement because the sensors need not touch the surfaces of workpieces in measuring. The other one is that they can strongly resist electromagnetic interferences, vibrations, and noises, so they are suitable to be used in machining sites. But the drift of light intensity and the changing of the reflection coefficient at different measuring positions of a workpiece may have great influence on measured results. To solve the problem, a spectroscopic differential characteristic compensating method is put forward. The method can be used effectively not only in compensating the measuring errors resulted from the drift of light intensity but also in eliminating the influence to measured results caused by the changing of the reflection coefficient. Also, the article analyzes the possibility of and the means of separating data errors of a clinical measuring system for form and position errors of circular workpieces.

  17. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array

    PubMed Central

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Tao, Yuan

    2018-01-01

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%. PMID:29734742

  18. Study of Current Measurement Method Based on Circular Magnetic Field Sensing Array.

    PubMed

    Li, Zhenhua; Zhang, Siqiu; Wu, Zhengtian; Abu-Siada, Ahmed; Tao, Yuan

    2018-05-05

    Classic core-based instrument transformers are more prone to magnetic saturation. This affects the measurement accuracy of such transformers and limits their applications in measuring large direct current (DC). Moreover, protection and control systems may exhibit malfunctions due to such measurement errors. This paper presents a more accurate method for current measurement based on a circular magnetic field sensing array. The proposed measurement approach utilizes multiple hall sensors that are evenly distributed on a circle. The average value of all hall sensors is regarded as the final measurement. The calculation model is established in the case of magnetic field interference of the parallel wire, and the simulation results show that the error decreases significantly when the number of hall sensors n is greater than 8. The measurement error is less than 0.06% when the wire spacing is greater than 2.5 times the radius of the sensor array. A simulation study on the off-center primary conductor is conducted, and a kind of hall sensor compensation method is adopted to improve the accuracy. The simulation and test results indicate that the measurement error of the system is less than 0.1%.

  19. Cocaine Dependence Treatment Data: Methods for Measurement Error Problems With Predictors Derived From Stationary Stochastic Processes

    PubMed Central

    Guan, Yongtao; Li, Yehua; Sinha, Rajita

    2011-01-01

    In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854

  20. Application of advanced shearing techniques to the calibration of autocollimators with small angle generators and investigation of error sources.

    PubMed

    Yandayan, T; Geckeler, R D; Aksulu, M; Akgoz, S A; Ozgur, B

    2016-05-01

    The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.

  1. Rain radar measurement error estimation using data assimilation in an advection-based nowcasting system

    NASA Astrophysics Data System (ADS)

    Merker, Claire; Ament, Felix; Clemens, Marco

    2017-04-01

    The quantification of measurement uncertainty for rain radar data remains challenging. Radar reflectivity measurements are affected, amongst other things, by calibration errors, noise, blocking and clutter, and attenuation. Their combined impact on measurement accuracy is difficult to quantify due to incomplete process understanding and complex interdependencies. An improved quality assessment of rain radar measurements is of interest for applications both in meteorology and hydrology, for example for precipitation ensemble generation, rainfall runoff simulations, or in data assimilation for numerical weather prediction. Especially a detailed description of the spatial and temporal structure of errors is beneficial in order to make best use of the areal precipitation information provided by radars. Radar precipitation ensembles are one promising approach to represent spatially variable radar measurement errors. We present a method combining ensemble radar precipitation nowcasting with data assimilation to estimate radar measurement uncertainty at each pixel. This combination of ensemble forecast and observation yields a consistent spatial and temporal evolution of the radar error field. We use an advection-based nowcasting method to generate an ensemble reflectivity forecast from initial data of a rain radar network. Subsequently, reflectivity data from single radars is assimilated into the forecast using the Local Ensemble Transform Kalman Filter. The spread of the resulting analysis ensemble provides a flow-dependent, spatially and temporally correlated reflectivity error estimate at each pixel. We will present first case studies that illustrate the method using data from a high-resolution X-band radar network.

  2. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback

    PubMed Central

    Lee, Jackson C.; Mittelman, Talia; Stepp, Cara E.; Bohland, Jason W.

    2017-01-01

    Purpose Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Method Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. Results New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. Conclusions This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. Supplemental Material https://doi.org/10.23641/asha.5103067 PMID:28655038

  3. Use of dual coolant displacing media for in-process optical measurement of form profiles

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Xie, F.

    2018-07-01

    In-process measurement supports feedback control to reduce workpiece surface form error. Without it, the workpiece surface must be measured offline causing significant errors in workpiece positioning and reduced productivity. To offer better performance, a new in-process optical measurement method based on the use of dual coolant displacing media is proposed and studied, which uses an air and liquid phase together to resist coolant and to achieve in-process measurement. In the proposed new design, coolant is used to replace the previously used clean water to avoid coolant dilution. Compared with the previous methods, the distance between the applicator and the workpiece surface can be relaxed to 1 mm. The result is 4 times larger than before, thus permitting measurement of curved surfaces. The use of air is up to 1.5 times less than the best method previously available. For a sample workpiece with curved surfaces, the relative error of profile measurement under coolant conditions can be as small as 0.1% compared with the one under no coolant conditions. Problems in comparing measured 3D surfaces are discussed. A comparative study between a Bruker Npflex optical profiler and the developed new in-process optical profiler was conducted. For a surface area of 5.5 mm  ×  5.5 mm, the average measurement error under coolant conditions is only 0.693 µm. In addition, the error due to the new method is only 0.10 µm when compared between coolant and no coolant conditions. The effect of a thin liquid film on workpiece surface is discussed. The experimental results show that the new method can successfully solve the coolant dilution problem and is able to accurately measure the workpiece surface whilst fully submerged in the opaque coolant. The proposed new method is advantageous and should be very useful for in-process optical form profile measurement in precision machining.

  4. Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry

    NASA Astrophysics Data System (ADS)

    Pan, Hao; Qu, Xinghua; Shi, Chunzhao; Zhang, Fumin; Li, Yating

    2018-06-01

    The non-uniform interval resampling method has been widely used in frequency modulated continuous wave (FMCW) laser ranging. In the large-bandwidth and long-distance measurements, the range peak is deteriorated due to the fiber dispersion mismatch. In this study, we analyze the frequency-sampling error caused by the mismatch and measure it using the spectroscopy of molecular frequency references line. By using the adjacent points' replacement and spline interpolation technique, the sampling errors could be eliminated. The results demonstrated that proposed method is suitable for resolution-enhancement and high-precision measurement. Moreover, using the proposed method, we achieved the precision of absolute distance less than 45 μm within 8 m.

  5. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters

    PubMed Central

    Park, Chan Gook

    2018-01-01

    An enhanced pedestrian dead reckoning (PDR) based navigation algorithm, which uses two cascaded Kalman filters (TCKF) for the estimation of course angle and navigation errors, is proposed. The proposed algorithm uses a foot-mounted inertial measurement unit (IMU), waist-mounted magnetic sensors, and a zero velocity update (ZUPT) based inertial navigation technique with TCKF. The first stage filter estimates the course angle error of a human, which is closely related to the heading error of the IMU. In order to obtain the course measurements, the filter uses magnetic sensors and a position-trace based course angle. For preventing magnetic disturbance from contaminating the estimation, the magnetic sensors are attached to the waistband. Because the course angle error is mainly due to the heading error of the IMU, and the characteristic error of the heading angle is highly dependent on that of the course angle, the estimated course angle error is used as a measurement for estimating the heading error in the second stage filter. At the second stage, an inertial navigation system-extended Kalman filter-ZUPT (INS-EKF-ZUPT) method is adopted. As the heading error is estimated directly by using course-angle error measurements, the estimation accuracy for the heading and yaw gyro bias can be enhanced, compared with the ZUPT-only case, which eventually enhances the position accuracy more efficiently. The performance enhancements are verified via experiments, and the way-point position error for the proposed method is compared with those for the ZUPT-only case and with other cases that use ZUPT and various types of magnetic heading measurements. The results show that the position errors are reduced by a maximum of 90% compared with the conventional ZUPT based PDR algorithms. PMID:29690539

  6. Effectiveness of Variable-Gain Kalman Filter Based on Angle Error Calculated from Acceleration Signals in Lower Limb Angle Measurement with Inertial Sensors

    PubMed Central

    Watanabe, Takashi

    2013-01-01

    The wearable sensor system developed by our group, which measured lower limb angles using Kalman-filtering-based method, was suggested to be useful in evaluation of gait function for rehabilitation support. However, it was expected to reduce variations of measurement errors. In this paper, a variable-Kalman-gain method based on angle error that was calculated from acceleration signals was proposed to improve measurement accuracy. The proposed method was tested comparing to fixed-gain Kalman filter and a variable-Kalman-gain method that was based on acceleration magnitude used in previous studies. First, in angle measurement in treadmill walking, the proposed method measured lower limb angles with the highest measurement accuracy and improved significantly foot inclination angle measurement, while it improved slightly shank and thigh inclination angles. The variable-gain method based on acceleration magnitude was not effective for our Kalman filter system. Then, in angle measurement of a rigid body model, it was shown that the proposed method had measurement accuracy similar to or higher than results seen in other studies that used markers of camera-based motion measurement system fixing on a rigid plate together with a sensor or on the sensor directly. The proposed method was found to be effective in angle measurement with inertial sensors. PMID:24282442

  7. Comparing and Combining Data across Multiple Sources via Integration of Paired-sample Data to Correct for Measurement Error

    PubMed Central

    Huang, Yunda; Huang, Ying; Moodie, Zoe; Li, Sue; Self, Steve

    2014-01-01

    Summary In biomedical research such as the development of vaccines for infectious diseases or cancer, measures from the same assay are often collected from multiple sources or laboratories. Measurement error that may vary between laboratories needs to be adjusted for when combining samples across laboratories. We incorporate such adjustment in comparing and combining independent samples from different labs via integration of external data, collected on paired samples from the same two laboratories. We propose: 1) normalization of individual level data from two laboratories to the same scale via the expectation of true measurements conditioning on the observed; 2) comparison of mean assay values between two independent samples in the Main study accounting for inter-source measurement error; and 3) sample size calculations of the paired-sample study so that hypothesis testing error rates are appropriately controlled in the Main study comparison. Because the goal is not to estimate the true underlying measurements but to combine data on the same scale, our proposed methods do not require that the true values for the errorprone measurements are known in the external data. Simulation results under a variety of scenarios demonstrate satisfactory finite sample performance of our proposed methods when measurement errors vary. We illustrate our methods using real ELISpot assay data generated by two HIV vaccine laboratories. PMID:22764070

  8. Comparison of Methodologies Using Estimated or Measured Values of Total Corneal Astigmatism for Toric Intraocular Lens Power Calculation.

    PubMed

    Ferreira, Tiago B; Ribeiro, Paulo; Ribeiro, Filomena J; O'Neill, João G

    2017-12-01

    To compare the prediction error in the calculation of toric intraocular lenses (IOLs) associated with methods that estimate the power of the posterior corneal surface (ie, Barrett toric calculator and Abulafia-Koch formula) with that of methods that consider real measures obtained using Scheimpflug imaging: a software that uses vectorial calculation (Panacea toric calculator: http://www.panaceaiolandtoriccalculator.com) and a ray tracing software (PhacoOptics, Aarhus Nord, Denmark). In 107 eyes of 107 patients undergoing cataract surgery with toric IOL implantation (Acrysof IQ Toric; Alcon Laboratories, Inc., Fort Worth, TX), predicted residual astigmatism by each calculation method was compared with manifest refractive astigmatism. Prediction error in residual astigmatism was calculated using vector analysis. All calculation methods resulted in overcorrection of with-the-rule astigmatism and undercorrection of against-the-rule astigmatism. Both estimation methods resulted in lower mean and centroid astigmatic prediction errors, and a larger number of eyes within 0.50 diopters (D) of absolute prediction error than methods considering real measures (P < .001). Centroid prediction error (CPE) was 0.07 D at 172° for the Barrett toric calculator and 0.13 D at 174° for the Abulafia-Koch formula (combined with Holladay calculator). For methods using real posterior corneal surface measurements, CPE was 0.25 D at 173° for the Panacea calculator and 0.29 D at 171° for the ray tracing software. The Barrett toric calculator and Abulafia-Koch formula yielded the lowest astigmatic prediction errors. Directly evaluating total corneal power for toric IOL calculation was not superior to estimating it. [J Refract Surg. 2017;33(12):794-800.]. Copyright 2017, SLACK Incorporated.

  9. Compensation of kinematic geometric parameters error and comparative study of accuracy testing for robot

    NASA Astrophysics Data System (ADS)

    Du, Liang; Shi, Guangming; Guan, Weibin; Zhong, Yuansheng; Li, Jin

    2014-12-01

    Geometric error is the main error of the industrial robot, and it plays a more significantly important fact than other error facts for robot. The compensation model of kinematic error is proposed in this article. Many methods can be used to test the robot accuracy, therefore, how to compare which method is better one. In this article, a method is used to compare two methods for robot accuracy testing. It used Laser Tracker System (LTS) and Three Coordinate Measuring instrument (TCM) to test the robot accuracy according to standard. According to the compensation result, it gets the better method which can improve the robot accuracy apparently.

  10. Intervertebral anticollision constraints improve out-of-plane translation accuracy of a single-plane fluoroscopy-to-CT registration method for measuring spinal motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Cheng-Chung; Tsai, Tsung-Yuan; Hsu, Shih-Jung

    2013-03-15

    Purpose: The study aimed to propose a new single-plane fluoroscopy-to-CT registration method integrated with intervertebral anticollision constraints for measuring three-dimensional (3D) intervertebral kinematics of the spine; and to evaluate the performance of the method without anticollision and with three variations of the anticollision constraints via an in vitro experiment. Methods: The proposed fluoroscopy-to-CT registration approach, called the weighted edge-matching with anticollision (WEMAC) method, was based on the integration of geometrical anticollision constraints for adjacent vertebrae and the weighted edge-matching score (WEMS) method that matched the digitally reconstructed radiographs of the CT models of the vertebrae and the measured single-plane fluoroscopymore » images. Three variations of the anticollision constraints, namely, T-DOF, R-DOF, and A-DOF methods, were proposed. An in vitro experiment using four porcine cervical spines in different postures was performed to evaluate the performance of the WEMS and the WEMAC methods. Results: The WEMS method gave high precision and small bias in all components for both vertebral pose and intervertebral pose measurements, except for relatively large errors for the out-of-plane translation component. The WEMAC method successfully reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five degrees of freedom (DOF) more or less unaltered. The means (standard deviations) of the out-of-plane translational errors were less than -0.5 (0.6) and -0.3 (0.8) mm for the T-DOF method and the R-DOF method, respectively. Conclusions: The proposed single-plane fluoroscopy-to-CT registration method reduced the out-of-plane translation errors for intervertebral kinematic measurements while keeping the measurement accuracies for the other five DOF more or less unaltered. With the submillimeter and subdegree accuracy, the WEMAC method was considered accurate for measuring 3D intervertebral kinematics during various functional activities for research and clinical applications.« less

  11. Design considerations for case series models with exposure onset measurement error.

    PubMed

    Mohammed, Sandra M; Dalrymple, Lorien S; Sentürk, Damla; Nguyen, Danh V

    2013-02-28

    The case series model allows for estimation of the relative incidence of events, such as cardiovascular events, within a pre-specified time window after an exposure, such as an infection. The method requires only cases (individuals with events) and controls for all fixed/time-invariant confounders. The measurement error case series model extends the original case series model to handle imperfect data, where the timing of an infection (exposure) is not known precisely. In this work, we propose a method for power/sample size determination for the measurement error case series model. Extensive simulation studies are used to assess the accuracy of the proposed sample size formulas. We also examine the magnitude of the relative loss of power due to exposure onset measurement error, compared with the ideal situation where the time of exposure is measured precisely. To facilitate the design of case series studies, we provide publicly available web-based tools for determining power/sample size for both the measurement error case series model as well as the standard case series model. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Method and apparatus for correcting eddy current signal voltage for temperature effects

    DOEpatents

    Kustra, Thomas A.; Caffarel, Alfred J.

    1990-01-01

    An apparatus and method for measuring physical characteristics of an electrically conductive material by the use of eddy-current techniques and compensating measurement errors caused by changes in temperature includes a switching arrangement connected between primary and reference coils of an eddy-current probe which allows the probe to be selectively connected between an eddy current output oscilloscope and a digital ohm-meter for measuring the resistances of the primary and reference coils substantially at the time of eddy current measurement. In this way, changes in resistance due to temperature effects can be completely taken into account in determining the true error in the eddy current measurement. The true error can consequently be converted into an equivalent eddy current measurement correction.

  13. Optimal plane search method in blood flow measurements by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bargiel, Pawel; Orkisz, Maciej; Przelaskowski, Artur; Piatkowska-Janko, Ewa; Bogorodzki, Piotr; Wolak, Tomasz

    2004-07-01

    This paper offers an algorithm for determining the blood flow parameters in the neck vessel segments using a single (optimal) measurement plane instead of the usual approach involving four planes orthogonal to the artery axis. This new approach aims at significantly shortening the time required to complete measurements using Nuclear Magnetic Resonance techniques. Based on a defined error function, the algorithm scans the solution space to find the minimum of the error function, and thus to determine a single plane characterized by a minimum measurement error, which allows for an accurate measurement of blood flow in the four carotid arteries. The paper also comprises a practical implementation of this method (as a module of a larger imaging-measuring system), including preliminary research results.

  14. Genetic Algorithm-Based Motion Estimation Method using Orientations and EMGs for Robot Controls

    PubMed Central

    Chae, Jeongsook; Jin, Yong; Sung, Yunsick

    2018-01-01

    Demand for interactive wearable devices is rapidly increasing with the development of smart devices. To accurately utilize wearable devices for remote robot controls, limited data should be analyzed and utilized efficiently. For example, the motions by a wearable device, called Myo device, can be estimated by measuring its orientation, and calculating a Bayesian probability based on these orientation data. Given that Myo device can measure various types of data, the accuracy of its motion estimation can be increased by utilizing these additional types of data. This paper proposes a motion estimation method based on weighted Bayesian probability and concurrently measured data, orientations and electromyograms (EMG). The most probable motion among estimated is treated as a final estimated motion. Thus, recognition accuracy can be improved when compared to the traditional methods that employ only a single type of data. In our experiments, seven subjects perform five predefined motions. When orientation is measured by the traditional methods, the sum of the motion estimation errors is 37.3%; likewise, when only EMG data are used, the error in motion estimation by the proposed method was also 37.3%. The proposed combined method has an error of 25%. Therefore, the proposed method reduces motion estimation errors by 12%. PMID:29324641

  15. Error-compensation model for simultaneous measurement of five degrees of freedom motion errors of a rotary axis

    NASA Astrophysics Data System (ADS)

    Bao, Chuanchen; Li, Jiakun; Feng, Qibo; Zhang, Bin

    2018-07-01

    This paper introduces an error-compensation model for our measurement method to measure five motion errors of a rotary axis based on fibre laser collimation. The error-compensation model is established in a matrix form using the homogeneous coordinate transformation theory. The influences of the installation errors, error crosstalk, and manufacturing errors are analysed. The model is verified by both ZEMAX simulation and measurement experiments. The repeatability values of the radial and axial motion errors are significantly suppressed by more than 50% after compensation. The repeatability experiments of five degrees of freedom motion errors and the comparison experiments of two degrees of freedom motion errors of an indexing table were performed by our measuring device and a standard instrument. The results show that the repeatability values of the angular positioning error ε z and tilt motion error around the Y axis ε y are 1.2″ and 4.4″, and the comparison deviations of the two motion errors are 4.0″ and 4.4″, respectively. The repeatability values of the radial and axial motion errors, δ y and δ z , are 1.3 and 0.6 µm, respectively. The repeatability value of the tilt motion error around the X axis ε x is 3.8″.

  16. Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization

    NASA Technical Reports Server (NTRS)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    In order to provide a complete description of a materials thermoelectric power factor, in addition to the measured nominal value, an uncertainty interval is required. The uncertainty may contain sources of measurement error including systematic bias error and precision error of a statistical nature. The work focuses specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the methods apply to any measurement system. The analysis accounts for sources of systematic error including sample preparation tolerance, measurement probe placement, thermocouple cold-finger effect, and measurement parameters; in addition to including uncertainty of a statistical nature. Complete uncertainty analysis of a measurement system allows for more reliable comparison of measurement data between laboratories.

  17. Comparison of survey and photogrammetry methods to position gravity data, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponce, D.A.; Wu, S.S.C.; Spielman, J.B.

    1985-12-31

    Locations of gravity stations at Yucca Mountain, Nevada, were determined by a survey using an electronic distance-measuring device and by a photogram-metric method. The data from both methods were compared to determine if horizontal and vertical coordinates developed from photogrammetry are sufficently accurate to position gravity data at the site. The results show that elevations from the photogrammetric data have a mean difference of 0.57 +- 0.70 m when compared with those of the surveyed data. Comparison of the horizontal control shows that the two methods agreed to within 0.01 minute. At a latitude of 45{sup 0}, an error ofmore » 0.01 minute (18 m) corresponds to a gravity anomaly error of 0.015 mGal. Bouguer gravity anomalies are most sensitive to errors in elevation, thus elevation is the determining factor for use of photogrammetric or survey methods to position gravity data. Because gravity station positions are difficult to locate on aerial photographs, photogrammetric positions are not always exactly at the gravity station; therefore, large disagreements may appear when comparing electronic and photogrammetric measurements. A mean photogrammetric elevation error of 0.57 m corresponds to a gravity anomaly error of 0.11 mGal. Errors of 0.11 mGal are too large for high-precision or detailed gravity measurements but acceptable for regional work. 1 ref. 2 figs., 4 tabs.« less

  18. In-Flight Pitot-Static Calibration

    NASA Technical Reports Server (NTRS)

    Foster, John V. (Inventor); Cunningham, Kevin (Inventor)

    2016-01-01

    A GPS-based pitot-static calibration system uses global output-error optimization. High data rate measurements of static and total pressure, ambient air conditions, and GPS-based ground speed measurements are used to compute pitot-static pressure errors over a range of airspeed. System identification methods rapidly compute optimal pressure error models with defined confidence intervals.

  19. Multiple imputation to account for measurement error in marginal structural models

    PubMed Central

    Edwards, Jessie K.; Cole, Stephen R.; Westreich, Daniel; Crane, Heidi; Eron, Joseph J.; Mathews, W. Christopher; Moore, Richard; Boswell, Stephen L.; Lesko, Catherine R.; Mugavero, Michael J.

    2015-01-01

    Background Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and non-differential measurement error in a marginal structural model. Methods We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. Results In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality [hazard ratio (HR): 1.2 (95% CI: 0.6, 2.3)]. The HR for current smoking and therapy (0.4 (95% CI: 0.2, 0.7)) was similar to the HR for no smoking and therapy (0.4; 95% CI: 0.2, 0.6). Conclusions Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies. PMID:26214338

  20. A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Wang, Zhe; Lui, Siu-Lung; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou

    2013-10-01

    A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.

  1. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System.

    PubMed

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-05-04

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  2. A regularization corrected score method for nonlinear regression models with covariate error.

    PubMed

    Zucker, David M; Gorfine, Malka; Li, Yi; Tadesse, Mahlet G; Spiegelman, Donna

    2013-03-01

    Many regression analyses involve explanatory variables that are measured with error, and failing to account for this error is well known to lead to biased point and interval estimates of the regression coefficients. We present here a new general method for adjusting for covariate error. Our method consists of an approximate version of the Stefanski-Nakamura corrected score approach, using the method of regularization to obtain an approximate solution of the relevant integral equation. We develop the theory in the setting of classical likelihood models; this setting covers, for example, linear regression, nonlinear regression, logistic regression, and Poisson regression. The method is extremely general in terms of the types of measurement error models covered, and is a functional method in the sense of not involving assumptions on the distribution of the true covariate. We discuss the theoretical properties of the method and present simulation results in the logistic regression setting (univariate and multivariate). For illustration, we apply the method to data from the Harvard Nurses' Health Study concerning the relationship between physical activity and breast cancer mortality in the period following a diagnosis of breast cancer. Copyright © 2013, The International Biometric Society.

  3. A zero-augmented generalized gamma regression calibration to adjust for covariate measurement error: A case of an episodically consumed dietary intake

    PubMed Central

    Agogo, George O.

    2017-01-01

    Measurement error in exposure variables is a serious impediment in epidemiological studies that relate exposures to health outcomes. In nutritional studies, interest could be in the association between long-term dietary intake and disease occurrence. Long-term intake is usually assessed with food frequency questionnaire (FFQ), which is prone to recall bias. Measurement error in FFQ-reported intakes leads to bias in parameter estimate that quantifies the association. To adjust for bias in the association, a calibration study is required to obtain unbiased intake measurements using a short-term instrument such as 24-hour recall (24HR). The 24HR intakes are used as response in regression calibration to adjust for bias in the association. For foods not consumed daily, 24HR-reported intakes are usually characterized by excess zeroes, right skewness, and heteroscedasticity posing serious challenge in regression calibration modeling. We proposed a zero-augmented calibration model to adjust for measurement error in reported intake, while handling excess zeroes, skewness, and heteroscedasticity simultaneously without transforming 24HR intake values. We compared the proposed calibration method with the standard method and with methods that ignore measurement error by estimating long-term intake with 24HR and FFQ-reported intakes. The comparison was done in real and simulated datasets. With the 24HR, the mean increase in mercury level per ounce fish intake was about 0.4; with the FFQ intake, the increase was about 1.2. With both calibration methods, the mean increase was about 2.0. Similar trend was observed in the simulation study. In conclusion, the proposed calibration method performs at least as good as the standard method. PMID:27704599

  4. Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error

    NASA Astrophysics Data System (ADS)

    Miller, Austin

    In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.

  5. Study on optical 3D angular deformations measurement

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Wang, Xingshu; Huang, Zongsheng; Yang, Jinliang

    2013-12-01

    3D angular deformations will be inevitable when ships are sailing, due to the changes of the environmental temperature and external stresses. The measurement of 3D angular deformations is one of the most critical and difficult issues in navy and shipbuilding industry around the world. In this paper, we propose an optical method to measure 3D ship angular deformations and discuss the measurement errors in detail. Theoretical analysis shows that the measured errors of the pitching and yawing deformations are induced by the installation errors of the image aperture, and the measured error of the rolling deformation depends on the subpixel location algorithm in image processing. It indicates that the measured errors of the optical measurement proposed in this paper are at the magnitude of angular seconds, when the elaborated installation and precise image processing technology are both performed.

  6. Infrared Retrievals of Ice Cloud Properties and Uncertainties with an Optimal Estimation Retrieval Method

    NASA Astrophysics Data System (ADS)

    Wang, C.; Platnick, S. E.; Meyer, K.; Zhang, Z.

    2014-12-01

    We developed an optimal estimation (OE)-based method using infrared (IR) observations to retrieve ice cloud optical thickness (COT), cloud effective radius (CER), and cloud top height (CTH) simultaneously. The OE-based retrieval is coupled with a fast IR radiative transfer model (RTM) that simulates observations of different sensors, and corresponding Jacobians in cloudy atmospheres. Ice cloud optical properties are calculated using the MODIS Collection 6 (C6) ice crystal habit (severely roughened hexagonal column aggregates). The OE-based method can be applied to various IR space-borne and airborne sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the enhanced MODIS Airborne Simulator (eMAS), by optimally selecting IR bands with high information content. Four major error sources (i.e., the measurement error, fast RTM error, model input error, and pre-assumed ice crystal habit error) are taken into account in our OE retrieval method. We show that measurement error and fast RTM error have little impact on cloud retrievals, whereas errors from the model input and pre-assumed ice crystal habit significantly increase retrieval uncertainties when the cloud is optically thin. Comparisons between the OE-retrieved ice cloud properties and other operational cloud products (e.g., the MODIS C6 and CALIOP cloud products) are shown.

  7. COMPLEX VARIABLE BOUNDARY ELEMENT METHOD: APPLICATIONS.

    USGS Publications Warehouse

    Hromadka, T.V.; Yen, C.C.; Guymon, G.L.

    1985-01-01

    The complex variable boundary element method (CVBEM) is used to approximate several potential problems where analytical solutions are known. A modeling result produced from the CVBEM is a measure of relative error in matching the known boundary condition values of the problem. A CVBEM error-reduction algorithm is used to reduce the relative error of the approximation by adding nodal points in boundary regions where error is large. From the test problems, overall error is reduced significantly by utilizing the adaptive integration algorithm.

  8. Propagation of stage measurement uncertainties to streamflow time series

    NASA Astrophysics Data System (ADS)

    Horner, Ivan; Le Coz, Jérôme; Renard, Benjamin; Branger, Flora; McMillan, Hilary

    2016-04-01

    Streamflow uncertainties due to stage measurements errors are generally overlooked in the promising probabilistic approaches that have emerged in the last decade. We introduce an original error model for propagating stage uncertainties through a stage-discharge rating curve within a Bayesian probabilistic framework. The method takes into account both rating curve (parametric errors and structural errors) and stage uncertainty (systematic and non-systematic errors). Practical ways to estimate the different types of stage errors are also presented: (1) non-systematic errors due to instrument resolution and precision and non-stationary waves and (2) systematic errors due to gauge calibration against the staff gauge. The method is illustrated at a site where the rating-curve-derived streamflow can be compared with an accurate streamflow reference. The agreement between the two time series is overall satisfying. Moreover, the quantification of uncertainty is also satisfying since the streamflow reference is compatible with the streamflow uncertainty intervals derived from the rating curve and the stage uncertainties. Illustrations from other sites are also presented. Results are much contrasted depending on the site features. In some cases, streamflow uncertainty is mainly due to stage measurement errors. The results also show the importance of discriminating systematic and non-systematic stage errors, especially for long term flow averages. Perspectives for improving and validating the streamflow uncertainty estimates are eventually discussed.

  9. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  10. Evaluation of random errors in Williams’ series coefficients obtained with digital image correlation

    NASA Astrophysics Data System (ADS)

    Lychak, Oleh V.; Holyns'kiy, Ivan S.

    2016-03-01

    The use of the Williams’ series parameters for fracture analysis requires valid information about their error values. The aim of this investigation is the development of the method for estimation of the standard deviation of random errors of the Williams’ series parameters, obtained from the measured components of the stress field. Also, the criteria for choosing the optimal number of terms in the truncated Williams’ series for derivation of their parameters with minimal errors is proposed. The method was used for the evaluation of the Williams’ parameters, obtained from the data, and measured by the digital image correlation technique for testing a three-point bending specimen.

  11. Reliability and validity in measurement of true humeral retroversion by a three-dimensional cylinder fitting method.

    PubMed

    Saka, Masayuki; Yamauchi, Hiroki; Hoshi, Kenji; Yoshioka, Toru; Hamada, Hidetoshi; Gamada, Kazuyoshi

    2015-05-01

    Humeral retroversion is defined as the orientation of the humeral head relative to the distal humerus. Because none of the previous methods used to measure humeral retroversion strictly follow this definition, values obtained by these techniques vary and may be biased by morphologic variations of the humerus. The purpose of this study was 2-fold: to validate a method to define the axis of the distal humerus with a virtual cylinder and to establish the reliability of 3-dimensional (3D) measurement of humeral retroversion by this cylinder fitting method. Humeral retroversion in 14 baseball players (28 humeri) was measured by the 3D cylinder fitting method. The root mean square error was calculated to compare values obtained by a single tester and by 2 different testers using the embedded coordinate system. To establish the reliability, intraclass correlation coefficient (ICC) and precision (standard error of measurement [SEM]) were calculated. The root mean square errors for the humeral coordinate system were <1.0 mm/1.0° for comparison of all translations/rotations obtained by a single tester and <1.0 mm/2.0° for comparison obtained by 2 different testers. Assessment of reliability and precision of the 3D measurement of retroversion yielded an intratester ICC of 0.99 (SEM, 1.0°) and intertester ICC of 0.96 (SEM, 2.8°). The error in measurements obtained by a distal humerus cylinder fitting method was small enough not to affect retroversion measurement. The 3D measurement of retroversion by this method provides excellent intratester and intertester reliability. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Numerical simulations to assess the tracer dilution method for measurement of landfill methane emissions.

    PubMed

    Taylor, Diane M; Chow, Fotini K; Delkash, Madjid; Imhoff, Paul T

    2016-10-01

    Landfills are a significant contributor to anthropogenic methane emissions, but measuring these emissions can be challenging. This work uses numerical simulations to assess the accuracy of the tracer dilution method, which is used to estimate landfill emissions. Atmospheric dispersion simulations with the Weather Research and Forecast model (WRF) are run over Sandtown Landfill in Delaware, USA, using observation data to validate the meteorological model output. A steady landfill methane emissions rate is used in the model, and methane and tracer gas concentrations are collected along various transects downwind from the landfill for use in the tracer dilution method. The calculated methane emissions are compared to the methane emissions rate used in the model to find the percent error of the tracer dilution method for each simulation. The roles of different factors are examined: measurement distance from the landfill, transect angle relative to the wind direction, speed of the transect vehicle, tracer placement relative to the hot spot of methane emissions, complexity of topography, and wind direction. Results show that percent error generally decreases with distance from the landfill, where the tracer and methane plumes become well mixed. Tracer placement has the largest effect on percent error, and topography and wind direction both have significant effects, with measurement errors ranging from -12% to 42% over all simulations. Transect angle and transect speed have small to negligible effects on the accuracy of the tracer dilution method. These tracer dilution method simulations provide insight into measurement errors that might occur in the field, enhance understanding of the method's limitations, and aid interpretation of field data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Measuring Scale Errors in a Laser Tracker’s Horizontal Angle Encoder Through Simple Length Measurement and Two-Face System Tests

    PubMed Central

    Muralikrishnan, B.; Blackburn, C.; Sawyer, D.; Phillips, S.; Bridges, R.

    2010-01-01

    We describe a method to estimate the scale errors in the horizontal angle encoder of a laser tracker in this paper. The method does not require expensive instrumentation such as a rotary stage or even a calibrated artifact. An uncalibrated but stable length is realized between two targets mounted on stands that are at tracker height. The tracker measures the distance between these two targets from different azimuthal positions (say, in intervals of 20° over 360°). Each target is measured in both front face and back face. Low order harmonic scale errors can be estimated from this data and may then be used to correct the encoder’s error map to improve the tracker’s angle measurement accuracy. We have demonstrated this for the second order harmonic in this paper. It is important to compensate for even order harmonics as their influence cannot be removed by averaging front face and back face measurements whereas odd orders can be removed by averaging. We tested six trackers from three different manufacturers. Two of those trackers are newer models introduced at the time of writing of this paper. For older trackers from two manufacturers, the length errors in a 7.75 m horizontal length placed 7 m away from a tracker were of the order of ± 65 μm before correcting the error map. They reduced to less than ± 25 μm after correcting the error map for second order scale errors. Newer trackers from the same manufacturers did not show this error. An older tracker from a third manufacturer also did not show this error. PMID:27134789

  14. Analysis of real-time numerical integration methods applied to dynamic clamp experiments.

    PubMed

    Butera, Robert J; McCarthy, Maeve L

    2004-12-01

    Real-time systems are frequently used as an experimental tool, whereby simulated models interact in real time with neurophysiological experiments. The most demanding of these techniques is known as the dynamic clamp, where simulated ion channel conductances are artificially injected into a neuron via intracellular electrodes for measurement and stimulation. Methodologies for implementing the numerical integration of the gating variables in real time typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is often used for rapidly integrating ion channel gating variables. We find via simulation studies that for small time steps, both methods are comparable, but at larger time steps, EE performs worse than Euler. We derive error bounds for both methods, and find that the error can be characterized in terms of two ratios: time step over time constant, and voltage measurement error over the slope factor of the steady-state activation curve of the voltage-dependent gating variable. These ratios reliably bound the simulation error and yield results consistent with the simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler can be computed with identical computational efficiency as EE.

  15. An image registration-based technique for noninvasive vascular elastography

    NASA Astrophysics Data System (ADS)

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-02-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in the regions far from the center of the vessel, causing a high error of displacement measurement. On the other hand, increasing the compression leads to a relatively large displacement in the regions near the center, which reduces the performance of the cross correlation-based methods. In this study, a non-rigid image registration-based technique is proposed to measure the tissue displacement for a relatively large compression. The results show that the error of the displacement measurement obtained by the proposed method is reduced by increasing the amount of compression while the error of the cross correlationbased method rises for a relatively large compression. We also used the synthetic aperture imaging method, benefiting the directivity diagram, to improve the image quality, especially in the superficial regions. The best relative root-mean-square error (RMSE) of the proposed method and the adaptive cross correlation method were 4.5% and 6%, respectively. Consequently, the proposed algorithm outperforms the conventional method and reduces the relative RMSE by 25%.

  16. Measuring quality in anatomic pathology.

    PubMed

    Raab, Stephen S; Grzybicki, Dana Marie

    2008-06-01

    This article focuses mainly on diagnostic accuracy in measuring quality in anatomic pathology, noting that measuring any quality metric is complex and demanding. The authors discuss standardization and its variability within and across areas of care delivery and efforts involving defining and measuring error to achieve pathology quality and patient safety. They propose that data linking error to patient outcome are critical for developing quality improvement initiatives targeting errors that cause patient harm in addition to using methods of root cause analysis, beyond those traditionally used in cytologic-histologic correlation, to assist in the development of error reduction and quality improvement plans.

  17. Short-term Variability of Extinction by Broadband Stellar Photometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musat, I.C.; Ellingson, R.G.

    2005-03-18

    Aerosol optical depth variation over short-term time intervals is determined from broadband observations of stars with a whole sky imager. The main difficulty in such measurements consists of accurately separating the star flux value from the non-stellar diffuse skylight. Using correction method to overcome this difficulty, the monochromatic extinction at the ground due to aerosols is extracted from heterochromatic measurements. A form of closure is achieved by comparison with simultaneous or temporally close measurements with other instruments, and the total error of the method, as a combination of random error of measurements and systematic error of calibration and model, ismore » assessed as being between 2.6 and 3% rms.« less

  18. An innovative method for coordinate measuring machine one-dimensional self-calibration with simplified experimental process.

    PubMed

    Fang, Cheng; Butler, David Lee

    2013-05-01

    In this paper, an innovative method for CMM (Coordinate Measuring Machine) self-calibration is proposed. In contrast to conventional CMM calibration that relies heavily on a high precision reference standard such as a laser interferometer, the proposed calibration method is based on a low-cost artefact which is fabricated with commercially available precision ball bearings. By optimizing the mathematical model and rearranging the data sampling positions, the experimental process and data analysis can be simplified. In mathematical expression, the samples can be minimized by eliminating the redundant equations among those configured by the experimental data array. The section lengths of the artefact are measured at arranged positions, with which an equation set can be configured to determine the measurement errors at the corresponding positions. With the proposed method, the equation set is short of one equation, which can be supplemented by either measuring the total length of the artefact with a higher-precision CMM or calibrating the single point error at the extreme position with a laser interferometer. In this paper, the latter is selected. With spline interpolation, the error compensation curve can be determined. To verify the proposed method, a simple calibration system was set up on a commercial CMM. Experimental results showed that with the error compensation curve uncertainty of the measurement can be reduced to 50%.

  19. Correction of stream quality trends for the effects of laboratory measurement bias

    USGS Publications Warehouse

    Alexander, Richard B.; Smith, Richard A.; Schwarz, Gregory E.

    1993-01-01

    We present a statistical model relating measurements of water quality to associated errors in laboratory methods. Estimation of the model allows us to correct trends in water quality for long-term and short-term variations in laboratory measurement errors. An illustration of the bias correction method for a large national set of stream water quality and quality assurance data shows that reductions in the bias of estimates of water quality trend slopes are achieved at the expense of increases in the variance of these estimates. Slight improvements occur in the precision of estimates of trend in bias by using correlative information on bias and water quality to estimate random variations in measurement bias. The results of this investigation stress the need for reliable, long-term quality assurance data and efficient statistical methods to assess the effects of measurement errors on the detection of water quality trends.

  20. Analytical N beam position monitor method

    NASA Astrophysics Data System (ADS)

    Wegscheider, A.; Langner, A.; Tomás, R.; Franchi, A.

    2017-11-01

    Measurement and correction of focusing errors is of great importance for performance and machine protection of circular accelerators. Furthermore LHC needs to provide equal luminosities to the experiments ATLAS and CMS. High demands are also set on the speed of the optics commissioning, as the foreseen operation with β*-leveling on luminosity will require many operational optics. A fast measurement of the β -function around a storage ring is usually done by using the measured phase advance between three consecutive beam position monitors (BPMs). A recent extension of this established technique, called the N-BPM method, was successfully applied for optics measurements at CERN, ALBA, and ESRF. We present here an improved algorithm that uses analytical calculations for both random and systematic errors and takes into account the presence of quadrupole, sextupole, and BPM misalignments, in addition to quadrupolar field errors. This new scheme, called the analytical N-BPM method, is much faster, further improves the measurement accuracy, and is applicable to very pushed beam optics where the existing numerical N-BPM method tends to fail.

  1. Wind power error estimation in resource assessments.

    PubMed

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  2. Wind Power Error Estimation in Resource Assessments

    PubMed Central

    Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444

  3. Atmospheric modeling to assess wind dependence in tracer dilution method measurements of landfill methane emissions.

    PubMed

    Taylor, Diane M; Chow, Fotini K; Delkash, Madjid; Imhoff, Paul T

    2018-03-01

    The short-term temporal variability of landfill methane emissions is not well understood due to uncertainty in measurement methods. Significant variability is seen over short-term measurement campaigns with the tracer dilution method (TDM), but this variability may be due in part to measurement error rather than fluctuations in the actual landfill emissions. In this study, landfill methane emissions and TDM-measured emissions are simulated over a real landfill in Delaware, USA using the Weather Research and Forecasting model (WRF) for two emissions scenarios. In the steady emissions scenario, a constant landfill emissions rate is prescribed at each model grid point on the surface of the landfill. In the unsteady emissions scenario, emissions are calculated at each time step as a function of the local surface wind speed, resulting in variable emissions over each 1.5-h measurement period. The simulation output is used to assess the standard deviation and percent error of the TDM-measured emissions. Eight measurement periods are simulated over two different days to look at different conditions. Results show that standard deviation of the TDM- measured emissions does not increase significantly from the steady emissions simulations to the unsteady emissions scenarios, indicating that the TDM may have inherent errors in its prediction of emissions fluctuations. Results also show that TDM error does not increase significantly from the steady to the unsteady emissions simulations. This indicates that introducing variability to the landfill emissions does not increase errors in the TDM at this site. Across all simulations, TDM errors range from -15% to 43%, consistent with the range of errors seen in previous TDM studies. Simulations indicate diurnal variations of methane emissions when wind effects are significant, which may be important when developing daily and annual emissions estimates from limited field data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  5. Determination of facial symmetry in unilateral cleft lip and palate patients from three-dimensional data: technical report and assessment of measurement errors.

    PubMed

    Nkenke, Emeka; Lehner, Bernhard; Kramer, Manuel; Haeusler, Gerd; Benz, Stefanie; Schuster, Maria; Neukam, Friedrich W; Vairaktaris, Eleftherios G; Wurm, Jochen

    2006-03-01

    To assess measurement errors of a novel technique for the three-dimensional determination of the degree of facial symmetry in patients suffering from unilateral cleft lip and palate malformations. Technical report, reliability study. Cleft Lip and Palate Center of the University of Erlangen-Nuremberg, Erlangen, Germany. The three-dimensional facial surface data of five 10-year-old unilateral cleft lip and palate patients were subjected to the analysis. Distances, angles, surface areas, and volumes were assessed twice. Calculations were made for method error, intraclass correlation coefficient, and repeatability of the measurements of distances, angles, surface areas, and volumes. The method errors were less than 1 mm for distances and less than 1.5 degrees for angles. The intraclass correlation coefficients showed values greater than .90 for all parameters. The repeatability values were comparable for cleft and noncleft sides. The small method errors, high intraclass correlation coefficients, and comparable repeatability values for cleft and noncleft sides reveal that the new technique is appropriate for clinical use.

  6. Random errors in interferometry with the least-squares method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Qi

    2011-01-20

    This investigation analyzes random errors in interferometric surface profilers using the least-squares method when random noises are present. Two types of random noise are considered here: intensity noise and position noise. Two formulas have been derived for estimating the standard deviations of the surface height measurements: one is for estimating the standard deviation when only intensity noise is present, and the other is for estimating the standard deviation when only position noise is present. Measurements on simulated noisy interferometric data have been performed, and standard deviations of the simulated measurements have been compared with those theoretically derived. The relationships havemore » also been discussed between random error and the wavelength of the light source and between random error and the amplitude of the interference fringe.« less

  7. A new method for distortion magnetic field compensation of a geomagnetic vector measurement system

    NASA Astrophysics Data System (ADS)

    Liu, Zhongyan; Pan, Mengchun; Tang, Ying; Zhang, Qi; Geng, Yunling; Wan, Chengbiao; Chen, Dixiang; Tian, Wugang

    2016-12-01

    The geomagnetic vector measurement system mainly consists of three-axis magnetometer and an INS (inertial navigation system), which have many ferromagnetic parts on them. The magnetometer is always distorted by ferromagnetic parts and other electric equipments such as INS and power circuit module within the system, which can lead to geomagnetic vector measurement error of thousands of nT. Thus, the geomagnetic vector measurement system has to be compensated in order to guarantee the measurement accuracy. In this paper, a new distortion magnetic field compensation method is proposed, in which a permanent magnet with different relative positions is used to change the ambient magnetic field to construct equations of the error model parameters, and the parameters can be accurately estimated by solving linear equations. In order to verify effectiveness of the proposed method, the experiment is conducted, and the results demonstrate that, after compensation, the components errors of measured geomagnetic field are reduced significantly. It demonstrates that the proposed method can effectively improve the accuracy of the geomagnetic vector measurement system.

  8. A MIMO radar quadrature and multi-channel amplitude-phase error combined correction method based on cross-correlation

    NASA Astrophysics Data System (ADS)

    Yun, Lingtong; Zhao, Hongzhong; Du, Mengyuan

    2018-04-01

    Quadrature and multi-channel amplitude-phase error have to be compensated in the I/Q quadrature sampling and signal through multi-channel. A new method that it doesn't need filter and standard signal is presented in this paper. And it can combined estimate quadrature and multi-channel amplitude-phase error. The method uses cross-correlation and amplitude ratio between the signal to estimate the two amplitude-phase errors simply and effectively. And the advantages of this method are verified by computer simulation. Finally, the superiority of the method is also verified by measure data of outfield experiments.

  9. Fluorescence errors in integrating sphere measurements of remote phosphor type LED light sources

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Zong, Y.; Podobedov, V. B.; Nadal, M. E.; Hanselaer, P.; Ohno, Y.

    2011-05-01

    The relative spectral radiant flux error caused by phosphor fluorescence during integrating sphere measurements is investigated both theoretically and experimentally. Integrating sphere and goniophotometer measurements are compared and used for model validation, while a case study provides additional clarification. Criteria for reducing fluorescence errors to a degree of negligibility as well as a fluorescence error correction method based on simple matrix algebra are presented. Only remote phosphor type LED light sources are studied because of their large phosphor surfaces and high application potential in general lighting.

  10. Simultaneous estimation of aquifer thickness, conductivity, and BC using borehole and hydrodynamic data with geostatistical inverse direct method

    NASA Astrophysics Data System (ADS)

    Gao, F.; Zhang, Y.

    2017-12-01

    A new inverse method is developed to simultaneously estimate aquifer thickness and boundary conditions using borehole and hydrodynamic measurements from a homogeneous confined aquifer under steady-state ambient flow. This method extends a previous groundwater inversion technique which had assumed known aquifer geometry and thickness. In this research, thickness inversion was successfully demonstrated when hydrodynamic data were supplemented with measured thicknesses from boreholes. Based on a set of hybrid formulations which describe approximate solutions to the groundwater flow equation, the new inversion technique can incorporate noisy observed data (i.e., thicknesses, hydraulic heads, Darcy fluxes or flow rates) at measurement locations as a set of conditioning constraints. Given sufficient quantity and quality of the measurements, the inverse method yields a single well-posed system of equations that can be solved efficiently with nonlinear optimization. The method is successfully tested on two-dimensional synthetic aquifer problems with regular geometries. The solution is stable when measurement errors are increased, with error magnitude reaching up to +/- 10% of the range of the respective measurement. When error-free observed data are used to condition the inversion, the estimated thickness is within a +/- 5% error envelope surrounding the true value; when data contain increasing errors, the estimated thickness become less accurate, as expected. Different combinations of measurement types are then investigated to evaluate data worth. Thickness can be inverted with the combination of observed heads and at least one of the other types of observations such as thickness, Darcy fluxes, or flow rates. Data requirement of the new inversion method is thus not much different from that of interpreting classic well tests. Future work will improve upon this research by developing an estimation strategy for heterogeneous aquifers while drawdown data from hydraulic tests will also be incorporated as conditioning measurements.

  11. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  12. Research on Measurement Accuracy of Laser Tracking System Based on Spherical Mirror with Rotation Errors of Gimbal Mount Axes

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang

    2018-02-01

    This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.

  13. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to eliminate the surface measurement noise or measurement errors can also suffer from aliasing effects. During re-sampling of a surface map, this software preserves the low spatial-frequency characteristic of a given surface map through the use of Zernike-polynomial fit coefficients, and maintains mid- and high-spatial-frequency characteristics of the given surface map by the use of a PSD model derived from the two-dimensional PSD data of the mid- and high-spatial-frequency components of the original surface map. Because this new method creates the new surface map in the desired sampling format from analytical expressions only, it does not encounter any aliasing effects and does not cause any discontinuity in the resultant surface map.

  14. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  15. Spacecraft methods and structures with enhanced attitude control that facilitates gyroscope substitutions

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Kurland, Jeffrey A. (Inventor); Dawson, Alec M. (Inventor); Wu, Yeong-Wei A. (Inventor); Uetrecht, David S. (Inventor)

    2004-01-01

    Methods and structures are provided that enhance attitude control during gyroscope substitutions by insuring that a spacecraft's attitude control system does not drive its absolute-attitude sensors out of their capture ranges. In a method embodiment, an operational process-noise covariance Q of a Kalman filter is temporarily replaced with a substantially greater interim process-noise covariance Q. This replacement increases the weight given to the most recent attitude measurements and hastens the reduction of attitude errors and gyroscope bias errors. The error effect of the substituted gyroscopes is reduced and the absolute-attitude sensors are not driven out of their capture range. In another method embodiment, this replacement is preceded by the temporary replacement of an operational measurement-noise variance R with a substantially larger interim measurement-noise variance R to reduce transients during the gyroscope substitutions.

  16. A New Correction Technique for Strain-Gage Measurements Acquired in Transient-Temperature Environments

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1996-01-01

    Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Clifton, Andrew

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less

  18. Error analysis and experiments of attitude measurement using laser gyroscope

    NASA Astrophysics Data System (ADS)

    Ren, Xin-ran; Ma, Wen-li; Jiang, Ping; Huang, Jin-long; Pan, Nian; Guo, Shuai; Luo, Jun; Li, Xiao

    2018-03-01

    The precision of photoelectric tracking and measuring equipment on the vehicle and vessel is deteriorated by the platform's movement. Specifically, the platform's movement leads to the deviation or loss of the target, it also causes the jitter of visual axis and then produces image blur. In order to improve the precision of photoelectric equipment, the attitude of photoelectric equipment fixed with the platform must be measured. Currently, laser gyroscope is widely used to measure the attitude of the platform. However, the measurement accuracy of laser gyro is affected by its zero bias, scale factor, installation error and random error. In this paper, these errors were analyzed and compensated based on the laser gyro's error model. The static and dynamic experiments were carried out on a single axis turntable, and the error model was verified by comparing the gyro's output with an encoder with an accuracy of 0.1 arc sec. The accuracy of the gyroscope has increased from 7000 arc sec to 5 arc sec for an hour after error compensation. The method used in this paper is suitable for decreasing the laser gyro errors in inertial measurement applications.

  19. Measurement error in earnings data: Using a mixture model approach to combine survey and register data.

    PubMed

    Meijer, Erik; Rohwedder, Susann; Wansbeek, Tom

    2012-01-01

    Survey data on earnings tend to contain measurement error. Administrative data are superior in principle, but they are worthless in case of a mismatch. We develop methods for prediction in mixture factor analysis models that combine both data sources to arrive at a single earnings figure. We apply the methods to a Swedish data set. Our results show that register earnings data perform poorly if there is a (small) probability of a mismatch. Survey earnings data are more reliable, despite their measurement error. Predictors that combine both and take conditional class probabilities into account outperform all other predictors.

  20. Linear time-dependent reference intervals where there is measurement error in the time variable-a parametric approach.

    PubMed

    Gillard, Jonathan

    2015-12-01

    This article re-examines parametric methods for the calculation of time specific reference intervals where there is measurement error present in the time covariate. Previous published work has commonly been based on the standard ordinary least squares approach, weighted where appropriate. In fact, this is an incorrect method when there are measurement errors present, and in this article, we show that the use of this approach may, in certain cases, lead to referral patterns that may vary with different values of the covariate. Thus, it would not be the case that all patients are treated equally; some subjects would be more likely to be referred than others, hence violating the principle of equal treatment required by the International Federation for Clinical Chemistry. We show, by using measurement error models, that reference intervals are produced that satisfy the requirement for equal treatment for all subjects. © The Author(s) 2011.

  1. Adjustment of Measurements with Multiplicative Errors: Error Analysis, Estimates of the Variance of Unit Weight, and Effect on Volume Estimation from LiDAR-Type Digital Elevation Models

    PubMed Central

    Shi, Yun; Xu, Peiliang; Peng, Junhuan; Shi, Chuang; Liu, Jingnan

    2014-01-01

    Modern observation technology has verified that measurement errors can be proportional to the true values of measurements such as GPS, VLBI baselines and LiDAR. Observational models of this type are called multiplicative error models. This paper is to extend the work of Xu and Shimada published in 2000 on multiplicative error models to analytical error analysis of quantities of practical interest and estimates of the variance of unit weight. We analytically derive the variance-covariance matrices of the three least squares (LS) adjustments, the adjusted measurements and the corrections of measurements in multiplicative error models. For quality evaluation, we construct five estimators for the variance of unit weight in association of the three LS adjustment methods. Although LiDAR measurements are contaminated with multiplicative random errors, LiDAR-based digital elevation models (DEM) have been constructed as if they were of additive random errors. We will simulate a model landslide, which is assumed to be surveyed with LiDAR, and investigate the effect of LiDAR-type multiplicative error measurements on DEM construction and its effect on the estimate of landslide mass volume from the constructed DEM. PMID:24434880

  2. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.

  3. Errors in causal inference: an organizational schema for systematic error and random error.

    PubMed

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.

    PubMed

    Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W

    2017-06-22

    Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.

  5. A novel dual-camera calibration method for 3D optical measurement

    NASA Astrophysics Data System (ADS)

    Gai, Shaoyan; Da, Feipeng; Dai, Xianqiang

    2018-05-01

    A novel dual-camera calibration method is presented. In the classic methods, the camera parameters are usually calculated and optimized by the reprojection error. However, for a system designed for 3D optical measurement, this error does not denote the result of 3D reconstruction. In the presented method, a planar calibration plate is used. In the beginning, images of calibration plate are snapped from several orientations in the measurement range. The initial parameters of the two cameras are obtained by the images. Then, the rotation and translation matrix that link the frames of two cameras are calculated by using method of Centroid Distance Increment Matrix. The degree of coupling between the parameters is reduced. Then, 3D coordinates of the calibration points are reconstructed by space intersection method. At last, the reconstruction error is calculated. It is minimized to optimize the calibration parameters. This error directly indicates the efficiency of 3D reconstruction, thus it is more suitable for assessing the quality of dual-camera calibration. In the experiments, it can be seen that the proposed method is convenient and accurate. There is no strict requirement on the calibration plate position in the calibration process. The accuracy is improved significantly by the proposed method.

  6. Correcting For Seed-Particle Lag In LV Measurements

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Gartrell, Luther R.; Kamemoto, Derek Y.

    1994-01-01

    Two experiments conducted to evaluate effects of sizes of seed particles on errors in LV measurements of mean flows. Both theoretical and conventional experimental methods used to evaluate errors. First experiment focused on measurement of decelerating stagnation streamline of low-speed flow around circular cylinder with two-dimensional afterbody. Second performed in transonic flow and involved measurement of decelerating stagnation streamline of hemisphere with cylindrical afterbody. Concluded, mean-quantity LV measurements subject to large errors directly attributable to sizes of particles. Predictions of particle-response theory showed good agreement with experimental results, indicating velocity-error-correction technique used in study viable for increasing accuracy of laser velocimetry measurements. Technique simple and useful in any research facility in which flow velocities measured.

  7. Validity of body composition assessment methods for older men with cardiac disease.

    PubMed

    Young, H; Porcari, J; Terry, L; Brice, G

    1998-01-01

    This study was designed to determine which of several body composition assessment methods was most accurate for patients with cardiac disease for the purpose of outcome measurement. Six body composition assessment methods were administered to each of 24 men with cardiac disease. Methods included circumference measurement, skinfold measurement, near-infrared interactance via the Futrex-5000, bioelectrical impedance via the BioAnalogics ElectroLipoGraph and Tanita TBF-150, and hydrostatic weighing, the criterion measure. A repeated measures analysis of variance indicated no significant (P > .05) difference between circumference and skinfold measurements compared to hydrostatic weighing. Near-infrared interactance presented the best standard error of estimates (3.5%) and the best correlation (r = .84) with hydrostatic weighing; however, the constant error was 3.76%. Bioelectrical impedance measured by the ElectroLipoGraph and TBF-150 instruments significantly underestimated percent body fat by 8.81% and 4.8%, respectively. In this study of middle-aged to older men with cardiac disease, the best method for determining body fat was circumferences. This technique was accurate, easy to administer, inexpensive, and had a lower error potential than the other techniques. Skinfold measurements were also closely related to hydrostatic weighing, but should be performed only by experienced practitioners because there is a greater potential for tester error in certain patients. In the future, near-infrared interactance measurements may be a viable technique for body composition assessment in patients with cardiac disease. However, algorithms specific to the population of patients with cardiac disease being tested must be developed before this technique can be routinely recommended for body composition assessment. Bioelectrical impedance assessment by either method is not recommended for patients with cardiac disease, as it consistently underestimated percent body fat when compared to hydrostatic weighing in this population.

  8. Evaluation of Two Methods for Modeling Measurement Errors When Testing Interaction Effects with Observed Composite Scores

    ERIC Educational Resources Information Center

    Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C.

    2018-01-01

    Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…

  9. Tests for detecting overdispersion in models with measurement error in covariates.

    PubMed

    Yang, Yingsi; Wong, Man Yu

    2015-11-30

    Measurement error in covariates can affect the accuracy in count data modeling and analysis. In overdispersion identification, the true mean-variance relationship can be obscured under the influence of measurement error in covariates. In this paper, we propose three tests for detecting overdispersion when covariates are measured with error: a modified score test and two score tests based on the proposed approximate likelihood and quasi-likelihood, respectively. The proposed approximate likelihood is derived under the classical measurement error model, and the resulting approximate maximum likelihood estimator is shown to have superior efficiency. Simulation results also show that the score test based on approximate likelihood outperforms the test based on quasi-likelihood and other alternatives in terms of empirical power. By analyzing a real dataset containing the health-related quality-of-life measurements of a particular group of patients, we demonstrate the importance of the proposed methods by showing that the analyses with and without measurement error correction yield significantly different results. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Designing Measurement Studies under Budget Constraints: Controlling Error of Measurement and Power.

    ERIC Educational Resources Information Center

    Marcoulides, George A.

    1995-01-01

    A methodology is presented for minimizing the mean error variance-covariance component in studies with resource constraints. The method is illustrated using a one-facet multivariate design. Extensions to other designs are discussed. (SLD)

  11. Transfer Alignment Error Compensator Design Based on Robust State Estimation

    NASA Astrophysics Data System (ADS)

    Lyou, Joon; Lim, You-Chol

    This paper examines the transfer alignment problem of the StrapDown Inertial Navigation System (SDINS), which is subject to the ship’s roll and pitch. Major error sources for velocity and attitude matching are lever arm effect, measurement time delay and ship-body flexure. To reduce these alignment errors, an error compensation method based on state augmentation and robust state estimation is devised. A linearized error model for the velocity and attitude matching transfer alignment system is derived first by linearizing the nonlinear measurement equation with respect to its time delay and dominant Y-axis flexure, and by augmenting the delay state and flexure state into conventional linear state equations. Then an H∞ filter is introduced to account for modeling uncertainties of time delay and the ship-body flexure. The simulation results show that this method considerably decreases azimuth alignment errors considerably.

  12. Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation

    NASA Astrophysics Data System (ADS)

    Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu

    2016-11-01

    Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.

  13. Estimating IMU heading error from SAR images.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin Walter

    Angular orientation errors of the real antenna for Synthetic Aperture Radar (SAR) will manifest as undesired illumination gradients in SAR images. These gradients can be measured, and the pointing error can be calculated. This can be done for single images, but done more robustly using multi-image methods. Several methods are provided in this report. The pointing error can then be fed back to the navigation Kalman filter to correct for problematic heading (yaw) error drift. This can mitigate the need for uncomfortable and undesired IMU alignment maneuvers such as S-turns.

  14. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yueqi; Lava, Pascal; Reu, Phillip

    This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.

  15. Theoretical analysis on the measurement errors of local 2D DIC: Part I temporal and spatial uncertainty quantification of displacement measurements

    DOE PAGES

    Wang, Yueqi; Lava, Pascal; Reu, Phillip; ...

    2015-12-23

    This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.

  16. A review of setup error in supine breast radiotherapy using cone-beam computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batumalai, Vikneswary, E-mail: Vikneswary.batumalai@sswahs.nsw.gov.au; Liverpool and Macarthur Cancer Therapy Centres, New South Wales; Ingham Institute of Applied Medical Research, Sydney, New South Wales

    2016-10-01

    Setup error in breast radiotherapy (RT) measured with 3-dimensional cone-beam computed tomography (CBCT) is becoming more common. The purpose of this study is to review the literature relating to the magnitude of setup error in breast RT measured with CBCT. The different methods of image registration between CBCT and planning computed tomography (CT) scan were also explored. A literature search, not limited by date, was conducted using Medline and Google Scholar with the following key words: breast cancer, RT, setup error, and CBCT. This review includes studies that reported on systematic and random errors, and the methods used when registeringmore » CBCT scans with planning CT scan. A total of 11 relevant studies were identified for inclusion in this review. The average magnitude of error is generally less than 5 mm across a number of studies reviewed. The common registration methods used when registering CBCT scans with planning CT scan are based on bony anatomy, soft tissue, and surgical clips. No clear relationships between the setup errors detected and methods of registration were observed from this review. Further studies are needed to assess the benefit of CBCT over electronic portal image, as CBCT remains unproven to be of wide benefit in breast RT.« less

  17. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    PubMed Central

    Zhang, Jiayu; Li, Jie; Zhang, Xi; Che, Xiaorui; Huang, Yugang; Feng, Kaiqiang

    2018-01-01

    The Semi-Strapdown Inertial Navigation System (SSINS) provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS) inertial measurement unit (MIMU) outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS) is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions. PMID:29734707

  18. Regression calibration for models with two predictor variables measured with error and their interaction, using instrumental variables and longitudinal data.

    PubMed

    Strand, Matthew; Sillau, Stefan; Grunwald, Gary K; Rabinovitch, Nathan

    2014-02-10

    Regression calibration provides a way to obtain unbiased estimators of fixed effects in regression models when one or more predictors are measured with error. Recent development of measurement error methods has focused on models that include interaction terms between measured-with-error predictors, and separately, methods for estimation in models that account for correlated data. In this work, we derive explicit and novel forms of regression calibration estimators and associated asymptotic variances for longitudinal models that include interaction terms, when data from instrumental and unbiased surrogate variables are available but not the actual predictors of interest. The longitudinal data are fit using linear mixed models that contain random intercepts and account for serial correlation and unequally spaced observations. The motivating application involves a longitudinal study of exposure to two pollutants (predictors) - outdoor fine particulate matter and cigarette smoke - and their association in interactive form with levels of a biomarker of inflammation, leukotriene E4 (LTE 4 , outcome) in asthmatic children. Because the exposure concentrations could not be directly observed, we used measurements from a fixed outdoor monitor and urinary cotinine concentrations as instrumental variables, and we used concentrations of fine ambient particulate matter and cigarette smoke measured with error by personal monitors as unbiased surrogate variables. We applied the derived regression calibration methods to estimate coefficients of the unobserved predictors and their interaction, allowing for direct comparison of toxicity of the different pollutants. We used simulations to verify accuracy of inferential methods based on asymptotic theory. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Influence of video compression on the measurement error of the television system

    NASA Astrophysics Data System (ADS)

    Sotnik, A. V.; Yarishev, S. N.; Korotaev, V. V.

    2015-05-01

    Video data require a very large memory capacity. Optimal ratio quality / volume video encoding method is one of the most actual problem due to the urgent need to transfer large amounts of video over various networks. The technology of digital TV signal compression reduces the amount of data used for video stream representation. Video compression allows effective reduce the stream required for transmission and storage. It is important to take into account the uncertainties caused by compression of the video signal in the case of television measuring systems using. There are a lot digital compression methods. The aim of proposed work is research of video compression influence on the measurement error in television systems. Measurement error of the object parameter is the main characteristic of television measuring systems. Accuracy characterizes the difference between the measured value abd the actual parameter value. Errors caused by the optical system can be selected as a source of error in the television systems measurements. Method of the received video signal processing is also a source of error. Presence of error leads to large distortions in case of compression with constant data stream rate. Presence of errors increases the amount of data required to transmit or record an image frame in case of constant quality. The purpose of the intra-coding is reducing of the spatial redundancy within a frame (or field) of television image. This redundancy caused by the strong correlation between the elements of the image. It is possible to convert an array of image samples into a matrix of coefficients that are not correlated with each other, if one can find corresponding orthogonal transformation. It is possible to apply entropy coding to these uncorrelated coefficients and achieve a reduction in the digital stream. One can select such transformation that most of the matrix coefficients will be almost zero for typical images . Excluding these zero coefficients also possible reducing of the digital stream. Discrete cosine transformation is most widely used among possible orthogonal transformation. Errors of television measuring systems and data compression protocols analyzed In this paper. The main characteristics of measuring systems and detected sources of their error detected. The most effective methods of video compression are determined. The influence of video compression error on television measuring systems was researched. Obtained results will increase the accuracy of the measuring systems. In television image quality measuring system reduces distortion identical distortion in analog systems and specific distortions resulting from the process of coding / decoding digital video signal and errors in the transmission channel. By the distortions associated with encoding / decoding signal include quantization noise, reducing resolution, mosaic effect, "mosquito" effect edging on sharp drops brightness, blur colors, false patterns, the effect of "dirty window" and other defects. The size of video compression algorithms used in television measuring systems based on the image encoding with intra- and inter prediction individual fragments. The process of encoding / decoding image is non-linear in space and in time, because the quality of the playback of a movie at the reception depends on the pre- and post-history of a random, from the preceding and succeeding tracks, which can lead to distortion of the inadequacy of the sub-picture and a corresponding measuring signal.

  20. Attenuation Compensation of Ultrasonic Wave in Soft Tissue for Acoustic Impedance Measurement of In vivo Bone by Transducer Vibration Method

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masasumi; Nakamura, Yuuta; Ishiguro, Masataka; Moriya, Tadashi

    2007-07-01

    In this paper, we describe a method of compensating the attenuation of the ultrasound caused by soft tissue in the transducer vibration method for the measurement of the acoustic impedance of in vivo bone. In the in vivo measurement, the acoustic impedance of bone is measured through soft tissue; therefore, the amplitude of the ultrasound reflected from the bone is attenuated. This attenuation causes an error of the order of -20 to -30% when the acoustic impedance is determined from the measured signals. To compensate the attenuation, the attenuation coefficient and length of the soft tissue are measured by the transducer vibration method. In the experiment using a phantom, this method allows the measurement of the acoustic impedance typically with an error as small as -8 to 10%.

  1. Volume error analysis for lung nodules attached to pulmonary vessels in an anthropomorphic thoracic phantom

    NASA Astrophysics Data System (ADS)

    Kinnard, Lisa M.; Gavrielides, Marios A.; Myers, Kyle J.; Zeng, Rongping; Peregoy, Jennifer; Pritchard, William; Karanian, John W.; Petrick, Nicholas

    2008-03-01

    High-resolution CT, three-dimensional (3D) methods for nodule volumetry have been introduced, with the hope that such methods will be more accurate and consistent than currently used planar measures of size. However, the error associated with volume estimation methods still needs to be quantified. Volume estimation error is multi-faceted in the sense that it is impacted by characteristics of the patient, the software tool and the CT system. The overall goal of this research is to quantify the various sources of measurement error and, when possible, minimize their effects. In the current study, we estimated nodule volume from ten repeat scans of an anthropomorphic phantom containing two synthetic spherical lung nodules (diameters: 5 and 10 mm; density: -630 HU), using a 16-slice Philips CT with 20, 50, 100 and 200 mAs exposures and 0.8 and 3.0 mm slice thicknesses. True volume was estimated from an average of diameter measurements, made using digital calipers. We report variance and bias results for volume measurements as a function of slice thickness, nodule diameter, and X-ray exposure.

  2. Selection of noisy measurement locations for error reduction in static parameter identification

    NASA Astrophysics Data System (ADS)

    Sanayei, Masoud; Onipede, Oladipo; Babu, Suresh R.

    1992-09-01

    An incomplete set of noisy static force and displacement measurements is used for parameter identification of structures at the element level. Measurement location and the level of accuracy in the measured data can drastically affect the accuracy of the identified parameters. A heuristic method is presented to select a limited number of degrees of freedom (DOF) to perform a successful parameter identification and to reduce the impact of measurement errors on the identified parameters. This pretest simulation uses an error sensitivity analysis to determine the effect of measurement errors on the parameter estimates. The selected DOF can be used for nondestructive testing and health monitoring of structures. Two numerical examples, one for a truss and one for a frame, are presented to demonstrate that using the measurements at the selected subset of DOF can limit the error in the parameter estimates.

  3. Pyrometer with tracking balancing

    NASA Astrophysics Data System (ADS)

    Ponomarev, D. B.; Zakharenko, V. A.; Shkaev, A. G.

    2018-04-01

    Currently, one of the main metrological noncontact temperature measurement challenges is the emissivity uncertainty. This paper describes a pyrometer with emissivity effect diminishing through the use of a measuring scheme with tracking balancing in which the radiation receiver is a null-indicator. In this paper the results of the prototype pyrometer absolute error study in surfaces temperature measurement of aluminum and nickel samples are presented. There is absolute error calculated values comparison considering the emissivity table values with errors on the results of experimental measurements by the proposed method. The practical implementation of the proposed technical solution has allowed two times to reduce the error due to the emissivity uncertainty.

  4. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  5. A new method for the analysis of fire spread modeling errors

    Treesearch

    Francis M. Fujioka

    2002-01-01

    Fire spread models have a long history, and their use will continue to grow as they evolve from a research tool to an operational tool. This paper describes a new method to analyse two-dimensional fire spread modeling errors, particularly to quantify the uncertainties of fire spread predictions. Measures of error are defined from the respective spread distances of...

  6. Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.; Haberbusch, Mark

    1993-01-01

    The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.

  7. Computation of misalignment and primary mirror astigmatism figure error of two-mirror telescopes

    NASA Astrophysics Data System (ADS)

    Gu, Zhiyuan; Wang, Yang; Ju, Guohao; Yan, Changxiang

    2018-01-01

    Active optics usually uses the computation models based on numerical methods to correct misalignments and figure errors at present. These methods can hardly lead to any insight into the aberration field dependencies that arise in the presence of the misalignments. An analytical alignment model based on third-order nodal aberration theory is presented for this problem, which can be utilized to compute the primary mirror astigmatic figure error and misalignments for two-mirror telescopes. Alignment simulations are conducted for an R-C telescope based on this analytical alignment model. It is shown that in the absence of wavefront measurement errors, wavefront measurements at only two field points are enough, and the correction process can be completed with only one alignment action. In the presence of wavefront measurement errors, increasing the number of field points for wavefront measurements can enhance the robustness of the alignment model. Monte Carlo simulation shows that, when -2 mm ≤ linear misalignment ≤ 2 mm, -0.1 deg ≤ angular misalignment ≤ 0.1 deg, and -0.2 λ ≤ astigmatism figure error (expressed as fringe Zernike coefficients C5 / C6, λ = 632.8 nm) ≤0.2 λ, the misaligned systems can be corrected to be close to nominal state without wavefront testing error. In addition, the root mean square deviation of RMS wavefront error of all the misaligned samples after being corrected is linearly related to wavefront testing error.

  8. Assessment of surface turbulent fluxes using geostationary satellite surface skin temperatures and a mixed layer planetary boundary layer scheme

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Stewart, Tod R.

    1989-01-01

    A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.

  9. Analysis of the error of the developed method of determination the active conductivity reducing the insulation level between one phase of the network and ground, and insulation parameters in a non-symmetric network with isolated neutral with voltage above 1000 V

    NASA Astrophysics Data System (ADS)

    Utegulov, B. B.

    2018-02-01

    In the work the study of the developed method was carried out for reliability by analyzing the error in indirect determination of the insulation parameters in an asymmetric network with an isolated neutral voltage above 1000 V. The conducted studies of the random relative mean square errors show that the accuracy of indirect measurements in the developed method can be effectively regulated not only by selecting a capacitive additional conductivity, which are connected between phases of the electrical network and the ground, but also by the selection of measuring instruments according to the accuracy class. When choosing meters with accuracy class of 0.5 with the correct selection of capacitive additional conductivity that are connected between the phases of the electrical network and the ground, the errors in measuring the insulation parameters will not exceed 10%.

  10. A comparative experimental evaluation of uncertainty estimation methods for two-component PIV

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron; Bhattacharya, Sayantan; Troolin, Dan; Pothos, Stamatios; Vlachos, Pavlos

    2016-09-01

    Uncertainty quantification in planar particle image velocimetry (PIV) measurement is critical for proper assessment of the quality and significance of reported results. New uncertainty estimation methods have been recently introduced generating interest about their applicability and utility. The present study compares and contrasts current methods, across two separate experiments and three software packages in order to provide a diversified assessment of the methods. We evaluated the performance of four uncertainty estimation methods, primary peak ratio (PPR), mutual information (MI), image matching (IM) and correlation statistics (CS). The PPR method was implemented and tested in two processing codes, using in-house open source PIV processing software (PRANA, Purdue University) and Insight4G (TSI, Inc.). The MI method was evaluated in PRANA, as was the IM method. The CS method was evaluated using DaVis (LaVision, GmbH). Utilizing two PIV systems for high and low-resolution measurements and a laser doppler velocimetry (LDV) system, data were acquired in a total of three cases: a jet flow and a cylinder in cross flow at two Reynolds numbers. LDV measurements were used to establish a point validation against which the high-resolution PIV measurements were validated. Subsequently, the high-resolution PIV measurements were used as a reference against which the low-resolution PIV data were assessed for error and uncertainty. We compared error and uncertainty distributions, spatially varying RMS error and RMS uncertainty, and standard uncertainty coverages. We observed that qualitatively, each method responded to spatially varying error (i.e. higher error regions resulted in higher uncertainty predictions in that region). However, the PPR and MI methods demonstrated reduced uncertainty dynamic range response. In contrast, the IM and CS methods showed better response, but under-predicted the uncertainty ranges. The standard coverages (68% confidence interval) ranged from approximately 65%-77% for PPR and MI methods, 40%-50% for IM and near 50% for CS. These observations illustrate some of the strengths and weaknesses of the methods considered herein and identify future directions for development and improvement.

  11. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    PubMed

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  12. Quantifying Data Quality for Clinical Trials Using Electronic Data Capture

    PubMed Central

    Nahm, Meredith L.; Pieper, Carl F.; Cunningham, Maureen M.

    2008-01-01

    Background Historically, only partial assessments of data quality have been performed in clinical trials, for which the most common method of measuring database error rates has been to compare the case report form (CRF) to database entries and count discrepancies. Importantly, errors arising from medical record abstraction and transcription are rarely evaluated as part of such quality assessments. Electronic Data Capture (EDC) technology has had a further impact, as paper CRFs typically leveraged for quality measurement are not used in EDC processes. Methods and Principal Findings The National Institute on Drug Abuse Treatment Clinical Trials Network has developed, implemented, and evaluated methodology for holistically assessing data quality on EDC trials. We characterize the average source-to-database error rate (14.3 errors per 10,000 fields) for the first year of use of the new evaluation method. This error rate was significantly lower than the average of published error rates for source-to-database audits, and was similar to CRF-to-database error rates reported in the published literature. We attribute this largely to an absence of medical record abstraction on the trials we examined, and to an outpatient setting characterized by less acute patient conditions. Conclusions Historically, medical record abstraction is the most significant source of error by an order of magnitude, and should be measured and managed during the course of clinical trials. Source-to-database error rates are highly dependent on the amount of structured data collection in the clinical setting and on the complexity of the medical record, dependencies that should be considered when developing data quality benchmarks. PMID:18725958

  13. Calibration method of microgrid polarimeters with image interpolation.

    PubMed

    Chen, Zhenyue; Wang, Xia; Liang, Rongguang

    2015-02-10

    Microgrid polarimeters have large advantages over conventional polarimeters because of the snapshot nature and because they have no moving parts. However, they also suffer from several error sources, such as fixed pattern noise (FPN), photon response nonuniformity (PRNU), pixel cross talk, and instantaneous field-of-view (IFOV) error. A characterization method is proposed to improve the measurement accuracy in visible waveband. We first calibrate the camera with uniform illumination so that the response of the sensor is uniform over the entire field of view without IFOV error. Then a spline interpolation method is implemented to minimize IFOV error. Experimental results show the proposed method can effectively minimize the FPN and PRNU.

  14. Motion-induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry.

    PubMed

    Li, Beiwen; Liu, Ziping; Zhang, Song

    2016-10-03

    We propose a hybrid computational framework to reduce motion-induced measurement error by combining the Fourier transform profilometry (FTP) and phase-shifting profilometry (PSP). The proposed method is composed of three major steps: Step 1 is to extract continuous relative phase maps for each isolated object with single-shot FTP method and spatial phase unwrapping; Step 2 is to obtain an absolute phase map of the entire scene using PSP method, albeit motion-induced errors exist on the extracted absolute phase map; and Step 3 is to shift the continuous relative phase maps from Step 1 to generate final absolute phase maps for each isolated object by referring to the absolute phase map with error from Step 2. Experiments demonstrate the success of the proposed computational framework for measuring multiple isolated rapidly moving objects.

  15. Hip joint center localisation: A biomechanical application to hip arthroplasty population

    PubMed Central

    Bouffard, Vicky; Begon, Mickael; Champagne, Annick; Farhadnia, Payam; Vendittoli, Pascal-André; Lavigne, Martin; Prince, François

    2012-01-01

    AIM: To determine hip joint center (HJC) location on hip arthroplasty population comparing predictive and functional approaches with radiographic measurements. METHODS: The distance between the HJC and the mid-pelvis was calculated and compared between the three approaches. The localisation error between the predictive and functional approach was compared using the radiographic measurements as the reference. The operated leg was compared to the non-operated leg. RESULTS: A significant difference was found for the distance between the HJC and the mid-pelvis when comparing the predictive and functional method. The functional method leads to fewer errors. A statistical difference was found for the localization error between the predictive and functional method. The functional method is twice more precise. CONCLUSION: Although being more individualized, the functional method improves HJC localization and should be used in three-dimensional gait analysis. PMID:22919569

  16. Mediation analysis when a continuous mediator is measured with error and the outcome follows a generalized linear model

    PubMed Central

    Valeri, Linda; Lin, Xihong; VanderWeele, Tyler J.

    2014-01-01

    Mediation analysis is a popular approach to examine the extent to which the effect of an exposure on an outcome is through an intermediate variable (mediator) and the extent to which the effect is direct. When the mediator is mis-measured the validity of mediation analysis can be severely undermined. In this paper we first study the bias of classical, non-differential measurement error on a continuous mediator in the estimation of direct and indirect causal effects in generalized linear models when the outcome is either continuous or discrete and exposure-mediator interaction may be present. Our theoretical results as well as a numerical study demonstrate that in the presence of non-linearities the bias of naive estimators for direct and indirect effects that ignore measurement error can take unintuitive directions. We then develop methods to correct for measurement error. Three correction approaches using method of moments, regression calibration and SIMEX are compared. We apply the proposed method to the Massachusetts General Hospital lung cancer study to evaluate the effect of genetic variants mediated through smoking on lung cancer risk. PMID:25220625

  17. Evaluation of a 3D stereophotogrammetric technique to measure the stone casts of patients with unilateral cleft lip and palate.

    PubMed

    Sforza, Chiarella; De Menezes, Marcio; Bresciani, Elena; Cerón-Zapata, Ana M; López-Palacio, Ana M; Rodriguez-Ardila, Myriam J; Berrio-Gutiérrez, Lina M

    2012-07-01

    To assess a three-dimensional stereophotogrammetric method for palatal cast digitization of children with unilateral cleft lip and palate. As part of a collaboration between the University of Milan (Italy) and the University CES of Medellin (Colombia), 96 palatal cast models obtained from neonatal patients with unilateral cleft lip and palate were obtained and digitized using a three-dimensional stereophotogrammetric imaging system. Three-dimensional measurements (cleft width, depth, length) were made separately for the longer and shorter cleft segments on the digital dental cast surface between landmarks, previously marked. Seven linear measurements were computed. Systematic and random errors between operators' tracings, and accuracy on geometric objects of known size were calculated. In addition, mean measurements from three-dimensional stereophotographs were compared statistically with those from direct anthropometry. The three-dimensional method presented good accuracy error (<0.9%) on measuring geometric objects. No systematic errors between operators' measurements were found (p > .05). Statistically significant differences (p < 5%) were noted for different methods (caliper versus stereophotogrammetry) for almost all distances analyzed, with mean absolute difference values ranging between 0.22 and 3.41 mm. Therefore, rates for the technical error of measurement and relative error magnitude were scored as moderate for Ag-Am and poor for Ag-Pg and Am-Pm distances. Generally, caliper values were larger than three-dimensional stereophotogrammetric values. Three-dimensional stereophotogrammetric systems have some advantages over direct anthropometry, and therefore the method could be sufficiently precise and accurate on palatal cast digitization with unilateral cleft lip and palate. This would be useful for clinical analyses in maxillofacial, plastic, and aesthetic surgery.

  18. Dual-wavelengths photoacoustic temperature measurement

    NASA Astrophysics Data System (ADS)

    Liao, Yu; Jian, Xiaohua; Dong, Fenglin; Cui, Yaoyao

    2017-02-01

    Thermal therapy is an approach applied in cancer treatment by heating local tissue to kill the tumor cells, which requires a high sensitivity of temperature monitoring during therapy. Current clinical methods like fMRI near infrared or ultrasound for temperature measurement still have limitations on penetration depth or sensitivity. Photoacoustic temperature sensing is a newly developed temperature sensing method that has a potential to be applied in thermal therapy, which usually employs a single wavelength laser for signal generating and temperature detecting. Because of the system disturbances including laser intensity, ambient temperature and complexity of target, the accidental errors of measurement is unavoidable. For solving these problems, we proposed a new method of photoacoustic temperature sensing by using two wavelengths to reduce random error and increase the measurement accuracy in this paper. Firstly a brief theoretical analysis was deduced. Then in the experiment, a temperature measurement resolution of about 1° in the range of 23-48° in ex vivo pig blood was achieved, and an obvious decrease of absolute error was observed with averagely 1.7° in single wavelength pattern while nearly 1° in dual-wavelengths pattern. The obtained results indicates that dual-wavelengths photoacoustic sensing of temperature is able to reduce random error and improve accuracy of measuring, which could be a more efficient method for photoacoustic temperature sensing in thermal therapy of tumor.

  19. Error analysis of 3D-PTV through unsteady interfaces

    NASA Astrophysics Data System (ADS)

    Akutina, Yulia; Mydlarski, Laurent; Gaskin, Susan; Eiff, Olivier

    2018-03-01

    The feasibility of stereoscopic flow measurements through an unsteady optical interface is investigated. Position errors produced by a wavy optical surface are determined analytically, as are the optimal viewing angles of the cameras to minimize such errors. Two methods of measuring the resulting velocity errors are proposed. These methods are applied to 3D particle tracking velocimetry (3D-PTV) data obtained through the free surface of a water flow within a cavity adjacent to a shallow channel. The experiments were performed using two sets of conditions, one having no strong surface perturbations, and the other exhibiting surface gravity waves. In the latter case, the amplitude of the gravity waves was 6% of the water depth, resulting in water surface inclinations of about 0.2°. (The water depth is used herein as a relevant length scale, because the measurements are performed in the entire water column. In a more general case, the relevant scale is the maximum distance from the interface to the measurement plane, H, which here is the same as the water depth.) It was found that the contribution of the waves to the overall measurement error is low. The absolute position errors of the system were moderate (1.2% of H). However, given that the velocity is calculated from the relative displacement of a particle between two frames, the errors in the measured water velocities were reasonably small, because the error in the velocity is the relative position error over the average displacement distance. The relative position error was measured to be 0.04% of H, resulting in small velocity errors of 0.3% of the free-stream velocity (equivalent to 1.1% of the average velocity in the domain). It is concluded that even though the absolute positions to which the velocity vectors are assigned is distorted by the unsteady interface, the magnitude of the velocity vectors themselves remains accurate as long as the waves are slowly varying (have low curvature). The stronger the disturbances on the interface are (high amplitude, short wave length), the smaller is the distance from the interface at which the measurements can be performed.

  20. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor.

    PubMed

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-09-29

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments.

  1. Error Modeling and Experimental Study of a Flexible Joint 6-UPUR Parallel Six-Axis Force Sensor

    PubMed Central

    Zhao, Yanzhi; Cao, Yachao; Zhang, Caifeng; Zhang, Dan; Zhang, Jie

    2017-01-01

    By combining a parallel mechanism with integrated flexible joints, a large measurement range and high accuracy sensor is realized. However, the main errors of the sensor involve not only assembly errors, but also deformation errors of its flexible leg. Based on a flexible joint 6-UPUR (a kind of mechanism configuration where U-universal joint, P-prismatic joint, R-revolute joint) parallel six-axis force sensor developed during the prephase, assembly and deformation error modeling and analysis of the resulting sensors with a large measurement range and high accuracy are made in this paper. First, an assembly error model is established based on the imaginary kinematic joint method and the Denavit-Hartenberg (D-H) method. Next, a stiffness model is built to solve the stiffness matrix. The deformation error model of the sensor is obtained. Then, the first order kinematic influence coefficient matrix when the synthetic error is taken into account is solved. Finally, measurement and calibration experiments of the sensor composed of the hardware and software system are performed. Forced deformation of the force-measuring platform is detected by using laser interferometry and analyzed to verify the correctness of the synthetic error model. In addition, the first order kinematic influence coefficient matrix in actual circumstances is calculated. By comparing the condition numbers and square norms of the coefficient matrices, the conclusion is drawn theoretically that it is very important to take into account the synthetic error for design stage of the sensor and helpful to improve performance of the sensor in order to meet needs of actual working environments. PMID:28961209

  2. SU-D-BRD-07: Evaluation of the Effectiveness of Statistical Process Control Methods to Detect Systematic Errors For Routine Electron Energy Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, S

    2015-06-15

    Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignmentmore » of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors using routine measurement of electron beam energy constancy.« less

  3. Estimating the Imputed Social Cost of Errors of Measurement.

    DTIC Science & Technology

    1983-10-01

    social cost of an error of measurement in the score on a unidimensional test, an asymptotic method, based on item response theory, is developed for...11111111 ij MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A.5. ,,, I v.P I RR-83-33-ONR 4ESTIMATING THE IMPUTED SOCIAL COST S OF... SOCIAL COST OF ERRORS OF MEASUREMENT Frederic M. Lord This research was sponsored in part by the Personnel and Training Research Programs Psychological

  4. Quantitative Assessment of Blood Pressure Measurement Accuracy and Variability from Visual Auscultation Method by Observers without Receiving Medical Training

    PubMed Central

    Feng, Yong; Chen, Aiqing

    2017-01-01

    This study aimed to quantify blood pressure (BP) measurement accuracy and variability with different techniques. Thirty video clips of BP recordings from the BHS training database were converted to Korotkoff sound waveforms. Ten observers without receiving medical training were asked to determine BPs using (a) traditional manual auscultatory method and (b) visual auscultation method by visualizing the Korotkoff sound waveform, which was repeated three times on different days. The measurement error was calculated against the reference answers, and the measurement variability was calculated from the SD of the three repeats. Statistical analysis showed that, in comparison with the auscultatory method, visual method significantly reduced overall variability from 2.2 to 1.1 mmHg for SBP and from 1.9 to 0.9 mmHg for DBP (both p < 0.001). It also showed that BP measurement errors were significant for both techniques (all p < 0.01, except DBP from the traditional method). Although significant, the overall mean errors were small (−1.5 and −1.2 mmHg for SBP and −0.7 and 2.6 mmHg for DBP, resp., from the traditional auscultatory and visual auscultation methods). In conclusion, the visual auscultation method had the ability to achieve an acceptable degree of BP measurement accuracy, with smaller variability in comparison with the traditional auscultatory method. PMID:29423405

  5. Pharmacokinetics of low-dose nedaplatin and validation of AUC prediction in patients with non-small-cell lung carcinoma.

    PubMed

    Niioka, Takenori; Uno, Tsukasa; Yasui-Furukori, Norio; Takahata, Takenori; Shimizu, Mikiko; Sugawara, Kazunobu; Tateishi, Tomonori

    2007-04-01

    The aim of this study was to determine the pharmacokinetics of low-dose nedaplatin combined with paclitaxel and radiation therapy in patients having non-small-cell lung carcinoma and establish the optimal dosage regimen for low-dose nedaplatin. We also evaluated predictive accuracy of reported formulas to estimate the area under the plasma concentration-time curve (AUC) of low-dose nedaplatin. A total of 19 patients were administered a constant intravenous infusion of 20 mg/m(2) body surface area (BSA) nedaplatin for an hour, and blood samples were collected at 1, 2, 3, 4, 6, 8, and 19 h after the administration. Plasma concentrations of unbound platinum were measured, and the actual value of platinum AUC (actual AUC) was calculated based on these data. The predicted value of platinum AUC (predicted AUC) was determined by three predictive methods reported in previous studies, consisting of Bayesian method, limited sampling strategies with plasma concentration at a single time point, and simple formula method (SFM) without measured plasma concentration. Three error indices, mean prediction error (ME, measure of bias), mean absolute error (MAE, measure of accuracy), and root mean squared prediction error (RMSE, measure of precision), were obtained from the difference between the actual and the predicted AUC, to compare the accuracy between the three predictive methods. The AUC showed more than threefold inter-patient variation, and there was a favorable correlation between nedaplatin clearance and creatinine clearance (Ccr) (r = 0.832, P < 0.01). In three error indices, MAE and RMSE showed significant difference between the three AUC predictive methods, and the method of SFM had the most favorable results, in which %ME, %MAE, and %RMSE were 5.5, 10.7, and 15.4, respectively. The dosage regimen of low-dose nedaplatin should be established based on Ccr rather than on BSA. Since prediction accuracy of SFM, which did not require measured plasma concentration, was most favorable among the three methods evaluated in this study, SFM could be the most practical method to predict AUC of low-dose nedaplatin in a clinical situation judging from its high accuracy in predicting AUC without measured plasma concentration.

  6. New Methods for Assessing and Reducing Uncertainty in Microgravity Studies

    NASA Astrophysics Data System (ADS)

    Giniaux, J. M.; Hooper, A. J.; Bagnardi, M.

    2017-12-01

    Microgravity surveying, also known as dynamic or 4D gravimetry is a time-dependent geophysical method used to detect mass fluctuations within the shallow crust, by analysing temporal changes in relative gravity measurements. We present here a detailed uncertainty analysis of temporal gravity measurements, considering for the first time all possible error sources, including tilt, error in drift estimations and timing errors. We find that some error sources that are actually ignored, can have a significant impact on the total error budget and it is therefore likely that some gravity signals may have been misinterpreted in previous studies. Our analysis leads to new methods for reducing some of the uncertainties associated with residual gravity estimation. In particular, we propose different approaches for drift estimation and free air correction depending on the survey set up. We also provide formulae to recalculate uncertainties for past studies and lay out a framework for best practice in future studies. We demonstrate our new approach on volcanic case studies, which include Kilauea in Hawaii and Askja in Iceland.

  7. A manufacturing error measurement methodology for a rotary vector reducer cycloidal gear based on a gear measuring center

    NASA Astrophysics Data System (ADS)

    Li, Tianxing; Zhou, Junxiang; Deng, Xiaozhong; Li, Jubo; Xing, Chunrong; Su, Jianxin; Wang, Huiliang

    2018-07-01

    A manufacturing error of a cycloidal gear is the key factor affecting the transmission accuracy of a robot rotary vector (RV) reducer. A methodology is proposed to realize the digitized measurement and data processing of the cycloidal gear manufacturing error based on the gear measuring center, which can quickly and accurately measure and evaluate the manufacturing error of the cycloidal gear by using both the whole tooth profile measurement and a single tooth profile measurement. By analyzing the particularity of the cycloidal profile and its effect on the actual meshing characteristics of the RV transmission, the cycloid profile measurement strategy is planned, and the theoretical profile model and error measurement model of cycloid-pin gear transmission are established. Through the digital processing technology, the theoretical trajectory of the probe and the normal vector of the measured point are calculated. By means of precision measurement principle and error compensation theory, a mathematical model for the accurate calculation and data processing of manufacturing error is constructed, and the actual manufacturing error of the cycloidal gear is obtained by the optimization iterative solution. Finally, the measurement experiment of the cycloidal gear tooth profile is carried out on the gear measuring center and the HEXAGON coordinate measuring machine, respectively. The measurement results verify the correctness and validity of the measurement theory and method. This methodology will provide the basis for the accurate evaluation and the effective control of manufacturing precision of the cycloidal gear in a robot RV reducer.

  8. Reducing measurement errors during functional capacity tests in elders.

    PubMed

    da Silva, Mariane Eichendorf; Orssatto, Lucas Bet da Rosa; Bezerra, Ewertton de Souza; Silva, Diego Augusto Santos; Moura, Bruno Monteiro de; Diefenthaeler, Fernando; Freitas, Cíntia de la Rocha

    2018-06-01

    Accuracy is essential to the validity of functional capacity measurements. To evaluate the error of measurement of functional capacity tests for elders and suggest the use of the technical error of measurement and credibility coefficient. Twenty elders (65.8 ± 4.5 years) completed six functional capacity tests that were simultaneously filmed and timed by four evaluators by means of a chronometer. A fifth evaluator timed the tests by analyzing the videos (reference data). The means of most evaluators for most tests were different from the reference (p < 0.05), except for two evaluators for two different tests. There were different technical error of measurement between tests and evaluators. The Bland-Altman test showed difference in the concordance of the results between methods. Short duration tests showed higher technical error of measurement than longer tests. In summary, tests timed by a chronometer underestimate the real results of the functional capacity. Difference between evaluators' reaction time and perception to determine the start and the end of the tests would justify the errors of measurement. Calculation of the technical error of measurement or the use of the camera can increase data validity.

  9. Adjusting for radiotelemetry error to improve estimates of habitat use.

    Treesearch

    Scott L. Findholt; Bruce K. Johnson; Lyman L. McDonald; John W. Kern; Alan Ager; Rosemary J. Stussy; Larry D. Bryant

    2002-01-01

    Animal locations estimated from radiotelemetry have traditionally been treated as error-free when analyzed in relation to habitat variables. Location error lowers the power of statistical tests of habitat selection. We describe a method that incorporates the error surrounding point estimates into measures of environmental variables determined from a geographic...

  10. More on Systematic Error in a Boyle's Law Experiment

    ERIC Educational Resources Information Center

    McCall, Richard P.

    2012-01-01

    A recent article in "The Physics Teacher" describes a method for analyzing a systematic error in a Boyle's law laboratory activity. Systematic errors are important to consider in physics labs because they tend to bias the results of measurements. There are numerous laboratory examples and resources that discuss this common source of error.

  11. Conditional Standard Errors of Measurement for Scale Scores.

    ERIC Educational Resources Information Center

    Kolen, Michael J.; And Others

    1992-01-01

    A procedure is described for estimating the reliability and conditional standard errors of measurement of scale scores incorporating the discrete transformation of raw scores to scale scores. The method is illustrated using a strong true score model, and practical applications are described. (SLD)

  12. Calibration of a flexible measurement system based on industrial articulated robot and structured light sensor

    NASA Astrophysics Data System (ADS)

    Mu, Nan; Wang, Kun; Xie, Zexiao; Ren, Ping

    2017-05-01

    To realize online rapid measurement for complex workpieces, a flexible measurement system based on an articulated industrial robot with a structured light sensor mounted on the end-effector is developed. A method for calibrating the system parameters is proposed in which the hand-eye transformation parameters and the robot kinematic parameters are synthesized in the calibration process. An initial hand-eye calibration is first performed using a standard sphere as the calibration target. By applying the modified complete and parametrically continuous method, we establish a synthesized kinematic model that combines the initial hand-eye transformation and distal link parameters as a whole with the sensor coordinate system as the tool frame. According to the synthesized kinematic model, an error model is constructed based on spheres' center-to-center distance errors. Consequently, the error model parameters can be identified in a calibration experiment using a three-standard-sphere target. Furthermore, the redundancy of error model parameters is eliminated to ensure the accuracy and robustness of the parameter identification. Calibration and measurement experiments are carried out based on an ER3A-C60 robot. The experimental results show that the proposed calibration method enjoys high measurement accuracy, and this efficient and flexible system is suitable for online measurement in industrial scenes.

  13. Development of multiple-eye PIV using mirror array

    NASA Astrophysics Data System (ADS)

    Maekawa, Akiyoshi; Sakakibara, Jun

    2018-06-01

    In order to reduce particle image velocimetry measurement error, we manufactured an ellipsoidal polyhedral mirror and placed it between a camera and flow target to capture n images of identical particles from n (=80 maximum) different directions. The 3D particle positions were determined from the ensemble average of n C2 intersecting points of a pair of line-of-sight back-projected points from a particle found in any combination of two images in the n images. The method was then applied to a rigid-body rotating flow and a turbulent pipe flow. In the former measurement, bias error and random error fell in a range of  ±0.02 pixels and 0.02–0.05 pixels, respectively; additionally, random error decreased in proportion to . In the latter measurement, in which the measured value was compared to direct numerical simulation, bias error was reduced and random error also decreased in proportion to .

  14. How to regress and predict in a Bland-Altman plot? Review and contribution based on tolerance intervals and correlated-errors-in-variables models.

    PubMed

    Francq, Bernard G; Govaerts, Bernadette

    2016-06-30

    Two main methodologies for assessing equivalence in method-comparison studies are presented separately in the literature. The first one is the well-known and widely applied Bland-Altman approach with its agreement intervals, where two methods are considered interchangeable if their differences are not clinically significant. The second approach is based on errors-in-variables regression in a classical (X,Y) plot and focuses on confidence intervals, whereby two methods are considered equivalent when providing similar measures notwithstanding the random measurement errors. This paper reconciles these two methodologies and shows their similarities and differences using both real data and simulations. A new consistent correlated-errors-in-variables regression is introduced as the errors are shown to be correlated in the Bland-Altman plot. Indeed, the coverage probabilities collapse and the biases soar when this correlation is ignored. Novel tolerance intervals are compared with agreement intervals with or without replicated data, and novel predictive intervals are introduced to predict a single measure in an (X,Y) plot or in a Bland-Atman plot with excellent coverage probabilities. We conclude that the (correlated)-errors-in-variables regressions should not be avoided in method comparison studies, although the Bland-Altman approach is usually applied to avert their complexity. We argue that tolerance or predictive intervals are better alternatives than agreement intervals, and we provide guidelines for practitioners regarding method comparison studies. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. A New Formulation of the Filter-Error Method for Aerodynamic Parameter Estimation in Turbulence

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2015-01-01

    A new formulation of the filter-error method for estimating aerodynamic parameters in nonlinear aircraft dynamic models during turbulence was developed and demonstrated. The approach uses an estimate of the measurement noise covariance to identify the model parameters, their uncertainties, and the process noise covariance, in a relaxation method analogous to the output-error method. Prior information on the model parameters and uncertainties can be supplied, and a post-estimation correction to the uncertainty was included to account for colored residuals not considered in the theory. No tuning parameters, needing adjustment by the analyst, are used in the estimation. The method was demonstrated in simulation using the NASA Generic Transport Model, then applied to the subscale T-2 jet-engine transport aircraft flight. Modeling results in different levels of turbulence were compared with results from time-domain output error and frequency- domain equation error methods to demonstrate the effectiveness of the approach.

  16. A self-calibration method in single-axis rotational inertial navigation system with rotating mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Yuanpei; Wang, Lingcao; Li, Kui

    2017-10-01

    Rotary inertial navigation modulation mechanism can greatly improve the inertial navigation system (INS) accuracy through the rotation. Based on the single-axis rotational inertial navigation system (RINS), a self-calibration method is put forward. The whole system is applied with the rotation modulation technique so that whole inertial measurement unit (IMU) of system can rotate around the motor shaft without any external input. In the process of modulation, some important errors can be decoupled. Coupled with the initial position information and attitude information of the system as the reference, the velocity errors and attitude errors in the rotation are used as measurement to perform Kalman filtering to estimate part of important errors of the system after which the errors can be compensated into the system. The simulation results show that the method can complete the self-calibration of the single-axis RINS in 15 minutes and estimate gyro drifts of three-axis, the installation error angle of the IMU and the scale factor error of the gyro on z-axis. The calibration accuracy of optic gyro drifts could be about 0.003°/h (1σ) as well as the scale factor error could be about 1 parts per million (1σ). The errors estimate reaches the system requirements which can effectively improve the longtime navigation accuracy of the vehicle or the boat.

  17. Correlation Between Analog Noise Measurements and the Expected Bit Error Rate of a Digital Signal Propagating Through Passive Components

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Theofylaktos, Onoufrios

    2012-01-01

    A method of determining the bit error rate (BER) of a digital circuit from the measurement of the analog S-parameters of the circuit has been developed. The method is based on the measurement of the noise and the standard deviation of the noise in the S-parameters. Once the standard deviation and the mean of the S-parameters are known, the BER of the circuit can be calculated using the normal Gaussian function.

  18. Identifying model error in metabolic flux analysis - a generalized least squares approach.

    PubMed

    Sokolenko, Stanislav; Quattrociocchi, Marco; Aucoin, Marc G

    2016-09-13

    The estimation of intracellular flux through traditional metabolic flux analysis (MFA) using an overdetermined system of equations is a well established practice in metabolic engineering. Despite the continued evolution of the methodology since its introduction, there has been little focus on validation and identification of poor model fit outside of identifying "gross measurement error". The growing complexity of metabolic models, which are increasingly generated from genome-level data, has necessitated robust validation that can directly assess model fit. In this work, MFA calculation is framed as a generalized least squares (GLS) problem, highlighting the applicability of the common t-test for model validation. To differentiate between measurement and model error, we simulate ideal flux profiles directly from the model, perturb them with estimated measurement error, and compare their validation to real data. Application of this strategy to an established Chinese Hamster Ovary (CHO) cell model shows how fluxes validated by traditional means may be largely non-significant due to a lack of model fit. With further simulation, we explore how t-test significance relates to calculation error and show that fluxes found to be non-significant have 2-4 fold larger error (if measurement uncertainty is in the 5-10 % range). The proposed validation method goes beyond traditional detection of "gross measurement error" to identify lack of fit between model and data. Although the focus of this work is on t-test validation and traditional MFA, the presented framework is readily applicable to other regression analysis methods and MFA formulations.

  19. Resection plane-dependent error in computed tomography volumetry of the right hepatic lobe in living liver donors

    PubMed Central

    Kwon, Heon-Ju; Kim, Bohyun; Kim, So Yeon; Lee, Chul Seung; Lee, Jeongjin; Song, Gi Won; Lee, Sung Gyu

    2018-01-01

    Background/Aims Computed tomography (CT) hepatic volumetry is currently accepted as the most reliable method for preoperative estimation of graft weight in living donor liver transplantation (LDLT). However, several factors can cause inaccuracies in CT volumetry compared to real graft weight. The purpose of this study was to determine the frequency and degree of resection plane-dependent error in CT volumetry of the right hepatic lobe in LDLT. Methods Forty-six living liver donors underwent CT before donor surgery and on postoperative day 7. Prospective CT volumetry (VP) was measured via the assumptive hepatectomy plane. Retrospective liver volume (VR) was measured using the actual plane by comparing preoperative and postoperative CT. Compared with intraoperatively measured weight (W), errors in percentage (%) VP and VR were evaluated. Plane-dependent error in VP was defined as the absolute difference between VP and VR. % plane-dependent error was defined as follows: |VP–VR|/W∙100. Results Mean VP, VR, and W were 761.9 mL, 755.0 mL, and 696.9 g. Mean and % errors in VP were 73.3 mL and 10.7%. Mean error and % error in VR were 64.4 mL and 9.3%. Mean plane-dependent error in VP was 32.4 mL. Mean % plane-dependent error was 4.7%. Plane-dependent error in VP exceeded 10% of W in approximately 10% of the subjects in our study. Conclusions There was approximately 5% plane-dependent error in liver VP on CT volumetry. Plane-dependent error in VP exceeded 10% of W in approximately 10% of LDLT donors in our study. This error should be considered, especially when CT volumetry is performed by a less experienced operator who is not well acquainted with the donor hepatectomy plane. PMID:28759989

  20. Analysis of vestibular schwannoma size in multiple dimensions: a comparative cohort study of different measurement techniques.

    PubMed

    Varughese, J K; Wentzel-Larsen, T; Vassbotn, F; Moen, G; Lund-Johansen, M

    2010-04-01

    In this volumetric study of the vestibular schwannoma, we evaluated the accuracy and reliability of several approximation methods that are in use, and determined the minimum volume difference that needs to be measured for it to be attributable to an actual difference rather than a retest error. We also found empirical proportionality coefficients for the different methods. DESIGN/SETTING AND PARTICIPANTS: Methodological study with investigation of three different VS measurement methods compared to a reference method that was based on serial slice volume estimates. These volume estimates were based on: (i) one single diameter, (ii) three orthogonal diameters or (iii) the maximal slice area. Altogether 252 T1-weighted MRI images with gadolinium contrast, from 139 VS patients, were examined. The retest errors, in terms of relative percentages, were determined by undertaking repeated measurements on 63 scans for each method. Intraclass correlation coefficients were used to assess the agreement between each of the approximation methods and the reference method. The tendency for approximation methods to systematically overestimate/underestimate different-sized tumours was also assessed, with the help of Bland-Altman plots. The most commonly used approximation method, the maximum diameter, was the least reliable measurement method and has inherent weaknesses that need to be considered. This includes greater retest errors than area-based measurements (25% and 15%, respectively), and that it was the only approximation method that could not easily be converted into volumetric units. Area-based measurements can furthermore be more reliable for smaller volume differences than diameter-based measurements. All our findings suggest that the maximum diameter should not be used as an approximation method. We propose the use of measurement modalities that take into account growth in multiple dimensions instead.

  1. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  2. Quality Assurance of Chemical Measurements.

    ERIC Educational Resources Information Center

    Taylor, John K.

    1981-01-01

    Reviews aspects of quality control (methods to control errors) and quality assessment (verification that systems are operating within acceptable limits) including an analytical measurement system, quality control by inspection, control charts, systematic errors, and use of SRMs, materials for which properties are certified by the National Bureau…

  3. System Error Compensation Methodology Based on a Neural Network for a Micromachined Inertial Measurement Unit

    PubMed Central

    Liu, Shi Qiang; Zhu, Rong

    2016-01-01

    Errors compensation of micromachined-inertial-measurement-units (MIMU) is essential in practical applications. This paper presents a new compensation method using a neural-network-based identification for MIMU, which capably solves the universal problems of cross-coupling, misalignment, eccentricity, and other deterministic errors existing in a three-dimensional integrated system. Using a neural network to model a complex multivariate and nonlinear coupling system, the errors could be readily compensated through a comprehensive calibration. In this paper, we also present a thermal-gas MIMU based on thermal expansion, which measures three-axis angular rates and three-axis accelerations using only three thermal-gas inertial sensors, each of which capably measures one-axis angular rate and one-axis acceleration simultaneously in one chip. The developed MIMU (100 × 100 × 100 mm3) possesses the advantages of simple structure, high shock resistance, and large measuring ranges (three-axes angular rates of ±4000°/s and three-axes accelerations of ±10 g) compared with conventional MIMU, due to using gas medium instead of mechanical proof mass as the key moving and sensing elements. However, the gas MIMU suffers from cross-coupling effects, which corrupt the system accuracy. The proposed compensation method is, therefore, applied to compensate the system errors of the MIMU. Experiments validate the effectiveness of the compensation, and the measurement errors of three-axis angular rates and three-axis accelerations are reduced to less than 1% and 3% of uncompensated errors in the rotation range of ±600°/s and the acceleration range of ±1 g, respectively. PMID:26840314

  4. Accounting for response misclassification and covariate measurement error improves power and reduces bias in epidemiologic studies.

    PubMed

    Cheng, Dunlei; Branscum, Adam J; Stamey, James D

    2010-07-01

    To quantify the impact of ignoring misclassification of a response variable and measurement error in a covariate on statistical power, and to develop software for sample size and power analysis that accounts for these flaws in epidemiologic data. A Monte Carlo simulation-based procedure is developed to illustrate the differences in design requirements and inferences between analytic methods that properly account for misclassification and measurement error to those that do not in regression models for cross-sectional and cohort data. We found that failure to account for these flaws in epidemiologic data can lead to a substantial reduction in statistical power, over 25% in some cases. The proposed method substantially reduced bias by up to a ten-fold margin compared to naive estimates obtained by ignoring misclassification and mismeasurement. We recommend as routine practice that researchers account for errors in measurement of both response and covariate data when determining sample size, performing power calculations, or analyzing data from epidemiological studies. 2010 Elsevier Inc. All rights reserved.

  5. Magnetic field error measurement of the CEBAF (NIST) wiggler using the pulsed wire method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Stephen; Colson, William; Neil, George

    1993-07-01

    The National Institute for Science and Technology (NIST) wiggler has been loaded to the Continuous Electron Beam Accelerator Facility (CEBAF). The pulsed wire method [R.W. Warren, Nucl. Instr. and Meth. A272 (1988) 267] has been used to measure the field errors of the entrance wiggler half, and the net path deflection was calculated to be Δx ≈ 5.2 m.

  6. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer.

    PubMed

    Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang

    2018-04-20

    Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.

  7. Reflectance calibration of focal plane array hyperspectral imaging system for agricultural and food safety applications

    NASA Astrophysics Data System (ADS)

    Lawrence, Kurt C.; Park, Bosoon; Windham, William R.; Mao, Chengye; Poole, Gavin H.

    2003-03-01

    A method to calibrate a pushbroom hyperspectral imaging system for "near-field" applications in agricultural and food safety has been demonstrated. The method consists of a modified geometric control point correction applied to a focal plane array to remove smile and keystone distortion from the system. Once a FPA correction was applied, single wavelength and distance calibrations were used to describe all points on the FPA. Finally, a percent reflectance calibration, applied on a pixel-by-pixel basis, was used for accurate measurements for the hyperspectral imaging system. The method was demonstrated with a stationary prism-grating-prism, pushbroom hyperspectral imaging system. For the system described, wavelength and distance calibrations were used to reduce the wavelength errors to <0.5 nm and distance errors to <0.01mm (across the entrance slit width). The pixel-by-pixel percent reflectance calibration, which was performed at all wavelengths with dark current and 99% reflectance calibration-panel measurements, was verified with measurements on a certified gradient Spectralon panel with values ranging from about 14% reflectance to 99% reflectance with errors generally less than 5% at the mid-wavelength measurements. Results from the calibration method, indicate the hyperspectral imaging system has a usable range between 420 nm and 840 nm. Outside this range, errors increase significantly.

  8. IMRT QA: Selecting gamma criteria based on error detection sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steers, Jennifer M.; Fraass, Benedick A., E-mail: benedick.fraass@cshs.org

    Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique,more » and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. Conclusions: We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.« less

  9. Real-time line-width measurements: a new feature for reticle inspection systems

    NASA Astrophysics Data System (ADS)

    Eran, Yair; Greenberg, Gad; Joseph, Amnon; Lustig, Cornel; Mizrahi, Eyal

    1997-07-01

    The significance of line width control in mask production has become greater with the lessening of defect size. There are two conventional methods used for controlling line widths dimensions which employed in the manufacturing of masks for sub micron devices. These two methods are the critical dimensions (CD) measurement and the detection of edge defects. Achieving reliable and accurate control of line width errors is one of the most challenging tasks in mask production. Neither of the two methods cited above (namely CD measurement and the detection of edge defects) guarantees the detection of line width errors with good sensitivity over the whole mask area. This stems from the fact that CD measurement provides only statistical data on the mask features whereas applying edge defect detection method checks defects on each edge by itself, and does not supply information on the combined result of error detection on two adjacent edges. For example, a combination of a small edge defect together with a CD non- uniformity which are both within the allowed tolerance, may yield a significant line width error, which will not be detected using the conventional methods (see figure 1). A new approach for the detection of line width errors which overcomes this difficulty is presented. Based on this approach, a new sensitive line width error detector was developed and added to Orbot's RT-8000 die-to-database reticle inspection system. This innovative detector operates continuously during the mask inspection process and scans (inspects) the entire area of the reticle for line width errors. The detection is based on a comparison of measured line width that are taken on both the design database and the scanned image of the reticle. In section 2, the motivation for developing this new detector is presented. The section covers an analysis of various defect types, which are difficult to detect using conventional edge detection methods or, alternatively, CD measurements. In section 3, the basic concept of the new approach is introduced together with a description of the new detector and its characteristics. In section 4, the calibration process that took place in order to achieve reliable and repeatable line width measurements is presented. The description of an experiments conducted in order to evaluate the sensitivity of the new detector is given in section 5, followed by a report of the results of this evaluation. The conclusions are presented in section 6.

  10. Systematic Calibration for Ultra-High Accuracy Inertial Measurement Units.

    PubMed

    Cai, Qingzhong; Yang, Gongliu; Song, Ningfang; Liu, Yiliang

    2016-06-22

    An inertial navigation system (INS) has been widely used in challenging GPS environments. With the rapid development of modern physics, an atomic gyroscope will come into use in the near future with a predicted accuracy of 5 × 10(-6)°/h or better. However, existing calibration methods and devices can not satisfy the accuracy requirements of future ultra-high accuracy inertial sensors. In this paper, an improved calibration model is established by introducing gyro g-sensitivity errors, accelerometer cross-coupling errors and lever arm errors. A systematic calibration method is proposed based on a 51-state Kalman filter and smoother. Simulation results show that the proposed calibration method can realize the estimation of all the parameters using a common dual-axis turntable. Laboratory and sailing tests prove that the position accuracy in a five-day inertial navigation can be improved about 8% by the proposed calibration method. The accuracy can be improved at least 20% when the position accuracy of the atomic gyro INS can reach a level of 0.1 nautical miles/5 d. Compared with the existing calibration methods, the proposed method, with more error sources and high order small error parameters calibrated for ultra-high accuracy inertial measurement units (IMUs) using common turntables, has a great application potential in future atomic gyro INSs.

  11. A new accuracy measure based on bounded relative error for time series forecasting

    PubMed Central

    Twycross, Jamie; Garibaldi, Jonathan M.

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred. PMID:28339480

  12. A new accuracy measure based on bounded relative error for time series forecasting.

    PubMed

    Chen, Chao; Twycross, Jamie; Garibaldi, Jonathan M

    2017-01-01

    Many accuracy measures have been proposed in the past for time series forecasting comparisons. However, many of these measures suffer from one or more issues such as poor resistance to outliers and scale dependence. In this paper, while summarising commonly used accuracy measures, a special review is made on the symmetric mean absolute percentage error. Moreover, a new accuracy measure called the Unscaled Mean Bounded Relative Absolute Error (UMBRAE), which combines the best features of various alternative measures, is proposed to address the common issues of existing measures. A comparative evaluation on the proposed and related measures has been made with both synthetic and real-world data. The results indicate that the proposed measure, with user selectable benchmark, performs as well as or better than other measures on selected criteria. Though it has been commonly accepted that there is no single best accuracy measure, we suggest that UMBRAE could be a good choice to evaluate forecasting methods, especially for cases where measures based on geometric mean of relative errors, such as the geometric mean relative absolute error, are preferred.

  13. Control method and system for hydraulic machines employing a dynamic joint motion model

    DOEpatents

    Danko, George [Reno, NV

    2011-11-22

    A control method and system for controlling a hydraulically actuated mechanical arm to perform a task, the mechanical arm optionally being a hydraulically actuated excavator arm. The method can include determining a dynamic model of the motion of the hydraulic arm for each hydraulic arm link by relating the input signal vector for each respective link to the output signal vector for the same link. Also the method can include determining an error signal for each link as the weighted sum of the differences between a measured position and a reference position and between the time derivatives of the measured position and the time derivatives of the reference position for each respective link. The weights used in the determination of the error signal can be determined from the constant coefficients of the dynamic model. The error signal can be applied in a closed negative feedback control loop to diminish or eliminate the error signal for each respective link.

  14. Assessing data quality and the variability of source data verification auditing methods in clinical research settings.

    PubMed

    Houston, Lauren; Probst, Yasmine; Martin, Allison

    2018-05-18

    Data audits within clinical settings are extensively used as a major strategy to identify errors, monitor study operations and ensure high-quality data. However, clinical trial guidelines are non-specific in regards to recommended frequency, timing and nature of data audits. The absence of a well-defined data quality definition and method to measure error undermines the reliability of data quality assessment. This review aimed to assess the variability of source data verification (SDV) auditing methods to monitor data quality in a clinical research setting. The scientific databases MEDLINE, Scopus and Science Direct were searched for English language publications, with no date limits applied. Studies were considered if they included data from a clinical trial or clinical research setting and measured and/or reported data quality using a SDV auditing method. In total 15 publications were included. The nature and extent of SDV audit methods in the articles varied widely, depending upon the complexity of the source document, type of study, variables measured (primary or secondary), data audit proportion (3-100%) and collection frequency (6-24 months). Methods for coding, classifying and calculating error were also inconsistent. Transcription errors and inexperienced personnel were the main source of reported error. Repeated SDV audits using the same dataset demonstrated ∼40% improvement in data accuracy and completeness over time. No description was given in regards to what determines poor data quality in clinical trials. A wide range of SDV auditing methods are reported in the published literature though no uniform SDV auditing method could be determined for "best practice" in clinical trials. Published audit methodology articles are warranted for the development of a standardised SDV auditing method to monitor data quality in clinical research settings. Copyright © 2018. Published by Elsevier Inc.

  15. Eccentricity error identification and compensation for high-accuracy 3D optical measurement

    PubMed Central

    He, Dong; Liu, Xiaoli; Peng, Xiang; Ding, Yabin; Gao, Bruce Z

    2016-01-01

    The circular target has been widely used in various three-dimensional optical measurements, such as camera calibration, photogrammetry and structured light projection measurement system. The identification and compensation of the circular target systematic eccentricity error caused by perspective projection is an important issue for ensuring accurate measurement. This paper introduces a novel approach for identifying and correcting the eccentricity error with the help of a concentric circles target. Compared with previous eccentricity error correction methods, our approach does not require taking care of the geometric parameters of the measurement system regarding target and camera. Therefore, the proposed approach is very flexible in practical applications, and in particular, it is also applicable in the case of only one image with a single target available. The experimental results are presented to prove the efficiency and stability of the proposed approach for eccentricity error compensation. PMID:26900265

  16. Eccentricity error identification and compensation for high-accuracy 3D optical measurement.

    PubMed

    He, Dong; Liu, Xiaoli; Peng, Xiang; Ding, Yabin; Gao, Bruce Z

    2013-07-01

    The circular target has been widely used in various three-dimensional optical measurements, such as camera calibration, photogrammetry and structured light projection measurement system. The identification and compensation of the circular target systematic eccentricity error caused by perspective projection is an important issue for ensuring accurate measurement. This paper introduces a novel approach for identifying and correcting the eccentricity error with the help of a concentric circles target. Compared with previous eccentricity error correction methods, our approach does not require taking care of the geometric parameters of the measurement system regarding target and camera. Therefore, the proposed approach is very flexible in practical applications, and in particular, it is also applicable in the case of only one image with a single target available. The experimental results are presented to prove the efficiency and stability of the proposed approach for eccentricity error compensation.

  17. Using EHR Data to Detect Prescribing Errors in Rapidly Discontinued Medication Orders.

    PubMed

    Burlison, Jonathan D; McDaniel, Robert B; Baker, Donald K; Hasan, Murad; Robertson, Jennifer J; Howard, Scott C; Hoffman, James M

    2018-01-01

    Previous research developed a new method for locating prescribing errors in rapidly discontinued electronic medication orders. Although effective, the prospective design of that research hinders its feasibility for regular use. Our objectives were to assess a method to retrospectively detect prescribing errors, to characterize the identified errors, and to identify potential improvement opportunities. Electronically submitted medication orders from 28 randomly selected days that were discontinued within 120 minutes of submission were reviewed and categorized as most likely errors, nonerrors, or not enough information to determine status. Identified errors were evaluated by amount of time elapsed from original submission to discontinuation, error type, staff position, and potential clinical significance. Pearson's chi-square test was used to compare rates of errors across prescriber types. In all, 147 errors were identified in 305 medication orders. The method was most effective for orders that were discontinued within 90 minutes. Duplicate orders were most common; physicians in training had the highest error rate ( p  < 0.001), and 24 errors were potentially clinically significant. None of the errors were voluntarily reported. It is possible to identify prescribing errors in rapidly discontinued medication orders by using retrospective methods that do not require interrupting prescribers to discuss order details. Future research could validate our methods in different clinical settings. Regular use of this measure could help determine the causes of prescribing errors, track performance, and identify and evaluate interventions to improve prescribing systems and processes. Schattauer GmbH Stuttgart.

  18. Skylab water balance error analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Estimates of the precision of the net water balance were obtained for the entire Skylab preflight and inflight phases as well as for the first two weeks of flight. Quantitative estimates of both total sampling errors and instrumentation errors were obtained. It was shown that measurement error is minimal in comparison to biological variability and little can be gained from improvement in analytical accuracy. In addition, a propagation of error analysis demonstrated that total water balance error could be accounted for almost entirely by the errors associated with body mass changes. Errors due to interaction between terms in the water balance equation (covariances) represented less than 10% of the total error. Overall, the analysis provides evidence that daily measurements of body water changes obtained from the indirect balance technique are reasonable, precise, and relaible. The method is not biased toward net retention or loss.

  19. Quasi-eccentricity error modeling and compensation in vision metrology

    NASA Astrophysics Data System (ADS)

    Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin

    2018-04-01

    Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.

  20. Dynamic gas temperature measurement system

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 KHz and capability to operate in the exhaust of a gas turbine combustor was developed. Environmental guidelines for this measurement are presented, followed by a preliminary design of the selected measurement method. Transient thermal conduction effects were identified as important; a preliminary finite-element conduction model quantified the errors expected by neglecting conduction. A compensation method was developed to account for effects of conduction and convection. This method was verified in analog electrical simulations, and used to compensate dynamic temperature data from a laboratory combustor and a gas turbine engine. Detailed data compensations are presented. Analysis of error sources in the method were done to derive confidence levels for the compensated data.

  1. Partial compensation interferometry for measurement of surface parameter error of high-order aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Li, Tengfei; Hu, Yao

    2018-01-01

    Surface parameters are the properties to describe the shape characters of aspheric surface, which mainly include vertex radius of curvature (VROC) and conic constant (CC). The VROC affects the basic properties, such as focal length of an aspheric surface, while the CC is the basis of classification for aspheric surface. The deviations of the two parameters are defined as surface parameter error (SPE). Precisely measuring SPE is critical for manufacturing and aligning aspheric surface. Generally, SPE of aspheric surface is measured directly by curvature fitting on the absolute profile measurement data from contact or non-contact testing. And most interferometry-based methods adopt null compensators or null computer-generated holograms to measure SPE. To our knowledge, there is no effective way to measure SPE of highorder aspheric surface with non-null interferometry. In this paper, based on the theory of slope asphericity and the best compensation distance (BCD) established in our previous work, we propose a SPE measurement method for high-order aspheric surface in partial compensation interferometry (PCI) system. In the procedure, firstly, we establish the system of two element equations by utilizing the SPE-caused BCD change and surface shape change. Then, we can simultaneously obtain the VROC error and CC error in PCI system by solving the equations. Simulations are made to verify the method, and the results show a high relative accuracy.

  2. Regression dilution bias: tools for correction methods and sample size calculation.

    PubMed

    Berglund, Lars

    2012-08-01

    Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.

  3. Evaluation of the depth-integration method of measuring water discharge in large rivers

    USGS Publications Warehouse

    Moody, J.A.; Troutman, B.M.

    1992-01-01

    The depth-integration method oor measuring water discharge makes a continuos measurement of the water velocity from the water surface to the bottom at 20 to 40 locations or verticals across a river. It is especially practical for large rivers where river traffic makes it impractical to use boats attached to taglines strung across the river or to use current meters suspended from bridges. This method has the additional advantage over the standard two- and eight-tenths method in that a discharge-weighted suspended-sediment sample can be collected at the same time. When this method is used in large rivers such as the Missouri, Mississippi and Ohio, a microwave navigation system is used to determine the ship's position at each vertical sampling location across the river, and to make accurate velocity corrections to compensate for shift drift. An essential feature is a hydraulic winch that can lower and raise the current meter at a constant transit velocity so that the velocities at all depths are measured for equal lengths of time. Field calibration measurements show that: (1) the mean velocity measured on the upcast (bottom to surface) is within 1% of the standard mean velocity determined by 9-11 point measurements; (2) if the transit velocity is less than 25% of the mean velocity, then average error in the mean velocity is 4% or less. The major source of bias error is a result of mounting the current meter above a sounding weight and sometimes above a suspended-sediment sampling bottle, which prevents measurement of the velocity all the way to the bottom. The measured mean velocity is slightly larger than the true mean velocity. This bias error in the discharge is largest in shallow water (approximately 8% for the Missouri River at Hermann, MO, where the mean depth was 4.3 m) and smallest in deeper water (approximately 3% for the Mississippi River at Vickbsurg, MS, where the mean depth was 14.5 m). The major source of random error in the discharge is the natural variability of river velocities, which we assumed to be independent and random at each vertical. The standard error of the estimated mean velocity, at an individual vertical sampling location, may be as large as 9%, for large sand-bed alluvial rivers. The computed discharge, however, is a weighted mean of these random velocities. Consequently the standard error of computed discharge is divided by the square root of the number of verticals, producing typical values between 1 and 2%. The discharges measured by the depth-integrated method agreed within ??5% of those measured simultaneously by the standard two- and eight-tenths, six-tenth and moving boat methods. ?? 1992.

  4. Measuring signal-to-noise ratio automatically

    NASA Technical Reports Server (NTRS)

    Bergman, L. A.; Johnston, A. R.

    1980-01-01

    Automated method of measuring signal-to-noise ratio in digital communication channels is more precise and 100 times faster than previous methods used. Method based on bit-error-rate (B&R) measurement can be used with cable, microwave radio, or optical links.

  5. Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error

    PubMed Central

    Hwang, Heungsun; Takane, Yoshio; Jung, Kwanghee

    2017-01-01

    Generalized structured component analysis (GSCA) is a component-based approach to structural equation modeling (SEM), where latent variables are approximated by weighted composites of indicators. It has no formal mechanism to incorporate errors in indicators, which in turn renders components prone to the errors as well. We propose to extend GSCA to account for errors in indicators explicitly. This extension, called GSCAM, considers both common and unique parts of indicators, as postulated in common factor analysis, and estimates a weighted composite of indicators with their unique parts removed. Adding such unique parts or uniqueness terms serves to account for measurement errors in indicators in a manner similar to common factor analysis. Simulation studies are conducted to compare parameter recovery of GSCAM and existing methods. These methods are also applied to fit a substantively well-established model to real data. PMID:29270146

  6. Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil

    2011-01-01

    Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.

  7. Reliable Channel-Adapted Error Correction: Bacon-Shor Code Recovery from Amplitude Damping

    NASA Astrophysics Data System (ADS)

    Piedrafita, Álvaro; Renes, Joseph M.

    2017-12-01

    We construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve exact correction to a desired order in the damping rate. The first, employing one-bit teleportation and single-qubit measurements, needs only one-fourth as many physical qubits, while the second, using just stabilizer measurements and Pauli corrections, needs only half. The improvements stem from the fact that damping events need only be detected, not corrected, and that effective phase errors arising due to undamped qubits occur at a lower rate than damping errors. For error correction that is itself subject to damping noise, we show that existing fault-tolerance methods can be employed for the latter scheme, while the former can be made to avoid potential catastrophic errors and can easily cope with damping faults in ancilla qubits.

  8. A method of bias correction for maximal reliability with dichotomous measures.

    PubMed

    Penev, Spiridon; Raykov, Tenko

    2010-02-01

    This paper is concerned with the reliability of weighted combinations of a given set of dichotomous measures. Maximal reliability for such measures has been discussed in the past, but the pertinent estimator exhibits a considerable bias and mean squared error for moderate sample sizes. We examine this bias, propose a procedure for bias correction, and develop a more accurate asymptotic confidence interval for the resulting estimator. In most empirically relevant cases, the bias correction and mean squared error correction can be performed simultaneously. We propose an approximate (asymptotic) confidence interval for the maximal reliability coefficient, discuss the implementation of this estimator, and investigate the mean squared error of the associated asymptotic approximation. We illustrate the proposed methods using a numerical example.

  9. Measurement and Predition Errors in Body Composition Assessment and the Search for the Perfect Prediction Equation.

    ERIC Educational Resources Information Center

    Katch, Frank I.; Katch, Victor L.

    1980-01-01

    Sources of error in body composition assessment by laboratory and field methods can be found in hydrostatic weighing, residual air volume, skinfolds, and circumferences. Statistical analysis can and should be used in the measurement of body composition. (CJ)

  10. Impact of gradient timing error on the tissue sodium concentration bioscale measured using flexible twisted projection imaging

    NASA Astrophysics Data System (ADS)

    Lu, Aiming; Atkinson, Ian C.; Vaughn, J. Thomas; Thulborn, Keith R.

    2011-12-01

    The rapid biexponential transverse relaxation of the sodium MR signal from brain tissue requires efficient k-space sampling for quantitative imaging in a time that is acceptable for human subjects. The flexible twisted projection imaging (flexTPI) sequence has been shown to be suitable for quantitative sodium imaging with an ultra-short echo time to minimize signal loss. The fidelity of the k-space center location is affected by the readout gradient timing errors on the three physical axes, which is known to cause image distortion for projection-based acquisitions. This study investigated the impact of these timing errors on the voxel-wise accuracy of the tissue sodium concentration (TSC) bioscale measured with the flexTPI sequence. Our simulations show greater than 20% spatially varying quantification errors when the gradient timing errors are larger than 10 μs on all three axes. The quantification is more tolerant of gradient timing errors on the Z-axis. An existing method was used to measure the gradient timing errors with <1 μs error. The gradient timing error measurement is shown to be RF coil dependent, and timing error differences of up to ˜16 μs have been observed between different RF coils used on the same scanner. The measured timing errors can be corrected prospectively or retrospectively to obtain accurate TSC values.

  11. Measurement method of rotation angle and clearance in intelligent spherical hinge

    NASA Astrophysics Data System (ADS)

    Hu, Penghao; Lu, Yichang; Chen, Shiyi; Hu, Yi; Zhu, Lianqing

    2018-06-01

    Precision ball hinges are widely applied in parallel mechanisms, robotics, and other areas, but their rotation orientation and angle cannot be obtained during passive motion. The simultaneous clearance error in a precision ball hinge’s motion also can not be determined. In this paper we propose an intelligent ball hinge (IBH) that can detect the rotation angle and moving clearance, based on our previous research results. The measurement model was optimized to promote measurement accuracy and resolution, and an optimal design for the IBH’s structure was determined. The experimental data showed that the measurement accuracy and resolution of the modified scheme were improved. Within  ±10° and  ±  20°, the average errors of the uniaxial measurements were 0.29° and 0.42°, respectively. The resolution of the measurements was 15″. The source of the measurement errors was analyzed through theory and experimental data and several key error sources were determined. A point capacitance model for measuring the clearance error is proposed, which is useful not only in compensating for the angle measurement error but also in realizing the motion clearance of an IBH in real-time.

  12. A new optical head tracing reflected light for nanoprofiler

    NASA Astrophysics Data System (ADS)

    Okuda, K.; Okita, K.; Tokuta, Y.; Kitayama, T.; Nakano, M.; Kudo, R.; Yamamura, K.; Endo, K.

    2014-09-01

    High accuracy optical elements are applied in various fields. For example, ultraprecise aspherical mirrors are necessary for developing third-generation synchrotron radiation and XFEL (X-ray Free Electron LASER) sources. In order to make such high accuracy optical elements, it is necessary to realize the measurement of aspherical mirrors with high accuracy. But there has been no measurement method which simultaneously achieves these demands yet. So, we develop the nanoprofiler that can directly measure the any surfaces figures with high accuracy. The nanoprofiler gets the normal vector and the coordinate of a measurement point with using LASER and the QPD (Quadrant Photo Diode) as a detector. And, from the normal vectors and their coordinates, the three-dimensional figure is calculated. In order to measure the figure, the nanoprofiler controls its five motion axis numerically to make the reflected light enter to the QPD's center. The control is based on the sample's design formula. We measured a concave spherical mirror with a radius of curvature of 400 mm by the deflection method which calculates the figure error from QPD's output, and compared the results with those using a Fizeau interferometer. The profile was consistent within the range of system error. The deflection method can't neglect the error caused from the QPD's spatial irregularity of sensitivity. In order to improve it, we have contrived the zero method which moves the QPD by the piezoelectric motion stage and calculates the figure error from the displacement.

  13. Strain gage measurement errors in the transient heating of structural components

    NASA Technical Reports Server (NTRS)

    Richards, W. Lance

    1993-01-01

    Significant strain-gage errors may exist in measurements acquired in transient thermal environments if conventional correction methods are applied. Conventional correction theory was modified and a new experimental method was developed to correct indicated strain data for errors created in radiant heating environments ranging from 0.6 C/sec (1 F/sec) to over 56 C/sec (100 F/sec). In some cases the new and conventional methods differed by as much as 30 percent. Experimental and analytical results were compared to demonstrate the new technique. For heating conditions greater than 6 C/sec (10 F/sec), the indicated strain data corrected with the developed technique compared much better to analysis than the same data corrected with the conventional technique.

  14. Removal of batch effects using distribution-matching residual networks.

    PubMed

    Shaham, Uri; Stanton, Kelly P; Zhao, Jun; Li, Huamin; Raddassi, Khadir; Montgomery, Ruth; Kluger, Yuval

    2017-08-15

    Sources of variability in experimentally derived data include measurement error in addition to the physical phenomena of interest. This measurement error is a combination of systematic components, originating from the measuring instrument and random measurement errors. Several novel biological technologies, such as mass cytometry and single-cell RNA-seq (scRNA-seq), are plagued with systematic errors that may severely affect statistical analysis if the data are not properly calibrated. We propose a novel deep learning approach for removing systematic batch effects. Our method is based on a residual neural network, trained to minimize the Maximum Mean Discrepancy between the multivariate distributions of two replicates, measured in different batches. We apply our method to mass cytometry and scRNA-seq datasets, and demonstrate that it effectively attenuates batch effects. our codes and data are publicly available at https://github.com/ushaham/BatchEffectRemoval.git. yuval.kluger@yale.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Binocular optical axis parallelism detection precision analysis based on Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Ying, Jiaju; Liu, Bingqi

    2018-02-01

    According to the working principle of the binocular photoelectric instrument optical axis parallelism digital calibration instrument, and in view of all components of the instrument, the various factors affect the system precision is analyzed, and then precision analysis model is established. Based on the error distribution, Monte Carlo method is used to analyze the relationship between the comprehensive error and the change of the center coordinate of the circle target image. The method can further guide the error distribution, optimize control the factors which have greater influence on the comprehensive error, and improve the measurement accuracy of the optical axis parallelism digital calibration instrument.

  16. Accounting for hardware imperfections in EIT image reconstruction algorithms.

    PubMed

    Hartinger, Alzbeta E; Gagnon, Hervé; Guardo, Robert

    2007-07-01

    Electrical impedance tomography (EIT) is a non-invasive technique for imaging the conductivity distribution of a body section. Different types of EIT images can be reconstructed: absolute, time difference and frequency difference. Reconstruction algorithms are sensitive to many errors which translate into image artefacts. These errors generally result from incorrect modelling or inaccurate measurements. Every reconstruction algorithm incorporates a model of the physical set-up which must be as accurate as possible since any discrepancy with the actual set-up will cause image artefacts. Several methods have been proposed in the literature to improve the model realism, such as creating anatomical-shaped meshes, adding a complete electrode model and tracking changes in electrode contact impedances and positions. Absolute and frequency difference reconstruction algorithms are particularly sensitive to measurement errors and generally assume that measurements are made with an ideal EIT system. Real EIT systems have hardware imperfections that cause measurement errors. These errors translate into image artefacts since the reconstruction algorithm cannot properly discriminate genuine measurement variations produced by the medium under study from those caused by hardware imperfections. We therefore propose a method for eliminating these artefacts by integrating a model of the system hardware imperfections into the reconstruction algorithms. The effectiveness of the method has been evaluated by reconstructing absolute, time difference and frequency difference images with and without the hardware model from data acquired on a resistor mesh phantom. Results have shown that artefacts are smaller for images reconstructed with the model, especially for frequency difference imaging.

  17. Standardising analysis of carbon monoxide rebreathing for application in anti-doping.

    PubMed

    Alexander, Anthony C; Garvican, Laura A; Burge, Caroline M; Clark, Sally A; Plowman, James S; Gore, Christopher J

    2011-03-01

    Determination of total haemoglobin mass (Hbmass) via carbon monoxide (CO) depends critically on repeatable measurement of percent carboxyhaemoglobin (%HbCO) in blood with a hemoximeter. The main aim of this study was to determine, for an OSM3 hemoximeter, the number of replicate measures as well as the theoretical change in percent carboxyhaemoglobin required to yield a random error of analysis (Analyser Error) of ≤1%. Before and after inhalation of CO, nine participants provided a total of 576 blood samples that were each analysed five times for percent carboxyhaemoglobin on one of three OSM3 hemoximeters; with approximately one-third of blood samples analysed on each OSM3. The Analyser Error was calculated for the first two (duplicate), first three (triplicate) and first four (quadruplicate) measures on each OSM3, as well as for all five measures (quintuplicates). Two methods of CO-rebreathing, a 2-min and 10-min procedure, were evaluated for Analyser Error. For duplicate analyses of blood, the Analyser Error for the 2-min method was 3.7, 4.0 and 5.0% for the three OSM3s when the percent carboxyhaemoglobin increased by two above resting values. With quintuplicate analyses of blood, the corresponding errors reduced to .8, .9 and 1.0% for the 2-min method when the percent carboxyhaemoglobin increased by 5.5 above resting values. In summary, to minimise the Analyser Error to ∼≤1% on an OSM3 hemoximeter, researchers should make ≥5 replicates of percent carboxyhaemoglobin and the volume of CO administered should be sufficient increase percent carboxyhaemoglobin by ≥5.5 above baseline levels. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  18. Noncontact Measurement of Humidity and Temperature Using Airborne Ultrasound

    NASA Astrophysics Data System (ADS)

    Kon, Akihiko; Mizutani, Koichi; Wakatsuki, Naoto

    2010-04-01

    We describe a noncontact method for measuring humidity and dry-bulb temperature. Conventional humidity sensors are single-point measurement devices, so that a noncontact method for measuring the relative humidity is required. Ultrasonic temperature sensors are noncontact measurement sensors. Because water vapor in the air increases sound velocity, conventional ultrasonic temperature sensors measure virtual temperature, which is higher than dry-bulb temperature. We performed experiments using an ultrasonic delay line, an atmospheric pressure sensor, and either a thermometer or a relative humidity sensor to confirm the validity of our measurement method at relative humidities of 30, 50, 75, and 100% and at temperatures of 283.15, 293.15, 308.15, and 323.15 K. The results show that the proposed method measures relative humidity with an error rate of less than 16.4% and dry-bulb temperature with an error of less than 0.7 K. Adaptations of the measurement method for use in air-conditioning control systems are discussed.

  19. Improved characterisation of measurement errors in electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Tso, C. H. M.; Binley, A. M.; Kuras, O.; Graham, J.

    2016-12-01

    Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe a statistical model of data errors before inversion. Wrongly prescribed error levels can lead to over- or under-fitting of data, yet commonly used models of measurement error are relatively simplistic. With the heightening interests in uncertainty estimation across hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide more reliable estimates of uncertainty. We have analysed two time-lapse electrical resistivity tomography (ERT) datasets; one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24h timeframe, while the other is a year-long cross-borehole survey at a UK nuclear site with over 50,000 daily measurements. Our study included the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and covariance analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used. This agrees with reported speculation in previous literature that ERT errors could be somewhat correlated. Based on these findings, we develop a new error model that allows grouping based on electrode number in additional to fitting a linear model to transfer resistance. The new model fits the observed measurement errors better and shows superior inversion and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the number of the four electrodes used to make each measurement. The new model can be readily applied to the diagonal data weighting matrix commonly used in classical inversion methods, as well as to the data covariance matrix in the Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.

  20. Determination of stability and control parameters of a light airplane from flight data using two estimation methods. [equation error and maximum likelihood methods

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1979-01-01

    Two identification methods, the equation error method and the output error method, are used to estimate stability and control parameter values from flight data for a low-wing, single-engine, general aviation airplane. The estimated parameters from both methods are in very good agreement primarily because of sufficient accuracy of measured data. The estimated static parameters also agree with the results from steady flights. The effect of power different input forms are demonstrated. Examination of all results available gives the best values of estimated parameters and specifies their accuracies.

  1. Survival analysis with error-prone time-varying covariates: a risk set calibration approach

    PubMed Central

    Liao, Xiaomei; Zucker, David M.; Li, Yi; Spiegelman, Donna

    2010-01-01

    Summary Occupational, environmental, and nutritional epidemiologists are often interested in estimating the prospective effect of time-varying exposure variables such as cumulative exposure or cumulative updated average exposure, in relation to chronic disease endpoints such as cancer incidence and mortality. From exposure validation studies, it is apparent that many of the variables of interest are measured with moderate to substantial error. Although the ordinary regression calibration approach is approximately valid and efficient for measurement error correction of relative risk estimates from the Cox model with time-independent point exposures when the disease is rare, it is not adaptable for use with time-varying exposures. By re-calibrating the measurement error model within each risk set, a risk set regression calibration method is proposed for this setting. An algorithm for a bias-corrected point estimate of the relative risk using an RRC approach is presented, followed by the derivation of an estimate of its variance, resulting in a sandwich estimator. Emphasis is on methods applicable to the main study/external validation study design, which arises in important applications. Simulation studies under several assumptions about the error model were carried out, which demonstrated the validity and efficiency of the method in finite samples. The method was applied to a study of diet and cancer from Harvard’s Health Professionals Follow-up Study (HPFS). PMID:20486928

  2. Dynamic Calibration and Verification Device of Measurement System for Dynamic Characteristic Coefficients of Sliding Bearing

    PubMed Central

    Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang

    2016-01-01

    The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283

  3. Intra-rater reliability of hallux flexor strength measures using the Nintendo Wii Balance Board.

    PubMed

    Quek, June; Treleaven, Julia; Brauer, Sandra G; O'Leary, Shaun; Clark, Ross A

    2015-01-01

    The purpose of this study was to investigate the intra-rater reliability of a new method in combination with the Nintendo Wii Balance Board (NWBB) to measure the strength of hallux flexor muscle. Thirty healthy individuals (age: 34.9 ± 12.9 years, height: 170.4 ± 10.5 cm, weight: 69.3 ± 15.3 kg, female = 15) participated. Repeated testing was completed within 7 days. Participants performed strength testing in sitting using a wooden platform in combination with the NWBB. This new method was set up to selectively recruit an intrinsic muscle of the foot, specifically the flexor hallucis brevis muscle. Statistical analysis was performed using intra-class coefficients and ordinary least product analysis. To estimate measurement error, standard error of measurement (SEM), minimal detectable change (MDC) and percentage error were calculated. Results indicate excellent intra-rater reliability (ICC = 0.982, CI = 0.96-0.99) with an absence of systematic bias. SEM, MDC and percentage error value were 0.5, 1.4 and 12 % respectively. This study demonstrates that a new method in combination with the NWBB application is reliable to measure hallux flexor strength and has potential to be used for future research and clinical application.

  4. Improved methods for the measurement and analysis of stellar magnetic fields

    NASA Technical Reports Server (NTRS)

    Saar, Steven H.

    1988-01-01

    The paper presents several improved methods for the measurement of magnetic fields on cool stars which take into account simple radiative transfer effects and the exact Zeeman patterns. Using these methods, high-resolution, low-noise data can be fitted with theoretical line profiles to determine the mean magnetic field strength in stellar active regions and a model-dependent fraction of the stellar surface (filling factor) covered by these regions. Random errors in the derived field strength and filling factor are parameterized in terms of signal-to-noise ratio, wavelength, spectral resolution, stellar rotation rate, and the magnetic parameters themselves. Weak line blends, if left uncorrected, can have significant systematic effects on the derived magnetic parameters, and thus several methods are developed to compensate partially for them. The magnetic parameters determined by previous methods likely have systematic errors because of such line blends and because of line saturation effects. Other sources of systematic error are explored in detail. These sources of error currently make it difficult to determine the magnetic parameters of individual stars to better than about + or - 20 percent.

  5. [Study of inversion and classification of particle size distribution under dependent model algorithm].

    PubMed

    Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin

    2008-05-01

    For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.

  6. A Comparison of Fuzzy Models in Similarity Assessment of Misregistered Area Class Maps

    NASA Astrophysics Data System (ADS)

    Brown, Scott

    Spatial uncertainty refers to unknown error and vagueness in geographic data. It is relevant to land change and urban growth modelers, soil and biome scientists, geological surveyors and others, who must assess thematic maps for similarity, or categorical agreement. In this paper I build upon prior map comparison research, testing the effectiveness of similarity measures on misregistered data. Though several methods compare uncertain thematic maps, few methods have been tested on misregistration. My objective is to test five map comparison methods for sensitivity to misregistration, including sub-pixel errors in both position and rotation. Methods included four fuzzy categorical models: fuzzy kappa's model, fuzzy inference, cell aggregation, and the epsilon band. The fifth method used conventional crisp classification. I applied these methods to a case study map and simulated data in two sets: a test set with misregistration error, and a control set with equivalent uniform random error. For all five methods, I used raw accuracy or the kappa statistic to measure similarity. Rough-set epsilon bands report the most similarity increase in test maps relative to control data. Conversely, the fuzzy inference model reports a decrease in test map similarity.

  7. On the application of photogrammetry to the fitting of jawbone-anchored bridges.

    PubMed

    Strid, K G

    1985-01-01

    Misfit between a jawbone-anchored bridge and the abutments in the patient's jaw may result in, for example, fixture fracture. To achieve improved alignment, the bridge base could be prepared in a numerically-controlled tooling machine using measured abutment coordinates as primary data. For each abutment, the measured values must comprise the coordinates of a reference surface as well as the spatial orientation of the fixture/abutment longitudinal axis. Stereophotogrammetry was assumed to be the measuring method of choice. To assess its potentials, a lower-jaw model with accurately positioned signals was stereophotographed and the films were measured in a stereocomparator. Model-space coordinates, computed from the image coordinates, were compared to the known signal coordinates. The root-mean-square error in position was determined to 0.03-0.08 mm, the maximum individual error amounting to 0.12 mm, whereas the r. m. s. error in axis direction was found to be 0.5-1.5 degrees with a maximum individual error of 1.8 degrees. These errors are of the same order as can be achieved by careful impression techniques. The method could be useful, but because of its complexity, stereophotogrammetry is not recommended as a standard procedure.

  8. Correcting for deformation in skin-based marker systems.

    PubMed

    Alexander, E J; Andriacchi, T P

    2001-03-01

    A new technique is described that reduces error due to skin movement artifact in the opto-electronic measurement of in vivo skeletal motion. This work builds on a previously described point cluster technique marker set and estimation algorithm by extending the transformation equations to the general deformation case using a set of activity-dependent deformation models. Skin deformation during activities of daily living are modeled as consisting of a functional form defined over the observation interval (the deformation model) plus additive noise (modeling error). The method is described as an interval deformation technique. The method was tested using simulation trials with systematic and random components of deformation error introduced into marker position vectors. The technique was found to substantially outperform methods that require rigid-body assumptions. The method was tested in vivo on a patient fitted with an external fixation device (Ilizarov). Simultaneous measurements from markers placed on the Ilizarov device (fixed to bone) were compared to measurements derived from skin-based markers. The interval deformation technique reduced the errors in limb segment pose estimate by 33 and 25% compared to the classic rigid-body technique for position and orientation, respectively. This newly developed method has demonstrated that by accounting for the changing shape of the limb segment, a substantial improvement in the estimates of in vivo skeletal movement can be achieved.

  9. Unavoidable electric current caused by inhomogeneities and its influence on measured material parameters of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Song, K.; Song, H. P.; Gao, C. F.

    2018-03-01

    It is well known that the key factor determining the performance of thermoelectric materials is the figure of merit, which depends on the thermal conductivity (TC), electrical conductivity, and Seebeck coefficient (SC). The electric current must be zero when measuring the TC and SC to avoid the occurrence of measurement errors. In this study, the complex-variable method is used to analyze the thermoelectric field near an elliptic inhomogeneity in an open circuit, and the field distributions are obtained in closed form. Our analysis shows that an electric current inevitably exists in both the matrix and the inhomogeneity even though the circuit is open. This unexpected electric current seriously affects the accuracy with which the TC and SC are measured. These measurement errors, both overall and local, are analyzed in detail. In addition, an error correction method is proposed based on the analytical results.

  10. Marine Corps Body Composition Program: The Flawed Measurement System

    DTIC Science & Technology

    2006-02-07

    fitness expert and writer for ABC Bodybuilding , an error of 3% in a body fat evaluation is extreme and methods that have this margin of error should not...most other methods. In fact, bodybuilders use a seven to nine point skin fold measurement weekly during their training to monitor body fat...19.95 and recommended and endorsed by “Body-For-Life” and the World Natural Bodybuilding Federation. The caliper comes with detailed instructions

  11. Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Burman, Erik; Hansbo, Peter; Larson, Mats G.

    2018-03-01

    Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.

  12. Multiparameter measurement utilizing poloidal polarimeter for burning plasma reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imazawa, Ryota; Kawano, Yasunori; Itami, Kiyoshi

    2014-08-21

    The authors have made the basic and applied research on the polarimeter for plasma diagnostics. Recently, the authors have proposed an application of multiparameter measurement (magnetic field, B, electron density, n{sub e}, electron temperature, T{sub e}, and total plasma current, I{sub p}) utilizing polarimeter to future fusion reactors. In this proceedings, the brief review of the polarimeter, the principle of the multiparameter measurement and the progress of the research on the multiparameter measurement are explained. The measurement method that the authors have proposed is suitable for the reactor for the following reasons; multiparameters can be obtained from a small numbermore » of diagnostics, the proposed method does not depend on time-history, and far-infrared light utilized by the polarimeter is less sensitive to degradation of of optical components. Taking into account the measuring error, performance assessment of the proposed method was carried. Assuming that the error of Δθ and Δε were 0.1° and 0.6°, respectively, the error of reconstructed j{sub φ}, n{sub e} and T{sub e} were 12 %, 8.4 % and 31 %, respectively. This study has shown that the reconstruction error can be decreased by increasing the number of the wavelength of the probing laser and by increasing the number of the viewing chords. For example, By increasing the number of viewing chords to forty-five, the error of j{sub φ}, n{sub e} and T{sub e} were reduced to 4.4 %, 4.4 %, and 17 %, respectively.« less

  13. Error Covariance Penalized Regression: A novel multivariate model combining penalized regression with multivariate error structure.

    PubMed

    Allegrini, Franco; Braga, Jez W B; Moreira, Alessandro C O; Olivieri, Alejandro C

    2018-06-29

    A new multivariate regression model, named Error Covariance Penalized Regression (ECPR) is presented. Following a penalized regression strategy, the proposed model incorporates information about the measurement error structure of the system, using the error covariance matrix (ECM) as a penalization term. Results are reported from both simulations and experimental data based on replicate mid and near infrared (MIR and NIR) spectral measurements. The results for ECPR are better under non-iid conditions when compared with traditional first-order multivariate methods such as ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLS). Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Novel measuring strategies in neutron interferometry

    NASA Astrophysics Data System (ADS)

    Bonse, Ulrich; Wroblewski, Thomas

    1985-04-01

    Angular misalignment of a sample in a single crystal neutron interferometer leads to systematic errors of the effective sample thickness and in this way to errors in the determination of the coherent scattering length. The misalignment can be determined and the errors can be corrected by a second measurement at a different angular sample position. Furthermore, a method has been developed which allows supervision of the wavelength during the measurements. These two techniques were tested by determining the scattering length of copper. A value of bc = 7.66(4) fm was obtained which is in excellent agreement with previous measurements.

  15. Simulation of the Effects of Random Measurement Errors

    ERIC Educational Resources Information Center

    Kinsella, I. A.; Hannaidh, P. B. O.

    1978-01-01

    Describes a simulation method for measurement of errors that requires calculators and tables of random digits. Each student simulates the random behaviour of the component variables in the function and by combining the results of all students, the outline of the sampling distribution of the function can be obtained. (GA)

  16. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.

    PubMed

    Bonny, Daniel P; Hull, M L; Howell, S M

    2014-01-01

    An accurate axis-finding technique is required to measure any changes from normal caused by total knee arthroplasty in the flexion-extension (F-E) and longitudinal rotation (LR) axes of the tibiofemoral joint. In a previous paper, we computationally determined how best to design and use an instrumented spatial linkage (ISL) to locate the F-E and LR axes such that rotational and translational errors were minimized. However, the ISL was not built and consequently was not calibrated; thus the errors in locating these axes were not quantified on an actual ISL. Moreover, previous methods to calibrate an ISL used calibration devices with accuracies that were either undocumented or insufficient for the device to serve as a gold-standard. Accordingly, the objectives were to (1) construct an ISL using the previously established guidelines,(2) calibrate the ISL using an improved method, and (3) quantify the error in measuring changes in the F-E and LR axes. A 3D printed ISL was constructed and calibrated using a coordinate measuring machine, which served as a gold standard. Validation was performed using a fixture that represented the tibiofemoral joint with an adjustable F-E axis and the errors in measuring changes to the positions and orientations of the F-E and LR axes were quantified. The resulting root mean squared errors (RMSEs) of the calibration residuals using the new calibration method were 0.24, 0.33, and 0.15 mm for the anterior-posterior, medial-lateral, and proximal-distal positions, respectively, and 0.11, 0.10, and 0.09 deg for varus-valgus, flexion-extension, and internal-external orientations, respectively. All RMSEs were below 0.29% of the respective full-scale range. When measuring changes to the F-E or LR axes, each orientation error was below 0.5 deg; when measuring changes in the F-E axis, each position error was below 1.0 mm. The largest position RMSE was when measuring a medial-lateral change in the LR axis (1.2 mm). Despite the large size of the ISL, these calibration residuals were better than those for previously published ISLs, particularly when measuring orientations, indicating that using a more accurate gold standard was beneficial in limiting the calibration residuals. The validation method demonstrated that this ISL is capable of accurately measuring clinically important changes (i.e. 1 mm and 1 deg) in the F-E and LR axes.

  17. Methods for recalibration of mass spectrometry data

    DOEpatents

    Tolmachev, Aleksey V [Richland, WA; Smith, Richard D [Richland, WA

    2009-03-03

    Disclosed are methods for recalibrating mass spectrometry data that provide improvement in both mass accuracy and precision by adjusting for experimental variance in parameters that have a substantial impact on mass measurement accuracy. Optimal coefficients are determined using correlated pairs of mass values compiled by matching sets of measured and putative mass values that minimize overall effective mass error and mass error spread. Coefficients are subsequently used to correct mass values for peaks detected in the measured dataset, providing recalibration thereof. Sub-ppm mass measurement accuracy has been demonstrated on a complex fungal proteome after recalibration, providing improved confidence for peptide identifications.

  18. Uncertainty analysis technique for OMEGA Dante measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M. J.; Widmann, K.; Sorce, C.

    2010-10-15

    The Dante is an 18 channel x-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g., hohlraums, etc.) at x-ray energies between 50 eV and 10 keV. It is a main diagnostic installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the x-ray diodes, filters and mirrors, and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less

  19. Uncertainty Analysis Technique for OMEGA Dante Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, M J; Widmann, K; Sorce, C

    2010-05-07

    The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determinedmore » flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.« less

  20. Heisenberg's error-disturbance relations: A joint measurement-based experimental test

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan-Yuan; Kurzyński, Paweł; Xiang, Guo-Yong; Li, Chuan-Feng; Guo, Guang-Can

    2017-04-01

    The original Heisenberg error-disturbance relation was recently shown to be not universally valid and two different approaches to reformulate it were proposed. The first one focuses on how the error and disturbance of two observables A and B depend on a particular quantum state. The second one asks how a joint measurement of A and B affects their eigenstates. Previous experiments focused on the first approach. Here we focus on the second one. First, we propose and implement an extendible method of quantum-walk-based joint measurements of noisy Pauli operators to test the error-disturbance relation for qubits introduced in the work of Busch et al. [Phys. Rev. A 89, 012129 (2014), 10.1103/PhysRevA.89.012129], where the polarization of the single photon, corresponding to a walker's auxiliary degree of freedom that is commonly known as a coin, undergoes a position- and time-dependent evolution. Then we formulate and experimentally test a universally valid state-dependent relation for three mutually unbiased observables. We therefore establish a method of testing error-disturbance relations.

  1. A-posteriori error estimation for the finite point method with applications to compressible flow

    NASA Astrophysics Data System (ADS)

    Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio

    2017-08-01

    An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.

  2. A new measuring method for motion accuracy of 3-axis NC equipments based on composite trajectory of circle and non-circle

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Du, Zhengchun; Yang, Jiangguo; Hong, Maisheng

    2011-12-01

    Geometric motion error measurement has been considered as an important task for accuracy enhancement and quality assurance of NC machine tools and CMMs. In consideration of the disadvantages of traditional measuring methods,a new measuring method for motion accuracy of 3-axis NC equipments based on composite trajectory including circle and non-circle(straight line and/or polygonal line) is proposed. The principles and techniques of the new measuring method are discussed in detail. 8 feasible measuring strategies based on different measuring groupings are summarized and optimized. The experiment of the most preferable strategy is carried out on the 3-axis CNC vertical machining center Cincinnati 750 Arrow by using cross grid encoder. The whole measuring time of 21 error components of the new method is cut down to 1-2 h because of easy installation, adjustment, operation and the characteristics of non-contact measurement. Result shows that the new method is suitable for `on machine" measurement and has good prospects of wide application.

  3. Calibration of misalignment errors in the non-null interferometry based on reverse iteration optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xinmu; Hao, Qun; Hu, Yao; Wang, Shaopu; Ning, Yan; Li, Tengfei; Chen, Shufen

    2017-10-01

    With no necessity of compensating the whole aberration introduced by the aspheric surfaces, non-null test has the advantage over null test in applicability. However, retrace error, which is brought by the path difference between the rays reflected from the surface under test (SUT) and the incident rays, is introduced into the measurement and makes up of the residual wavefront aberrations (RWAs) along with surface figure error (SFE), misalignment error and other influences. Being difficult to separate from RWAs, the misalignment error may remain after measurement and it is hard to identify whether it is removed or not. It is a primary task to study the removal of misalignment error. A brief demonstration of digital Moiré interferometric technique is presented and a calibration method for misalignment error on the basis of reverse iteration optimization (RIO) algorithm in non-null test method is addressed. The proposed method operates mostly in the virtual system, and requires no accurate adjustment in the real interferometer, which is of significant advantage in reducing the errors brought by repeating complicated manual adjustment, furthermore improving the accuracy of the aspheric surface test. Simulation verification is done in this paper. The calibration accuracy of the position and attitude can achieve at least a magnitude of 10-5 mm and 0.0056×10-6rad, respectively. The simulation demonstrates that the influence of misalignment error can be precisely calculated and removed after calibration.

  4. Digital Paper Technologies for Topographical Applications

    DTIC Science & Technology

    2011-09-19

    measures examine were training time for each method, time for entry offeatures, procedural errors, handwriting recognition errors, and user preference...time for entry of features, procedural errors, handwriting recognition errors, and user preference. For these metrics, temporal association was...checkbox, text restricted to a specific list of values, etc.) that provides constraints to the handwriting recognizer. When the user fills out the form

  5. The inference of atmospheric ozone using satellite horizon measurements in the 1042 per cm band.

    NASA Technical Reports Server (NTRS)

    Russell, J. M., III; Drayson, S. R.

    1972-01-01

    Description of a method for inferring atmospheric ozone information using infrared horizon radiance measurements in the 1042 per cm band. An analysis based on this method proves the feasibility of the horizon experiment for determining ozone information and shows that the ozone partial pressure can be determined in the altitude range from 50 down to 25 km. A comprehensive error study is conducted which considers effects of individual errors as well as the effect of all error sources acting simultaneously. The results show that in the absence of a temperature profile bias error, it should be possible to determine the ozone partial pressure to within an rms value of 15 to 20%. It may be possible to reduce this rms error to 5% by smoothing the solution profile. These results would be seriously degraded by an atmospheric temperature bias error of only 3 K; thus, great care should be taken to minimize this source of error in an experiment. It is probable, in view of recent technological developments, that these errors will be much smaller in future flight experiments and the altitude range will widen to include from about 60 km down to the tropopause region.

  6. Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Carlson, T.; Bernard, R.; Vidal-Madjar, D.

    1986-01-01

    Ground measurements of surface-sensible heat flux and soil moisture for a wheat-growing area of Beauce in France were compared with the values derived by inverting two boundary layer models with a surface/vegetation formulation using surface temperature measurements made from NOAA-AVHRR. The results indicated that the trends in the surface heat fluxes and soil moisture observed during the 5 days of the field experiment were effectively captured by the inversion method using the remotely measured radiative temperatures and either of the two boundary layer methods, both of which contain nearly identical vegetation parameterizations described by Taconet et al. (1986). The sensitivity of the results to errors in the initial sounding values or measured surface temperature was tested by varying the initial sounding temperature, dewpoint, and wind speed and the measured surface temperature by amounts corresponding to typical measurement error. In general, the vegetation component was more sensitive to error than the bare soil model.

  7. IMRT QA: Selecting gamma criteria based on error detection sensitivity.

    PubMed

    Steers, Jennifer M; Fraass, Benedick A

    2016-04-01

    The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.

  8. Non-contact measurement of rotation angle with solo camera

    NASA Astrophysics Data System (ADS)

    Gan, Xiaochuan; Sun, Anbin; Ye, Xin; Ma, Liqun

    2015-02-01

    For the purpose to measure a rotation angle around the axis of an object, a non-contact rotation angle measurement method based on solo camera was promoted. The intrinsic parameters of camera were calibrated using chessboard on principle of plane calibration theory. The translation matrix and rotation matrix between the object coordinate and the camera coordinate were calculated according to the relationship between the corners' position on object and their coordinates on image. Then the rotation angle between the measured object and the camera could be resolved from the rotation matrix. A precise angle dividing table (PADT) was chosen as the reference to verify the angle measurement error of this method. Test results indicated that the rotation angle measurement error of this method did not exceed +/- 0.01 degree.

  9. On Inertial Body Tracking in the Presence of Model Calibration Errors

    PubMed Central

    Miezal, Markus; Taetz, Bertram; Bleser, Gabriele

    2016-01-01

    In inertial body tracking, the human body is commonly represented as a biomechanical model consisting of rigid segments with known lengths and connecting joints. The model state is then estimated via sensor fusion methods based on data from attached inertial measurement units (IMUs). This requires the relative poses of the IMUs w.r.t. the segments—the IMU-to-segment calibrations, subsequently called I2S calibrations—to be known. Since calibration methods based on static poses, movements and manual measurements are still the most widely used, potentially large human-induced calibration errors have to be expected. This work compares three newly developed/adapted extended Kalman filter (EKF) and optimization-based sensor fusion methods with an existing EKF-based method w.r.t. their segment orientation estimation accuracy in the presence of model calibration errors with and without using magnetometer information. While the existing EKF-based method uses a segment-centered kinematic chain biomechanical model and a constant angular acceleration motion model, the newly developed/adapted methods are all based on a free segments model, where each segment is represented with six degrees of freedom in the global frame. Moreover, these methods differ in the assumed motion model (constant angular acceleration, constant angular velocity, inertial data as control input), the state representation (segment-centered, IMU-centered) and the estimation method (EKF, sliding window optimization). In addition to the free segments representation, the optimization-based method also represents each IMU with six degrees of freedom in the global frame. In the evaluation on simulated and real data from a three segment model (an arm), the optimization-based method showed the smallest mean errors, standard deviations and maximum errors throughout all tests. It also showed the lowest dependency on magnetometer information and motion agility. Moreover, it was insensitive w.r.t. I2S position and segment length errors in the tested ranges. Errors in the I2S orientations were, however, linearly propagated into the estimated segment orientations. In the absence of magnetic disturbances, severe model calibration errors and fast motion changes, the newly developed IMU centered EKF-based method yielded comparable results with lower computational complexity. PMID:27455266

  10. Determination of antenna factors using a three-antenna method at open-field test site

    NASA Astrophysics Data System (ADS)

    Masuzawa, Hiroshi; Tejima, Teruo; Harima, Katsushige; Morikawa, Takao

    1992-09-01

    Recently NIST has used the three-antenna method for calibration of the antenna factor of an antenna used for EMI measurements. This method does not require the specially designed standard antennas which are necessary in the standard field method or the standard antenna method, and can be used at an open-field test site. This paper theoretically and experimentally examines the measurement errors of this method and evaluates the precision of the antenna-factor calibration. It is found that the main source of the error is the non-ideal propagation characteristics of the test site, which should therefore be measured before the calibration. The precision of the antenna-factor calibration at the test site used in these experiments, is estimated to be 0.5 dB.

  11. Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves.

    PubMed

    Arndt, Stefan K; Irawan, Andi; Sanders, Gregor J

    2015-12-01

    Relative water content (RWC) and the osmotic potential (π) of plant leaves are important plant traits that can be used to assess drought tolerance or adaptation of plants. We estimated the magnitude of errors that are introduced by dilution of π from apoplastic water in osmometry methods and the errors that occur during rehydration of leaves for RWC and π in 14 different plant species from trees, grasses and herbs. Our data indicate that rehydration technique and length of rehydration can introduce significant errors in both RWC and π. Leaves from all species were fully turgid after 1-3 h of rehydration and increasing the rehydration time resulted in a significant underprediction of RWC. Standing rehydration via the petiole introduced the least errors while rehydration via floating disks and submerging leaves for rehydration led to a greater underprediction of RWC. The same effect was also observed for π. The π values following standing rehydration could be corrected by applying a dilution factor from apoplastic water dilution using an osmometric method but not by using apoplastic water fraction (AWF) from pressure volume (PV) curves. The apoplastic water dilution error was between 5 and 18%, while the two other rehydration methods introduced much greater errors. We recommend the use of the standing rehydration method because (1) the correct rehydration time can be evaluated by measuring water potential, (2) overhydration effects were smallest, and (3) π can be accurately corrected by using osmometric methods to estimate apoplastic water dilution. © 2015 Scandinavian Plant Physiology Society.

  12. Joint nonparametric correction estimator for excess relative risk regression in survival analysis with exposure measurement error

    PubMed Central

    Wang, Ching-Yun; Cullings, Harry; Song, Xiao; Kopecky, Kenneth J.

    2017-01-01

    SUMMARY Observational epidemiological studies often confront the problem of estimating exposure-disease relationships when the exposure is not measured exactly. In the paper, we investigate exposure measurement error in excess relative risk regression, which is a widely used model in radiation exposure effect research. In the study cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies a generalized version of the classical additive measurement error model, but it may or may not have repeated measurements. In addition, an instrumental variable is available for individuals in a subset of the whole cohort. We develop a nonparametric correction (NPC) estimator using data from the subcohort, and further propose a joint nonparametric correction (JNPC) estimator using all observed data to adjust for exposure measurement error. An optimal linear combination estimator of JNPC and NPC is further developed. The proposed estimators are nonparametric, which are consistent without imposing a covariate or error distribution, and are robust to heteroscedastic errors. Finite sample performance is examined via a simulation study. We apply the developed methods to data from the Radiation Effects Research Foundation, in which chromosome aberration is used to adjust for the effects of radiation dose measurement error on the estimation of radiation dose responses. PMID:29354018

  13. New approach for the identification of implausible values and outliers in longitudinal childhood anthropometric data.

    PubMed

    Shi, Joy; Korsiak, Jill; Roth, Daniel E

    2018-03-01

    We aimed to demonstrate the use of jackknife residuals to take advantage of the longitudinal nature of available growth data in assessing potential biologically implausible values and outliers. Artificial errors were induced in 5% of length, weight, and head circumference measurements, measured on 1211 participants from the Maternal Vitamin D for Infant Growth (MDIG) trial from birth to 24 months of age. Each child's sex- and age-standardized z-score or raw measurements were regressed as a function of age in child-specific models. Each error responsible for a biologically implausible decrease between a consecutive pair of measurements was identified based on the higher of the two absolute values of jackknife residuals in each pair. In further analyses, outliers were identified as those values beyond fixed cutoffs of the jackknife residuals (e.g., greater than +5 or less than -5 in primary analyses). Kappa, sensitivity, and specificity were calculated over 1000 simulations to assess the ability of the jackknife residual method to detect induced errors and to compare these methods with the use of conditional growth percentiles and conventional cross-sectional methods. Among the induced errors that resulted in a biologically implausible decrease in measurement between two consecutive values, the jackknife residual method identified the correct value in 84.3%-91.5% of these instances when applied to the sex- and age-standardized z-scores, with kappa values ranging from 0.685 to 0.795. Sensitivity and specificity of the jackknife method were higher than those of the conditional growth percentile method, but specificity was lower than for conventional cross-sectional methods. Using jackknife residuals provides a simple method to identify biologically implausible values and outliers in longitudinal child growth data sets in which each child contributes at least 4 serial measurements. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  14. SU-F-J-65: Prediction of Patient Setup Errors and Errors in the Calibration Curve from Prompt Gamma Proton Range Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, J; Labarbe, R; Sterpin, E

    2016-06-15

    Purpose: To understand the extent to which the prompt gamma camera measurements can be used to predict the residual proton range due to setup errors and errors in the calibration curve. Methods: We generated ten variations on a default calibration curve (CC) and ten corresponding range maps (RM). Starting with the default RM, we chose a square array of N beamlets, which were then rotated by a random angle θ and shifted by a random vector s. We added a 5% distal Gaussian noise to each beamlet in order to introduce discrepancies that exist between the ranges predicted from themore » prompt gamma measurements and those simulated with Monte Carlo algorithms. For each RM, s, θ, along with an offset u in the CC, were optimized using a simple Euclidian distance between the default ranges and the ranges produced by the given RM. Results: The application of our method lead to the maximal overrange of 2.0mm and underrange of 0.6mm on average. Compared to the situations where s, θ, and u were ignored, these values were larger: 2.1mm and 4.3mm. In order to quantify the need for setup error corrections, we also performed computations in which u was corrected for, but s and θ were not. This yielded: 3.2mm and 3.2mm. The average computation time for 170 beamlets was 65 seconds. Conclusion: These results emphasize the necessity to correct for setup errors and the errors in the calibration curve. The simplicity and speed of our method makes it a good candidate for being implemented as a tool for in-room adaptive therapy. This work also demonstrates that the Prompt gamma range measurements can indeed be useful in the effort to reduce range errors. Given these results, and barring further refinements, this approach is a promising step towards an adaptive proton radiotherapy.« less

  15. Estimation of an accuracy index of a diagnostic biomarker when the reference biomarker is continuous and measured with error.

    PubMed

    Wu, Mixia; Zhang, Dianchen; Liu, Aiyi

    2016-01-01

    New biomarkers continue to be developed for the purpose of diagnosis, and their diagnostic performances are typically compared with an existing reference biomarker used for the same purpose. Considerable amounts of research have focused on receiver operating characteristic curves analysis when the reference biomarker is dichotomous. In the situation where the reference biomarker is measured on a continuous scale and dichotomization is not practically appealing, an index was proposed in the literature to measure the accuracy of a continuous biomarker, which is essentially a linear function of the popular Kendall's tau. We consider the issue of estimating such an accuracy index when the continuous reference biomarker is measured with errors. We first investigate the impact of measurement errors on the accuracy index, and then propose methods to correct for the bias due to measurement errors. Simulation results show the effectiveness of the proposed estimator in reducing biases. The methods are exemplified with hemoglobin A1c measurements obtained from both the central lab and a local lab to evaluate the accuracy of the mean data obtained from the metered blood glucose monitoring against the centrally measured hemoglobin A1c from a behavioral intervention study for families of youth with type 1 diabetes.

  16. The effect of the dynamic wet troposphere on radio interferometric measurements

    NASA Technical Reports Server (NTRS)

    Treuhaft, R. N.; Lanyi, G. E.

    1987-01-01

    A statistical model of water vapor fluctuations is used to describe the effect of the dynamic wet troposphere on radio interferometric measurements. It is assumed that the spatial structure of refractivity is approximated by Kolmogorov turbulence theory, and that the temporal fluctuations are caused by spatial patterns moved over a site by the wind, and these assumptions are examined for the VLBI delay and delay rate observables. The results suggest that the delay rate measurement error is usually dominated by water vapor fluctuations, and water vapor induced VLBI parameter errors and correlations are determined as a function of the delay observable errors. A method is proposed for including the water vapor fluctuations in the parameter estimation method to obtain improved parameter estimates and parameter covariances.

  17. Nonparametric Signal Extraction and Measurement Error in the Analysis of Electroencephalographic Activity During Sleep

    PubMed Central

    Crainiceanu, Ciprian M.; Caffo, Brian S.; Di, Chong-Zhi; Punjabi, Naresh M.

    2009-01-01

    We introduce methods for signal and associated variability estimation based on hierarchical nonparametric smoothing with application to the Sleep Heart Health Study (SHHS). SHHS is the largest electroencephalographic (EEG) collection of sleep-related data, which contains, at each visit, two quasi-continuous EEG signals for each subject. The signal features extracted from EEG data are then used in second level analyses to investigate the relation between health, behavioral, or biometric outcomes and sleep. Using subject specific signals estimated with known variability in a second level regression becomes a nonstandard measurement error problem. We propose and implement methods that take into account cross-sectional and longitudinal measurement error. The research presented here forms the basis for EEG signal processing for the SHHS. PMID:20057925

  18. Measurement of large steel plates based on linear scan structured light scanning

    NASA Astrophysics Data System (ADS)

    Xiao, Zhitao; Li, Yaru; Lei, Geng; Xi, Jiangtao

    2018-01-01

    A measuring method based on linear structured light scanning is proposed to achieve the accurate measurement of the complex internal shape of large steel plates. Firstly, by using a calibration plate with round marks, an improved line scanning calibration method is designed. The internal and external parameters of camera are determined through the calibration method. Secondly, the images of steel plates are acquired by line scan camera. Then the Canny edge detection method is used to extract approximate contours of the steel plate images, the Gauss fitting algorithm is used to extract the sub-pixel edges of the steel plate contours. Thirdly, for the problem of inaccurate restoration of contour size, by measuring the distance between adjacent points in the grid of known dimensions, the horizontal and vertical error curves of the images are obtained. Finally, these horizontal and vertical error curves can be used to correct the contours of steel plates, and then combined with the calibration parameters of internal and external, the size of these contours can be calculated. The experiments results demonstrate that the proposed method can achieve the error of 1 mm/m in 1.2m×2.6m field of view, which has satisfied the demands of industrial measurement.

  19. An empirical understanding of triple collocation evaluation measure

    NASA Astrophysics Data System (ADS)

    Scipal, Klaus; Doubkova, Marcela; Hegyova, Alena; Dorigo, Wouter; Wagner, Wolfgang

    2013-04-01

    Triple collocation method is an advanced evaluation method that has been used in the soil moisture field for only about half a decade. The method requires three datasets with an independent error structure that represent an identical phenomenon. The main advantages of the method are that it a) doesn't require a reference dataset that has to be considered to represent the truth, b) limits the effect of random and systematic errors of other two datasets, and c) simultaneously assesses the error of three datasets. The objective of this presentation is to assess the triple collocation error (Tc) of the ASAR Global Mode Surface Soil Moisture (GM SSM 1) km dataset and highlight problems of the method related to its ability to cancel the effect of error of ancillary datasets. In particular, the goal is to a) investigate trends in Tc related to the change in spatial resolution from 5 to 25 km, b) to investigate trends in Tc related to the choice of a hydrological model, and c) to study the relationship between Tc and other absolute evaluation methods (namely RMSE and Error Propagation EP). The triple collocation method is implemented using ASAR GM, AMSR-E, and a model (either AWRA-L, GLDAS-NOAH, or ERA-Interim). First, the significance of the relationship between the three soil moisture datasets was tested that is a prerequisite for the triple collocation method. Second, the trends in Tc related to the choice of the third reference dataset and scale were assessed. For this purpose the triple collocation is repeated replacing AWRA-L with two different globally available model reanalysis dataset operating at different spatial resolution (ERA-Interim and GLDAS-NOAH). Finally, the retrieved results were compared to the results of the RMSE and EP evaluation measures. Our results demonstrate that the Tc method does not eliminate the random and time-variant systematic errors of the second and the third dataset used in the Tc. The possible reasons include the fact a) that the TC method could not fully function with datasets acting at very different spatial resolutions, or b) that the errors were not fully independent as initially assumed.

  20. A fast RCS accuracy assessment method for passive radar calibrators

    NASA Astrophysics Data System (ADS)

    Zhou, Yongsheng; Li, Chuanrong; Tang, Lingli; Ma, Lingling; Liu, QI

    2016-10-01

    In microwave radar radiometric calibration, the corner reflector acts as the standard reference target but its structure is usually deformed during the transportation and installation, or deformed by wind and gravity while permanently installed outdoor, which will decrease the RCS accuracy and therefore the radiometric calibration accuracy. A fast RCS accuracy measurement method based on 3-D measuring instrument and RCS simulation was proposed in this paper for tracking the characteristic variation of the corner reflector. In the first step, RCS simulation algorithm was selected and its simulation accuracy was assessed. In the second step, the 3-D measuring instrument was selected and its measuring accuracy was evaluated. Once the accuracy of the selected RCS simulation algorithm and 3-D measuring instrument was satisfied for the RCS accuracy assessment, the 3-D structure of the corner reflector would be obtained by the 3-D measuring instrument, and then the RCSs of the obtained 3-D structure and corresponding ideal structure would be calculated respectively based on the selected RCS simulation algorithm. The final RCS accuracy was the absolute difference of the two RCS calculation results. The advantage of the proposed method was that it could be applied outdoor easily, avoiding the correlation among the plate edge length error, plate orthogonality error, plate curvature error. The accuracy of this method is higher than the method using distortion equation. In the end of the paper, a measurement example was presented in order to show the performance of the proposed method.

  1. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  2. Accuracy of a Radiological Evaluation Method for Thoracic and Lumbar Spinal Curvatures Using Spinous Processes.

    PubMed

    Marchetti, Bárbara V; Candotti, Cláudia T; Raupp, Eduardo G; Oliveira, Eduardo B C; Furlanetto, Tássia S; Loss, Jefferson F

    The purpose of this study was to assess a radiographic method for spinal curvature evaluation in children, based on spinous processes, and identify its normality limits. The sample consisted of 90 radiographic examinations of the spines of children in the sagittal plane. Thoracic and lumbar curvatures were evaluated using angular (apex angle [AA]) and linear (sagittal arrow [SA]) measurements based on the spinous processes. The same curvatures were also evaluated using the Cobb angle (CA) method, which is considered the gold standard. For concurrent validity (AA vs CA), Pearson's product-moment correlation coefficient, root-mean-square error, Pitman- Morgan test, and Bland-Altman analysis were used. For reproducibility (AA, SA, and CA), the intraclass correlation coefficient, standard error of measurement, and minimal detectable change measurements were used. A significant correlation was found between CA and AA measurements, as was a low root-mean-square error. The mean difference between the measurements was 0° for thoracic and lumbar curvatures, and the mean standard deviations of the differences were ±5.9° and 6.9°, respectively. The intraclass correlation coefficients of AA and SA were similar to or higher than the gold standard (CA). The standard error of measurement and minimal detectable change of the AA were always lower than the CA. This study determined the concurrent validity, as well as intra- and interrater reproducibility, of the radiographic measurements of kyphosis and lordosis in children. Copyright © 2017. Published by Elsevier Inc.

  3. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Tso, Chak-Hau Michael; Kuras, Oliver; Wilkinson, Paul B.; Uhlemann, Sebastian; Chambers, Jonathan E.; Meldrum, Philip I.; Graham, James; Sherlock, Emma F.; Binley, Andrew

    2017-11-01

    Measurement errors can play a pivotal role in geophysical inversion. Most inverse models require users to prescribe or assume a statistical model of data errors before inversion. Wrongly prescribed errors can lead to over- or under-fitting of data; however, the derivation of models of data errors is often neglected. With the heightening interest in uncertainty estimation within hydrogeophysics, better characterisation and treatment of measurement errors is needed to provide improved image appraisal. Here we focus on the role of measurement errors in electrical resistivity tomography (ERT). We have analysed two time-lapse ERT datasets: one contains 96 sets of direct and reciprocal data collected from a surface ERT line within a 24 h timeframe; the other is a two-year-long cross-borehole survey at a UK nuclear site with 246 sets of over 50,000 measurements. Our study includes the characterisation of the spatial and temporal behaviour of measurement errors using autocorrelation and correlation coefficient analysis. We find that, in addition to well-known proportionality effects, ERT measurements can also be sensitive to the combination of electrodes used, i.e. errors may not be uncorrelated as often assumed. Based on these findings, we develop a new error model that allows grouping based on electrode number in addition to fitting a linear model to transfer resistance. The new model explains the observed measurement errors better and shows superior inversion results and uncertainty estimates in synthetic examples. It is robust, because it groups errors together based on the electrodes used to make the measurements. The new model can be readily applied to the diagonal data weighting matrix widely used in common inversion methods, as well as to the data covariance matrix in a Bayesian inversion framework. We demonstrate its application using extensive ERT monitoring datasets from the two aforementioned sites.

  4. Measured and predicted rotor performance for the SERI advanced wind turbine blades

    NASA Astrophysics Data System (ADS)

    Tangler, J.; Smith, B.; Kelley, N.; Jager, D.

    1992-02-01

    Measured and predicted rotor performance for the Solar Energy Research Institute (SERI) advanced wind turbine blades were compared to assess the accuracy of predictions and to identify the sources of error affecting both predictions and measurements. An awareness of these sources of error contributes to improved prediction and measurement methods that will ultimately benefit future rotor design efforts. Propeller/vane anemometers were found to underestimate the wind speed in turbulent environments such as the San Gorgonio Pass wind farm area. Using sonic or cup anemometers, good agreement was achieved between predicted and measured power output for wind speeds up to 8 m/sec. At higher wind speeds an optimistic predicted power output and the occurrence of peak power at wind speeds lower than measurements resulted from the omission of turbulence and yaw error. In addition, accurate two-dimensional (2-D) airfoil data prior to stall and a post stall airfoil data synthesization method that reflects three-dimensional (3-D) effects were found to be essential for accurate performance prediction.

  5. Reliability Estimation for Aggregated Data: Applications for Organizational Research.

    ERIC Educational Resources Information Center

    Hart, Roland J.; Bradshaw, Stephen C.

    This report provides the statistical tools necessary to measure the extent of error that exists in organizational record data and group survey data. It is felt that traditional methods of measuring error are inappropriate or incomplete when applied to organizational groups, especially in studies of organizational change when the same variables are…

  6. Quality Control of an OSCE Using Generalizability Theory and Many-Faceted Rasch Measurement

    ERIC Educational Resources Information Center

    Iramaneerat, Cherdsak; Yudkowsky, Rachel; Myford, Carol M.; Downing, Steven M.

    2008-01-01

    An Objective Structured Clinical Examination (OSCE) is an effective method for evaluating competencies. However, scores obtained from an OSCE are vulnerable to many potential measurement errors that cases, items, or standardized patients (SPs) can introduce. Monitoring these sources of errors is an important quality control mechanism to ensure…

  7. Tracking Progress in Improving Diagnosis: A Framework for Defining Undesirable Diagnostic Events.

    PubMed

    Olson, Andrew P J; Graber, Mark L; Singh, Hardeep

    2018-01-29

    Diagnostic error is a prevalent, harmful, and costly phenomenon. Multiple national health care and governmental organizations have recently identified the need to improve diagnostic safety as a high priority. A major barrier, however, is the lack of standardized, reliable methods for measuring diagnostic safety. Given the absence of reliable and valid measures for diagnostic errors, we need methods to help establish some type of baseline diagnostic performance across health systems, as well as to enable researchers and health systems to determine the impact of interventions for improving the diagnostic process. Multiple approaches have been suggested but none widely adopted. We propose a new framework for identifying "undesirable diagnostic events" (UDEs) that health systems, professional organizations, and researchers could further define and develop to enable standardized measurement and reporting related to diagnostic safety. We propose an outline for UDEs that identifies both conditions prone to diagnostic error and the contexts of care in which these errors are likely to occur. Refinement and adoption of this framework across health systems can facilitate standardized measurement and reporting of diagnostic safety.

  8. Improving qPCR telomere length assays: Controlling for well position effects increases statistical power.

    PubMed

    Eisenberg, Dan T A; Kuzawa, Christopher W; Hayes, M Geoffrey

    2015-01-01

    Telomere length (TL) is commonly measured using quantitative PCR (qPCR). Although, easier than the southern blot of terminal restriction fragments (TRF) TL measurement method, one drawback of qPCR is that it introduces greater measurement error and thus reduces the statistical power of analyses. To address a potential source of measurement error, we consider the effect of well position on qPCR TL measurements. qPCR TL data from 3,638 people run on a Bio-Rad iCycler iQ are reanalyzed here. To evaluate measurement validity, correspondence with TRF, age, and between mother and offspring are examined. First, we present evidence for systematic variation in qPCR TL measurements in relation to thermocycler well position. Controlling for these well-position effects consistently improves measurement validity and yields estimated improvements in statistical power equivalent to increasing sample sizes by 16%. We additionally evaluated the linearity of the relationships between telomere and single copy gene control amplicons and between qPCR and TRF measures. We find that, unlike some previous reports, our data exhibit linear relationships. We introduce the standard error in percent, a superior method for quantifying measurement error as compared to the commonly used coefficient of variation. Using this measure, we find that excluding samples with high measurement error does not improve measurement validity in our study. Future studies using block-based thermocyclers should consider well position effects. Since additional information can be gleaned from well position corrections, rerunning analyses of previous results with well position correction could serve as an independent test of the validity of these results. © 2015 Wiley Periodicals, Inc.

  9. Determining relative error bounds for the CVBEM

    USGS Publications Warehouse

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Methods provides a measure of relative error which can be utilized to subsequently reduce the error or provide information for further modeling analysis. By maximizing the relative error norm on each boundary element, a bound on the total relative error for each boundary element can be evaluated. This bound can be utilized to test CVBEM convergence, to analyze the effects of additional boundary nodal points in reducing the modeling error, and to evaluate the sensitivity of resulting modeling error within a boundary element from the error produced in another boundary element as a function of geometric distance. ?? 1985.

  10. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    ERIC Educational Resources Information Center

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  11. Gamma model and its analysis for phase measuring profilometry.

    PubMed

    Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G

    2010-03-01

    Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.

  12. An Improved Method for Dynamic Measurement of Deflections of the Vertical Based on the Maintenance of Attitude Reference

    PubMed Central

    Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng

    2014-01-01

    A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch–Tung–Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s. PMID:25192311

  13. An improved method for dynamic measurement of deflections of the vertical based on the maintenance of attitude reference.

    PubMed

    Dai, Dongkai; Wang, Xingshu; Zhan, Dejun; Huang, Zongsheng

    2014-09-03

    A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines. Deflections of the vertical are calculated by using the difference between the attitudes with respect to the geodetic coordinates and astronomical coordinates. Moreover, an algorithm for removing the trend error of the vertical deflections is developed with the aid of Earth Gravitational Model 2008 (EGM2008). In comparison with traditional methods, the new method required less accurate GNSS, because the dynamic acceleration calculation is avoided. The errors of inertial sensors are well resolved in the INS/GNSS integration, which is implemented by a Rauch-Tung-Striebel (RTS) smoother. In addition, a single-axis indexed INS is adopted to improve the observability of the system errors and to restrain the inertial sensor errors. The proposed method is validated by Monte Carlo simulations. The results show that deflections of the vertical can achieve a precision of better than 1″ for a single survey line. The proposed method can be applied to a gravimetry system based on a ground vehicle or ship with a speed lower than 25 m/s.

  14. Authenticating concealed private data while maintaining concealment

    DOEpatents

    Thomas, Edward V [Albuquerque, NM; Draelos, Timothy J [Albuquerque, NM

    2007-06-26

    A method of and system for authenticating concealed and statistically varying multi-dimensional data comprising: acquiring an initial measurement of an item, wherein the initial measurement is subject to measurement error; applying a transformation to the initial measurement to generate reference template data; acquiring a subsequent measurement of an item, wherein the subsequent measurement is subject to measurement error; applying the transformation to the subsequent measurement; and calculating a Euclidean distance metric between the transformed measurements; wherein the calculated Euclidean distance metric is identical to a Euclidean distance metric between the measurement prior to transformation.

  15. A New Design of the Test Rig to Measure the Transmission Error of Automobile Gearbox

    NASA Astrophysics Data System (ADS)

    Hou, Yixuan; Zhou, Xiaoqin; He, Xiuzhi; Liu, Zufei; Liu, Qiang

    2017-12-01

    Noise and vibration affect the performance of automobile gearbox. And transmission error has been regarded as an important excitation source in gear system. Most of current research is focused on the measurement and analysis of single gear drive, and few investigations on the transmission error measurement in complete gearbox were conducted. In order to measure transmission error in a complete automobile gearbox, a kind of electrically closed test rig is developed. Based on the principle of modular design, the test rig can be used to test different types of gearbox by adding necessary modules. The test rig for front engine, rear-wheel-drive gearbox is constructed. And static and modal analysis methods are taken to verify the performance of a key component.

  16. Effects of vibration on inertial wind-tunnel model attitude measurement devices

    NASA Technical Reports Server (NTRS)

    Young, Clarence P., Jr.; Buehrle, Ralph D.; Balakrishna, S.; Kilgore, W. Allen

    1994-01-01

    Results of an experimental study of a wind tunnel model inertial angle-of-attack sensor response to a simulated dynamic environment are presented. The inertial device cannot distinguish between the gravity vector and the centrifugal accelerations associated with wind tunnel model vibration, this situation results in a model attitude measurement bias error. Significant bias error in model attitude measurement was found for the model system tested. The model attitude bias error was found to be vibration mode and amplitude dependent. A first order correction model was developed and used for estimating attitude measurement bias error due to dynamic motion. A method for correcting the output of the model attitude inertial sensor in the presence of model dynamics during on-line wind tunnel operation is proposed.

  17. A high-accuracy two-position alignment inertial navigation system for lunar rovers aided by a star sensor with a calibration and positioning function

    NASA Astrophysics Data System (ADS)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming

    2016-12-01

    An integrated inertial/celestial navigation system (INS/CNS) has wide applicability in lunar rovers as it provides accurate and autonomous navigational information. Initialization is particularly vital for a INS. This paper proposes a two-position initialization method based on a standard Kalman filter. The difference between the computed star vector and the measured star vector is measured. With the aid of a star sensor and the two positions, the attitudinal and positional errors can be greatly reduced, and the biases of three gyros and accelerometers can also be estimated. The semi-physical simulation results show that the positional and attitudinal errors converge within 0.07″ and 0.1 m, respectively, when the given initial positional error is 1 km and the attitudinal error is 10°. These good results show that the proposed method can accomplish alignment, positioning and calibration functions simultaneously. Thus the proposed two-position initialization method has the potential for application in lunar rover navigation.

  18. Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging

    PubMed Central

    Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.

    2014-01-01

    Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532

  19. Optimal subsystem approach to multi-qubit quantum state discrimination and experimental investigation

    NASA Astrophysics Data System (ADS)

    Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun

    2018-02-01

    Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.

  20. Refraction error correction for deformation measurement by digital image correlation at elevated temperature

    NASA Astrophysics Data System (ADS)

    Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji

    2017-03-01

    An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.

  1. Comparison of two surface temperature measurement using thermocouples and infrared camera

    NASA Astrophysics Data System (ADS)

    Michalski, Dariusz; Strąk, Kinga; Piasecka, Magdalena

    This paper compares two methods applied to measure surface temperatures at an experimental setup designed to analyse flow boiling heat transfer. The temperature measurements were performed in two parallel rectangular minichannels, both 1.7 mm deep, 16 mm wide and 180 mm long. The heating element for the fluid flowing in each minichannel was a thin foil made of Haynes-230. The two measurement methods employed to determine the surface temperature of the foil were: the contact method, which involved mounting thermocouples at several points in one minichannel, and the contactless method to study the other minichannel, where the results were provided with an infrared camera. Calculations were necessary to compare the temperature results. Two sets of measurement data obtained for different values of the heat flux were analysed using the basic statistical methods, the method error and the method accuracy. The experimental error and the method accuracy were taken into account. The comparative analysis showed that although the values and distributions of the surface temperatures obtained with the two methods were similar but both methods had certain limitations.

  2. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  3. Accuracy of measurement in electrically evoked compound action potentials.

    PubMed

    Hey, Matthias; Müller-Deile, Joachim

    2015-01-15

    Electrically evoked compound action potentials (ECAP) in cochlear implant (CI) patients are characterized by the amplitude of the N1P1 complex. The measurement of evoked potentials yields a combination of the measured signal with various noise components but for ECAP procedures performed in the clinical routine, only the averaged curve is accessible. To date no detailed analysis of error dimension has been published. The aim of this study was to determine the error of the N1P1 amplitude and to determine the factors that impact the outcome. Measurements were performed on 32 CI patients with either CI24RE (CA) or CI512 implants using the Software Custom Sound EP (Cochlear). N1P1 error approximation of non-averaged raw data consisting of recorded single-sweeps was compared to methods of error approximation based on mean curves. The error approximation of the N1P1 amplitude using averaged data showed comparable results to single-point error estimation. The error of the N1P1 amplitude depends on the number of averaging steps and amplification; in contrast, the error of the N1P1 amplitude is not dependent on the stimulus intensity. Single-point error showed smaller N1P1 error and better coincidence with 1/√(N) function (N is the number of measured sweeps) compared to the known maximum-minimum criterion. Evaluation of N1P1 amplitude should be accompanied by indication of its error. The retrospective approximation of this measurement error from the averaged data available in clinically used software is possible and best done utilizing the D-trace in forward masking artefact reduction mode (no stimulation applied and recording contains only the switch-on-artefact). Copyright © 2014 Elsevier B.V. All rights reserved.

  4. An analysis of estimation of pulmonary blood flow by the single-breath method

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.

    1986-01-01

    The single-breath method represents a simple noninvasive technique for the assessment of capillary blood flow across the lung. However, this method has not gained widespread acceptance, because its accuracy is still being questioned. A rigorous procedure is described for estimating pulmonary blood flow (PBF) using data obtained with the aid of the single-breath method. Attention is given to the minimization of data-processing errors in the presence of measurement errors and to questions regarding a correction for possible loss of CO2 in the lung tissue. It is pointed out that the estimations are based on the exact solution of the underlying differential equations which describe the dynamics of gas exchange in the lung. The reported study demonstrates the feasibility of obtaining highly reliable estimates of PBF from expiratory data in the presence of random measurement errors.

  5. A study of GPS measurement errors due to noise and multipath interference for CGADS

    NASA Technical Reports Server (NTRS)

    Axelrad, Penina; MacDoran, Peter F.; Comp, Christopher J.

    1996-01-01

    This report describes a study performed by the Colorado Center for Astrodynamics Research (CCAR) on GPS measurement errors in the Codeless GPS Attitude Determination System (CGADS) due to noise and multipath interference. Preliminary simulation models fo the CGADS receiver and orbital multipath are described. The standard FFT algorithms for processing the codeless data is described and two alternative algorithms - an auto-regressive/least squares (AR-LS) method, and a combined adaptive notch filter/least squares (ANF-ALS) method, are also presented. Effects of system noise, quantization, baseband frequency selection, and Doppler rates on the accuracy of phase estimates with each of the processing methods are shown. Typical electrical phase errors for the AR-LS method are 0.2 degrees, compared to 0.3 and 0.5 degrees for the FFT and ANF-ALS algorithms, respectively. Doppler rate was found to have the largest effect on the performance.

  6. 3D bubble reconstruction using multiple cameras and space carving method

    NASA Astrophysics Data System (ADS)

    Fu, Yucheng; Liu, Yang

    2018-07-01

    An accurate measurement of bubble shape and size has a significant value in understanding the behavior of bubbles that exist in many engineering applications. Past studies usually use one or two cameras to estimate bubble volume, surface area, among other parameters. The 3D bubble shape and rotation angle are generally not available in these studies. To overcome this challenge and obtain more detailed information of individual bubbles, a 3D imaging system consisting of four high-speed cameras is developed in this paper, and the space carving method is used to reconstruct the 3D bubble shape based on the recorded high-speed images from different view angles. The proposed method can reconstruct the bubble surface with minimal assumptions. A benchmarking test is performed in a 3 cm  ×  1 cm rectangular channel with stagnant water. The results show that the newly proposed method can measure the bubble volume with an error of less than 2% compared with the syringe reading. The conventional two-camera system has an error around 10%. The one-camera system has an error greater than 25%. The visualization of a 3D bubble rising demonstrates the wall influence on bubble rotation angle and aspect ratio. This also explains the large error that exists in the single camera measurement.

  7. Study on verifying the angle measurement performance of the rotary-laser system

    NASA Astrophysics Data System (ADS)

    Zhao, Jin; Ren, Yongjie; Lin, Jiarui; Yin, Shibin; Zhu, Jigui

    2018-04-01

    An angle verification method to verify the angle measurement performance of the rotary-laser system was developed. Angle measurement performance has a great impact on measuring accuracy. Although there is some previous research on the verification of angle measuring uncertainty for the rotary-laser system, there are still some limitations. High-precision reference angles are used in the study of the method, and an integrated verification platform is set up to evaluate the performance of the system. This paper also probes the error that has biggest influence on the verification system. Some errors of the verification system are avoided via the experimental method, and some are compensated through the computational formula and curve fitting. Experimental results show that the angle measurement performance meets the requirement for coordinate measurement. The verification platform can evaluate the uncertainty of angle measurement for the rotary-laser system efficiently.

  8. Addressing Systematic Errors in Correlation Tracking on HMI Magnetograms

    NASA Astrophysics Data System (ADS)

    Mahajan, Sushant S.; Hathaway, David H.; Munoz-Jaramillo, Andres; Martens, Petrus C.

    2017-08-01

    Correlation tracking in solar magnetograms is an effective method to measure the differential rotation and meridional flow on the solar surface. However, since the tracking accuracy required to successfully measure meridional flow is very high, small systematic errors have a noticeable impact on measured meridional flow profiles. Additionally, the uncertainties of this kind of measurements have been historically underestimated, leading to controversy regarding flow profiles at high latitudes extracted from measurements which are unreliable near the solar limb.Here we present a set of systematic errors we have identified (and potential solutions), including bias caused by physical pixel sizes, center-to-limb systematics, and discrepancies between measurements performed using different time intervals. We have developed numerical techniques to get rid of these systematic errors and in the process improve the accuracy of the measurements by an order of magnitude.We also present a detailed analysis of uncertainties in these measurements using synthetic magnetograms and the quantification of an upper limit below which meridional flow measurements cannot be trusted as a function of latitude.

  9. Real-time and accurate rail wear measurement method and experimental analysis.

    PubMed

    Liu, Zhen; Li, Fengjiao; Huang, Bangkui; Zhang, Guangjun

    2014-08-01

    When a train is running on uneven or curved rails, it generates violent vibrations on the rails. As a result, the light plane of the single-line structured light vision sensor is not vertical, causing errors in rail wear measurements (referred to as vibration errors in this paper). To avoid vibration errors, a novel rail wear measurement method is introduced in this paper, which involves three main steps. First, a multi-line structured light vision sensor (which has at least two linear laser projectors) projects a stripe-shaped light onto the inside of the rail. Second, the central points of the light stripes in the image are extracted quickly, and the three-dimensional profile of the rail is obtained based on the mathematical model of the structured light vision sensor. Then, the obtained rail profile is transformed from the measurement coordinate frame (MCF) to the standard rail coordinate frame (RCF) by taking the three-dimensional profile of the measured rail waist as the datum. Finally, rail wear constraint points are adopted to simplify the location of the rail wear points, and the profile composed of the rail wear points are compared with the standard rail profile in RCF to determine the rail wear. Both real data experiments and simulation experiments show that the vibration errors can be eliminated when the proposed method is used.

  10. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  11. Reduction of shading-derived artifacts in skin chromophore imaging without measurements or assumptions about the shape of the subject

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro; Nishidate, Izumi; Ojima, Nobutoshi; Iwata, Kayoko

    2014-01-01

    To quantitatively evaluate skin chromophores over a wide region of curved skin surface, we propose an approach that suppresses the effect of the shading-derived error in the reflectance on the estimation of chromophore concentrations, without sacrificing the accuracy of that estimation. In our method, we use multiple regression analysis, assuming the absorbance spectrum as the response variable and the extinction coefficients of melanin, oxygenated hemoglobin, and deoxygenated hemoglobin as the predictor variables. The concentrations of melanin and total hemoglobin are determined from the multiple regression coefficients using compensation formulae (CF) based on the diffuse reflectance spectra derived from a Monte Carlo simulation. To suppress the shading-derived error, we investigated three different combinations of multiple regression coefficients for the CF. In vivo measurements with the forearm skin demonstrated that the proposed approach can reduce the estimation errors that are due to shading-derived errors in the reflectance. With the best combination of multiple regression coefficients, we estimated that the ratio of the error to the chromophore concentrations is about 10%. The proposed method does not require any measurements or assumptions about the shape of the subjects; this is an advantage over other studies related to the reduction of shading-derived errors.

  12. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition

    PubMed Central

    Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen

    2018-01-01

    The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible. PMID:29695041

  13. An Improved Fast Self-Calibration Method for Hybrid Inertial Navigation System under Stationary Condition.

    PubMed

    Liu, Bingqi; Wei, Shihui; Su, Guohua; Wang, Jiping; Lu, Jiazhen

    2018-04-24

    The navigation accuracy of the inertial navigation system (INS) can be greatly improved when the inertial measurement unit (IMU) is effectively calibrated and compensated, such as gyro drifts and accelerometer biases. To reduce the requirement for turntable precision in the classical calibration method, a continuous dynamic self-calibration method based on a three-axis rotating frame for the hybrid inertial navigation system is presented. First, by selecting a suitable IMU frame, the error models of accelerometers and gyros are established. Then, by taking the navigation errors during rolling as the observations, the overall twenty-one error parameters of hybrid inertial navigation system (HINS) are identified based on the calculation of the intermediate parameter. The actual experiment verifies that the method can identify all error parameters of HINS and this method has equivalent accuracy to the classical calibration on a high-precision turntable. In addition, this method is rapid, simple and feasible.

  14. Numerical simulation and analysis for low-frequency rock physics measurements

    NASA Astrophysics Data System (ADS)

    Dong, Chunhui; Tang, Genyang; Wang, Shangxu; He, Yanxiao

    2017-10-01

    In recent years, several experimental methods have been introduced to measure the elastic parameters of rocks in the relatively low-frequency range, such as differential acoustic resonance spectroscopy (DARS) and stress-strain measurement. It is necessary to verify the validity and feasibility of the applied measurement method and to quantify the sources and levels of measurement error. Relying solely on the laboratory measurements, however, we cannot evaluate the complete wavefield variation in the apparatus. Numerical simulations of elastic wave propagation, on the other hand, are used to model the wavefield distribution and physical processes in the measurement systems, and to verify the measurement theory and analyze the measurement results. In this paper we provide a numerical simulation method to investigate the acoustic waveform response of the DARS system and the quasi-static responses of the stress-strain system, both of which use axisymmetric apparatus. We applied this method to parameterize the properties of the rock samples, the sample locations and the sensor (hydrophone and strain gauges) locations and simulate the measurement results, i.e. resonance frequencies and axial and radial strains on the sample surface, from the modeled wavefield following the physical experiments. Rock physical parameters were estimated by inversion or direct processing of these data, and showed a perfect match with the true values, thus verifying the validity of the experimental measurements. Error analysis was also conducted for the DARS system with 18 numerical samples, and the sources and levels of error are discussed. In particular, we propose an inversion method for estimating both density and compressibility of these samples. The modeled results also showed fairly good agreement with the real experiment results, justifying the effectiveness and feasibility of our modeling method.

  15. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    USGS Publications Warehouse

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-01-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek obtained from the iterative two-stage method also improved predictive performance of the individual models and model averaging in both synthetic and experimental studies.

  16. Measuring in-use ship emissions with international and U.S. federal methods.

    PubMed

    Khan, M Yusuf; Ranganathan, Sindhuja; Agrawal, Harshit; Welch, William A; Laroo, Christopher; Miller, J Wayne; Cocker, David R

    2013-03-01

    Regulatory agencies have shifted their emphasis from measuring emissions during certification cycles to measuring emissions during actual use. Emission measurements in this research were made from two different large ships at sea to compare the Simplified Measurement Method (SMM) compliant with the International Maritime Organization (IMO) NOx Technical Code to the Portable Emission Measurement Systems (PEMS) compliant with the US. Environmental Protection Agency (EPA) 40 Code of Federal Regulations (CFR) Part 1065 for on-road emission testing. Emissions of nitrogen oxides (NOx), carbon dioxide (CO2), and carbon monoxide (CO) were measured at load points specified by the International Organization for Standardization (ISO) to compare the two measurement methods. The average percentage errors calculated for PEMS measurements were 6.5%, 0.6%, and 357% for NOx, CO2, and CO, respectively. The NOx percentage error of 6.5% corresponds to a 0.22 to 1.11 g/kW-hr error in moving from Tier III (3.4 g/kW-hr) to Tier I (17.0 g/kW-hr) emission limits. Emission factors (EFs) of NOx and CO2 measured via SMM were comparable to other studies and regulatory agencies estimates. However EF(PM2.5) for this study was up to 26% higher than that currently used by regulatory agencies. The PM2.5 was comprised predominantly of hydrated sulfate (70-95%), followed by organic carbon (11-14%), ash (6-11%), and elemental carbon (0.4-0.8%). This research provides direct comparison between the International Maritime Organization and U.S. Environmental Protection Agency reference methods for quantifying in-use emissions from ships. This research provides correlations for NOx, CO2, and CO measured by a PEMS unit (certified by U.S. EPA for on-road testing) against IMO's Simplified Measurement Method for on-board certification. It substantiates the measurements of NOx by PEMS and quantifies measurement error. This study also provides in-use modal and overall weighted emission factors of gaseous (NOx, CO, CO2, total hydrocarbons [THC], and SO2) and particulate pollutants from the main engine of a container ship, which are helpful in the development of emission inventory.

  17. Comparison between refractometer and retinoscopy in determining refractive errors in children--false doubt.

    PubMed

    Pokupec, Rajko; Mrazovac, Danijela; Popović-Suić, Smiljka; Mrazovac, Visnja; Kordić, Rajko; Petricek, Igor

    2013-04-01

    Early detection of a refractive error and its correction are extremely important for the prevention of amblyopia (poor vision). The golden standard in the detection of refractive errors is retinoscopy--a method where the pupils are dilated in order to exclude accomodation. This results in a more accurate measurement of a refractive error. Automatic computer refractometer is also in use. The study included 30 patients, 15 boys, 15 girls aged 4-16. The first examination was conducted with refractometer on narrow pupils. Retinoscopy, followed by another examination with refractometer was performed on pupils dilated with mydriatic drops administered 3 times. The results obtained with three methods were compared. They indicate that in narrow pupils the autorefractometer revealed an increased diopter value in nearsightedness (myopia), the minus overcorrection, whereas findings obtained with retinoscopy and autorefractometer in mydriasis cycloplegia, were much more accurate. The results were statistically processed, which confirmed the differences between obtained measurements. These findings are consistent with the results of studies conducted by other authors. Automatic refractometry on narrow pupils has proven to be a method for detection of refractive errors in children. However, the exact value of the refractive error is obtained only in mydriasis--with retinoscopy or an automatic refractometer on dilated pupils.

  18. Theoretical and experimental errors for in situ measurements of plant water potential.

    PubMed

    Shackel, K A

    1984-07-01

    Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (-0.6 to -1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design.

  19. Theoretical and Experimental Errors for In Situ Measurements of Plant Water Potential 1

    PubMed Central

    Shackel, Kenneth A.

    1984-01-01

    Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (−0.6 to −1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design. PMID:16663701

  20. Characterization of the International Linear Collider damping ring optics

    NASA Astrophysics Data System (ADS)

    Shanks, J.; Rubin, D. L.; Sagan, D.

    2014-10-01

    A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.

  1. Blind system identification of two-thermocouple sensor based on cross-relation method.

    PubMed

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  2. Blind system identification of two-thermocouple sensor based on cross-relation method

    NASA Astrophysics Data System (ADS)

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  3. Errors in MR-based attenuation correction for brain imaging with PET/MR scanners

    NASA Astrophysics Data System (ADS)

    Rota Kops, Elena; Herzog, Hans

    2013-02-01

    AimAttenuation correction of PET data acquired by hybrid MR/PET scanners remains a challenge, even if several methods for brain and whole-body measurements have been developed recently. A template-based attenuation correction for brain imaging proposed by our group is easy to handle and delivers reliable attenuation maps in a short time. However, some potential error sources are analyzed in this study. We investigated the choice of template reference head among all the available data (error A), and possible skull anomalies of the specific patient, such as discontinuities due to surgery (error B). Materials and methodsAn anatomical MR measurement and a 2-bed-position transmission scan covering the whole head and neck region were performed in eight normal subjects (4 females, 4 males). Error A: Taking alternatively one of the eight heads as reference, eight different templates were created by nonlinearly registering the images to the reference and calculating the average. Eight patients (4 females, 4 males; 4 with brain lesions, 4 w/o brain lesions) were measured in the Siemens BrainPET/MR scanner. The eight templates were used to generate the patients' attenuation maps required for reconstruction. ROI and VOI atlas-based comparisons were performed employing all the reconstructed images. Error B: CT-based attenuation maps of two volunteers were manipulated by manually inserting several skull lesions and filling a nasal cavity. The corresponding attenuation coefficients were substituted with the water's coefficient (0.096/cm). ResultsError A: The mean SUVs over the eight templates pairs for all eight patients and all VOIs did not differ significantly one from each other. Standard deviations up to 1.24% were found. Error B: After reconstruction of the volunteers' BrainPET data with the CT-based attenuation maps without and with skull anomalies, a VOI-atlas analysis was performed revealing very little influence of the skull lesions (less than 3%), while the filled nasal cavity yielded an overestimation in cerebellum up to 5%. ConclusionsThe present error analysis confirms that our template-based attenuation method provides reliable attenuation corrections of PET brain imaging measured in PET/MR scanners.

  4. Error decomposition and estimation of inherent optical properties.

    PubMed

    Salama, Mhd Suhyb; Stein, Alfred

    2009-09-10

    We describe a methodology to quantify and separate the errors of inherent optical properties (IOPs) derived from ocean-color model inversion. Their total error is decomposed into three different sources, namely, model approximations and inversion, sensor noise, and atmospheric correction. Prior information on plausible ranges of observation, sensor noise, and inversion goodness-of-fit are employed to derive the posterior probability distribution of the IOPs. The relative contribution of each error component to the total error budget of the IOPs, all being of stochastic nature, is then quantified. The method is validated with the International Ocean Colour Coordinating Group (IOCCG) data set and the NASA bio-Optical Marine Algorithm Data set (NOMAD). The derived errors are close to the known values with correlation coefficients of 60-90% and 67-90% for IOCCG and NOMAD data sets, respectively. Model-induced errors inherent to the derived IOPs are between 10% and 57% of the total error, whereas atmospheric-induced errors are in general above 43% and up to 90% for both data sets. The proposed method is applied to synthesized and in situ measured populations of IOPs. The mean relative errors of the derived values are between 2% and 20%. A specific error table to the Medium Resolution Imaging Spectrometer (MERIS) sensor is constructed. It serves as a benchmark to evaluate the performance of the atmospheric correction method and to compute atmospheric-induced errors. Our method has a better performance and is more appropriate to estimate actual errors of ocean-color derived products than the previously suggested methods. Moreover, it is generic and can be applied to quantify the error of any derived biogeophysical parameter regardless of the used derivation.

  5. Modeling Infrared Signal Reflections to Characterize Indoor Multipath Propagation

    PubMed Central

    De-La-Llana-Calvo, Álvaro; Lázaro-Galilea, José Luis; Gardel-Vicente, Alfredo; Rodríguez-Navarro, David; Bravo-Muñoz, Ignacio; Tsirigotis, Georgios; Iglesias-Miguel, Juan

    2017-01-01

    In this paper, we propose a model to characterize Infrared (IR) signal reflections on any kind of surface material, together with a simplified procedure to compute the model parameters. The model works within the framework of Local Positioning Systems (LPS) based on IR signals (IR-LPS) to evaluate the behavior of transmitted signal Multipaths (MP), which are the main cause of error in IR-LPS, and makes several contributions to mitigation methods. Current methods are based on physics, optics, geometry and empirical methods, but these do not meet our requirements because of the need to apply several different restrictions and employ complex tools. We propose a simplified model based on only two reflection components, together with a method for determining the model parameters based on 12 empirical measurements that are easily performed in the real environment where the IR-LPS is being applied. Our experimental results show that the model provides a comprehensive solution to the real behavior of IR MP, yielding small errors when comparing real and modeled data (the mean error ranges from 1% to 4% depending on the environment surface materials). Other state-of-the-art methods yielded mean errors ranging from 15% to 40% in test measurements. PMID:28406436

  6. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  7. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of <100 nrad (root-mean-square) and height error of <1-2 nm (peak-tovalley). These are for optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.

  8. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  9. Tracking and shape errors measurement of concentrating heliostats

    NASA Astrophysics Data System (ADS)

    Coquand, Mathieu; Caliot, Cyril; Hénault, François

    2017-09-01

    In solar tower power plants, factors such as tracking accuracy, facets misalignment and surface shape errors of concentrating heliostats are of prime importance on the efficiency of the system. At industrial scale, one critical issue is the time and effort required to adjust the different mirrors of the faceted heliostats, which could take several months using current techniques. Thus, methods enabling quick adjustment of a field with a huge number of heliostats are essential for the rise of solar tower technology. In this communication is described a new method for heliostat characterization that makes use of four cameras located near the solar receiver and simultaneously recording images of the sun reflected by the optical surfaces. From knowledge of a measured sun profile, data processing of the acquired images allows reconstructing the slope and shape errors of the heliostats, including tracking and canting errors. The mathematical basis of this shape reconstruction process is explained comprehensively. Numerical simulations demonstrate that the measurement accuracy of this "backward-gazing method" is compliant with the requirements of solar concentrating optics. Finally, we present our first experimental results obtained at the THEMIS experimental solar tower plant in Targasonne, France.

  10. Measurement of bow tie profiles in CT scanners using a real-time dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Bruce R., E-mail: whitingbrucer@gmail.com; Evans, Joshua D.; Williamson, Jeffrey F.

    2014-10-15

    Purpose: Several areas of computed tomography (CT) research require knowledge about the intensity profile of the x-ray fan beam that is introduced by a bow tie filter. This information is considered proprietary by CT manufacturers, so noninvasive measurement methods are required. One method using real-time dosimeters has been proposed in the literature. A commercially available dosimeter was used to apply that method, and analysis techniques were developed to extract fan beam profiles from measurements. Methods: A real-time ion chamber was placed near the periphery of an empty CT gantry and the dose rate versus time waveform was recorded as themore » x-ray source rotated about the isocenter. In contrast to previously proposed analysis methods that assumed a pointlike detector, the finite-size ion chamber received varying amounts of coverage by the collimated x-ray beam during rotation, precluding a simple relationship between the source intensity as a function of fan beam angle and measured intensity. A two-parameter model for measurement intensity was developed that included both effective collimation width and source-to-detector distance, which then was iteratively solved to minimize the error between duplicate measurements at corresponding fan beam angles, allowing determination of the fan beam profile from measured dose-rate waveforms. Measurements were performed on five different scanner systems while varying parameters such as collimation, kVp, and bow tie filters. On one system, direct measurements of the bow tie profile were collected for comparison with the real-time dosimeter technique. Results: The data analysis method for a finite-size detector was found to produce a fan beam profile estimate with a relative error between duplicate measurement intensities of <5%. It was robust over a wide range of collimation widths (e.g., 1–40 mm), producing fan beam profiles that agreed with a relative error of 1%–5%. Comparison with a direct measurement technique on one system produced agreement with a relative error of 2%–6%. Fan beam profiles were found to differ for different filter types on a given system and between different vendors. Conclusions: A commercially available real-time dosimeter probe was found to be a convenient and accurate instrument for measuring fan beam profiles. An analysis method was developed that could handle a wide range of collimation widths by explicitly considering the finite width of the ion chamber. Relative errors in the profiles were found to be less than 5%. Measurements of five different clinical scanners demonstrate the variation in bow tie designs, indicating that generic bow tie models will not be adequate for CT system research.« less

  11. Analysis and improvement of gas turbine blade temperature measurement error

    NASA Astrophysics Data System (ADS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  12. Data driven CAN node reliability assessment for manufacturing system

    NASA Astrophysics Data System (ADS)

    Zhang, Leiming; Yuan, Yong; Lei, Yong

    2017-01-01

    The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using network error event data.

  13. New algorithms for motion error detection of numerical control machine tool by laser tracking measurement on the basis of GPS principle.

    PubMed

    Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie

    2018-01-01

    As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.

  14. New algorithms for motion error detection of numerical control machine tool by laser tracking measurement on the basis of GPS principle

    NASA Astrophysics Data System (ADS)

    Wang, Jindong; Chen, Peng; Deng, Yufen; Guo, Junjie

    2018-01-01

    As a three-dimensional measuring instrument, the laser tracker is widely used in industrial measurement. To avoid the influence of angle measurement error on the overall measurement accuracy, the multi-station and time-sharing measurement with a laser tracker is introduced on the basis of the global positioning system (GPS) principle in this paper. For the proposed method, how to accurately determine the coordinates of each measuring point by using a large amount of measured data is a critical issue. Taking detecting motion error of a numerical control machine tool, for example, the corresponding measurement algorithms are investigated thoroughly. By establishing the mathematical model of detecting motion error of a machine tool with this method, the analytical algorithm concerning on base station calibration and measuring point determination is deduced without selecting the initial iterative value in calculation. However, when the motion area of the machine tool is in a 2D plane, the coefficient matrix of base station calibration is singular, which generates a distortion result. In order to overcome the limitation of the original algorithm, an improved analytical algorithm is also derived. Meanwhile, the calibration accuracy of the base station with the improved algorithm is compared with that with the original analytical algorithm and some iterative algorithms, such as the Gauss-Newton algorithm and Levenberg-Marquardt algorithm. The experiment further verifies the feasibility and effectiveness of the improved algorithm. In addition, the different motion areas of the machine tool have certain influence on the calibration accuracy of the base station, and the corresponding influence of measurement error on the calibration result of the base station depending on the condition number of coefficient matrix are analyzed.

  15. Evaluation of Eight Methods for Aligning Orientation of Two Coordinate Systems.

    PubMed

    Mecheri, Hakim; Robert-Lachaine, Xavier; Larue, Christian; Plamondon, André

    2016-08-01

    The aim of this study was to evaluate eight methods for aligning the orientation of two different local coordinate systems. Alignment is very important when combining two different systems of motion analysis. Two of the methods were developed specifically for biomechanical studies, and because there have been at least three decades of algorithm development in robotics, it was decided to include six methods from this field. To compare these methods, an Xsens sensor and two Optotrak clusters were attached to a Plexiglas plate. The first optical marker cluster was fixed on the sensor and 20 trials were recorded. The error of alignment was calculated for each trial, and the mean, the standard deviation, and the maximum values of this error over all trials were reported. One-way repeated measures analysis of variance revealed that the alignment error differed significantly across the eight methods. Post-hoc tests showed that the alignment error from the methods based on angular velocities was significantly lower than for the other methods. The method using angular velocities performed the best, with an average error of 0.17 ± 0.08 deg. We therefore recommend this method, which is easy to perform and provides accurate alignment.

  16. Validity of radiographic assessment of the knee joint space using automatic image analysis.

    PubMed

    Komatsu, Daigo; Hasegawa, Yukiharu; Kojima, Toshihisa; Seki, Taisuke; Ikeuchi, Kazuma; Takegami, Yasuhiko; Amano, Takafumi; Higuchi, Yoshitoshi; Kasai, Takehiro; Ishiguro, Naoki

    2016-09-01

    The present study investigated whether there were differences between automatic and manual measurements of the minimum joint space width (mJSW) on knee radiographs. Knee radiographs of 324 participants in a systematic health screening were analyzed using the following three methods: manual measurement of film-based radiographs (Manual), manual measurement of digitized radiographs (Digital), and automatic measurement of digitized radiographs (Auto). The mean mJSWs on the medial and lateral sides of the knees were determined using each method, and measurement reliability was evaluated using intra-class correlation coefficients. Measurement errors were compared between normal knees and knees with radiographic osteoarthritis. All three methods demonstrated good reliability, although the reliability was slightly lower with the Manual method than with the other methods. On the medial and lateral sides of the knees, the mJSWs were the largest in the Manual method and the smallest in the Auto method. The measurement errors of each method were significantly larger for normal knees than for radiographic osteoarthritis knees. The mJSW measurements are more accurate and reliable with the Auto method than with the Manual or Digital method, especially for normal knees. Therefore, the Auto method is ideal for the assessment of the knee joint space.

  17. Unit of Measurement Used and Parent Medication Dosing Errors

    PubMed Central

    Dreyer, Benard P.; Ugboaja, Donna C.; Sanchez, Dayana C.; Paul, Ian M.; Moreira, Hannah A.; Rodriguez, Luis; Mendelsohn, Alan L.

    2014-01-01

    BACKGROUND AND OBJECTIVES: Adopting the milliliter as the preferred unit of measurement has been suggested as a strategy to improve the clarity of medication instructions; teaspoon and tablespoon units may inadvertently endorse nonstandard kitchen spoon use. We examined the association between unit used and parent medication errors and whether nonstandard instruments mediate this relationship. METHODS: Cross-sectional analysis of baseline data from a larger study of provider communication and medication errors. English- or Spanish-speaking parents (n = 287) whose children were prescribed liquid medications in 2 emergency departments were enrolled. Medication error defined as: error in knowledge of prescribed dose, error in observed dose measurement (compared to intended or prescribed dose); >20% deviation threshold for error. Multiple logistic regression performed adjusting for parent age, language, country, race/ethnicity, socioeconomic status, education, health literacy (Short Test of Functional Health Literacy in Adults); child age, chronic disease; site. RESULTS: Medication errors were common: 39.4% of parents made an error in measurement of the intended dose, 41.1% made an error in the prescribed dose. Furthermore, 16.7% used a nonstandard instrument. Compared with parents who used milliliter-only, parents who used teaspoon or tablespoon units had twice the odds of making an error with the intended (42.5% vs 27.6%, P = .02; adjusted odds ratio=2.3; 95% confidence interval, 1.2–4.4) and prescribed (45.1% vs 31.4%, P = .04; adjusted odds ratio=1.9; 95% confidence interval, 1.03–3.5) dose; associations greater for parents with low health literacy and non–English speakers. Nonstandard instrument use partially mediated teaspoon and tablespoon–associated measurement errors. CONCLUSIONS: Findings support a milliliter-only standard to reduce medication errors. PMID:25022742

  18. Application of Energy Function as a Measure of Error in the Numerical Solution for Online Transient Stability Assessment

    NASA Astrophysics Data System (ADS)

    Sarojkumar, K.; Krishna, S.

    2016-08-01

    Online dynamic security assessment (DSA) is a computationally intensive task. In order to reduce the amount of computation, screening of contingencies is performed. Screening involves analyzing the contingencies with the system described by a simpler model so that computation requirement is reduced. Screening identifies those contingencies which are sure to not cause instability and hence can be eliminated from further scrutiny. The numerical method and the step size used for screening should be chosen with a compromise between speed and accuracy. This paper proposes use of energy function as a measure of error in the numerical solution used for screening contingencies. The proposed measure of error can be used to determine the most accurate numerical method satisfying the time constraint of online DSA. Case studies on 17 generator system are reported.

  19. A simulation study to quantify the impacts of exposure ...

    EPA Pesticide Factsheets

    BackgroundExposure measurement error in copollutant epidemiologic models has the potential to introduce bias in relative risk (RR) estimates. A simulation study was conducted using empirical data to quantify the impact of correlated measurement errors in time-series analyses of air pollution and health.MethodsZIP-code level estimates of exposure for six pollutants (CO, NOx, EC, PM2.5, SO4, O3) from 1999 to 2002 in the Atlanta metropolitan area were used to calculate spatial, population (i.e. ambient versus personal), and total exposure measurement error.Empirically determined covariance of pollutant concentration pairs and the associated measurement errors were used to simulate true exposure (exposure without error) from observed exposure. Daily emergency department visits for respiratory diseases were simulated using a Poisson time-series model with a main pollutant RR = 1.05 per interquartile range, and a null association for the copollutant (RR = 1). Monte Carlo experiments were used to evaluate the impacts of correlated exposure errors of different copollutant pairs.ResultsSubstantial attenuation of RRs due to exposure error was evident in nearly all copollutant pairs studied, ranging from 10 to 40% attenuation for spatial error, 3–85% for population error, and 31–85% for total error. When CO, NOx or EC is the main pollutant, we demonstrated the possibility of false positives, specifically identifying significant, positive associations for copoll

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y; Fullerton, G; Goins, B

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group;more » 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement errors during the animal study.« less

  1. Estimating the Uncertainty In Diameter Growth Model Predictions and Its Effects On The Uncertainty of Annual Inventory Estimates

    Treesearch

    Ronald E. McRoberts; Veronica C. Lessard

    2001-01-01

    Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations. Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation methods, the...

  2. Covariate Measurement Error Correction for Student Growth Percentiles Using the SIMEX Method

    ERIC Educational Resources Information Center

    Shang, Yi; VanIwaarden, Adam; Betebenner, Damian W.

    2015-01-01

    In this study, we examined the impact of covariate measurement error (ME) on the estimation of quantile regression and student growth percentiles (SGPs), and find that SGPs tend to be overestimated among students with higher prior achievement and underestimated among those with lower prior achievement, a problem we describe as ME endogeneity in…

  3. Accounting for measurement error in biomarker data and misclassification of subtypes in the analysis of tumor data

    PubMed Central

    Nevo, Daniel; Zucker, David M.; Tamimi, Rulla M.; Wang, Molin

    2017-01-01

    A common paradigm in dealing with heterogeneity across tumors in cancer analysis is to cluster the tumors into subtypes using marker data on the tumor, and then to analyze each of the clusters separately. A more specific target is to investigate the association between risk factors and specific subtypes and to use the results for personalized preventive treatment. This task is usually carried out in two steps–clustering and risk factor assessment. However, two sources of measurement error arise in these problems. The first is the measurement error in the biomarker values. The second is the misclassification error when assigning observations to clusters. We consider the case with a specified set of relevant markers and propose a unified single-likelihood approach for normally distributed biomarkers. As an alternative, we consider a two-step procedure with the tumor type misclassification error taken into account in the second-step risk factor analysis. We describe our method for binary data and also for survival analysis data using a modified version of the Cox model. We present asymptotic theory for the proposed estimators. Simulation results indicate that our methods significantly lower the bias with a small price being paid in terms of variance. We present an analysis of breast cancer data from the Nurses’ Health Study to demonstrate the utility of our method. PMID:27558651

  4. Local alignment of two-base encoded DNA sequence

    PubMed Central

    Homer, Nils; Merriman, Barry; Nelson, Stanley F

    2009-01-01

    Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732

  5. Research on the precision measurement of super-low reflectivity

    NASA Astrophysics Data System (ADS)

    Yuan, Hao-yu; Lu, Zong-gui; Xia, Yan-wen; Peng, Zhi-tao; Liu, Hua; Xu, Long-bo; Sun, Zhi-hong; Tang, Jun

    2010-10-01

    Introduced a high-precision measurement of measured the super-low reflectivity and small sampling angle. Using single reflect way measured, and compare with re-swatch. Testing the reflectance of the sampling mirror which be used on TIL, and analyze the error. Research results indicate, the main factor which affect result is energy detector error and energy detector linearity. This methods is easy and have high-precision, it can be used to measure the super-low reflectivity sampling mirror reflectance.

  6. Data entry errors and design for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. Model-based methods and computerized protocols offer the opportunity to improve TGC quality but require human data entry, particularly of blood glucose (BG) values, which can be significantly prone to error. This study presents the design and optimization of data entry methods to minimize error for a computerized and model-based TGC method prior to pilot clinical trials. To minimize data entry error, two tests were carried out to optimize a method with errors less than the 5%-plus reported in other studies. Four initial methods were tested on 40 subjects in random order, and the best two were tested more rigorously on 34 subjects. The tests measured entry speed and accuracy. Errors were reported as corrected and uncorrected errors, with the sum comprising a total error rate. The first set of tests used randomly selected values, while the second set used the same values for all subjects to allow comparisons across users and direct assessment of the magnitude of errors. These research tests were approved by the University of Canterbury Ethics Committee. The final data entry method tested reduced errors to less than 1-2%, a 60-80% reduction from reported values. The magnitude of errors was clinically significant and was typically by 10.0 mmol/liter or an order of magnitude but only for extreme values of BG < 2.0 mmol/liter or BG > 15.0-20.0 mmol/liter, both of which could be easily corrected with automated checking of extreme values for safety. The data entry method selected significantly reduced data entry errors in the limited design tests presented, and is in use on a clinical pilot TGC study. The overall approach and testing methods are easily performed and generalizable to other applications and protocols. © 2012 Diabetes Technology Society.

  7. Coordinate alignment of combined measurement systems using a modified common points method

    NASA Astrophysics Data System (ADS)

    Zhao, G.; Zhang, P.; Xiao, W.

    2018-03-01

    The co-ordinate metrology has been extensively researched for its outstanding advantages in measurement range and accuracy. The alignment of different measurement systems is usually achieved by integrating local coordinates via common points before measurement. The alignment errors would accumulate and significantly reduce the global accuracy, thus need to be minimized. In this thesis, a modified common points method (MCPM) is proposed to combine different traceable system errors of the cooperating machines, and optimize the global accuracy by introducing mutual geometric constraints. The geometric constraints, obtained by measuring the common points in individual local coordinate systems, provide the possibility to reduce the local measuring uncertainty whereby enhance the global measuring certainty. A simulation system is developed in Matlab to analyze the feature of MCPM using the Monto-Carlo method. An exemplary setup is constructed to verify the feasibility and efficiency of the proposed method associated with laser tracker and indoor iGPS systems. Experimental results show that MCPM could significantly improve the alignment accuracy.

  8. Multiple Indicators, Multiple Causes Measurement Error Models

    PubMed Central

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.

    2014-01-01

    Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535

  9. Retention-error patterns in complex alphanumeric serial-recall tasks.

    PubMed

    Mathy, Fabien; Varré, Jean-Stéphane

    2013-01-01

    We propose a new method based on an algorithm usually dedicated to DNA sequence alignment in order to both reliably score short-term memory performance on immediate serial-recall tasks and analyse retention-error patterns. There can be considerable confusion on how performance on immediate serial list recall tasks is scored, especially when the to-be-remembered items are sampled with replacement. We discuss the utility of sequence-alignment algorithms to compare the stimuli to the participants' responses. The idea is that deletion, substitution, translocation, and insertion errors, which are typical in DNA, are also typical putative errors in short-term memory (respectively omission, confusion, permutation, and intrusion errors). We analyse four data sets in which alphanumeric lists included a few (or many) repetitions. After examining the method on two simple data sets, we show that sequence alignment offers 1) a compelling method for measuring capacity in terms of chunks when many regularities are introduced in the material (third data set) and 2) a reliable estimator of individual differences in short-term memory capacity. This study illustrates the difficulty of arriving at a good measure of short-term memory performance, and also attempts to characterise the primary factors underpinning remembering and forgetting.

  10. Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method.

    PubMed

    Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi

    2015-10-01

    The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.

  11. Method for the fabrication error calibration of the CGH used in the cylindrical interferometry system

    NASA Astrophysics Data System (ADS)

    Wang, Qingquan; Yu, Yingjie; Mou, Kebing

    2016-10-01

    This paper presents a method of absolutely calibrating the fabrication error of the CGH in the cylindrical interferometry system for the measurement of cylindricity error. First, a simulated experimental system is set up in ZEMAX. On one hand, the simulated experimental system has demonstrated the feasibility of the method we proposed. On the other hand, by changing the different positions of the mirror in the simulated experimental system, a misalignment aberration map, consisting of the different interferograms in different positions, is acquired. And it can be acted as a reference for the experimental adjustment in real system. Second, the mathematical polynomial, which describes the relationship between the misalignment aberrations and the possible misalignment errors, is discussed.

  12. A Study of Trial and Error Learning in Technology, Engineering, and Design Education

    ERIC Educational Resources Information Center

    Franzen, Marissa Marie Sloan

    2016-01-01

    The purpose of this research study was to determine if trial and error learning was an effective, practical, and efficient learning method for Technology, Engineering, and Design Education students at the post-secondary level. A mixed methods explanatory research design was used to measure the viability of the learning source. The study sample was…

  13. Application of Holt exponential smoothing and ARIMA method for data population in West Java

    NASA Astrophysics Data System (ADS)

    Supriatna, A.; Susanti, D.; Hertini, E.

    2017-01-01

    One method of time series that is often used to predict data that contains trend is Holt. Holt method using different parameters used in the original data which aims to smooth the trend value. In addition to Holt, ARIMA method can be used on a wide variety of data including data pattern containing a pattern trend. Data actual of population from 1998-2015 contains the trends so can be solved by Holt and ARIMA method to obtain the prediction value of some periods. The best method is measured by looking at the smallest MAPE and MAE error. The result using Holt method is 47.205.749 populations in 2016, 47.535.324 populations in 2017, and 48.041.672 populations in 2018, with MAPE error is 0,469744 and MAE error is 189.731. While the result using ARIMA method is 46.964.682 populations in 2016, 47.342.189 in 2017, and 47.899.696 in 2018, with MAPE error is 0,4380 and MAE is 176.626.

  14. Effects of skilled nursing facility structure and process factors on medication errors during nursing home admission.

    PubMed

    Lane, Sandi J; Troyer, Jennifer L; Dienemann, Jacqueline A; Laditka, Sarah B; Blanchette, Christopher M

    2014-01-01

    Older adults are at greatest risk of medication errors during the transition period of the first 7 days after admission and readmission to a skilled nursing facility (SNF). The aim of this study was to evaluate structure- and process-related factors that contribute to medication errors and harm during transition periods at a SNF. Data for medication errors and potential medication errors during the 7-day transition period for residents entering North Carolina SNFs were from the Medication Error Quality Initiative-Individual Error database from October 2006 to September 2007. The impact of SNF structure and process measures on the number of reported medication errors and harm from errors were examined using bivariate and multivariate model methods. A total of 138 SNFs reported 581 transition period medication errors; 73 (12.6%) caused harm. Chain affiliation was associated with a reduction in the volume of errors during the transition period. One third of all reported transition errors occurred during the medication administration phase of the medication use process, where dose omissions were the most common type of error; however, dose omissions caused harm less often than wrong-dose errors did. Prescribing errors were much less common than administration errors but were much more likely to cause harm. Both structure and process measures of quality were related to the volume of medication errors.However, process quality measures may play a more important role in predicting harm from errors during the transition of a resident into an SNF. Medication errors during transition could be reduced by improving both prescribing processes and transcription and documentation of orders.

  15. Study on the calibration and optimization of double theodolites baseline

    NASA Astrophysics Data System (ADS)

    Ma, Jing-yi; Ni, Jin-ping; Wu, Zhi-chao

    2018-01-01

    For the double theodolites measurement system baseline as the benchmark of the scale of the measurement system and affect the accuracy of the system, this paper puts forward a method for calibration and optimization of the double theodolites baseline. Using double theodolites to measure the known length of the reference ruler, and then reverse the baseline formula. Based on the error propagation law, the analyses show that the baseline error function is an important index to measure the accuracy of the system, and the reference ruler position, posture and so on have an impact on the baseline error. The optimization model is established and the baseline error function is used as the objective function, and optimizes the position and posture of the reference ruler. The simulation results show that the height of the reference ruler has no effect on the baseline error; the posture is not uniform; when the reference ruler is placed at x=500mm and y=1000mm in the measurement space, the baseline error is the smallest. The experimental results show that the experimental results are consistent with the theoretical analyses in the measurement space. In this paper, based on the study of the placement of the reference ruler, for improving the accuracy of the double theodolites measurement system has a reference value.

  16. Dependence of Dynamic Modeling Accuracy on Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations

  17. Prediction of adult height in girls: the Beunen-Malina-Freitas method.

    PubMed

    Beunen, Gaston P; Malina, Robert M; Freitas, Duarte L; Thomis, Martine A; Maia, José A; Claessens, Albrecht L; Gouveia, Elvio R; Maes, Hermine H; Lefevre, Johan

    2011-12-01

    The purpose of this study was to validate and cross-validate the Beunen-Malina-Freitas method for non-invasive prediction of adult height in girls. A sample of 420 girls aged 10-15 years from the Madeira Growth Study were measured at yearly intervals and then 8 years later. Anthropometric dimensions (lengths, breadths, circumferences, and skinfolds) were measured; skeletal age was assessed using the Tanner-Whitehouse 3 method and menarcheal status (present or absent) was recorded. Adult height was measured and predicted using stepwise, forward, and maximum R (2) regression techniques. Multiple correlations, mean differences, standard errors of prediction, and error boundaries were calculated. A sample of the Leuven Longitudinal Twin Study was used to cross-validate the regressions. Age-specific coefficients of determination (R (2)) between predicted and measured adult height varied between 0.57 and 0.96, while standard errors of prediction varied between 1.1 and 3.9 cm. The cross-validation confirmed the validity of the Beunen-Malina-Freitas method in girls aged 12-15 years, but at lower ages the cross-validation was less consistent. We conclude that the Beunen-Malina-Freitas method is valid for the prediction of adult height in girls aged 12-15 years. It is applicable to European populations or populations of European ancestry.

  18. Misalignment calibration of geomagnetic vector measurement system using parallelepiped frame rotation method

    NASA Astrophysics Data System (ADS)

    Pang, Hongfeng; Zhu, XueJun; Pan, Mengchun; Zhang, Qi; Wan, Chengbiao; Luo, Shitu; Chen, Dixiang; Chen, Jinfei; Li, Ji; Lv, Yunxiao

    2016-12-01

    Misalignment error is one key factor influencing the measurement accuracy of geomagnetic vector measurement system, which should be calibrated with the difficulties that sensors measure different physical information and coordinates are invisible. A new misalignment calibration method by rotating a parallelepiped frame is proposed. Simulation and experiment result show the effectiveness of calibration method. The experimental system mainly contains DM-050 three-axis fluxgate magnetometer, INS (inertia navigation system), aluminium parallelepiped frame, aluminium plane base. Misalignment angles are calculated by measured data of magnetometer and INS after rotating the aluminium parallelepiped frame on aluminium plane base. After calibration, RMS error of geomagnetic north, vertical and east are reduced from 349.441 nT, 392.530 nT and 562.316 nT to 40.130 nT, 91.586 nT and 141.989 nT respectively.

  19. A measurement error model for physical activity level as measured by a questionnaire with application to the 1999-2006 NHANES questionnaire.

    PubMed

    Tooze, Janet A; Troiano, Richard P; Carroll, Raymond J; Moshfegh, Alanna J; Freedman, Laurence S

    2013-06-01

    Systematic investigations into the structure of measurement error of physical activity questionnaires are lacking. We propose a measurement error model for a physical activity questionnaire that uses physical activity level (the ratio of total energy expenditure to basal energy expenditure) to relate questionnaire-based reports of physical activity level to true physical activity levels. The 1999-2006 National Health and Nutrition Examination Survey physical activity questionnaire was administered to 433 participants aged 40-69 years in the Observing Protein and Energy Nutrition (OPEN) Study (Maryland, 1999-2000). Valid estimates of participants' total energy expenditure were also available from doubly labeled water, and basal energy expenditure was estimated from an equation; the ratio of those measures estimated true physical activity level ("truth"). We present a measurement error model that accommodates the mixture of errors that arise from assuming a classical measurement error model for doubly labeled water and a Berkson error model for the equation used to estimate basal energy expenditure. The method was then applied to the OPEN Study. Correlations between the questionnaire-based physical activity level and truth were modest (r = 0.32-0.41); attenuation factors (0.43-0.73) indicate that the use of questionnaire-based physical activity level would lead to attenuated estimates of effect size. Results suggest that sample sizes for estimating relationships between physical activity level and disease should be inflated, and that regression calibration can be used to provide measurement error-adjusted estimates of relationships between physical activity and disease.

  20. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-01

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  1. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  2. Low-Cost Ultrasonic Distance Sensor Arrays with Networked Error Correction

    PubMed Central

    Dai, Hongjun; Zhao, Shulin; Jia, Zhiping; Chen, Tianzhou

    2013-01-01

    Distance has been one of the basic factors in manufacturing and control fields, and ultrasonic distance sensors have been widely used as a low-cost measuring tool. However, the propagation of ultrasonic waves is greatly affected by environmental factors such as temperature, humidity and atmospheric pressure. In order to solve the problem of inaccurate measurement, which is significant within industry, this paper presents a novel ultrasonic distance sensor model using networked error correction (NEC) trained on experimental data. This is more accurate than other existing approaches because it uses information from indirect association with neighboring sensors, which has not been considered before. The NEC technique, focusing on optimization of the relationship of the topological structure of sensor arrays, is implemented for the compensation of erroneous measurements caused by the environment. We apply the maximum likelihood method to determine the optimal fusion data set and use a neighbor discovery algorithm to identify neighbor nodes at the top speed. Furthermore, we adopt the NEC optimization algorithm, which takes full advantage of the correlation coefficients for neighbor sensors. The experimental results demonstrate that the ranging errors of the NEC system are within 2.20%; furthermore, the mean absolute percentage error is reduced to 0.01% after three iterations of this method, which means that the proposed method performs extremely well. The optimized method of distance measurement we propose, with the capability of NEC, would bring a significant advantage for intelligent industrial automation. PMID:24013491

  3. Shared and unshared exposure measurement error in occupational cohort studies and their effects on statistical inference in proportional hazards models.

    PubMed

    Hoffmann, Sabine; Laurier, Dominique; Rage, Estelle; Guihenneuc, Chantal; Ancelet, Sophie

    2018-01-01

    Exposure measurement error represents one of the most important sources of uncertainty in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead to biased risk estimates and a distortion of the shape of the exposure-response relationship. In occupational cohort studies, the time-dependent nature of exposure and changes in the method of exposure assessment may create complex error structures. When a method of group-level exposure assessment is used, individual worker practices and the imprecision of the instrument used to measure the average exposure for a group of workers may give rise to errors that are shared between workers, within workers or both. In contrast to unshared measurement error, the effects of shared errors remain largely unknown. Moreover, exposure uncertainty and magnitude of exposure are typically highest for the earliest years of exposure. We conduct a simulation study based on exposure data of the French cohort of uranium miners to compare the effects of shared and unshared exposure uncertainty on risk estimation and on the shape of the exposure-response curve in proportional hazards models. Our results indicate that uncertainty components shared within workers cause more bias in risk estimation and a more severe attenuation of the exposure-response relationship than unshared exposure uncertainty or exposure uncertainty shared between individuals. These findings underline the importance of careful characterisation and modeling of exposure uncertainty in observational studies.

  4. Shared and unshared exposure measurement error in occupational cohort studies and their effects on statistical inference in proportional hazards models

    PubMed Central

    Laurier, Dominique; Rage, Estelle

    2018-01-01

    Exposure measurement error represents one of the most important sources of uncertainty in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead to biased risk estimates and a distortion of the shape of the exposure-response relationship. In occupational cohort studies, the time-dependent nature of exposure and changes in the method of exposure assessment may create complex error structures. When a method of group-level exposure assessment is used, individual worker practices and the imprecision of the instrument used to measure the average exposure for a group of workers may give rise to errors that are shared between workers, within workers or both. In contrast to unshared measurement error, the effects of shared errors remain largely unknown. Moreover, exposure uncertainty and magnitude of exposure are typically highest for the earliest years of exposure. We conduct a simulation study based on exposure data of the French cohort of uranium miners to compare the effects of shared and unshared exposure uncertainty on risk estimation and on the shape of the exposure-response curve in proportional hazards models. Our results indicate that uncertainty components shared within workers cause more bias in risk estimation and a more severe attenuation of the exposure-response relationship than unshared exposure uncertainty or exposure uncertainty shared between individuals. These findings underline the importance of careful characterisation and modeling of exposure uncertainty in observational studies. PMID:29408862

  5. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  6. Determining geometric error model parameters of a terrestrial laser scanner through Two-face, Length-consistency, and Network methods

    PubMed Central

    Wang, Ling; Muralikrishnan, Bala; Rachakonda, Prem; Sawyer, Daniel

    2017-01-01

    Terrestrial laser scanners (TLS) are increasingly used in large-scale manufacturing and assembly where required measurement uncertainties are on the order of few tenths of a millimeter or smaller. In order to meet these stringent requirements, systematic errors within a TLS are compensated in-situ through self-calibration. In the Network method of self-calibration, numerous targets distributed in the work-volume are measured from multiple locations with the TLS to determine parameters of the TLS error model. In this paper, we propose two new self-calibration methods, the Two-face method and the Length-consistency method. The Length-consistency method is proposed as a more efficient way of realizing the Network method where the length between any pair of targets from multiple TLS positions are compared to determine TLS model parameters. The Two-face method is a two-step process. In the first step, many model parameters are determined directly from the difference between front-face and back-face measurements of targets distributed in the work volume. In the second step, all remaining model parameters are determined through the Length-consistency method. We compare the Two-face method, the Length-consistency method, and the Network method in terms of the uncertainties in the model parameters, and demonstrate the validity of our techniques using a calibrated scale bar and front-face back-face target measurements. The clear advantage of these self-calibration methods is that a reference instrument or calibrated artifacts are not required, thus significantly lowering the cost involved in the calibration process. PMID:28890607

  7. Machine Learning for Discriminating Quantum Measurement Trajectories and Improving Readout.

    PubMed

    Magesan, Easwar; Gambetta, Jay M; Córcoles, A D; Chow, Jerry M

    2015-05-22

    Current methods for classifying measurement trajectories in superconducting qubit systems produce fidelities systematically lower than those predicted by experimental parameters. Here, we place current classification methods within the framework of machine learning (ML) algorithms and improve on them by investigating more sophisticated ML approaches. We find that nonlinear algorithms and clustering methods produce significantly higher assignment fidelities that help close the gap to the fidelity possible under ideal noise conditions. Clustering methods group trajectories into natural subsets within the data, which allows for the diagnosis of systematic errors. We find large clusters in the data associated with T1 processes and show these are the main source of discrepancy between our experimental and ideal fidelities. These error diagnosis techniques help provide a path forward to improve qubit measurements.

  8. Four methods of attitude determination for spin-stabilized spacecraft with applications and comparative results

    NASA Technical Reports Server (NTRS)

    Smith, G. A.

    1975-01-01

    The attitude of a spacecraft is determined by specifying independent parameters which relate the spacecraft axes to an inertial coordinate system. Sensors which measure angles between spin axis and other vectors directed to objects or fields external to the spacecraft are discussed. For the spin-stabilized spacecraft considered, the spin axis is constant over at least an orbit, but separate solutions based on sensor angle measurements are different due to propagation of errors. Sensor-angle solution methods are described which minimize the propagated errors by making use of least squares techniques over many sensor angle measurements and by solving explicitly (in closed form) for the spin axis coordinates. These methods are compared with star observation solutions to determine if satisfactory accuracy is obtained by each method.

  9. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio

    NASA Astrophysics Data System (ADS)

    Charonko, John J.; Vlachos, Pavlos P.

    2013-06-01

    Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost.

  10. Probability of misclassifying biological elements in surface waters.

    PubMed

    Loga, Małgorzata; Wierzchołowska-Dziedzic, Anna

    2017-11-24

    Measurement uncertainties are inherent to assessment of biological indices of water bodies. The effect of these uncertainties on the probability of misclassification of ecological status is the subject of this paper. Four Monte-Carlo (M-C) models were applied to simulate the occurrence of random errors in the measurements of metrics corresponding to four biological elements of surface waters: macrophytes, phytoplankton, phytobenthos, and benthic macroinvertebrates. Long series of error-prone measurement values of these metrics, generated by M-C models, were used to identify cases in which values of any of the four biological indices lay outside of the "true" water body class, i.e., outside the class assigned from the actual physical measurements. Fraction of such cases in the M-C generated series was used to estimate the probability of misclassification. The method is particularly useful for estimating the probability of misclassification of the ecological status of surface water bodies in the case of short sequences of measurements of biological indices. The results of the Monte-Carlo simulations show a relatively high sensitivity of this probability to measurement errors of the river macrophyte index (MIR) and high robustness to measurement errors of the benthic macroinvertebrate index (MMI). The proposed method of using Monte-Carlo models to estimate the probability of misclassification has significant potential for assessing the uncertainty of water body status reported to the EC by the EU member countries according to WFD. The method can be readily applied also in risk assessment of water management decisions before adopting the status dependent corrective actions.

  11. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  12. The Effect of Random Error on Diagnostic Accuracy Illustrated with the Anthropometric Diagnosis of Malnutrition

    PubMed Central

    2016-01-01

    Background It is often thought that random measurement error has a minor effect upon the results of an epidemiological survey. Theoretically, errors of measurement should always increase the spread of a distribution. Defining an illness by having a measurement outside an established healthy range will lead to an inflated prevalence of that condition if there are measurement errors. Methods and results A Monte Carlo simulation was conducted of anthropometric assessment of children with malnutrition. Random errors of increasing magnitude were imposed upon the populations and showed that there was an increase in the standard deviation with each of the errors that became exponentially greater with the magnitude of the error. The potential magnitude of the resulting error of reported prevalence of malnutrition were compared with published international data and found to be of sufficient magnitude to make a number of surveys and the numerous reports and analyses that used these data unreliable. Conclusions The effect of random error in public health surveys and the data upon which diagnostic cut-off points are derived to define “health” has been underestimated. Even quite modest random errors can more than double the reported prevalence of conditions such as malnutrition. Increasing sample size does not address this problem, and may even result in less accurate estimates. More attention needs to be paid to the selection, calibration and maintenance of instruments, measurer selection, training & supervision, routine estimation of the likely magnitude of errors using standardization tests, use of statistical likelihood of error to exclude data from analysis and full reporting of these procedures in order to judge the reliability of survey reports. PMID:28030627

  13. The use of multiple imputation for the accurate measurements of individual feed intake by electronic feeders.

    PubMed

    Jiao, S; Tiezzi, F; Huang, Y; Gray, K A; Maltecca, C

    2016-02-01

    Obtaining accurate individual feed intake records is the key first step in achieving genetic progress toward more efficient nutrient utilization in pigs. Feed intake records collected by electronic feeding systems contain errors (erroneous and abnormal values exceeding certain cutoff criteria), which are due to feeder malfunction or animal-feeder interaction. In this study, we examined the use of a novel data-editing strategy involving multiple imputation to minimize the impact of errors and missing values on the quality of feed intake data collected by an electronic feeding system. Accuracy of feed intake data adjustment obtained from the conventional linear mixed model (LMM) approach was compared with 2 alternative implementations of multiple imputation by chained equation, denoted as MI (multiple imputation) and MICE (multiple imputation by chained equation). The 3 methods were compared under 3 scenarios, where 5, 10, and 20% feed intake error rates were simulated. Each of the scenarios was replicated 5 times. Accuracy of the alternative error adjustment was measured as the correlation between the true daily feed intake (DFI; daily feed intake in the testing period) or true ADFI (the mean DFI across testing period) and the adjusted DFI or adjusted ADFI. In the editing process, error cutoff criteria are used to define if a feed intake visit contains errors. To investigate the possibility that the error cutoff criteria may affect any of the 3 methods, the simulation was repeated with 2 alternative error cutoff values. Multiple imputation methods outperformed the LMM approach in all scenarios with mean accuracies of 96.7, 93.5, and 90.2% obtained with MI and 96.8, 94.4, and 90.1% obtained with MICE compared with 91.0, 82.6, and 68.7% using LMM for DFI. Similar results were obtained for ADFI. Furthermore, multiple imputation methods consistently performed better than LMM regardless of the cutoff criteria applied to define errors. In conclusion, multiple imputation is proposed as a more accurate and flexible method for error adjustments in feed intake data collected by electronic feeders.

  14. Peeling Away Timing Error in NetFlow Data

    NASA Astrophysics Data System (ADS)

    Trammell, Brian; Tellenbach, Bernhard; Schatzmann, Dominik; Burkhart, Martin

    In this paper, we characterize, quantify, and correct timing errors introduced into network flow data by collection and export via Cisco NetFlow version 9. We find that while some of these sources of error (clock skew, export delay) are generally implementation-dependent and known in the literature, there is an additional cyclic error of up to one second that is inherent to the design of the export protocol. We present a method for correcting this cyclic error in the presence of clock skew and export delay. In an evaluation using traffic with known timing collected from a national-scale network, we show that this method can successfully correct the cyclic error. However, there can also be other implementation-specific errors for which insufficient information remains for correction. On the routers we have deployed in our network, this limits the accuracy to about 70ms, reinforcing the point that implementation matters when conducting research on network measurement data.

  15. Wavelet-based functional linear mixed models: an application to measurement error-corrected distributed lag models.

    PubMed

    Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A

    2010-07-01

    Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.

  16. Image processing methods to compensate for IFOV errors in microgrid imaging polarimeters

    NASA Astrophysics Data System (ADS)

    Ratliff, Bradley M.; Boger, James K.; Fetrow, Matthew P.; Tyo, J. Scott; Black, Wiley T.

    2006-05-01

    Long-wave infrared imaging Stokes vector polarimeters are used in many remote sensing applications. Imaging polarimeters require that several measurements be made under optically different conditions in order to estimate the polarization signature at a given scene point. This multiple-measurement requirement introduces error in the signature estimates, and the errors differ depending upon the type of measurement scheme used. Here, we investigate a LWIR linear microgrid polarimeter. This type of instrument consists of a mosaic of micropolarizers at different orientations that are masked directly onto a focal plane array sensor. In this scheme, each polarization measurement is acquired spatially and hence each is made at a different point in the scene. This is a significant source of error, as it violates the requirement that each polarization measurement have the same instantaneous field-of-view (IFOV). In this paper, we first study the amount of error introduced by the IFOV handicap in microgrid instruments. We then proceed to investigate means for mitigating the effects of these errors to improve the quality of polarimetric imagery. In particular, we examine different interpolation schemes and gauge their performance. These studies are completed through the use of both real instrumental and modeled data.

  17. Toward a new culture in verified quantum operations

    NASA Astrophysics Data System (ADS)

    Flammia, Steve

    Measuring error rates of quantum operations has become an indispensable component in any aspiring platform for quantum computation. As the quality of controlled quantum operations increases, the demands on the accuracy and precision with which we measure these error rates also grows. However, well-meaning scientists that report these error measures are faced with a sea of non-standardized methodologies and are often asked during publication for only coarse information about how their estimates were obtained. Moreover, there are serious incentives to use methodologies and measures that will continually produce numbers that improve with time to show progress. These problems will only get exacerbated as our typical error rates go from 1 in 100 to 1 in 1000 or less. This talk will survey existing challenges presented by the current paradigm and offer some suggestions for solutions than can help us move toward fair and standardized methods for error metrology in quantum computing experiments, and towards a culture that values full disclose of methodologies and higher standards for data analysis.

  18. Comparison between laser interferometric and calibrated artifacts for the geometric test of machine tools

    NASA Astrophysics Data System (ADS)

    Sousa, Andre R.; Schneider, Carlos A.

    2001-09-01

    A touch probe is used on a 3-axis vertical machine center to check against a hole plate, calibrated on a coordinate measuring machine (CMM). By comparing the results obtained from the machine tool and CMM, the main machine tool error components are measured, attesting the machine accuracy. The error values can b used also t update the error compensation table at the CNC, enhancing the machine accuracy. The method is easy to us, has a lower cost than classical test techniques, and preliminary results have shown that its uncertainty is comparable to well established techniques. In this paper the method is compared with the laser interferometric system, regarding reliability, cost and time efficiency.

  19. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature

    PubMed Central

    MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard

    2016-01-01

    Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600

  20. Dynamic Modeling Accuracy Dependence on Errors in Sensor Measurements, Mass Properties, and Aircraft Geometry

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Morelli, Eugene A.

    2013-01-01

    A nonlinear simulation of the NASA Generic Transport Model was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of dynamic models identified from flight data. Measurements from a typical system identification maneuver were systematically and progressively deteriorated and then used to estimate stability and control derivatives within a Monte Carlo analysis. Based on the results, recommendations were provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using other flight conditions, parameter estimation methods, and a full-scale F-16 nonlinear aircraft simulation were compared with these recommendations.

  1. Quantifying uncertainty in carbon and nutrient pools of coarse woody debris

    NASA Astrophysics Data System (ADS)

    See, C. R.; Campbell, J. L.; Fraver, S.; Domke, G. M.; Harmon, M. E.; Knoepp, J. D.; Woodall, C. W.

    2016-12-01

    Woody detritus constitutes a major pool of both carbon and nutrients in forested ecosystems. Estimating coarse wood stocks relies on many assumptions, even when full surveys are conducted. Researchers rarely report error in coarse wood pool estimates, despite the importance to ecosystem budgets and modelling efforts. To date, no study has attempted a comprehensive assessment of error rates and uncertainty inherent in the estimation of this pool. Here, we use Monte Carlo analysis to propagate the error associated with the major sources of uncertainty present in the calculation of coarse wood carbon and nutrient (i.e., N, P, K, Ca, Mg, Na) pools. We also evaluate individual sources of error to identify the importance of each source of uncertainty in our estimates. We quantify sampling error by comparing the three most common field methods used to survey coarse wood (two transect methods and a whole-plot survey). We quantify the measurement error associated with length and diameter measurement, and technician error in species identification and decay class using plots surveyed by multiple technicians. We use previously published values of model error for the four most common methods of volume estimation: Smalian's, conical frustum, conic paraboloid, and average-of-ends. We also use previously published values for error in the collapse ratio (cross-sectional height/width) of decayed logs that serves as a surrogate for the volume remaining. We consider sampling error in chemical concentration and density for all decay classes, using distributions from both published and unpublished studies. Analytical uncertainty is calculated using standard reference plant material from the National Institute of Standards. Our results suggest that technician error in decay classification can have a large effect on uncertainty, since many of the error distributions included in the calculation (e.g. density, chemical concentration, volume-model selection, collapse ratio) are decay-class specific.

  2. A method to correct sampling ghosts in historic near-infrared Fourier transform spectrometer (FTS) measurements

    NASA Astrophysics Data System (ADS)

    Dohe, S.; Sherlock, V.; Hase, F.; Gisi, M.; Robinson, J.; Sepúlveda, E.; Schneider, M.; Blumenstock, T.

    2013-08-01

    The Total Carbon Column Observing Network (TCCON) has been established to provide ground-based remote sensing measurements of the column-averaged dry air mole fractions (DMF) of key greenhouse gases. To ensure network-wide consistency, biases between Fourier transform spectrometers at different sites have to be well controlled. Errors in interferogram sampling can introduce significant biases in retrievals. In this study we investigate a two-step scheme to correct these errors. In the first step the laser sampling error (LSE) is estimated by determining the sampling shift which minimises the magnitude of the signal intensity in selected, fully absorbed regions of the solar spectrum. The LSE is estimated for every day with measurements which meet certain selection criteria to derive the site-specific time series of the LSEs. In the second step, this sequence of LSEs is used to resample all the interferograms acquired at the site, and hence correct the sampling errors. Measurements acquired at the Izaña and Lauder TCCON sites are used to demonstrate the method. At both sites the sampling error histories show changes in LSE due to instrument interventions (e.g. realignment). Estimated LSEs are in good agreement with sampling errors inferred from the ratio of primary and ghost spectral signatures in optically bandpass-limited tungsten lamp spectra acquired at Lauder. The original time series of Xair and XCO2 (XY: column-averaged DMF of the target gas Y) at both sites show discrepancies of 0.2-0.5% due to changes in the LSE associated with instrument interventions or changes in the measurement sample rate. After resampling, discrepancies are reduced to 0.1% or less at Lauder and 0.2% at Izaña. In the latter case, coincident changes in interferometer alignment may also have contributed to the residual difference. In the future the proposed method will be used to correct historical spectra at all TCCON sites.

  3. A Vision-Based Self-Calibration Method for Robotic Visual Inspection Systems

    PubMed Central

    Yin, Shibin; Ren, Yongjie; Zhu, Jigui; Yang, Shourui; Ye, Shenghua

    2013-01-01

    A vision-based robot self-calibration method is proposed in this paper to evaluate the kinematic parameter errors of a robot using a visual sensor mounted on its end-effector. This approach could be performed in the industrial field without external, expensive apparatus or an elaborate setup. A robot Tool Center Point (TCP) is defined in the structural model of a line-structured laser sensor, and aligned to a reference point fixed in the robot workspace. A mathematical model is established to formulate the misalignment errors with kinematic parameter errors and TCP position errors. Based on the fixed point constraints, the kinematic parameter errors and TCP position errors are identified with an iterative algorithm. Compared to the conventional methods, this proposed method eliminates the need for a robot-based-frame and hand-to-eye calibrations, shortens the error propagation chain, and makes the calibration process more accurate and convenient. A validation experiment is performed on an ABB IRB2400 robot. An optimal configuration on the number and distribution of fixed points in the robot workspace is obtained based on the experimental results. Comparative experiments reveal that there is a significant improvement of the measuring accuracy of the robotic visual inspection system. PMID:24300597

  4. Method to improve the blade tip-timing accuracy of fiber bundle sensor under varying tip clearance

    NASA Astrophysics Data System (ADS)

    Duan, Fajie; Zhang, Jilong; Jiang, Jiajia; Guo, Haotian; Ye, Dechao

    2016-01-01

    Blade vibration measurement based on the blade tip-timing method has become an industry-standard procedure. Fiber bundle sensors are widely used for tip-timing measurement. However, the variation of clearance between the sensor and the blade will bring a tip-timing error to fiber bundle sensors due to the change in signal amplitude. This article presents methods based on software and hardware to reduce the error caused by the tip clearance change. The software method utilizes both the rising and falling edges of the tip-timing signal to determine the blade arrival time, and a calibration process suitable for asymmetric tip-timing signals is presented. The hardware method uses an automatic gain control circuit to stabilize the signal amplitude. Experiments are conducted and the results prove that both methods can effectively reduce the impact of tip clearance variation on the blade tip-timing and improve the accuracy of measurements.

  5. Long-term continuous acoustical suspended-sediment measurements in rivers – Theory, evaluation, and results from 14 stations on five rivers

    USGS Publications Warehouse

    Topping, David; Wright, Scott A.; Griffiths, Ronald; Dean, David

    2016-01-01

    We have developed a physically based method for using two acoustic frequencies to measure suspended-silt-and-clay concentration, suspended-sand concentration, and suspended-sand median grain size in river cross sections at 15-minute intervals over decadal timescales. The method is strongly grounded in the extensive scientific literature on the scattering of sound by suspensions of small particles. In particular, the method takes advantage of the specific theoretical relations among acoustic frequency, acoustic attenuation, acoustic backscatter, suspended-sediment concentration, and suspended-sediment grain-size distribution. We briefly describe the theory and methods, demonstrate the application of the method, and compute biases and errors in the method at 14 stations in the Colorado River and Rio Grande basins, where large numbers of suspended-sediment samples have been collected concurrently with acoustical measurements over many years. Quantification of errors in sediment-transport measurements made using this method is essential if the measurements are to be used effectively, e.g., to evaluate uncertainty in long-term sediment loads and budgets

  6. Investigation of the feasibility of a simple method for verifying the motion of a binary multileaf collimator synchronized with the rotation of the gantry for helical tomotherapy

    PubMed Central

    Uematsu, Masahiro; Ito, Makiko; Hama, Yukihiro; Inomata, Takayuki; Fujii, Masahiro; Nishio, Teiji; Nakamura, Naoki; Nakagawa, Keiichi

    2012-01-01

    In this paper, we suggest a new method for verifying the motion of a binary multileaf collimator (MLC) in helical tomotherapy. For this we used a combination of a cylindrical scintillator and a general‐purpose camcorder. The camcorder records the light from the scintillator following photon irradiation, which we use to track the motion of the binary MLC. The purpose of this study is to demonstrate the feasibility of this method as a binary MLC quality assurance (QA) tool. First, the verification was performed using a simple binary MLC pattern with a constant leaf open time; secondly, verification using the binary MLC pattern used in a clinical setting was also performed. Sinograms of simple binary MLC patterns, in which leaves that were open were detected as “open” from the measured light, define the sensitivity which, in this case, was 1.000. On the other hand, the specificity, which gives the fraction of closed leaves detected as “closed”, was 0.919. The leaf open error identified by our method was −1.3±7.5%. The 68.6% of observed leaves were performed within ± 3% relative error. The leaf open error was expressed by the relative errors calculated on the sinogram. In the clinical binary MLC pattern, the sensitivity and specificity were 0.994 and 0.997, respectively. The measurement could be performed with −3.4±8.0% leaf open error. The 77.5% of observed leaves were performed within ± 3% relative error. With this method, we can easily verify the motion of the binary MLC, and the measurement unit developed was found to be an effective QA tool. PACS numbers: 87.56.Fc, 87.56.nk PMID:22231222

  7. The use of propagation path corrections to improve regional seismic event location in western China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steck, L.K.; Cogbill, A.H.; Velasco, A.A.

    1999-03-01

    In an effort to improve the ability to locate seismic events in western China using only regional data, the authors have developed empirical propagation path corrections (PPCs) and applied such corrections using both traditional location routines as well as a nonlinear grid search method. Thus far, the authors have concentrated on corrections to observed P arrival times for shallow events using travel-time observations available from the USGS EDRs, the ISC catalogs, their own travel-tim picks from regional data, and data from other catalogs. They relocate events with the algorithm of Bratt and Bache (1988) from a region encompassing China. Formore » individual stations having sufficient data, they produce a map of the regional travel-time residuals from all well-located teleseismic events. From these maps, interpolated PPC surfaces have been constructed using both surface fitting under tension and modified Bayesian kriging. The latter method offers the advantage of providing well-behaved interpolants, but requires that the authors have adequate error estimates associated with the travel-time residuals. To improve error estimates for kriging and event location, they separate measurement error from modeling error. The modeling error is defined as the travel-time variance of a particular model as a function of distance, while the measurement error is defined as the picking error associated with each phase. They estimate measurement errors for arrivals from the EDRs based on roundoff or truncation, and use signal-to-noise for the travel-time picks from the waveform data set.« less

  8. A simultaneously calibration approach for installation and attitude errors of an INS/GPS/LDS target tracker.

    PubMed

    Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda

    2015-02-04

    To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.

  9. Evaluation of algorithms for geological thermal-inertia mapping

    NASA Technical Reports Server (NTRS)

    Miller, S. H.; Watson, K.

    1977-01-01

    The errors incurred in producing a thermal inertia map are of three general types: measurement, analysis, and model simplification. To emphasize the geophysical relevance of these errors, they were expressed in terms of uncertainty in thermal inertia and compared with the thermal inertia values of geologic materials. Thus the applications and practical limitations of the technique were illustrated. All errors were calculated using the parameter values appropriate to a site at the Raft River, Id. Although these error values serve to illustrate the magnitudes that can be expected from the three general types of errors, extrapolation to other sites should be done using parameter values particular to the area. Three surface temperature algorithms were evaluated: linear Fourier series, finite difference, and Laplace transform. In terms of resulting errors in thermal inertia, the Laplace transform method is the most accurate (260 TIU), the forward finite difference method is intermediate (300 TIU), and the linear Fourier series method the least accurate (460 TIU).

  10. Analysis of frequency mixing error on heterodyne interferometric ellipsometry

    NASA Astrophysics Data System (ADS)

    Deng, Yuan-long; Li, Xue-jin; Wu, Yu-bin; Hu, Ju-guang; Yao, Jian-quan

    2007-11-01

    A heterodyne interferometric ellipsometer, with no moving parts and a transverse Zeeman laser, is demonstrated. The modified Mach-Zehnder interferometer characterized as a separate frequency and common-path configuration is designed and theoretically analyzed. The experimental data show a fluctuation mainly resulting from the frequency mixing error which is caused by the imperfection of polarizing beam splitters (PBS), the elliptical polarization and non-orthogonality of light beams. The producing mechanism of the frequency mixing error and its influence on measurement are analyzed with the Jones matrix method; the calculation indicates that it results in an error up to several nanometres in the thickness measurement of thin films. The non-orthogonality has no contribution to the phase difference error when it is relatively small; the elliptical polarization and the imperfection of PBS have a major effect on the error.

  11. Omnidirectional angle constraint based dynamic six-degree-of-freedom measurement for spacecraft rendezvous and docking simulation

    NASA Astrophysics Data System (ADS)

    Shi, Shendong; Yang, Linghui; Lin, Jiarui; Ren, Yongjie; Guo, Siyang; Zhu, Jigui

    2018-04-01

    In this paper we present a novel omnidirectional angle constraint based method for dynamic 6-DOF (six-degree-of-freedom) measurement. A photoelectric scanning measurement network is employed whose photoelectric receivers are fixed on the measured target. They are in a loop distribution and receive signals from rotating transmitters. Each receiver indicates an angle constraint direction. Therefore, omnidirectional angle constraints can be constructed in each rotation cycle. By solving the constrained optimization problem, 6-DOF information can be obtained, which is independent of traditional rigid coordinate system transformation. For the dynamic error caused by the measurement principle, we present an interpolation method for error reduction. Accuracy testing is performed in an 8  ×  8 m measurement area with four transmitters. The experimental results show that the dynamic orientation RMSEs (root-mean-square errors) are reduced from 0.077° to 0.044°, 0.040° to 0.030° and 0.032° to 0.015° in the X, Y, and Z axes, respectively. The dynamic position RMSE is reduced from 0.65 mm to 0.24 mm. This method is applied during the final approach phase in the rendezvous and docking simulation. Experiments under different conditions are performed in a 40  ×  30 m area, and the method is verified to be effective.

  12. ERROR REDUCTION IN DUCT LEAKAGE TESTING THROUGH DATA CROSS-CHECKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANDREWS, J.W.

    1998-12-31

    One way to reduce uncertainty in scientific measurement is to devise a protocol in which more quantities are measured than are absolutely required, so that the result is over constrained. This report develops a method for so combining data from two different tests for air leakage in residential duct systems. An algorithm, which depends on the uncertainty estimates for the measured quantities, optimizes the use of the excess data. In many cases it can significantly reduce the error bar on at least one of the two measured duct leakage rates (supply or return), and it provides a rational method ofmore » reconciling any conflicting results from the two leakage tests.« less

  13. Online beam energy measurement of Beijing electron positron collider II linear accelerator

    NASA Astrophysics Data System (ADS)

    Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  14. Online beam energy measurement of Beijing electron positron collider II linear accelerator.

    PubMed

    Wang, S; Iqbal, M; Liu, R; Chi, Y

    2016-02-01

    This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.

  15. A new systematic calibration method of ring laser gyroscope inertial navigation system

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  16. Reflector-based phase calibration of ultrasound transducers.

    PubMed

    van Neer, Paul L M J; Vos, Hendrik J; de Jong, Nico

    2011-01-01

    Recently, the measurement of phase transfer functions (PTFs) of piezoelectric transducers has received more attention. These PTFs are useful for e.g. coding and interference based imaging methods, and ultrasound contrast microbubble research. Several optical and acoustic methods to measure a transducer's PTF have been reported in literature. The optical methods require a setup to which not all ultrasound laboratories have access to. The acoustic methods require accurate distance and acoustic wave speed measurements. A small error in these leads to a large error in phase, e.g. an accuracy of 0.1% on an axial distance of 10cm leads to an uncertainty in the PTF measurement of ±97° at 4MHz. In this paper we present an acoustic pulse-echo method to measure the PTF of a transducer, which is based on linear wave propagation and only requires an estimate of the wave travel distance and the acoustic wave speed. In our method the transducer is excited by a monofrequency sine burst with a rectangular envelope. The transducer initially vibrates at resonance (transient regime) prior to the forcing frequency response (steady state regime). The PTF value of the system is the difference between the phases deduced from the transient and the steady state regimes. Good agreement, to within 7°, was obtained between KLM simulations and measurements on two transducers in a 1-8MHz frequency range. The reproducibility of the method was ±10°, with a systematic error of 2° at 1MHz increasing to 16° at 8MHz. This work demonstrates that the PTF of a transducer can be measured in a simple laboratory setting. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Signal Analysis Algorithms for Optimized Fitting of Nonresonant Laser Induced Thermal Acoustics Damped Sinusoids

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Miller, Corey A.

    2008-01-01

    This study seeks a numerical algorithm which optimizes frequency precision for the damped sinusoids generated by the nonresonant LITA technique. It compares computed frequencies, frequency errors, and fit errors obtained using five primary signal analysis methods. Using variations on different algorithms within each primary method, results from 73 fits are presented. Best results are obtained using an AutoRegressive method. Compared to previous results using Prony s method, single shot waveform frequencies are reduced approx.0.4% and frequency errors are reduced by a factor of approx.20 at 303K to approx. 0.1%. We explore the advantages of high waveform sample rates and potential for measurements in low density gases.

  18. Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems

    PubMed Central

    Li, Zhining; Zhang, Yingtang; Yin, Gang

    2018-01-01

    The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor’s system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg–Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the “overcalibration” problem. The accuracy of the error parameters’ estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust. PMID:29373544

  19. Estimating extreme stream temperatures by the standard deviate method

    NASA Astrophysics Data System (ADS)

    Bogan, Travis; Othmer, Jonathan; Mohseni, Omid; Stefan, Heinz

    2006-02-01

    It is now widely accepted that global climate warming is taking place on the earth. Among many other effects, a rise in air temperatures is expected to increase stream temperatures indefinitely. However, due to evaporative cooling, stream temperatures do not increase linearly with increasing air temperatures indefinitely. Within the anticipated bounds of climate warming, extreme stream temperatures may therefore not rise substantially. With this concept in mind, past extreme temperatures measured at 720 USGS stream gauging stations were analyzed by the standard deviate method. In this method the highest stream temperatures are expressed as the mean temperature of a measured partial maximum stream temperature series plus its standard deviation multiplied by a factor KE (standard deviate). Various KE-values were explored; values of KE larger than 8 were found physically unreasonable. It is concluded that the value of KE should be in the range from 7 to 8. A unit error in estimating KE translates into a typical stream temperature error of about 0.5 °C. Using a logistic model for the stream temperature/air temperature relationship, a one degree error in air temperature gives a typical error of 0.16 °C in stream temperature. With a projected error in the enveloping standard deviate dKE=1.0 (range 0.5-1.5) and an error in projected high air temperature d Ta=2 °C (range 0-4 °C), the total projected stream temperature error is estimated as d Ts=0.8 °C.

  20. Assessment of measurement errors and dynamic calibration methods for three different tipping bucket rain gauges

    USDA-ARS?s Scientific Manuscript database

    Three different models of tipping bucket rain gauges (TBRs), viz. HS-TB3 (Hydrological Services Pty Ltd), ISCO-674 (Isco, Inc.) and TR-525 (Texas Electronics, Inc.), were calibrated in the lab to quantify measurement errors across a range of rainfall intensities (5 mm.h-1 to 250 mm.h-1) and three di...

  1. Degradation data analysis based on a generalized Wiener process subject to measurement error

    NASA Astrophysics Data System (ADS)

    Li, Junxing; Wang, Zhihua; Zhang, Yongbo; Fu, Huimin; Liu, Chengrui; Krishnaswamy, Sridhar

    2017-09-01

    Wiener processes have received considerable attention in degradation modeling over the last two decades. In this paper, we propose a generalized Wiener process degradation model that takes unit-to-unit variation, time-correlated structure and measurement error into considerations simultaneously. The constructed methodology subsumes a series of models studied in the literature as limiting cases. A simple method is given to determine the transformed time scale forms of the Wiener process degradation model. Then model parameters can be estimated based on a maximum likelihood estimation (MLE) method. The cumulative distribution function (CDF) and the probability distribution function (PDF) of the Wiener process with measurement errors are given based on the concept of the first hitting time (FHT). The percentiles of performance degradation (PD) and failure time distribution (FTD) are also obtained. Finally, a comprehensive simulation study is accomplished to demonstrate the necessity of incorporating measurement errors in the degradation model and the efficiency of the proposed model. Two illustrative real applications involving the degradation of carbon-film resistors and the wear of sliding metal are given. The comparative results show that the constructed approach can derive a reasonable result and an enhanced inference precision.

  2. Field evaluation of distance-estimation error during wetland-dependent bird surveys

    USGS Publications Warehouse

    Nadeau, Christopher P.; Conway, Courtney J.

    2012-01-01

    Context: The most common methods to estimate detection probability during avian point-count surveys involve recording a distance between the survey point and individual birds detected during the survey period. Accurately measuring or estimating distance is an important assumption of these methods; however, this assumption is rarely tested in the context of aural avian point-count surveys. Aims: We expand on recent bird-simulation studies to document the error associated with estimating distance to calling birds in a wetland ecosystem. Methods: We used two approaches to estimate the error associated with five surveyor's distance estimates between the survey point and calling birds, and to determine the factors that affect a surveyor's ability to estimate distance. Key results: We observed biased and imprecise distance estimates when estimating distance to simulated birds in a point-count scenario (x̄error = -9 m, s.d.error = 47 m) and when estimating distances to real birds during field trials (x̄error = 39 m, s.d.error = 79 m). The amount of bias and precision in distance estimates differed among surveyors; surveyors with more training and experience were less biased and more precise when estimating distance to both real and simulated birds. Three environmental factors were important in explaining the error associated with distance estimates, including the measured distance from the bird to the surveyor, the volume of the call and the species of bird. Surveyors tended to make large overestimations to birds close to the survey point, which is an especially serious error in distance sampling. Conclusions: Our results suggest that distance-estimation error is prevalent, but surveyor training may be the easiest way to reduce distance-estimation error. Implications: The present study has demonstrated how relatively simple field trials can be used to estimate the error associated with distance estimates used to estimate detection probability during avian point-count surveys. Evaluating distance-estimation errors will allow investigators to better evaluate the accuracy of avian density and trend estimates. Moreover, investigators who evaluate distance-estimation errors could employ recently developed models to incorporate distance-estimation error into analyses. We encourage further development of such models, including the inclusion of such models into distance-analysis software.

  3. Continuous glucose monitoring in newborn infants: how do errors in calibration measurements affect detected hypoglycemia?

    PubMed

    Thomas, Felicity; Signal, Mathew; Harris, Deborah L; Weston, Philip J; Harding, Jane E; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-05-01

    Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia metrics in newborn infants. Data from 155 babies were used. Two timing and 3 BG meter error models (Abbott Optium Xceed, Roche Accu-Chek Inform II, Nova Statstrip) were created using empirical data. Monte-Carlo methods were employed, and each simulation was run 1000 times. Each set of patient data in each simulation had randomly selected timing and/or measurement error added to BG measurements before CGM data were calibrated. The number of hypoglycemic events, duration of hypoglycemia, and hypoglycemic index were then calculated using the CGM data and compared to baseline values. Timing error alone had little effect on hypoglycemia metrics, but measurement error caused substantial variation. Abbott results underreported the number of hypoglycemic events by up to 8 and Roche overreported by up to 4 where the original number reported was 2. Nova results were closest to baseline. Similar trends were observed in the other hypoglycemia metrics. Errors in blood glucose concentration measurements used for calibration of CGM devices can have a clinically important impact on detection of hypoglycemia. If CGM devices are going to be used for assessing hypoglycemia it is important to understand of the impact of these errors on CGM data. © 2014 Diabetes Technology Society.

  4. Improved error estimates of a discharge algorithm for remotely sensed river measurements: Test cases on Sacramento and Garonne Rivers

    NASA Astrophysics Data System (ADS)

    Yoon, Yeosang; Garambois, Pierre-André; Paiva, Rodrigo C. D.; Durand, Michael; Roux, Hélène; Beighley, Edward

    2016-01-01

    We present an improvement to a previously presented algorithm that used a Bayesian Markov Chain Monte Carlo method for estimating river discharge from remotely sensed observations of river height, width, and slope. We also present an error budget for discharge calculations from the algorithm. The algorithm may be utilized by the upcoming Surface Water and Ocean Topography (SWOT) mission. We present a detailed evaluation of the method using synthetic SWOT-like observations (i.e., SWOT and AirSWOT, an airborne version of SWOT). The algorithm is evaluated using simulated AirSWOT observations over the Sacramento and Garonne Rivers that have differing hydraulic characteristics. The algorithm is also explored using SWOT observations over the Sacramento River. SWOT and AirSWOT height, width, and slope observations are simulated by corrupting the "true" hydraulic modeling results with instrument error. Algorithm discharge root mean square error (RMSE) was 9% for the Sacramento River and 15% for the Garonne River for the AirSWOT case using expected observation error. The discharge uncertainty calculated from Manning's equation was 16.2% and 17.1%, respectively. For the SWOT scenario, the RMSE and uncertainty of the discharge estimate for the Sacramento River were 15% and 16.2%, respectively. A method based on the Kalman filter to correct errors of discharge estimates was shown to improve algorithm performance. From the error budget, the primary source of uncertainty was the a priori uncertainty of bathymetry and roughness parameters. Sensitivity to measurement errors was found to be a function of river characteristics. For example, Steeper Garonne River is less sensitive to slope errors than the flatter Sacramento River.

  5. The influence of phonological context on the sound errors of a speaker with Wernicke's aphasia.

    PubMed

    Goldmann, R E; Schwartz, M F; Wilshire, C E

    2001-09-01

    A corpus of phonological errors produced in narrative speech by a Wernicke's aphasic speaker (R.W.B.) was tested for context effects using two new methods for establishing chance baselines. A reliable anticipatory effect was found using the second method, which estimated chance from the distance between phoneme repeats in the speech sample containing the errors. Relative to this baseline, error-source distances were shorter than expected for anticipations, but not perseverations. R.W.B.'s anticipation/perseveration ratio measured intermediate between a nonaphasic error corpus and that of a more severe aphasic speaker (both reported in Schwartz et al., 1994), supporting the view that the anticipatory bias correlates to severity. Finally, R.W.B's anticipations favored word-initial segments, although errors and sources did not consistently share word or syllable position. Copyright 2001 Academic Press.

  6. Sinusoidal Siemens star spatial frequency response measurement errors due to misidentified target centers

    DOE PAGES

    Birch, Gabriel Carisle; Griffin, John Clark

    2015-07-23

    Numerous methods are available to measure the spatial frequency response (SFR) of an optical system. A recent change to the ISO 12233 photography resolution standard includes a sinusoidal Siemens star test target. We take the sinusoidal Siemens star proposed by the ISO 12233 standard, measure system SFR, and perform an analysis of errors induced by incorrectly identifying the center of a test target. We show a closed-form solution for the radial profile intensity measurement given an incorrectly determined center and describe how this error reduces the measured SFR of the system. As a result, using the closed-form solution, we proposemore » a two-step process by which test target centers are corrected and the measured SFR is restored to the nominal, correctly centered values.« less

  7. Optimization of Control Points Number at Coordinate Measurements based on the Monte-Carlo Method

    NASA Astrophysics Data System (ADS)

    Korolev, A. A.; Kochetkov, A. V.; Zakharov, O. V.

    2018-01-01

    Improving the quality of products causes an increase in the requirements for the accuracy of the dimensions and shape of the surfaces of the workpieces. This, in turn, raises the requirements for accuracy and productivity of measuring of the workpieces. The use of coordinate measuring machines is currently the most effective measuring tool for solving similar problems. The article proposes a method for optimizing the number of control points using Monte Carlo simulation. Based on the measurement of a small sample from batches of workpieces, statistical modeling is performed, which allows one to obtain interval estimates of the measurement error. This approach is demonstrated by examples of applications for flatness, cylindricity and sphericity. Four options of uniform and uneven arrangement of control points are considered and their comparison is given. It is revealed that when the number of control points decreases, the arithmetic mean decreases, the standard deviation of the measurement error increases and the probability of the measurement α-error increases. In general, it has been established that it is possible to repeatedly reduce the number of control points while maintaining the required measurement accuracy.

  8. Digital tooth-based superimposition method for assessment of alveolar bone levels on cone-beam computed tomography images.

    PubMed

    Romero-Delmastro, Alejandro; Kadioglu, Onur; Currier, G Frans; Cook, Tanner

    2014-08-01

    Cone-beam computed tomography images have been previously used for evaluation of alveolar bone levels around teeth before, during, and after orthodontic treatment. Protocols described in the literature have been vague, have used unstable landmarks, or have required several software programs, file conversions, or hand tracings, among other factors that could compromise the precision of the measurements. The purposes of this article are to describe a totally digital tooth-based superimposition method for the quantitative assessment of alveolar bone levels and to evaluate its reliability. Ultra cone-beam computed tomography images (0.1-mm reconstruction) from 10 subjects were obtained from the data pool of the University of Oklahoma; 80 premolars were measured twice by the same examiner and a third time by a second examiner to determine alveolar bone heights and thicknesses before and more than 6 months after orthodontic treatment using OsiriX (version 3.5.1; Pixeo, Geneva, Switzerland). Intraexaminer and interexaminer reliabilities were evaluated, and Dahlberg's formula was used to calculate the error of the measurements. Cross-sectional and longitudinal evaluations of alveolar bone levels were possible using a digital tooth-based superimposition method. The mean differences for buccal alveolar crest heights and thicknesses were below 0.10 mm for the same examiner and below 0.17 mm for all examiners. The ranges of errors for any measurement were between 0.02 and 0.23 mm for intraexaminer errors, and between 0.06 and 0.29 mm for interexaminer errors. This protocol can be used for cross-sectional or longitudinal assessment of alveolar bone levels with low interexaminer and intraexaminer errors, and it eliminates the use of less reliable or less stable landmarks and the need for multiple software programs and image printouts. Standardization of the methods for bone assessment in orthodontics is necessary; this method could be the answer to this need. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. Digital cover photography for estimating leaf area index (LAI) in apple trees using a variable light extinction coefficient.

    PubMed

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-28

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAI(D)), which was compared with LAI estimated by the proposed digital photography method (LAI(M)). Results showed that the LAI(M) was able to estimate LAI(D) with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (f(f)) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions.

  10. Digital Cover Photography for Estimating Leaf Area Index (LAI) in Apple Trees Using a Variable Light Extinction Coefficient

    PubMed Central

    Poblete-Echeverría, Carlos; Fuentes, Sigfredo; Ortega-Farias, Samuel; Gonzalez-Talice, Jaime; Yuri, Jose Antonio

    2015-01-01

    Leaf area index (LAI) is one of the key biophysical variables required for crop modeling. Direct LAI measurements are time consuming and difficult to obtain for experimental and commercial fruit orchards. Devices used to estimate LAI have shown considerable errors when compared to ground-truth or destructive measurements, requiring tedious site-specific calibrations. The objective of this study was to test the performance of a modified digital cover photography method to estimate LAI in apple trees using conventional digital photography and instantaneous measurements of incident radiation (Io) and transmitted radiation (I) through the canopy. Leaf area of 40 single apple trees were measured destructively to obtain real leaf area index (LAID), which was compared with LAI estimated by the proposed digital photography method (LAIM). Results showed that the LAIM was able to estimate LAID with an error of 25% using a constant light extinction coefficient (k = 0.68). However, when k was estimated using an exponential function based on the fraction of foliage cover (ff) derived from images, the error was reduced to 18%. Furthermore, when measurements of light intercepted by the canopy (Ic) were used as a proxy value for k, the method presented an error of only 9%. These results have shown that by using a proxy k value, estimated by Ic, helped to increase accuracy of LAI estimates using digital cover images for apple trees with different canopy sizes and under field conditions. PMID:25635411

  11. A new method for measuring the rotational accuracy of rolling element bearings

    NASA Astrophysics Data System (ADS)

    Chen, Ye; Zhao, Xiangsong; Gao, Weiguo; Hu, Gaofeng; Zhang, Shizhen; Zhang, Dawei

    2016-12-01

    The rotational accuracy of a machine tool spindle has critical influence upon the geometric shape and surface roughness of finished workpiece. The rotational performance of the rolling element bearings is a main factor which affects the spindle accuracy, especially in the ultra-precision machining. In this paper, a new method is developed to measure the rotational accuracy of rolling element bearings of machine tool spindles. Variable and measurable axial preload is applied to seat the rolling elements in the bearing races, which is used to simulate the operating conditions. A high-precision (radial error is less than 300 nm) and high-stiffness (radial stiffness is 600 N/μm) hydrostatic reference spindle is adopted to rotate the inner race of the test bearing. To prevent the outer race from rotating, a 2-degrees of freedom flexure hinge mechanism (2-DOF FHM) is designed. Correction factors by using stiffness analysis are adopted to eliminate the influences of 2-DOF FHM in the radial direction. Two capacitive displacement sensors with nano-resolution (the highest resolution is 9 nm) are used to measure the radial error motion of the rolling element bearing, without separating the profile error as the traditional rotational accuracy metrology of the spindle. Finally, experimental measurements are performed at different spindle speeds (100-4000 rpm) and axial preloads (75-780 N). Synchronous and asynchronous error motion values are evaluated to demonstrate the feasibility and repeatability of the developed method and instrument.

  12. Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient.

    PubMed

    Hindasageri, V; Vedula, R P; Prabhu, S V

    2013-02-01

    Temperature measurement by thermocouples is prone to errors due to conduction and radiation losses and therefore has to be corrected for precise measurement. The temperature dependent emissivity of the thermocouple wires is measured by the use of thermal infrared camera. The measured emissivities are found to be 20%-40% lower than the theoretical values predicted from theory of electromagnetism. A transient technique is employed for finding the heat transfer coefficients for the lead wire and the bead of the thermocouple. This method does not require the data of thermal properties and velocity of the burnt gases. The heat transfer coefficients obtained from the present method have an average deviation of 20% from the available heat transfer correlations in literature for non-reacting convective flow over cylinders and spheres. The parametric study of thermocouple error using the numerical code confirmed the existence of a minimum wire length beyond which the conduction loss is a constant minimal. Temperature of premixed methane-air flames stabilised on 16 mm diameter tube burner is measured by three B-type thermocouples of wire diameters: 0.15 mm, 0.30 mm, and 0.60 mm. The measurements are made at three distances from the burner tip (thermocouple tip to burner tip/burner diameter = 2, 4, and 6) at an equivalence ratio of 1 for the tube Reynolds number varying from 1000 to 2200. These measured flame temperatures are corrected by the present numerical procedure, the multi-element method, and the extrapolation method. The flame temperatures estimated by the two-element method and extrapolation method deviate from numerical results within 2.5% and 4%, respectively.

  13. Thermocouple error correction for measuring the flame temperature with determination of emissivity and heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Hindasageri, V.; Vedula, R. P.; Prabhu, S. V.

    2013-02-01

    Temperature measurement by thermocouples is prone to errors due to conduction and radiation losses and therefore has to be corrected for precise measurement. The temperature dependent emissivity of the thermocouple wires is measured by the use of thermal infrared camera. The measured emissivities are found to be 20%-40% lower than the theoretical values predicted from theory of electromagnetism. A transient technique is employed for finding the heat transfer coefficients for the lead wire and the bead of the thermocouple. This method does not require the data of thermal properties and velocity of the burnt gases. The heat transfer coefficients obtained from the present method have an average deviation of 20% from the available heat transfer correlations in literature for non-reacting convective flow over cylinders and spheres. The parametric study of thermocouple error using the numerical code confirmed the existence of a minimum wire length beyond which the conduction loss is a constant minimal. Temperature of premixed methane-air flames stabilised on 16 mm diameter tube burner is measured by three B-type thermocouples of wire diameters: 0.15 mm, 0.30 mm, and 0.60 mm. The measurements are made at three distances from the burner tip (thermocouple tip to burner tip/burner diameter = 2, 4, and 6) at an equivalence ratio of 1 for the tube Reynolds number varying from 1000 to 2200. These measured flame temperatures are corrected by the present numerical procedure, the multi-element method, and the extrapolation method. The flame temperatures estimated by the two-element method and extrapolation method deviate from numerical results within 2.5% and 4%, respectively.

  14. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter

    NASA Astrophysics Data System (ADS)

    Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2017-09-01

    Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.

  15. Measurement of electromagnetic tracking error in a navigated breast surgery setup

    NASA Astrophysics Data System (ADS)

    Harish, Vinyas; Baksh, Aidan; Ungi, Tamas; Lasso, Andras; Baum, Zachary; Gauvin, Gabrielle; Engel, Jay; Rudan, John; Fichtinger, Gabor

    2016-03-01

    PURPOSE: The measurement of tracking error is crucial to ensure the safety and feasibility of electromagnetically tracked, image-guided procedures. Measurement should occur in a clinical environment because electromagnetic field distortion depends on positioning relative to the field generator and metal objects. However, we could not find an accessible and open-source system for calibration, error measurement, and visualization. We developed such a system and tested it in a navigated breast surgery setup. METHODS: A pointer tool was designed for concurrent electromagnetic and optical tracking. Software modules were developed for automatic calibration of the measurement system, real-time error visualization, and analysis. The system was taken to an operating room to test for field distortion in a navigated breast surgery setup. Positional and rotational electromagnetic tracking errors were then calculated using optical tracking as a ground truth. RESULTS: Our system is quick to set up and can be rapidly deployed. The process from calibration to visualization also only takes a few minutes. Field distortion was measured in the presence of various surgical equipment. Positional and rotational error in a clean field was approximately 0.90 mm and 0.31°. The presence of a surgical table, an electrosurgical cautery, and anesthesia machine increased the error by up to a few tenths of a millimeter and tenth of a degree. CONCLUSION: In a navigated breast surgery setup, measurement and visualization of tracking error defines a safe working area in the presence of surgical equipment. Our system is available as an extension for the open-source 3D Slicer platform.

  16. The Importance of Measurement Errors for Deriving Accurate Reference Leaf Area Index Maps for Validation of Moderate-Resolution Satellite LAI Products

    NASA Technical Reports Server (NTRS)

    Huang, Dong; Yang, Wenze; Tan, Bin; Rautiainen, Miina; Zhang, Ping; Hu, Jiannan; Shabanov, Nikolay V.; Linder, Sune; Knyazikhin, Yuri; Myneni, Ranga B.

    2006-01-01

    The validation of moderate-resolution satellite leaf area index (LAI) products such as those operationally generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data requires reference LAI maps developed from field LAI measurements and fine-resolution satellite data. Errors in field measurements and satellite data determine the accuracy of the reference LAI maps. This paper describes a method by which reference maps of known accuracy can be generated with knowledge of errors in fine-resolution satellite data. The method is demonstrated with data from an international field campaign in a boreal coniferous forest in northern Sweden, and Enhanced Thematic Mapper Plus images. The reference LAI map thus generated is used to assess modifications to the MODIS LAI/fPAR algorithm recently implemented to derive the next generation of the MODIS LAI/fPAR product for this important biome type.

  17. Satellite measurements of large-scale air pollution - Methods

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Ferrare, Richard A.; Fraser, Robert S.

    1990-01-01

    A technique for deriving large-scale pollution parameters from NIR and visible satellite remote-sensing images obtained over land or water is described and demonstrated on AVHRR images. The method is based on comparison of the upward radiances on clear and hazy days and permits simultaneous determination of aerosol optical thickness with error Delta tau(a) = 0.08-0.15, particle size with error + or - 100-200 nm, and single-scattering albedo with error + or - 0.03 (for albedos near 1), all assuming accurate and stable satellite calibration and stable surface reflectance between the clear and hazy days. In the analysis of AVHRR images of smoke from a forest fire, good agreement was obtained between satellite and ground-based (sun-photometer) measurements of aerosol optical thickness, but the satellite particle sizes were systematically greater than those measured from the ground. The AVHRR single-scattering albedo agreed well with a Landsat albedo for the same smoke.

  18. Collaborated measurement of three-dimensional position and orientation errors of assembled miniature devices with two vision systems

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Zhang, Wei; Luo, Yi; Yang, Weimin; Chen, Liang

    2013-01-01

    In assembly of miniature devices, the position and orientation of the parts to be assembled should be guaranteed during or after assembly. In some cases, the relative position or orientation errors among the parts can not be measured from only one direction using visual method, because of visual occlusion or for the features of parts located in a three-dimensional way. An automatic assembly system for precise miniature devices is introduced. In the modular assembly system, two machine vision systems were employed for measurement of the three-dimensionally distributed assembly errors. High resolution CCD cameras and high position repeatability precision stages were integrated to realize high precision measurement in large work space. The two cameras worked in collaboration in measurement procedure to eliminate the influence of movement errors of the rotational or translational stages. A set of templates were designed for calibration of the vision systems and evaluation of the system's measurement accuracy.

  19. [Design and accuracy analysis of upper slicing system of MSCT].

    PubMed

    Jiang, Rongjian

    2013-05-01

    The upper slicing system is the main components of the optical system in MSCT. This paper focuses on the design of upper slicing system and its accuracy analysis to improve the accuracy of imaging. The error of slice thickness and ray center by bearings, screw and control system were analyzed and tested. In fact, the accumulated error measured is less than 1 microm, absolute error measured is less than 10 microm. Improving the accuracy of the upper slicing system contributes to the appropriate treatment methods and success rate of treatment.

  20. Diffraction grating strain gauge method: error analysis and its application for the residual stress measurement in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Yin, Yuanjie; Fan, Bozhao; He, Wei; Dai, Xianglu; Guo, Baoqiao; Xie, Huimin

    2018-03-01

    Diffraction grating strain gauge (DGSG) is an optical strain measurement method. Based on this method, a six-spot diffraction grating strain gauge (S-DGSG) system has been developed with the advantages of high and adjustable sensitivity, compact structure, and non-contact measurement. In this study, this system is applied for the residual stress measurement in thermal barrier coatings (TBCs) combining the hole-drilling method. During the experiment, the specimen’s location is supposed to be reset accurately before and after the hole-drilling, however, it is found that the rigid body displacements from the resetting process could seriously influence the measurement accuracy. In order to understand and eliminate the effects from the rigid body displacements, such as the three-dimensional (3D) rotations and the out-of-plane displacement of the grating, the measurement error of this system is systematically analyzed, and an optimized method is proposed. Moreover, a numerical experiment and a verified tensile test are conducted, and the results verify the applicability of this optimized method successfully. Finally, combining this optimized method, a residual stress measurement experiment is conducted, and the results show that this method can be applied to measure the residual stress in TBCs.

  1. Backward-gazing method for heliostats shape errors measurement and calibration

    NASA Astrophysics Data System (ADS)

    Coquand, Mathieu; Caliot, Cyril; Hénault, François

    2017-06-01

    The pointing and canting accuracies and the surface shape of the heliostats have a great influence on the solar tower power plant efficiency. At the industrial scale, one of the issues to solve is the time and the efforts devoted to adjust the different mirrors of the faceted heliostats, which could take several months if the current methods were used. Accurate control of heliostat tracking requires complicated and onerous devices. Thus, methods used to adjust quickly the whole field of a plant are essential for the rise of solar tower technology with a huge number of heliostats. Wavefront detection is widely use in adaptive optics and shape error reconstruction. Such systems can be sources of inspiration for the measurement of solar facets misalignment and tracking errors. We propose a new method of heliostat characterization inspired by adaptive optics devices. This method aims at observing the brightness distributions on heliostat's surface, from different points of view close to the receiver of the power plant, in order to calculate the wavefront of the reflection of the sun on the concentrated surface to determine its errors. The originality of this new method is to use the profile of the sun to determine the defects of the mirrors. In addition, this method would be easy to set-up and could be implemented without sophisticated apparatus: only four cameras would be used to perform the acquisitions.

  2. Error Estimation for the Linearized Auto-Localization Algorithm

    PubMed Central

    Guevara, Jorge; Jiménez, Antonio R.; Prieto, Jose Carlos; Seco, Fernando

    2012-01-01

    The Linearized Auto-Localization (LAL) algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs), using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL), the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method. PMID:22736965

  3. Self-calibration method of the inner lever-arm parameters for a tri-axis RINS

    NASA Astrophysics Data System (ADS)

    Song, Tianxiao; Li, Kui; Sui, Jie; Liu, Zengjun; Liu, Juncheng

    2017-11-01

    A rotational inertial navigation system (RINS) could improve navigation performance by modulating the inertial sensor errors with rotatable gimbals. When an inertial measurement unit (IMU) rotates, the deviations between the accelerometer-sensitive points and the IMU center will lead to an inner lever-arm effect. In this paper, a self-calibration method of the inner lever-arm parameters for a tri-axis RINS is proposed. A novel rotation scheme with variable angular rate rotation is designed to motivate the velocity errors caused by the inner lever-arm effect. By extending all inner lever-arm parameters as filter states, a Kalman filter with velocity errors as measurement is established to achieve the calibration. The accuracy and feasibility of the proposed method are illustrated by both simulations and experiments. The final results indicate that the inner lever-arm effect is significantly restrained after compensation by the calibration results.

  4. A new multiple air beam approach for in-process form error optical measurement

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Li, R.

    2018-07-01

    In-process measurement can provide feedback for the control of workpiece precision in terms of size, roughness and, in particular, mid-spatial frequency form error. Optical measurement methods are of the non-contact type and possess high precision, as required for in-process form error measurement. In precision machining, coolant is commonly used to reduce heat generation and thermal deformation on the workpiece surface. However, the use of coolant will induce an opaque coolant barrier if optical measurement methods are used. In this paper, a new multiple air beam approach is proposed. The new approach permits the displacement of coolant from any direction and with a large thickness, i.e. with a large amount of coolant. The model, the working principle, and the key features of the new approach are presented. Based on the proposed new approach, a new in-process form error optical measurement system is developed. The coolant removal capability and the performance of this new multiple air beam approach are assessed. The experimental results show that the workpiece surface y(x, z) can be measured successfully with standard deviation up to 0.3011 µm even under a large amount of coolant, such that the coolant thickness is 15 mm. This means a relative uncertainty of 2σ up to 4.35% and the workpiece surface is deeply immersed in the opaque coolant. The results also show that, in terms of coolant removal capability, air supply and air velocity, the proposed new approach improves by, respectively, 3.3, 1.3 and 5.3 times on the previous single air beam approach. The results demonstrate the significant improvements brought by the new multiple air beam method together with the developed measurement system.

  5. Branch-Based Model for the Diameters of the Pulmonary Airways: Accounting for Departures From Self-Consistency and Registration Errors

    PubMed Central

    Neradilek, Moni B.; Polissar, Nayak L.; Einstein, Daniel R.; Glenny, Robb W.; Minard, Kevin R.; Carson, James P.; Jiao, Xiangmin; Jacob, Richard E.; Cox, Timothy C.; Postlethwait, Edward M.; Corley, Richard A.

    2017-01-01

    We examine a previously published branch-based approach for modeling airway diameters that is predicated on the assumption of self-consistency across all levels of the tree. We mathematically formulate this assumption, propose a method to test it and develop a more general model to be used when the assumption is violated. We discuss the effect of measurement error on the estimated models and propose methods that take account of error. The methods are illustrated on data from MRI and CT images of silicone casts of two rats, two normal monkeys, and one ozone-exposed monkey. Our results showed substantial departures from self-consistency in all five subjects. When departures from self-consistency exist, we do not recommend using the self-consistency model, even as an approximation, as we have shown that it may likely lead to an incorrect representation of the diameter geometry. The new variance model can be used instead. Measurement error has an important impact on the estimated morphometry models and needs to be addressed in the analysis. PMID:22528468

  6. Measurement of tokamak error fields using plasma response and its applicability to ITER

    DOE PAGES

    Strait, Edward J.; Buttery, Richard J.; Casper, T. A.; ...

    2014-04-17

    The nonlinear response of a low-beta tokamak plasma to non-axisymmetric fields offers an alternative to direct measurement of the non-axisymmetric part of the vacuum magnetic fields, often termed “error fields”. Possible approaches are discussed for determination of error fields and the required current in non-axisymmetric correction coils, with an emphasis on two relatively new methods: measurement of the torque balance on a saturated magnetic island, and measurement of the braking of plasma rotation in the absence of an island. The former is well suited to ohmically heated discharges, while the latter is more appropriate for discharges with a modest amountmore » of neutral beam heating to drive rotation. Both can potentially provide continuous measurements during a discharge, subject to the limitation of a minimum averaging time. The applicability of these methods to ITER is discussed, and an estimate is made of their uncertainties in light of the specifications of ITER’s diagnostic systems. Furthermore, the use of plasma response-based techniques in normal ITER operational scenarios may allow identification of the error field contributions by individual central solenoid coils, but identification of the individual contributions by the outer poloidal field coils or other sources is less likely to be feasible.« less

  7. Simulation techniques for estimating error in the classification of normal patterns

    NASA Technical Reports Server (NTRS)

    Whitsitt, S. J.; Landgrebe, D. A.

    1974-01-01

    Methods of efficiently generating and classifying samples with specified multivariate normal distributions were discussed. Conservative confidence tables for sample sizes are given for selective sampling. Simulation results are compared with classified training data. Techniques for comparing error and separability measure for two normal patterns are investigated and used to display the relationship between the error and the Chernoff bound.

  8. Evaluation and statistical inference for human connectomes.

    PubMed

    Pestilli, Franco; Yeatman, Jason D; Rokem, Ariel; Kay, Kendrick N; Wandell, Brian A

    2014-10-01

    Diffusion-weighted imaging coupled with tractography is currently the only method for in vivo mapping of human white-matter fascicles. Tractography takes diffusion measurements as input and produces the connectome, a large collection of white-matter fascicles, as output. We introduce a method to evaluate the evidence supporting connectomes. Linear fascicle evaluation (LiFE) takes any connectome as input and predicts diffusion measurements as output, using the difference between the measured and predicted diffusion signals to quantify the prediction error. We use the prediction error to evaluate the evidence that supports the properties of the connectome, to compare tractography algorithms and to test hypotheses about tracts and connections.

  9. A method to map errors in the deformable registration of 4DCT images1

    PubMed Central

    Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.

    2010-01-01

    Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288

  10. HUMAN EYE OPTICS: Determination of positions of optical elements of the human eye

    NASA Astrophysics Data System (ADS)

    Galetskii, S. O.; Cherezova, T. Yu

    2009-02-01

    An original method for noninvasive determining the positions of elements of intraocular optics is proposed. The analytic dependence of the measurement error on the optical-scheme parameters and the restriction in distance from the element being measured are determined within the framework of the method proposed. It is shown that the method can be efficiently used for determining the position of elements in the classical Gullstrand eye model and personalised eye models. The positions of six optical surfaces of the Gullstrand eye model and four optical surfaces of the personalised eye model can be determined with an error of less than 0.25 mm.

  11. Validation of SenseWear Armband in children, adolescents, and adults.

    PubMed

    Lopez, G A; Brønd, J C; Andersen, L B; Dencker, M; Arvidsson, D

    2018-02-01

    SenseWear Armband (SW) is a multisensor monitor to assess physical activity and energy expenditure. Its prediction algorithms have been updated periodically. The aim was to validate SW in children, adolescents, and adults. The most recent SW algorithm 5.2 (SW5.2) and the previous version 2.2 (SW2.2) were evaluated for estimation of energy expenditure during semi-structured activities in 35 children, 31 adolescents, and 36 adults with indirect calorimetry as reference. Energy expenditure estimated from waist-worn ActiGraph GT3X+ data (AG) was used for comparison. Improvements in measurement errors were demonstrated with SW5.2 compared to SW2.2, especially in children and for biking. The overall mean absolute percent error with SW5.2 was 24% in children, 23% in adolescents, and 20% in adults. The error was larger for sitting and standing (23%-32%) and for basketball and biking (19%-35%), compared to walking and running (8%-20%). The overall mean absolute error with AG was 28% in children, 22% in adolescents, and 28% in adults. The absolute percent error for biking was 32%-74% with AG. In general, SW and AG underestimated energy expenditure. However, both methods demonstrated a proportional bias, with increasing underestimation for increasing energy expenditure level, in addition to the large individual error. SW provides measures of energy expenditure level with similar accuracy in children, adolescents, and adults with the improvements in the updated algorithms. Although SW captures biking better than AG, these methods share remaining measurements errors requiring further improvements for accurate measures of physical activity and energy expenditure in clinical and epidemiological research. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Self-test web-based pure-tone audiometry: validity evaluation and measurement error analysis.

    PubMed

    Masalski, Marcin; Kręcicki, Tomasz

    2013-04-12

    Potential methods of application of self-administered Web-based pure-tone audiometry conducted at home on a PC with a sound card and ordinary headphones depend on the value of measurement error in such tests. The aim of this research was to determine the measurement error of the hearing threshold determined in the way described above and to identify and analyze factors influencing its value. The evaluation of the hearing threshold was made in three series: (1) tests on a clinical audiometer, (2) self-tests done on a specially calibrated computer under the supervision of an audiologist, and (3) self-tests conducted at home. The research was carried out on the group of 51 participants selected from patients of an audiology outpatient clinic. From the group of 51 patients examined in the first two series, the third series was self-administered at home by 37 subjects (73%). The average difference between the value of the hearing threshold determined in series 1 and in series 2 was -1.54dB with standard deviation of 7.88dB and a Pearson correlation coefficient of .90. Between the first and third series, these values were -1.35dB±10.66dB and .84, respectively. In series 3, the standard deviation was most influenced by the error connected with the procedure of hearing threshold identification (6.64dB), calibration error (6.19dB), and additionally at the frequency of 250Hz by frequency nonlinearity error (7.28dB). The obtained results confirm the possibility of applying Web-based pure-tone audiometry in screening tests. In the future, modifications of the method leading to the decrease in measurement error can broaden the scope of Web-based pure-tone audiometry application.

  13. Improved COD Measurements for Organic Content in Flowback Water with High Chloride Concentrations.

    PubMed

    Cardona, Isabel; Park, Ho Il; Lin, Lian-Shin

    2016-03-01

    An improved method was used to determine chemical oxygen demand (COD) as a measure of organic content in water samples containing high chloride content. A contour plot of COD percent error in the Cl(-)-Cl(-):COD domain showed that COD errors increased with Cl(-):COD. Substantial errors (>10%) could occur in low Cl(-):COD regions (<300) for samples with low (<10 g/L) and high chloride concentrations (>25 g/L). Applying the method to flowback water samples resulted in COD concentrations ranging in 130 to 1060 mg/L, which were substantially lower than the previously reported values for flowback water samples from Marcellus Shale (228 to 21 900 mg/L). It is likely that overestimations of COD in the previous studies occurred as result of chloride interferences. Pretreatment with mercuric sulfate, and use of a low-strength digestion solution, and the contour plot to correct COD measurements are feasible steps to significantly improve the accuracy of COD measurements.

  14. Data Envelopment Analysis in the Presence of Measurement Error: Case Study from the National Database of Nursing Quality Indicators® (NDNQI®)

    PubMed Central

    Gajewski, Byron J.; Lee, Robert; Dunton, Nancy

    2012-01-01

    Data Envelopment Analysis (DEA) is the most commonly used approach for evaluating healthcare efficiency (Hollingsworth, 2008), but a long-standing concern is that DEA assumes that data are measured without error. This is quite unlikely, and DEA and other efficiency analysis techniques may yield biased efficiency estimates if it is not realized (Gajewski, Lee, Bott, Piamjariyakul and Taunton, 2009; Ruggiero, 2004). We propose to address measurement error systematically using a Bayesian method (Bayesian DEA). We will apply Bayesian DEA to data from the National Database of Nursing Quality Indicators® (NDNQI®) to estimate nursing units’ efficiency. Several external reliability studies inform the posterior distribution of the measurement error on the DEA variables. We will discuss the case of generalizing the approach to situations where an external reliability study is not feasible. PMID:23328796

  15. Correcting for particle counting bias error in turbulent flow

    NASA Technical Reports Server (NTRS)

    Edwards, R. V.; Baratuci, W.

    1985-01-01

    An ideal seeding device is proposed generating particles that exactly follow the flow out are still a major source of error, i.e., with a particle counting bias wherein the probability of measuring velocity is a function of velocity. The error in the measured mean can be as much as 25%. Many schemes have been put forward to correct for this error, but there is not universal agreement as to the acceptability of any one method. In particular it is sometimes difficult to know if the assumptions required in the analysis are fulfilled by any particular flow measurement system. To check various correction mechanisms in an ideal way and to gain some insight into how to correct with the fewest initial assumptions, a computer simulation is constructed to simulate laser anemometer measurements in a turbulent flow. That simulator and the results of its use are discussed.

  16. Development and Assessment of a Medication Safety Measurement Program in a Long-Term Care Pharmacy.

    PubMed

    Hertig, John B; Hultgren, Kyle E; Parks, Scott; Rondinelli, Rick

    2016-02-01

    Medication errors continue to be a major issue in the health care system, including in long-term care facilities. While many hospitals and health systems have developed methods to identify, track, and prevent these errors, long-term care facilities historically have not invested in these error-prevention strategies. The objective of this study was two-fold: 1) to develop a set of medication-safety process measures for dispensing in a long-term care pharmacy, and 2) to analyze the data from those measures to determine the relative safety of the process. The study was conducted at In Touch Pharmaceuticals in Valparaiso, Indiana. To assess the safety of the medication-use system, each step was documented using a comprehensive flowchart (process flow map) tool. Once completed and validated, the flowchart was used to complete a "failure modes and effects analysis" (FMEA) identifying ways a process may fail. Operational gaps found during FMEA were used to identify points of measurement. The research identified a set of eight measures as potential areas of failure; data were then collected on each one of these. More than 133,000 medication doses (opportunities for errors) were included in the study during the research time frame (April 1, 2014, and ended on June 4, 2014). Overall, there was an approximate order-entry error rate of 15.26%, with intravenous errors at 0.37%. A total of 21 errors migrated through the entire medication-use system. These 21 errors in 133,000 opportunities resulted in a final check error rate of 0.015%. A comprehensive medication-safety measurement program was designed and assessed. This study demonstrated the ability to detect medication errors in a long-term pharmacy setting, thereby making process improvements measureable. Future, larger, multi-site studies should be completed to test this measurement program.

  17. Carbon dioxide emission tallies for 210 U.S. coal-fired power plants: a comparison of two accounting methods.

    PubMed

    Quick, Jeffrey C

    2014-01-01

    Annual CO2 emission tallies for 210 coal-fired power plants during 2009 were more accurately calculated from fuel consumption records reported by the US. Energy Information Administration (EIA) than measurements from Continuous Emissions Monitoring Systems (CEMS) reported by the US. Environmental Protection Agency. Results from these accounting methods for individual plants vary by +/- 10.8%. Although the differences systematically vary with the method used to certify flue-gas flow instruments in CEMS, additional sources of CEMS measurement error remain to be identified. Limitations of the EIA fuel consumption data are also discussed. Consideration of weighing, sample collection, laboratory analysis, emission factor, and stock adjustment errors showed that the minimum error for CO2 emissions calculated from the fuel consumption data ranged from +/- 1.3% to +/- 7.2% with a plant average of +/- 1.6%. This error might be reduced by 50% if the carbon content of coal delivered to U.S. power plants were reported. Potentially, this study might inform efforts to regulate CO2 emissions (such as CO2 performance standards or taxes) and more immediately, the U.S. Greenhouse Gas Reporting Rule where large coal-fired power plants currently use CEMS to measure CO2 emissions. Moreover, if, as suggested here, the flue-gas flow measurement limits the accuracy of CO2 emission tallies from CEMS, then the accuracy of other emission tallies from CEMS (such as SO2, NOx, and Hg) would be similarly affected. Consequently, improved flue gas flow measurements are needed to increase the reliability of emission measurements from CEMS.

  18. A novel algorithm for laser self-mixing sensors used with the Kalman filter to measure displacement

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Liu, Ji-Gou

    2018-07-01

    This paper proposes a simple and effective method for estimating the feedback level factor C in a self-mixing interferometric sensor. It is used with a Kalman filter to retrieve the displacement. Without the complicated and onerous calculation process of the general C estimation method, a final equation is obtained. Thus, the estimation of C only involves a few simple calculations. It successfully retrieves the sinusoidal and aleatory displacement by means of simulated self-mixing signals in both weak and moderate feedback regimes. To deal with the errors resulting from noise and estimate bias of C and to further improve the retrieval precision, a Kalman filter is employed following the general phase unwrapping method. The simulation and experiment results show that the retrieved displacement using the C obtained with the proposed method is comparable to the joint estimation of C and α. Besides, the Kalman filter can significantly decrease measurement errors, especially the error caused by incorrectly locating the peak and valley positions of the signal.

  19. A Noninvasive Body Setup Method for Radiotherapy by Using a Multimodal Image Fusion Technique

    PubMed Central

    Zhang, Jie; Chen, Yunxia; Wang, Chenchen; Chu, Kaiyue; Jin, Jianhua; Huang, Xiaolin; Guan, Yue; Li, Weifeng

    2017-01-01

    Purpose: To minimize the mismatch error between patient surface and immobilization system for tumor location by a noninvasive patient setup method. Materials and Methods: The method, based on a point set registration, proposes a shift for patient positioning by integrating information of the computed tomography scans and that of optical surface landmarks. An evaluation of the method included 3 areas: (1) a validation on a phantom by estimating 100 known mismatch errors between patient surface and immobilization system. (2) Five patients with pelvic tumors were considered. The tumor location errors of the method were measured using the difference between the proposal shift of cone-beam computed tomography and that of our method. (3) The collected setup data from the evaluation of patients were compared with the published performance data of other 2 similar systems. Results: The phantom verification results showed that the method was capable of estimating mismatch error between patient surface and immobilization system in a precision of <0.22 mm. For the pelvic tumor, the method had an average tumor location error of 1.303, 2.602, and 1.684 mm in left–right, anterior–posterior, and superior–inferior directions, respectively. The performance comparison with other 2 similar systems suggested that the method had a better positioning accuracy for pelvic tumor location. Conclusion: By effectively decreasing an interfraction uncertainty source (mismatch error between patient surface and immobilization system) in radiotherapy, the method can improve patient positioning precision for pelvic tumor. PMID:29333959

  20. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

Top