An analysis of the least-squares problem for the DSN systematic pointing error model
NASA Technical Reports Server (NTRS)
Alvarez, L. S.
1991-01-01
A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.
Comparing Measurement Error between Two Different Methods of Measurement of Various Magnitudes
ERIC Educational Resources Information Center
Zavorsky, Gerald S.
2010-01-01
Measurement error is a common problem in several fields of research such as medicine, physiology, and exercise science. The standard deviation of repeated measurements on the same person is the measurement error. One way of presenting measurement error is called the repeatability, which is 2.77 multiplied by the within subject standard deviation.…
Error measuring system of rotary Inductosyn
NASA Astrophysics Data System (ADS)
Liu, Chengjun; Zou, Jibin; Fu, Xinghe
2008-10-01
The inductosyn is a kind of high-precision angle-position sensor. It has important applications in servo table, precision machine tool and other products. The precision of inductosyn is calibrated by its error. It's an important problem about the error measurement in the process of production and application of the inductosyn. At present, it mainly depends on the method of artificial measurement to obtain the error of inductosyn. Therefore, the disadvantages can't be ignored such as the high labour intensity of the operator, the occurrent error which is easy occurred and the poor repeatability, and so on. In order to solve these problems, a new automatic measurement method is put forward in this paper which based on a high precision optical dividing head. Error signal can be obtained by processing the output signal of inductosyn and optical dividing head precisely. When inductosyn rotating continuously, its zero position error can be measured dynamically, and zero error curves can be output automatically. The measuring and calculating errors caused by man-made factor can be overcome by this method, and it makes measuring process more quickly, exactly and reliably. Experiment proves that the accuracy of error measuring system is 1.1 arc-second (peak - peak value).
Crosby, Richard; Salazar, Laura F.; DiClemente, Ralph J.; Yarber, William L.; Caliendo, Angela M.; Staples-Horne, Michelle
2009-01-01
Objectives To identify the prevalence of condom use errors among detained female teens and to test two inter-related hypotheses concerning condom failure. Methods A cross-sectional survey of 134 female teens recruited within eight detention facilities. Measures were collected using audio-computer assisted self-interviewing. Assessment for the presence of C. trachomatis and N. gonorrhoeae was also conducted. Results Five forms of condom use errors/problems were common: not discussing condom use with the partner (34.3%), not having a condom when one was desired (48.5%), starting sex before application (21.6%), removing condoms before sex concludes (26.9%), and breakage (32.8%). Significant, associations were found between condom errors/problems and drug/alcohol use. Errors/problems with condom use were significantly higher among teens diagnosed with an STD (P=.039 for an index measure; P=.022 for a single-item measure). Conclusions Findings suggest that detained female teens may have experienced multiple condom use error and problems thereby increasing their vulnerability to STD acquisition. PMID:18082855
Parallel computers - Estimate errors caused by imprecise data
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik; Bernat, Andrew; Villa, Elsa; Mariscal, Yvonne
1991-01-01
A new approach to the problem of estimating errors caused by imprecise data is proposed in the context of software engineering. A software device is used to produce an ideal solution to the problem, when the computer is capable of computing errors of arbitrary programs. The software engineering aspect of this problem is to describe a device for computing the error estimates in software terms and then to provide precise numbers with error estimates to the user. The feasibility of the program capable of computing both some quantity and its error estimate in the range of possible measurement errors is demonstrated.
COMPLEX VARIABLE BOUNDARY ELEMENT METHOD: APPLICATIONS.
Hromadka, T.V.; Yen, C.C.; Guymon, G.L.
1985-01-01
The complex variable boundary element method (CVBEM) is used to approximate several potential problems where analytical solutions are known. A modeling result produced from the CVBEM is a measure of relative error in matching the known boundary condition values of the problem. A CVBEM error-reduction algorithm is used to reduce the relative error of the approximation by adding nodal points in boundary regions where error is large. From the test problems, overall error is reduced significantly by utilizing the adaptive integration algorithm.
NASA Astrophysics Data System (ADS)
Burman, Erik; Hansbo, Peter; Larson, Mats G.
2018-03-01
Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.
Flouri, Eirini; Panourgia, Constantina
2011-06-01
The aim of this study was to test for gender differences in how negative cognitive errors (overgeneralizing, catastrophizing, selective abstraction, and personalizing) mediate the association between adverse life events and adolescents' emotional and behavioural problems (measured with the Strengths and Difficulties Questionnaire). The sample consisted of 202 boys and 227 girls (aged 11-15 years) from three state secondary schools in disadvantaged areas in one county in the South East of England. Control variables were age, ethnicity, special educational needs, exclusion history, family structure, family socio-economic disadvantage, and verbal cognitive ability. Adverse life events were measured with Tiet et al.'s (1998) Adverse Life Events Scale. For both genders, we assumed a pathway from adverse life events to emotional and behavioural problems via cognitive errors. We found no gender differences in life adversity, cognitive errors, total difficulties, peer problems, or hyperactivity. In both boys and girls, even after adjustment for controls, cognitive errors were related to total difficulties and emotional symptoms, and life adversity was related to total difficulties and conduct problems. The life adversity/conduct problems association was not explained by negative cognitive errors in either gender. However, we found gender differences in how adversity and cognitive errors produced hyperactivity and internalizing problems. In particular, life adversity was not related, after adjustment for controls, to hyperactivity in girls and to peer problems and emotional symptoms in boys. Cognitive errors fully mediated the effect of life adversity on hyperactivity in boys and on peer and emotional problems in girls.
NASA Astrophysics Data System (ADS)
Becker, Roland; Vexler, Boris
2005-06-01
We consider the calibration of parameters in physical models described by partial differential equations. This task is formulated as a constrained optimization problem with a cost functional of least squares type using information obtained from measurements. An important issue in the numerical solution of this type of problem is the control of the errors introduced, first, by discretization of the equations describing the physical model, and second, by measurement errors or other perturbations. Our strategy is as follows: we suppose that the user defines an interest functional I, which might depend on both the state variable and the parameters and which represents the goal of the computation. First, we propose an a posteriori error estimator which measures the error with respect to this functional. This error estimator is used in an adaptive algorithm to construct economic meshes by local mesh refinement. The proposed estimator requires the solution of an auxiliary linear equation. Second, we address the question of sensitivity. Applying similar techniques as before, we derive quantities which describe the influence of small changes in the measurements on the value of the interest functional. These numbers, which we call relative condition numbers, give additional information on the problem under consideration. They can be computed by means of the solution of the auxiliary problem determined before. Finally, we demonstrate our approach at hand of a parameter calibration problem for a model flow problem.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2009-12-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
Influence of OPD in wavelength-shifting interferometry
NASA Astrophysics Data System (ADS)
Wang, Hongjun; Tian, Ailing; Liu, Bingcai; Dang, Juanjuan
2010-03-01
Phase-shifting interferometry is a powerful tool for high accuracy optical measurement. It operates by change the optical path length in the reference arm or test arm. This method practices by move optical device. So it has much problem when the optical device is very large and heavy. For solve this problem, the wavelength-shifting interferometry was put forwarded. In wavelength-shifting interferometry, the phase shifting angle was achieved by change the wavelength of optical source. The phase shifting angle was decided by wavelength and OPD (Optical Path Difference) between test and reference wavefront. So the OPD is an important factor to measure results. But in measurement, because the positional error and profile error of under testing optical element is exist, the phase shifting angle is different in different test point when wavelength scanning, it will introduce phase shifting angle error, so it will introduce optical surface measure error. For analysis influence of OPD on optical surface error, the relation between surface error and OPD was researched. By simulation, the relation between phase shifting error and OPD was established. By analysis, the error compensation method was put forward. After error compensation, the measure results can be improved to great extend.
The Effects of Measurement Error on Statistical Models for Analyzing Change. Final Report.
ERIC Educational Resources Information Center
Dunivant, Noel
The results of six major projects are discussed including a comprehensive mathematical and statistical analysis of the problems caused by errors of measurement in linear models for assessing change. In a general matrix representation of the problem, several new analytic results are proved concerning the parameters which affect bias in…
Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs
NASA Technical Reports Server (NTRS)
Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.
1980-01-01
In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.
NASA Astrophysics Data System (ADS)
Suparman, Yusep; Folmer, Henk; Oud, Johan H. L.
2014-01-01
Omitted variables and measurement errors in explanatory variables frequently occur in hedonic price models. Ignoring these problems leads to biased estimators. In this paper, we develop a constrained autoregression-structural equation model (ASEM) to handle both types of problems. Standard panel data models to handle omitted variables bias are based on the assumption that the omitted variables are time-invariant. ASEM allows handling of both time-varying and time-invariant omitted variables by constrained autoregression. In the case of measurement error, standard approaches require additional external information which is usually difficult to obtain. ASEM exploits the fact that panel data are repeatedly measured which allows decomposing the variance of a variable into the true variance and the variance due to measurement error. We apply ASEM to estimate a hedonic housing model for urban Indonesia. To get insight into the consequences of measurement error and omitted variables, we compare the ASEM estimates with the outcomes of (1) a standard SEM, which does not account for omitted variables, (2) a constrained autoregression model, which does not account for measurement error, and (3) a fixed effects hedonic model, which ignores measurement error and time-varying omitted variables. The differences between the ASEM estimates and the outcomes of the three alternative approaches are substantial.
Watts, Sarah E; Weems, Carl F
2006-12-01
The purpose of this study was to examine the linkages among selective attention, memory bias, cognitive errors, and anxiety problems by testing a model of the interrelations among these cognitive variables and childhood anxiety disorder symptoms. A community sample of 81 youth (38 females and 43 males) aged 9-17 years and their parents completed measures of the child's anxiety disorder symptoms. Youth completed assessments measuring selective attention, memory bias, and cognitive errors. Results indicated that selective attention, memory bias, and cognitive errors were each correlated with childhood anxiety problems and provide support for a cognitive model of anxiety which posits that these three biases are associated with childhood anxiety problems. Only limited support for significant interrelations among selective attention, memory bias, and cognitive errors was found. Finally, results point towards an effective strategy for moving the assessment of selective attention to younger and community samples of youth.
An Empirical State Error Covariance Matrix for Batch State Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty. Also, in its most straight forward form, the technique only requires supplemental calculations to be added to existing batch algorithms. The generation of this direct, empirical form of the state error covariance matrix is independent of the dimensionality of the observations. Mixed degrees of freedom for an observation set are allowed. As is the case with any simple, empirical sample variance problems, the presented approach offers an opportunity (at least in the case of weighted least squares) to investigate confidence interval estimates for the error covariance matrix elements. The diagonal or variance terms of the error covariance matrix have a particularly simple form to associate with either a multiple degree of freedom chi-square distribution (more approximate) or with a gamma distribution (less approximate). The off diagonal or covariance terms of the matrix are less clear in their statistical behavior. However, the off diagonal covariance matrix elements still lend themselves to standard confidence interval error analysis. The distributional forms associated with the off diagonal terms are more varied and, perhaps, more approximate than those associated with the diagonal terms. Using a simple weighted least squares sample problem, results obtained through use of the proposed technique are presented. The example consists of a simple, two observer, triangulation problem with range only measurements. Variations of this problem reflect an ideal case (perfect knowledge of the range errors) and a mismodeled case (incorrect knowledge of the range errors).
Psychophysical measurements in children: challenges, pitfalls, and considerations.
Witton, Caroline; Talcott, Joel B; Henning, G Bruce
2017-01-01
Measuring sensory sensitivity is important in studying development and developmental disorders. However, with children, there is a need to balance reliable but lengthy sensory tasks with the child's ability to maintain motivation and vigilance. We used simulations to explore the problems associated with shortening adaptive psychophysical procedures, and suggest how these problems might be addressed. We quantify how adaptive procedures with too few reversals can over-estimate thresholds, introduce substantial measurement error, and make estimates of individual thresholds less reliable. The associated measurement error also obscures group differences. Adaptive procedures with children should therefore use as many reversals as possible, to reduce the effects of both Type 1 and Type 2 errors. Differences in response consistency, resulting from lapses in attention, further increase the over-estimation of threshold. Comparisons between data from individuals who may differ in lapse rate are therefore problematic, but measures to estimate and account for lapse rates in analyses may mitigate this problem.
An Empirical State Error Covariance Matrix Orbit Determination Example
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2015-01-01
State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance is suspect. In its most straight forward form, the technique only requires supplemental calculations to be added to existing batch estimation algorithms. In the current problem being studied a truth model making use of gravity with spherical, J2 and J4 terms plus a standard exponential type atmosphere with simple diurnal and random walk components is used. The ability of the empirical state error covariance matrix to account for errors is investigated under four scenarios during orbit estimation. These scenarios are: exact modeling under known measurement errors, exact modeling under corrupted measurement errors, inexact modeling under known measurement errors, and inexact modeling under corrupted measurement errors. For this problem a simple analog of a distributed space surveillance network is used. The sensors in this network make only range measurements and with simple normally distributed measurement errors. The sensors are assumed to have full horizon to horizon viewing at any azimuth. For definiteness, an orbit at the approximate altitude and inclination of the International Space Station is used for the study. The comparison analyses of the data involve only total vectors. No investigation of specific orbital elements is undertaken. The total vector analyses will look at the chisquare values of the error in the difference between the estimated state and the true modeled state using both the empirical and theoretical error covariance matrices for each of scenario.
Decodoku: Quantum error rorrection as a simple puzzle game
NASA Astrophysics Data System (ADS)
Wootton, James
To build quantum computers, we need to detect and manage any noise that occurs. This will be done using quantum error correction. At the hardware level, QEC is a multipartite system that stores information non-locally. Certain measurements are made which do not disturb the stored information, but which do allow signatures of errors to be detected. Then there is a software problem. How to take these measurement outcomes and determine: a) The errors that caused them, and (b) how to remove their effects. For qubit error correction, the algorithms required to do this are well known. For qudits, however, current methods are far from optimal. We consider the error correction problem of qubit surface codes. At the most basic level, this is a problem that can be expressed in terms of a grid of numbers. Using this fact, we take the inherent problem at the heart of quantum error correction, remove it from its quantum context, and presented in terms of simple grid based puzzle games. We have developed three versions of these puzzle games, focussing on different aspects of the required algorithms. These have been presented and iOS and Android apps, allowing the public to try their hand at developing good algorithms to solve the puzzles. For more information, see www.decodoku.com. Funding from the NCCR QSIT.
Stochastic estimates of gradient from laser measurements for an autonomous Martian roving vehicle
NASA Technical Reports Server (NTRS)
Burger, P. A.
1973-01-01
The general problem of estimating the state vector x from the state equation h = Ax where h, A, and x are all stochastic, is presented. Specifically, the problem is for an autonomous Martian roving vehicle to utilize laser measurements in estimating the gradient of the terrain. Error exists due to two factors - surface roughness and instrumental measurements. The errors in slope depend on the standard deviations of these noise factors. Numerically, the error in gradient is expressed as a function of instrumental inaccuracies. Certain guidelines for the accuracy of permissable gradient must be set. It is found that present technology can meet these guidelines.
Satellite altimetric measurements of the ocean. Report of the TOPEX Science Working Group
NASA Technical Reports Server (NTRS)
Stewart, R.
1981-01-01
The scientific usefulness of satellite measurements of ocean topography for the study of ocean circulation was investigated. The following topics were studied: (1) scientific problems which use altimetric measurements of ocean topography; (2) the extent in which in situ measurements are complementary or required; (3) accuracy, precision, and spatial and temporal resolutions which are required of the topographic measurements; (4) errors associated with measurement techniques; and (5) influences of these errors on scientific problems. An operational system for measuring ocean topography, was defined and the cost of conducting such a topographic experiment, was estimated.
Helle, Samuli
2018-03-01
Revealing causal effects from correlative data is very challenging and a contemporary problem in human life history research owing to the lack of experimental approach. Problems with causal inference arising from measurement error in independent variables, whether related either to inaccurate measurement technique or validity of measurements, seem not well-known in this field. The aim of this study is to show how structural equation modeling (SEM) with latent variables can be applied to account for measurement error in independent variables when the researcher has recorded several indicators of a hypothesized latent construct. As a simple example of this approach, measurement error in lifetime allocation of resources to reproduction in Finnish preindustrial women is modelled in the context of the survival cost of reproduction. In humans, lifetime energetic resources allocated in reproduction are almost impossible to quantify with precision and, thus, typically used measures of lifetime reproductive effort (e.g., lifetime reproductive success and parity) are likely to be plagued by measurement error. These results are contrasted with those obtained from a traditional regression approach where the single best proxy of lifetime reproductive effort available in the data is used for inference. As expected, the inability to account for measurement error in women's lifetime reproductive effort resulted in the underestimation of its underlying effect size on post-reproductive survival. This article emphasizes the advantages that the SEM framework can provide in handling measurement error via multiple-indicator latent variables in human life history studies. © 2017 Wiley Periodicals, Inc.
Alcohol consumption, beverage prices and measurement error.
Young, Douglas J; Bielinska-Kwapisz, Agnieszka
2003-03-01
Alcohol price data collected by the American Chamber of Commerce Researchers Association (ACCRA) have been widely used in studies of alcohol consumption and related behaviors. A number of problems with these data suggest that they contain substantial measurement error, which biases conventional statistical estimators toward a finding of little or no effect of prices on behavior. We test for measurement error, assess the magnitude of the bias and provide an alternative estimator that is likely to be superior. The study utilizes data on per capita alcohol consumption across U.S. states and the years 1982-1997. State and federal alcohol taxes are used as instrumental variables for prices. Formal tests strongly confim the hypothesis of measurement error. Instrumental variable estimates of the price elasticity of demand range from -0.53 to -1.24. These estimates are substantially larger in absolute value than ordinary least squares estimates, which sometimes are not significantly different from zero or even positive. The ACCRA price data are substantially contaminated with measurement error, but using state and federal taxes as instrumental variables mitigates the problem.
Stochastic estimates of gradient from laser measurements for an autonomous Martian Roving Vehicle
NASA Technical Reports Server (NTRS)
Shen, C. N.; Burger, P.
1973-01-01
The general problem presented in this paper is one of estimating the state vector x from the state equation h = Ax, where h, A, and x are all stochastic. Specifically, the problem is for an autonomous Martian Roving Vehicle to utilize laser measurements in estimating the gradient of the terrain. Error exists due to two factors - surface roughness and instrumental measurements. The errors in slope depend on the standard deviations of these noise factors. Numerically, the error in gradient is expressed as a function of instrumental inaccuracies. Certain guidelines for the accuracy of permissable gradient must be set. It is found that present technology can meet these guidelines.-
Effect of patient positions on measurement errors of the knee-joint space on radiographs
NASA Astrophysics Data System (ADS)
Gilewska, Grazyna
2001-08-01
Osteoarthritis (OA) is one of the most important health problems these days. It is one of the most frequent causes of pain and disability of middle-aged and old people. Nowadays the radiograph is the most economic and available tool to evaluate changes in OA. Error of performance of radiographs of knee joint is the basic problem of their evaluation for clinical research. The purpose of evaluation of such radiographs in my study was measuring the knee-joint space on several radiographs performed at defined intervals. Attempt at evaluating errors caused by a radiologist of a patient was presented in this study. These errors resulted mainly from either incorrect conditions of performance or from a patient's fault. Once we have information about size of the errors, we will be able to assess which of these elements have the greatest influence on accuracy and repeatability of measurements of knee-joint space. And consequently we will be able to minimize their sources.
Mismeasurement and the resonance of strong confounders: correlated errors.
Marshall, J R; Hastrup, J L; Ross, J S
1999-07-01
Confounding in epidemiology, and the limits of standard methods of control for an imperfectly measured confounder, have been understood for some time. However, most treatments of this problem are based on the assumption that errors of measurement in confounding and confounded variables are independent. This paper considers the situation in which a strong risk factor (confounder) and an inconsequential but suspected risk factor (confounded) are each measured with errors that are correlated; the situation appears especially likely to occur in the field of nutritional epidemiology. Error correlation appears to add little to measurement error as a source of bias in estimating the impact of a strong risk factor: it can add to, diminish, or reverse the bias induced by measurement error in estimating the impact of the inconsequential risk factor. Correlation of measurement errors can add to the difficulty involved in evaluating structures in which confounding and measurement error are present. In its presence, observed correlations among risk factors can be greater than, less than, or even opposite to the true correlations. Interpretation of multivariate epidemiologic structures in which confounding is likely requires evaluation of measurement error structures, including correlations among measurement errors.
The challenges in defining and measuring diagnostic error.
Zwaan, Laura; Singh, Hardeep
2015-06-01
Diagnostic errors have emerged as a serious patient safety problem but they are hard to detect and complex to define. At the research summit of the 2013 Diagnostic Error in Medicine 6th International Conference, we convened a multidisciplinary expert panel to discuss challenges in defining and measuring diagnostic errors in real-world settings. In this paper, we synthesize these discussions and outline key research challenges in operationalizing the definition and measurement of diagnostic error. Some of these challenges include 1) difficulties in determining error when the disease or diagnosis is evolving over time and in different care settings, 2) accounting for a balance between underdiagnosis and overaggressive diagnostic pursuits, and 3) determining disease diagnosis likelihood and severity in hindsight. We also build on these discussions to describe how some of these challenges can be addressed while conducting research on measuring diagnostic error.
Random measurement error: Why worry? An example of cardiovascular risk factors.
Brakenhoff, Timo B; van Smeden, Maarten; Visseren, Frank L J; Groenwold, Rolf H H
2018-01-01
With the increased use of data not originally recorded for research, such as routine care data (or 'big data'), measurement error is bound to become an increasingly relevant problem in medical research. A common view among medical researchers on the influence of random measurement error (i.e. classical measurement error) is that its presence leads to some degree of systematic underestimation of studied exposure-outcome relations (i.e. attenuation of the effect estimate). For the common situation where the analysis involves at least one exposure and one confounder, we demonstrate that the direction of effect of random measurement error on the estimated exposure-outcome relations can be difficult to anticipate. Using three example studies on cardiovascular risk factors, we illustrate that random measurement error in the exposure and/or confounder can lead to underestimation as well as overestimation of exposure-outcome relations. We therefore advise medical researchers to refrain from making claims about the direction of effect of measurement error in their manuscripts, unless the appropriate inferential tools are used to study or alleviate the impact of measurement error from the analysis.
Bias Reduction and Filter Convergence for Long Range Stereo
NASA Technical Reports Server (NTRS)
Sibley, Gabe; Matthies, Larry; Sukhatme, Gaurav
2005-01-01
We are concerned here with improving long range stereo by filtering image sequences. Traditionally, measurement errors from stereo camera systems have been approximated as 3-D Gaussians, where the mean is derived by triangulation and the covariance by linearized error propagation. However, there are two problems that arise when filtering such 3-D measurements. First, stereo triangulation suffers from a range dependent statistical bias; when filtering this leads to over-estimating the true range. Second, filtering 3-D measurements derived via linearized error propagation leads to apparent filter divergence; the estimator is biased to under-estimate range. To address the first issue, we examine the statistical behavior of stereo triangulation and show how to remove the bias by series expansion. The solution to the second problem is to filter with image coordinates as measurements instead of triangulated 3-D coordinates.
Error compensation for thermally induced errors on a machine tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krulewich, D.A.
1996-11-08
Heat flow from internal and external sources and the environment create machine deformations, resulting in positioning errors between the tool and workpiece. There is no industrially accepted method for thermal error compensation. A simple model has been selected that linearly relates discrete temperature measurements to the deflection. The biggest problem is how to locate the temperature sensors and to determine the number of required temperature sensors. This research develops a method to determine the number and location of temperature measurements.
Commentary: Reducing diagnostic errors: another role for checklists?
Winters, Bradford D; Aswani, Monica S; Pronovost, Peter J
2011-03-01
Diagnostic errors are a widespread problem, although the true magnitude is unknown because they cannot currently be measured validly. These errors have received relatively little attention despite alarming estimates of associated harm and death. One promising intervention to reduce preventable harm is the checklist. This intervention has proven successful in aviation, in which situations are linear and deterministic (one alarm goes off and a checklist guides the flight crew to evaluate the cause). In health care, problems are multifactorial and complex. A checklist has been used to reduce central-line-associated bloodstream infections in intensive care units. Nevertheless, this checklist was incorporated in a culture-based safety program that engaged and changed behaviors and used robust measurement of infections to evaluate progress. In this issue, Ely and colleagues describe how three checklists could reduce the cognitive biases and mental shortcuts that underlie diagnostic errors, but point out that these tools still need to be tested. To be effective, they must reduce diagnostic errors (efficacy) and be routinely used in practice (effectiveness). Such tools must intuitively support how the human brain works, and under time pressures, clinicians rarely think in conditional probabilities when making decisions. To move forward, it is necessary to accurately measure diagnostic errors (which could come from mapping out the diagnostic process as the medication process has done and measuring errors at each step) and pilot test interventions such as these checklists to determine whether they work.
Seeing the conflict: an attentional account of reasoning errors.
Mata, André; Ferreira, Mário B; Voss, Andreas; Kollei, Tanja
2017-12-01
In judgment and reasoning, intuition and deliberation can agree on the same responses, or they can be in conflict and suggest different responses. Incorrect responses to conflict problems have traditionally been interpreted as a sign of faulty problem-solving-an inability to solve the conflict. However, such errors might emerge earlier, from insufficient attention to the conflict. To test this attentional hypothesis, we manipulated the conflict in reasoning problems and used eye-tracking to measure attention. Across several measures, correct responders paid more attention than incorrect responders to conflict problems, and they discriminated between conflict and no-conflict problems better than incorrect responders. These results are consistent with a two-stage account of reasoning, whereby sound problem solving in the second stage can only lead to accurate responses when sufficient attention is paid in the first stage.
Air data position-error calibration using state reconstruction techniques
NASA Technical Reports Server (NTRS)
Whitmore, S. A.; Larson, T. J.; Ehernberger, L. J.
1984-01-01
During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors.
NASA Technical Reports Server (NTRS)
Elyasberg, P. Y.
1979-01-01
The shortcomings of the classical approach are set forth, and the newer methods resulting from these shortcomings are explained. The problem was approached with the assumption that the probabilities of error were known, as well as without knowledge of the distribution of the probabilities of error. The advantages of the newer approach are discussed.
Quality Control Methodology Of A Surface Wind Observational Database In North Eastern North America
NASA Astrophysics Data System (ADS)
Lucio-Eceiza, Etor E.; Fidel González-Rouco, J.; Navarro, Jorge; Conte, Jorge; Beltrami, Hugo
2016-04-01
This work summarizes the design and application of a Quality Control (QC) procedure for an observational surface wind database located in North Eastern North America. The database consists of 526 sites (486 land stations and 40 buoys) with varying resolutions of hourly, 3 hourly and 6 hourly data, compiled from three different source institutions with uneven measurement units and changing measuring procedures, instrumentation and heights. The records span from 1953 to 2010. The QC process is composed of different phases focused either on problems related with the providing source institutions or measurement errors. The first phases deal with problems often related with data recording and management: (1) compilation stage dealing with the detection of typographical errors, decoding problems, site displacements and unification of institutional practices; (2) detection of erroneous data sequence duplications within a station or among different ones; (3) detection of errors related with physically unrealistic data measurements. The last phases are focused on instrumental errors: (4) problems related with low variability, placing particular emphasis on the detection of unrealistic low wind speed records with the help of regional references; (5) high variability related erroneous records; (6) standardization of wind speed record biases due to changing measurement heights, detection of wind speed biases on week to monthly timescales, and homogenization of wind direction records. As a result, around 1.7% of wind speed records and 0.4% of wind direction records have been deleted, making a combined total of 1.9% of removed records. Additionally, around 15.9% wind speed records and 2.4% of wind direction data have been also corrected.
NASA Astrophysics Data System (ADS)
Guchhait, Shyamal; Banerjee, Biswanath
2018-04-01
In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.
Regularity Aspects in Inverse Musculoskeletal Biomechanics
NASA Astrophysics Data System (ADS)
Lund, Marie; Stâhl, Fredrik; Gulliksson, Mârten
2008-09-01
Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling, which is unrealistic but the error maybe small enough to be accepted for specific applications. These results are a start to ensure better results of inverse musculoskeletal simulations from a numerical point of view.
Measuring Systematic Error with Curve Fits
ERIC Educational Resources Information Center
Rupright, Mark E.
2011-01-01
Systematic errors are often unavoidable in the introductory physics laboratory. As has been demonstrated in many papers in this journal, such errors can present a fundamental problem for data analysis, particularly when comparing the data to a given model. In this paper I give three examples in which my students use popular curve-fitting software…
Minimizing distortion and internal forces in truss structures by simulated annealing
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.
1989-01-01
Inaccuracies in the length of members and the diameters of joints of large truss reflector backup structures may produce unacceptable levels of surface distortion and member forces. However, if the member lengths and joint diameters can be measured accurately it is possible to configure the members and joints so that root-mean-square (rms) surface error and/or rms member forces is minimized. Following Greene and Haftka (1989) it is assumed that the force vector f is linearly proportional to the member length errors e(sub M) of dimension NMEMB (the number of members) and joint errors e(sub J) of dimension NJOINT (the number of joints), and that the best-fit displacement vector d is a linear function of f. Let NNODES denote the number of positions on the surface of the truss where error influences are measured. The solution of the problem is discussed. To classify, this problem was compared to a similar combinatorial optimization problem. In particular, when only the member length errors are considered, minimizing d(sup 2)(sub rms) is equivalent to the quadratic assignment problem. The quadratic assignment problem is a well known NP-complete problem in operations research literature. Hence minimizing d(sup 2)(sub rms) is is also an NP-complete problem. The focus of the research is the development of a simulated annealing algorithm to reduce d(sup 2)(sub rms). The plausibility of this technique is its recent success on a variety of NP-complete combinatorial optimization problems including the quadratic assignment problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize. All computational experiments were done on a MicroVAX. The two interchange heuristic is very fast but produces widely varying results. The two and three interchange heuristic provides less variability in the final objective function values but runs much more slowly. Simulated annealing produced the best objective function values for every starting configuration and was faster than the two and three interchange heuristic.
Error Detection and Correction in Spelling.
ERIC Educational Resources Information Center
Lydiatt, Steve
1984-01-01
Teachers can discover students' means of dealing with spelling as a problem through investigations of their error detection and correction skills. Approaches for measuring sensitivity and bias are described, as are means of developing appropriate instructional activities. (CL)
Hromadka, T.V.; Guymon, G.L.
1985-01-01
An algorithm is presented for the numerical solution of the Laplace equation boundary-value problem, which is assumed to apply to soil freezing or thawing. The Laplace equation is numerically approximated by the complex-variable boundary-element method. The algorithm aids in reducing integrated relative error by providing a true measure of modeling error along the solution domain boundary. This measure of error can be used to select locations for adding, removing, or relocating nodal points on the boundary or to provide bounds for the integrated relative error of unknown nodal variable values along the boundary.
HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity
NASA Astrophysics Data System (ADS)
Scherrer, Phil; HMI Team
2016-10-01
The Problem: The SDO satellite is in an inclined Geo-sync orbit which allows uninterrupted views of the Sun nearly 98% of the time. This orbit has a velocity of about 3,500 m/s with the solar line-of-sight component varying with time of day and time of year. Due to remaining calibration errors in wavelength filters the orbit velocity leaks into the line-of-sight solar velocity and magnetic field measurements. Since the same model of the filter is used in the Milne-Eddington inversions used to generate the vector magnetic field data, the orbit velocity also contaminates the vector magnetic products. These errors contribute 12h and 24h variations in most HMI data products and are known as the 24-hour problem. Early in the mission we made a patch to the calibration that corrected the disk mean velocity. The resulting LOS velocity has been used for helioseismology with no apparent problems. The velocity signal has about a 1% scale error that varies with time of day and with velocity, i.e. it is non-linear for large velocities. This causes leaks into the LOS field (which is simply the difference between velocity measured in LCP and RCP rescaled for the Zeeman splitting). This poster reviews the measurement process, shows examples of the problem, and describes recent work at resolving the issues. Since the errors are in the filter characterization it makes most sense to work first on the LOS data products since they, unlike the vector products, are directly and simply related to the filter profile without assumptions on the solar atmosphere, filling factors, etc. Therefore this poster is strictly limited to understanding how to better understand the filter profiles as they vary across the field and with time of day and time in years resulting in velocity errors of up to a percent and LOS field estimates with errors up to a few percent (of the standard LOS magnetograph method based on measuring the differences in wavelength of the line centroids in LCP and RCP light). We expect that when better filter profiles are available it will be possible to generate improved vector field data products as well.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Phantom Effects in Multilevel Compositional Analysis: Problems and Solutions
ERIC Educational Resources Information Center
Pokropek, Artur
2015-01-01
This article combines statistical and applied research perspective showing problems that might arise when measurement error in multilevel compositional effects analysis is ignored. This article focuses on data where independent variables are constructed measures. Simulation studies are conducted evaluating methods that could overcome the…
NASA Technical Reports Server (NTRS)
Womble, M. E.; Potter, J. E.
1975-01-01
A prefiltering version of the Kalman filter is derived for both discrete and continuous measurements. The derivation consists of determining a single discrete measurement that is equivalent to either a time segment of continuous measurements or a set of discrete measurements. This prefiltering version of the Kalman filter easily handles numerical problems associated with rapid transients and ill-conditioned Riccati matrices. Therefore, the derived technique for extrapolating the Riccati matrix from one time to the next constitutes a new set of integration formulas which alleviate ill-conditioning problems associated with continuous Riccati equations. Furthermore, since a time segment of continuous measurements is converted into a single discrete measurement, Potter's square root formulas can be used to update the state estimate and its error covariance matrix. Therefore, if having the state estimate and its error covariance matrix at discrete times is acceptable, the prefilter extends square root filtering with all its advantages, to continuous measurement problems.
Bae, Youngchul
2016-05-23
An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.
Bae, Youngchul
2016-01-01
An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision. PMID:27223291
Covariate Measurement Error Correction for Student Growth Percentiles Using the SIMEX Method
ERIC Educational Resources Information Center
Shang, Yi; VanIwaarden, Adam; Betebenner, Damian W.
2015-01-01
In this study, we examined the impact of covariate measurement error (ME) on the estimation of quantile regression and student growth percentiles (SGPs), and find that SGPs tend to be overestimated among students with higher prior achievement and underestimated among those with lower prior achievement, a problem we describe as ME endogeneity in…
NASA Astrophysics Data System (ADS)
Semenov, Z. V.; Labusov, V. A.
2017-11-01
Results of studying the errors of indirect monitoring by means of computer simulations are reported. The monitoring method is based on measuring spectra of reflection from additional monitoring substrates in a wide spectral range. Special software (Deposition Control Simulator) is developed, which allows one to estimate the influence of the monitoring system parameters (noise of the photodetector array, operating spectral range of the spectrometer and errors of its calibration in terms of wavelengths, drift of the radiation source intensity, and errors in the refractive index of deposited materials) on the random and systematic errors of deposited layer thickness measurements. The direct and inverse problems of multilayer coatings are solved using the OptiReOpt library. Curves of the random and systematic errors of measurements of the deposited layer thickness as functions of the layer thickness are presented for various values of the system parameters. Recommendations are given on using the indirect monitoring method for the purpose of reducing the layer thickness measurement error.
A variational regularization of Abel transform for GPS radio occultation
NASA Astrophysics Data System (ADS)
Wee, Tae-Kwon
2018-04-01
In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity deserting the first guess. In the lowest few kilometers that AI produces large negative refractivity bias, VR reduces the refractivity bias substantially with the aid of the background, which in this study is the operational forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). It is concluded based on the results presented in this study that VR offers a definite advantage over AI in the quality of refractivity.
Whittle, Rebecca; Peat, George; Belcher, John; Collins, Gary S; Riley, Richard D
2018-05-18
Measurement error in predictor variables may threaten the validity of clinical prediction models. We sought to evaluate the possible extent of the problem. A secondary objective was to examine whether predictors are measured at the intended moment of model use. A systematic search of Medline was used to identify a sample of articles reporting the development of a clinical prediction model published in 2015. After screening according to a predefined inclusion criteria, information on predictors, strategies to control for measurement error and intended moment of model use were extracted. Susceptibility to measurement error for each predictor was classified into low and high risk. Thirty-three studies were reviewed, including 151 different predictors in the final prediction models. Fifty-one (33.7%) predictors were categorised as high risk of error, however this was not accounted for in the model development. Only 8 (24.2%) studies explicitly stated the intended moment of model use and when the predictors were measured. Reporting of measurement error and intended moment of model use is poor in prediction model studies. There is a need to identify circumstances where ignoring measurement error in prediction models is consequential and whether accounting for the error will improve the predictions. Copyright © 2018. Published by Elsevier Inc.
A toolkit for measurement error correction, with a focus on nutritional epidemiology
Keogh, Ruth H; White, Ian R
2014-01-01
Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers and measures of dietary intake. Measurement error typically results in biased estimates of exposure-disease associations, the severity and nature of the bias depending on the form of the error. To correct for the effects of measurement error, information additional to the main study data is required. Ideally, this is a validation sample in which the true exposure is observed. However, in many situations, it is not feasible to observe the true exposure, but there may be available one or more repeated exposure measurements, for example, blood pressure or dietary intake recorded at two time points. The aim of this paper is to provide a toolkit for measurement error correction using repeated measurements. We bring together methods covering classical measurement error and several departures from classical error: systematic, heteroscedastic and differential error. The correction methods considered are regression calibration, which is already widely used in the classical error setting, and moment reconstruction and multiple imputation, which are newer approaches with the ability to handle differential error. We emphasize practical application of the methods in nutritional epidemiology and other fields. We primarily consider continuous exposures in the exposure-outcome model, but we also outline methods for use when continuous exposures are categorized. The methods are illustrated using the data from a study of the association between fibre intake and colorectal cancer, where fibre intake is measured using a diet diary and repeated measures are available for a subset. © 2014 The Authors. PMID:24497385
Goharpey, Nahal; Crewther, David P; Crewther, Sheila G
2013-12-01
This study investigated the developmental trajectory of problem solving ability in children with intellectual disability (ID) of different etiologies (Down Syndrome, Idiopathic ID or low functioning Autism) as measured on the Raven's Colored Progressive Matrices test (RCPM). Children with typical development (TD) and children with ID were matched on total correct performance (i.e., non-verbal mental age) on the RCPM. RCPM total correct performance and the sophistication of error types were found to be associated with receptive vocabulary in all participants, suggesting that verbal ability plays a role in more sophisticated problem solving tasks. Children with ID made similar errors on the RCPM as younger children with TD as well as more positional error types. This result suggests that children with ID who are deficient in their cognitive processing resort to developmentally immature problem solving strategies when unable to determine the correct answer. Overall, the findings support the use of RCPM as a valid means of matching intellectual capacity of children with TD and ID. Copyright © 2013 Elsevier Ltd. All rights reserved.
Media and human capital development: Can video game playing make you smarter?
Suziedelyte, Agne
2015-04-01
According to the literature, video game playing can improve such cognitive skills as problem solving, abstract reasoning, and spatial logic. I test this hypothesis using The Child Development Supplement to the Panel Study of Income Dynamics. The endogeneity of video game playing is addressed by using panel data methods and controlling for an extensive list of child and family characteristics. To address the measurement error in video game playing, I instrument children's weekday time use with their weekend time use. After taking into account the endogeneity and measurement error, video game playing is found to positively affect children's problem solving ability. The effect of video game playing on problem solving ability is comparable to the effect of educational activities.
Media and human capital development: Can video game playing make you smarter?1
Suziedelyte, Agne
2015-01-01
According to the literature, video game playing can improve such cognitive skills as problem solving, abstract reasoning, and spatial logic. I test this hypothesis using The Child Development Supplement to the Panel Study of Income Dynamics. The endogeneity of video game playing is addressed by using panel data methods and controlling for an extensive list of child and family characteristics. To address the measurement error in video game playing, I instrument children's weekday time use with their weekend time use. After taking into account the endogeneity and measurement error, video game playing is found to positively affect children's problem solving ability. The effect of video game playing on problem solving ability is comparable to the effect of educational activities. PMID:25705064
Inference of emission rates from multiple sources using Bayesian probability theory.
Yee, Eugene; Flesch, Thomas K
2010-03-01
The determination of atmospheric emission rates from multiple sources using inversion (regularized least-squares or best-fit technique) is known to be very susceptible to measurement and model errors in the problem, rendering the solution unusable. In this paper, a new perspective is offered for this problem: namely, it is argued that the problem should be addressed as one of inference rather than inversion. Towards this objective, Bayesian probability theory is used to estimate the emission rates from multiple sources. The posterior probability distribution for the emission rates is derived, accounting fully for the measurement errors in the concentration data and the model errors in the dispersion model used to interpret the data. The Bayesian inferential methodology for emission rate recovery is validated against real dispersion data, obtained from a field experiment involving various source-sensor geometries (scenarios) consisting of four synthetic area sources and eight concentration sensors. The recovery of discrete emission rates from three different scenarios obtained using Bayesian inference and singular value decomposition inversion are compared and contrasted.
NASA Astrophysics Data System (ADS)
Lock, Jacobus C.; Smit, Willie J.; Treurnicht, Johann
2016-05-01
The Solar Thermal Energy Research Group (STERG) is investigating ways to make heliostats cheaper to reduce the total cost of a concentrating solar power (CSP) plant. One avenue of research is to use unmanned aerial vehicles (UAVs) to automate and assist with the heliostat calibration process. To do this, the pose estimation error of each UAV must be determined and integrated into a calibration procedure. A computer vision (CV) system is used to measure the pose of a quadcopter UAV. However, this CV system contains considerable measurement errors. Since this is a high-dimensional problem, a sophisticated prediction model must be used to estimate the measurement error of the CV system for any given pose measurement vector. This paper attempts to train and validate such a model with the aim of using it to determine the pose error of a quadcopter in a CSP plant setting.
Measures of rowing performance.
Smith, T Brett; Hopkins, Will G
2012-04-01
Accurate measures of performance are important for assessing competitive athletes in practi~al and research settings. We present here a review of rowing performance measures, focusing on the errors in these measures and the implications for testing rowers. The yardstick for assessing error in a performance measure is the random variation (typical or standard error of measurement) in an elite athlete's competitive performance from race to race: ∼1.0% for time in 2000 m rowing events. There has been little research interest in on-water time trials for assessing rowing performance, owing to logistic difficulties and environmental perturbations in performance time with such tests. Mobile ergometry via instrumented oars or rowlocks should reduce these problems, but the associated errors have not yet been reported. Measurement of boat speed to monitor on-water training performance is common; one device based on global positioning system (GPS) technology contributes negligible extra random error (0.2%) in speed measured over 2000 m, but extra error is substantial (1-10%) with other GPS devices or with an impeller, especially over shorter distances. The problems with on-water testing have led to widespread use of the Concept II rowing ergometer. The standard error of the estimate of on-water 2000 m time predicted by 2000 m ergometer performance was 2.6% and 7.2% in two studies, reflecting different effects of skill, body mass and environment in on-water versus ergometer performance. However, well trained rowers have a typical error in performance time of only ∼0.5% between repeated 2000 m time trials on this ergometer, so such trials are suitable for tracking changes in physiological performance and factors affecting it. Many researchers have used the 2000 m ergometer performance time as a criterion to identify other predictors of rowing performance. Standard errors of the estimate vary widely between studies even for the same predictor, but the lowest errors (~1-2%) have been observed for peak power output in an incremental test, some measures of lactate threshold and measures of 30-second all-out power. Some of these measures also have typical error between repeated tests suitably low for tracking changes. Combining measures via multiple linear regression needs further investigation. In summary, measurement of boat speed, especially with a good GPS device, has adequate precision for monitoring training performance, but adjustment for environmental effects needs to be investigated. Time trials on the Concept II ergometer provide accurate estimates of a rower's physiological ability to output power, and some submaximal and brief maximal ergometer performance measures can be used frequently to monitor changes in this ability. On-water performance measured via instrumented skiffs that determine individual power output may eventually surpass measures derived from the Concept II.
Characterizing the impact of model error in hydrologic time series recovery inverse problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.
Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less
Characterizing the impact of model error in hydrologic time series recovery inverse problems
Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.
2017-10-28
Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less
Guan, Yongtao; Li, Yehua; Sinha, Rajita
2011-01-01
In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854
Effects of stinger axial dynamics and mass compensation methods on experimental modal analysis
NASA Astrophysics Data System (ADS)
Hu, Ximing
1992-06-01
A longitudinal bar model that includes both stinger elastic and inertia properties is used to analyze the stinger's axial dynamics as well as the mass compensation that is required to obtain accurate input forces when a stinger is installed between the excitation source, force transducer, and the structure under test. Stinger motion transmissibility and force transmissibility, axial resonance and excitation energy transfer problems are discussed in detail. Stinger mass compensation problems occur when the force transducer is mounted on the exciter end of the stinger. These problems are studied theoretically, numerically, and experimentally. It is found that the measured Frequency Response Function (FRF) can be underestimated if mass compensation is based on the stinger exciter-end acceleration and can be overestimated if the mass compensation is based on the structure-end acceleration due to the stinger's compliance. A new mass compensation method that is based on two accelerations is introduced and is seen to improve the accuracy considerably. The effects of the force transducer's compliance on the mass compensation are also discussed. A theoretical model is developed that describes the measurement system's FRD around a test structure's resonance. The model shows that very large measurement errors occur when there is a small relative phase shift between the force and acceleration measurements. These errors can be in hundreds of percent corresponding to a phase error on the order of one or two degrees. The physical reasons for this unexpected error pattern are explained. This error is currently unknown to the experimental modal analysis community. Two sample structures consisting of a rigid mass and a double cantilever beam are used in the numerical calculations and experiments.
ERIC Educational Resources Information Center
Ballou, Dale; Springer, Matthew G.
2015-01-01
Our aim in this article is to draw attention to some underappreciated problems in the design and implementation of evaluation systems that incorporate value-added measures. We focus on four: (1) taking into account measurement error in teacher assessments, (2) revising teachers' scores as more information becomes available about their students,…
Conditions for the optical wireless links bit error ratio determination
NASA Astrophysics Data System (ADS)
Kvíčala, Radek
2017-11-01
To determine the quality of the Optical Wireless Links (OWL), there is necessary to establish the availability and the probability of interruption. This quality can be defined by the optical beam bit error rate (BER). Bit error rate BER presents the percentage of successfully transmitted bits. In practice, BER runs into the problem with the integration time (measuring time) determination. For measuring and recording of BER at OWL the bit error ratio tester (BERT) has been developed. The 1 second integration time for the 64 kbps radio links is mentioned in the accessible literature. However, it is impossible to use this integration time for singularity of coherent beam propagation.
Bayes Error Rate Estimation Using Classifier Ensembles
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Ghosh, Joydeep
2003-01-01
The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.
Shen, Chung-Wei; Chen, Yi-Hau
2015-10-01
Missing observations and covariate measurement error commonly arise in longitudinal data. However, existing methods for model selection in marginal regression analysis of longitudinal data fail to address the potential bias resulting from these issues. To tackle this problem, we propose a new model selection criterion, the Generalized Longitudinal Information Criterion, which is based on an approximately unbiased estimator for the expected quadratic error of a considered marginal model accounting for both data missingness and covariate measurement error. The simulation results reveal that the proposed method performs quite well in the presence of missing data and covariate measurement error. On the contrary, the naive procedures without taking care of such complexity in data may perform quite poorly. The proposed method is applied to data from the Taiwan Longitudinal Study on Aging to assess the relationship of depression with health and social status in the elderly, accommodating measurement error in the covariate as well as missing observations. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Yang, Jing; Reichert, Peter; Abbaspour, Karim C.; Yang, Hong
2007-07-01
SummaryCalibration of hydrologic models is very difficult because of measurement errors in input and response, errors in model structure, and the large number of non-identifiable parameters of distributed models. The difficulties even increase in arid regions with high seasonal variation of precipitation, where the modelled residuals often exhibit high heteroscedasticity and autocorrelation. On the other hand, support of water management by hydrologic models is important in arid regions, particularly if there is increasing water demand due to urbanization. The use and assessment of model results for this purpose require a careful calibration and uncertainty analysis. Extending earlier work in this field, we developed a procedure to overcome (i) the problem of non-identifiability of distributed parameters by introducing aggregate parameters and using Bayesian inference, (ii) the problem of heteroscedasticity of errors by combining a Box-Cox transformation of results and data with seasonally dependent error variances, (iii) the problems of autocorrelated errors, missing data and outlier omission with a continuous-time autoregressive error model, and (iv) the problem of the seasonal variation of error correlations with seasonally dependent characteristic correlation times. The technique was tested with the calibration of the hydrologic sub-model of the Soil and Water Assessment Tool (SWAT) in the Chaohe Basin in North China. The results demonstrated the good performance of this approach to uncertainty analysis, particularly with respect to the fulfilment of statistical assumptions of the error model. A comparison with an independent error model and with error models that only considered a subset of the suggested techniques clearly showed the superiority of the approach based on all the features (i)-(iv) mentioned above.
NASA Astrophysics Data System (ADS)
Tan, Jiubin; Qiang, Xifu; Ding, Xuemei
1991-08-01
Optical sensors have two notable advantages in modern precision measurement. One is that they can be used in nondestructive measurement because the sensors need not touch the surfaces of workpieces in measuring. The other one is that they can strongly resist electromagnetic interferences, vibrations, and noises, so they are suitable to be used in machining sites. But the drift of light intensity and the changing of the reflection coefficient at different measuring positions of a workpiece may have great influence on measured results. To solve the problem, a spectroscopic differential characteristic compensating method is put forward. The method can be used effectively not only in compensating the measuring errors resulted from the drift of light intensity but also in eliminating the influence to measured results caused by the changing of the reflection coefficient. Also, the article analyzes the possibility of and the means of separating data errors of a clinical measuring system for form and position errors of circular workpieces.
Sub-nanometer periodic nonlinearity error in absolute distance interferometers
NASA Astrophysics Data System (ADS)
Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang
2015-05-01
Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.
Wang, Ching-Yun; Cullings, Harry; Song, Xiao; Kopecky, Kenneth J.
2017-01-01
SUMMARY Observational epidemiological studies often confront the problem of estimating exposure-disease relationships when the exposure is not measured exactly. In the paper, we investigate exposure measurement error in excess relative risk regression, which is a widely used model in radiation exposure effect research. In the study cohort, a surrogate variable is available for the true unobserved exposure variable. The surrogate variable satisfies a generalized version of the classical additive measurement error model, but it may or may not have repeated measurements. In addition, an instrumental variable is available for individuals in a subset of the whole cohort. We develop a nonparametric correction (NPC) estimator using data from the subcohort, and further propose a joint nonparametric correction (JNPC) estimator using all observed data to adjust for exposure measurement error. An optimal linear combination estimator of JNPC and NPC is further developed. The proposed estimators are nonparametric, which are consistent without imposing a covariate or error distribution, and are robust to heteroscedastic errors. Finite sample performance is examined via a simulation study. We apply the developed methods to data from the Radiation Effects Research Foundation, in which chromosome aberration is used to adjust for the effects of radiation dose measurement error on the estimation of radiation dose responses. PMID:29354018
Mismeasurement and the resonance of strong confounders: uncorrelated errors.
Marshall, J R; Hastrup, J L
1996-05-15
Greenland first documented (Am J Epidemiol 1980; 112:564-9) that error in the measurement of a confounder could resonate--that it could bias estimates of other study variables, and that the bias could persist even with statistical adjustment for the confounder as measured. An important question is raised by this finding: can such bias be more than trivial within the bounds of realistic data configurations? The authors examine several situations involving dichotomous and continuous data in which a confounder and a null variable are measured with error, and they assess the extent of resultant bias in estimates of the effect of the null variable. They show that, with continuous variables, measurement error amounting to 40% of observed variance in the confounder could cause the observed impact of the null study variable to appear to alter risk by as much as 30%. Similarly, they show, with dichotomous independent variables, that 15% measurement error in the form of misclassification could lead the null study variable to appear to alter risk by as much as 50%. Such bias would result only from strong confounding. Measurement error would obscure the evidence that strong confounding is a likely problem. These results support the need for every epidemiologic inquiry to include evaluations of measurement error in each variable considered.
NASA Astrophysics Data System (ADS)
Irving, J.; Koepke, C.; Elsheikh, A. H.
2017-12-01
Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion procedure. In each case, the developed model-error approach enables to remove posterior bias and obtain a more realistic characterization of uncertainty.
An in-situ measuring method for planar straightness error
NASA Astrophysics Data System (ADS)
Chen, Xi; Fu, Luhua; Yang, Tongyu; Sun, Changku; Wang, Zhong; Zhao, Yan; Liu, Changjie
2018-01-01
According to some current problems in the course of measuring the plane shape error of workpiece, an in-situ measuring method based on laser triangulation is presented in this paper. The method avoids the inefficiency of traditional methods like knife straightedge as well as the time and cost requirements of coordinate measuring machine(CMM). A laser-based measuring head is designed and installed on the spindle of a numerical control(NC) machine. The measuring head moves in the path planning to measure measuring points. The spatial coordinates of the measuring points are obtained by the combination of the laser triangulation displacement sensor and the coordinate system of the NC machine, which could make the indicators of measurement come true. The method to evaluate planar straightness error adopts particle swarm optimization(PSO). To verify the feasibility and accuracy of the measuring method, simulation experiments were implemented with a CMM. Comparing the measurement results of measuring head with the corresponding measured values obtained by composite measuring machine, it is verified that the method can realize high-precise and automatic measurement of the planar straightness error of the workpiece.
Tfelt-Hansen, Peer
2015-03-01
There are two types of errors when references are used in the scientific literature: citation errors and quotation errors, and these errors have in reviews mainly been evaluated quantitatively. Quotation errors are the major problem, and 1 review reported 6% major quotation errors. The objective of this listing of quotation errors is to illustrate by qualitative analysis of different types of 10 major quotation errors how and possibly why authors misquote references. The author selected for review the first 10 different consecutive major quotation errors encountered from his reading of the headache literature. The characteristics of the 10 quotation errors ranged considerably. Thus, in a review of migraine therapy in a very prestigious medical journal, the superiority of a new treatment (sumatriptan) vs an old treatment (aspirin plus metoclopramide) was claimed despite no significant difference for the primary efficacy measure in the trial. One author, in a scientific debate, referred to the lack of dilation of the middle meningeal artery in spontaneous migraine despite the fact that only 1 migraine attack was studied. The possibility for creative major quotation errors in the medical literature is most likely infinite. Qualitative evaluations, as the present, of major quotation errors will hopefully result in more general awareness of quotation problems in the medical literature. Even if the final responsibility for correct use of quotations is with the authors, the referees, the experts with the knowledge needed to spot quotation errors, should be more involved in ensuring correct and fair use of references. Finally, this paper suggests that major misleading quotations, if pointed out by readers of the journal, should, as a rule, be corrected by way of an erratum statement. © 2015 American Headache Society.
NASA Technical Reports Server (NTRS)
Nishimura, T.
1975-01-01
This paper proposes a worst-error analysis for dealing with problems of estimation of spacecraft trajectories in deep space missions. Navigation filters in use assume either constant or stochastic (Markov) models for their estimated parameters. When the actual behavior of these parameters does not follow the pattern of the assumed model, the filters sometimes result in very poor performance. To prepare for such pathological cases, the worst errors of both batch and sequential filters are investigated based on the incremental sensitivity studies of these filters. By finding critical switching instances of non-gravitational accelerations, intensive tracking can be carried out around those instances. Also the worst errors in the target plane provide a measure in assignment of the propellant budget for trajectory corrections. Thus the worst-error study presents useful information as well as practical criteria in establishing the maneuver and tracking strategy of spacecraft's missions.
Multiscale measurement error models for aggregated small area health data.
Aregay, Mehreteab; Lawson, Andrew B; Faes, Christel; Kirby, Russell S; Carroll, Rachel; Watjou, Kevin
2016-08-01
Spatial data are often aggregated from a finer (smaller) to a coarser (larger) geographical level. The process of data aggregation induces a scaling effect which smoothes the variation in the data. To address the scaling problem, multiscale models that link the convolution models at different scale levels via the shared random effect have been proposed. One of the main goals in aggregated health data is to investigate the relationship between predictors and an outcome at different geographical levels. In this paper, we extend multiscale models to examine whether a predictor effect at a finer level hold true at a coarser level. To adjust for predictor uncertainty due to aggregation, we applied measurement error models in the framework of multiscale approach. To assess the benefit of using multiscale measurement error models, we compare the performance of multiscale models with and without measurement error in both real and simulated data. We found that ignoring the measurement error in multiscale models underestimates the regression coefficient, while it overestimates the variance of the spatially structured random effect. On the other hand, accounting for the measurement error in multiscale models provides a better model fit and unbiased parameter estimates. © The Author(s) 2016.
Team safety and innovation by learning from errors in long-term care settings.
Buljac-Samardžić, Martina; van Woerkom, Marianne; Paauwe, Jaap
2012-01-01
Team safety and team innovation are underexplored in the context of long-term care. Understanding the issues requires attention to how teams cope with error. Team managers could have an important role in developing a team's error orientation and managing team membership instabilities. The aim of this study was to examine the impact of team member stability, team coaching, and a team's error orientation on team safety and innovation. A cross-sectional survey method was employed within 2 long-term care organizations. Team members and team managers received a survey that measured safety and innovation. Team members assessed member stability, team coaching, and team error orientation (i.e., problem-solving and blaming approach). The final sample included 933 respondents from 152 teams. Stable teams and teams with managers who take on the role of coach are more likely to adopt a problem-solving approach and less likely to adopt a blaming approach toward errors. Both error orientations are related to team member ratings of safety and innovation, but only the blaming approach is (negatively) related to manager ratings of innovation. Differences between members' and managers' ratings of safety are greater in teams with relatively high scores for the blaming approach and relatively low scores for the problem-solving approach. Team coaching was found to be positively related to innovation, especially in unstable teams. Long-term care organizations that wish to enhance team safety and innovation should encourage a problem-solving approach and discourage a blaming approach. Team managers can play a crucial role in this by coaching team members to see errors as sources of learning and improvement and ensuring that individuals will not be blamed for errors.
ERIC Educational Resources Information Center
Ludtke, Oliver; Marsh, Herbert W.; Robitzsch, Alexander; Trautwein, Ulrich
2011-01-01
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data…
Defining and measuring patient safety.
Pronovost, Peter J; Thompson, David A; Holzmueller, Christine G; Lubomski, Lisa H; Morlock, Laura L
2005-01-01
Despite the growing demand for improved safety in health care, debate remains regarding the magnitude of the problem and the degree to which harm is preventable. To a great extent, this debate stems from variation in the definition and methods for measuring safety, its "shadow" error, and the degree of preventability. This article reviews the definition of safety and error, discusses approaches to measuring safety, and provides a framework for investigating incidents that unveils how the systems under which care is delivered may contribute to adverse incidents.
Toward a new culture in verified quantum operations
NASA Astrophysics Data System (ADS)
Flammia, Steve
Measuring error rates of quantum operations has become an indispensable component in any aspiring platform for quantum computation. As the quality of controlled quantum operations increases, the demands on the accuracy and precision with which we measure these error rates also grows. However, well-meaning scientists that report these error measures are faced with a sea of non-standardized methodologies and are often asked during publication for only coarse information about how their estimates were obtained. Moreover, there are serious incentives to use methodologies and measures that will continually produce numbers that improve with time to show progress. These problems will only get exacerbated as our typical error rates go from 1 in 100 to 1 in 1000 or less. This talk will survey existing challenges presented by the current paradigm and offer some suggestions for solutions than can help us move toward fair and standardized methods for error metrology in quantum computing experiments, and towards a culture that values full disclose of methodologies and higher standards for data analysis.
3D measurement using combined Gray code and dual-frequency phase-shifting approach
NASA Astrophysics Data System (ADS)
Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Liu, Xin
2018-04-01
The combined Gray code and phase-shifting approach is a commonly used 3D measurement technique. In this technique, an error that equals integer multiples of the phase-shifted fringe period, i.e. period jump error, often exists in the absolute analog code, which can lead to gross measurement errors. To overcome this problem, the present paper proposes 3D measurement using a combined Gray code and dual-frequency phase-shifting approach. Based on 3D measurement using the combined Gray code and phase-shifting approach, one set of low-frequency phase-shifted fringe patterns with an odd-numbered multiple of the original phase-shifted fringe period is added. Thus, the absolute analog code measured value can be obtained by the combined Gray code and phase-shifting approach, and the low-frequency absolute analog code measured value can also be obtained by adding low-frequency phase-shifted fringe patterns. Then, the corrected absolute analog code measured value can be obtained by correcting the former by the latter, and the period jump errors can be eliminated, resulting in reliable analog code unwrapping. For the proposed approach, we established its measurement model, analyzed its measurement principle, expounded the mechanism of eliminating period jump errors by error analysis, and determined its applicable conditions. Theoretical analysis and experimental results show that the proposed approach can effectively eliminate period jump errors, reliably perform analog code unwrapping, and improve the measurement accuracy.
Quantum state discrimination bounds for finite sample size
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audenaert, Koenraad M. R.; Mosonyi, Milan; Mathematical Institute, Budapest University of Technology and Economics, Egry Jozsef u 1., Budapest 1111
2012-12-15
In the problem of quantum state discrimination, one has to determine by measurements the state of a quantum system, based on the a priori side information that the true state is one of the two given and completely known states, {rho} or {sigma}. In general, it is not possible to decide the identity of the true state with certainty, and the optimal measurement strategy depends on whether the two possible errors (mistaking {rho} for {sigma}, or the other way around) are treated as of equal importance or not. Results on the quantum Chernoff and Hoeffding bounds and the quantum Stein'smore » lemma show that, if several copies of the system are available then the optimal error probabilities decay exponentially in the number of copies, and the decay rate is given by a certain statistical distance between {rho} and {sigma} (the Chernoff distance, the Hoeffding distances, and the relative entropy, respectively). While these results provide a complete solution to the asymptotic problem, they are not completely satisfying from a practical point of view. Indeed, in realistic scenarios one has access only to finitely many copies of a system, and therefore it is desirable to have bounds on the error probabilities for finite sample size. In this paper we provide finite-size bounds on the so-called Stein errors, the Chernoff errors, the Hoeffding errors, and the mixed error probabilities related to the Chernoff and the Hoeffding errors.« less
Pre-Service Teachers' Flexibility with Referent Units in Solving a Fraction Division Problem
ERIC Educational Resources Information Center
Lee, Mi Yeon
2017-01-01
This study investigated 111 pre-service teachers' (PSTs') flexibility with referent units in solving a fraction division problem using a length model. Participants' written solutions to a measurement fraction division problem were analyzed in terms of strategies and types of errors, using an inductive content analysis approach. Findings suggest…
An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method
NASA Technical Reports Server (NTRS)
Frisbee, Joseph H., Jr.
2011-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.
Use of dual coolant displacing media for in-process optical measurement of form profiles
NASA Astrophysics Data System (ADS)
Gao, Y.; Xie, F.
2018-07-01
In-process measurement supports feedback control to reduce workpiece surface form error. Without it, the workpiece surface must be measured offline causing significant errors in workpiece positioning and reduced productivity. To offer better performance, a new in-process optical measurement method based on the use of dual coolant displacing media is proposed and studied, which uses an air and liquid phase together to resist coolant and to achieve in-process measurement. In the proposed new design, coolant is used to replace the previously used clean water to avoid coolant dilution. Compared with the previous methods, the distance between the applicator and the workpiece surface can be relaxed to 1 mm. The result is 4 times larger than before, thus permitting measurement of curved surfaces. The use of air is up to 1.5 times less than the best method previously available. For a sample workpiece with curved surfaces, the relative error of profile measurement under coolant conditions can be as small as 0.1% compared with the one under no coolant conditions. Problems in comparing measured 3D surfaces are discussed. A comparative study between a Bruker Npflex optical profiler and the developed new in-process optical profiler was conducted. For a surface area of 5.5 mm × 5.5 mm, the average measurement error under coolant conditions is only 0.693 µm. In addition, the error due to the new method is only 0.10 µm when compared between coolant and no coolant conditions. The effect of a thin liquid film on workpiece surface is discussed. The experimental results show that the new method can successfully solve the coolant dilution problem and is able to accurately measure the workpiece surface whilst fully submerged in the opaque coolant. The proposed new method is advantageous and should be very useful for in-process optical form profile measurement in precision machining.
Guo, Ying; Little, Roderick J; McConnell, Daniel S
2012-01-01
Covariate measurement error is common in epidemiologic studies. Current methods for correcting measurement error with information from external calibration samples are insufficient to provide valid adjusted inferences. We consider the problem of estimating the regression of an outcome Y on covariates X and Z, where Y and Z are observed, X is unobserved, but a variable W that measures X with error is observed. Information about measurement error is provided in an external calibration sample where data on X and W (but not Y and Z) are recorded. We describe a method that uses summary statistics from the calibration sample to create multiple imputations of the missing values of X in the regression sample, so that the regression coefficients of Y on X and Z and associated standard errors can be estimated using simple multiple imputation combining rules, yielding valid statistical inferences under the assumption of a multivariate normal distribution. The proposed method is shown by simulation to provide better inferences than existing methods, namely the naive method, classical calibration, and regression calibration, particularly for correction for bias and achieving nominal confidence levels. We also illustrate our method with an example using linear regression to examine the relation between serum reproductive hormone concentrations and bone mineral density loss in midlife women in the Michigan Bone Health and Metabolism Study. Existing methods fail to adjust appropriately for bias due to measurement error in the regression setting, particularly when measurement error is substantial. The proposed method corrects this deficiency.
Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Yang, Yajun
2017-01-01
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…
Outliers: A Potential Data Problem.
ERIC Educational Resources Information Center
Douzenis, Cordelia; Rakow, Ernest A.
Outliers, extreme data values relative to others in a sample, may distort statistics that assume internal levels of measurement and normal distribution. The outlier may be a valid value or an error. Several procedures are available for identifying outliers, and each may be applied to errors of prediction from the regression lines for utility in a…
Transfer Alignment Error Compensator Design Based on Robust State Estimation
NASA Astrophysics Data System (ADS)
Lyou, Joon; Lim, You-Chol
This paper examines the transfer alignment problem of the StrapDown Inertial Navigation System (SDINS), which is subject to the ship’s roll and pitch. Major error sources for velocity and attitude matching are lever arm effect, measurement time delay and ship-body flexure. To reduce these alignment errors, an error compensation method based on state augmentation and robust state estimation is devised. A linearized error model for the velocity and attitude matching transfer alignment system is derived first by linearizing the nonlinear measurement equation with respect to its time delay and dominant Y-axis flexure, and by augmenting the delay state and flexure state into conventional linear state equations. Then an H∞ filter is introduced to account for modeling uncertainties of time delay and the ship-body flexure. The simulation results show that this method considerably decreases azimuth alignment errors considerably.
Overview of the TOPEX/Poseidon Platform Harvest Verification Experiment
NASA Technical Reports Server (NTRS)
Morris, Charles S.; DiNardo, Steven J.; Christensen, Edward J.
1995-01-01
An overview is given of the in situ measurement system installed on Texaco's Platform Harvest for verification of the sea level measurement from the TOPEX/Poseidon satellite. The prelaunch error budget suggested that the total root mean square (RMS) error due to measurements made at this verification site would be less than 4 cm. The actual error budget for the verification site is within these original specifications. However, evaluation of the sea level data from three measurement systems at the platform has resulted in unexpectedly large differences between the systems. Comparison of the sea level measurements from the different tide gauge systems has led to a better understanding of the problems of measuring sea level in relatively deep ocean. As of May 1994, the Platform Harvest verification site has successfully supported 60 TOPEX/Poseidon overflights.
Trajectory prediction for ballistic missiles based on boost-phase LOS measurements
NASA Astrophysics Data System (ADS)
Yeddanapudi, Murali; Bar-Shalom, Yaakov
1997-10-01
This paper addresses the problem of the estimation of the trajectory of a tactical ballistic missile using line of sight (LOS) measurements from one or more passive sensors (typically satellites). The major difficulties of this problem include: the estimation of the unknown time of launch, incorporation of (inaccurate) target thrust profiles to model the target dynamics during the boost phase and an overall ill-conditioning of the estimation problem due to poor observability of the target motion via the LOS measurements. We present a robust estimation procedure based on the Levenberg-Marquardt algorithm that provides both the target state estimate and error covariance taking into consideration the complications mentioned above. An important consideration in the defense against tactical ballistic missiles is the determination of the target position and error covariance at the acquisition range of a surveillance radar in the vicinity of the impact point. We present a systematic procedure to propagate the target state and covariance to a nominal time, when it is within the detection range of a surveillance radar to obtain a cueing volume. Mont Carlo simulation studies on typical single and two sensor scenarios indicate that the proposed algorithms are accurate in terms of the estimates and the estimator calculated covariances are consistent with the errors.
NASA Astrophysics Data System (ADS)
Yaparova, N.
2017-10-01
We consider the problem of heating a cylindrical body with an internal thermal source when the main characteristics of the material such as specific heat, thermal conductivity and material density depend on the temperature at each point of the body. We can control the surface temperature and the heat flow from the surface inside the cylinder, but it is impossible to measure the temperature on axis and the initial temperature in the entire body. This problem is associated with the temperature measurement challenge and appears in non-destructive testing, in thermal monitoring of heat treatment and technical diagnostics of operating equipment. The mathematical model of heating is represented as nonlinear parabolic PDE with the unknown initial condition. In this problem, both the Dirichlet and Neumann boundary conditions are given and it is required to calculate the temperature values at the internal points of the body. To solve this problem, we propose the numerical method based on using of finite-difference equations and a regularization technique. The computational scheme involves solving the problem at each spatial step. As a result, we obtain the temperature function at each internal point of the cylinder beginning from the surface down to the axis. The application of the regularization technique ensures the stability of the scheme and allows us to significantly simplify the computational procedure. We investigate the stability of the computational scheme and prove the dependence of the stability on the discretization steps and error level of the measurement results. To obtain the experimental temperature error estimates, computational experiments were carried out. The computational results are consistent with the theoretical error estimates and confirm the efficiency and reliability of the proposed computational scheme.
Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool
NASA Astrophysics Data System (ADS)
Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo
2017-05-01
Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.
Error analysis of mathematical problems on TIMSS: A case of Indonesian secondary students
NASA Astrophysics Data System (ADS)
Priyani, H. A.; Ekawati, R.
2018-01-01
Indonesian students’ competence in solving mathematical problems is still considered as weak. It was pointed out by the results of international assessment such as TIMSS. This might be caused by various types of errors made. Hence, this study aimed at identifying students’ errors in solving mathematical problems in TIMSS in the topic of numbers that considered as the fundamental concept in Mathematics. This study applied descriptive qualitative analysis. The subject was three students with most errors in the test indicators who were taken from 34 students of 8th graders. Data was obtained through paper and pencil test and student’s’ interview. The error analysis indicated that in solving Applying level problem, the type of error that students made was operational errors. In addition, for reasoning level problem, there are three types of errors made such as conceptual errors, operational errors and principal errors. Meanwhile, analysis of the causes of students’ errors showed that students did not comprehend the mathematical problems given.
Carroll, Raymond J; Delaigle, Aurore; Hall, Peter
2011-03-01
In many applications we can expect that, or are interested to know if, a density function or a regression curve satisfies some specific shape constraints. For example, when the explanatory variable, X, represents the value taken by a treatment or dosage, the conditional mean of the response, Y , is often anticipated to be a monotone function of X. Indeed, if this regression mean is not monotone (in the appropriate direction) then the medical or commercial value of the treatment is likely to be significantly curtailed, at least for values of X that lie beyond the point at which monotonicity fails. In the case of a density, common shape constraints include log-concavity and unimodality. If we can correctly guess the shape of a curve, then nonparametric estimators can be improved by taking this information into account. Addressing such problems requires a method for testing the hypothesis that the curve of interest satisfies a shape constraint, and, if the conclusion of the test is positive, a technique for estimating the curve subject to the constraint. Nonparametric methodology for solving these problems already exists, but only in cases where the covariates are observed precisely. However in many problems, data can only be observed with measurement errors, and the methods employed in the error-free case typically do not carry over to this error context. In this paper we develop a novel approach to hypothesis testing and function estimation under shape constraints, which is valid in the context of measurement errors. Our method is based on tilting an estimator of the density or the regression mean until it satisfies the shape constraint, and we take as our test statistic the distance through which it is tilted. Bootstrap methods are used to calibrate the test. The constrained curve estimators that we develop are also based on tilting, and in that context our work has points of contact with methodology in the error-free case.
Helmholtz and parabolic equation solutions to a benchmark problem in ocean acoustics.
Larsson, Elisabeth; Abrahamsson, Leif
2003-05-01
The Helmholtz equation (HE) describes wave propagation in applications such as acoustics and electromagnetics. For realistic problems, solving the HE is often too expensive. Instead, approximations like the parabolic wave equation (PE) are used. For low-frequency shallow-water environments, one persistent problem is to assess the accuracy of the PE model. In this work, a recently developed HE solver that can handle a smoothly varying bathymetry, variable material properties, and layered materials, is used for an investigation of the errors in PE solutions. In the HE solver, a preconditioned Krylov subspace method is applied to the discretized equations. The preconditioner combines domain decomposition and fast transform techniques. A benchmark problem with upslope-downslope propagation over a penetrable lossy seamount is solved. The numerical experiments show that, for the same bathymetry, a soft and slow bottom gives very similar HE and PE solutions, whereas the PE model is far from accurate for a hard and fast bottom. A first attempt to estimate the error is made by computing the relative deviation from the energy balance for the PE solution. This measure gives an indication of the magnitude of the error, but cannot be used as a strict error bound.
Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.
2013-01-01
When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek obtained from the iterative two-stage method also improved predictive performance of the individual models and model averaging in both synthetic and experimental studies.
Recursive Construction of Noiseless Subsystem for Qudits
NASA Astrophysics Data System (ADS)
Güngördü, Utkan; Li, Chi-Kwong; Nakahara, Mikio; Poon, Yiu-Tung; Sze, Nung-Sing
2014-03-01
When the environmental noise acting on the system has certain symmetries, a subsystem of the total system can avoid errors. Encoding information into such a subsystem is advantageous since it does not require any error syndrome measurements, which may introduce further errors to the system. However, utilizing such a subsystem for large systems gets impractical with the increasing number of qudits. A recursive scheme offers a solution to this problem. Here, we review the recursive construct introduced in, which can asymptotically protect 1/d of the qudits in system against collective errors.
A new model of Ishikawa diagram for quality assessment
NASA Astrophysics Data System (ADS)
Liliana, Luca
2016-11-01
The paper presents the results of a study concerning the use of the Ishikawa diagram in analyzing the causes that determine errors in the evaluation of theparts precision in the machine construction field. The studied problem was"errors in the evaluation of partsprecision” and this constitutes the head of the Ishikawa diagram skeleton.All the possible, main and secondary causes that could generate the studied problem were identified. The most known Ishikawa models are 4M, 5M, 6M, the initials being in order: materials, methods, man, machines, mother nature, measurement. The paper shows the potential causes of the studied problem, which were firstly grouped in three categories, as follows: causes that lead to errors in assessing the dimensional accuracy, causes that determine errors in the evaluation of shape and position abnormalities and causes for errors in roughness evaluation. We took into account the main components of parts precision in the machine construction field. For each of the three categories of causes there were distributed potential secondary causes on groups of M (man, methods, machines, materials, environment/ medio ambiente-sp.). We opted for a new model of Ishikawa diagram, resulting from the composition of three fish skeletons corresponding to the main categories of parts accuracy.
An analysis of temperature-induced errors for an ultrasound distance measuring system. M. S. Thesis
NASA Technical Reports Server (NTRS)
Wenger, David Paul
1991-01-01
The presentation of research is provided in the following five chapters. Chapter 2 presents the necessary background information and definitions for general work with ultrasound and acoustics. It also discusses the basis for errors in the slant range measurements. Chapter 3 presents a method of problem solution and an analysis of the sensitivity of the equations to slant range measurement errors. It also presents various methods by which the error in the slant range measurements can be reduced to improve overall measurement accuracy. Chapter 4 provides a description of a type of experiment used to test the analytical solution and provides a discussion of its results. Chapter 5 discusses the setup of a prototype collision avoidance system, discusses its accuracy, and demonstrates various methods of improving the accuracy along with the improvements' ramifications. Finally, Chapter 6 provides a summary of the work and a discussion of conclusions drawn from it. Additionally, suggestions for further research are made to improve upon what has been presented here.
NASA Astrophysics Data System (ADS)
Hunziker, Stefan; Gubler, Stefanie; Calle, Juan; Moreno, Isabel; Andrade, Marcos; Velarde, Fernando; Ticona, Laura; Carrasco, Gualberto; Castellón, Yaruska; Oria Rojas, Clara; Brönnimann, Stefan; Croci-Maspoli, Mischa; Konzelmann, Thomas; Rohrer, Mario
2016-04-01
Assessing climatological trends and extreme events requires high-quality data. However, for many regions of the world, observational data of the desired quality is not available. In order to eliminate errors in the data, quality control (QC) should be applied before data analysis. If the data still contains undetected errors and quality problems after QC, a consequence may be misleading and erroneous results. A region which is seriously affected by observational data quality problems is the Central Andes. At the same time, climatological information on ongoing climate change and climate risks are of utmost importance in this area due to its vulnerability to meteorological extreme events and climatic changes. Beside data quality issues, the lack of metadata and the low station network density complicate quality control and assessment, and hence, appropriate application of the data. Errors and data problems may occur at any point of the data generation chain, e.g. due to unsuitable station configuration or siting, poor station maintenance, erroneous instrument reading, or inaccurate data digitalization and post processing. Different measurement conditions in the predominantly conventional station networks in Bolivia and Peru compared to the mostly automated networks e.g. in Europe or Northern America may cause different types of errors. Hence, applying QC methods used on state of the art networks to Bolivian and Peruvian climate observations may not be suitable or sufficient. A comprehensive amount of Bolivian and Peruvian maximum and minimum temperature and precipitation in-situ measurements were analyzed to detect and describe common data quality problems. Furthermore, station visits and reviews of the original documents were done. Some of the errors could be attributed to a specific source. Such information is of great importance for data users, since it allows them to decide for what applications the data still can be used. In ideal cases, it may even allow to correct the error. Strategies on how to deal with data from the Central Andes will be suggested. However, the approach may be applicable to networks from other countries where conditions of climate observations are comparable.
Measurement and analysis of operating system fault tolerance
NASA Technical Reports Server (NTRS)
Lee, I.; Tang, D.; Iyer, R. K.
1992-01-01
This paper demonstrates a methodology to model and evaluate the fault tolerance characteristics of operational software. The methodology is illustrated through case studies on three different operating systems: the Tandem GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Measurements are made on these systems for substantial periods to collect software error and recovery data. In addition to investigating basic dependability characteristics such as major software problems and error distributions, we develop two levels of models to describe error and recovery processes inside an operating system and on multiple instances of an operating system running in a distributed environment. Based on the models, reward analysis is conducted to evaluate the loss of service due to software errors and the effect of the fault-tolerance techniques implemented in the systems. Software error correlation in multicomputer systems is also investigated.
Constrained independent component analysis approach to nonobtrusive pulse rate measurements
NASA Astrophysics Data System (ADS)
Tsouri, Gill R.; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K.
2012-07-01
Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.
Constrained independent component analysis approach to nonobtrusive pulse rate measurements.
Tsouri, Gill R; Kyal, Survi; Dianat, Sohail; Mestha, Lalit K
2012-07-01
Nonobtrusive pulse rate measurement using a webcam is considered. We demonstrate how state-of-the-art algorithms based on independent component analysis suffer from a sorting problem which hinders their performance, and propose a novel algorithm based on constrained independent component analysis to improve performance. We present how the proposed algorithm extracts a photoplethysmography signal and resolves the sorting problem. In addition, we perform a comparative study between the proposed algorithm and state-of-the-art algorithms over 45 video streams using a finger probe oxymeter for reference measurements. The proposed algorithm provides improved accuracy: the root mean square error is decreased from 20.6 and 9.5 beats per minute (bpm) for existing algorithms to 3.5 bpm for the proposed algorithm. An error of 3.5 bpm is within the inaccuracy expected from the reference measurements. This implies that the proposed algorithm provided performance of equal accuracy to the finger probe oximeter.
Statistical methods for biodosimetry in the presence of both Berkson and classical measurement error
NASA Astrophysics Data System (ADS)
Miller, Austin
In radiation epidemiology, the true dose received by those exposed cannot be assessed directly. Physical dosimetry uses a deterministic function of the source term, distance and shielding to estimate dose. For the atomic bomb survivors, the physical dosimetry system is well established. The classical measurement errors plaguing the location and shielding inputs to the physical dosimetry system are well known. Adjusting for the associated biases requires an estimate for the classical measurement error variance, for which no data-driven estimate exists. In this case, an instrumental variable solution is the most viable option to overcome the classical measurement error indeterminacy. Biological indicators of dose may serve as instrumental variables. Specification of the biodosimeter dose-response model requires identification of the radiosensitivity variables, for which we develop statistical definitions and variables. More recently, researchers have recognized Berkson error in the dose estimates, introduced by averaging assumptions for many components in the physical dosimetry system. We show that Berkson error induces a bias in the instrumental variable estimate of the dose-response coefficient, and then address the estimation problem. This model is specified by developing an instrumental variable mixed measurement error likelihood function, which is then maximized using a Monte Carlo EM Algorithm. These methods produce dose estimates that incorporate information from both physical and biological indicators of dose, as well as the first instrumental variable based data-driven estimate for the classical measurement error variance.
Airborne data measurement system errors reduction through state estimation and control optimization
NASA Astrophysics Data System (ADS)
Sebryakov, G. G.; Muzhichek, S. M.; Pavlov, V. I.; Ermolin, O. V.; Skrinnikov, A. A.
2018-02-01
The paper discusses the problem of airborne data measurement system errors reduction through state estimation and control optimization. The approaches are proposed based on the methods of experiment design and the theory of systems with random abrupt structure variation. The paper considers various control criteria as applied to an aircraft data measurement system. The physics of criteria is explained, the mathematical description and the sequence of steps for each criterion application is shown. The formula is given for airborne data measurement system state vector posterior estimation based for systems with structure variations.
Errors and Understanding: The Effects of Error-Management Training on Creative Problem-Solving
ERIC Educational Resources Information Center
Robledo, Issac C.; Hester, Kimberly S.; Peterson, David R.; Barrett, Jamie D.; Day, Eric A.; Hougen, Dean P.; Mumford, Michael D.
2012-01-01
People make errors in their creative problem-solving efforts. The intent of this article was to assess whether error-management training would improve performance on creative problem-solving tasks. Undergraduates were asked to solve an educational leadership problem known to call for creative thought where problem solutions were scored for…
An adaptive filter method for spacecraft using gravity assist
NASA Astrophysics Data System (ADS)
Ning, Xiaolin; Huang, Panpan; Fang, Jiancheng; Liu, Gang; Ge, Shuzhi Sam
2015-04-01
Celestial navigation (CeleNav) has been successfully used during gravity assist (GA) flyby for orbit determination in many deep space missions. Due to spacecraft attitude errors, ephemeris errors, the camera center-finding bias, and the frequency of the images before and after the GA flyby, the statistics of measurement noise cannot be accurately determined, and yet have time-varying characteristics, which may introduce large estimation error and even cause filter divergence. In this paper, an unscented Kalman filter (UKF) with adaptive measurement noise covariance, called ARUKF, is proposed to deal with this problem. ARUKF scales the measurement noise covariance according to the changes in innovation and residual sequences. Simulations demonstrate that ARUKF is robust to the inaccurate initial measurement noise covariance matrix and time-varying measurement noise. The impact factors in the ARUKF are also investigated.
2016-01-01
Background It is often thought that random measurement error has a minor effect upon the results of an epidemiological survey. Theoretically, errors of measurement should always increase the spread of a distribution. Defining an illness by having a measurement outside an established healthy range will lead to an inflated prevalence of that condition if there are measurement errors. Methods and results A Monte Carlo simulation was conducted of anthropometric assessment of children with malnutrition. Random errors of increasing magnitude were imposed upon the populations and showed that there was an increase in the standard deviation with each of the errors that became exponentially greater with the magnitude of the error. The potential magnitude of the resulting error of reported prevalence of malnutrition were compared with published international data and found to be of sufficient magnitude to make a number of surveys and the numerous reports and analyses that used these data unreliable. Conclusions The effect of random error in public health surveys and the data upon which diagnostic cut-off points are derived to define “health” has been underestimated. Even quite modest random errors can more than double the reported prevalence of conditions such as malnutrition. Increasing sample size does not address this problem, and may even result in less accurate estimates. More attention needs to be paid to the selection, calibration and maintenance of instruments, measurer selection, training & supervision, routine estimation of the likely magnitude of errors using standardization tests, use of statistical likelihood of error to exclude data from analysis and full reporting of these procedures in order to judge the reliability of survey reports. PMID:28030627
International Round-Robin Testing of Bulk Thermoelectrics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Porter, Wallace D; Bottner, Harold
2011-11-01
Two international round-robin studies were conducted on transport properties measurements of bulk thermoelectric materials. The study discovered current measurement problems. In order to get ZT of a material four separate transport measurements must be taken. The round-robin study showed that among the four properties Seebeck coefficient is the one can be measured consistently. Electrical resistivity has +4-9% scatter. Thermal diffusivity has similar +5-10% scatter. The reliability of the above three properties can be improved by standardizing test procedures and enforcing system calibrations. The worst problem was found in specific heat measurements using DSC. The probability of making measurement error ismore » great due to the fact three separate runs must be taken to determine Cp and the baseline shift is always an issue for commercial DSC. It is suggest the Dulong Petit limit be always used as a guide line for Cp. Procedures have been developed to eliminate operator and system errors. The IEA-AMT annex is developing standard procedures for transport properties testing.« less
Maximum likelihood techniques applied to quasi-elastic light scattering
NASA Technical Reports Server (NTRS)
Edwards, Robert V.
1992-01-01
There is a necessity of having an automatic procedure for reliable estimation of the quality of the measurement of particle size from QELS (Quasi-Elastic Light Scattering). Getting the measurement itself, before any error estimates can be made, is a problem because it is obtained by a very indirect measurement of a signal derived from the motion of particles in the system and requires the solution of an inverse problem. The eigenvalue structure of the transform that generates the signal is such that an arbitrarily small amount of noise can obliterate parts of any practical inversion spectrum. This project uses the Maximum Likelihood Estimation (MLE) as a framework to generate a theory and a functioning set of software to oversee the measurement process and extract the particle size information, while at the same time providing error estimates for those measurements. The theory involved verifying a correct form of the covariance matrix for the noise on the measurement and then estimating particle size parameters using a modified histogram approach.
Reducing Check-in Errors at Brigham Young University through Statistical Process Control
ERIC Educational Resources Information Center
Spackman, N. Andrew
2005-01-01
The relationship between the library and its patrons is damaged and the library's reputation suffers when returned items are not checked in. An informal survey reveals librarians' concern for this problem and their efforts to combat it, although few libraries collect objective measurements of errors or the effects of improvement efforts. Brigham…
Type I Error Inflation for Detecting DIF in the Presence of Impact
ERIC Educational Resources Information Center
DeMars, Christine E.
2010-01-01
In this brief explication, two challenges for using differential item functioning (DIF) measures when there are large group differences in true proficiency are illustrated. Each of these difficulties may lead to inflated Type I error rates, for very different reasons. One problem is that groups matched on observed score are not necessarily well…
Sanz, E.; Voss, C.I.
2006-01-01
Inverse modeling studies employing data collected from the classic Henry seawater intrusion problem give insight into several important aspects of inverse modeling of seawater intrusion problems and effective measurement strategies for estimation of parameters for seawater intrusion. Despite the simplicity of the Henry problem, it embodies the behavior of a typical seawater intrusion situation in a single aquifer. Data collected from the numerical problem solution are employed without added noise in order to focus on the aspects of inverse modeling strategies dictated by the physics of variable-density flow and solute transport during seawater intrusion. Covariances of model parameters that can be estimated are strongly dependent on the physics. The insights gained from this type of analysis may be directly applied to field problems in the presence of data errors, using standard inverse modeling approaches to deal with uncertainty in data. Covariance analysis of the Henry problem indicates that in order to generally reduce variance of parameter estimates, the ideal places to measure pressure are as far away from the coast as possible, at any depth, and the ideal places to measure concentration are near the bottom of the aquifer between the center of the transition zone and its inland fringe. These observations are located in and near high-sensitivity regions of system parameters, which may be identified in a sensitivity analysis with respect to several parameters. However, both the form of error distribution in the observations and the observation weights impact the spatial sensitivity distributions, and different choices for error distributions or weights can result in significantly different regions of high sensitivity. Thus, in order to design effective sampling networks, the error form and weights must be carefully considered. For the Henry problem, permeability and freshwater inflow can be estimated with low estimation variance from only pressure or only concentration observations. Permeability, freshwater inflow, solute molecular diffusivity, and porosity can be estimated with roughly equivalent confidence using observations of only the logarithm of concentration. Furthermore, covariance analysis allows a logical reduction of the number of estimated parameters for ill-posed inverse seawater intrusion problems. Ill-posed problems may exhibit poor estimation convergence, have a non-unique solution, have multiple minima, or require excessive computational effort, and the condition often occurs when estimating too many or co-dependent parameters. For the Henry problem, such analysis allows selection of the two parameters that control system physics from among all possible system parameters. ?? 2005 Elsevier Ltd. All rights reserved.
Effect of phase errors in stepped-frequency radar systems
NASA Astrophysics Data System (ADS)
Vanbrundt, H. E.
1988-04-01
Stepped-frequency waveforms are being considered for inverse synthetic aperture radar (ISAR) imaging from ship and airborne platforms and for detailed radar cross section (RCS) measurements of ships and aircraft. These waveforms make it possible to achieve resolutions of 1.0 foot by using existing radar designs and processing technology. One problem not yet fully resolved in using stepped-frequency waveform for ISAR imaging is the deterioration in signal level caused by random frequency error. Random frequency error of the stepped-frequency source results in reduced peak responses and increased null responses. The resulting reduced signal-to-noise ratio is range dependent. Two of the major concerns addressed in this report are radar range limitations for ISAR and the error in calibration for RCS measurements caused by differences in range between a passive reflector used for an RCS reference and the target to be measured. In addressing these concerns, NOSC developed an analysis to assess the tolerable frequency error in terms of resulting power loss in signal power and signal-to-phase noise.
Empirical State Error Covariance Matrix for Batch Estimation
NASA Technical Reports Server (NTRS)
Frisbee, Joe
2015-01-01
State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.
Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, H.; Lin, S.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots.
Interaction-free measurement as quantum channel discrimination
NASA Astrophysics Data System (ADS)
Zhou, You; Yung, Man-Hong
2017-12-01
Interaction-free measurement is a quantum process where, in the ideal situation, an object can be detected as if no interaction took place with the probing photon. Here we show that the problem of interaction-free measurement can be regarded as a problem of quantum-channel discrimination. In particular, we look for the optimal photonic states that can minimize the detection error and the photon loss in detecting the presence or absence of the object, which is taken to be semitransparent, and the number of the interrogation cycle is assumed to be finite. Furthermore, we also investigated the possibility of minimizing the detection error through the use of entangled photons, which is essentially a setting of quantum illumination. However, our results indicate that entanglement does not exhibit a clear advantage; the same performance can be achieved with unentangled photonic states.
Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy
Cohen, E. A. K.; Ober, R. J.
2014-01-01
We present an asymptotic treatment of errors involved in point-based image registration where control point (CP) localization is subject to heteroscedastic noise; a suitable model for image registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a multivariate regression problem. With measurement errors existing for both sets of CPs this is an errors-in-variable problem and linear least squares is inappropriate; the correct method being generalized least squares. To allow for point dependent errors the equivalence of a generalized maximum likelihood and heteroscedastic generalized least squares model is achieved allowing previously published asymptotic results to be extended to image registration. For a particularly useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known matrix (including the case where covariance matrices are multiples of the identity) we provide closed form solutions to estimators and derive their distribution. We consider the target registration error (TRE) and define a new measure called the localization registration error (LRE) believed to be useful, especially in microscopy registration experiments. Assuming Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE and LRE are themselves Gaussian and the parameterized distributions are derived. Results are successfully applied to registration in single molecule microscopy to derive the key dependence of the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations show asymptotic results are robust for low CP numbers and non-Gaussianity. The method presented here is shown to outperform GLS on real imaging data. PMID:24634573
A cautionary note on the use of some mass flow controllers
NASA Astrophysics Data System (ADS)
Weinheimer, Andrew J.; Ridley, Brian A.
1990-06-01
Commercial mass flow controllers are widely used in atmospheric research where precise and constant gas flows are required. We have determined, however, that some commonly used controllers are far more sensitive to ambient pressure than is acknowledged in the literature of the manufacturers. Since a flow error can lead directly to a measurement error of the same magnitude, this is a matter of great concern. Indeed, in our particular application, were we not aware of this problem, our measurements would be subject to a systematic error that increased with altitude (i.e., a drift), up to a factor of 2 at the highest altitudes (˜37 km). In this note we present laboratory measurements of the errors of two brands of flow controllers when operated at pressures down to a few millibars. The errors are as large as a factor of 2 to 3 and depend not simply on the ambient pressure at a given time, but also on the pressure history. In addition there is a large dependence on flow setting. In light of these flow errors, some past measurements of chemical species in the stratosphere will need to be revised.
A-posteriori error estimation for the finite point method with applications to compressible flow
NASA Astrophysics Data System (ADS)
Ortega, Enrique; Flores, Roberto; Oñate, Eugenio; Idelsohn, Sergio
2017-08-01
An a-posteriori error estimate with application to inviscid compressible flow problems is presented. The estimate is a surrogate measure of the discretization error, obtained from an approximation to the truncation terms of the governing equations. This approximation is calculated from the discrete nodal differential residuals using a reconstructed solution field on a modified stencil of points. Both the error estimation methodology and the flow solution scheme are implemented using the Finite Point Method, a meshless technique enabling higher-order approximations and reconstruction procedures on general unstructured discretizations. The performance of the proposed error indicator is studied and applications to adaptive grid refinement are presented.
Song, Tianxiao; Wang, Xueyun; Liang, Wenwei; Xing, Li
2018-05-14
Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier's roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.
Analysis of the impact of error detection on computer performance
NASA Technical Reports Server (NTRS)
Shin, K. C.; Lee, Y. H.
1983-01-01
Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.
NASA Astrophysics Data System (ADS)
Köpke, Corinna; Irving, James; Elsheikh, Ahmed H.
2018-06-01
Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward model linking subsurface physical properties to measured data, which is typically assumed to be perfectly known in the inversion procedure. However, to make the stochastic solution of the inverse problem computationally tractable using methods such as Markov-chain-Monte-Carlo (MCMC), fast approximations of the forward model are commonly employed. This gives rise to model error, which has the potential to significantly bias posterior statistics if not properly accounted for. Here, we present a new methodology for dealing with the model error arising from the use of approximate forward solvers in Bayesian solutions to hydrogeophysical inverse problems. Our approach is geared towards the common case where this error cannot be (i) effectively characterized through some parametric statistical distribution; or (ii) estimated by interpolating between a small number of computed model-error realizations. To this end, we focus on identification and removal of the model-error component of the residual during MCMC using a projection-based approach, whereby the orthogonal basis employed for the projection is derived in each iteration from the K-nearest-neighboring entries in a model-error dictionary. The latter is constructed during the inversion and grows at a specified rate as the iterations proceed. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar travel-time data considering three different subsurface parameterizations of varying complexity. Synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed for their inversion. In each case, our developed approach enables us to remove posterior bias and obtain a more realistic characterization of uncertainty.
The Calderón problem with corrupted data
NASA Astrophysics Data System (ADS)
Caro, Pedro; Garcia, Andoni
2017-08-01
We consider the inverse Calderón problem consisting of determining the conductivity inside a medium by electrical measurements on its surface. Ideally, these measurements determine the Dirichlet-to-Neumann map and, therefore, one usually assumes the data to be given by such a map. This situation corresponds to having access to infinite-precision measurements, which is totally unrealistic. In this paper, we study the Calderón problem assuming the data to contain measurement errors and provide formulas to reconstruct the conductivity and its normal derivative on the surface. Additionally, we state the rate convergence of the method. Our approach is theoretical and has a stochastic flavour.
NASA Astrophysics Data System (ADS)
Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar
2017-11-01
Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.
Applications and error correction for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Pudenz, Kristen
Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing that the scheme is robust to qubit loss on-chip, a significant benefit when considering an implemented system.
ERIC Educational Resources Information Center
Linacre, John Michael
Various methods of estimating main effects from ordinal data are presented and contrasted. Problems discussed include: (1) at what level to accumulate ordinal data into linear measures; (2) how to maintain scaling across analyses; and (3) the inevitable confounding of within cell variance with measurement error. An example shows three methods of…
Computation of misalignment and primary mirror astigmatism figure error of two-mirror telescopes
NASA Astrophysics Data System (ADS)
Gu, Zhiyuan; Wang, Yang; Ju, Guohao; Yan, Changxiang
2018-01-01
Active optics usually uses the computation models based on numerical methods to correct misalignments and figure errors at present. These methods can hardly lead to any insight into the aberration field dependencies that arise in the presence of the misalignments. An analytical alignment model based on third-order nodal aberration theory is presented for this problem, which can be utilized to compute the primary mirror astigmatic figure error and misalignments for two-mirror telescopes. Alignment simulations are conducted for an R-C telescope based on this analytical alignment model. It is shown that in the absence of wavefront measurement errors, wavefront measurements at only two field points are enough, and the correction process can be completed with only one alignment action. In the presence of wavefront measurement errors, increasing the number of field points for wavefront measurements can enhance the robustness of the alignment model. Monte Carlo simulation shows that, when -2 mm ≤ linear misalignment ≤ 2 mm, -0.1 deg ≤ angular misalignment ≤ 0.1 deg, and -0.2 λ ≤ astigmatism figure error (expressed as fringe Zernike coefficients C5 / C6, λ = 632.8 nm) ≤0.2 λ, the misaligned systems can be corrected to be close to nominal state without wavefront testing error. In addition, the root mean square deviation of RMS wavefront error of all the misaligned samples after being corrected is linearly related to wavefront testing error.
The Red Edge Problem in asteroid band parameter analysis
NASA Astrophysics Data System (ADS)
Lindsay, Sean S.; Dunn, Tasha L.; Emery, Joshua P.; Bowles, Neil E.
2016-04-01
Near-infrared reflectance spectra of S-type asteroids contain two absorptions at 1 and 2 μm (band I and II) that are diagnostic of mineralogy. A parameterization of these two bands is frequently employed to determine the mineralogy of S(IV) asteroids through the use of ordinary chondrite calibration equations that link the mineralogy to band parameters. The most widely used calibration study uses a Band II terminal wavelength point (red edge) at 2.50 μm. However, due to the limitations of the NIR detectors on prominent telescopes used in asteroid research, spectral data for asteroids are typically only reliable out to 2.45 μm. We refer to this discrepancy as "The Red Edge Problem." In this report, we evaluate the associated errors for measured band area ratios (BAR = Area BII/BI) and calculated relative abundance measurements. We find that the Red Edge Problem is often not the dominant source of error for the observationally limited red edge set at 2.45 μm, but it frequently is for a red edge set at 2.40 μm. The error, however, is one sided and therefore systematic. As such, we provide equations to adjust measured BARs to values with a different red edge definition. We also provide new ol/(ol+px) calibration equations for red edges set at 2.40 and 2.45 μm.
Optimal post-experiment estimation of poorly modeled dynamic systems
NASA Technical Reports Server (NTRS)
Mook, D. Joseph
1988-01-01
Recently, a novel strategy for post-experiment state estimation of discretely-measured dynamic systems has been developed. The method accounts for errors in the system dynamic model equations in a more general and rigorous manner than do filter-smoother algorithms. The dynamic model error terms do not require the usual process noise assumptions of zero-mean, symmetrically distributed random disturbances. Instead, the model error terms require no prior assumptions other than piecewise continuity. The resulting state estimates are more accurate than filters for applications in which the dynamic model error clearly violates the typical process noise assumptions, and the available measurements are sparse and/or noisy. Estimates of the dynamic model error, in addition to the states, are obtained as part of the solution of a two-point boundary value problem, and may be exploited for numerous reasons. In this paper, the basic technique is explained, and several example applications are given. Included among the examples are both state estimation and exploitation of the model error estimates.
Choose and choose again: appearance-reality errors, pragmatics and logical ability.
Deák, Gedeon O; Enright, Brian
2006-05-01
In the Appearance/Reality (AR) task some 3- and 4-year-old children make perseverative errors: they choose the same word for the appearance and the function of a deceptive object. Are these errors specific to the AR task, or signs of a general question-answering problem? Preschoolers completed five tasks: AR; simple successive forced-choice question pairs (QP); flexible naming of objects (FN); working memory (WM) span; and indeterminacy detection (ID). AR errors correlated with QP errors. Insensitivity to indeterminacy predicted perseveration in both tasks. Neither WM span nor flexible naming predicted other measures. Age predicted sensitivity to indeterminacy. These findings suggest that AR tests measure a pragmatic understanding; specifically, different questions about a topic usually call for different answers. This understanding is related to the ability to detect indeterminacy of each question in a series. AR errors are unrelated to the ability to represent an object as belonging to multiple categories, to working memory span, or to inhibiting previously activated words.
Effects of adaptive refinement on the inverse EEG solution
NASA Astrophysics Data System (ADS)
Weinstein, David M.; Johnson, Christopher R.; Schmidt, John A.
1995-10-01
One of the fundamental problems in electroencephalography can be characterized by an inverse problem. Given a subset of electrostatic potentials measured on the surface of the scalp and the geometry and conductivity properties within the head, calculate the current vectors and potential fields within the cerebrum. Mathematically the generalized EEG problem can be stated as solving Poisson's equation of electrical conduction for the primary current sources. The resulting problem is mathematically ill-posed i.e., the solution does not depend continuously on the data, such that small errors in the measurement of the voltages on the scalp can yield unbounded errors in the solution, and, for the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions the general treatment of a solution of Poisson's equation, the solution is non-unique. However, if accurate solutions to such problems could be obtained, neurologists would gain noninvasive accesss to patient-specific cortical activity. Access to such data would ultimately increase the number of patients who could be effectively treated for pathological cortical conditions such as temporal lobe epilepsy. In this paper, we present the effects of spatial adaptive refinement on the inverse EEG problem and show that the use of adaptive methods allow for significantly better estimates of electric and potential fileds within the brain through an inverse procedure. To test these methods, we have constructed several finite element head models from magneteic resonance images of a patient. The finite element meshes ranged in size from 2724 nodes and 12,812 elements to 5224 nodes and 29,135 tetrahedral elements, depending on the level of discretization. We show that an adaptive meshing algorithm minimizes the error in the forward problem due to spatial discretization and thus increases the accuracy of the inverse solution.
Adaptive Error Estimation in Linearized Ocean General Circulation Models
NASA Technical Reports Server (NTRS)
Chechelnitsky, Michael Y.
1999-01-01
Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.
Bias estimation for moving optical sensor measurements with targets of opportunity
NASA Astrophysics Data System (ADS)
Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov
2014-06-01
Integration of space based sensors into a Ballistic Missile Defense System (BMDS) allows for detection and tracking of threats over a larger area than ground based sensors [1]. This paper examines the effect of sensor bias error on the tracking quality of a Space Tracking and Surveillance System (STSS) for the highly non-linear problem of tracking a ballistic missile. The STSS constellation consists of two or more satellites (on known trajectories) for tracking ballistic targets. Each satellite is equipped with an IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant or slowly varying bias error present in each sensor's line of sight measurements. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. The measurements provided by these sensors are assumed time-coincident (synchronous) and perfectly associated. The line of sight (LOS) measurements from the sensors can be fused into measurements which are the Cartesian target position, i.e., linear in the target state. We evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance of the bias estimates, which serves as a quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the (unknown) trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.
High dimensional linear regression models under long memory dependence and measurement error
NASA Astrophysics Data System (ADS)
Kaul, Abhishek
This dissertation consists of three chapters. The first chapter introduces the models under consideration and motivates problems of interest. A brief literature review is also provided in this chapter. The second chapter investigates the properties of Lasso under long range dependent model errors. Lasso is a computationally efficient approach to model selection and estimation, and its properties are well studied when the regression errors are independent and identically distributed. We study the case, where the regression errors form a long memory moving average process. We establish a finite sample oracle inequality for the Lasso solution. We then show the asymptotic sign consistency in this setup. These results are established in the high dimensional setup (p> n) where p can be increasing exponentially with n. Finally, we show the consistency, n½ --d-consistency of Lasso, along with the oracle property of adaptive Lasso, in the case where p is fixed. Here d is the memory parameter of the stationary error sequence. The performance of Lasso is also analysed in the present setup with a simulation study. The third chapter proposes and investigates the properties of a penalized quantile based estimator for measurement error models. Standard formulations of prediction problems in high dimension regression models assume the availability of fully observed covariates and sub-Gaussian and homogeneous model errors. This makes these methods inapplicable to measurement errors models where covariates are unobservable and observations are possibly non sub-Gaussian and heterogeneous. We propose weighted penalized corrected quantile estimators for the regression parameter vector in linear regression models with additive measurement errors, where unobservable covariates are nonrandom. The proposed estimators forgo the need for the above mentioned model assumptions. We study these estimators in both the fixed dimension and high dimensional sparse setups, in the latter setup, the dimensionality can grow exponentially with the sample size. In the fixed dimensional setting we provide the oracle properties associated with the proposed estimators. In the high dimensional setting, we provide bounds for the statistical error associated with the estimation, that hold with asymptotic probability 1, thereby providing the ℓ1-consistency of the proposed estimator. We also establish the model selection consistency in terms of the correctly estimated zero components of the parameter vector. A simulation study that investigates the finite sample accuracy of the proposed estimator is also included in this chapter.
Pandiselvi, S; Raja, R; Cao, Jinde; Rajchakit, G; Ahmad, Bashir
2018-01-01
This work predominantly labels the problem of approximation of state variables for discrete-time stochastic genetic regulatory networks with leakage, distributed, and probabilistic measurement delays. Here we design a linear estimator in such a way that the absorption of mRNA and protein can be approximated via known measurement outputs. By utilizing a Lyapunov-Krasovskii functional and some stochastic analysis execution, we obtain the stability formula of the estimation error systems in the structure of linear matrix inequalities under which the estimation error dynamics is robustly exponentially stable. Further, the obtained conditions (in the form of LMIs) can be effortlessly solved by some available software packages. Moreover, the specific expression of the desired estimator is also shown in the main section. Finally, two mathematical illustrative examples are accorded to show the advantage of the proposed conceptual results.
Geometrical correction factors for heat flux meters
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Papell, S. S.
1974-01-01
General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. The local averaging error e(x) is defined as the difference between the measured value of the heat flux and the local value which occurs at the center of the gage. In terms of e(x), a correction procedure is presented which allows a better estimate for the true value of the local heat flux. For many practical problems, it is possible to use relatively large gages to obtain acceptable heat flux measurements.
Analysis and discussion on the experimental data of electrolyte analyzer
NASA Astrophysics Data System (ADS)
Dong, XinYu; Jiang, JunJie; Liu, MengJun; Li, Weiwei
2018-06-01
In the subsequent verification of electrolyte analyzer, we found that the instrument can achieve good repeatability and stability in repeated measurements with a short period of time, in line with the requirements of verification regulation of linear error and cross contamination rate, but the phenomenon of large indication error is very common, the measurement results of different manufacturers have great difference, in order to find and solve this problem, help enterprises to improve quality of product, to obtain accurate and reliable measurement data, we conducted the experimental evaluation of electrolyte analyzer, and the data were analyzed by statistical analysis.
Determining the refractive index and thickness of thin films from prism coupler measurements
NASA Technical Reports Server (NTRS)
Kirsch, S. T.
1981-01-01
A simple method of determining thin film parameters from mode indices measured using a prism coupler is described. The problem is reduced to doing two least squares straight line fits through measured mode indices vs effective mode number. The slope and y intercept of the line are simply related to the thickness and refractive index of film, respectively. The approach takes into account the correlation between as well as the uncertainty in the individual measurements from all sources of error to give precise error tolerances on the best fit values. Due to the precision of the tolerances, anisotropic films can be identified and characterized.
NASA Astrophysics Data System (ADS)
Wang, Wenyun; Guo, Yingfu
2008-12-01
Phase-shifting methods for 3-D shape measurement have long been employed in optical metrology for their speed and accuracy. For real-time, accurate, 3-D shape measurement, a four-step phase-shifting algorithm which has the advantage of its symmetry is a good choice; however, its measurement error is sensitive to any fringe image errors caused by various sources such as motion blur. To alleviate this problem, a fast two-plus-one phase-shifting algorithm is proposed in this paper. This kind of technology will benefit many applications such as medical imaging, gaming, animation, computer vision, computer graphics, etc.
Crainiceanu, Ciprian M.; Caffo, Brian S.; Di, Chong-Zhi; Punjabi, Naresh M.
2009-01-01
We introduce methods for signal and associated variability estimation based on hierarchical nonparametric smoothing with application to the Sleep Heart Health Study (SHHS). SHHS is the largest electroencephalographic (EEG) collection of sleep-related data, which contains, at each visit, two quasi-continuous EEG signals for each subject. The signal features extracted from EEG data are then used in second level analyses to investigate the relation between health, behavioral, or biometric outcomes and sleep. Using subject specific signals estimated with known variability in a second level regression becomes a nonstandard measurement error problem. We propose and implement methods that take into account cross-sectional and longitudinal measurement error. The research presented here forms the basis for EEG signal processing for the SHHS. PMID:20057925
Overview of medical errors and adverse events
2012-01-01
Safety is a global concept that encompasses efficiency, security of care, reactivity of caregivers, and satisfaction of patients and relatives. Patient safety has emerged as a major target for healthcare improvement. Quality assurance is a complex task, and patients in the intensive care unit (ICU) are more likely than other hospitalized patients to experience medical errors, due to the complexity of their conditions, need for urgent interventions, and considerable workload fluctuation. Medication errors are the most common medical errors and can induce adverse events. Two approaches are available for evaluating and improving quality-of-care: the room-for-improvement model, in which problems are identified, plans are made to resolve them, and the results of the plans are measured; and the monitoring model, in which quality indicators are defined as relevant to potential problems and then monitored periodically. Indicators that reflect structures, processes, or outcomes have been developed by medical societies. Surveillance of these indicators is organized at the hospital or national level. Using a combination of methods improves the results. Errors are caused by combinations of human factors and system factors, and information must be obtained on how people make errors in the ICU environment. Preventive strategies are more likely to be effective if they rely on a system-based approach, in which organizational flaws are remedied, rather than a human-based approach of encouraging people not to make errors. The development of a safety culture in the ICU is crucial to effective prevention and should occur before the evaluation of safety programs, which are more likely to be effective when they involve bundles of measures. PMID:22339769
A preliminary taxonomy of medical errors in family practice
Dovey, S; Meyers, D; Phillips, R; Green, L; Fryer, G; Galliher, J; Kappus, J; Grob, P
2002-01-01
Objective: To develop a preliminary taxonomy of primary care medical errors. Design: Qualitative analysis to identify categories of error reported during a randomized controlled trial of computer and paper reporting methods. Setting: The National Network for Family Practice and Primary Care Research. Participants: Family physicians. Main outcome measures: Medical error category, context, and consequence. Results: Forty two physicians made 344 reports: 284 (82.6%) arose from healthcare systems dysfunction; 46 (13.4%) were errors due to gaps in knowledge or skills; and 14 (4.1%) were reports of adverse events, not errors. The main subcategories were: administrative failures (102; 30.9% of errors), investigation failures (82; 24.8%), treatment delivery lapses (76; 23.0%), miscommunication (19; 5.8%), payment systems problems (4; 1.2%), error in the execution of a clinical task (19; 5.8%), wrong treatment decision (14; 4.2%), and wrong diagnosis (13; 3.9%). Most reports were of errors that were recognized and occurred in reporters' practices. Affected patients ranged in age from 8 months to 100 years, were of both sexes, and represented all major US ethnic groups. Almost half the reports were of events which had adverse consequences. Ten errors resulted in patients being admitted to hospital and one patient died. Conclusions: This medical error taxonomy, developed from self-reports of errors observed by family physicians during their routine clinical practice, emphasizes problems in healthcare processes and acknowledges medical errors arising from shortfalls in clinical knowledge and skills. Patient safety strategies with most effect in primary care settings need to be broader than the current focus on medication errors. PMID:12486987
The next organizational challenge: finding and addressing diagnostic error.
Graber, Mark L; Trowbridge, Robert; Myers, Jennifer S; Umscheid, Craig A; Strull, William; Kanter, Michael H
2014-03-01
Although health care organizations (HCOs) are intensely focused on improving the safety of health care, efforts to date have almost exclusively targeted treatment-related issues. The literature confirms that the approaches HCOs use to identify adverse medical events are not effective in finding diagnostic errors, so the initial challenge is to identify cases of diagnostic error. WHY HEALTH CARE ORGANIZATIONS NEED TO GET INVOLVED: HCOs are preoccupied with many quality- and safety-related operational and clinical issues, including performance measures. The case for paying attention to diagnostic errors, however, is based on the following four points: (1) diagnostic errors are common and harmful, (2) high-quality health care requires high-quality diagnosis, (3) diagnostic errors are costly, and (4) HCOs are well positioned to lead the way in reducing diagnostic error. FINDING DIAGNOSTIC ERRORS: Current approaches to identifying diagnostic errors, such as occurrence screens, incident reports, autopsy, and peer review, were not designed to detect diagnostic issues (or problems of omission in general) and/or rely on voluntary reporting. The realization that the existing tools are inadequate has spurred efforts to identify novel tools that could be used to discover diagnostic errors or breakdowns in the diagnostic process that are associated with errors. New approaches--Maine Medical Center's case-finding of diagnostic errors by facilitating direct reports from physicians and Kaiser Permanente's electronic health record--based reports that detect process breakdowns in the followup of abnormal findings--are described in case studies. By raising awareness and implementing targeted programs that address diagnostic error, HCOs may begin to play an important role in addressing the problem of diagnostic error.
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Moes, Timothy R.
1994-01-01
Presented is a feasibility and error analysis for a hypersonic flush airdata system on a hypersonic flight experiment (HYFLITE). HYFLITE heating loads make intrusive airdata measurement impractical. Although this analysis is specifically for the HYFLITE vehicle and trajectory, the problems analyzed are generally applicable to hypersonic vehicles. A layout of the flush-port matrix is shown. Surface pressures are related airdata parameters using a simple aerodynamic model. The model is linearized using small perturbations and inverted using nonlinear least-squares. Effects of various error sources on the overall uncertainty are evaluated using an error simulation. Error sources modeled include boundarylayer/viscous interactions, pneumatic lag, thermal transpiration in the sensor pressure tubing, misalignment in the matrix layout, thermal warping of the vehicle nose, sampling resolution, and transducer error. Using simulated pressure data for input to the estimation algorithm, effects caused by various error sources are analyzed by comparing estimator outputs with the original trajectory. To obtain ensemble averages the simulation is run repeatedly and output statistics are compiled. Output errors resulting from the various error sources are presented as a function of Mach number. Final uncertainties with all modeled error sources included are presented as a function of Mach number.
Real-Time Parameter Estimation Using Output Error
NASA Technical Reports Server (NTRS)
Grauer, Jared A.
2014-01-01
Output-error parameter estimation, normally a post- ight batch technique, was applied to real-time dynamic modeling problems. Variations on the traditional algorithm were investigated with the goal of making the method suitable for operation in real time. Im- plementation recommendations are given that are dependent on the modeling problem of interest. Application to ight test data showed that accurate parameter estimates and un- certainties for the short-period dynamics model were available every 2 s using time domain data, or every 3 s using frequency domain data. The data compatibility problem was also solved in real time, providing corrected sensor measurements every 4 s. If uncertainty corrections for colored residuals are omitted, this rate can be increased to every 0.5 s.
Decoding of DBEC-TBED Reed-Solomon codes. [Double-Byte-Error-Correcting, Triple-Byte-Error-Detecting
NASA Technical Reports Server (NTRS)
Deng, Robert H.; Costello, Daniel J., Jr.
1987-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256 K bit DRAM's are organized in 32 K x 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. The paper presents a special decoding technique for double-byte-error-correcting, triple-byte-error-detecting RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
High-Accuracy Measurement of Small Movement of an Object behind Cloth Using Airborne Ultrasound
NASA Astrophysics Data System (ADS)
Hoshiba, Kotaro; Hirata, Shinnosuke; Hachiya, Hiroyuki
2013-07-01
The acoustic measurement of vital information such as breathing and heartbeat in the standing position whilst the subject is wearing clothes is a difficult problem. In this paper, we present the basic experimental results to measure small movement of an object behind cloth. We measured acoustic characteristics of various types of cloth to obtain the transmission loss through cloth. To observe the relationship between measurement error and target speed under a low signal-to-noise ratio (SNR), we tried to measure the movement of an object behind cloth. The target was placed apart from the cloth to separate the target reflection from the cloth reflection. We found that a small movement of less than 6 mm/s could be observed using the M-sequence, moving target indicator (MTI) filter, and tracking phase difference, when the SNR was less than 0 dB. We also present the results of theoretical error analysis in the MTI filter and phase tracking for high-accuracy measurement. Characteristics of the systematic error were clarified.
Oranges, Posters, Ribbons, and Lemonade: Concrete Computational Strategies for Dividing Fractions
ERIC Educational Resources Information Center
Kribs-Zaleta, Christopher M.
2008-01-01
This article describes how sixth-grade students developed concrete models to solve division of fractions story problems. Students developed separate two-step procedures to solve measurement and partitive problems, drawing on invented procedures for division of whole numbers. Errors also tended to be specific to the type of division problem…
Experimental/clinical evaluation of EIT image reconstruction with l1 data and image norms
NASA Astrophysics Data System (ADS)
Mamatjan, Yasin; Borsic, Andrea; Gürsoy, Doga; Adler, Andy
2013-04-01
Electrical impedance tomography (EIT) image reconstruction is ill-posed, and the spatial resolution of reconstructed images is low due to the diffuse propagation of current and limited number of independent measurements. Generally, image reconstruction is formulated using a regularized scheme in which l2 norms are preferred for both the data misfit and image prior terms due to computational convenience which result in smooth solutions. However, recent work on a Primal Dual-Interior Point Method (PDIPM) framework showed its effectiveness in dealing with the minimization problem. l1 norms on data and regularization terms in EIT image reconstruction address both problems of reconstruction with sharp edges and dealing with measurement errors. We aim for a clinical and experimental evaluation of the PDIPM method by selecting scenarios (human lung and dog breathing) with known electrode errors, which require a rigorous regularization and cause the failure of reconstructions with l2 norm. Results demonstrate the applicability of PDIPM algorithms, especially l1 data and regularization norms for clinical applications of EIT showing that l1 solution is not only more robust to measurement errors in clinical setting, but also provides high contrast resolution on organ boundaries.
Errors Analysis of Students in Mathematics Department to Learn Plane Geometry
NASA Astrophysics Data System (ADS)
Mirna, M.
2018-04-01
This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.
Approximating exponential and logarithmic functions using polynomial interpolation
NASA Astrophysics Data System (ADS)
Gordon, Sheldon P.; Yang, Yajun
2017-04-01
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is analysed. The results of interpolating polynomials are compared with those of Taylor polynomials.
Identifying model error in metabolic flux analysis - a generalized least squares approach.
Sokolenko, Stanislav; Quattrociocchi, Marco; Aucoin, Marc G
2016-09-13
The estimation of intracellular flux through traditional metabolic flux analysis (MFA) using an overdetermined system of equations is a well established practice in metabolic engineering. Despite the continued evolution of the methodology since its introduction, there has been little focus on validation and identification of poor model fit outside of identifying "gross measurement error". The growing complexity of metabolic models, which are increasingly generated from genome-level data, has necessitated robust validation that can directly assess model fit. In this work, MFA calculation is framed as a generalized least squares (GLS) problem, highlighting the applicability of the common t-test for model validation. To differentiate between measurement and model error, we simulate ideal flux profiles directly from the model, perturb them with estimated measurement error, and compare their validation to real data. Application of this strategy to an established Chinese Hamster Ovary (CHO) cell model shows how fluxes validated by traditional means may be largely non-significant due to a lack of model fit. With further simulation, we explore how t-test significance relates to calculation error and show that fluxes found to be non-significant have 2-4 fold larger error (if measurement uncertainty is in the 5-10 % range). The proposed validation method goes beyond traditional detection of "gross measurement error" to identify lack of fit between model and data. Although the focus of this work is on t-test validation and traditional MFA, the presented framework is readily applicable to other regression analysis methods and MFA formulations.
Improved HDRG decoders for qudit and non-Abelian quantum error correction
NASA Astrophysics Data System (ADS)
Hutter, Adrian; Loss, Daniel; Wootton, James R.
2015-03-01
Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.
Estimating errors in least-squares fitting
NASA Technical Reports Server (NTRS)
Richter, P. H.
1995-01-01
While least-squares fitting procedures are commonly used in data analysis and are extensively discussed in the literature devoted to this subject, the proper assessment of errors resulting from such fits has received relatively little attention. The present work considers statistical errors in the fitted parameters, as well as in the values of the fitted function itself, resulting from random errors in the data. Expressions are derived for the standard error of the fit, as a function of the independent variable, for the general nonlinear and linear fitting problems. Additionally, closed-form expressions are derived for some examples commonly encountered in the scientific and engineering fields, namely ordinary polynomial and Gaussian fitting functions. These results have direct application to the assessment of the antenna gain and system temperature characteristics, in addition to a broad range of problems in data analysis. The effects of the nature of the data and the choice of fitting function on the ability to accurately model the system under study are discussed, and some general rules are deduced to assist workers intent on maximizing the amount of information obtained form a given set of measurements.
Vaskinn, Anja; Antonsen, Bjørnar T.; Fretland, Ragnhild A.; Dziobek, Isabel; Sundet, Kjetil; Wilberg, Theresa
2015-01-01
Although borderline personality disorder (BPD) and schizophrenia (SZ) are notably different mental disorders, they share problems in social cognition—or understanding the feelings, intentions and thoughts of other people. To date no studies have directly compared the social cognitive abilities of individuals with these two disorders. In this study, the social cognitive subdomain theory of mind was investigated in women with BPD (n = 25), women with SZ (n = 25) and healthy women (n = 25). An ecologically valid video-based measure (Movie for the Assessment of Social Cognition) was used. For the overall score, women with SZ performed markedly below both healthy women and women with BPD, whereas women with BPD did not perform significantly different compared to the healthy control group. A statistically significant error type × group interaction effect indicated that the groups differed with respect to kind of errors. Whereas women with BPD made mostly overmentalizing errors, women with SZ in addition committed undermentalizing errors. Our study suggests different magnitude and pattern of social cognitive problems in BPD and SZ. PMID:26379577
Accuracy of airspeed measurements and flight calibration procedures
NASA Technical Reports Server (NTRS)
Huston, Wilber B
1948-01-01
The sources of error that may enter into the measurement of airspeed by pitot-static methods are reviewed in detail together with methods of flight calibration of airspeed installations. Special attention is given to the problem of accurate measurements of airspeed under conditions of high speed and maneuverability required of military airplanes. (author)
Verifiable fault tolerance in measurement-based quantum computation
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Hayashi, Masahito
2017-09-01
Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence are useful for solving certain mathematical problems and simulating quantum many-body systems. This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial, since predicting the output is exponentially hard. As another problem, the quantum system is very delicate for noise and thus needs an error correction. Here, we propose a framework for verification of the output of fault-tolerant quantum computation in a measurement-based model. In contrast to existing analyses on fault tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state is tested by using only single-qubit measurements to verify whether or not the output of measurement-based quantum computation on it is correct. Verifiability is equipped by a constant time repetition of the original measurement-based quantum computation in appropriate measurement bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our framework provides an efficient way to practically verify the experimental quantum error correction.
Nematode Damage Functions: The Problems of Experimental and Sampling Error
Ferris, H.
1984-01-01
The development and use of pest damage functions involves measurement and experimental errors associated with cultural, environmental, and distributional factors. Damage predictions are more valuable if considered with associated probability. Collapsing population densities into a geometric series of population classes allows a pseudo-replication removal of experimental and sampling error in damage function development. Recognition of the nature of sampling error for aggregated populations allows assessment of probability associated with the population estimate. The product of the probabilities incorporated in the damage function and in the population estimate provides a basis for risk analysis of the yield loss prediction and the ensuing management decision. PMID:19295865
Liu, Shi Qiang; Zhu, Rong
2016-01-01
Errors compensation of micromachined-inertial-measurement-units (MIMU) is essential in practical applications. This paper presents a new compensation method using a neural-network-based identification for MIMU, which capably solves the universal problems of cross-coupling, misalignment, eccentricity, and other deterministic errors existing in a three-dimensional integrated system. Using a neural network to model a complex multivariate and nonlinear coupling system, the errors could be readily compensated through a comprehensive calibration. In this paper, we also present a thermal-gas MIMU based on thermal expansion, which measures three-axis angular rates and three-axis accelerations using only three thermal-gas inertial sensors, each of which capably measures one-axis angular rate and one-axis acceleration simultaneously in one chip. The developed MIMU (100 × 100 × 100 mm3) possesses the advantages of simple structure, high shock resistance, and large measuring ranges (three-axes angular rates of ±4000°/s and three-axes accelerations of ±10 g) compared with conventional MIMU, due to using gas medium instead of mechanical proof mass as the key moving and sensing elements. However, the gas MIMU suffers from cross-coupling effects, which corrupt the system accuracy. The proposed compensation method is, therefore, applied to compensate the system errors of the MIMU. Experiments validate the effectiveness of the compensation, and the measurement errors of three-axis angular rates and three-axis accelerations are reduced to less than 1% and 3% of uncompensated errors in the rotation range of ±600°/s and the acceleration range of ±1 g, respectively. PMID:26840314
Structured light: theory and practice and practice and practice...
NASA Astrophysics Data System (ADS)
Keizer, Richard L.; Jun, Heesung; Dunn, Stanley M.
1991-04-01
We have developed a structured light system for noncontact 3-D measurement of human body surface areas and volumes. We illustrate the image processing steps and algorithms used to recover range data from a single camera image, reconstruct a complete surface from one or more sets of range data, and measure areas and volumes. The development of a working system required the solution to a number of practical problems in image processing and grid labeling (the stereo correspondence problem for structured light). In many instances we found that the standard cookbook techniques for image processing failed. This was due in part to the domain (human body), the restrictive assumptions of the models underlying the cookbook techniques, and the inability to consistently predict the outcome of the image processing operations. In this paper, we will discuss some of our successes and failures in two key steps in acquiring range data using structured light: First, the problem of detecting intersections in the structured light grid, and secondly, the problem of establishing correspondence between projected and detected intersections. We will outline the problems and solutions we have arrived at after several years of trial and error. We can now measure range data with an r.m.s. relative error of 0.3% and measure areas on the human body surface within 3% and volumes within 10%. We have found that the solution to building a working vision system requires the right combination of theory and experimental verification.
Encoder fault analysis system based on Moire fringe error signal
NASA Astrophysics Data System (ADS)
Gao, Xu; Chen, Wei; Wan, Qiu-hua; Lu, Xin-ran; Xie, Chun-yu
2018-02-01
Aiming at the problem of any fault and wrong code in the practical application of photoelectric shaft encoder, a fast and accurate encoder fault analysis system is researched from the aspect of Moire fringe photoelectric signal processing. DSP28335 is selected as the core processor and high speed serial A/D converter acquisition card is used. And temperature measuring circuit using AD7420 is designed. Discrete data of Moire fringe error signal is collected at different temperatures and it is sent to the host computer through wireless transmission. The error signal quality index and fault type is displayed on the host computer based on the error signal identification method. The error signal quality can be used to diagnosis the state of error code through the human-machine interface.
Applications of Bayesian spectrum representation in acoustics
NASA Astrophysics Data System (ADS)
Botts, Jonathan M.
This dissertation utilizes a Bayesian inference framework to enhance the solution of inverse problems where the forward model maps to acoustic spectra. A Bayesian solution to filter design inverts a acoustic spectra to pole-zero locations of a discrete-time filter model. Spatial sound field analysis with a spherical microphone array is a data analysis problem that requires inversion of spatio-temporal spectra to directions of arrival. As with many inverse problems, a probabilistic analysis results in richer solutions than can be achieved with ad-hoc methods. In the filter design problem, the Bayesian inversion results in globally optimal coefficient estimates as well as an estimate the most concise filter capable of representing the given spectrum, within a single framework. This approach is demonstrated on synthetic spectra, head-related transfer function spectra, and measured acoustic reflection spectra. The Bayesian model-based analysis of spatial room impulse responses is presented as an analogous problem with equally rich solution. The model selection mechanism provides an estimate of the number of arrivals, which is necessary to properly infer the directions of simultaneous arrivals. Although, spectrum inversion problems are fairly ubiquitous, the scope of this dissertation has been limited to these two and derivative problems. The Bayesian approach to filter design is demonstrated on an artificial spectrum to illustrate the model comparison mechanism and then on measured head-related transfer functions to show the potential range of application. Coupled with sampling methods, the Bayesian approach is shown to outperform least-squares filter design methods commonly used in commercial software, confirming the need for a global search of the parameter space. The resulting designs are shown to be comparable to those that result from global optimization methods, but the Bayesian approach has the added advantage of a filter length estimate within the same unified framework. The application to reflection data is useful for representing frequency-dependent impedance boundaries in finite difference acoustic simulations. Furthermore, since the filter transfer function is a parametric model, it can be modified to incorporate arbitrary frequency weighting and account for the band-limited nature of measured reflection spectra. Finally, the model is modified to compensate for dispersive error in the finite difference simulation, from the filter design process. Stemming from the filter boundary problem, the implementation of pressure sources in finite difference simulation is addressed in order to assure that schemes properly converge. A class of parameterized source functions is proposed and shown to offer straightforward control of residual error in the simulation. Guided by the notion that the solution to be approximated affects the approximation error, sources are designed which reduce residual dispersive error to the size of round-off errors. The early part of a room impulse response can be characterized by a series of isolated plane waves. Measured with an array of microphones, plane waves map to a directional response of the array or spatial intensity map. Probabilistic inversion of this response results in estimates of the number and directions of image source arrivals. The model-based inversion is shown to avoid ambiguities associated with peak-finding or inspection of the spatial intensity map. For this problem, determining the number of arrivals in a given frame is critical for properly inferring the state of the sound field. This analysis is effectively compression of the spatial room response, which is useful for analysis or encoding of the spatial sound field. Parametric, model-based formulations of these problems enhance the solution in all cases, and a Bayesian interpretation provides a principled approach to model comparison and parameter estimation. v
Use of autocorrelation scanning in DNA copy number analysis.
Zhang, Liangcai; Zhang, Li
2013-11-01
Data quality is a critical issue in the analyses of DNA copy number alterations obtained from microarrays. It is commonly assumed that copy number alteration data can be modeled as piecewise constant and the measurement errors of different probes are independent. However, these assumptions do not always hold in practice. In some published datasets, we find that measurement errors are highly correlated between probes that interrogate nearby genomic loci, and the piecewise-constant model does not fit the data well. The correlated errors cause problems in downstream analysis, leading to a large number of DNA segments falsely identified as having copy number gains and losses. We developed a simple tool, called autocorrelation scanning profile, to assess the dependence of measurement error between neighboring probes. Autocorrelation scanning profile can be used to check data quality and refine the analysis of DNA copy number data, which we demonstrate in some typical datasets. lzhangli@mdanderson.org. Supplementary data are available at Bioinformatics online.
NASA Astrophysics Data System (ADS)
Bižić, Milan B.; Petrović, Dragan Z.; Tomić, Miloš C.; Djinović, Zoran V.
2017-07-01
This paper presents the development of a unique method for experimental determination of wheel-rail contact forces and contact point position by using the instrumented wheelset (IWS). Solutions of key problems in the development of IWS are proposed, such as the determination of optimal locations, layout, number and way of connecting strain gauges as well as the development of an inverse identification algorithm (IIA). The base for the solution of these problems is the wheel model and results of FEM calculations, while IIA is based on the method of blind source separation using independent component analysis. In the first phase, the developed method was tested on a wheel model and a high accuracy was obtained (deviations of parameters obtained with IIA and really applied parameters in the model are less than 2%). In the second phase, experimental tests on the real object or IWS were carried out. The signal-to-noise ratio was identified as the main influential parameter on the measurement accuracy. Тhе obtained results have shown that the developed method enables measurement of vertical and lateral wheel-rail contact forces Q and Y and their ratio Y/Q with estimated errors of less than 10%, while the estimated measurement error of contact point position is less than 15%. At flange contact and higher values of ratio Y/Q or Y force, the measurement errors are reduced, which is extremely important for the reliability and quality of experimental tests of safety against derailment of railway vehicles according to the standards UIC 518 and EN 14363. The obtained results have shown that the proposed method can be successfully applied in solving the problem of high accuracy measurement of wheel-rail contact forces and contact point position using IWS.
Flexible methods for segmentation evaluation: results from CT-based luggage screening.
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2014-01-01
Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.
Black, D; Gates, G; Sanders, S; Taylor, L
2000-05-01
This work provides an overview of standard social science data sources that now allow some systematic study of the gay and lesbian population in the United States. For each data source, we consider how sexual orientation can be defined, and we note the potential sample sizes. We give special attention to the important problem of measurement error, especially the extent to which individuals recorded as gay and lesbian are indeed recorded correctly. Our concern is that because gays and lesbians constitute a relatively small fraction of the population, modest measurement problems could lead to serious errors in inference. In examining gays and lesbians in multiple data sets we also achieve a second objective: We provide a set of statistics about this population that is relevant to several current policy debates.
On the Reliability of Photovoltaic Short-Circuit Current Temperature Coefficient Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterwald, Carl R.; Campanelli, Mark; Kelly, George J.
2015-06-14
The changes in short-circuit current of photovoltaic (PV) cells and modules with temperature are routinely modeled through a single parameter, the temperature coefficient (TC). This parameter is vital for the translation equations used in system sizing, yet in practice is very difficult to measure. In this paper, we discuss these inherent problems and demonstrate how they can introduce unacceptably large errors in PV ratings. A method for quantifying the spectral dependence of TCs is derived, and then used to demonstrate that databases of module parameters commonly contain values that are physically unreasonable. Possible ways to reduce measurement errors are alsomore » discussed.« less
Cognitive flexibility correlates with gambling severity in young adults.
Leppink, Eric W; Redden, Sarah A; Chamberlain, Samuel R; Grant, Jon E
2016-10-01
Although gambling disorder (GD) is often characterized as a problem of impulsivity, compulsivity has recently been proposed as a potentially important feature of addictive disorders. The present analysis assessed the neurocognitive and clinical relationship between compulsivity on gambling behavior. A sample of 552 non-treatment seeking gamblers age 18-29 was recruited from the community for a study on gambling in young adults. Gambling severity levels included both casual and disordered gamblers. All participants completed the Intra/Extra-Dimensional Set Shift (IED) task, from which the total adjusted errors were correlated with gambling severity measures, and linear regression modeling was used to assess three error measures from the task. The present analysis found significant positive correlations between problems with cognitive flexibility and gambling severity (reflected by the number of DSM-5 criteria, gambling frequency, amount of money lost in the past year, and gambling urge/behavior severity). IED errors also showed a positive correlation with self-reported compulsive behavior scores. A significant correlation was also found between IED errors and non-planning impulsivity from the BIS. Linear regression models based on total IED errors, extra-dimensional (ED) shift errors, or pre-ED shift errors indicated that these factors accounted for a significant portion of the variance noted in several variables. These findings suggest that cognitive flexibility may be an important consideration in the assessment of gamblers. Results from correlational and linear regression analyses support this possibility, but the exact contributions of both impulsivity and cognitive flexibility remain entangled. Future studies will ideally be able to assess the longitudinal relationships between gambling, compulsivity, and impulsivity, helping to clarify the relative contributions of both impulsive and compulsive features. Copyright © 2016 Elsevier Ltd. All rights reserved.
A novel aliasing-free subband information fusion approach for wideband sparse spectral estimation
NASA Astrophysics Data System (ADS)
Luo, Ji-An; Zhang, Xiao-Ping; Wang, Zhi
2017-12-01
Wideband sparse spectral estimation is generally formulated as a multi-dictionary/multi-measurement (MD/MM) problem which can be solved by using group sparsity techniques. In this paper, the MD/MM problem is reformulated as a single sparse indicative vector (SIV) recovery problem at the cost of introducing an additional system error. Thus, the number of unknowns is reduced greatly. We show that the system error can be neglected under certain conditions. We then present a new subband information fusion (SIF) method to estimate the SIV by jointly utilizing all the frequency bins. With orthogonal matching pursuit (OMP) leveraging the binary property of SIV's components, we develop a SIF-OMP algorithm to reconstruct the SIV. The numerical simulations demonstrate the performance of the proposed method.
Trimming and procrastination as inversion techniques
NASA Astrophysics Data System (ADS)
Backus, George E.
1996-12-01
By examining the processes of truncating and approximating the model space (trimming it), and by committing to neither the objectivist nor the subjectivist interpretation of probability (procrastinating), we construct a formal scheme for solving linear and non-linear geophysical inverse problems. The necessary prior information about the correct model xE can be either a collection of inequalities or a probability measure describing where xE was likely to be in the model space X before the data vector y0 was measured. The results of the inversion are (1) a vector z0 that estimates some numerical properties zE of xE; (2) an estimate of the error δz = z0 - zE. As y0 is finite dimensional, so is z0, and hence in principle inversion cannot describe all of xE. The error δz is studied under successively more specialized assumptions about the inverse problem, culminating in a complete analysis of the linear inverse problem with a prior quadratic bound on xE. Our formalism appears to encompass and provide error estimates for many of the inversion schemes current in geomagnetism, and would be equally applicable in geodesy and seismology if adequate prior information were available there. As an idealized example we study the magnetic field at the core-mantle boundary, using satellite measurements of field elements at sites assumed to be almost uniformly distributed on a single spherical surface. Magnetospheric currents are neglected and the crustal field is idealized as a random process with rotationally invariant statistics. We find that an appropriate data compression diagonalizes the variance matrix of the crustal signal and permits an analytic trimming of the idealized problem.
Laboratory errors and patient safety.
Miligy, Dawlat A
2015-01-01
Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that evaluated the encountered laboratory errors and launch the great need for universal standardization and bench marking measures to control the laboratory work.
NASA Astrophysics Data System (ADS)
Rr Chusnul, C.; Mardiyana, S., Dewi Retno
2017-12-01
Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.
Remediating Common Math Errors.
ERIC Educational Resources Information Center
Wagner, Rudolph F.
1981-01-01
Explanations and remediation suggestions for five types of mathematics errors due either to perceptual or cognitive difficulties are given. Error types include directionality problems, mirror writing, visually misperceived signs, diagnosed directionality problems, and mixed process errors. (CL)
Ion beam machining error control and correction for small scale optics.
Xie, Xuhui; Zhou, Lin; Dai, Yifan; Li, Shengyi
2011-09-20
Ion beam figuring (IBF) technology for small scale optical components is discussed. Since the small removal function can be obtained in IBF, it makes computer-controlled optical surfacing technology possible to machine precision centimeter- or millimeter-scale optical components deterministically. Using a small ion beam to machine small optical components, there are some key problems, such as small ion beam positioning on the optical surface, material removal rate, ion beam scanning pitch control on the optical surface, and so on, that must be seriously considered. The main reasons for the problems are that it is more sensitive to the above problems than a big ion beam because of its small beam diameter and lower material ratio. In this paper, we discuss these problems and their influences in machining small optical components in detail. Based on the identification-compensation principle, an iterative machining compensation method is deduced for correcting the positioning error of an ion beam with the material removal rate estimated by a selected optimal scanning pitch. Experiments on ϕ10 mm Zerodur planar and spherical samples are made, and the final surface errors are both smaller than λ/100 measured by a Zygo GPI interferometer.
Probable errors in width distributions of sea ice leads measured along a transect
NASA Technical Reports Server (NTRS)
Key, J.; Peckham, S.
1991-01-01
The degree of error expected in the measurement of widths of sea ice leads along a single transect are examined in a probabilistic sense under assumed orientation and width distributions, where both isotropic and anisotropic lead orientations are examined. Methods are developed for estimating the distribution of 'actual' widths (measured perpendicular to the local lead orientation) knowing the 'apparent' width distribution (measured along the transect), and vice versa. The distribution of errors, defined as the difference between the actual and apparent lead width, can be estimated from the two width distributions, and all moments of this distribution can be determined. The problem is illustrated with Landsat imagery and the procedure is applied to a submarine sonar transect. Results are determined for a range of geometries, and indicate the importance of orientation information if data sampled along a transect are to be used for the description of lead geometries. While the application here is to sea ice leads, the methodology can be applied to measurements of any linear feature.
NASA Astrophysics Data System (ADS)
Duan, Yaxuan; Xu, Songbo; Yuan, Suochao; Chen, Yongquan; Li, Hongguang; Da, Zhengshang; Gao, Limin
2018-01-01
ISO 12233 slanted-edge method experiences errors using fast Fourier transform (FFT) in the camera modulation transfer function (MTF) measurement due to tilt angle errors in the knife-edge resulting in nonuniform sampling of the edge spread function (ESF). In order to resolve this problem, a modified slanted-edge method using nonuniform fast Fourier transform (NUFFT) for camera MTF measurement is proposed. Theoretical simulations for images with noise at a different nonuniform sampling rate of ESF are performed using the proposed modified slanted-edge method. It is shown that the proposed method successfully eliminates the error due to the nonuniform sampling of the ESF. An experimental setup for camera MTF measurement is established to verify the accuracy of the proposed method. The experiment results show that under different nonuniform sampling rates of ESF, the proposed modified slanted-edge method has improved accuracy for the camera MTF measurement compared to the ISO 12233 slanted-edge method.
ERIC Educational Resources Information Center
Bouck, Emily C.; Bouck, Mary K.; Joshi, Gauri S.; Johnson, Linley
2016-01-01
Students with learning disabilities struggle with word problems in mathematics classes. Understanding the type of errors students make when working through such mathematical problems can further describe student performance and highlight student difficulties. Through the use of error codes, researchers analyzed the type of errors made by 14 sixth…
Reed Solomon codes for error control in byte organized computer memory systems
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.
1984-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation are presented. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.
Investigation of advanced phase-shifting projected fringe profilometry techniques
NASA Astrophysics Data System (ADS)
Liu, Hongyu
1999-11-01
The phase-shifting projected fringe profilometry (PSPFP) technique is a powerful tool in the profile measurements of rough engineering surfaces. Compared with other competing techniques, this technique is notable for its full-field measurement capacity, system simplicity, high measurement speed, and low environmental vulnerability. The main purpose of this dissertation is to tackle three important problems, which severely limit the capability and the accuracy of the PSPFP technique, with some new approaches. Chapter 1 provides some background information of the PSPFP technique including the measurement principles, basic features, and related techniques is briefly introduced. The objectives and organization of the thesis are also outlined. Chapter 2 gives a theoretical treatment to the absolute PSPFP measurement. The mathematical formulations and basic requirements of the absolute PSPFP measurement and its supporting techniques are discussed in detail. Chapter 3 introduces the experimental verification of the proposed absolute PSPFP technique. Some design details of a prototype system are discussed as supplements to the previous theoretical analysis. Various fundamental experiments performed for concept verification and accuracy evaluation are introduced together with some brief comments. Chapter 4 presents the theoretical study of speckle- induced phase measurement errors. In this analysis, the expression for speckle-induced phase errors is first derived based on the multiplicative noise model of image- plane speckles. The statistics and the system dependence of speckle-induced phase errors are then thoroughly studied through numerical simulations and analytical derivations. Based on the analysis, some suggestions on the system design are given to improve measurement accuracy. Chapter 5 discusses a new technique combating surface reflectivity variations. The formula used for error compensation is first derived based on a simplified model of the detection process. The techniques coping with two major effects of surface reflectivity variations are then introduced. Some fundamental problems in the proposed technique are studied through simulations. Chapter 6 briefly summarizes the major contributions of the current work and provides some suggestions for the future research.
Chen, Benyong; Cheng, Liang; Yan, Liping; Zhang, Enzheng; Lou, Yingtian
2017-03-01
The laser beam drift seriously influences the accuracy of straightness or displacement measurement in laser interferometers, especially for the long travel measurement. To solve this problem, a heterodyne straightness and displacement measuring interferometer with laser beam drift compensation is proposed. In this interferometer, the simultaneous measurement of straightness error and displacement is realized by using heterodyne interferometry, and the laser beam drift is determined to compensate the measurement results of straightness error and displacement in real time. The optical configuration of the interferometer is designed. The principle of the simultaneous measurement of straightness, displacement, and laser beam drift is depicted and analyzed in detail. And the compensation of the laser beam drift for the straightness error and displacement is presented. Several experiments were performed to verify the feasibility of the interferometer and the effectiveness of the laser beam drift compensation. The experiments of laser beam stability show that the position stability of the laser beam spot can be improved by more than 50% after compensation. The measurement and compensation experiments of straightness error and displacement by testing a linear stage at different distances show that the straightness and displacement obtained from the interferometer are in agreement with those obtained from a compared interferometer and the measured stage. These demonstrate that the merits of this interferometer are not only eliminating the influence of laser beam drift on the measurement accuracy but also having the abilities of simultaneous measurement of straightness error and displacement as well as being suitable for long-travel linear stage metrology.
Sampling problems: The small scale structure of precipitation
NASA Technical Reports Server (NTRS)
Crane, R. K.
1981-01-01
The quantitative measurement of precipitation characteristics for any area on the surface of the Earth is not an easy task. Precipitation is rather variable in both space and time, and the distribution of surface rainfall data given location typically is substantially skewed. There are a number of precipitation process at work in the atmosphere, and few of them are well understood. The formal theory on sampling and estimating precipitation appears considerably deficient. Little systematic attention is given to nonsampling errors that always arise in utilizing any measurement system. Although the precipitation measurement problem is an old one, it continues to be one that is in need of systematic and careful attention. A brief history of the presently competing measurement technologies should aid us in understanding the problem inherent in this measurement task.
Discretization vs. Rounding Error in Euler's Method
ERIC Educational Resources Information Center
Borges, Carlos F.
2011-01-01
Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…
NASA Technical Reports Server (NTRS)
Gejji, Raghvendra, R.
1992-01-01
Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.
ERIC Educational Resources Information Center
Ulu, Mustafa
2017-01-01
This study aims to identify errors made by primary school students when modelling word problems and to eliminate those errors through scaffolding. A 10-question problem-solving achievement test was used in the research. The qualitative and quantitative designs were utilized together. The study group of the quantitative design comprises 248…
Bennett, Jerry M.; Cortes, Peter M.
1985-01-01
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios. PMID:16664367
Bennett, J M; Cortes, P M
1985-09-01
The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.
Reduction of Non-uniform Beam Filling Effects by Vertical Decorrelation: Theory and Simulations
NASA Technical Reports Server (NTRS)
Short, David; Nakagawa, Katsuhiro; Iguchi, Toshio
2013-01-01
Algorithms for estimating precipitation rates from spaceborne radar observations of apparent radar reflectivity depend on attenuation correction procedures. The algorithm suite for the Ku-band precipitation radar aboard the Tropical Rainfall Measuring Mission satellite is one such example. The well-known problem of nonuniform beam filling is a source of error in the estimates, especially in regions where intense deep convection occurs. The error is caused by unresolved horizontal variability in precipitation characteristics such as specific attenuation, rain rate, and effective reflectivity factor. This paper proposes the use of vertical decorrelation for correcting the nonuniform beam filling error developed under the assumption of a perfect vertical correlation. Empirical tests conducted using ground-based radar observations in the current simulation study show that decorrelation effects are evident in tilted convective cells. However, the problem of obtaining reasonable estimates of a governing parameter from the satellite data remains unresolved.
NASA Astrophysics Data System (ADS)
Peckerar, Martin C.; Marrian, Christie R.
1995-05-01
Standard matrix inversion methods of e-beam proximity correction are compared with a variety of pseudoinverse approaches based on gradient descent. It is shown that the gradient descent methods can be modified using 'regularizers' (terms added to the cost function minimized during gradient descent). This modification solves the 'negative dose' problem in a mathematically sound way. Different techniques are contrasted using a weighted error measure approach. It is shown that the regularization approach leads to the highest quality images. In some cases, ignoring negative doses yields results which are worse than employing an uncorrected dose file.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Papell, S. S.
1973-01-01
General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. In addition, a correction procedure is presented which allows a better estimate for the true value of the local heat flux. As an example of the technique, the formulas are applied to the cases of heat transfer to air slot jets impinging on flat and concave surfaces. It is shown that for many practical problems, the use of very small heat flux gages is often unnecessary.
NASA Astrophysics Data System (ADS)
Greenough, J. A.; Rider, W. J.
2004-05-01
A numerical study is undertaken comparing a fifth-order version of the weighted essentially non-oscillatory numerical (WENO5) method to a modern piecewise-linear, second-order, version of Godunov's (PLMDE) method for the compressible Euler equations. A series of one-dimensional test problems are examined beginning with classical linear problems and ending with complex shock interactions. The problems considered are: (1) linear advection of a Gaussian pulse in density, (2) Sod's shock tube problem, (3) the "peak" shock tube problem, (4) a version of the Shu and Osher shock entropy wave interaction and (5) the Woodward and Colella interacting shock wave problem. For each problem and method, run times, density error norms and convergence rates are reported for each method as produced from a common code test-bed. The linear problem exhibits the advertised convergence rate for both methods as well as the expected large disparity in overall error levels; WENO5 has the smaller errors and an enormous advantage in overall efficiency (in accuracy per unit CPU time). For the nonlinear problems with discontinuities, however, we generally see both first-order self-convergence of error as compared to an exact solution, or when an analytic solution is not available, a converged solution generated on an extremely fine grid. The overall comparison of error levels shows some variation from problem to problem. For Sod's shock tube, PLMDE has nearly half the error, while on the peak problem the errors are nearly the same. For the interacting blast wave problem the two methods again produce a similar level of error with a slight edge for the PLMDE. On the other hand, for the Shu-Osher problem, the errors are similar on the coarser grids, but favors WENO by a factor of nearly 1.5 on the finer grids used. In all cases holding mesh resolution constant though, PLMDE is less costly in terms of CPU time by approximately a factor of 6. If the CPU cost is taken as fixed, that is run times are equal for both numerical methods, then PLMDE uniformly produces lower errors than WENO for the fixed computation cost on the test problems considered here.
Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm
Sun, Baoliang; Jiang, Chunlan; Li, Ming
2016-01-01
An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271
NASA Astrophysics Data System (ADS)
Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer M.; Derocher, Andrew E.; Lewis, Mark A.; Jonsen, Ian D.; Mills Flemming, Joanna
2016-05-01
State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible. They can model linear and nonlinear processes using a variety of statistical distributions. Recent ecological SSMs are often complex, with a large number of parameters to estimate. Through a simulation study, we show that even simple linear Gaussian SSMs can suffer from parameter- and state-estimation problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter estimates of a SSM describing the movement of polar bears (Ursus maritimus) result in overestimating their energy expenditure. We suggest potential solutions, but show that it often remains difficult to estimate parameters. While SSMs are powerful tools, they can give misleading results and we urge ecologists to assess whether the parameters can be estimated accurately before drawing ecological conclusions from their results.
Error quantification of osteometric data in forensic anthropology.
Langley, Natalie R; Meadows Jantz, Lee; McNulty, Shauna; Maijanen, Heli; Ousley, Stephen D; Jantz, Richard L
2018-06-01
This study evaluates the reliability of osteometric data commonly used in forensic case analyses, with specific reference to the measurements in Data Collection Procedures 2.0 (DCP 2.0). Four observers took a set of 99 measurements four times on a sample of 50 skeletons (each measurement was taken 200 times by each observer). Two-way mixed ANOVAs and repeated measures ANOVAs with pairwise comparisons were used to examine interobserver (between-subjects) and intraobserver (within-subjects) variability. Relative technical error of measurement (TEM) was calculated for measurements with significant ANOVA results to examine the error among a single observer repeating a measurement multiple times (e.g. repeatability or intraobserver error), as well as the variability between multiple observers (interobserver error). Two general trends emerged from these analyses: (1) maximum lengths and breadths have the lowest error across the board (TEM<0.5), and (2) maximum and minimum diameters at midshaft are more reliable than their positionally-dependent counterparts (i.e. sagittal, vertical, transverse, dorso-volar). Therefore, maxima and minima are specified for all midshaft measurements in DCP 2.0. Twenty-two measurements were flagged for excessive variability (either interobserver, intraobserver, or both); 15 of these measurements were part of the standard set of measurements in Data Collection Procedures for Forensic Skeletal Material, 3rd edition. Each measurement was examined carefully to determine the likely source of the error (e.g. data input, instrumentation, observer's method, or measurement definition). For several measurements (e.g. anterior sacral breadth, distal epiphyseal breadth of the tibia) only one observer differed significantly from the remaining observers, indicating a likely problem with the measurement definition as interpreted by that observer; these definitions were clarified in DCP 2.0 to eliminate this confusion. Other measurements were taken from landmarks that are difficult to locate consistently (e.g. pubis length, ischium length); these measurements were omitted from DCP 2.0. This manual is available for free download online (https://fac.utk.edu/wp-content/uploads/2016/03/DCP20_webversion.pdf), along with an accompanying instructional video (https://www.youtube.com/watch?v=BtkLFl3vim4). Copyright © 2018 Elsevier B.V. All rights reserved.
1983-03-01
AN ANALYSIS OF A FINITE ELEMENT METHOD FOR CONVECTION- DIFFUSION PROBLEMS PART II: A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY by W. G. Szymczak Y 6a...PERIOD COVERED AN ANALYSIS OF A FINITE ELEMENT METHOD FOR final life of the contract CONVECTION- DIFFUSION PROBLEM S. Part II: A POSTERIORI ERROR ...Element Method for Convection- Diffusion Problems. Part II: A Posteriori Error Estimates and Adaptivity W. G. Szvmczak and I. Babu~ka# Laboratory for
Optimal error functional for parameter identification in anisotropic finite strain elasto-plasticity
NASA Astrophysics Data System (ADS)
Shutov, A. V.; Kaygorodtseva, A. A.; Dranishnikov, N. S.
2017-10-01
A problem of parameter identification for a model of finite strain elasto-plasticity is discussed. The utilized phenomenological material model accounts for nonlinear isotropic and kinematic hardening; the model kinematics is described by a nested multiplicative split of the deformation gradient. A hierarchy of optimization problems is considered. First, following the standard procedure, the material parameters are identified through minimization of a certain least square error functional. Next, the focus is placed on finding optimal weighting coefficients which enter the error functional. Toward that end, a stochastic noise with systematic and non-systematic components is introduced to the available measurement results; a superordinate optimization problem seeks to minimize the sensitivity of the resulting material parameters to the introduced noise. The advantage of this approach is that no additional experiments are required; it also provides an insight into the robustness of the identification procedure. As an example, experimental data for the steel 42CrMo4 are considered and a set of weighting coefficients is found, which is optimal in a certain class.
Lüdtke, Oliver; Marsh, Herbert W; Robitzsch, Alexander; Trautwein, Ulrich
2011-12-01
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data when estimating contextual effects are distinguished: unreliability that is due to measurement error and unreliability that is due to sampling error. The fact that studies may or may not correct for these 2 types of error can be translated into a 2 × 2 taxonomy of multilevel latent contextual models comprising 4 approaches: an uncorrected approach, partial correction approaches correcting for either measurement or sampling error (but not both), and a full correction approach that adjusts for both sources of error. It is shown mathematically and with simulated data that the uncorrected and partial correction approaches can result in substantially biased estimates of contextual effects, depending on the number of L1 individuals per group, the number of groups, the intraclass correlation, the number of indicators, and the size of the factor loadings. However, the simulation study also shows that partial correction approaches can outperform full correction approaches when the data provide only limited information in terms of the L2 construct (i.e., small number of groups, low intraclass correlation). A real-data application from educational psychology is used to illustrate the different approaches.
NASA Astrophysics Data System (ADS)
Iyer, Gokul; Ledna, Catherine; Clarke, Leon; Edmonds, James; McJeon, Haewon; Kyle, Page; Williams, James H.
2018-03-01
In the version of this Article previously published, technical problems led to the wrong summary appearing on the homepage, and an incorrect Supplementary Information file being uploaded. Both errors have now been corrected.
Error control for reliable digital data transmission and storage systems
NASA Technical Reports Server (NTRS)
Costello, D. J., Jr.; Deng, R. H.
1985-01-01
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes. Byte oriented codes such as Reed Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this paper we present some special decoding techniques for extended single-and-double-error-correcting RS codes which are capable of high speed operation. These techniques are designed to find the error locations and the error values directly from the syndrome without having to use the iterative alorithm to find the error locator polynomial. Two codes are considered: (1) a d sub min = 4 single-byte-error-correcting (SBEC), double-byte-error-detecting (DBED) RS code; and (2) a d sub min = 6 double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS code.
Sample Size for Estimation of G and Phi Coefficients in Generalizability Theory
ERIC Educational Resources Information Center
Atilgan, Hakan
2013-01-01
Problem Statement: Reliability, which refers to the degree to which measurement results are free from measurement errors, as well as its estimation, is an important issue in psychometrics. Several methods for estimating reliability have been suggested by various theories in the field of psychometrics. One of these theories is the generalizability…
NASA Astrophysics Data System (ADS)
Kustusch, Mary Bridget
2016-06-01
Students in introductory physics struggle with vector algebra and these challenges are often associated with contextual and representational features of the problems. Performance on problems about cross product direction is particularly poor and some research suggests that this may be primarily due to misapplied right-hand rules. However, few studies have had the resolution to explore student use of right-hand rules in detail. This study reviews literature in several disciplines, including spatial cognition, to identify ten contextual and representational problem features that are most likely to influence performance on problems requiring a right-hand rule. Two quantitative measures of performance (correctness and response time) and two qualitative measures (methods used and type of errors made) were used to explore the impact of these problem features on student performance. Quantitative results are consistent with expectations from the literature, but reveal that some features (such as the type of reasoning required and the physical awkwardness of using a right-hand rule) have a greater impact than others (such as whether the vectors are placed together or separate). Additional insight is gained by the qualitative analysis, including identifying sources of difficulty not previously discussed in the literature and revealing that the use of supplemental methods, such as physically rotating the paper, can mitigate errors associated with certain features.
NASA Astrophysics Data System (ADS)
Chen, Zhen; Chan, Tommy H. T.
2017-08-01
This paper proposes a new methodology for moving force identification (MFI) from the responses of bridge deck. Based on the existing time domain method (TDM), the MFI problem eventually becomes solving the linear algebraic equation in the form Ax = b . The vector b is usually contaminated by an unknown error e generating from measurement error, which often called the vector e as ''noise''. With the ill-posed problems that exist in the inverse problem, the identification force would be sensitive to the noise e . The proposed truncated generalized singular value decomposition method (TGSVD) aims at obtaining an acceptable solution and making the noise to be less sensitive to perturbations with the ill-posed problems. The illustrated results show that the TGSVD has many advantages such as higher precision, better adaptability and noise immunity compared with TDM. In addition, choosing a proper regularization matrix L and a truncation parameter k are very useful to improve the identification accuracy and to solve ill-posed problems when it is used to identify the moving force on bridge.
Students’ errors in solving combinatorics problems observed from the characteristics of RME modeling
NASA Astrophysics Data System (ADS)
Meika, I.; Suryadi, D.; Darhim
2018-01-01
This article was written based on the learning evaluation results of students’ errors in solving combinatorics problems observed from the characteristics of Realistic Mathematics Education (RME); that is modeling. Descriptive method was employed by involving 55 students from two international-based pilot state senior high schools in Banten. The findings of the study suggested that the students still committed errors in simplifying the problem as much 46%; errors in making mathematical model (horizontal mathematization) as much 60%; errors in finishing mathematical model (vertical mathematization) as much 65%; and errors in interpretation as well as validation as much 66%.
Simulations in site error estimation for direction finders
NASA Astrophysics Data System (ADS)
López, Raúl E.; Passi, Ranjit M.
1991-08-01
The performance of an algorithm for the recovery of site-specific errors of direction finder (DF) networks is tested under controlled simulated conditions. The simulations show that the algorithm has some inherent shortcomings for the recovery of site errors from the measured azimuth data. These limitations are fundamental to the problem of site error estimation using azimuth information. Several ways for resolving or ameliorating these basic complications are tested by means of simulations. From these it appears that for the effective implementation of the site error determination algorithm, one should design the networks with at least four DFs, improve the alignment of the antennas, and increase the gain of the DFs as much as it is compatible with other operational requirements. The use of a nonzero initial estimate of the site errors when working with data from networks of four or more DFs also improves the accuracy of the site error recovery. Even for networks of three DFs, reasonable site error corrections could be obtained if the antennas could be well aligned.
Dynamic State Estimation of Power Systems With Quantization Effects: A Recursive Filter Approach.
Hu, Liang; Wang, Zidong; Liu, Xiaohui
2016-08-01
In this paper, a recursive filter algorithm is developed to deal with the state estimation problem for power systems with quantized nonlinear measurements. The measurements from both the remote terminal units and the phasor measurement unit are subject to quantizations described by a logarithmic quantizer. Attention is focused on the design of a recursive filter such that, in the simultaneous presence of nonlinear measurements and quantization effects, an upper bound for the estimation error covariance is guaranteed and subsequently minimized. Instead of using the traditional approximation methods in nonlinear estimation that simply ignore the linearization errors, we treat both the linearization and quantization errors as norm-bounded uncertainties in the algorithm development so as to improve the performance of the estimator. For the power system with such kind of introduced uncertainties, a filter is designed in the framework of robust recursive estimation, and the developed filter algorithm is tested on the IEEE benchmark power system to demonstrate its effectiveness.
Krasny-Pacini, Agata; Limond, Jennifer; Evans, Jonathan; Hiebel, Jean; Bendjelida, Karim; Chevignard, Mathilde
2015-01-01
To compare three ways of assessing self-awareness in children with traumatic brain injury (TBI) and to propose a model of child anosognosia. Five single cases of children with severe TBI, aged 8-14, undergoing metacognitive training. Awareness was assessed using three different measures: two measures of metacognitive knowledge/intellectual awareness (a questionnaire and illustrated stories where child characters have everyday problems related to their executive dysfunction) and one measure of on-line/emergent awareness (post-task appraisal of task difficulty). All three measures showed good feasibility. Analysis of awareness deficit scores indicated large variability (1-100%). Three children showed dissociated scores. Based on these results, we propose a model of child self-awareness and anosognosia and a framework for awareness assessment for rehabilitation purposes. The model emphasizes (1) the role of on-line error detection in the construction of autobiographical memories that allow a child to build a self-knowledge of his/her strengths and difficulties; (2) the multiple components of awareness that need to be assessed separately; (3) the implications for rehabilitation: errorless versus error-based learning, rehabilitation approaches based on metacognition, rationale for rehabilitation intervention based on child's age and impaired awareness component, ethical and developmental consideration of confrontational methods. Self-awareness has multiple components that need to be assessed separately, to better adapt cognitive rehabilitation. Using questionnaires and discrepancy scores are not sufficient to assess awareness, because it does not include on-line error detection, which can be massively impaired in children, especially those with impaired executive functions. On-line error detection is important to promote and error-based learning is useful to allow a child to build a self-knowledge of his/her strengths and difficulties, in the absence of severe episodic memory problems. Metacognitive trainings may not be appropriate for younger children who have age appropriate developmentally immature self-awareness, nor for patients with brain injury if they suffer anosognosia because of their brain injury.
Study of accuracy of precipitation measurements using simulation method
NASA Astrophysics Data System (ADS)
Nagy, Zoltán; Lajos, Tamás; Morvai, Krisztián
2013-04-01
Hungarian Meteorological Service1 Budapest University of Technology and Economics2 Precipitation is one of the the most important meteorological parameters describing the state of the climate and to get correct information from trends, accurate measurements of precipitation is very important. The problem is that the precipitation measurements are affected by systematic errors leading to an underestimation of actual precipitation which errors vary by type of precipitaion and gauge type. It is well known that the wind speed is the most important enviromental factor that contributes to the underestimation of actual precipitation, especially for solid precipitation. To study and correct the errors of precipitation measurements there are two basic possibilities: · Use of results and conclusion of International Precipitation Measurements Intercomparisons; · To build standard reference gauges (DFIR, pit gauge) and make own investigation; In 1999 at the HMS we tried to achieve own investigation and built standard reference gauges But the cost-benefit ratio in case of snow (use of DFIR) was very bad (we had several winters without significant amount of snow, while the state of DFIR was continously falling) Due to the problem mentioned above there was need for new approximation that was the modelling made by Budapest University of Technology and Economics, Department of Fluid Mechanics using the FLUENT 6.2 model. The ANSYS Fluent package is featured fluid dynamics solution for modelling flow and other related physical phenomena. It provides the tools needed to describe atmospheric processes, design and optimize new equipment. The CFD package includes solvers that accurately simulate behaviour of the broad range of flows that from single-phase to multi-phase. The questions we wanted to get answer to are as follows: · How do the different types of gauges deform the airflow around themselves? · Try to give quantitative estimation of wind induced error. · How does the use of wind shield improve the accuracy of precipitation measurements? · Try to find the source of the error that can be detected at tipping bucket raingauge in winter time because of use of heating power? On our poster we would like to present the answers to the questions listed above.
NASA Astrophysics Data System (ADS)
Fulkerson, David E.
2010-02-01
This paper describes a new methodology for characterizing the electrical behavior and soft error rate (SER) of CMOS and SiGe HBT integrated circuits that are struck by ions. A typical engineering design problem is to calculate the SER of a critical path that commonly includes several circuits such as an input buffer, several logic gates, logic storage, clock tree circuitry, and an output buffer. Using multiple 3D TCAD simulations to solve this problem is too costly and time-consuming for general engineering use. The new and simple methodology handles the problem with ease by simple SPICE simulations. The methodology accurately predicts the measured threshold linear energy transfer (LET) of a bulk CMOS SRAM. It solves for circuit currents and voltage spikes that are close to those predicted by expensive 3D TCAD simulations. It accurately predicts the measured event cross-section vs. LET curve of an experimental SiGe HBT flip-flop. The experimental cross section vs. frequency behavior and other subtle effects are also accurately predicted.
Training of carbohydrate estimation for people with diabetes using mobile augmented reality.
Domhardt, Michael; Tiefengrabner, Martin; Dinic, Radomir; Fötschl, Ulrike; Oostingh, Gertie J; Stütz, Thomas; Stechemesser, Lars; Weitgasser, Raimund; Ginzinger, Simon W
2015-05-01
Imprecise carbohydrate counting as a measure to guide the treatment of diabetes may be a source of errors resulting in problems in glycemic control. Exact measurements can be tedious, leading most patients to estimate their carbohydrate intake. In the presented pilot study a smartphone application (BE(AR)), that guides the estimation of the amounts of carbohydrates, was used by a group of diabetic patients. Eight adult patients with diabetes mellitus type 1 were recruited for the study. At the beginning of the study patients were introduced to BE(AR) in sessions lasting 45 minutes per patient. Patients redraw the real food in 3D on the smartphone screen. Based on a selected food type and the 3D form created using BE(AR) an estimation of carbohydrate content is calculated. Patients were supplied with the application on their personal smartphone or a loaner device and were instructed to use the application in real-world context during the study period. For evaluation purpose a test measuring carbohydrate estimation quality was designed and performed at the beginning and the end of the study. In 44% of the estimations performed at the end of the study the error reduced by at least 6 grams of carbohydrate. This improvement occurred albeit several problems with the usage of BE(AR) were reported. Despite user interaction problems in this group of patients the provided intervention resulted in a reduction in the absolute error of carbohydrate estimation. Intervention with smartphone applications to assist carbohydrate counting apparently results in more accurate estimations. © 2015 Diabetes Technology Society.
Batistatou, Evridiki; McNamee, Roseanne
2012-12-10
It is known that measurement error leads to bias in assessing exposure effects, which can however, be corrected if independent replicates are available. For expensive replicates, two-stage (2S) studies that produce data 'missing by design', may be preferred over a single-stage (1S) study, because in the second stage, measurement of replicates is restricted to a sample of first-stage subjects. Motivated by an occupational study on the acute effect of carbon black exposure on respiratory morbidity, we compare the performance of several bias-correction methods for both designs in a simulation study: an instrumental variable method (EVROS IV) based on grouping strategies, which had been recommended especially when measurement error is large, the regression calibration and the simulation extrapolation methods. For the 2S design, either the problem of 'missing' data was ignored or the 'missing' data were imputed using multiple imputations. Both in 1S and 2S designs, in the case of small or moderate measurement error, regression calibration was shown to be the preferred approach in terms of root mean square error. For 2S designs, regression calibration as implemented by Stata software is not recommended in contrast to our implementation of this method; the 'problematic' implementation of regression calibration although substantially improved with use of multiple imputations. The EVROS IV method, under a good/fairly good grouping, outperforms the regression calibration approach in both design scenarios when exposure mismeasurement is severe. Both in 1S and 2S designs with moderate or large measurement error, simulation extrapolation severely failed to correct for bias. Copyright © 2012 John Wiley & Sons, Ltd.
Optimal sequential measurements for bipartite state discrimination
NASA Astrophysics Data System (ADS)
Croke, Sarah; Barnett, Stephen M.; Weir, Graeme
2017-05-01
State discrimination is a useful test problem with which to clarify the power and limitations of different classes of measurement. We consider the problem of discriminating between given states of a bipartite quantum system via sequential measurement of the subsystems, with classical feed-forward of measurement results. Our aim is to understand when sequential measurements, which are relatively easy to implement experimentally, perform as well, or almost as well, as optimal joint measurements, which are in general more technologically challenging. We construct conditions that the optimal sequential measurement must satisfy, analogous to the well-known Helstrom conditions for minimum error discrimination in the unrestricted case. We give several examples and compare the optimal probability of correctly identifying the state via global versus sequential measurement strategies.
Stetson, Peter D.; McKnight, Lawrence K.; Bakken, Suzanne; Curran, Christine; Kubose, Tate T.; Cimino, James J.
2002-01-01
Medical errors are common, costly and often preventable. Work in understanding the proximal causes of medical errors demonstrates that systems failures predispose to adverse clinical events. Most of these systems failures are due to lack of appropriate information at the appropriate time during the course of clinical care. Problems with clinical communication are common proximal causes of medical errors. We have begun a project designed to measure the impact of wireless computing on medical errors. We report here on our efforts to develop an ontology representing the intersection of medical errors, information needs and the communication space. We will use this ontology to support the collection, storage and interpretation of project data. The ontology’s formal representation of the concepts in this novel domain will help guide the rational deployment of our informatics interventions. A real-life scenario is evaluated using the ontology in order to demonstrate its utility.
Analysis of the new polarimeter for the Marshall Space Flight Center vector magnetograph
NASA Technical Reports Server (NTRS)
West, E. A.
1985-01-01
The magnetograph was upgraded in both electronic control of the magnetograph hardware and in the polarization optics. The problems associated with the orignal polarimeter were: (1) field of view errors associated with the natural birefringence of the KD*P crystals; (2.) KD*P electrode failure due to the halfwave dc voltage required in one of the operational sequences; and (3) breakdown of the retardation properties of some KD*Ps when exposed to a zero to halfwave modulation (DC) scheme. The new polarimeter gives up the flexibility provided by two variable waveplates to adjust the retardances of the optics for a particular polarization measurement, but solves the problems associated with the original polarimeter. With the addition of the quartz quarterwave plates, a new optical alignment was developed to allow the remaining KD*P to correct for errors in the waveplates. The new optical alignment of the polarimeter is prescribed. The various sources of error, and how those errors are minimized so that the magnetograph can look at the transverse field in real time are discussed.
Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.
Pogue, B W; Patterson, M S
1994-07-01
The goal of frequency-domain optical absorption spectroscopy is the non-invasive determination of the absorption coefficient of a specific tissue volume. Since this allows the concentration of endogenous and exogenous chromophores to be calculated, there is considerable potential for clinical application. The technique relies on the measurement of the phase and modulation of light, which is diffusely reflected or transmitted by the tissue when it is illuminated by an intensity-modulated source. A model of light propagation must then be used to deduce the absorption coefficient. For simplicity, it is usual to assume the tissue is either infinite in extent (for transmission measurements) or semi-infinite (for reflectance measurements). The goal of this paper is to examine the errors introduced by these assumptions when measurements are actually performed on finite volumes. Diffusion-theory calculations and experimental measurements were performed for slabs, cylinders and spheres with optical properties characteristic of soft tissues in the near infrared. The error in absorption coefficient is presented as a function of object size as a guideline to when the simple models may be used. For transmission measurements, the error is almost independent of the true absorption coefficient, which allows absolute changes in absorption to be measured accurately. The implications of these errors in absorption coefficient for two clinical problems--quantitation of an exogenous photosensitizer and measurement of haemoglobin oxygenation--are presented and discussed.
Flexible methods for segmentation evaluation: Results from CT-based luggage screening
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2017-01-01
BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346
Blood transfusion sampling and a greater role for error recovery.
Oldham, Jane
Patient identification errors in pre-transfusion blood sampling ('wrong blood in tube') are a persistent area of risk. These errors can potentially result in life-threatening complications. Current measures to address root causes of incidents and near misses have not resolved this problem and there is a need to look afresh at this issue. PROJECT PURPOSE: This narrative review of the literature is part of a wider system-improvement project designed to explore and seek a better understanding of the factors that contribute to transfusion sampling error as a prerequisite to examining current and potential approaches to error reduction. A broad search of the literature was undertaken to identify themes relating to this phenomenon. KEY DISCOVERIES: Two key themes emerged from the literature. Firstly, despite multi-faceted causes of error, the consistent element is the ever-present potential for human error. Secondly, current focus on error prevention could potentially be augmented with greater attention to error recovery. Exploring ways in which clinical staff taking samples might learn how to better identify their own errors is proposed to add to current safety initiatives.
Measurement of the True Dynamic and Static Pressures in Flight
NASA Technical Reports Server (NTRS)
Kiel, Georg
1939-01-01
In this report, two reliable methods are presented, with the aid of which the undisturbed flight dynamic pressure and the true static pressure may be determined without error. These problems were solved chiefly through practical flight tests.
Optimization of Control Points Number at Coordinate Measurements based on the Monte-Carlo Method
NASA Astrophysics Data System (ADS)
Korolev, A. A.; Kochetkov, A. V.; Zakharov, O. V.
2018-01-01
Improving the quality of products causes an increase in the requirements for the accuracy of the dimensions and shape of the surfaces of the workpieces. This, in turn, raises the requirements for accuracy and productivity of measuring of the workpieces. The use of coordinate measuring machines is currently the most effective measuring tool for solving similar problems. The article proposes a method for optimizing the number of control points using Monte Carlo simulation. Based on the measurement of a small sample from batches of workpieces, statistical modeling is performed, which allows one to obtain interval estimates of the measurement error. This approach is demonstrated by examples of applications for flatness, cylindricity and sphericity. Four options of uniform and uneven arrangement of control points are considered and their comparison is given. It is revealed that when the number of control points decreases, the arithmetic mean decreases, the standard deviation of the measurement error increases and the probability of the measurement α-error increases. In general, it has been established that it is possible to repeatedly reduce the number of control points while maintaining the required measurement accuracy.
Student Errors in Dynamic Mathematical Environments
ERIC Educational Resources Information Center
Brown, Molly; Bossé, Michael J.; Chandler, Kayla
2016-01-01
This study investigates the nature of student errors in the context of problem solving and Dynamic Math Environments. This led to the development of the Problem Solving Action Identification Framework; this framework captures and defines all activities and errors associated with problem solving in a dynamic math environment. Found are three…
ERIC Educational Resources Information Center
Hameed, Paikar Fatima Mazhar
2016-01-01
The craziness of English spelling has undeniably perplexed learners, especially in an EFL context as in the Kingdom of Saudi Arabia. In these situations, among other obstacles, learners also have to tackle the perpetual and unavoidable problem of MT interference. Sadly, this perplexity takes the shape of a real problem in the language classroom…
NASA Astrophysics Data System (ADS)
Kim, Younsu; Kim, Sungmin; Boctor, Emad M.
2017-03-01
An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty and results in large standard deviations for each measurement when we compare accuracy with and without the guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane adjustment, the result showed a mean error of 1.62+/-0.72mm. The mean error increased to 3.58+/-2.07mm without the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam thickness.
Dealing with dietary measurement error in nutritional cohort studies.
Freedman, Laurence S; Schatzkin, Arthur; Midthune, Douglas; Kipnis, Victor
2011-07-20
Dietary measurement error creates serious challenges to reliably discovering new diet-disease associations in nutritional cohort studies. Such error causes substantial underestimation of relative risks and reduction of statistical power for detecting associations. On the basis of data from the Observing Protein and Energy Nutrition Study, we recommend the following approaches to deal with these problems. Regarding data analysis of cohort studies using food-frequency questionnaires, we recommend 1) using energy adjustment for relative risk estimation; 2) reporting estimates adjusted for measurement error along with the usual relative risk estimates, whenever possible (this requires data from a relevant, preferably internal, validation study in which participants report intakes using both the main instrument and a more detailed reference instrument such as a 24-hour recall or multiple-day food record); 3) performing statistical adjustment of relative risks, based on such validation data, if they exist, using univariate (only for energy-adjusted intakes such as densities or residuals) or multivariate regression calibration. We note that whereas unadjusted relative risk estimates are biased toward the null value, statistical significance tests of unadjusted relative risk estimates are approximately valid. Regarding study design, we recommend increasing the sample size to remedy loss of power; however, it is important to understand that this will often be an incomplete solution because the attenuated signal may be too small to distinguish from unmeasured confounding in the model relating disease to reported intake. Future work should be devoted to alleviating the problem of signal attenuation, possibly through the use of improved self-report instruments or by combining dietary biomarkers with self-report instruments.
NASA Astrophysics Data System (ADS)
Kornilin, Dmitriy V.; Kudryavtsev, Ilya A.; McMillan, Alison J.; Osanlou, Ardeshir; Ratcliffe, Ian
2017-06-01
Modern hydraulic systems should be monitored on the regular basis. One of the most effective ways to address this task is utilizing in-line automatic particle counters (APC) built inside of the system. The measurement of particle concentration in hydraulic liquid by APC is crucial because increasing numbers of particles should mean functional problems. Existing automatic particle counters have significant limitation for the precise measurement of relatively low concentration of particle in aerospace systems or they are unable to measure higher concentration in industrial ones. Both issues can be addressed by implementation of the CMOS image sensor instead of single photodiode used in the most of APC. CMOS image sensor helps to overcome the problem of the errors in volume measurement caused by inequality of particle speed inside of tube. Correction is based on the determination of the particle position and parabolic velocity distribution profile. Proposed algorithms are also suitable for reducing the errors related to the particles matches in measurement volume. The results of simulation show that the accuracy increased up to 90 per cent and the resolution improved ten times more compared to the single photodiode sensor.
NASA Astrophysics Data System (ADS)
Singh, Sarvesh Kumar; Kumar, Pramod; Rani, Raj; Turbelin, Grégory
2017-04-01
The study highlights a theoretical comparison and various interpretations of a recent inversion technique, called renormalization, developed for the reconstruction of unknown tracer emissions from their measured concentrations. The comparative interpretations are presented in relation to the other inversion techniques based on principle of regularization, Bayesian, minimum norm, maximum entropy on mean, and model resolution optimization. It is shown that the renormalization technique can be interpreted in a similar manner to other techniques, with a practical choice of a priori information and error statistics, while eliminating the need of additional constraints. The study shows that the proposed weight matrix and weighted Gram matrix offer a suitable deterministic choice to the background error and measurement covariance matrices, respectively, in the absence of statistical knowledge about background and measurement errors. The technique is advantageous since it (i) utilizes weights representing a priori information apparent to the monitoring network, (ii) avoids dependence on background source estimates, (iii) improves on alternative choices for the error statistics, (iv) overcomes the colocalization problem in a natural manner, and (v) provides an optimally resolved source reconstruction. A comparative illustration of source retrieval is made by using the real measurements from a continuous point release conducted in Fusion Field Trials, Dugway Proving Ground, Utah.
The sound of moving bodies. Ph.D. Thesis - Cambridge Univ.
NASA Technical Reports Server (NTRS)
Brentner, Kenneth Steven
1990-01-01
The importance of the quadrupole source term in the Ffowcs, Williams, and Hawkings (FWH) equation was addressed. The quadrupole source contains fundamental components of the complete fluid mechanics problem, which are ignored only at the risk of error. The results made it clear that any application of the acoustic analogy should begin with all of the source terms in the FWH theory. The direct calculation of the acoustic field as part of the complete unsteady fluid mechanics problem using CFD is considered. It was shown that aeroelastic calculation can indeed be made with CFD codes. The results indicate that the acoustic field is the most susceptible component of the computation to numerical error. Therefore, the ability to measure the damping of acoustic waves is absolutely essential both to develop acoustic computations. Essential groundwork for a new approach to the problem of sound generation by moving bodies is presented. This new computational acoustic approach holds the promise of solving many problems hitherto pushed aside.
ERIC Educational Resources Information Center
Erwin, T. Dary
Rating scales are a typical method for evaluating a student's performance in outcomes assessment. The analysis of the quality of information from rating scales poses special measurement problems when researchers work with faculty in their development. Generalizability measurement theory offers a set of techniques for estimating errors or…
A simplified satellite navigation system for an autonomous Mars roving vehicle.
NASA Technical Reports Server (NTRS)
Janosko, R. E.; Shen, C. N.
1972-01-01
The use of a retroflecting satellite and a laser rangefinder to navigate a Martian roving vehicle is considered in this paper. It is shown that a simple system can be employed to perform this task. An error analysis is performed on the navigation equations and it is shown that the error inherent in the scheme proposed can be minimized by the proper choice of measurement geometry. A nonlinear programming approach is used to minimize the navigation error subject to constraints that are due to geometric and laser requirements. The problem is solved for a particular set of laser parameters and the optimal solution is presented.
Problem of Mistakes in Databases, Processing and Interpretation of Observations of the Sun. I.
NASA Astrophysics Data System (ADS)
Lozitska, N. I.
In databases of observations unnoticed mistakes and misprints could occur at any stage of observation, preparation and processing of databases. The current detection of errors is complicated by the fact that the works of observer, databases compiler and researcher were divided. Data acquisition from a spacecraft requires the greater amount of researchers than for ground-based observations. As a result, the probability of errors is increasing. Keeping track of the errors on each stage is very difficult, so we use of cross-comparison of data from different sources. We revealed some misprints in the typographic and digital results of sunspot group area measurements.
Improvement on Timing Accuracy of LIDAR for Remote Sensing
NASA Astrophysics Data System (ADS)
Zhou, G.; Huang, W.; Zhou, X.; Huang, Y.; He, C.; Li, X.; Zhang, L.
2018-05-01
The traditional timing discrimination technique for laser rangefinding in remote sensing, which is lower in measurement performance and also has a larger error, has been unable to meet the high precision measurement and high definition lidar image. To solve this problem, an improvement of timing accuracy based on the improved leading-edge timing discrimination (LED) is proposed. Firstly, the method enables the corresponding timing point of the same threshold to move forward with the multiple amplifying of the received signal. Then, timing information is sampled, and fitted the timing points through algorithms in MATLAB software. Finally, the minimum timing error is calculated by the fitting function. Thereby, the timing error of the received signal from the lidar is compressed and the lidar data quality is improved. Experiments show that timing error can be significantly reduced by the multiple amplifying of the received signal and the algorithm of fitting the parameters, and a timing accuracy of 4.63 ps is achieved.
Analysis of Solar Spectral Irradiance Measurements from the SBUV/2-Series and the SSBUV Instruments
NASA Technical Reports Server (NTRS)
Cebula, Richard P.; DeLand, Matthew T.; Hilsenrath, Ernest
1997-01-01
During this period of performance, 1 March 1997 - 31 August 1997, the NOAA-11 SBUV/2 solar spectral irradiance data set was validated using both internal and external assessments. Initial quality checking revealed minor problems with the data (e.g. residual goniometric errors, that were manifest as differences between the two scans acquired each day). The sources of these errors were determined and the errors were corrected. Time series were constructed for selected wavelengths and the solar irradiance changes measured by the instrument were compared to a Mg II proxy-based model of short- and long-term solar irradiance variations. This analysis suggested that errors due to residual, uncorrected long-term instrument drift have been reduced to less than 1-2% over the entire 5.5 year NOAA-11 data record. Detailed statistical analysis was performed. This analysis, which will be documented in a manuscript now in preparation, conclusively demonstrates the evolution of solar rotation periodicity and strength during solar cycle 22.
ERIC Educational Resources Information Center
Cheng, Lu Pien
2015-01-01
In this study, ways in which 9-year old students from one Singapore school solved 1-step and 2-step word problems based on the three semantic structures were examined. The students' work and diagrams provided insights into the range of errors in word problem solving for 1- step and 2-step word problems. In particular, the errors provided some…
Greenland, Sander; Gustafson, Paul
2006-07-01
Researchers sometimes argue that their exposure-measurement errors are independent of other errors and are nondifferential with respect to disease, resulting in estimation bias toward the null. Among well-known problems with such arguments are that independence and nondifferentiality are harder to satisfy than ordinarily appreciated (e.g., because of correlation of errors in questionnaire items, and because of uncontrolled covariate effects on error rates); small violations of independence or nondifferentiality may lead to bias away from the null; and, if exposure is polytomous, the bias produced by independent nondifferential error is not always toward the null. The authors add to this list by showing that, in a 2 x 2 table (for which independent nondifferential error produces bias toward the null), accounting for independent nondifferential error does not reduce the p value even though it increases the point estimate. Thus, such accounting should not increase certainty that an association is present.
Importance of interpolation and coincidence errors in data fusion
NASA Astrophysics Data System (ADS)
Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana
2018-02-01
The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.
Camera calibration correction in shape from inconsistent silhouette
USDA-ARS?s Scientific Manuscript database
The use of shape from silhouette for reconstruction tasks is plagued by two types of real-world errors: camera calibration error and silhouette segmentation error. When either error is present, we call the problem the Shape from Inconsistent Silhouette (SfIS) problem. In this paper, we show how sm...
Newman-Toker, David E; Austin, J Matthew; Derk, Jordan; Danforth, Melissa; Graber, Mark L
2017-06-27
A 2015 National Academy of Medicine report on improving diagnosis in health care made recommendations for direct action by hospitals and health systems. Little is known about how health care provider organizations are addressing diagnostic safety/quality. This study is an anonymous online survey of safety professionals from US hospitals and health systems in July-August 2016. The survey was sent to those attending a Leapfrog Group webinar on misdiagnosis (n=188). The instrument was focused on knowledge, attitudes, and capability to address diagnostic errors at the institutional level. Overall, 61 (32%) responded, including community hospitals (42%), integrated health networks (25%), and academic centers (21%). Awareness was high, but commitment and capability were low (31% of leaders understand the problem; 28% have sufficient safety resources; and 25% have made diagnosis a top institutional safety priority). Ongoing efforts to improve diagnostic safety were sparse and mostly included root cause analysis and peer review feedback around diagnostic errors. The top three barriers to addressing diagnostic error were lack of awareness of the problem, lack of measures of diagnostic accuracy and error, and lack of feedback on diagnostic performance. The top two tools viewed as critically important for locally tackling the problem were routine feedback on diagnostic performance and culture change to emphasize diagnostic safety. Although hospitals and health systems appear to be aware of diagnostic errors as a major safety imperative, most organizations (even those that appear to be making a strong commitment to patient safety) are not yet doing much to improve diagnosis. Going forward, efforts to activate health care organizations will be essential to improving diagnostic safety.
Methods of Fitting a Straight Line to Data: Examples in Water Resources
Hirsch, Robert M.; Gilroy, Edward J.
1984-01-01
Three methods of fitting straight lines to data are described and their purposes are discussed and contrasted in terms of their applicability in various water resources contexts. The three methods are ordinary least squares (OLS), least normal squares (LNS), and the line of organic correlation (OC). In all three methods the parameters are based on moment statistics of the data. When estimation of an individual value is the objective, OLS is the most appropriate. When estimation of many values is the objective and one wants the set of estimates to have the appropriate variance, then OC is most appropriate. When one wishes to describe the relationship between two variables and measurement error is unimportant, then OC is most appropriate. Where the error is important in descriptive problems or in calibration problems, then structural analysis techniques may be most appropriate. Finally, if the problem is one of describing some geographic trajectory, then LNS is most appropriate.
Rate and power efficient image compressed sensing and transmission
NASA Astrophysics Data System (ADS)
Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan
2016-01-01
This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.
Distance error correction for time-of-flight cameras
NASA Astrophysics Data System (ADS)
Fuersattel, Peter; Schaller, Christian; Maier, Andreas; Riess, Christian
2017-06-01
The measurement accuracy of time-of-flight cameras is limited due to properties of the scene and systematic errors. These errors can accumulate to multiple centimeters which may limit the applicability of these range sensors. In the past, different approaches have been proposed for improving the accuracy of these cameras. In this work, we propose a new method that improves two important aspects of the range calibration. First, we propose a new checkerboard which is augmented by a gray-level gradient. With this addition it becomes possible to capture the calibration features for intrinsic and distance calibration at the same time. The gradient strip allows to acquire a large amount of distance measurements for different surface reflectivities, which results in more meaningful training data. Second, we present multiple new features which are used as input to a random forest regressor. By using random regression forests, we circumvent the problem of finding an accurate model for the measurement error. During application, a correction value for each individual pixel is estimated with the trained forest based on a specifically tailored feature vector. With our approach the measurement error can be reduced by more than 40% for the Mesa SR4000 and by more than 30% for the Microsoft Kinect V2. In our evaluation we also investigate the impact of the individual forest parameters and illustrate the importance of the individual features.
Genotyping and inflated type I error rate in genome-wide association case/control studies
Sampson, Joshua N; Zhao, Hongyu
2009-01-01
Background One common goal of a case/control genome wide association study (GWAS) is to find SNPs associated with a disease. Traditionally, the first step in such studies is to assign a genotype to each SNP in each subject, based on a statistic summarizing fluorescence measurements. When the distributions of the summary statistics are not well separated by genotype, the act of genotype assignment can lead to more potential problems than acknowledged by the literature. Results Specifically, we show that the proportions of each called genotype need not equal the true proportions in the population, even as the number of subjects grows infinitely large. The called genotypes for two subjects need not be independent, even when their true genotypes are independent. Consequently, p-values from tests of association can be anti-conservative, even when the distributions of the summary statistic for the cases and controls are identical. To address these problems, we propose two new tests designed to reduce the inflation in the type I error rate caused by these problems. The first algorithm, logiCALL, measures call quality by fully exploring the likelihood profile of intensity measurements, and the second algorithm avoids genotyping by using a likelihood ratio statistic. Conclusion Genotyping can introduce avoidable false positives in GWAS. PMID:19236714
Computer discrimination procedures applicable to aerial and ERTS multispectral data
NASA Technical Reports Server (NTRS)
Richardson, A. J.; Torline, R. J.; Allen, W. A.
1970-01-01
Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.
Reduced backscattering cross section (Sigma degree) data from the Skylab S-193 radar altimeter
NASA Technical Reports Server (NTRS)
Brown, G. S.
1975-01-01
Backscattering cross section per unit scattering area data, reduced from measurements made by the Skylab S-193 radar altimeter over the ocean surface are presented. Descriptions of the altimeter are given where applicable to the measurement process. Analytical solutions are obtained for the flat surface impulse response for the case of a nonsymmetrical antenna pattern. Formulations are developed for converting altimeter AGC outputs into values for the backscattering cross section. Reduced data are presented for Missions SL-2, 3 and 4 for all modes of the altimeter where sufficient calibration existed. The problem of interpreting land scatter data is also discussed. Finally, a comprehensive error analysis of the measurement is presented and worst case random and bias errors are estimated.
Approximate error conjugation gradient minimization methods
Kallman, Jeffrey S
2013-05-21
In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.
Does the cost function matter in Bayes decision rule?
Schlü ter, Ralf; Nussbaum-Thom, Markus; Ney, Hermann
2012-02-01
In many tasks in pattern recognition, such as automatic speech recognition (ASR), optical character recognition (OCR), part-of-speech (POS) tagging, and other string recognition tasks, we are faced with a well-known inconsistency: The Bayes decision rule is usually used to minimize string (symbol sequence) error, whereas, in practice, we want to minimize symbol (word, character, tag, etc.) error. When comparing different recognition systems, we do indeed use symbol error rate as an evaluation measure. The topic of this work is to analyze the relation between string (i.e., 0-1) and symbol error (i.e., metric, integer valued) cost functions in the Bayes decision rule, for which fundamental analytic results are derived. Simple conditions are derived for which the Bayes decision rule with integer-valued metric cost function and with 0-1 cost gives the same decisions or leads to classes with limited cost. The corresponding conditions can be tested with complexity linear in the number of classes. The results obtained do not make any assumption w.r.t. the structure of the underlying distributions or the classification problem. Nevertheless, the general analytic results are analyzed via simulations of string recognition problems with Levenshtein (edit) distance cost function. The results support earlier findings that considerable improvements are to be expected when initial error rates are high.
Seed, Thomas M; Xiao, Shiyun; Manley, Nancy; Nikolich-Zugich, Janko; Pugh, Jason; Van den Brink, Marcel; Hirabayashi, Yoko; Yasutomo, Koji; Iwama, Atsushi; Koyasu, Shigeo; Shterev, Ivo; Sempowski, Gregory; Macchiarini, Francesca; Nakachi, Kei; Kunugi, Keith C; Hammer, Clifford G; Dewerd, Lawrence A
2016-01-01
An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤5%. Comparable rates of 'dosimetric compliance' were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between 'measured' and 'target' doses, with errors falling largely between 0 and 20%. Outliers were most notable for OSL-based tests, while multiple tests by 'non-compliant' laboratories using orthovoltage X-rays contributed heavily to the wide variation in dosing errors. For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized.
Dual-wavelengths photoacoustic temperature measurement
NASA Astrophysics Data System (ADS)
Liao, Yu; Jian, Xiaohua; Dong, Fenglin; Cui, Yaoyao
2017-02-01
Thermal therapy is an approach applied in cancer treatment by heating local tissue to kill the tumor cells, which requires a high sensitivity of temperature monitoring during therapy. Current clinical methods like fMRI near infrared or ultrasound for temperature measurement still have limitations on penetration depth or sensitivity. Photoacoustic temperature sensing is a newly developed temperature sensing method that has a potential to be applied in thermal therapy, which usually employs a single wavelength laser for signal generating and temperature detecting. Because of the system disturbances including laser intensity, ambient temperature and complexity of target, the accidental errors of measurement is unavoidable. For solving these problems, we proposed a new method of photoacoustic temperature sensing by using two wavelengths to reduce random error and increase the measurement accuracy in this paper. Firstly a brief theoretical analysis was deduced. Then in the experiment, a temperature measurement resolution of about 1° in the range of 23-48° in ex vivo pig blood was achieved, and an obvious decrease of absolute error was observed with averagely 1.7° in single wavelength pattern while nearly 1° in dual-wavelengths pattern. The obtained results indicates that dual-wavelengths photoacoustic sensing of temperature is able to reduce random error and improve accuracy of measuring, which could be a more efficient method for photoacoustic temperature sensing in thermal therapy of tumor.
Walston, Stephen L; Mwachofi, Ari; Aldosari, Bakheet; Al-Omar, Badran A; Yousef, Asmaa Al; Sheikh, Asiya
2010-01-01
INVESTIGATED: The implementation of information systems and the creation of an open culture, characterized by emphasis on patient safety and problem solving, are 2 means suggested to improve health care quality. This study examines the effects of use of information technology and focus on patient safety and problem solving on the visibility of patient care errors. A survey of nurses in Saudi Arabia is analyzed by means of factor analysis and multiregression analysis to examine nurses' use of information technology and culture in controlling errors. Our research suggests that greater use of information technology to control patient care errors may reduce the prevalence of such errors while an increased focus on patient safety and problem solving facilitates an open environment where errors can be more openly discussed and addressed. The use of technology appears to have a role in decreasing errors. Yet, an organization that focuses on problem solving and patient safety can open lines of communication and create a culture in which errors can be discussed and resolved.
2017-01-01
Objective Electrical Impedance Tomography (EIT) is a powerful non-invasive technique for imaging applications. The goal is to estimate the electrical properties of living tissues by measuring the potential at the boundary of the domain. Being safe with respect to patient health, non-invasive, and having no known hazards, EIT is an attractive and promising technology. However, it suffers from a particular technical difficulty, which consists of solving a nonlinear inverse problem in real time. Several nonlinear approaches have been proposed as a replacement for the linear solver, but in practice very few are capable of stable, high-quality, and real-time EIT imaging because of their very low robustness to errors and inaccurate modeling, or because they require considerable computational effort. Methods In this paper, a post-processing technique based on an artificial neural network (ANN) is proposed to obtain a nonlinear solution to the inverse problem, starting from a linear solution. While common reconstruction methods based on ANNs estimate the solution directly from the measured data, the method proposed here enhances the solution obtained from a linear solver. Conclusion Applying a linear reconstruction algorithm before applying an ANN reduces the effects of noise and modeling errors. Hence, this approach significantly reduces the error associated with solving 2D inverse problems using machine-learning-based algorithms. Significance This work presents radical enhancements in the stability of nonlinear methods for biomedical EIT applications. PMID:29206856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr
To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical systemmore » and signal processing design are performed using 3D measurements.« less
Slow Learner Errors Analysis in Solving Fractions Problems in Inclusive Junior High School Class
NASA Astrophysics Data System (ADS)
Novitasari, N.; Lukito, A.; Ekawati, R.
2018-01-01
A slow learner whose IQ is between 71 and 89 will have difficulties in solving mathematics problems that often lead to errors. The errors could be analyzed to where the errors may occur and its type. This research is qualitative descriptive which aims to describe the locations, types, and causes of slow learner errors in the inclusive junior high school class in solving the fraction problem. The subject of this research is one slow learner of seventh-grade student which was selected through direct observation by the researcher and through discussion with mathematics teacher and special tutor which handles the slow learner students. Data collection methods used in this study are written tasks and semistructured interviews. The collected data was analyzed by Newman’s Error Analysis (NEA). Results show that there are four locations of errors, namely comprehension, transformation, process skills, and encoding errors. There are four types of errors, such as concept, principle, algorithm, and counting errors. The results of this error analysis will help teachers to identify the causes of the errors made by the slow learner.
Measuring cross-cultural patient safety: identifying barriers and developing performance indicators.
Walker, Roger; St Pierre-Hansen, Natalie; Cromarty, Helen; Kelly, Len; Minty, Bryanne
2010-01-01
Medical errors and cultural errors threaten patient safety. We know that access to care, quality of care and clinical safety are all impacted by cultural issues. Numerous approaches to describing cultural barriers to patient safety have been developed, but these taxonomies do not provide a useful set of tools for defining the nature of the problem and consequently do not establish a sound base for problem solving. The Sioux Lookout Meno Ya Win Health Centre has implemented a cross-cultural patient safety (CCPS) model (Walker 2009). We developed an analytical CCPS framework within the organization, and in this article, we detail the validation process for our framework by way of a literature review and surveys of local and international healthcare professionals. We reinforce the position that while cultural competency may be defined by the service provider, cultural safety is defined by the client. In addition, we document the difficulties surrounding the measurement of cultural competence in terms of patient outcomes, which is an underdeveloped dimension of the field of patient safety. We continue to explore the correlation between organizational performance and measurable patient outcomes.
Errors, Error, and Text in Multidialect Setting.
ERIC Educational Resources Information Center
Candler, W. J.
1979-01-01
This article discusses the various dialects of English spoken in Liberia and analyzes the problems of Liberian students in writing compositions in English. Errors arise mainly from differences in culture and cognition, not from superficial linguistic problems. (CFM)
Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications
NASA Astrophysics Data System (ADS)
He, K.; Zhu, W. D.
2011-07-01
A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.
Chaudhry, Jehanzeb Hameed; Estep, Don; Tavener, Simon; Carey, Varis; Sandelin, Jeff
2016-01-01
We consider numerical methods for initial value problems that employ a two stage approach consisting of solution on a relatively coarse discretization followed by solution on a relatively fine discretization. Examples include adaptive error control, parallel-in-time solution schemes, and efficient solution of adjoint problems for computing a posteriori error estimates. We describe a general formulation of two stage computations then perform a general a posteriori error analysis based on computable residuals and solution of an adjoint problem. The analysis accommodates various variations in the two stage computation and in formulation of the adjoint problems. We apply the analysis to compute "dual-weighted" a posteriori error estimates, to develop novel algorithms for efficient solution that take into account cancellation of error, and to the Parareal Algorithm. We test the various results using several numerical examples.
NASA Technical Reports Server (NTRS)
Radhadrishnan, Krishnan
1993-01-01
A detailed analysis of the accuracy of several techniques recently developed for integrating stiff ordinary differential equations is presented. The techniques include two general-purpose codes EPISODE and LSODE developed for an arbitrary system of ordinary differential equations, and three specialized codes CHEMEQ, CREK1D, and GCKP4 developed specifically to solve chemical kinetic rate equations. The accuracy study is made by application of these codes to two practical combustion kinetics problems. Both problems describe adiabatic, homogeneous, gas-phase chemical reactions at constant pressure, and include all three combustion regimes: induction, heat release, and equilibration. To illustrate the error variation in the different combustion regimes the species are divided into three types (reactants, intermediates, and products), and error versus time plots are presented for each species type and the temperature. These plots show that CHEMEQ is the most accurate code during induction and early heat release. During late heat release and equilibration, however, the other codes are more accurate. A single global quantity, a mean integrated root-mean-square error, that measures the average error incurred in solving the complete problem is used to compare the accuracy of the codes. Among the codes examined, LSODE is the most accurate for solving chemical kinetics problems. It is also the most efficient code, in the sense that it requires the least computational work to attain a specified accuracy level. An important finding is that use of the algebraic enthalpy conservation equation to compute the temperature can be more accurate and efficient than integrating the temperature differential equation.
A Constrained Least Squares Approach to Mobile Positioning: Algorithms and Optimality
NASA Astrophysics Data System (ADS)
Cheung, KW; So, HC; Ma, W.-K.; Chan, YT
2006-12-01
The problem of locating a mobile terminal has received significant attention in the field of wireless communications. Time-of-arrival (TOA), received signal strength (RSS), time-difference-of-arrival (TDOA), and angle-of-arrival (AOA) are commonly used measurements for estimating the position of the mobile station. In this paper, we present a constrained weighted least squares (CWLS) mobile positioning approach that encompasses all the above described measurement cases. The advantages of CWLS include performance optimality and capability of extension to hybrid measurement cases (e.g., mobile positioning using TDOA and AOA measurements jointly). Assuming zero-mean uncorrelated measurement errors, we show by mean and variance analysis that all the developed CWLS location estimators achieve zero bias and the Cramér-Rao lower bound approximately when measurement error variances are small. The asymptotic optimum performance is also confirmed by simulation results.
Multi-spectral pyrometer for gas turbine blade temperature measurement
NASA Astrophysics Data System (ADS)
Gao, Shan; Wang, Lixin; Feng, Chi
2014-09-01
To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.
Özdemir, Vural; Springer, Simon
2018-03-01
Diversity is increasingly at stake in early 21st century. Diversity is often conceptualized across ethnicity, gender, socioeconomic status, sexual preference, and professional credentials, among other categories of difference. These are important and relevant considerations and yet, they are incomplete. Diversity also rests in the way we frame questions long before answers are sought. Such diversity in the framing (epistemology) of scientific and societal questions is important for they influence the types of data, results, and impacts produced by research. Errors in the framing of a research question, whether in technical science or social science, are known as type III errors, as opposed to the better known type I (false positives) and type II errors (false negatives). Kimball defined "error of the third kind" as giving the right answer to the wrong problem. Raiffa described the type III error as correctly solving the wrong problem. Type III errors are upstream or design flaws, often driven by unchecked human values and power, and can adversely impact an entire innovation ecosystem, waste money, time, careers, and precious resources by focusing on the wrong or incorrectly framed question and hypothesis. Decades may pass while technology experts, scientists, social scientists, funding agencies and management consultants continue to tackle questions that suffer from type III errors. We propose a new diversity metric, the Frame Diversity Index (FDI), based on the hitherto neglected diversities in knowledge framing. The FDI would be positively correlated with epistemological diversity and technological democracy, and inversely correlated with prevalence of type III errors in innovation ecosystems, consortia, and knowledge networks. We suggest that the FDI can usefully measure (and prevent) type III error risks in innovation ecosystems, and help broaden the concepts and practices of diversity and inclusion in science, technology, innovation and society.
NASA Astrophysics Data System (ADS)
Cong, Wang; Xu, Lingdi; Li, Ang
2017-10-01
Large aspheric surface which have the deviation with spherical surface are being used widely in various of optical systems. Compared with spherical surface, Large aspheric surfaces have lots of advantages, such as improving image quality, correcting aberration, expanding field of view, increasing the effective distance and make the optical system compact, lightweight. Especially, with the rapid development of space optics, space sensor resolution is required higher and viewing angle is requred larger. Aspheric surface will become one of the essential components in the optical system. After finishing Aspheric coarse Grinding surface profile error is about Tens of microns[1].In order to achieve the final requirement of surface accuracy,the aspheric surface must be quickly modified, high precision testing is the basement of rapid convergence of the surface error . There many methods on aspheric surface detection[2], Geometric ray detection, hartmann detection, ronchi text, knifeedge method, direct profile test, interferometry, while all of them have their disadvantage[6]. In recent years the measure of the aspheric surface become one of the import factors which are restricting the aspheric surface processing development. A two meter caliber industrial CMM coordinate measuring machine is avaiable, but it has many drawbacks such as large detection error and low repeatability precision in the measurement of aspheric surface coarse grinding , which seriously affects the convergence efficiency during the aspherical mirror processing. To solve those problems, this paper presents an effective error control, calibration and removal method by calibration mirror position of the real-time monitoring and other effective means of error control, calibration and removal by probe correction and the measurement mode selection method to measure the point distribution program development. This method verified by real engineer examples, this method increases the original industrial-grade coordinate system nominal measurement accuracy PV value of 7 microns to 4microns, Which effectively improves the grinding efficiency of aspheric mirrors and verifies the correctness of the method. This paper also investigates the error detection and operation control method, the error calibration of the CMM and the random error calibration of the CMM .
Estimating a child's age from an image using whole body proportions.
Lucas, Teghan; Henneberg, Maciej
2017-09-01
The use and distribution of child pornography is an increasing problem. Forensic anthropologists are often asked to estimate a child's age from a photograph. Previous studies have attempted to estimate the age of children from photographs using ratios of the face. Here, we propose to include body measurement ratios into age estimates. A total of 1603 boys and 1833 girls aged 5-16 years were measured over a 10-year period. They are 'Cape Coloured' children from South Africa. Their age was regressed on ratios derived from anthropometric measurements of the head as well as the body. Multiple regression equations including four ratios for each sex (head height to shoulder and hip width, knee width, leg length and trunk length) have a standard error of 1.6-1.7 years. The error is of the same order as variation of differences between biological and chronological ages of the children. Thus, the error cannot be minimised any further as it is a direct reflection of a naturally occurring phenomenon.
Uncertainties in extracted parameters of a Gaussian emission line profile with continuum background.
Minin, Serge; Kamalabadi, Farzad
2009-12-20
We derive analytical equations for uncertainties in parameters extracted by nonlinear least-squares fitting of a Gaussian emission function with an unknown continuum background component in the presence of additive white Gaussian noise. The derivation is based on the inversion of the full curvature matrix (equivalent to Fisher information matrix) of the least-squares error, chi(2), in a four-variable fitting parameter space. The derived uncertainty formulas (equivalent to Cramer-Rao error bounds) are found to be in good agreement with the numerically computed uncertainties from a large ensemble of simulated measurements. The derived formulas can be used for estimating minimum achievable errors for a given signal-to-noise ratio and for investigating some aspects of measurement setup trade-offs and optimization. While the intended application is Fabry-Perot spectroscopy for wind and temperature measurements in the upper atmosphere, the derivation is generic and applicable to other spectroscopy problems with a Gaussian line shape.
Optical surface pressure measurements: Accuracy and application field evaluation
NASA Astrophysics Data System (ADS)
Bukov, A.; Mosharov, V.; Orlov, A.; Pesetsky, V.; Radchenko, V.; Phonov, S.; Matyash, S.; Kuzmin, M.; Sadovskii, N.
1994-07-01
Optical pressure measurement (OPM) is a new pressure measurement method rapidly developed in several aerodynamic research centers: TsAGI (Russia), Boeing, NASA, McDonnell Douglas (all USA), and DLR (Germany). Present level of OPM-method provides its practice as standard experimental method of aerodynamic investigations in definite application fields. Applications of OPM-method are determined mainly by its accuracy. The accuracy of OPM-method is determined by the errors of three following groups: (1) errors of the luminescent pressure sensor (LPS) itself, such as uncompensated temperature influence, photo degradation, temperature and pressure hysteresis, variation of the LPS parameters from point to point on the model surface, etc.; (2) errors of the measurement system, such as noise of the photodetector, nonlinearity and nonuniformity of the photodetector, time and temperature offsets, etc.; and (3) methodological errors, owing to displacement and deformation of the model in an airflow, a contamination of the model surface, scattering of the excitation and luminescent light from the model surface and test section walls, etc. OPM-method allows getting total error of measured pressure not less than 1 percent. This accuracy is enough to visualize the pressure field and allows determining total and distributed aerodynamic loads and solving some problems of local aerodynamic investigations at transonic and supersonic velocities. OPM is less effective at low subsonic velocities (M less than 0.4), and for precise measurements, for example, an airfoil optimization. Current limitations of the OPM-method are discussed on an example of the surface pressure measurements and calculations of the integral loads on the wings of canard-aircraft model. The pressure measurement system and data reduction methods used on these tests are also described.
Optimized tuner selection for engine performance estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)
2013-01-01
A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.
Addressee Errors in ATC Communications: The Call Sign Problem
NASA Technical Reports Server (NTRS)
Monan, W. P.
1983-01-01
Communication errors involving aircraft call signs were portrayed in reports of 462 hazardous incidents voluntarily submitted to the ASRS during an approximate four-year period. These errors resulted in confusion, disorder, and uncoordinated traffic conditions and produced the following types of operational anomalies: altitude deviations, wrong-way headings, aborted takeoffs, go arounds, runway incursions, missed crossing altitude restrictions, descents toward high terrain, and traffic conflicts in flight and on the ground. Analysis of the report set resulted in identification of five categories of errors involving call signs: (1) faulty radio usage techniques, (2) call sign loss or smearing due to frequency congestion, (3) confusion resulting from similar sounding call signs, (4) airmen misses of call signs leading to failures to acknowledge or readback, and (5) controller failures regarding confirmation of acknowledgements or readbacks. These error categories are described in detail and several associated hazard mitigating measures that might be aken are considered.
On the Use, the Misuse, and the Very Limited Usefulness of Cronbach's Alpha
ERIC Educational Resources Information Center
Sijtsma, Klaas
2009-01-01
This discussion paper argues that both the use of Cronbach's alpha as a reliability estimate and as a measure of internal consistency suffer from major problems. First, alpha always has a value, which cannot be equal to the test score's reliability given the inter-item covariance matrix and the usual assumptions about measurement error. Second, in…
Application of parameter estimation to highly unstable aircraft
NASA Technical Reports Server (NTRS)
Maine, R. E.; Murray, J. E.
1986-01-01
This paper discusses the application of parameter estimation to highly unstable aircraft. It includes a discussion of the problems in applying the output error method to such aircraft and demonstrates that the filter error method eliminates these problems. The paper shows that the maximum likelihood estimator with no process noise does not reduce to the output error method when the system is unstable. It also proposes and demonstrates an ad hoc method that is similar in form to the filter error method, but applicable to nonlinear problems. Flight data from the X-29 forward-swept-wing demonstrator is used to illustrate the problems and methods discussed.
Application of parameter estimation to highly unstable aircraft
NASA Technical Reports Server (NTRS)
Maine, R. E.; Murray, J. E.
1986-01-01
The application of parameter estimation to highly unstable aircraft is discussed. Included are a discussion of the problems in applying the output error method to such aircraft and demonstrates that the filter error method eliminates these problems. The paper shows that the maximum likelihood estimator with no process noise does not reduce to the output error method when the system is unstable. It also proposes and demonstrates an ad hoc method that is similar in form to the filter error method, but applicable to nonlinear problems. Flight data from the X-29 forward-swept-wing demonstrator is used to illustrate the problems and methods discussed.
Using medication list--problem list mismatches as markers of potential error.
Carpenter, James D.; Gorman, Paul N.
2002-01-01
The goal of this project was to specify and develop an algorithm that will check for drug and problem list mismatches in an electronic medical record (EMR). The algorithm is based on the premise that a patient's problem list and medication list should agree, and a mismatch may indicate medication error. Successful development of this algorithm could mean detection of some errors, such as medication orders entered into a wrong patient record, or drug therapy omissions, that are not otherwise detected via automated means. Additionally, mismatches may identify opportunities to improve problem list integrity. To assess the concept's feasibility, this study compared medications listed in a pharmacy information system with findings in an online nursing adult admission assessment, serving as a proxy for the problem list. Where drug and problem list mismatches were discovered, examination of the patient record confirmed the mismatch, and identified any potential causes. Evaluation of the algorithm in diabetes treatment indicates that it successfully detects both potential medication error and opportunities to improve problem list completeness. This algorithm, once fully developed and deployed, could prove a valuable way to improve the patient problem list, and could decrease the risk of medication error. PMID:12463796
Analysis of the geophysical data using a posteriori algorithms
NASA Astrophysics Data System (ADS)
Voskoboynikova, Gyulnara; Khairetdinov, Marat
2016-04-01
The problems of monitoring, prediction and prevention of extraordinary natural and technogenic events are priority of modern problems. These events include earthquakes, volcanic eruptions, the lunar-solar tides, landslides, falling celestial bodies, explosions utilized stockpiles of ammunition, numerous quarry explosion in open coal mines, provoking technogenic earthquakes. Monitoring is based on a number of successive stages, which include remote registration of the events responses, measurement of the main parameters as arrival times of seismic waves or the original waveforms. At the final stage the inverse problems associated with determining the geographic location and time of the registration event are solving. Therefore, improving the accuracy of the parameters estimation of the original records in the high noise is an important problem. As is known, the main measurement errors arise due to the influence of external noise, the difference between the real and model structures of the medium, imprecision of the time definition in the events epicenter, the instrumental errors. Therefore, posteriori algorithms more accurate in comparison with known algorithms are proposed and investigated. They are based on a combination of discrete optimization method and fractal approach for joint detection and estimation of the arrival times in the quasi-periodic waveforms sequence in problems of geophysical monitoring with improved accuracy. Existing today, alternative approaches to solving these problems does not provide the given accuracy. The proposed algorithms are considered for the tasks of vibration sounding of the Earth in times of lunar and solar tides, and for the problem of monitoring of the borehole seismic source location in trade drilling.
Localization from near-source quasi-static electromagnetic fields
NASA Astrophysics Data System (ADS)
Mosher, J. C.
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUltiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.
Localization from near-source quasi-static electromagnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, John Compton
1993-09-01
A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. Themore » nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.« less
NASA Technical Reports Server (NTRS)
Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.
2011-01-01
Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.
Minimal entropy reconstructions of thermal images for emissivity correction
NASA Astrophysics Data System (ADS)
Allred, Lloyd G.
1999-03-01
Low emissivity with corresponding low thermal emission is a problem which has long afflicted infrared thermography. The problem is aggravated by reflected thermal energy which increases as the emissivity decreases, thus reducing the net signal-to-noise ratio, which degrades the resulting temperature reconstructions. Additional errors are introduced from the traditional emissivity-correction approaches, wherein one attempts to correct for emissivity either using thermocouples or using one or more baseline images, collected at known temperatures. These corrections are numerically equivalent to image differencing. Errors in the baseline images are therefore additive, causing the resulting measurement error to either double or triple. The practical application of thermal imagery usually entails coating the objective surface to increase the emissivity to a uniform and repeatable value. While the author recommends that the thermographer still adhere to this practice, he has devised a minimal entropy reconstructions which not only correct for emissivity variations, but also corrects for variations in sensor response, using the baseline images at known temperatures to correct for these values. The minimal energy reconstruction is actually based on a modified Hopfield neural network which finds the resulting image which best explains the observed data and baseline data, having minimal entropy change between adjacent pixels. The autocorrelation of temperatures between adjacent pixels is a feature of most close-up thermal images. A surprising result from transient heating data indicates that the resulting corrected thermal images have less measurement error and are closer to the situational truth than the original data.
Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D
2002-07-01
Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.
Automatic alignment for three-dimensional tomographic reconstruction
NASA Astrophysics Data System (ADS)
van Leeuwen, Tristan; Maretzke, Simon; Joost Batenburg, K.
2018-02-01
In tomographic reconstruction, the goal is to reconstruct an unknown object from a collection of line integrals. Given a complete sampling of such line integrals for various angles and directions, explicit inverse formulas exist to reconstruct the object. Given noisy and incomplete measurements, the inverse problem is typically solved through a regularized least-squares approach. A challenge for both approaches is that in practice the exact directions and offsets of the x-rays are only known approximately due to, e.g. calibration errors. Such errors lead to artifacts in the reconstructed image. In the case of sufficient sampling and geometrically simple misalignment, the measurements can be corrected by exploiting so-called consistency conditions. In other cases, such conditions may not apply and we have to solve an additional inverse problem to retrieve the angles and shifts. In this paper we propose a general algorithmic framework for retrieving these parameters in conjunction with an algebraic reconstruction technique. The proposed approach is illustrated by numerical examples for both simulated data and an electron tomography dataset.
The Charles F. Prentice Award Lecture 2005: optics of the human eye: progress and problems.
Charman, W Neil
2006-06-01
The history of measurements of ocular aberration is briefly reviewed and recent work using much-improved aberrometers and large samples of eyes is summarized. When on-axis, higher-order, monochromatic aberrations are averaged, undercorrected, positive, fourth-order spherical aberration dominates; other Zernike wavefront aberration coefficients have average values near zero. Individually, however, many eyes show substantial amounts of third-order and other fourth-order aberrations; the value of these varies idiosyncratically about zero. Most normal eyes show only small amounts of axial monochromatic aberration for photopic pupils up to around 3 mm; the limits to retinal image quality are then usually set by diffraction, uncorrected or imperfectly corrected spherocylindrical refractive error, accommodation error, and chromatic aberration. Longitudinal chromatic aberration varies very little across the population. With larger mesopic and scotopic pupils, monochromatic aberration plays a more important optical role, but overall visual performance is increasingly dominated by neural factors. Some remaining problems in measuring and modeling the eye's optical performance are discussed.
Schlagenhauf, Florian; Rapp, Michael A.; Huys, Quentin J. M.; Beck, Anne; Wüstenberg, Torsten; Deserno, Lorenz; Buchholz, Hans-Georg; Kalbitzer, Jan; Buchert, Ralph; Kienast, Thorsten; Cumming, Paul; Plotkin, Michail; Kumakura, Yoshitaka; Grace, Anthony A.; Dolan, Raymond J.; Heinz, Andreas
2013-01-01
Fluid intelligence represents the capacity for flexible problem solving and rapid behavioral adaptation. Rewards drive flexible behavioral adaptation, in part via a teaching signal expressed as reward prediction errors in the ventral striatum, which has been associated with phasic dopamine release in animal studies. We examined a sample of 28 healthy male adults using multimodal imaging and biological parametric mapping with 1) functional magnetic resonance imaging during a reversal learning task and 2) in a subsample of 17 subjects also with positron emission tomography using 6-[18F]fluoro-L-DOPA to assess dopamine synthesis capacity. Fluid intelligence was measured using a battery of nine standard neuropsychological tests. Ventral striatal BOLD correlates of reward prediction errors were positively correlated with fluid intelligence and, in the right ventral striatum, also inversely correlated with dopamine synthesis capacity (FDOPA Kinapp). When exploring aspects of fluid intelligence, we observed that prediction error signaling correlates with complex attention and reasoning. These findings indicate that individual differences in the capacity for flexible problem solving may be driven by ventral striatal activation during reward-related learning, which in turn proved to be inversely associated with ventral striatal dopamine synthesis capacity. PMID:22344813
Cheng, Jianhua; Chen, Daidai; Sun, Xiangyu; Wang, Tongda
2015-02-04
To obtain the absolute position of a target is one of the basic topics for non-cooperated target tracking problems. In this paper, we present a simultaneously calibration method for an Inertial navigation system (INS)/Global position system (GPS)/Laser distance scanner (LDS) integrated system based target positioning approach. The INS/GPS integrated system provides the attitude and position of observer, and LDS offers the distance between the observer and the target. The two most significant errors are taken into jointly consideration and analyzed: (1) the attitude measure error of INS/GPS; (2) the installation error between INS/GPS and LDS subsystems. Consequently, a INS/GPS/LDS based target positioning approach considering these two errors is proposed. In order to improve the performance of this approach, a novel calibration method is designed to simultaneously estimate and compensate these two main errors. Finally, simulations are conducted to access the performance of the proposed target positioning approach and the designed simultaneously calibration method.
Recovery of Sparse Positive Signals on the Sphere from Low Resolution Measurements
NASA Astrophysics Data System (ADS)
Bendory, Tamir; Eldar, Yonina C.
2015-12-01
This letter considers the problem of recovering a positive stream of Diracs on a sphere from its projection onto the space of low-degree spherical harmonics, namely, from its low-resolution version. We suggest recovering the Diracs via a tractable convex optimization problem. The resulting recovery error is proportional to the noise level and depends on the density of the Diracs. We validate the theory by numerical experiments.
Electric vehicle power train instrumentation: Some constraints and considerations
NASA Technical Reports Server (NTRS)
Triner, J. E.; Hansen, I. G.
1977-01-01
The application of pulse modulation control (choppers) to dc motors creates unique instrumentation problems. In particular, the high harmonic components contained in the current waveforms require frequency response accommodations not normally considered in dc instrumentation. In addition to current sensing, accurate power measurement requires not only adequate frequency response but must also address phase errors caused by the finite bandwidths and component characteristics involved. The implications of these problems are assessed.
Computer-aided programming for message-passing system; Problems and a solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, M.Y.; Gajski, D.D.
1989-12-01
As the number of processors and the complexity of problems to be solved increase, programming multiprocessing systems becomes more difficult and error-prone. Program development tools are necessary since programmers are not able to develop complex parallel programs efficiently. Parallel models of computation, parallelization problems, and tools for computer-aided programming (CAP) are discussed. As an example, a CAP tool that performs scheduling and inserts communication primitives automatically is described. It also generates the performance estimates and other program quality measures to help programmers in improving their algorithms and programs.
NASA Astrophysics Data System (ADS)
Post, Vincent E. A.; Banks, Eddie; Brunke, Miriam
2018-02-01
The quantification of groundwater flow near the freshwater-saltwater transition zone at the coast is difficult because of variable-density effects and tidal dynamics. Head measurements were collected along a transect perpendicular to the shoreline at a site south of the city of Adelaide, South Australia, to determine the transient flow pattern. This paper presents a detailed overview of the measurement procedure, data post-processing methods and uncertainty analysis in order to assess how measurement errors affect the accuracy of the inferred flow patterns. A particular difficulty encountered was that some of the piezometers were leaky, which necessitated regular measurements of the electrical conductivity and temperature of the water inside the wells to correct for density effects. Other difficulties included failure of pressure transducers, data logger clock drift and operator error. The data obtained were sufficiently accurate to show that there is net seaward horizontal flow of freshwater in the top part of the aquifer, and a net landward flow of saltwater in the lower part. The vertical flow direction alternated with the tide, but due to the large uncertainty of the head gradients and density terms, no net flow could be established with any degree of confidence. While the measurement problems were amplified under the prevailing conditions at the site, similar errors can lead to large uncertainties everywhere. The methodology outlined acknowledges the inherent uncertainty involved in measuring groundwater flow. It can also assist to establish the accuracy requirements of the experimental setup.
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Karel, S.
1975-01-01
An algorithm for solving the nonlinear stationary Navier-Stokes problem is developed. Explicit error estimates are given. This mathematical technique is potentially adaptable to the separation problem.
Discrete-time state estimation for stochastic polynomial systems over polynomial observations
NASA Astrophysics Data System (ADS)
Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.
2018-07-01
This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.
Problems with small area surveys: lensing covariance of supernova distance measurements.
Cooray, Asantha; Huterer, Dragan; Holz, Daniel E
2006-01-20
While luminosity distances from type Ia supernovae (SNe) are a powerful probe of cosmology, the accuracy with which these distances can be measured is limited by cosmic magnification due to gravitational lensing by the intervening large-scale structure. Spatial clustering of foreground mass leads to correlated errors in SNe distances. By including the full covariance matrix of SNe, we show that future wide-field surveys will remain largely unaffected by lensing correlations. However, "pencil beam" surveys, and those with narrow (but possibly long) fields of view, can be strongly affected. For a survey with 30 arcmin mean separation between SNe, lensing covariance leads to a approximately 45% increase in the expected errors in dark energy parameters.
Error-related brain activity predicts cocaine use after treatment at 3-month follow-up.
Marhe, Reshmi; van de Wetering, Ben J M; Franken, Ingmar H A
2013-04-15
Relapse after treatment is one of the most important problems in drug dependency. Several studies suggest that lack of cognitive control is one of the causes of relapse. In this study, a relative new electrophysiologic index of cognitive control, the error-related negativity, is investigated to examine its suitability as a predictor of relapse. The error-related negativity was measured in 57 cocaine-dependent patients during their first week in detoxification treatment. Data from 49 participants were used to predict cocaine use at 3-month follow-up. Cocaine use at follow-up was measured by means of self-reported days of cocaine use in the last month verified by urine screening. A multiple hierarchical regression model was used to examine the predictive value of the error-related negativity while controlling for addiction severity and self-reported craving in the week before treatment. The error-related negativity was the only significant predictor in the model and added 7.4% of explained variance to the control variables, resulting in a total of 33.4% explained variance in the prediction of days of cocaine use at follow-up. A reduced error-related negativity measured during the first week of treatment was associated with more days of cocaine use at 3-month follow-up. Moreover, the error-related negativity was a stronger predictor of recent cocaine use than addiction severity and craving. These results suggest that underactive error-related brain activity might help to identify patients who are at risk of relapse as early as in the first week of detoxification treatment. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Entropy-Based TOA Estimation and SVM-Based Ranging Error Mitigation in UWB Ranging Systems
Yin, Zhendong; Cui, Kai; Wu, Zhilu; Yin, Liang
2015-01-01
The major challenges for Ultra-wide Band (UWB) indoor ranging systems are the dense multipath and non-line-of-sight (NLOS) problems of the indoor environment. To precisely estimate the time of arrival (TOA) of the first path (FP) in such a poor environment, a novel approach of entropy-based TOA estimation and support vector machine (SVM) regression-based ranging error mitigation is proposed in this paper. The proposed method can estimate the TOA precisely by measuring the randomness of the received signals and mitigate the ranging error without the recognition of the channel conditions. The entropy is used to measure the randomness of the received signals and the FP can be determined by the decision of the sample which is followed by a great entropy decrease. The SVM regression is employed to perform the ranging-error mitigation by the modeling of the regressor between the characteristics of received signals and the ranging error. The presented numerical simulation results show that the proposed approach achieves significant performance improvements in the CM1 to CM4 channels of the IEEE 802.15.4a standard, as compared to conventional approaches. PMID:26007726
The Challenges of Measuring Glycemic Variability
Rodbard, David
2012-01-01
This commentary reviews several of the challenges encountered when attempting to quantify glycemic variability and correlate it with risk of diabetes complications. These challenges include (1) immaturity of the field, including problems of data accuracy, precision, reliability, cost, and availability; (2) larger relative error in the estimates of glycemic variability than in the estimates of the mean glucose; (3) high correlation between glycemic variability and mean glucose level; (4) multiplicity of measures; (5) correlation of the multiple measures; (6) duplication or reinvention of methods; (7) confusion of measures of glycemic variability with measures of quality of glycemic control; (8) the problem of multiple comparisons when assessing relationships among multiple measures of variability and multiple clinical end points; and (9) differing needs for routine clinical practice and clinical research applications. PMID:22768904
Turbulent Output-Based Anisotropic Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.; Carlson, Jan-Renee
2010-01-01
Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.
A posteriori error estimates in voice source recovery
NASA Astrophysics Data System (ADS)
Leonov, A. S.; Sorokin, V. N.
2017-12-01
The inverse problem of voice source pulse recovery from a segment of a speech signal is under consideration. A special mathematical model is used for the solution that relates these quantities. A variational method of solving inverse problem of voice source recovery for a new parametric class of sources, that is for piecewise-linear sources (PWL-sources), is proposed. Also, a technique for a posteriori numerical error estimation for obtained solutions is presented. A computer study of the adequacy of adopted speech production model with PWL-sources is performed in solving the inverse problems for various types of voice signals, as well as corresponding study of a posteriori error estimates. Numerical experiments for speech signals show satisfactory properties of proposed a posteriori error estimates, which represent the upper bounds of possible errors in solving the inverse problem. The estimate of the most probable error in determining the source-pulse shapes is about 7-8% for the investigated speech material. It is noted that a posteriori error estimates can be used as a criterion of the quality for obtained voice source pulses in application to speaker recognition.
A New Understanding for the Rain Rate retrieval of Attenuating Radars Measurement
NASA Astrophysics Data System (ADS)
Koner, P.; Battaglia, A.; Simmer, C.
2009-04-01
The retrieval of rain rate from the attenuated radar (e.g. Cloud Profiling Radar on board of CloudSAT in orbit since June 2006) is a challenging problem. ĹEcuyer and Stephens [1] underlined this difficulty (for rain rates larger than 1.5 mm/h) and suggested the need of additional information (like path-integrated attenuations (PIA) derived from surface reference techniques or precipitation water path estimated from co-located passive microwave radiometer) to constrain the retrieval. It is generally discussed based on the optimal estimation theory that there are no solutions without constraining the problem in a case of visible attenuation because there is no enough information content to solve the problem. However, when the problem is constrained by the additional measurement of PIA, there is a reasonable solution. This raises the spontaneous question: Is all information enclosed in this additional measurement? This also contradicts with the information theory because one measurement can introduce only one degree of freedom in the retrieval. Why is one degree of freedom so important in the above problem? This question cannot be explained using the estimation and information theories of OEM. On the other hand, Koner and Drummond [2] argued that the OEM is basically a regularization method, where a-priori covariance is used as a stabilizer and the regularization strength is determined by the choices of the a-priori and error covariance matrices. The regularization is required for the reduction of the condition number of Jacobian, which drives the noise injection from the measurement and inversion spaces to the state space in an ill-posed inversion. In this work, the above mentioned question will be discussed based on the regularization theory, error mitigation and eigenvalue mathematics. References 1. L'Ecuyer TS and Stephens G. An estimation based precipitation retrieval algorithm for attenuating radar. J. Appl. Met., 2002, 41, 272-85. 2. Koner PK, Drummond JR. A comparison of regularization techniques for atmospheric trace gases retrievals. JQSRT 2008; 109:514-26.
Gorgich, Enam Alhagh Charkhat; Barfroshan, Sanam; Ghoreishi, Gholamreza; Yaghoobi, Maryam
2016-01-01
Introduction and Aim: Medication errors as a serious problem in world and one of the most common medical errors that threaten patient safety and may lead to even death of them. The purpose of this study was to investigate the causes of medication errors and strategies to prevention of them from nurses and nursing student viewpoint. Materials & Methods: This cross-sectional descriptive study was conducted on 327 nursing staff of khatam-al-anbia hospital and 62 intern nursing students in nursing and midwifery school of Zahedan, Iran, enrolled through the availability sampling in 2015. The data were collected by the valid and reliable questionnaire. To analyze the data, descriptive statistics, T-test and ANOVA were applied by use of SPSS16 software. Findings: The results showed that the most common causes of medications errors in nursing were tiredness due increased workload (97.8%), and in nursing students were drug calculation, (77.4%). The most important way for prevention in nurses and nursing student opinion, was reducing the work pressure by increasing the personnel, proportional to the number and condition of patients and also creating a unit as medication calculation. Also there was a significant relationship between the type of ward and the mean of medication errors in two groups. Conclusion: Based on the results it is recommended that nurse-managers resolve the human resources problem, provide workshops and in-service education about preparing medications, side-effects of drugs and pharmacological knowledge. Using electronic medications cards is a measure which reduces medications errors. PMID:27045413
Long-term care physical environments--effect on medication errors.
Mahmood, Atiya; Chaudhury, Habib; Gaumont, Alana; Rust, Tiana
2012-01-01
Few studies examine physical environmental factors and their effects on staff health, effectiveness, work errors and job satisfaction. To address this gap, this study aims to examine environmental features and their role in medication and nursing errors in long-term care facilities. A mixed methodological strategy was used. Data were collected via focus groups, observing medication preparation and administration, and a nursing staff survey in four facilities. The paper reveals that, during the medication preparation phase, physical design, such as medication room layout, is a major source of potential errors. During medication administration, social environment is more likely to contribute to errors. Interruptions, noise and staff shortages were particular problems. The survey's relatively small sample size needs to be considered when interpreting the findings. Also, actual error data could not be included as existing records were incomplete. The study offers several relatively low-cost recommendations to help staff reduce medication errors. Physical environmental factors are important when addressing measures to reduce errors. The findings of this study underscore the fact that the physical environment's influence on the possibility of medication errors is often neglected. This study contributes to the scarce empirical literature examining the relationship between physical design and patient safety.
Human error and human factors engineering in health care.
Welch, D L
1997-01-01
Human error is inevitable. It happens in health care systems as it does in all other complex systems, and no measure of attention, training, dedication, or punishment is going to stop it. The discipline of human factors engineering (HFE) has been dealing with the causes and effects of human error since the 1940's. Originally applied to the design of increasingly complex military aircraft cockpits, HFE has since been effectively applied to the problem of human error in such diverse systems as nuclear power plants, NASA spacecraft, the process control industry, and computer software. Today the health care industry is becoming aware of the costs of human error and is turning to HFE for answers. Just as early experimental psychologists went beyond the label of "pilot error" to explain how the design of cockpits led to air crashes, today's HFE specialists are assisting the health care industry in identifying the causes of significant human errors in medicine and developing ways to eliminate or ameliorate them. This series of articles will explore the nature of human error and how HFE can be applied to reduce the likelihood of errors and mitigate their effects.
Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya
2017-09-01
Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.
Mathematics Course Placement Using Holistic Measures: Possibilities for Community College Students
ERIC Educational Resources Information Center
Ngo, Federick; Chi, W. Edward; Park, Elizabeth So Yun
2018-01-01
Background/Context: Most community colleges across the country use a placement test to determine students' readiness for college-level coursework, yet these tests are admittedly imperfect instruments. Researchers have documented significant problems stemming from overreliance on placement testing, including placement error and misdiagnosis of…
NASA Astrophysics Data System (ADS)
GonzáLez, Pablo J.; FernáNdez, José
2011-10-01
Interferometric Synthetic Aperture Radar (InSAR) is a reliable technique for measuring crustal deformation. However, despite its long application in geophysical problems, its error estimation has been largely overlooked. Currently, the largest problem with InSAR is still the atmospheric propagation errors, which is why multitemporal interferometric techniques have been successfully developed using a series of interferograms. However, none of the standard multitemporal interferometric techniques, namely PS or SB (Persistent Scatterers and Small Baselines, respectively) provide an estimate of their precision. Here, we present a method to compute reliable estimates of the precision of the deformation time series. We implement it for the SB multitemporal interferometric technique (a favorable technique for natural terrains, the most usual target of geophysical applications). We describe the method that uses a properly weighted scheme that allows us to compute estimates for all interferogram pixels, enhanced by a Montecarlo resampling technique that properly propagates the interferogram errors (variance-covariances) into the unknown parameters (estimated errors for the displacements). We apply the multitemporal error estimation method to Lanzarote Island (Canary Islands), where no active magmatic activity has been reported in the last decades. We detect deformation around Timanfaya volcano (lengthening of line-of-sight ˜ subsidence), where the last eruption in 1730-1736 occurred. Deformation closely follows the surface temperature anomalies indicating that magma crystallization (cooling and contraction) of the 300-year shallow magmatic body under Timanfaya volcano is still ongoing.
NASA Astrophysics Data System (ADS)
Wu, Lifu; Zhu, Jianguo; Xie, Huimin; Zhou, Mengmeng
2016-12-01
Recently, we proposed a single-lens 3D digital image correlation (3D DIC) method and established a measurement system on the basis of a bilateral telecentric lens (BTL) and a bi-prism. This system can retrieve the 3D morphology of a target and measure its deformation using a single BTL with relatively high accuracy. Nevertheless, the system still suffers from systematic errors caused by manufacturing deficiency of the bi-prism and distortion of the BTL. In this study, in-depth evaluations of these errors and their effects on the measurement results are performed experimentally. The bi-prism deficiency and the BTL distortion are characterized by two in-plane rotation angles and several distortion coefficients, respectively. These values are obtained from a calibration process using a chessboard placed into the field of view of the system; this process is conducted after the measurement of tested specimen. A modified mathematical model is proposed, which takes these systematic errors into account and corrects them during 3D reconstruction. Experiments on retrieving the 3D positions of the chessboard grid corners and the morphology of a ceramic plate specimen are performed. The results of the experiments reveal that ignoring the bi-prism deficiency will induce attitude error to the retrieved morphology, and the BTL distortion can lead to its pseudo out-of-plane deformation. Correcting these problems can further improve the measurement accuracy of the bi-prism-based single-lens 3D DIC system.
In Search of Grid Converged Solutions
NASA Technical Reports Server (NTRS)
Lockard, David P.
2010-01-01
Assessing solution error continues to be a formidable task when numerically solving practical flow problems. Currently, grid refinement is the primary method used for error assessment. The minimum grid spacing requirements to achieve design order accuracy for a structured-grid scheme are determined for several simple examples using truncation error evaluations on a sequence of meshes. For certain methods and classes of problems, obtaining design order may not be sufficient to guarantee low error. Furthermore, some schemes can require much finer meshes to obtain design order than would be needed to reduce the error to acceptable levels. Results are then presented from realistic problems that further demonstrate the challenges associated with using grid refinement studies to assess solution accuracy.
Improving laboratory data entry quality using Six Sigma.
Elbireer, Ali; Le Chasseur, Julie; Jackson, Brooks
2013-01-01
The Uganda Makerere University provides clinical laboratory support to over 70 clients in Uganda. With increased volume, manual data entry errors have steadily increased, prompting laboratory managers to employ the Six Sigma method to evaluate and reduce their problems. The purpose of this paper is to describe how laboratory data entry quality was improved by using Six Sigma. The Six Sigma Quality Improvement (QI) project team followed a sequence of steps, starting with defining project goals, measuring data entry errors to assess current performance, analyzing data and determining data-entry error root causes. Finally the team implemented changes and control measures to address the root causes and to maintain improvements. Establishing the Six Sigma project required considerable resources and maintaining the gains requires additional personnel time and dedicated resources. After initiating the Six Sigma project, there was a 60.5 percent reduction in data entry errors from 423 errors a month (i.e. 4.34 Six Sigma) in the first month, down to an average 166 errors/month (i.e. 4.65 Six Sigma) over 12 months. The team estimated the average cost of identifying and fixing a data entry error to be $16.25 per error. Thus, reducing errors by an average of 257 errors per month over one year has saved the laboratory an estimated $50,115 a year. The Six Sigma QI project provides a replicable framework for Ugandan laboratory staff and other resource-limited organizations to promote quality environment. Laboratory staff can deliver excellent care at a lower cost, by applying QI principles. This innovative QI method of reducing data entry errors in medical laboratories may improve the clinical workflow processes and make cost savings across the health care continuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villarreal, Oscar D.; Yu, Lili; Department of Laboratory Medicine, Yancheng Vocational Institute of Health Sciences, Yancheng, Jiangsu 224006
Computing the ligand-protein binding affinity (or the Gibbs free energy) with chemical accuracy has long been a challenge for which many methods/approaches have been developed and refined with various successful applications. False positives and, even more harmful, false negatives have been and still are a common occurrence in practical applications. Inevitable in all approaches are the errors in the force field parameters we obtain from quantum mechanical computation and/or empirical fittings for the intra- and inter-molecular interactions. These errors propagate to the final results of the computed binding affinities even if we were able to perfectly implement the statistical mechanicsmore » of all the processes relevant to a given problem. And they are actually amplified to various degrees even in the mature, sophisticated computational approaches. In particular, the free energy perturbation (alchemical) approaches amplify the errors in the force field parameters because they rely on extracting the small differences between similarly large numbers. In this paper, we develop a hybrid steered molecular dynamics (hSMD) approach to the difficult binding problems of a ligand buried deep inside a protein. Sampling the transition along a physical (not alchemical) dissociation path of opening up the binding cavity- -pulling out the ligand- -closing back the cavity, we can avoid the problem of error amplifications by not relying on small differences between similar numbers. We tested this new form of hSMD on retinol inside cellular retinol-binding protein 1 and three cases of a ligand (a benzylacetate, a 2-nitrothiophene, and a benzene) inside a T4 lysozyme L99A/M102Q(H) double mutant. In all cases, we obtained binding free energies in close agreement with the experimentally measured values. This indicates that the force field parameters we employed are accurate and that hSMD (a brute force, unsophisticated approach) is free from the problem of error amplification suffered by many sophisticated approaches in the literature.« less
A Dynamic Attitude Measurement System Based on LINS
Li, Hanzhou; Pan, Quan; Wang, Xiaoxu; Zhang, Juanni; Li, Jiang; Jiang, Xiangjun
2014-01-01
A dynamic attitude measurement system (DAMS) is developed based on a laser inertial navigation system (LINS). Three factors of the dynamic attitude measurement error using LINS are analyzed: dynamic error, time synchronization and phase lag. An optimal coning errors compensation algorithm is used to reduce coning errors, and two-axis wobbling verification experiments are presented in the paper. The tests indicate that the attitude accuracy is improved 2-fold by the algorithm. In order to decrease coning errors further, the attitude updating frequency is improved from 200 Hz to 2000 Hz. At the same time, a novel finite impulse response (FIR) filter with three notches is designed to filter the dither frequency of the ring laser gyro (RLG). The comparison tests suggest that the new filter is five times more effective than the old one. The paper indicates that phase-frequency characteristics of FIR filter and first-order holder of navigation computer constitute the main sources of phase lag in LINS. A formula to calculate the LINS attitude phase lag is introduced in the paper. The expressions of dynamic attitude errors induced by phase lag are derived. The paper proposes a novel synchronization mechanism that is able to simultaneously solve the problems of dynamic test synchronization and phase compensation. A single-axis turntable and a laser interferometer are applied to verify the synchronization mechanism. The experiments results show that the theoretically calculated values of phase lag and attitude error induced by phase lag can both match perfectly with testing data. The block diagram of DAMS and physical photos are presented in the paper. The final experiments demonstrate that the real-time attitude measurement accuracy of DAMS can reach up to 20″ (1σ) and the synchronization error is less than 0.2 ms on the condition of three axes wobbling for 10 min. PMID:25177802
Multi-hole pressure probes to wind tunnel experiments and air data systems
NASA Astrophysics Data System (ADS)
Shevchenko, A. M.; Shmakov, A. S.
2017-10-01
The problems to develop a multihole pressure system to measure flow angularity, Mach number and dynamic head for wind tunnel experiments or air data systems are discussed. A simple analytical model with separation of variables is derived for the multihole spherical pressure probe. The proposed model is uniform for small subsonic and supersonic speeds. An error analysis was performed. The error functions are obtained, allowing to estimate the influence of the Mach number, the pitch angle, the location of the pressure ports on the uncertainty of determining the flow parameters.
Event-triggered attitude control of spacecraft
NASA Astrophysics Data System (ADS)
Wu, Baolin; Shen, Qiang; Cao, Xibin
2018-02-01
The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.
NASA Technical Reports Server (NTRS)
Bakhshiyan, B. T.; Nazirov, R. R.; Elyasberg, P. E.
1980-01-01
The problem of selecting the optimal algorithm of filtration and the optimal composition of the measurements is examined assuming that the precise values of the mathematical expectancy and the matrix of covariation of errors are unknown. It is demonstrated that the optimal algorithm of filtration may be utilized for making some parameters more precise (for example, the parameters of the gravitational fields) after preliminary determination of the elements of the orbit by a simpler method of processing (for example, the method of least squares).
Wavefront error sensing for LDR
NASA Technical Reports Server (NTRS)
Tubbs, Eldred F.; Glavich, T. A.
1988-01-01
Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.
Nevo, Daniel; Zucker, David M.; Tamimi, Rulla M.; Wang, Molin
2017-01-01
A common paradigm in dealing with heterogeneity across tumors in cancer analysis is to cluster the tumors into subtypes using marker data on the tumor, and then to analyze each of the clusters separately. A more specific target is to investigate the association between risk factors and specific subtypes and to use the results for personalized preventive treatment. This task is usually carried out in two steps–clustering and risk factor assessment. However, two sources of measurement error arise in these problems. The first is the measurement error in the biomarker values. The second is the misclassification error when assigning observations to clusters. We consider the case with a specified set of relevant markers and propose a unified single-likelihood approach for normally distributed biomarkers. As an alternative, we consider a two-step procedure with the tumor type misclassification error taken into account in the second-step risk factor analysis. We describe our method for binary data and also for survival analysis data using a modified version of the Cox model. We present asymptotic theory for the proposed estimators. Simulation results indicate that our methods significantly lower the bias with a small price being paid in terms of variance. We present an analysis of breast cancer data from the Nurses’ Health Study to demonstrate the utility of our method. PMID:27558651
Is Coefficient Alpha Robust to Non-Normal Data?
Sheng, Yanyan; Sheng, Zhaohui
2011-01-01
Coefficient alpha has been a widely used measure by which internal consistency reliability is assessed. In addition to essential tau-equivalence and uncorrelated errors, normality has been noted as another important assumption for alpha. Earlier work on evaluating this assumption considered either exclusively non-normal error score distributions, or limited conditions. In view of this and the availability of advanced methods for generating univariate non-normal data, Monte Carlo simulations were conducted to show that non-normal distributions for true or error scores do create problems for using alpha to estimate the internal consistency reliability. The sample coefficient alpha is affected by leptokurtic true score distributions, or skewed and/or kurtotic error score distributions. Increased sample sizes, not test lengths, help improve the accuracy, bias, or precision of using it with non-normal data. PMID:22363306
A Minimum Variance Algorithm for Overdetermined TOA Equations with an Altitude Constraint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Louis A; Mason, John J.
We present a direct (non-iterative) method for solving for the location of a radio frequency (RF) emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the navigation application are governed by the same equations, but with slightly different interpreta- tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise level, just as the TOA measurements are handled, with their respective noise levels. With 4 or more TOA measurements and the assumed altitude, themore » problem is overdetermined and is solved in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it achieves the minimum possible error variance for given levels of TOA and altitude estimate noise. The method algebraically produces four solutions, the least-squares solution, and potentially three other low residual solutions, if they exist. In the lightly overdermined cases where multiple local minima in the residual error surface are more likely to occur, this algebraic approach can produce all of the minima even when an iterative approach fails to converge. Algorithm performance in terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach are given in tables.« less
Examination of soldier target recognition with direct view optics
NASA Astrophysics Data System (ADS)
Long, Frederick H.; Larkin, Gabriella; Bisordi, Danielle; Dorsey, Shauna; Marianucci, Damien; Goss, Lashawnta; Bastawros, Michael; Misiuda, Paul; Rodgers, Glenn; Mazz, John P.
2017-10-01
Target recognition and identification is a problem of great military and scientific importance. To examine the correlation between target recognition and optical magnification, ten U.S. Army soldiers were tasked with identifying letters on targets at 800 and 1300 meters away. Letters were used since they are a standard method for measuring visual acuity. The letters were approximately 90 cm high, which is the size of a well-known rifle. Four direct view optics with angular magnifications of 1.5x, 4x, 6x, and 9x were used. The goal of this approach was to measure actual probabilities for correct target identification. Previous scientific literature suggests that target recognition can be modeled as a linear response problem in angular frequency space using the established values for the contrast sensitivity function for a healthy human eye and the experimentally measured modulation transfer function of the optic. At the 9x magnification, the soldiers could identify the letters with almost no errors (i.e., 97% probability of correct identification). At lower magnification, errors in letter identification were more frequent. The identification errors were not random but occurred most frequently with a few pairs of letters (e.g., O and Q), which is consistent with the literature for letter recognition. In addition, in the small subject sample of ten soldiers, there was considerable variation in the observer recognition capability at 1.5x and a range of 800 meters. This can be directly attributed to the variation in the observer visual acuity.
A Physical Validation Program for the GPM Mission
NASA Technical Reports Server (NTRS)
Smith, Eric A.
2003-01-01
The GPM mission is currently planned for start in the late 2007 - early 2008 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycling. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe -- continuously. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. A major requirement before the retrieved rainfall information generated by the GPM mission can be used effectively by prognostic models to improve weather forecasts, hydrometeorological forecasts, and climate model reanalysis simulations is a capability to quantify the error characteristics of the retrievals. A solution for this problem has been upheld in past precipitation missions because of the lack of suitable error modeling systems incorporated into the validation programs and data distribution systems. An overview of how NASA intends to overcome this problem for the GPM mission using a physically-based error modeling approach within a multi-faceted validation program is described. The solution is to first identify specific user requirements and then determine the most stringent of these requirements that embodies all essential error characterization information needed by the entire user community. In the context of NASA s scientific agenda for the GPM mission, the most stringent user requirement is found within the data assimilation community. The fundamental theory of data assimilation vis-a-vis ingesting satellite precipitation information into the pre-forecast initializations is based on quantifying the conditional bias and precision errors of individual rain retrievals, and the space-time structure of the precision error (i.e., the spatial-temporal error covariance). By generating the hardware and software capability to produce this information in a near real-time fashion, and to couple the derived quantitative error properties to the actual retrieved rainrates, all key validation users can be satisfied. The talk will describe the essential components of the hardware and software systems needed to generate such near real-time error properties, as well as the various paradigm shifts needed within the validation community to produce a validation program relevant to the precipitation user community.
NASA Astrophysics Data System (ADS)
Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong
2018-01-01
Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.
Scheduling periodic jobs using imprecise results
NASA Technical Reports Server (NTRS)
Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay
1987-01-01
One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed.
Concomitant prescribing and dispensing errors at a Brazilian hospital: a descriptive study
Silva, Maria das Dores Graciano; Rosa, Mário Borges; Franklin, Bryony Dean; Reis, Adriano Max Moreira; Anchieta, Lêni Márcia; Mota, Joaquim Antônio César
2011-01-01
OBJECTIVE: To analyze the prevalence and types of prescribing and dispensing errors occurring with high-alert medications and to propose preventive measures to avoid errors with these medications. INTRODUCTION: The prevalence of adverse events in health care has increased, and medication errors are probably the most common cause of these events. Pediatric patients are known to be a high-risk group and are an important target in medication error prevention. METHODS: Observers collected data on prescribing and dispensing errors occurring with high-alert medications for pediatric inpatients in a university hospital. In addition to classifying the types of error that occurred, we identified cases of concomitant prescribing and dispensing errors. RESULTS: One or more prescribing errors, totaling 1,632 errors, were found in 632 (89.6%) of the 705 high-alert medications that were prescribed and dispensed. We also identified at least one dispensing error in each high-alert medication dispensed, totaling 1,707 errors. Among these dispensing errors, 723 (42.4%) content errors occurred concomitantly with the prescribing errors. A subset of dispensing errors may have occurred because of poor prescription quality. The observed concomitancy should be examined carefully because improvements in the prescribing process could potentially prevent these problems. CONCLUSION: The system of drug prescribing and dispensing at the hospital investigated in this study should be improved by incorporating the best practices of medication safety and preventing medication errors. High-alert medications may be used as triggers for improving the safety of the drug-utilization system. PMID:22012039
Teamwork and error in the operating room: analysis of skills and roles.
Catchpole, K; Mishra, A; Handa, A; McCulloch, P
2008-04-01
To analyze the effects of surgical, anesthetic, and nursing teamwork skills on technical outcomes. The value of team skills in reducing adverse events in the operating room is presently receiving considerable attention. Current work has not yet identified in detail how the teamwork and communication skills of surgeons, anesthetists, and nurses affect the course of an operation. Twenty-six laparoscopic cholecystectomies and 22 carotid endarterectomies were studied using direct observation methods. For each operation, teams' skills were scored for the whole team, and for nursing, surgical, and anesthetic subteams on 4 dimensions (leadership and management [LM]; teamwork and cooperation; problem solving and decision making; and situation awareness). Operating time, errors in surgical technique, and other procedural problems and errors were measured as outcome parameters for each operation. The relationships between teamwork scores and these outcome parameters within each operation were examined using analysis of variance and linear regression. Surgical (F(2,42) = 3.32, P = 0.046) and anesthetic (F(2,42) = 3.26, P = 0.048) LM had significant but opposite relationships with operating time in each operation: operating time increased significantly with higher anesthetic but decreased with higher surgical LM scores. Errors in surgical technique had a strong association with surgical situation awareness (F(2,42) = 7.93, P < 0.001) in each operation. Other procedural problems and errors were related to the intraoperative LM skills of the nurses (F(5,1) = 3.96, P = 0.027). Detailed analysis of team interactions and dimensions is feasible and valuable, yielding important insights into relationships between nontechnical skills, technical performance, and operative duration. These results support the concept that interventions designed to improve teamwork and communication may have beneficial effects on technical performance and patient outcome.
Numerical optimization in Hilbert space using inexact function and gradient evaluations
NASA Technical Reports Server (NTRS)
Carter, Richard G.
1989-01-01
Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.
Optimizing efficiency of height modeling for extensive forest inventories.
T.M. Barrett
2006-01-01
Although critical to monitoring forest ecosystems, inventories are expensive. This paper presents a generalizable method for using an integer programming model to examine tradeoffs between cost and estimation error for alternative measurement strategies in forest inventories. The method is applied to an example problem of choosing alternative height-modeling strategies...
Multilevel Analysis of Structural Equation Models via the EM Algorithm.
ERIC Educational Resources Information Center
Jo, See-Heyon
The question of how to analyze unbalanced hierarchical data generated from structural equation models has been a common problem for researchers and analysts. Among difficulties plaguing statistical modeling are estimation bias due to measurement error and the estimation of the effects of the individual's hierarchical social milieu. This paper…
A game theory approach to target tracking in sensor networks.
Gu, Dongbing
2011-02-01
In this paper, we investigate a moving-target tracking problem with sensor networks. Each sensor node has a sensor to observe the target and a processor to estimate the target position. It also has wireless communication capability but with limited range and can only communicate with neighbors. The moving target is assumed to be an intelligent agent, which is "smart" enough to escape from the detection by maximizing the estimation error. This adversary behavior makes the target tracking problem more difficult. We formulate this target estimation problem as a zero-sum game in this paper and use a minimax filter to estimate the target position. The minimax filter is a robust filter that minimizes the estimation error by considering the worst case noise. Furthermore, we develop a distributed version of the minimax filter for multiple sensor nodes. The distributed computation is implemented via modeling the information received from neighbors as measurements in the minimax filter. The simulation results show that the target tracking algorithm proposed in this paper provides a satisfactory result.
A continuous quality improvement project to reduce medication error in the emergency department.
Lee, Sara Bc; Lee, Larry Ly; Yeung, Richard Sd; Chan, Jimmy Ts
2013-01-01
Medication errors are a common source of adverse healthcare incidents particularly in the emergency department (ED) that has a number of factors that make it prone to medication errors. This project aims to reduce medication errors and improve the health and economic outcomes of clinical care in Hong Kong ED. In 2009, a task group was formed to identify problems that potentially endanger medication safety and developed strategies to eliminate these problems. Responsible officers were assigned to look after seven error-prone areas. Strategies were proposed, discussed, endorsed and promulgated to eliminate the problems identified. A reduction of medication incidents (MI) from 16 to 6 was achieved before and after the improvement work. This project successfully established a concrete organizational structure to safeguard error-prone areas of medication safety in a sustainable manner.
Using Redundancy To Reduce Errors in Magnetometer Readings
NASA Technical Reports Server (NTRS)
Kulikov, Igor; Zak, Michail
2004-01-01
A method of reducing errors in noisy magnetic-field measurements involves exploitation of redundancy in the readings of multiple magnetometers in a cluster. By "redundancy"is meant that the readings are not entirely independent of each other because the relationships among the magnetic-field components that one seeks to measure are governed by the fundamental laws of electromagnetism as expressed by Maxwell's equations. Assuming that the magnetometers are located outside a magnetic material, that the magnetic field is steady or quasi-steady, and that there are no electric currents flowing in or near the magnetometers, the applicable Maxwell 's equations are delta x B = 0 and delta(raised dot) B = 0, where B is the magnetic-flux-density vector. By suitable algebraic manipulation, these equations can be shown to impose three independent constraints on the values of the components of B at the various magnetometer positions. In general, the problem of reducing the errors in noisy measurements is one of finding a set of corrected values that minimize an error function. In the present method, the error function is formulated as (1) the sum of squares of the differences between the corrected and noisy measurement values plus (2) a sum of three terms, each comprising the product of a Lagrange multiplier and one of the three constraints. The partial derivatives of the error function with respect to the corrected magnetic-field component values and the Lagrange multipliers are set equal to zero, leading to a set of equations that can be put into matrix.vector form. The matrix can be inverted to solve for a vector that comprises the corrected magnetic-field component values and the Lagrange multipliers.
Should Pruning be a Pre-Processor of any Linear System?
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Shaykhian, Gholam Ali
2011-01-01
There are many real-world problems whose mathematical models turn out to be linear systems Ax = b , where A is an m by x n matrix. Each equation of the linear system is an information. An information, in a physical problem, such as 4 mangoes, 6 bananas, and 5 oranges cost $10, is mathematically modeled as 4x(sub 1) + 6x(sub 2) + 5x (sub 3) = 10, where x(sub 1), x(sub 2), x(sub 3) are each cost of one mango, that of one banana, and that of one orange, respectively. All the information put together in a specified context, constitutes the physical problem and need not be all distinct. Some of these could be redundant, which cannot be readily identified by inspection. The resulting mathematical model will thus have equations corresponding to this redundant information and hence are linearly dependent and thus superfluous. Consequently, these equations once identified should be better pruned in the process of solving the system. The benefits are (i) less computation and hence less error and consequently a better quality of solution and (ii) reduced storage requirements. In literature, the pruning concept is not in vogue so far although it is most desirable. In a numerical linear system, the system could be slightly inconsistent or inconsistent of varying degree. If the system is too inconsistent, then we should fall back on to the physical problem (PP), check the correctness of the PP derived from the material universe, modify it, if necessary, and then check the corresponding mathematical model (MM) and correct it. In nature/material universe, inconsistency is completely nonexistent. If the MM becomes inconsistent, it could be due to error introduced by the concerned measuring device and/or due to assumptions made on the PP to obtain an MM which is relatively easily solvable or simply due to human error. No measuring device can usually measure a quantity with an accuracy greater that 0.005% or, equivalently with a relative error less than 0.005%. Hence measurement error is unavoidable in a numerical linear system when the quantities are continuous (or even discrete with extremely large number). Assumptions, though not desirable, are usually made when we find the problem sufficiently difficult to be solved within the available means/tools/resources and hence distort the PP and the corresponding MM. The error thus introduced in the system could (not always necessarily though) make the system somewhat inconsistent. If the inconsistency (contradiction) is too much then one should definitely not proceed to solve the system in terms of getting a least-squares solution or a minimum norm solution or the minimum-norm least-squares solution. All these solutions will be invariably of no real-world use. If, on the other hand, inconsistency is reasonably low, i.e. the system is near-consistent or, equivalently, has near-linearly-dependent rows, then the foregoing solutions are useful. Pruning in such a near-consistent system should be performed based on the desired accuracy and on the definition of near-linear dependence. In this article, we discuss pruning over various kinds of linear systems and strongly suggest its use as a pre-processor or as a part of an algorithm. Ideally pruning should (i) be a part of the solution process (algorithm) of the system, (ii) reduce both computational error and complexity of the process, and (iii) take into account the numerical zero defined in the context. These are precisely what we achieve through our proposed O(mn2) algorithm presented in Matlab, that uses a subprogram of solving a single linear equation and that has embedded in it the pruning.
Should Pruning be a Pre-Processor of any Linear System?
NASA Technical Reports Server (NTRS)
Sen, Syamal K.; Ramakrishnan, Suja; Agarwal, Ravi P.; Shaykhian, Gholam Ali
2011-01-01
There are many real-world problems whose mathematical models turn out to be linear systems Ax = b, where A is an m x n matrix. Each equation of the linear system is an information. An information, in a physical problem, such as 4 mangoes, 6 bananas, and 5 oranges cost $10, is mathematically modeled as an equation 4x(sub 1) + 6x(sub 2) + 5x(sub 3) = 10 , where x(sub 1), x(sub 2), x(sub 3) are each cost of one mango, that of one banana, and that of one orange, respectively. All the information put together in a specified context, constitutes the physical problem and need not be all distinct. Some of these could be redundant, which cannot be readily identified by inspection. The resulting mathematical model will thus have equations corresponding to this redundant information and hence are linearly dependent and thus superfluous. Consequently, these equations once identified should be better pruned in the process of solving the system. The benefits are (i) less computation and hence less error and consequently a better quality of solution and (ii) reduced storage requirements. In literature, the pruning concept is not in vogue so far although it is most desirable. It is assumed that at least one information, i.e. one equation is known to be correct and which will be our first equation. In a numerical linear system, the system could be slightly inconsistent or inconsistent of varying degree. If the system is too inconsistent, then we should fall back on to the physical problem (PP), check the correctness of the PP derived from the material universe, modify it, if necessary, and then check the corresponding mathematical model (MM) and correct it. In nature/material universe, inconsistency is completely nonexistent. If the MM becomes inconsistent, it could be due to error introduced by the concerned measuring device and/or due to assumptions made on the PP to obtain an MM which is relatively easily solvable or simply due to human error. No measuring device can usually measure a quantity with an accuracy greater that 0.005% or, equivalently with a relative error less than 0.005%. Hence measurement error is unavoidable in a numerical linear system when the quantities are continuous (or even discrete with extremely large number). Assumptions, though not desirable, are usually made when we find the problem sufficiently difficult to be solved within the available means/tools/resources and hence distort the PP and the corresponding MM. The . error thus introduced in the system could (not always necessarily though) make the system somewhat inconsistent. If the inconsistency (contradiction) is too much then one should definitely not proceed to solve the system in terms of getting a least-squares solution or the minimum-norm least-squares solution. All these solutions will be invariably of no real-world use. If, on the other hand, inconsistency is reasonably low, i.e. the system is near-consistent or, equivalently, has near-linearly-dependent rows, then the foregoing solutions are useful. Pruning in such a near-consistent system should be performed based on the desired accuracy and on the definition of near-linear dependence. In this article, we discuss pruning over various kinds of linear systems and strongly suggest its use as a pre-processor or as a part of an algorithm. Ideally pruning should (i) be a part of the solution process (algorithm) of the system, (ii) reduce both computational error and complexity of the process, and (iii) take into account the numerical zero defined in the context. These are precisely what we achieve through our proposed O(mn2) algorithm presented in Matlab, that uses a subprogram of solving a single linear equation and that has embedded in it the pruning.
A Bayesian Measurment Error Model for Misaligned Radiographic Data
Lennox, Kristin P.; Glascoe, Lee G.
2013-09-06
An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less
NASA Astrophysics Data System (ADS)
Paul, Prakash
2009-12-01
The finite element method (FEM) is used to solve three-dimensional electromagnetic scattering and radiation problems. Finite element (FE) solutions of this kind contain two main types of error: discretization error and boundary error. Discretization error depends on the number of free parameters used to model the problem, and on how effectively these parameters are distributed throughout the problem space. To reduce the discretization error, the polynomial order of the finite elements is increased, either uniformly over the problem domain or selectively in those areas with the poorest solution quality. Boundary error arises from the condition applied to the boundary that is used to truncate the computational domain. To reduce the boundary error, an iterative absorbing boundary condition (IABC) is implemented. The IABC starts with an inexpensive boundary condition and gradually improves the quality of the boundary condition as the iteration continues. An automatic error control (AEC) is implemented to balance the two types of error. With the AEC, the boundary condition is improved when the discretization error has fallen to a low enough level to make this worth doing. The AEC has these characteristics: (i) it uses a very inexpensive truncation method initially; (ii) it allows the truncation boundary to be very close to the scatterer/radiator; (iii) it puts more computational effort on the parts of the problem domain where it is most needed; and (iv) it can provide as accurate a solution as needed depending on the computational price one is willing to pay. To further reduce the computational cost, disjoint scatterers and radiators that are relatively far from each other are bounded separately and solved using a multi-region method (MRM), which leads to savings in computational cost. A simple analytical way to decide whether the MRM or the single region method will be computationally cheaper is also described. To validate the accuracy and savings in computation time, different shaped metallic and dielectric obstacles (spheres, ogives, cube, flat plate, multi-layer slab etc.) are used for the scattering problems. For the radiation problems, waveguide excited antennas (horn antenna, waveguide with flange, microstrip patch antenna) are used. Using the AEC the peak reduction in computation time during the iteration is typically a factor of 2, compared to the IABC using the same element orders throughout. In some cases, it can be as high as a factor of 4.
NASA Technical Reports Server (NTRS)
Brown, G. S.; Curry, W. J.
1977-01-01
The statistical error of the pointing angle estimation technique is determined as a function of the effective receiver signal to noise ratio. Other sources of error are addressed and evaluated with inadequate calibration being of major concern. The impact of pointing error on the computation of normalized surface scattering cross section (sigma) from radar and the waveform attitude induced altitude bias is considered and quantitative results are presented. Pointing angle and sigma processing algorithms are presented along with some initial data. The intensive mode clean vs. clutter AGC calibration problem is analytically resolved. The use clutter AGC data in the intensive mode is confirmed as the correct calibration set for the sigma computations.
Dong, Zhixu; Sun, Xingwei; Chen, Changzheng; Sun, Mengnan
2018-04-13
The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor's measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved.
Sun, Xingwei; Chen, Changzheng; Sun, Mengnan
2018-01-01
The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor’s measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved. PMID:29652836
Estimating Rain Rates from Tipping-Bucket Rain Gauge Measurements
NASA Technical Reports Server (NTRS)
Wang, Jianxin; Fisher, Brad L.; Wolff, David B.
2007-01-01
This paper describes the cubic spline based operational system for the generation of the TRMM one-minute rain rate product 2A-56 from Tipping Bucket (TB) gauge measurements. Methodological issues associated with applying the cubic spline to the TB gauge rain rate estimation are closely examined. A simulated TB gauge from a Joss-Waldvogel (JW) disdrometer is employed to evaluate effects of time scales and rain event definitions on errors of the rain rate estimation. The comparison between rain rates measured from the JW disdrometer and those estimated from the simulated TB gauge shows good overall agreement; however, the TB gauge suffers sampling problems, resulting in errors in the rain rate estimation. These errors are very sensitive to the time scale of rain rates. One-minute rain rates suffer substantial errors, especially at low rain rates. When one minute rain rates are averaged to 4-7 minute or longer time scales, the errors dramatically reduce. The rain event duration is very sensitive to the event definition but the event rain total is rather insensitive, provided that the events with less than 1 millimeter rain totals are excluded. Estimated lower rain rates are sensitive to the event definition whereas the higher rates are not. The median relative absolute errors are about 22% and 32% for 1-minute TB rain rates higher and lower than 3 mm per hour, respectively. These errors decrease to 5% and 14% when TB rain rates are used at 7-minute scale. The radar reflectivity-rainrate (Ze-R) distributions drawn from large amount of 7-minute TB rain rates and radar reflectivity data are mostly insensitive to the event definition.
Refractive errors in 3-6 year-old Chinese children: a very low prevalence of myopia?
Lan, Weizhong; Zhao, Feng; Lin, Lixia; Li, Zhen; Zeng, Junwen; Yang, Zhikuan; Morgan, Ian G
2013-01-01
To examine the prevalence of refractive errors in children aged 3-6 years in China. Children were recruited for a trial of a home-based amblyopia screening kit in Guangzhou preschools, during which cycloplegic refractions were measured in both eyes of 2480 children. Cycloplegic refraction (from 3 to 4 drops of 1% cyclopentolate to ensure abolition of the light reflex) was measured by both autorefraction and retinoscopy. Refractive errors were defined as followed: myopia (at least -0.50 D in the worse eye), hyperopia (at least +2.00 D in the worse eye) and astigmatism (at least 1.50 D in the worse eye). Different definitions, as specified in the text, were also used to facilitate comparison with other studies. The mean spherical equivalent refractive error was at least +1.22 D for all ages and both genders. The prevalence of myopia for any definition at any age was at most 2.5%, and lower in most cases. In contrast, the prevalence of hyperopia was generally over 20%, and declined slightly with age. The prevalence of astigmatism was between 6% and 11%. There was very little change in refractive error with age over this age range. Previous reports of less hyperopic mean spherical equivalent refractive error, and more myopia and less hyperopia in children of this age may be due to problems with achieving adequate cycloplegia in children with dark irises. Using up to 4 drops of 1% cyclopentolate may be necessary to accurately measure refractive error in paediatric studies of such children. Our results suggest that children from all ethnic groups may follow a similar pattern of early refractive development, with little myopia and a hyperopic mean spherical equivalent over +1.00 D up to the age of 5-6 years in most conditions.
Thayer, Edward C.; Olson, Maynard V.; Karp, Richard M.
1999-01-01
Genetic and physical maps display the relative positions of objects or markers occurring within a target DNA molecule. In constructing maps, the primary objective is to determine the ordering of these objects. A further objective is to assign a coordinate to each object, indicating its distance from a reference end of the target molecule. This paper describes a computational method and a body of software for assigning coordinates to map objects, given a solution or partial solution to the ordering problem. We describe our method in the context of multiple–complete–digest (MCD) mapping, but it should be applicable to a variety of other mapping problems. Because of errors in the data or insufficient clone coverage to uniquely identify the true ordering of the map objects, a partial ordering is typically the best one can hope for. Once a partial ordering has been established, one often seeks to overlay a metric along the map to assess the distances between the map objects. This problem often proves intractable because of data errors such as erroneous local length measurements (e.g., large clone lengths on low-resolution physical maps). We present a solution to the coordinate assignment problem for MCD restriction-fragment mapping, in which a coordinated set of single-enzyme restriction maps are simultaneously constructed. We show that the coordinate assignment problem can be expressed as the solution of a system of linear constraints. If the linear system is free of inconsistencies, it can be solved using the standard Bellman–Ford algorithm. In the more typical case where the system is inconsistent, our program perturbs it to find a new consistent system of linear constraints, close to those of the given inconsistent system, using a modified Bellman–Ford algorithm. Examples are provided of simple map inconsistencies and the methods by which our program detects candidate data errors and directs the user to potential suspect regions of the map. PMID:9927487
Crosby, Richard; Mena, Leandro; Yarber, William L.; Graham, Cynthia A.; Sanders, Stephanie A.; Milhausen, Robin R.
2015-01-01
Objective To describe self-reported frequencies of selected condom use errors and problems among young (ages 15–29) Black MSM (YBMSM) and to compare the observed prevalence of these errors/problems by HIV serostatus. Methods Between September 2012 October 2014, electronic interview data were collected from 369 YBMSM attending a federally supported STI clinic located in the southern U.S. Seventeen condom use errors and problems were assessed. Chi-square tests were used to detect significant differences in the prevalence of these 17 errors and problems between HIV-negative and HIV-positive men. Results The recall period was the past 90 days. The overall mean number of errors/problems was 2.98 (sd=2.29). The mean for HIV-negative men was 2.91 (sd=2.15) and the mean for HIV-positive men was 3.18 (sd=2.57). These means were not significantly different (t=1.02, df=367, P=.31). Only two significant differences were observed between HIV-negative and HIV-positive men. Breakage (P = .002) and slippage (P = .005) were about twice as likely among HIV-positive men. Breakage occurred for nearly 30% of the HIV-positive men compared to about 15% among HIV-negative men. Slippage occurred for about 16% of the HIV-positive men compared to about 9% among HIV-negative men. Conclusion A need exists to help YBMSM acquire the skills needed to avert breakage and slippage issues that could lead to HIV transmission. Beyond these two exceptions, condom use errors and problems were ubiquitous in this population regardless of HIV serostatus. Clinic-based intervention is warranted for these young men, including education about correct condom use and provision of free condoms and long-lasting lubricants. PMID:26462188
Prediction-error variance in Bayesian model updating: a comparative study
NASA Astrophysics Data System (ADS)
Asadollahi, Parisa; Li, Jian; Huang, Yong
2017-04-01
In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model class level produces more robust results especially when the number of measurement is small.
From least squares to multilevel modeling: A graphical introduction to Bayesian inference
NASA Astrophysics Data System (ADS)
Loredo, Thomas J.
2016-01-01
This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.
Testing jumps via false discovery rate control.
Yen, Yu-Min
2013-01-01
Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate (FDR), an efficient compound error measure for erroneous rejections in multiple testing problems. We perform the test via the Barndorff-Nielsen and Shephard (BNS) test statistic, and control the FDR with the Benjamini and Hochberg (BH) procedure. We provide asymptotic results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate the advantages of controlling the FDR. The hybrid approach is then applied to empirical analysis on two benchmark stock indices with high frequency data.
Determining the interparticle force laws in amorphous solids from a visual image.
Gendelman, Oleg; Pollack, Yoav G; Procaccia, Itamar
2016-06-01
We consider the problem of how to determine the force laws in an amorphous system of interacting particles. Given the positions of the centers of mass of the constituent particles we propose an algorithm to determine the interparticle force laws. Having n different types of constituents we determine the coefficients in the Laurent polynomials for the n(n+1)/2 possibly different force laws. A visual providing the particle positions in addition to a measurement of the pressure is all that is required. The algorithm proposed includes a part that can correct for experimental errors in the positions of the particles. Such a correction of unavoidable measurement errors is expected to benefit many experiments in the field.
Metainference: A Bayesian inference method for heterogeneous systems.
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called "metainference," that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors.
New evidence of factor structure and measurement invariance of the SDQ across five European nations.
Ortuño-Sierra, Javier; Fonseca-Pedrero, Eduardo; Aritio-Solana, Rebeca; Velasco, Alvaro Moreno; de Luis, Edurne Chocarro; Schumann, Gunter; Cattrell, Anna; Flor, Herta; Nees, Frauke; Banaschewski, Tobias; Bokde, Arun; Whelan, Rob; Buechel, Christian; Bromberg, Uli; Conrod, Patricia; Frouin, Vincent; Papadopoulos, Dimitri; Gallinat, Juergen; Garavan, Hugh; Heinz, Andreas; Walter, Henrik; Struve, Maren; Gowland, Penny; Paus, Tomáš; Poustka, Luise; Martinot, Jean-Luc; Paillère-Martinot, Marie-Laure; Vetter, Nora C; Smolka, Michael N; Lawrence, Claire
2015-12-01
The main purpose of the present study was to analyse the internal structure and to test the measurement invariance of the Strengths and Difficulties Questionnaire (SDQ), self-reported version, in five European countries. The sample consisted of 3012 adolescents aged between 12 and 17 years (M = 14.20; SD = 0.83). The five-factor model (with correlated errors added), and the five-factor model (with correlated errors added) with the reverse-worded items allowed to cross-load on the Prosocial subscale, displayed adequate goodness of-fit indices. Multi-group confirmatory factor analysis showed that the five-factor model (with correlated errors added) had partial strong measurement invariance by countries. A total of 11 of the 25 items were non-invariant across samples. The level of internal consistency of the Total difficulties score was 0.84, ranging between 0.69 and 0.78 for the SDQ subscales. The findings indicate that the SDQ's subscales need to be modified in various ways for screening emotional and behavioural problems in the five European countries that were analysed.
NASA Astrophysics Data System (ADS)
Hincks, Ian; Granade, Christopher; Cory, David G.
2018-01-01
The analysis of photon count data from the standard nitrogen vacancy (NV) measurement process is treated as a statistical inference problem. This has applications toward gaining better and more rigorous error bars for tasks such as parameter estimation (e.g. magnetometry), tomography, and randomized benchmarking. We start by providing a summary of the standard phenomenological model of the NV optical process in terms of Lindblad jump operators. This model is used to derive random variables describing emitted photons during measurement, to which finite visibility, dark counts, and imperfect state preparation are added. NV spin-state measurement is then stated as an abstract statistical inference problem consisting of an underlying biased coin obstructed by three Poisson rates. Relevant frequentist and Bayesian estimators are provided, discussed, and quantitatively compared. We show numerically that the risk of the maximum likelihood estimator is well approximated by the Cramér-Rao bound, for which we provide a simple formula. Of the estimators, we in particular promote the Bayes estimator, owing to its slightly better risk performance, and straightforward error propagation into more complex experiments. This is illustrated on experimental data, where quantum Hamiltonian learning is performed and cross-validated in a fully Bayesian setting, and compared to a more traditional weighted least squares fit.
ERIC Educational Resources Information Center
Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel
2016-01-01
This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…
Custom-oriented wavefront sensor for human eye properties measurements
NASA Astrophysics Data System (ADS)
Galetskiy, Sergey; Letfullin, Renat; Dubinin, Alex; Cherezova, Tatyana; Belyakov, Alexey; Kudryashov, Alexis
2005-12-01
The problem of correct measurement of human eye aberrations is very important with the rising widespread of a surgical procedure for reducing refractive error in the eye, so called, LASIK (laser-assisted in situ keratomileusis). In this paper we show capabilities to measure aberrations by means of the aberrometer built in our lab together with Active Optics Ltd. We discuss the calibration of the aberrometer and show invalidity to use for the ophthalmic calibration purposes the analytical equation based on thin lens formula. We show that proper analytical equation suitable for calibration should have dependence on the square of the distance increment and we illustrate this both by experiment and by Zemax Ray tracing modeling. Also the error caused by inhomogeneous intensity distribution of the beam imaged onto the aberrometer's Shack-Hartmann sensor is discussed.
Measurement accuracies in band-limited extrapolation
NASA Technical Reports Server (NTRS)
Kritikos, H. N.
1982-01-01
The problem of numerical instability associated with extrapolation algorithms is addressed. An attempt is made to estimate the bounds for the acceptable errors and to place a ceiling on the measurement accuracy and computational accuracy needed for the extrapolation. It is shown that in band limited (or visible angle limited) extrapolation the larger effective aperture L' that can be realized from a finite aperture L by over sampling is a function of the accuracy of measurements. It is shown that for sampling in the interval L/b absolute value of xL, b1 the signal must be known within an error e sub N given by e sub N squared approximately = 1/4(2kL') cubed (e/8b L/L')(2kL') where L is the physical aperture, L' is the extrapolated aperture, and k = 2pi lambda.
Influence of video compression on the measurement error of the television system
NASA Astrophysics Data System (ADS)
Sotnik, A. V.; Yarishev, S. N.; Korotaev, V. V.
2015-05-01
Video data require a very large memory capacity. Optimal ratio quality / volume video encoding method is one of the most actual problem due to the urgent need to transfer large amounts of video over various networks. The technology of digital TV signal compression reduces the amount of data used for video stream representation. Video compression allows effective reduce the stream required for transmission and storage. It is important to take into account the uncertainties caused by compression of the video signal in the case of television measuring systems using. There are a lot digital compression methods. The aim of proposed work is research of video compression influence on the measurement error in television systems. Measurement error of the object parameter is the main characteristic of television measuring systems. Accuracy characterizes the difference between the measured value abd the actual parameter value. Errors caused by the optical system can be selected as a source of error in the television systems measurements. Method of the received video signal processing is also a source of error. Presence of error leads to large distortions in case of compression with constant data stream rate. Presence of errors increases the amount of data required to transmit or record an image frame in case of constant quality. The purpose of the intra-coding is reducing of the spatial redundancy within a frame (or field) of television image. This redundancy caused by the strong correlation between the elements of the image. It is possible to convert an array of image samples into a matrix of coefficients that are not correlated with each other, if one can find corresponding orthogonal transformation. It is possible to apply entropy coding to these uncorrelated coefficients and achieve a reduction in the digital stream. One can select such transformation that most of the matrix coefficients will be almost zero for typical images . Excluding these zero coefficients also possible reducing of the digital stream. Discrete cosine transformation is most widely used among possible orthogonal transformation. Errors of television measuring systems and data compression protocols analyzed In this paper. The main characteristics of measuring systems and detected sources of their error detected. The most effective methods of video compression are determined. The influence of video compression error on television measuring systems was researched. Obtained results will increase the accuracy of the measuring systems. In television image quality measuring system reduces distortion identical distortion in analog systems and specific distortions resulting from the process of coding / decoding digital video signal and errors in the transmission channel. By the distortions associated with encoding / decoding signal include quantization noise, reducing resolution, mosaic effect, "mosquito" effect edging on sharp drops brightness, blur colors, false patterns, the effect of "dirty window" and other defects. The size of video compression algorithms used in television measuring systems based on the image encoding with intra- and inter prediction individual fragments. The process of encoding / decoding image is non-linear in space and in time, because the quality of the playback of a movie at the reception depends on the pre- and post-history of a random, from the preceding and succeeding tracks, which can lead to distortion of the inadequacy of the sub-picture and a corresponding measuring signal.
ERIC Educational Resources Information Center
O'Connell, Ann Aileen
The relationships among types of errors observed during probability problem solving were studied. Subjects were 50 graduate students in an introductory probability and statistics course. Errors were classified as text comprehension, conceptual, procedural, and arithmetic. Canonical correlation analysis was conducted on the frequencies of specific…
Measuring Data Quality Through a Source Data Verification Audit in a Clinical Research Setting.
Houston, Lauren; Probst, Yasmine; Humphries, Allison
2015-01-01
Health data has long been scrutinised in relation to data quality and integrity problems. Currently, no internationally accepted or "gold standard" method exists measuring data quality and error rates within datasets. We conducted a source data verification (SDV) audit on a prospective clinical trial dataset. An audit plan was applied to conduct 100% manual verification checks on a 10% random sample of participant files. A quality assurance rule was developed, whereby if >5% of data variables were incorrect a second 10% random sample would be extracted from the trial data set. Error was coded: correct, incorrect (valid or invalid), not recorded or not entered. Audit-1 had a total error of 33% and audit-2 36%. The physiological section was the only audit section to have <5% error. Data not recorded to case report forms had the greatest impact on error calculations. A significant association (p=0.00) was found between audit-1 and audit-2 and whether or not data was deemed correct or incorrect. Our study developed a straightforward method to perform a SDV audit. An audit rule was identified and error coding was implemented. Findings demonstrate that monitoring data quality by a SDV audit can identify data quality and integrity issues within clinical research settings allowing quality improvement to be made. The authors suggest this approach be implemented for future research.
Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems
Li, Zhining; Zhang, Yingtang; Yin, Gang
2018-01-01
The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor’s system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg–Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the “overcalibration” problem. The accuracy of the error parameters’ estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust. PMID:29373544
NASA Technical Reports Server (NTRS)
Duda, David P.; Minnis, Patrick
2009-01-01
Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.
Understanding adverse events: human factors.
Reason, J
1995-01-01
(1) Human rather than technical failures now represent the greatest threat to complex and potentially hazardous systems. This includes healthcare systems. (2) Managing the human risks will never be 100% effective. Human fallibility can be moderated, but it cannot be eliminated. (3) Different error types have different underlying mechanisms, occur in different parts of the organisation, and require different methods of risk management. The basic distinctions are between: Slips, lapses, trips, and fumbles (execution failures) and mistakes (planning or problem solving failures). Mistakes are divided into rule based mistakes and knowledge based mistakes. Errors (information-handling problems) and violations (motivational problems) Active versus latent failures. Active failures are committed by those in direct contact with the patient, latent failures arise in organisational and managerial spheres and their adverse effects may take a long time to become evident. (4) Safety significant errors occur at all levels of the system, not just at the sharp end. Decisions made in the upper echelons of the organisation create the conditions in the workplace that subsequently promote individual errors and violations. Latent failures are present long before an accident and are hence prime candidates for principled risk management. (5) Measures that involve sanctions and exhortations (that is, moralistic measures directed to those at the sharp end) have only very limited effectiveness, especially so in the case of highly trained professionals. (6) Human factors problems are a product of a chain of causes in which the individual psychological factors (that is, momentary inattention, forgetting, etc) are the last and least manageable links. Attentional "capture" (preoccupation or distraction) is a necessary condition for the commission of slips and lapses. Yet, its occurrence is almost impossible to predict or control effectively. The same is true of the factors associated with forgetting. States of mind contributing to error are thus extremely difficult to manage; they can happen to the best of people at any time. (7) People do not act in isolation. Their behaviour is shaped by circumstances. The same is true for errors and violations. The likelihood of an unsafe act being committed is heavily influenced by the nature of the task and by the local workplace conditions. These, in turn, are the product of "upstream" organisational factors. Great gains in safety can ve achieved through relatively small modifications of equipment and workplaces. (8) Automation and increasing advanced equipment do not cure human factors problems, they merely relocate them. In contrast, training people to work effectively in teams costs little, but has achieved significant enhancements of human performance in aviation. (9) Effective risk management depends critically on a confidential and preferable anonymous incident monitoring system that records the individual, task, situational, and organisational factors associated with incidents and near misses. (10) Effective risk management means the simultaneous and targeted deployment of limited remedial resources at different levels of the system: the individual or team, the task, the situation, and the organisation as a whole. PMID:10151618
Quantum chi-squared and goodness of fit testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temme, Kristan; Verstraete, Frank
2015-01-15
A quantum mechanical hypothesis test is presented for the hypothesis that a certain setup produces a given quantum state. Although the classical and the quantum problems are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. A goodness of fit test for i.i.d quantum states is developed and a max-min characterization for the optimal measurement is introduced. We find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiencies, and determine the associated divergence rates. We discuss the relationship of the quantum goodness of fitmore » test to the problem of estimating multiple parameters from a density matrix. These problems are found to be closely related and we show that the largest error of an optimal strategy, determined by the smallest eigenvalue of the Fisher information matrix, is given by the divergence rate of the goodness of fit test.« less
Students’ Errors in Geometry Viewed from Spatial Intelligence
NASA Astrophysics Data System (ADS)
Riastuti, N.; Mardiyana, M.; Pramudya, I.
2017-09-01
Geometry is one of the difficult materials because students must have ability to visualize, describe images, draw shapes, and know the kind of shapes. This study aim is to describe student error based on Newmans’ Error Analysis in solving geometry problems viewed from spatial intelligence. This research uses descriptive qualitative method by using purposive sampling technique. The datas in this research are the result of geometri material test and interview by the 8th graders of Junior High School in Indonesia. The results of this study show that in each category of spatial intelligence has a different type of error in solving the problem on the material geometry. Errors are mostly made by students with low spatial intelligence because they have deficiencies in visual abilities. Analysis of student error viewed from spatial intelligence is expected to help students do reflection in solving the problem of geometry.
Liu, Derong; Li, Hongliang; Wang, Ding
2015-06-01
In this paper, we establish error bounds of adaptive dynamic programming algorithms for solving undiscounted infinite-horizon optimal control problems of discrete-time deterministic nonlinear systems. We consider approximation errors in the update equations of both value function and control policy. We utilize a new assumption instead of the contraction assumption in discounted optimal control problems. We establish the error bounds for approximate value iteration based on a new error condition. Furthermore, we also establish the error bounds for approximate policy iteration and approximate optimistic policy iteration algorithms. It is shown that the iterative approximate value function can converge to a finite neighborhood of the optimal value function under some conditions. To implement the developed algorithms, critic and action neural networks are used to approximate the value function and control policy, respectively. Finally, a simulation example is given to demonstrate the effectiveness of the developed algorithms.
Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems
NASA Technical Reports Server (NTRS)
Skollermo, G.
1979-01-01
Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.
Space-Time Error Representation and Estimation in Navier-Stokes Calculations
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2006-01-01
The mathematical framework for a-posteriori error estimation of functionals elucidated by Eriksson et al. [7] and Becker and Rannacher [3] is revisited in a space-time context. Using these theories, a hierarchy of exact and approximate error representation formulas are presented for use in error estimation and mesh adaptivity. Numerical space-time results for simple model problems as well as compressible Navier-Stokes flow at Re = 300 over a 2D circular cylinder are then presented to demonstrate elements of the error representation theory for time-dependent problems.
NASA Astrophysics Data System (ADS)
Ubelmann, C.; Gerald, D.
2016-12-01
The SWOT data validation will be a first challenge after launch, as the nature of the measurement, in particular the two-dimensionality at short spatial scales, is new in altimetry. If the comparison with independent observations may be locally possible, a validation of the full signal and error spectrum will be challenging. However, some recent analyses in simulations have shown the possibility to separate the geophysical signals from the spatially coherent instrumental errors in the spectral space, through cross-spectral analysis. These results suggest that rapidly after launch, the instrument error canl be spectrally separated providing some validations and insights on the Ocean energy spectrum, as well as optimal calibrations. Beyond CalVal, such spectral computations will be also essential for producing high-level Ocean estimates (two and three dimensional Ocean state reconstructions).
Refractive errors in medical students in Singapore.
Woo, W W; Lim, K A; Yang, H; Lim, X Y; Liew, F; Lee, Y S; Saw, S M
2004-10-01
Refractive errors are becoming more of a problem in many societies, with prevalence rates of myopia in many Asian urban countries reaching epidemic proportions. This study aims to determine the prevalence rates of various refractive errors in Singapore medical students. 157 second year medical students (aged 19-23 years) in Singapore were examined. Refractive error measurements were determined using a stand-alone autorefractor. Additional demographical data was obtained via questionnaires filled in by the students. The prevalence rate of myopia in Singapore medical students was 89.8 percent (Spherical equivalence (SE) at least -0.50 D). Hyperopia was present in 1.3 percent (SE more than +0.50 D) of the participants and the overall astigmatism prevalence rate was 82.2 percent (Cylinder at least 0.50 D). Prevalence rates of myopia and astigmatism in second year Singapore medical students are one of the highest in the world.
Airborne gravimetry, altimetry, and GPS navigation errors
NASA Technical Reports Server (NTRS)
Colombo, Oscar L.
1992-01-01
Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.
Empirical investigation into depth-resolution of Magnetotelluric data
NASA Astrophysics Data System (ADS)
Piana Agostinetti, N.; Ogaya, X.
2017-12-01
We investigate the depth-resolution of MT data comparing reconstructed 1D resistivity profiles with measured resistivity and lithostratigraphy from borehole data. Inversion of MT data has been widely used to reconstruct the 1D fine-layered resistivity structure beneath an isolated Magnetotelluric (MT) station. Uncorrelated noise is generally assumed to be associated to MT data. However, wrong assumptions on error statistics have been proved to strongly bias the results obtained in geophysical inversions. In particular the number of resolved layers at depth strongly depends on error statistics. In this study, we applied a trans-dimensional McMC algorithm for reconstructing the 1D resistivity profile near-by the location of a 1500 m-deep borehole, using MT data. We resolve the MT inverse problem imposing different models for the error statistics associated to the MT data. Following a Hierachical Bayes' approach, we also inverted for the hyper-parameters associated to each error statistics model. Preliminary results indicate that assuming un-correlated noise leads to a number of resolved layers larger than expected from the retrieved lithostratigraphy. Moreover, comparing the inversion of synthetic resistivity data obtained from the "true" resistivity stratification measured along the borehole shows that a consistent number of resistivity layers can be obtained using a Gaussian model for the error statistics, with substantial correlation length.
NASA Astrophysics Data System (ADS)
Gao, F.; Zhang, Y.
2017-12-01
A new inverse method is developed to simultaneously estimate aquifer thickness and boundary conditions using borehole and hydrodynamic measurements from a homogeneous confined aquifer under steady-state ambient flow. This method extends a previous groundwater inversion technique which had assumed known aquifer geometry and thickness. In this research, thickness inversion was successfully demonstrated when hydrodynamic data were supplemented with measured thicknesses from boreholes. Based on a set of hybrid formulations which describe approximate solutions to the groundwater flow equation, the new inversion technique can incorporate noisy observed data (i.e., thicknesses, hydraulic heads, Darcy fluxes or flow rates) at measurement locations as a set of conditioning constraints. Given sufficient quantity and quality of the measurements, the inverse method yields a single well-posed system of equations that can be solved efficiently with nonlinear optimization. The method is successfully tested on two-dimensional synthetic aquifer problems with regular geometries. The solution is stable when measurement errors are increased, with error magnitude reaching up to +/- 10% of the range of the respective measurement. When error-free observed data are used to condition the inversion, the estimated thickness is within a +/- 5% error envelope surrounding the true value; when data contain increasing errors, the estimated thickness become less accurate, as expected. Different combinations of measurement types are then investigated to evaluate data worth. Thickness can be inverted with the combination of observed heads and at least one of the other types of observations such as thickness, Darcy fluxes, or flow rates. Data requirement of the new inversion method is thus not much different from that of interpreting classic well tests. Future work will improve upon this research by developing an estimation strategy for heterogeneous aquifers while drawdown data from hydraulic tests will also be incorporated as conditioning measurements.
Aniseikonia quantification: error rate of rule of thumb estimation.
Lubkin, V; Shippman, S; Bennett, G; Meininger, D; Kramer, P; Poppinga, P
1999-01-01
To find the error rate in quantifying aniseikonia by using "Rule of Thumb" estimation in comparison with proven space eikonometry. Study 1: 24 adult pseudophakic individuals were measured for anisometropia, and astigmatic interocular difference. Rule of Thumb quantification for prescription was calculated and compared with aniseikonia measurement by the classical Essilor Projection Space Eikonometer. Study 2: parallel analysis was performed on 62 consecutive phakic patients from our strabismus clinic group. Frequency of error: For Group 1 (24 cases): 5 ( or 21 %) were equal (i.e., 1% or less difference); 16 (or 67% ) were greater (more than 1% different); and 3 (13%) were less by Rule of Thumb calculation in comparison to aniseikonia determined on the Essilor eikonometer. For Group 2 (62 cases): 45 (or 73%) were equal (1% or less); 10 (or 16%) were greater; and 7 (or 11%) were lower in the Rule of Thumb calculations in comparison to Essilor eikonometry. Magnitude of error: In Group 1, in 10/24 (29%) aniseikonia by Rule of Thumb estimation was 100% or more greater than by space eikonometry, and in 6 of those ten by 200% or more. In Group 2, in 4/62 (6%) aniseikonia by Rule of Thumb estimation was 200% or more greater than by space eikonometry. The frequency and magnitude of apparent clinical errors of Rule of Thumb estimation is disturbingly large. This problem is greatly magnified by the time and effort and cost of prescribing and executing an aniseikonic correction for a patient. The higher the refractive error, the greater the anisometropia, and the worse the errors in Rule of Thumb estimation of aniseikonia. Accurate eikonometric methods and devices should be employed in all cases where such measurements can be made. Rule of thumb estimations should be limited to cases where such subjective testing and measurement cannot be performed, as in infants after unilateral cataract surgery.
Núñez-Peña, M Isabel; Tubau, Elisabet; Suárez-Pellicioni, Macarena
2017-06-01
The aim of the study was to investigate how high math-anxious (HMA) individuals react to errors in an arithmetic task. Twenty HMA and 19 low math-anxious (LMA) individuals were presented with a multi-digit addition verification task and were given response feedback. Post-error adjustment measures (response time and accuracy) were analyzed in order to study differences between groups when faced with errors in an arithmetical task. Results showed that both HMA and LMA individuals were slower to respond following an error than following a correct answer. However, post-error accuracy effects emerged only for the HMA group, showing that they were also less accurate after having committed an error than after giving the right answer. Importantly, these differences were observed only when individuals needed to repeat the same response given in the previous trial. These results suggest that, for HMA individuals, errors caused reactive inhibition of the erroneous response, facilitating performance if the next problem required the alternative response but hampering it if the response was the same. This stronger reaction to errors could be a factor contributing to the difficulties that HMA individuals experience in learning math and doing math tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
Space-based IR tracking bias removal using background star observations
NASA Astrophysics Data System (ADS)
Clemons, T. M., III; Chang, K. C.
2009-05-01
This paper provides the results of a proposed methodology for removing sensor bias from a space-based infrared (IR) tracking system through the use of stars detected in the background field of the tracking sensor. The tracking system consists of two satellites flying in a lead-follower formation tracking a ballistic target. Each satellite is equipped with a narrow-view IR sensor that provides azimuth and elevation to the target. The tracking problem is made more difficult due to a constant, non-varying or slowly varying bias error present in each sensor's line of sight measurements. As known stars are detected during the target tracking process, the instantaneous sensor pointing error can be calculated as the difference between star detection reading and the known position of the star. The system then utilizes a separate bias filter to estimate the bias value based on these detections and correct the target line of sight measurements to improve the target state vector. The target state vector is estimated through a Linearized Kalman Filter (LKF) for the highly non-linear problem of tracking a ballistic missile. Scenarios are created using Satellite Toolkit(C) for trajectories with associated sensor observations. Mean Square Error results are given for tracking during the period when the target is in view of the satellite IR sensors. The results of this research provide a potential solution to bias correction while simultaneously tracking a target.
van der Heijden, R T; Heijnen, J J; Hellinga, C; Romein, B; Luyben, K C
1994-01-05
Measurements provide the basis for process monitoring and control as well as for model development and validation. Systematic approaches to increase the accuracy and credibility of the empirical data set are therefore of great value. In (bio)chemical conversions, linear conservation relations such as the balance equations for charge, enthalpy, and/or chemical elements, can be employed to relate conversion rates. In a pactical situation, some of these rates will be measured (in effect, be calculated directly from primary measurements of, e.g., concentrations and flow rates), as others can or cannot be calculated from the measured ones. When certain measured rates can also be calculated from other measured rates, the set of equations, the accuracy and credibility of the measured rates can indeed be improved by, respectively, balancing and gross error diagnosis. The balanced conversion rates are more accurate, and form a consistent set of data, which is more suitable for further application (e.g., to calculate nonmeasured rates) than the raw measurements. Such an approach has drawn attention in previous studies. The current study deals mainly with the problem of mathematically classifying the conversion rates into balanceable and calculable rates, given the subset of measured rates. The significance of this problem is illustrated with some examples. It is shown that a simple matrix equation can be derived that contains the vector of measured conversion rates and the redundancy matrix R. Matrix R plays a predominant role in the classification problem. In supplementary articles, significance of the redundancy matrix R for an improved gross error diagnosis approach will be shown. In addition, efficient equations have been derived to calculate the balanceable and/or calculable rates. The method is completely based on matrix algebra (principally different from the graph-theoretical approach), and it is easily implemented into a computer program. (c) 1994 John Wiley & Sons, Inc.
Health and Wages: Panel Data Estimates Considering Selection and Endogeneity
ERIC Educational Resources Information Center
Jackle, Robert; Himmler, Oliver
2010-01-01
This paper complements previous studies on the effects of health on wages by addressing the problems of unobserved heterogeneity, sample selection, and endogeneity in one comprehensive framework. Using data from the German Socio-Economic Panel (GSOEP), we find the health variable to suffer from measurement error and a number of tests provide…
Staff Development Project--Mathematics. Grades K-6. Revision.
ERIC Educational Resources Information Center
Shaw, Jean M.; And Others
This manual was designed for use in conducting staff development sessions for elementary teachers of mathematics in Mississippi in grades K-6. The four topical areas treated in the document are: (1) measurement and geometry; (2) fractions; (3) procedural errors in arithmetic; and (4) problem solving. The number of instructional hours necessary for…
ERIC Educational Resources Information Center
Achenbach, Thomas M.
2011-01-01
The special section articles demonstrate the importance of informant discrepancies. They also illustrate challenges posed by discrepancies, plus opportunities for advancing research and practice. This commentary addresses these cross-cutting issues: (a) Discrepancies affect many kinds of assessment besides ratings of children's problems. (b)…
Pollution, Health, and Avoidance Behavior: Evidence from the Ports of Los Angeles
ERIC Educational Resources Information Center
Moretti, Enrico; Neidell, Matthew
2011-01-01
A pervasive problem in estimating the costs of pollution is that optimizing individuals may compensate for increases in pollution by reducing their exposure, resulting in estimates that understate the full welfare costs. To account for this issue, measurement error, and environmental confounding, we estimate the health effects of ozone using daily…
ERIC Educational Resources Information Center
Diamond, James J.; McCormick, Janet
1986-01-01
Using item responses from an in-training examination in diagnostic radiology, the application of a strength of association statistic to the general problem of item analysis is illustrated. Criteria for item selection, general issues of reliability, and error of measurement are discussed. (Author/LMO)
Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Jarrod R.; Kimchi-Schwartz, Mollie E.; Carter, Jonathan
Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One powerful example of such a hybrid quantum-classical approach optimized for classically intractable eigenvalue problems is the variational quantum eigensolver, built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed as leaders among the candidates for the first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even nonsystematic decoherence errors by introducing an exactly solvable channelmore » model of variational state preparation. Moreover, we develop a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions by leveraging additional measurements and classical resources. In conclusion, we demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error-correction codes.« less
NASA Astrophysics Data System (ADS)
Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.
2003-04-01
The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).
Simple scheme for encoding and decoding a qubit in unknown state for various topological codes
Łodyga, Justyna; Mazurek, Paweł; Grudka, Andrzej; Horodecki, Michał
2015-01-01
We present a scheme for encoding and decoding an unknown state for CSS codes, based on syndrome measurements. We illustrate our method by means of Kitaev toric code, defected-lattice code, topological subsystem code and 3D Haah code. The protocol is local whenever in a given code the crossings between the logical operators consist of next neighbour pairs, which holds for the above codes. For subsystem code we also present scheme in a noisy case, where we allow for bit and phase-flip errors on qubits as well as state preparation and syndrome measurement errors. Similar scheme can be built for two other codes. We show that the fidelity of the protected qubit in the noisy scenario in a large code size limit is of , where p is a probability of error on a single qubit per time step. Regarding Haah code we provide noiseless scheme, leaving the noisy case as an open problem. PMID:25754905
ERIC Educational Resources Information Center
Lord, Frederic M.; Stocking, Martha
A general Computer program is described that will compute asymptotic standard errors and carry out significance tests for an endless variety of (standard and) nonstandard large-sample statistical problems, without requiring the statistician to derive asymptotic standard error formulas. The program assumes that the observations have a multinormal…
Explicitly solvable complex Chebyshev approximation problems related to sine polynomials
NASA Technical Reports Server (NTRS)
Freund, Roland
1989-01-01
Explicitly solvable real Chebyshev approximation problems on the unit interval are typically characterized by simple error curves. A similar principle is presented for complex approximation problems with error curves induced by sine polynomials. As an application, some new explicit formulae for complex best approximations are derived.
Nevo, Daniel; Zucker, David M; Tamimi, Rulla M; Wang, Molin
2016-12-30
A common paradigm in dealing with heterogeneity across tumors in cancer analysis is to cluster the tumors into subtypes using marker data on the tumor, and then to analyze each of the clusters separately. A more specific target is to investigate the association between risk factors and specific subtypes and to use the results for personalized preventive treatment. This task is usually carried out in two steps-clustering and risk factor assessment. However, two sources of measurement error arise in these problems. The first is the measurement error in the biomarker values. The second is the misclassification error when assigning observations to clusters. We consider the case with a specified set of relevant markers and propose a unified single-likelihood approach for normally distributed biomarkers. As an alternative, we consider a two-step procedure with the tumor type misclassification error taken into account in the second-step risk factor analysis. We describe our method for binary data and also for survival analysis data using a modified version of the Cox model. We present asymptotic theory for the proposed estimators. Simulation results indicate that our methods significantly lower the bias with a small price being paid in terms of variance. We present an analysis of breast cancer data from the Nurses' Health Study to demonstrate the utility of our method. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Strategies for Detecting and Correcting Errors in Accounting Problems.
ERIC Educational Resources Information Center
James, Marianne L.
2003-01-01
Reviews common errors in accounting tests that students commit resulting from deficiencies in fundamental prior knowledge, ineffective test taking, and inattention to detail and provides solutions to the problems. (JOW)
Inspection error and its adverse effects - A model with implications for practitioners
NASA Technical Reports Server (NTRS)
Collins, R. D., Jr.; Case, K. E.; Bennett, G. K.
1978-01-01
Inspection error has clearly been shown to have adverse effects upon the results desired from a quality assurance sampling plan. These effects upon performance measures have been well documented from a statistical point of view. However, little work has been presented to convince the QC manager of the unfavorable cost consequences resulting from inspection error. This paper develops a very general, yet easily used, mathematical cost model. The basic format of the well-known Guthrie-Johns model is used. However, it is modified as required to assess the effects of attributes sampling errors of the first and second kind. The economic results, under different yet realistic conditions, will no doubt be of interest to QC practitioners who face similar problems daily. Sampling inspection plans are optimized to minimize economic losses due to inspection error. Unfortunately, any error at all results in some economic loss which cannot be compensated for by sampling plan design; however, improvements over plans which neglect the presence of inspection error are possible. Implications for human performance betterment programs are apparent, as are trade-offs between sampling plan modification and inspection and training improvements economics.
Measurement standards for interdisciplinary medical rehabilitation.
Johnston, M V; Keith, R A; Hinderer, S R
1992-12-01
Rehabilitation must address problems inherent in the measurement of human function and health-related quality of life, as well as problems in diagnosis and measurement of impairment. This educational document presents an initial set of standards to be used as guidelines for development and use of measurement and evaluation procedures and instruments for interdisciplinary, health-related rehabilitation. Part I covers general measurement principles and technical standards, beginning with validity, the central consideration for use of measures. Subsequent sections focus on reliability and errors of measurement, norms and scaling, development of measures, and technical manuals and guides. Part II covers principles and standards for use of measures. General principles of application of measures in practice are discussed first, followed by standards to protect persons being measured and then by standards for administrative applications. Many explanations, examples, and references are provided to help professionals understand measurement principles. Improved measurement will ensure the basis of rehabilitation as a science and nourish its success as a clinical service.
Measurement of large steel plates based on linear scan structured light scanning
NASA Astrophysics Data System (ADS)
Xiao, Zhitao; Li, Yaru; Lei, Geng; Xi, Jiangtao
2018-01-01
A measuring method based on linear structured light scanning is proposed to achieve the accurate measurement of the complex internal shape of large steel plates. Firstly, by using a calibration plate with round marks, an improved line scanning calibration method is designed. The internal and external parameters of camera are determined through the calibration method. Secondly, the images of steel plates are acquired by line scan camera. Then the Canny edge detection method is used to extract approximate contours of the steel plate images, the Gauss fitting algorithm is used to extract the sub-pixel edges of the steel plate contours. Thirdly, for the problem of inaccurate restoration of contour size, by measuring the distance between adjacent points in the grid of known dimensions, the horizontal and vertical error curves of the images are obtained. Finally, these horizontal and vertical error curves can be used to correct the contours of steel plates, and then combined with the calibration parameters of internal and external, the size of these contours can be calculated. The experiments results demonstrate that the proposed method can achieve the error of 1 mm/m in 1.2m×2.6m field of view, which has satisfied the demands of industrial measurement.
Takada, Koki; Takahashi, Kana; Hirao, Kazuki
2018-01-17
Although the self-report version of Liebowitz Social Anxiety Scale (LSAS) is frequently used to measure social anxiety, data is lacking on the smallest detectable change (SDC), an important index of measurement error. We therefore aimed to determine the SDC of LSAS. Japanese adults aged 20-69 years were invited from a panel managed by a nationwide internet research agency. We then conducted a test-retest internet survey with a two-week interval to estimate the SDC at the individual (SDC ind ) and group (SDC group ) levels. The analysis included 1300 participants. The SDC ind and SDC group for the total fear subscale (scoring range: 0-72) were 23.52 points (32.7%) and 0.65 points (0.9%), respectively. The SDC ind and SDC group for the total avoidance subscale (scoring range: 0-72) were 32.43 points (45.0%) and 0.90 points (1.2%), respectively. The SDC ind and SDC group for the overall total score (scoring range: 0-144) were 45.90 points (31.9%) and 1.27 points (0.9%), respectively. Measurement error is large and indicate the potential for major problems when attempting to use the LSAS to detect changes at the individual level. These results should be considered when using the LSAS as measures of treatment change.
NASA Astrophysics Data System (ADS)
Kupferberg, Lenn C.
1996-03-01
Fourier transform IR [FT-IR] spectrometers have virtually replaced scanned grating IR spectrometers in the commercial market. While FTIR spectrometers have been a boon for the chemist, they present problems for the measurement of transmittance of thick, high-index, high-dispersion, IR windows. Reflection and refraction of light by the windows introduce measurement errors. The principles of the FT-IR spectrometer will be briefly reviewed. The origins of the measurement errors will be discussed. Simple modifications to the operation of commercially available instruments will be presented. These include using strategically placed apertures and the use of collimated vs. focused beams at the sample position. They are essential for removing the effects of reflected light entering the interferometer and limiting the divergence angle of light in the interferometer. The latter minimizes refractive effects and insures consistent underfilling of the detector. Data will be shown from FT-IR spectrometers made by four manufactures and compared to measurements from a dispersive spectrometer.
Development of a new instrument for direct skin friction measurements
NASA Technical Reports Server (NTRS)
Vakili, A. D.; Wu, J. M.
1986-01-01
A device developed for the direct measurement of wall shear stress generated by flows is described. Simple and symmetric in design with optional small moving mass and no internal friction, the features employed in the design eliminate most of the difficulties associated with the traditional floating element balances. The device is basically small and can be made in various sizes. Vibration problems associated with the floating element skin friction balances were found to be minimized due to the design symmetry and optional damping provided. The design eliminates or reduces the errors associated with conventional floating element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer, and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Dynamic measurements could be made in a limited range and measurements in liquids could be performed readily. Measurement made in the three different tunnels show excellent agreement with data obtained by the floating element devices and other techniques.
NASA Technical Reports Server (NTRS)
Barkstrom, B. R.
1983-01-01
The measurement of the earth's radiation budget has been chosen to illustrate the technique of objective system design. The measurement process is an approximately linear transformation of the original field of radiant exitances, so that linear statistical techniques may be employed. The combination of variability, measurement strategy, and error propagation is presently made with the help of information theory, as suggested by Kondratyev et al. (1975) and Peckham (1974). Covariance matrices furnish the quantitative statement of field variability.
Verification of unfold error estimates in the unfold operator code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Biggs, F.
Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashionmore » with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}« less
Accuracy and reliability of forensic latent fingerprint decisions
Ulery, Bradford T.; Hicklin, R. Austin; Buscaglia, JoAnn; Roberts, Maria Antonia
2011-01-01
The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. The National Research Council of the National Academies and the legal and forensic sciences communities have called for research to measure the accuracy and reliability of latent print examiners’ decisions, a challenging and complex problem in need of systematic analysis. Our research is focused on the development of empirical approaches to studying this problem. Here, we report on the first large-scale study of the accuracy and reliability of latent print examiners’ decisions, in which 169 latent print examiners each compared approximately 100 pairs of latent and exemplar fingerprints from a pool of 744 pairs. The fingerprints were selected to include a range of attributes and quality encountered in forensic casework, and to be comparable to searches of an automated fingerprint identification system containing more than 58 million subjects. This study evaluated examiners on key decision points in the fingerprint examination process; procedures used operationally include additional safeguards designed to minimize errors. Five examiners made false positive errors for an overall false positive rate of 0.1%. Eighty-five percent of examiners made at least one false negative error for an overall false negative rate of 7.5%. Independent examination of the same comparisons by different participants (analogous to blind verification) was found to detect all false positive errors and the majority of false negative errors in this study. Examiners frequently differed on whether fingerprints were suitable for reaching a conclusion. PMID:21518906
Accuracy and reliability of forensic latent fingerprint decisions.
Ulery, Bradford T; Hicklin, R Austin; Buscaglia, Joann; Roberts, Maria Antonia
2011-05-10
The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. The National Research Council of the National Academies and the legal and forensic sciences communities have called for research to measure the accuracy and reliability of latent print examiners' decisions, a challenging and complex problem in need of systematic analysis. Our research is focused on the development of empirical approaches to studying this problem. Here, we report on the first large-scale study of the accuracy and reliability of latent print examiners' decisions, in which 169 latent print examiners each compared approximately 100 pairs of latent and exemplar fingerprints from a pool of 744 pairs. The fingerprints were selected to include a range of attributes and quality encountered in forensic casework, and to be comparable to searches of an automated fingerprint identification system containing more than 58 million subjects. This study evaluated examiners on key decision points in the fingerprint examination process; procedures used operationally include additional safeguards designed to minimize errors. Five examiners made false positive errors for an overall false positive rate of 0.1%. Eighty-five percent of examiners made at least one false negative error for an overall false negative rate of 7.5%. Independent examination of the same comparisons by different participants (analogous to blind verification) was found to detect all false positive errors and the majority of false negative errors in this study. Examiners frequently differed on whether fingerprints were suitable for reaching a conclusion.
Design of analytical failure detection using secondary observers
NASA Technical Reports Server (NTRS)
Sisar, M.
1982-01-01
The problem of designing analytical failure-detection systems (FDS) for sensors and actuators, using observers, is addressed. The use of observers in FDS is related to the examination of the n-dimensional observer error vector which carries the necessary information on possible failures. The problem is that in practical systems, in which only some of the components of the state vector are measured, one has access only to the m-dimensional observer-output error vector, with m or = to n. In order to cope with these cases, a secondary observer is synthesized to reconstruct the entire observer-error vector from the observer output error vector. This approach leads toward the design of highly sensitive and reliable FDS, with the possibility of obtaining a unique fingerprint for every possible failure. In order to keep the observer's (or Kalman filter) false-alarm rate under a certain specified value, it is necessary to have an acceptable matching between the observer (or Kalman filter) models and the system parameters. A previously developed adaptive observer algorithm is used to maintain the desired system-observer model matching, despite initial mismatching or system parameter variations. Conditions for convergence for the adaptive process are obtained, leading to a simple adaptive law (algorithm) with the possibility of an a priori choice of fixed adaptive gains. Simulation results show good tracking performance with small observer output errors, while accurate and fast parameter identification, in both deterministic and stochastic cases, is obtained.
Problems with indirect determinations of peak streamflows in steep, desert stream channels
Glancy, Patrick A.; Williams, Rhea P.
1994-01-01
Many peak streamflow values used in flood analyses for desert areas are derived using the Manning equation. Data used in the equation are collected after the flow has subsided, and peak flow is thereby determined indirectly. Most measurement problems and associated errors in peak-flow determinations result from (1) channel erosion or deposition that cannot be discerned or properly evaluated after the fact, (2) unsteady and non-uniform flow that rapidly changes in magnitude, and (3) appreciable sediment transport that has unknown effects on energy dissipation. High calculated velocities and Froude numbers are unacceptable to some investigators. Measurement results could be improved by recording flows with a video camera, installing a recording stream gage and recording rain gages, measuring channel scour with buried chains, analyzing measured data by multiple techniques, and supplementing indirect measurements with direct measurements of stream velocities in similar ephemeral streams.
Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Volpi, Michele; Copa, Loris
2010-05-01
The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of MNO problem: 1) hierarchical top-down clustering in an input space in order to remove redundancy when data are clustered, and 2) a general method (independent on classifier) which gives posterior probabilities that can be used to define the classifier confidence and corresponding proposals for new measurement points. The basic ideas and procedures are explained by applying simulated data sets. The real case study deals with the analysis and mapping of soil types, which is a multi-class classification problem. Maps of soil types are important for the analysis and 3D modeling of heavy metals migration in soil and prediction risk mapping. The results obtained demonstrate the high quality of SVM mapping and efficiency of monitoring network optimization by using active learning approaches. The research was partly supported by SNSF projects No. 200021-126505 and 200020-121835.
PREVALENCE OF REFRACTIVE ERRORS IN MADRASSA STUDENTS OF HARIPUR DISTRICT.
Atta, Zoia; Arif, Abdus Salam; Ahmed, Iftikhar; Farooq, Umer
2015-01-01
Visual impairment due to refractive errors is one of the most common problems among school-age children and is the second leading cause of treatable blindness. The Right to Sight, a global initiative launched by a coalition of non-government organizations and the World Health Organization (WHO), aims to eliminate avoidable visual impairment and blindness at a global level. In order to achieve this goal it is important to know the prevalence of different refractive errors in a community. Children and teenagers are the most susceptible groups to be affected by refractive errors. So, this population needs to be screened for different types of refractive errors. The study was done with the objective to find the frequency of different types of refractive errors in students of madrassas between the ages of 5-20 years in Haripur. This cross sectional study was done with 300 students between ages of 5-20 years in Madrassas of Haripur. The students were screened for refractive errors and the types of the errors were noted. After screening for refractive errors-the glasses were prescribed to the students. Myopia being 52.6% was the most frequent refractive error in students, followed by hyperopia 28.4% and astigmatism 19%. This study showed that myopia is an important problem in madrassa population. Females and males are almost equally affected. Spectacle correction of refractive errors is the cheapest and easy solution of this problem.
Fault-tolerant, high-level quantum circuits: form, compilation and description
NASA Astrophysics Data System (ADS)
Paler, Alexandru; Polian, Ilia; Nemoto, Kae; Devitt, Simon J.
2017-06-01
Fault-tolerant quantum error correction is a necessity for any quantum architecture destined to tackle interesting, large-scale problems. Its theoretical formalism has been well founded for nearly two decades. However, we still do not have an appropriate compiler to produce a fault-tolerant, error-corrected description from a higher-level quantum circuit for state-of the-art hardware models. There are many technical hurdles, including dynamic circuit constructions that occur when constructing fault-tolerant circuits with commonly used error correcting codes. We introduce a package that converts high-level quantum circuits consisting of commonly used gates into a form employing all decompositions and ancillary protocols needed for fault-tolerant error correction. We call this form the (I)initialisation, (C)NOT, (M)measurement form (ICM) and consists of an initialisation layer of qubits into one of four distinct states, a massive, deterministic array of CNOT operations and a series of time-ordered X- or Z-basis measurements. The form allows a more flexible approach towards circuit optimisation. At the same time, the package outputs a standard circuit or a canonical geometric description which is a necessity for operating current state-of-the-art hardware architectures using topological quantum codes.
Measuring food intake in studies of obesity.
Lissner, Lauren
2002-12-01
The problem of how to measure habitual food intake in studies of obesity remains an enigma in nutritional research. The existence of obesity-specific underreporting was rather controversial until the advent of the doubly labelled water technique gave credence to previously anecdotal evidence that such a bias does in fact exist. This paper reviews a number of issues relevant to interpreting dietary data in studies involving obesity. Topics covered include: participation biases, normative biases,importance of matching method to study, selective underreporting, and a brief discussion of the potential implications of generalised and selective underreporting in analytical epidemiology. It is concluded that selective underreporting of certain food types by obese individuals would produce consequences in analytical epidemiological studies that are both unpredictable and complex. Since it is becoming increasingly acknowledged that selective reporting error does occur, it is important to emphasise that correction for energy intake is not sufficient to eliminate the biases from this type of error. This is true both for obesity-related selective reporting errors and more universal types of selective underreporting, e.g. foods of low social desirability. Additional research is urgently required to examine the consequences of this type of error.
An online detection system for aggregate sizes and shapes based on digital image processing
NASA Astrophysics Data System (ADS)
Yang, Jianhong; Chen, Sijia
2017-02-01
Traditional aggregate size measuring methods are time-consuming, taxing, and do not deliver online measurements. A new online detection system for determining aggregate size and shape based on a digital camera with a charge-coupled device, and subsequent digital image processing, have been developed to overcome these problems. The system captures images of aggregates while falling and flat lying. Using these data, the particle size and shape distribution can be obtained in real time. Here, we calibrate this method using standard globules. Our experiments show that the maximum particle size distribution error was only 3 wt%, while the maximum particle shape distribution error was only 2 wt% for data derived from falling aggregates, having good dispersion. In contrast, the data for flat-lying aggregates had a maximum particle size distribution error of 12 wt%, and a maximum particle shape distribution error of 10 wt%; their accuracy was clearly lower than for falling aggregates. However, they performed well for single-graded aggregates, and did not require a dispersion device. Our system is low-cost and easy to install. It can successfully achieve online detection of aggregate size and shape with good reliability, and it has great potential for aggregate quality assurance.
On the decoding process in ternary error-correcting output codes.
Escalera, Sergio; Pujol, Oriol; Radeva, Petia
2010-01-01
A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.
Using traveling salesman problem algorithms for evolutionary tree construction.
Korostensky, C; Gonnet, G H
2000-07-01
The construction of evolutionary trees is one of the major problems in computational biology, mainly due to its complexity. We present a new tree construction method that constructs a tree with minimum score for a given set of sequences, where the score is the amount of evolution measured in PAM distances. To do this, the problem of tree construction is reduced to the Traveling Salesman Problem (TSP). The input for the TSP algorithm are the pairwise distances of the sequences and the output is a circular tour through the optimal, unknown tree plus the minimum score of the tree. The circular order and the score can be used to construct the topology of the optimal tree. Our method can be used for any scoring function that correlates to the amount of changes along the branches of an evolutionary tree, for instance it could also be used for parsimony scores, but it cannot be used for least squares fit of distances. A TSP solution reduces the space of all possible trees to 2n. Using this order, we can guarantee that we reconstruct a correct evolutionary tree if the absolute value of the error for each distance measurement is smaller than f2.gif" BORDER="0">, where f3.gif" BORDER="0">is the length of the shortest edge in the tree. For data sets with large errors, a dynamic programming approach is used to reconstruct the tree. Finally simulations and experiments with real data are shown.
NASA Technical Reports Server (NTRS)
Capobianco, Christopher J.; Jones, John H.; Drake, Michael J.
1993-01-01
Low-temperature metal-silicate partition coefficients are extrapolated to magma ocean temperatures. If the low-temperature chemistry data is found to be applicable at high temperatures, an important assumption, then the results indicate that high temperature alone cannot account for the excess siderophile element problem of the upper mantle. For most elements, a rise in temperature will result in a modest increase in siderophile behavior if an iron-wuestite redox buffer is paralleled. However, long-range extrapolation of experimental data is hazardous when the data contains even modest experimental errors. For a given element, extrapolated high-temperature partition coefficients can differ by orders of magnitude, even when data from independent studies is consistent within quoted errors. In order to accurately assess siderophile element behavior in a magma ocean, it will be necessary to obtain direct experimental measurements for at least some of the siderophile elements.
Acousto-thermometric recovery of the deep temperature profile using heat conduction equations
NASA Astrophysics Data System (ADS)
Anosov, A. A.; Belyaev, R. V.; Vilkov, V. A.; Dvornikova, M. V.; Dvornikova, V. V.; Kazanskii, A. S.; Kuryatnikova, N. A.; Mansfel'd, A. D.
2012-09-01
In a model experiment using the acousto-thermographic method, deep temperature profiles varying in time are recovered. In the recovery algorithm, we used a priori information in the form of a requirement that the calculated temperature must satisfy the heat conduction equation. The problem is reduced to determining two parameters: the initial temperature and the temperature conductivity coefficient of the object under consideration (the plasticine band). During the experiment, there was independent inspection using electronic thermometers mounted inside the plasticine. The error in the temperature conductivity coefficient was about 17% and the error in initial temperature determination was less than one degree. Such recovery results allow application of this approach to solving a number of medical problems. It is experimentally proved that acoustic irregularities influence the acousto-thermometric results as well. It is shown that in the chosen scheme of experiment (which corresponds to measurements of human muscle tissue), this influence can be neglected.
Kim, Mi Ok; Coiera, Enrico; Magrabi, Farah
2017-03-01
To systematically review studies reporting problems with information technology (IT) in health care and their effects on care delivery and patient outcomes. We searched bibliographic databases including Scopus, PubMed, and Science Citation Index Expanded from January 2004 to December 2015 for studies reporting problems with IT and their effects. A framework called the information value chain, which connects technology use to final outcome, was used to assess how IT problems affect user interaction, information receipt, decision-making, care processes, and patient outcomes. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Of the 34 studies identified, the majority ( n = 14, 41%) were analyses of incidents reported from 6 countries. There were 7 descriptive studies, 9 ethnographic studies, and 4 case reports. The types of IT problems were similar to those described in earlier classifications of safety problems associated with health IT. The frequency, scale, and severity of IT problems were not adequately captured within these studies. Use errors and poor user interfaces interfered with the receipt of information and led to errors of commission when making decisions. Clinical errors involving medications were well characterized. Issues with system functionality, including poor user interfaces and fragmented displays, delayed care delivery. Issues with system access, system configuration, and software updates also delayed care. In 18 studies (53%), IT problems were linked to patient harm and death. Near-miss events were reported in 10 studies (29%). The research evidence describing problems with health IT remains largely qualitative, and many opportunities remain to systematically study and quantify risks and benefits with regard to patient safety. The information value chain, when used in conjunction with existing classifications for health IT safety problems, can enhance measurement and should facilitate identification of the most significant risks to patient safety. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Poluyan, A. Y.; Fugarov, D. D.; Purchina, O. A.; Nesterchuk, V. V.; Smirnova, O. V.; Petrenkova, S. B.
2018-05-01
To date, the problems associated with the detection of errors in digital equipment (DE) systems for the automation of explosive objects of the oil and gas complex are extremely actual. Especially this problem is actual for facilities where a violation of the accuracy of the DE will inevitably lead to man-made disasters and essential material damage, at such facilities, the diagnostics of the accuracy of the DE operation is one of the main elements of the industrial safety management system. In the work, the solution of the problem of selecting the optimal variant of the errors detection system of errors detection by a validation criterion. Known methods for solving these problems have an exponential valuation of labor intensity. Thus, with a view to reduce time for solving the problem, a validation criterion is compiled as an adaptive bionic algorithm. Bionic algorithms (BA) have proven effective in solving optimization problems. The advantages of bionic search include adaptability, learning ability, parallelism, the ability to build hybrid systems based on combining. [1].
Electroinduction disk sensor of electric field strength
NASA Astrophysics Data System (ADS)
Biryukov, S. V.; Korolyova, M. A.
2018-01-01
Measurement of the level of electric fields exposure to the technical and biological objects for a long time is an urgent task. To solve this problem, the required electric field sensors with specified metrological characteristics. The aim of the study is the establishment of theoretical assumptions for the calculation of the flat electric field sensors. It is proved that the accuracy of the sensor does not exceed 3% in the spatial range 0
Assessing student understanding of measurement and uncertainty
NASA Astrophysics Data System (ADS)
Jirungnimitsakul, S.; Wattanakasiwich, P.
2017-09-01
The objectives of this study were to develop and assess student understanding of measurement and uncertainty. A test has been adapted and translated from the Laboratory Data Analysis Instrument (LDAI) test, consists of 25 questions focused on three topics including measures of central tendency, experimental errors and uncertainties, and fitting regression lines. The test was evaluated its content validity by three physics experts in teaching physics laboratory. In the pilot study, Thai LDAI was administered to 93 freshmen enrolled in a fundamental physics laboratory course. The final draft of the test was administered to three groups—45 freshmen taking fundamental physics laboratory, 16 sophomores taking intermediated physics laboratory and 21 juniors taking advanced physics laboratory at Chiang Mai University. As results, we found that the freshmen had difficulties in experimental errors and uncertainties. Most students had problems with fitting regression lines. These results will be used to improve teaching and learning physics laboratory for physics students in the department.
Correlation techniques to determine model form in robust nonlinear system realization/identification
NASA Technical Reports Server (NTRS)
Stry, Greselda I.; Mook, D. Joseph
1991-01-01
The fundamental challenge in identification of nonlinear dynamic systems is determining the appropriate form of the model. A robust technique is presented which essentially eliminates this problem for many applications. The technique is based on the Minimum Model Error (MME) optimal estimation approach. A detailed literature review is included in which fundamental differences between the current approach and previous work is described. The most significant feature is the ability to identify nonlinear dynamic systems without prior assumption regarding the form of the nonlinearities, in contrast to existing nonlinear identification approaches which usually require detailed assumptions of the nonlinearities. Model form is determined via statistical correlation of the MME optimal state estimates with the MME optimal model error estimates. The example illustrations indicate that the method is robust with respect to prior ignorance of the model, and with respect to measurement noise, measurement frequency, and measurement record length.
Wall shear stress measurements using a new transducer
NASA Technical Reports Server (NTRS)
Vakili, A. D.; Wu, J. M.; Lawing, P. L.
1986-01-01
A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.
Error Patterns in Ordering Fractions among At-Risk Fourth-Grade Students
Malone, Amelia S.; Fuchs, Lynn S.
2016-01-01
The 3 purposes of this study were to: (a) describe fraction ordering errors among at-risk 4th-grade students; (b) assess the effect of part-whole understanding and accuracy of fraction magnitude estimation on the probability of committing errors; and (c) examine the effect of students' ability to explain comparing problems on the probability of committing errors. Students (n = 227) completed a 9-item ordering test. A high proportion (81%) of problems were completed incorrectly. Most (65% of) errors were due to students misapplying whole number logic to fractions. Fraction-magnitude estimation skill, but not part-whole understanding, significantly predicted the probability of committing this type of error. Implications for practice are discussed. PMID:26966153
Atmospheric Tracer Inverse Modeling Using Markov Chain Monte Carlo (MCMC)
NASA Astrophysics Data System (ADS)
Kasibhatla, P.
2004-12-01
In recent years, there has been an increasing emphasis on the use of Bayesian statistical estimation techniques to characterize the temporal and spatial variability of atmospheric trace gas sources and sinks. The applications have been varied in terms of the particular species of interest, as well as in terms of the spatial and temporal resolution of the estimated fluxes. However, one common characteristic has been the use of relatively simple statistical models for describing the measurement and chemical transport model error statistics and prior source statistics. For example, multivariate normal probability distribution functions (pdfs) are commonly used to model these quantities and inverse source estimates are derived for fixed values of pdf paramaters. While the advantage of this approach is that closed form analytical solutions for the a posteriori pdfs of interest are available, it is worth exploring Bayesian analysis approaches which allow for a more general treatment of error and prior source statistics. Here, we present an application of the Markov Chain Monte Carlo (MCMC) methodology to an atmospheric tracer inversion problem to demonstrate how more gereral statistical models for errors can be incorporated into the analysis in a relatively straightforward manner. The MCMC approach to Bayesian analysis, which has found wide application in a variety of fields, is a statistical simulation approach that involves computing moments of interest of the a posteriori pdf by efficiently sampling this pdf. The specific inverse problem that we focus on is the annual mean CO2 source/sink estimation problem considered by the TransCom3 project. TransCom3 was a collaborative effort involving various modeling groups and followed a common modeling and analysis protocoal. As such, this problem provides a convenient case study to demonstrate the applicability of the MCMC methodology to atmospheric tracer source/sink estimation problems.
Adaptation of a Fast Optimal Interpolation Algorithm to the Mapping of Oceangraphic Data
NASA Technical Reports Server (NTRS)
Menemenlis, Dimitris; Fieguth, Paul; Wunsch, Carl; Willsky, Alan
1997-01-01
A fast, recently developed, multiscale optimal interpolation algorithm has been adapted to the mapping of hydrographic and other oceanographic data. This algorithm produces solution and error estimates which are consistent with those obtained from exact least squares methods, but at a small fraction of the computational cost. Problems whose solution would be completely impractical using exact least squares, that is, problems with tens or hundreds of thousands of measurements and estimation grid points, can easily be solved on a small workstation using the multiscale algorithm. In contrast to methods previously proposed for solving large least squares problems, our approach provides estimation error statistics while permitting long-range correlations, using all measurements, and permitting arbitrary measurement locations. The multiscale algorithm itself, published elsewhere, is not the focus of this paper. However, the algorithm requires statistical models having a very particular multiscale structure; it is the development of a class of multiscale statistical models, appropriate for oceanographic mapping problems, with which we concern ourselves in this paper. The approach is illustrated by mapping temperature in the northeastern Pacific. The number of hydrographic stations is kept deliberately small to show that multiscale and exact least squares results are comparable. A portion of the data were not used in the analysis; these data serve to test the multiscale estimates. A major advantage of the present approach is the ability to repeat the estimation procedure a large number of times for sensitivity studies, parameter estimation, and model testing. We have made available by anonymous Ftp a set of MATLAB-callable routines which implement the multiscale algorithm and the statistical models developed in this paper.
A review of uncertainty in in situ measurements and data sets of sea surface temperature
NASA Astrophysics Data System (ADS)
Kennedy, John J.
2014-03-01
Archives of in situ sea surface temperature (SST) measurements extend back more than 160 years. Quality of the measurements is variable, and the area of the oceans they sample is limited, especially early in the record and during the two world wars. Measurements of SST and the gridded data sets that are based on them are used in many applications so understanding and estimating the uncertainties are vital. The aim of this review is to give an overview of the various components that contribute to the overall uncertainty of SST measurements made in situ and of the data sets that are derived from them. In doing so, it also aims to identify current gaps in understanding. Uncertainties arise at the level of individual measurements with both systematic and random effects and, although these have been extensively studied, refinement of the error models continues. Recent improvements have been made in the understanding of the pervasive systematic errors that affect the assessment of long-term trends and variability. However, the adjustments applied to minimize these systematic errors are uncertain and these uncertainties are higher before the 1970s and particularly large in the period surrounding the Second World War owing to a lack of reliable metadata. The uncertainties associated with the choice of statistical methods used to create globally complete SST data sets have been explored using different analysis techniques, but they do not incorporate the latest understanding of measurement errors, and they want for a fair benchmark against which their skill can be objectively assessed. These problems can be addressed by the creation of new end-to-end SST analyses and by the recovery and digitization of data and metadata from ship log books and other contemporary literature.
Numerical Error Estimation with UQ
NASA Astrophysics Data System (ADS)
Ackmann, Jan; Korn, Peter; Marotzke, Jochem
2014-05-01
Ocean models are still in need of means to quantify model errors, which are inevitably made when running numerical experiments. The total model error can formally be decomposed into two parts, the formulation error and the discretization error. The formulation error arises from the continuous formulation of the model not fully describing the studied physical process. The discretization error arises from having to solve a discretized model instead of the continuously formulated model. Our work on error estimation is concerned with the discretization error. Given a solution of a discretized model, our general problem statement is to find a way to quantify the uncertainties due to discretization in physical quantities of interest (diagnostics), which are frequently used in Geophysical Fluid Dynamics. The approach we use to tackle this problem is called the "Goal Error Ensemble method". The basic idea of the Goal Error Ensemble method is that errors in diagnostics can be translated into a weighted sum of local model errors, which makes it conceptually based on the Dual Weighted Residual method from Computational Fluid Dynamics. In contrast to the Dual Weighted Residual method these local model errors are not considered deterministically but interpreted as local model uncertainty and described stochastically by a random process. The parameters for the random process are tuned with high-resolution near-initial model information. However, the original Goal Error Ensemble method, introduced in [1], was successfully evaluated only in the case of inviscid flows without lateral boundaries in a shallow-water framework and is hence only of limited use in a numerical ocean model. Our work consists in extending the method to bounded, viscous flows in a shallow-water framework. As our numerical model, we use the ICON-Shallow-Water model. In viscous flows our high-resolution information is dependent on the viscosity parameter, making our uncertainty measures viscosity-dependent. We will show that we can choose a sensible parameter by using the Reynolds-number as a criteria. Another topic, we will discuss is the choice of the underlying distribution of the random process. This is especially of importance in the scope of lateral boundaries. We will present resulting error estimates for different height- and velocity-based diagnostics applied to the Munk gyre experiment. References [1] F. RAUSER: Error Estimation in Geophysical Fluid Dynamics through Learning; PhD Thesis, IMPRS-ESM, Hamburg, 2010 [2] F. RAUSER, J. MAROTZKE, P. KORN: Ensemble-type numerical uncertainty quantification from single model integrations; SIAM/ASA Journal on Uncertainty Quantification, submitted
Estimating error statistics for Chambon-la-Forêt observatory definitive data
NASA Astrophysics Data System (ADS)
Lesur, Vincent; Heumez, Benoît; Telali, Abdelkader; Lalanne, Xavier; Soloviev, Anatoly
2017-08-01
We propose a new algorithm for calibrating definitive observatory data with the goal of providing users with estimates of the data error standard deviations (SDs). The algorithm has been implemented and tested using Chambon-la-Forêt observatory (CLF) data. The calibration process uses all available data. It is set as a large, weakly non-linear, inverse problem that ultimately provides estimates of baseline values in three orthogonal directions, together with their expected standard deviations. For this inverse problem, absolute data error statistics are estimated from two series of absolute measurements made within a day. Similarly, variometer data error statistics are derived by comparing variometer data time series between different pairs of instruments over few years. The comparisons of these time series led us to use an autoregressive process of order 1 (AR1 process) as a prior for the baselines. Therefore the obtained baselines do not vary smoothly in time. They have relatively small SDs, well below 300 pT when absolute data are recorded twice a week - i.e. within the daily to weekly measures recommended by INTERMAGNET. The algorithm was tested against the process traditionally used to derive baselines at CLF observatory, suggesting that statistics are less favourable when this latter process is used. Finally, two sets of definitive data were calibrated using the new algorithm. Their comparison shows that the definitive data SDs are less than 400 pT and may be slightly overestimated by our process: an indication that more work is required to have proper estimates of absolute data error statistics. For magnetic field modelling, the results show that even on isolated sites like CLF observatory, there are very localised signals over a large span of temporal frequencies that can be as large as 1 nT. The SDs reported here encompass signals of a few hundred metres and less than a day wavelengths.
Constrained motion estimation-based error resilient coding for HEVC
NASA Astrophysics Data System (ADS)
Guo, Weihan; Zhang, Yongfei; Li, Bo
2018-04-01
Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.
Cruikshank, Benjamin; Jacobs, Kurt
2017-07-21
von Neumann's classic "multiplexing" method is unique in achieving high-threshold fault-tolerant classical computation (FTCC), but has several significant barriers to implementation: (i) the extremely complex circuits required by randomized connections, (ii) the difficulty of calculating its performance in practical regimes of both code size and logical error rate, and (iii) the (perceived) need for large code sizes. Here we present numerical results indicating that the third assertion is false, and introduce a novel scheme that eliminates the two remaining problems while retaining a threshold very close to von Neumann's ideal of 1/6. We present a simple, highly ordered wiring structure that vastly reduces the circuit complexity, demonstrates that randomization is unnecessary, and provides a feasible method to calculate the performance. This in turn allows us to show that the scheme requires only moderate code sizes, vastly outperforms concatenation schemes, and under a standard error model a unitary implementation realizes universal FTCC with an accuracy threshold of p<5.5%, in which p is the error probability for 3-qubit gates. FTCC is a key component in realizing measurement-free protocols for quantum information processing. In view of this, we use our scheme to show that all-unitary quantum circuits can reproduce any measurement-based feedback process in which the asymptotic error probabilities for the measurement and feedback are (32/63)p≈0.51p and 1.51p, respectively.
Low-Cost Ultrasonic Distance Sensor Arrays with Networked Error Correction
Dai, Hongjun; Zhao, Shulin; Jia, Zhiping; Chen, Tianzhou
2013-01-01
Distance has been one of the basic factors in manufacturing and control fields, and ultrasonic distance sensors have been widely used as a low-cost measuring tool. However, the propagation of ultrasonic waves is greatly affected by environmental factors such as temperature, humidity and atmospheric pressure. In order to solve the problem of inaccurate measurement, which is significant within industry, this paper presents a novel ultrasonic distance sensor model using networked error correction (NEC) trained on experimental data. This is more accurate than other existing approaches because it uses information from indirect association with neighboring sensors, which has not been considered before. The NEC technique, focusing on optimization of the relationship of the topological structure of sensor arrays, is implemented for the compensation of erroneous measurements caused by the environment. We apply the maximum likelihood method to determine the optimal fusion data set and use a neighbor discovery algorithm to identify neighbor nodes at the top speed. Furthermore, we adopt the NEC optimization algorithm, which takes full advantage of the correlation coefficients for neighbor sensors. The experimental results demonstrate that the ranging errors of the NEC system are within 2.20%; furthermore, the mean absolute percentage error is reduced to 0.01% after three iterations of this method, which means that the proposed method performs extremely well. The optimized method of distance measurement we propose, with the capability of NEC, would bring a significant advantage for intelligent industrial automation. PMID:24013491
Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study
NASA Technical Reports Server (NTRS)
Walter, Steven J.; Spilker, Thomas R.
1995-01-01
A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging. Calibrating the resonator measurements by checking the refractivity of dry gases which are known to better than 0.1% provides a method of controlling the systematic errors to 0.1%. The primary source of error in absorptivity and refractivity measurements is thus the ability to measure the concentration of water vapor in the resonator path. Over the whole thermodynamic range of interest the accuracy of water vapor measurement is 1.5%. However, over the range responsible for most of the radio delay (i.e. conditions in the bottom two kilometers of the atmosphere) the accuracy of water vapor measurements ranges from 0.5% to 1.0%. Therefore the precision of the resonator measurements could be held to 0.3% and the overall absolute accuracy of resonator-based absorption and refractivity measurements will range from 0.6% to 1.
NASA Astrophysics Data System (ADS)
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
Characterizing Sources of Uncertainty in Item Response Theory Scale Scores
ERIC Educational Resources Information Center
Yang, Ji Seung; Hansen, Mark; Cai, Li
2012-01-01
Traditional estimators of item response theory scale scores ignore uncertainty carried over from the item calibration process, which can lead to incorrect estimates of the standard errors of measurement (SEMs). Here, the authors review a variety of approaches that have been applied to this problem and compare them on the basis of their statistical…
ERIC Educational Resources Information Center
Bamezai, Anil
1995-01-01
Some of the threats to internal validity that arise when evaluating the impact of water conservation programs during a drought are illustrated. These include differential response to the drought, self-selection bias, and measurement error. How to deal with these problems when high-quality disaggregate data are available is discussed. (SLD)
NASA Astrophysics Data System (ADS)
Shi, Shendong; Yang, Linghui; Lin, Jiarui; Ren, Yongjie; Guo, Siyang; Zhu, Jigui
2018-04-01
In this paper we present a novel omnidirectional angle constraint based method for dynamic 6-DOF (six-degree-of-freedom) measurement. A photoelectric scanning measurement network is employed whose photoelectric receivers are fixed on the measured target. They are in a loop distribution and receive signals from rotating transmitters. Each receiver indicates an angle constraint direction. Therefore, omnidirectional angle constraints can be constructed in each rotation cycle. By solving the constrained optimization problem, 6-DOF information can be obtained, which is independent of traditional rigid coordinate system transformation. For the dynamic error caused by the measurement principle, we present an interpolation method for error reduction. Accuracy testing is performed in an 8 × 8 m measurement area with four transmitters. The experimental results show that the dynamic orientation RMSEs (root-mean-square errors) are reduced from 0.077° to 0.044°, 0.040° to 0.030° and 0.032° to 0.015° in the X, Y, and Z axes, respectively. The dynamic position RMSE is reduced from 0.65 mm to 0.24 mm. This method is applied during the final approach phase in the rendezvous and docking simulation. Experiments under different conditions are performed in a 40 × 30 m area, and the method is verified to be effective.
Goal-oriented explicit residual-type error estimates in XFEM
NASA Astrophysics Data System (ADS)
Rüter, Marcus; Gerasimov, Tymofiy; Stein, Erwin
2013-08-01
A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of Q1 type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118-1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the J-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.
Abboud, Marcus; Calvo-Guirado, Jose Luis; Orentlicher, Gary; Wahl, Gerhard
2013-01-01
This study compared the accuracy of cone beam computed tomography (CBCT) and medical-grade CT in the context of evaluating the diagnostic value and accuracy of fiducial marker localization for reference marker-based guided surgery systems. Cadaver mandibles with attached radiopaque gutta-percha markers, as well as glass balls and composite cylinders of known dimensions, were measured manually with a highly accurate digital caliper. The objects were then scanned using a medical-grade CT scanner (Philips Brilliance 64) and five different CBCT scanners (Sirona Galileos, Morita 3D Accuitomo 80, Vatech PaX-Reve3D, 3M Imtech Iluma, and Planmeca ProMax 3D). The data were then imported into commercially available software, and measurements were made of the scanned markers and objects. CT and CBCT measurements were compared to each other and to the caliper measurements. The difference between the CBCT measurements and the caliper measurements was larger than the difference between the CT measurements and the caliper measurements. Measurements of the cadaver mandible and the geometric reference markers were highly accurate with CT. The average absolute errors of the human mandible measurements were 0.03 mm for CT and 0.23 mm for CBCT. The measurement errors of the geometric objects based on CT ranged between 0.00 and 0.12 mm, compared to an error range between 0.00 and 2.17 mm with the CBCT scanners. CT provided the most accurate images in this study, closely followed by one CBCT of the five tested. Although there were differences in the distance measurements of the hard tissue of the human mandible between CT and CBCT, these differences may not be of clinical significance for most diagnostic purposes. The fiducial marker localization error caused by some CBCT scanners may be a problem for guided surgery systems.
Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu
2012-05-01
Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.
ERIC Educational Resources Information Center
Rocconi, Louis M.
2011-01-01
Hierarchical linear models (HLM) solve the problems associated with the unit of analysis problem such as misestimated standard errors, heterogeneity of regression and aggregation bias by modeling all levels of interest simultaneously. Hierarchical linear modeling resolves the problem of misestimated standard errors by incorporating a unique random…
Baldwin, DeWitt C; Daugherty, Steven R; Ryan, Patrick M; Yaghmour, Nicholas A; Philibert, Ingrid
2018-04-01
Medical errors and patient safety are major concerns for the medical and medical education communities. Improving clinical supervision for residents is important in avoiding errors, yet little is known about how residents perceive the adequacy of their supervision and how this relates to medical errors and other education outcomes, such as learning and satisfaction. We analyzed data from a 2009 survey of residents in 4 large specialties regarding the adequacy and quality of supervision they receive as well as associations with self-reported data on medical errors and residents' perceptions of their learning environment. Residents' reports of working without adequate supervision were lower than data from a 1999 survey for all 4 specialties, and residents were least likely to rate "lack of supervision" as a problem. While few residents reported that they received inadequate supervision, problems with supervision were negatively correlated with sufficient time for clinical activities, overall ratings of the residency experience, and attending physicians as a source of learning. Problems with supervision were positively correlated with resident reports that they had made a significant medical error, had been belittled or humiliated, or had observed others falsifying medical records. Although working without supervision was not a pervasive problem in 2009, when it happened, it appeared to have negative consequences. The association between inadequate supervision and medical errors is of particular concern.
Automated scanning of plastic nuclear track detectors using the Minnesota star scanner
NASA Technical Reports Server (NTRS)
Fink, P. J.; Waddington, C. J.
1986-01-01
The problems found in an attempt to adapt an automated scanner of astronomical plates, the Minnesota Automated Dual Plate Scanner (APS), to locating and measuring the etch pits produced by ionizing particles in plastic nuclear track detectors (CR-39) are described. A visual study of these pits was made to determine the errors introduced in determining positions and shapes. Measurements made under a low power microscope were compared with those from the APS.
Simultaneous Control of Error Rates in fMRI Data Analysis
Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David
2015-01-01
The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the Likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to ‘cleaner’ looking brain maps and operationally superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain. PMID:26272730
NASA Astrophysics Data System (ADS)
Lu, Biao; Luo, Zhicai; Zhong, Bo; Zhou, Hao; Flechtner, Frank; Förste, Christoph; Barthelmes, Franz; Zhou, Rui
2017-11-01
Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on the gravity field and steady-state ocean circulation explorer (GOCE) data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. The IGGT approach as studied in this paper is a quadratic function of the gravity field model's spherical harmonic coefficients. The linearized observation equations for the least squares method are obtained using a Taylor expansion, and the weighting equation is derived using the law of error propagation. We also investigate the linearization errors using existing gravity field models and find that this error can be ignored since the used a-priori model EIGEN-5C is sufficiently accurate. One problem when using this approach is that it needs all six independent gravitational gradients (GGs), but the components V_{xy} and V_{yz} of GOCE are worse due to the non-sensitive axes of the GOCE gradiometer. Therefore, we use synthetic GGs for both inaccurate gravitational gradient components derived from the a-priori gravity field model EIGEN-5C. Another problem is that the GOCE GGs are measured in a band-limited manner. Therefore, a forward and backward finite impulse response band-pass filter is applied to the data, which can also eliminate filter caused phase change. The spherical cap regularization approach (SCRA) and the Kaula rule are then applied to solve the polar gap problem caused by GOCE's inclination of 96.7° . With the techniques described above, a degree/order 240 gravity field model called IGGT_R1 is computed. Since the synthetic components of V_{xy} and V_{yz} are not band-pass filtered, the signals outside the measurement bandwidth are replaced by the a-priori model EIGEN-5C. Therefore, this model is practically a combined gravity field model which contains GOCE GGs signals and long wavelength signals from the a-priori model EIGEN-5C. Finally, IGGT_R1's accuracy is evaluated by comparison with other gravity field models in terms of difference degree amplitudes, the geostrophic velocity in the Agulhas current area, gravity anomaly differences as well as by comparison to GNSS/leveling data.
Analysis of space telescope data collection system
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Schoggen, W. O.
1982-01-01
An analysis of the expected performance for the Multiple Access (MA) system is provided. The analysis covers the expected bit error rate performance, the effects of synchronization loss, the problem of self-interference, and the problem of phase ambiguity. The problem of false acceptance of a command word due to data inversion is discussed. A mathematical determination of the probability of accepting an erroneous command word due to a data inversion is presented. The problem is examined for three cases: (1) a data inversion only, (2) a data inversion and a random error within the same command word, and a block (up to 256 48-bit words) containing both a data inversion and a random error.
Can the measurement of the cross-section of proton-capture on beryllium-7 be improved
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, C.
1993-01-01
The solar neutrino problem'' arises from the discrepancy between the observations of solar neutrinos fluxes in experiments at Homestake and Kamiokande and the solar model predictions of those fluxes. Both experiments, which are sensitive mainly to high-energy neutrinos, observe fewer neutrinos than predicted by solar models. Most of the expected high-energy solar neutrinos come from the beta-decay of [sup 8]B, which is produced in the reaction [sup 7]Be(p,[gamma])[sup 8]B. A study of all of the measurements to date of the zero-energy S-factor for the reaction [sup 7]Be(p,[gamma])[sup 8]B concludes that S[sub 17](0) = 0.0224 +[plus minus] 0.0021 keV-barn. Although amore » 10% error in S[sub 17](0) alone wig not solve the solar neutrino problem, it would still be useful to nail down all of the inputs of the solar models as well as possible. This serves to guard against the possibility that a conspiracy among the errors might be the source of the discrepancy and provides tighter constraints on the new physics'' interpretations of the experimentally measured solar neutrino spectrum. In this paper, we examine several ways of improving this measurement. None appear to offer a significant improvement over past experiments.« less
Can the measurement of the cross-section of proton-capture on beryllium-7 be improved?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, C.
1993-01-01
The solar neutrino ``problem`` arises from the discrepancy between the observations of solar neutrinos fluxes in experiments at Homestake and Kamiokande and the solar model predictions of those fluxes. Both experiments, which are sensitive mainly to high-energy neutrinos, observe fewer neutrinos than predicted by solar models. Most of the expected high-energy solar neutrinos come from the beta-decay of {sup 8}B, which is produced in the reaction {sup 7}Be(p,{gamma}){sup 8}B. A study of all of the measurements to date of the zero-energy S-factor for the reaction {sup 7}Be(p,{gamma}){sup 8}B concludes that S{sub 17}(0) = 0.0224 +{plus_minus} 0.0021 keV-barn. Although a 10%more » error in S{sub 17}(0) alone wig not solve the solar neutrino problem, it would still be useful to nail down all of the inputs of the solar models as well as possible. This serves to guard against the possibility that a conspiracy among the errors might be the source of the discrepancy and provides tighter constraints on the ``new physics`` interpretations of the experimentally measured solar neutrino spectrum. In this paper, we examine several ways of improving this measurement. None appear to offer a significant improvement over past experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, R.; Dawson, C.; Jao, S.
2016-08-05
Three problems with the eIPMs were corrected during the 2015 summer shutdown. These involved ac coupling and 'negative profiles', detector 'dead zone' created by biasing, and gain control on ramp. With respect to Run 16, problems dealt with included gain depletion on horizontal MCP and rf pickup on profile signals; it was found that the MCP was severely damaged over part of the aperture. Various corrective measures were applied. Some results of these measured obtained during Run 16 are shown. At the end of Run 16 there was a three-day beam run to study polarized proton beams in the AGS.more » Attempts to minimize beam injection errors which increase emittance by using the eIPMs to measure the contribution of injection mismatch to the AGS output beam emittance are recounted. .« less
Correlation methods in optical metrology with state-of-the-art x-ray mirrors
NASA Astrophysics Data System (ADS)
Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.
2018-01-01
The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of <100 nrad (root-mean-square) and height error of <1-2 nm (peak-tovalley). These are for optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed method is general and applicable to a broad spectrum of high accuracy measurements.
Reduction in chemotherapy order errors with computerized physician order entry.
Meisenberg, Barry R; Wright, Robert R; Brady-Copertino, Catherine J
2014-01-01
To measure the number and type of errors associated with chemotherapy order composition associated with three sequential methods of ordering: handwritten orders, preprinted orders, and computerized physician order entry (CPOE) embedded in the electronic health record. From 2008 to 2012, a sample of completed chemotherapy orders were reviewed by a pharmacist for the number and type of errors as part of routine performance improvement monitoring. Error frequencies for each of the three distinct methods of composing chemotherapy orders were compared using statistical methods. The rate of problematic order sets-those requiring significant rework for clarification-was reduced from 30.6% with handwritten orders to 12.6% with preprinted orders (preprinted v handwritten, P < .001) to 2.2% with CPOE (preprinted v CPOE, P < .001). The incidence of errors capable of causing harm was reduced from 4.2% with handwritten orders to 1.5% with preprinted orders (preprinted v handwritten, P < .001) to 0.1% with CPOE (CPOE v preprinted, P < .001). The number of problem- and error-containing chemotherapy orders was reduced sequentially by preprinted order sets and then by CPOE. CPOE is associated with low error rates, but it did not eliminate all errors, and the technology can introduce novel types of errors not seen with traditional handwritten or preprinted orders. Vigilance even with CPOE is still required to avoid patient harm.
Sensor selection cost optimisation for tracking structurally cyclic systems: a P-order solution
NASA Astrophysics Data System (ADS)
Doostmohammadian, M.; Zarrabi, H.; Rabiee, H. R.
2017-08-01
Measurements and sensing implementations impose certain cost in sensor networks. The sensor selection cost optimisation is the problem of minimising the sensing cost of monitoring a physical (or cyber-physical) system. Consider a given set of sensors tracking states of a dynamical system for estimation purposes. For each sensor assume different costs to measure different (realisable) states. The idea is to assign sensors to measure states such that the global cost is minimised. The number and selection of sensor measurements need to ensure the observability to track the dynamic state of the system with bounded estimation error. The main question we address is how to select the state measurements to minimise the cost while satisfying the observability conditions. Relaxing the observability condition for structurally cyclic systems, the main contribution is to propose a graph theoretic approach to solve the problem in polynomial time. Note that polynomial time algorithms are suitable for large-scale systems as their running time is upper-bounded by a polynomial expression in the size of input for the algorithm. We frame the problem as a linear sum assignment with solution complexity of ?.
NASA Astrophysics Data System (ADS)
Rutkowski, Adam; Buraczewski, Adam; Horodecki, Paweł; Stobińska, Magdalena
2017-01-01
Quantum steering is a relatively simple test for proving that the values of quantum-mechanical measurement outcomes come into being only in the act of measurement. By exploiting quantum correlations, Alice can influence—steer—Bob's physical system in a way that is impossible in classical mechanics, as shown by the violation of steering inequalities. Demonstrating this and similar quantum effects for systems of increasing size, approaching even the classical limit, is a long-standing challenging problem. Here, we prove an experimentally feasible unbounded violation of a steering inequality. We derive its universal form where tolerance for measurement-setting errors is explicitly built in by means of the Deutsch-Maassen-Uffink entropic uncertainty relation. Then, generalizing the mutual unbiasedness, we apply the inequality to the multisinglet and multiparticle bipartite Bell state. However, the method is general and opens the possibility of employing multiparticle bipartite steering for randomness certification and development of quantum technologies, e.g., random access codes.
Placebo non-response measure in sequential parallel comparison design studies.
Rybin, Denis; Doros, Gheorghe; Pencina, Michael J; Fava, Maurizio
2015-07-10
The Sequential Parallel Comparison Design (SPCD) is one of the novel approaches addressing placebo response. The analysis of SPCD data typically classifies subjects as 'placebo responders' or 'placebo non-responders'. Most current methods employed for analysis of SPCD data utilize only a part of the data collected during the trial. A repeated measures model was proposed for analysis of continuous outcomes that permitted the inclusion of information from all subjects into the treatment effect estimation. We describe here a new approach using a weighted repeated measures model that further improves the utilization of data collected during the trial, allowing the incorporation of information that is relevant to the placebo response, and dealing with the problem of possible misclassification of subjects. Our simulations show that when compared to the unweighted repeated measures model method, our approach performs as well or, under certain conditions, better, in preserving the type I error, achieving adequate power and minimizing the mean squared error. Copyright © 2015 John Wiley & Sons, Ltd.
Metainference: A Bayesian inference method for heterogeneous systems
Bonomi, Massimiliano; Camilloni, Carlo; Cavalli, Andrea; Vendruscolo, Michele
2016-01-01
Modeling a complex system is almost invariably a challenging task. The incorporation of experimental observations can be used to improve the quality of a model and thus to obtain better predictions about the behavior of the corresponding system. This approach, however, is affected by a variety of different errors, especially when a system simultaneously populates an ensemble of different states and experimental data are measured as averages over such states. To address this problem, we present a Bayesian inference method, called “metainference,” that is able to deal with errors in experimental measurements and with experimental measurements averaged over multiple states. To achieve this goal, metainference models a finite sample of the distribution of models using a replica approach, in the spirit of the replica-averaging modeling based on the maximum entropy principle. To illustrate the method, we present its application to a heterogeneous model system and to the determination of an ensemble of structures corresponding to the thermal fluctuations of a protein molecule. Metainference thus provides an approach to modeling complex systems with heterogeneous components and interconverting between different states by taking into account all possible sources of errors. PMID:26844300
Stable estimate of primary OC/EC ratios in the EC tracer method
NASA Astrophysics Data System (ADS)
Chu, Shao-Hang
In fine particulate matter studies, the primary OC/EC ratio plays an important role in estimating the secondary organic aerosol contribution to PM2.5 concentrations using the EC tracer method. In this study, numerical experiments are carried out to test and compare various statistical techniques in the estimation of primary OC/EC ratios. The influence of random measurement errors in both primary OC and EC measurements on the estimation of the expected primary OC/EC ratios is examined. It is found that random measurement errors in EC generally create an underestimation of the slope and an overestimation of the intercept of the ordinary least-squares regression line. The Deming regression analysis performs much better than the ordinary regression, but it tends to overcorrect the problem by slightly overestimating the slope and underestimating the intercept. Averaging the ratios directly is usually undesirable because the average is strongly influenced by unrealistically high values of OC/EC ratios resulting from random measurement errors at low EC concentrations. The errors generally result in a skewed distribution of the OC/EC ratios even if the parent distributions of OC and EC are close to normal. When measured OC contains a significant amount of non-combustion OC Deming regression is a much better tool and should be used to estimate both the primary OC/EC ratio and the non-combustion OC. However, if the non-combustion OC is negligibly small the best and most robust estimator of the OC/EC ratio turns out to be the simple ratio of the OC and EC averages. It not only reduces random errors by averaging individual variables separately but also acts as a weighted average of ratios to minimize the influence of unrealistically high OC/EC ratios created by measurement errors at low EC concentrations. The median of OC/EC ratios ranks a close second, and the geometric mean of ratios ranks third. This is because their estimations are insensitive to questionable extreme values. A real world example is given using the ambient data collected from an Atlanta STN site during the winter of 2001-2002.
NASA Astrophysics Data System (ADS)
Karpenko, S. S.; Zybin, E. Yu; Kosyanchuk, V. V.
2018-02-01
In this paper we design a nonparametric method for failures detection and localization in the aircraft control system that uses the measurements of the control signals and the aircraft states only. It doesn’t require a priori information of the aircraft model parameters, training or statistical calculations, and is based on algebraic solvability conditions for the aircraft model identification problem. This makes it possible to significantly increase the efficiency of detection and localization problem solution by completely eliminating errors, associated with aircraft model uncertainties.
Nazione, Samantha; Pace, Kristin
2015-01-01
Medical malpractice lawsuits are a growing problem in the United States, and there is much controversy regarding how to best address this problem. The medical error disclosure framework suggests that apologizing, expressing empathy, engaging in corrective action, and offering compensation after a medical error may improve the provider-patient relationship and ultimately help reduce the number of medical malpractice lawsuits patients bring to medical providers. This study provides an experimental examination of the medical error disclosure framework and its effect on amount of money requested in a lawsuit, negative intentions, attitudes, and anger toward the provider after a medical error. Results suggest empathy may play a large role in providing positive outcomes after a medical error.
A reduced successive quadratic programming strategy for errors-in-variables estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjoa, I.-B.; Biegler, L. T.; Carnegie-Mellon Univ.
Parameter estimation problems in process engineering represent a special class of nonlinear optimization problems, because the maximum likelihood structure of the objective function can be exploited. Within this class, the errors in variables method (EVM) is particularly interesting. Here we seek a weighted least-squares fit to the measurements with an underdetermined process model. Thus, both the number of variables and degrees of freedom available for optimization increase linearly with the number of data sets. Large optimization problems of this type can be particularly challenging and expensive to solve because, for general-purpose nonlinear programming (NLP) algorithms, the computational effort increases atmore » least quadratically with problem size. In this study we develop a tailored NLP strategy for EVM problems. The method is based on a reduced Hessian approach to successive quadratic programming (SQP), but with the decomposition performed separately for each data set. This leads to the elimination of all variables but the model parameters, which are determined by a QP coordination step. In this way the computational effort remains linear in the number of data sets. Moreover, unlike previous approaches to the EVM problem, global and superlinear properties of the SQP algorithm apply naturally. Also, the method directly incorporates inequality constraints on the model parameters (although not on the fitted variables). This approach is demonstrated on five example problems with up to 102 degrees of freedom. Compared to general-purpose NLP algorithms, large improvements in computational performance are observed.« less
An Error Analysis for the Finite Element Method Applied to Convection Diffusion Problems.
1981-03-01
D TFhG-]NOLOGY k 4b 00 \\" ) ’b Technical Note BN-962 AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONVECTION DIFFUSION PROBLEM by I...Babu~ka and W. G. Szym’czak March 1981 V.. UNVI I Of- ’i -S AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD P. - 0 w APPLIED TO CONVECTION DIFFUSION ...AOAO98 895 MARYLAND UNIVYCOLLEGE PARK INST FOR PHYSICAL SCIENCE--ETC F/G 12/I AN ERROR ANALYIS FOR THE FINITE ELEMENT METHOD APPLIED TO CONV..ETC (U
Error analysis and correction in wavefront reconstruction from the transport-of-intensity equation
Barbero, Sergio; Thibos, Larry N.
2007-01-01
Wavefront reconstruction from the transport-of-intensity equation (TIE) is a well-posed inverse problem given smooth signals and appropriate boundary conditions. However, in practice experimental errors lead to an ill-condition problem. A quantitative analysis of the effects of experimental errors is presented in simulations and experimental tests. The relative importance of numerical, misalignment, quantization, and photodetection errors are shown. It is proved that reduction of photodetection noise by wavelet filtering significantly improves the accuracy of wavefront reconstruction from simulated and experimental data. PMID:20052302
[A plane-based hand-eye calibration method for surgical robots].
Zeng, Bowei; Meng, Fanle; Ding, Hui; Liu, Wenbo; Wu, Di; Wang, Guangzhi
2017-04-01
In order to calibrate the hand-eye transformation of the surgical robot and laser range finder (LRF), a calibration algorithm based on a planar template was designed. A mathematical model of the planar template had been given and the approach to address the equations had been derived. Aiming at the problems of the measurement error in a practical system, we proposed a new algorithm for selecting coplanar data. This algorithm can effectively eliminate considerable measurement error data to improve the calibration accuracy. Furthermore, three orthogonal planes were used to improve the calibration accuracy, in which a nonlinear optimization for hand-eye calibration was used. With the purpose of verifying the calibration precision, we used the LRF to measure some fixed points in different directions and a cuboid's surfaces. Experimental results indicated that the precision of a single planar template method was (1.37±0.24) mm, and that of the three orthogonal planes method was (0.37±0.05) mm. Moreover, the mean FRE of three-dimensional (3D) points was 0.24 mm and mean TRE was 0.26 mm. The maximum angle measurement error was 0.4 degree. Experimental results show that the method presented in this paper is effective with high accuracy and can meet the requirements of surgical robot precise location.
NASA Astrophysics Data System (ADS)
Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun
2018-02-01
Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.
Accounting for baseline differences and measurement error in the analysis of change over time.
Braun, Julia; Held, Leonhard; Ledergerber, Bruno
2014-01-15
If change over time is compared in several groups, it is important to take into account baseline values so that the comparison is carried out under the same preconditions. As the observed baseline measurements are distorted by measurement error, it may not be sufficient to include them as covariate. By fitting a longitudinal mixed-effects model to all data including the baseline observations and subsequently calculating the expected change conditional on the underlying baseline value, a solution to this problem has been provided recently so that groups with the same baseline characteristics can be compared. In this article, we present an extended approach where a broader set of models can be used. Specifically, it is possible to include any desired set of interactions between the time variable and the other covariates, and also, time-dependent covariates can be included. Additionally, we extend the method to adjust for baseline measurement error of other time-varying covariates. We apply the methodology to data from the Swiss HIV Cohort Study to address the question if a joint infection with HIV-1 and hepatitis C virus leads to a slower increase of CD4 lymphocyte counts over time after the start of antiretroviral therapy. Copyright © 2013 John Wiley & Sons, Ltd.
Verification of unfold error estimates in the UFO code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Biggs, F.
Spectral unfolding is an inverse mathematical operation which attempts to obtain spectral source information from a set of tabulated response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the UFO (UnFold Operator) code. In addition to an unfolded spectrum, UFO also estimates the unfold uncertainty (error) induced by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have anmore » imprecision of 5% (standard deviation). 100 random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95% confidence level). A possible 10% bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetemined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-Pinch and ion-beam driven hohlraums.« less
NASA Astrophysics Data System (ADS)
Kang, Pilsang; Koo, Changhoi; Roh, Hokyu
2017-11-01
Since simple linear regression theory was established at the beginning of the 1900s, it has been used in a variety of fields. Unfortunately, it cannot be used directly for calibration. In practical calibrations, the observed measurements (the inputs) are subject to errors, and hence they vary, thus violating the assumption that the inputs are fixed. Therefore, in the case of calibration, the regression line fitted using the method of least squares is not consistent with the statistical properties of simple linear regression as already established based on this assumption. To resolve this problem, "classical regression" and "inverse regression" have been proposed. However, they do not completely resolve the problem. As a fundamental solution, we introduce "reversed inverse regression" along with a new methodology for deriving its statistical properties. In this study, the statistical properties of this regression are derived using the "error propagation rule" and the "method of simultaneous error equations" and are compared with those of the existing regression approaches. The accuracy of the statistical properties thus derived is investigated in a simulation study. We conclude that the newly proposed regression and methodology constitute the complete regression approach for univariate linear calibrations.
Stochastic characterization of phase detection algorithms in phase-shifting interferometry
Munteanu, Florin
2016-11-01
Phase-shifting interferometry (PSI) is the preferred non-contact method for profiling sub-nanometer surfaces. Based on monochromatic light interference, the method computes the surface profile from a set of interferograms collected at separate stepping positions. Errors in the estimated profile are introduced when these positions are not located correctly. In order to cope with this problem, various algorithms that minimize the effects of certain types of stepping errors (linear, sinusoidal, etc.) have been developed. Despite the relatively large number of algorithms suggested in the literature, there is no unified way of characterizing their performance when additional unaccounted random errors are present. Here,more » we suggest a procedure for quantifying the expected behavior of each algorithm in the presence of independent and identically distributed (i.i.d.) random stepping errors, which can occur in addition to the systematic errors for which the algorithm has been designed. As a result, the usefulness of this method derives from the fact that it can guide the selection of the best algorithm for specific measurement situations.« less
A variational technique for smoothing flight-test and accident data
NASA Technical Reports Server (NTRS)
Bach, R. E., Jr.
1980-01-01
The problem of determining aircraft motions along a trajectory is solved using a variational algorithm that generates unmeasured states and forcing functions, and estimates instrument bias and scale-factor errors. The problem is formulated as a nonlinear fixed-interval smoothing problem, and is solved as a sequence of linear two-point boundary value problems, using a sweep method. The algorithm has been implemented for use in flight-test and accident analysis. Aircraft motions are assumed to be governed by a six-degree-of-freedom kinematic model; forcing functions consist of body accelerations and winds, and the measurement model includes aerodynamic and radar data. Examples of the determination of aircraft motions from typical flight-test and accident data are presented.
Computation of forces from deformed visco-elastic biological tissues
NASA Astrophysics Data System (ADS)
Muñoz, José J.; Amat, David; Conte, Vito
2018-04-01
We present a least-squares based inverse analysis of visco-elastic biological tissues. The proposed method computes the set of contractile forces (dipoles) at the cell boundaries that induce the observed and quantified deformations. We show that the computation of these forces requires the regularisation of the problem functional for some load configurations that we study here. The functional measures the error of the dynamic problem being discretised in time with a second-order implicit time-stepping and in space with standard finite elements. We analyse the uniqueness of the inverse problem and estimate the regularisation parameter by means of an L-curved criterion. We apply the methodology to a simple toy problem and to an in vivo set of morphogenetic deformations of the Drosophila embryo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Brett W.; Diaz, Kimberly A.; Ochiobi, Chinaza Darlene
2015-09-01
3D printing originally known as additive manufacturing is a process of making 3 dimensional solid objects from a CAD file. This ground breaking technology is widely used for industrial and biomedical purposes such as building objects, tools, body parts and cosmetics. An important benefit of 3D printing is the cost reduction and manufacturing flexibility; complex parts are built at the fraction of the price. However, layer by layer printing of complex shapes adds error due to the surface roughness. Any such error results in poor quality products with inaccurate dimensions. The main purpose of this research is to measure themore » amount of printing errors for parts with different geometric shapes and to analyze them for finding optimal printing settings to minimize the error. We use a Design of Experiments framework, and focus on studying parts with cone and ellipsoid shapes. We found that the orientation and the shape of geometric shapes have significant effect on the printing error. From our analysis, we also determined the optimal orientation that gives the least printing error.« less
Robust double gain unscented Kalman filter for small satellite attitude estimation
NASA Astrophysics Data System (ADS)
Cao, Lu; Yang, Weiwei; Li, Hengnian; Zhang, Zhidong; Shi, Jianjun
2017-08-01
Limited by the low precision of small satellite sensors, the estimation theories with high performance remains the most popular research topic for the attitude estimation. The Kalman filter (KF) and its extensions have been widely applied in the satellite attitude estimation and achieved plenty of achievements. However, most of the existing methods just take use of the current time-step's priori measurement residuals to complete the measurement update and state estimation, which always ignores the extraction and utilization of the previous time-step's posteriori measurement residuals. In addition, the uncertainty model errors always exist in the attitude dynamic system, which also put forward the higher performance requirements for the classical KF in attitude estimation problem. Therefore, the novel robust double gain unscented Kalman filter (RDG-UKF) is presented in this paper to satisfy the above requirements for the small satellite attitude estimation with the low precision sensors. It is assumed that the system state estimation errors can be exhibited in the measurement residual; therefore, the new method is to derive the second Kalman gain Kk2 for making full use of the previous time-step's measurement residual to improve the utilization efficiency of the measurement data. Moreover, the sequence orthogonal principle and unscented transform (UT) strategy are introduced to robust and enhance the performance of the novel Kalman Filter in order to reduce the influence of existing uncertainty model errors. Numerical simulations show that the proposed RDG-UKF is more effective and robustness in dealing with the model errors and low precision sensors for the attitude estimation of small satellite by comparing with the classical unscented Kalman Filter (UKF).
High temperature strain measurement with a resistance strain gage
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos
1993-01-01
A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.
Measuring the surface tension of a liquid-gas interface by automatic stalagmometer
NASA Astrophysics Data System (ADS)
Molina, C.; Victoria, L.; Arenas, A.
2000-06-01
We present a variation of the stalagmometer method for automatically determining the surface tension of a liquid-gas interface using a pressure sensor to measure the pressure variation per drop. The presented method does not depend on a knowledge of the density of the problem liquid and obtains values with a measurement error in the range of 1%-2%. Its low cost and simplicity mean that the technique can be used in the teaching and instrumentation laboratory in the same way as other methods.
Generalized energy measurements and modified transient quantum fluctuation theorems
NASA Astrophysics Data System (ADS)
Watanabe, Gentaro; Venkatesh, B. Prasanna; Talkner, Peter
2014-05-01
Determining the work which is supplied to a system by an external agent provides a crucial step in any experimental realization of transient fluctuation relations. This, however, poses a problem for quantum systems, where the standard procedure requires the projective measurement of energy at the beginning and the end of the protocol. Unfortunately, projective measurements, which are preferable from the point of view of theory, seem to be difficult to implement experimentally. We demonstrate that, when using a particular type of generalized energy measurements, the resulting work statistics is simply related to that of projective measurements. This relation between the two work statistics entails the existence of modified transient fluctuation relations. The modifications are exclusively determined by the errors incurred in the generalized energy measurements. They are universal in the sense that they do not depend on the force protocol. Particularly simple expressions for the modified Crooks relation and Jarzynski equality are found for Gaussian energy measurements. These can be obtained by a sequence of sufficiently many generalized measurements which need not be Gaussian. In accordance with the central limit theorem, this leads to an effective error reduction in the individual measurements and even yields a projective measurement in the limit of infinite repetitions.
Cognitive and behavioral knowledge about insulin-dependent diabetes among children and parents.
Johnson, S B; Pollak, R T; Silverstein, J H; Rosenbloom, A L; Spillar, R; McCallum, M; Harkavy, J
1982-06-01
Youngster's knowledge about insulin-dependent diabetes was assessed across three domains: (1) general information; (2) problem solving and (3) skill at urine testing and self-injection. These youngster's parents completed the general information and problem-solving components of the assessment battery. All test instruments were showed good reliability. The test of problem solving was more difficult than the test of general information for both parents and patients. Mothers were more knowledgeable than fathers and children. Girls performed more accurately than boys, and older children obtained better scores than did younger children. Nevertheless, more than 80% of the youngsters made significant errors on urine testing and almost 40% made serious errors in self-injection. A number of other knowledge deficits were also noted. Duration of diabetes was not related to any of the knowledge measures. Intercorrelations between scores on the assessment instruments indicated that skill at urine testing or self-injection was not highly related to other types of knowledge about diabetes. Furthermore, knowledge in one content are was not usually predictive of knowledge in another content area. The results of this study emphasize the importance of measuring knowledge from several different domains. Patient variables such as sex and age need to be given further consideration in the development and use of patient educational programs. Regular assessment of patients' and parents' knowledge of all critical aspects of diabetes home management seems essential.
ERIC Educational Resources Information Center
Rice, Bart F.; Wilde, Carroll O.
It is noted that with the prominence of computers in today's technological society, digital communication systems have become widely used in a variety of applications. Some of the problems that arise in digital communications systems are described. This unit presents the problem of correcting errors in such systems. Error correcting codes are…
An Artificial Intelligence Approach to Analyzing Student Errors in Statistics.
ERIC Educational Resources Information Center
Sebrechts, Marc M.; Schooler, Lael J.
1987-01-01
Describes the development of an artificial intelligence system called GIDE that analyzes student errors in statistics problems by inferring the students' intentions. Learning strategies involved in problem solving are discussed and the inclusion of goal structures is explained. (LRW)
Selecting a restoration technique to minimize OCR error.
Cannon, M; Fugate, M; Hush, D R; Scovel, C
2003-01-01
This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.
ERIC Educational Resources Information Center
McAllister, Cheryl J.; Beaver, Cheryl
2012-01-01
The purpose of this research was to determine if recognizable error types exist in the work of preservice teachers required to create story problems for specific fraction operations. Students were given a particular single-operation fraction expression and asked to do the calculation and then create a story problem that would require the use of…
NASA Technical Reports Server (NTRS)
Whitlock, C. H., III
1977-01-01
Constituents with linear radiance gradients with concentration may be quantified from signals which contain nonlinear atmospheric and surface reflection effects for both homogeneous and non-homogeneous water bodies provided accurate data can be obtained and nonlinearities are constant with wavelength. Statistical parameters must be used which give an indication of bias as well as total squared error to insure that an equation with an optimum combination of bands is selected. It is concluded that the effect of error in upwelled radiance measurements is to reduce the accuracy of the least square fitting process and to increase the number of points required to obtain a satisfactory fit. The problem of obtaining a multiple regression equation that is extremely sensitive to error is discussed.
Reducing number entry errors: solving a widespread, serious problem.
Thimbleby, Harold; Cairns, Paul
2010-10-06
Number entry is ubiquitous: it is required in many fields including science, healthcare, education, government, mathematics and finance. People entering numbers are to be expected to make errors, but shockingly few systems make any effort to detect, block or otherwise manage errors. Worse, errors may be ignored but processed in arbitrary ways, with unintended results. A standard class of error (defined in the paper) is an 'out by 10 error', which is easily made by miskeying a decimal point or a zero. In safety-critical domains, such as drug delivery, out by 10 errors generally have adverse consequences. Here, we expose the extent of the problem of numeric errors in a very wide range of systems. An analysis of better error management is presented: under reasonable assumptions, we show that the probability of out by 10 errors can be halved by better user interface design. We provide a demonstration user interface to show that the approach is practical.To kill an error is as good a service as, and sometimes even better than, the establishing of a new truth or fact. (Charles Darwin 1879 [2008], p. 229).
Refractive Errors in 3–6 Year-Old Chinese Children: A Very Low Prevalence of Myopia?
Lin, Lixia; Li, Zhen; Zeng, Junwen; Yang, Zhikuan; Morgan, Ian G.
2013-01-01
Purpose To examine the prevalence of refractive errors in children aged 3–6 years in China. Methods Children were recruited for a trial of a home-based amblyopia screening kit in Guangzhou preschools, during which cycloplegic refractions were measured in both eyes of 2480 children. Cycloplegic refraction (from 3 to 4 drops of 1% cyclopentolate to ensure abolition of the light reflex) was measured by both autorefraction and retinoscopy. Refractive errors were defined as followed: myopia (at least −0.50 D in the worse eye), hyperopia (at least +2.00 D in the worse eye) and astigmatism (at least 1.50 D in the worse eye). Different definitions, as specified in the text, were also used to facilitate comparison with other studies. Results The mean spherical equivalent refractive error was at least +1.22 D for all ages and both genders. The prevalence of myopia for any definition at any age was at most 2.5%, and lower in most cases. In contrast, the prevalence of hyperopia was generally over 20%, and declined slightly with age. The prevalence of astigmatism was between 6% and 11%. There was very little change in refractive error with age over this age range. Conclusions Previous reports of less hyperopic mean spherical equivalent refractive error, and more myopia and less hyperopia in children of this age may be due to problems with achieving adequate cycloplegia in children with dark irises. Using up to 4 drops of 1% cyclopentolate may be necessary to accurately measure refractive error in paediatric studies of such children. Our results suggest that children from all ethnic groups may follow a similar pattern of early refractive development, with little myopia and a hyperopic mean spherical equivalent over +1.00 D up to the age of 5–6 yearsin most conditions. PMID:24205064
USGS Blind Sample Project: monitoring and evaluating laboratory analytical quality
Ludtke, Amy S.; Woodworth, Mark T.
1997-01-01
The U.S. Geological Survey (USGS) collects and disseminates information about the Nation's water resources. Surface- and ground-water samples are collected and sent to USGS laboratories for chemical analyses. The laboratories identify and quantify the constituents in the water samples. Random and systematic errors occur during sample handling, chemical analysis, and data processing. Although all errors cannot be eliminated from measurements, the magnitude of their uncertainty can be estimated and tracked over time. Since 1981, the USGS has operated an independent, external, quality-assurance project called the Blind Sample Project (BSP). The purpose of the BSP is to monitor and evaluate the quality of laboratory analytical results through the use of double-blind quality-control (QC) samples. The information provided by the BSP assists the laboratories in detecting and correcting problems in the analytical procedures. The information also can aid laboratory users in estimating the extent that laboratory errors contribute to the overall errors in their environmental data.
NASA Astrophysics Data System (ADS)
Kirstetter, P.; Hong, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Petersen, W. A.
2011-12-01
Proper characterization of the error structure of TRMM Precipitation Radar (PR) quantitative precipitation estimation (QPE) is needed for their use in TRMM combined products, water budget studies and hydrological modeling applications. Due to the variety of sources of error in spaceborne radar QPE (attenuation of the radar signal, influence of land surface, impact of off-nadir viewing angle, etc.) and the impact of correction algorithms, the problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements (GV) using NOAA/NSSL's National Mosaic QPE (NMQ) system. An investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) on the basis of a 3-month-long data sample. A significant effort has been carried out to derive a bias-corrected, robust reference rainfall source from NMQ. The GV processing details will be presented along with preliminary results of PR's error characteristics using contingency table statistics, probability distribution comparisons, scatter plots, semi-variograms, and systematic biases and random errors.
Sources of error in the retracted scientific literature.
Casadevall, Arturo; Steen, R Grant; Fang, Ferric C
2014-09-01
Retraction of flawed articles is an important mechanism for correction of the scientific literature. We recently reported that the majority of retractions are associated with scientific misconduct. In the current study, we focused on the subset of retractions for which no misconduct was identified, in order to identify the major causes of error. Analysis of the retraction notices for 423 articles indexed in PubMed revealed that the most common causes of error-related retraction are laboratory errors, analytical errors, and irreproducible results. The most common laboratory errors are contamination and problems relating to molecular biology procedures (e.g., sequencing, cloning). Retractions due to contamination were more common in the past, whereas analytical errors are now increasing in frequency. A number of publications that have not been retracted despite being shown to contain significant errors suggest that barriers to retraction may impede correction of the literature. In particular, few cases of retraction due to cell line contamination were found despite recognition that this problem has affected numerous publications. An understanding of the errors leading to retraction can guide practices to improve laboratory research and the integrity of the scientific literature. Perhaps most important, our analysis has identified major problems in the mechanisms used to rectify the scientific literature and suggests a need for action by the scientific community to adopt protocols that ensure the integrity of the publication process. © FASEB.
Sáez, M
2003-01-01
In Spain, the degree and characteristics of primary care services utilization have been the subject of analysis since at least the 1980s. One of the main reasons for this interest is to assess the extent to which utilization matches primary care needs. In fact, the provision of an adequate health service for those who most need it is a generally accepted priority. The evidence shows that individual characteristics, mainly health status, are the factors most closely related to primary care utilization. Other personal characteristics, such as gender and age, could act as modulators of health care need. Some family and/or cultural variables, as well as factors related to the health care professional and institutions, could explain some of the observed variability in primary care services utilization. Socioeconomic variables, such as income, reveal a paradox. From an aggregate perspective, income is the main determinant of utilization as well as of health care expenditure. When data are analyzed for individuals, however, income is not related to primary health utilization. The situation is controversial, with methodological implications and, above all, consequences for the assessment of the efficiency in primary care utilization. Review of the literature reveals certain methodological inconsistencies that could at least partly explain the disparity of the empirical results. Among others, the following flaws can be highlighted: design problems, measurement errors, misspecification, and misleading statistical methods.Some solutions, among others, are quasi-experiments, the use of large administrative databases and of primary data sources (design problems); differentiation between types of utilization and between units of analysis other than consultations, and correction of measurement errors in the explanatory variables (measurement errors); consideration of relevant explanatory variables (misspecification); and the use of multilevel models (statistical methods).
Precision of natural satellite ephemerides from observations of different types
NASA Astrophysics Data System (ADS)
Emelyanov, N. V.
2017-08-01
Currently, various types of observations of natural planetary satellites are used to refine their ephemerides. A new type of measurement - determining the instants of apparent satellite encounters - has recently been proposed by Morgado and co-workers. The problem that arises is which type of measurement to choose in order to obtain an ephemeris precision that is as high as possible. The answer can be obtained only by modelling the entire process: observations, obtaining the measured values, refining the satellite motion parameters, and generating the ephemeris. The explicit dependence of the ephemeris precision on observational accuracy as well as on the type of observations is unknown. In this paper, such a dependence is investigated using the Monte Carlo statistical method. The relationship between the ephemeris precision for different types of observations is then assessed. The possibility of using the instants of apparent satellite encounters to obtain an ephemeris is investigated. A method is proposed that can be used to fit the satellite orbital parameters to this type of measurement. It is shown that, in the absence of systematic scale errors in the CCD frame, the use of the instants of apparent encounters leads to less precise ephemerides. However, in the presence of significant scale errors, which is often the case, this type of measurement becomes effective because the instants of apparent satellite encounters do not depend on scale errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, J.J.; Bouchard, A.M.; Osbourn, G.C.
Future generation automated human biometric identification and verification will require multiple features/sensors together with internal and external information sources to achieve high performance, accuracy, and reliability in uncontrolled environments. The primary objective of the proposed research is to develop a theoretical and practical basis for identifying and verifying people using standoff biometric features that can be obtained with minimal inconvenience during the verification process. The basic problem involves selecting sensors and discovering features that provide sufficient information to reliably verify a person`s identity under the uncertainties caused by measurement errors and tactics of uncooperative subjects. A system was developed formore » discovering hand, face, ear, and voice features and fusing them to verify the identity of people. The system obtains its robustness and reliability by fusing many coarse and easily measured features into a near minimal probability of error decision algorithm.« less
Harnessing Sparse and Low-Dimensional Structures for Robust Clustering of Imagery Data
ERIC Educational Resources Information Center
Rao, Shankar Ramamohan
2009-01-01
We propose a robust framework for clustering data. In practice, data obtained from real measurement devices can be incomplete, corrupted by gross errors, or not correspond to any assumed model. We show that, by properly harnessing the intrinsic low-dimensional structure of the data, these kinds of practical problems can be dealt with in a uniform…
Quantum proofs can be verified using only single-qubit measurements
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki; Nagaj, Daniel; Schuch, Norbert
2016-02-01
Quantum Merlin Arthur (QMA) is the class of problems which, though potentially hard to solve, have a quantum solution that can be verified efficiently using a quantum computer. It thus forms a natural quantum version of the classical complexity class NP (and its probabilistic variant MA, Merlin-Arthur games), where the verifier has only classical computational resources. In this paper, we study what happens when we restrict the quantum resources of the verifier to the bare minimum: individual measurements on single qubits received as they come, one by one. We find that despite this grave restriction, it is still possible to soundly verify any problem in QMA for the verifier with the minimum quantum resources possible, without using any quantum memory or multiqubit operations. We provide two independent proofs of this fact, based on measurement-based quantum computation and the local Hamiltonian problem. The former construction also applies to QMA1, i.e., QMA with one-sided error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FLANAGAN,A; SCHACHTER,J.M; SCHISSEL,D.P
2003-02-01
A Data Analysis Monitoring (DAM) system has been developed to monitor between pulse physics analysis at the DIII-D National Fusion Facility (http://nssrv1.gat.com:8000/dam). The system allows for rapid detection of discrepancies in diagnostic measurements or the results from physics analysis codes. This enables problems to be detected and possibly fixed between pulses as opposed to after the experimental run has concluded thus increasing the efficiency of experimental time. An example of a consistency check is comparing the experimentally measured neutron rate and the expected neutron emission, RDD0D. A significant difference between these two values could indicate a problem with one ormore » more diagnostics, or the presence of unanticipated phenomena in the plasma. This new system also tracks the progress of MDSplus dispatched data analysis software and the loading of analyzed data into MDSplus. DAM uses a Java Servlet to receive messages, CLIPS to implement expert system logic, and displays its results to multiple web clients via HTML. If an error is detected by DAM, users can view more detailed information so that steps can be taken to eliminate the error for the next pulse.« less
System to monitor data analyses and results of physics data validation between pulses at DIII-D
NASA Astrophysics Data System (ADS)
Flanagan, S.; Schachter, J. M.; Schissel, D. P.
2004-06-01
A data analysis monitoring (DAM) system has been developed to monitor between pulse physics analysis at the DIII-D National Fusion Facility (http://nssrv1.gat.com:8000/dam). The system allows for rapid detection of discrepancies in diagnostic measurements or the results from physics analysis codes. This enables problems to be detected and possibly fixed between pulses as opposed to after the experimental run has concluded, thus increasing the efficiency of experimental time. An example of a consistency check is comparing the experimentally measured neutron rate and the expected neutron emission, RDD0D. A significant difference between these two values could indicate a problem with one or more diagnostics, or the presence of unanticipated phenomena in the plasma. This system also tracks the progress of MDSplus dispatched data analysis software and the loading of analyzed data into MDSplus. DAM uses a Java Servlet to receive messages, C Language Integrated Production System to implement expert system logic, and displays its results to multiple web clients via Hypertext Markup Language. If an error is detected by DAM, users can view more detailed information so that steps can be taken to eliminate the error for the next pulse.
A celestial assisted INS initialization method for lunar explorers.
Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng
2011-01-01
The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors' biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface.
A Celestial Assisted INS Initialization Method for Lunar Explorers
Ning, Xiaolin; Wang, Longhua; Wu, Weiren; Fang, Jiancheng
2011-01-01
The second and third phases of the Chinese Lunar Exploration Program (CLEP) are planning to achieve Moon landing, surface exploration and automated sample return. In these missions, the inertial navigation system (INS) and celestial navigation system (CNS) are two indispensable autonomous navigation systems which can compensate for limitations in the ground based navigation system. The accurate initialization of the INS and the precise calibration of the CNS are needed in order to achieve high navigation accuracy. Neither the INS nor the CNS can solve the above problems using the ground controllers or by themselves on the lunar surface. However, since they are complementary to each other, these problems can be solved by combining them together. A new celestial assisted INS initialization method is presented, in which the initial position and attitude of the explorer as well as the inertial sensors’ biases are estimated by aiding the INS with celestial measurements. Furthermore, the systematic error of the CNS is also corrected by the help of INS measurements. Simulations show that the maximum error in position is 300 m and in attitude 40″, which demonstrates this method is a promising and attractive scheme for explorers on the lunar surface. PMID:22163998
Regier, Michael D; Moodie, Erica E M
2016-05-01
We propose an extension of the EM algorithm that exploits the common assumption of unique parameterization, corrects for biases due to missing data and measurement error, converges for the specified model when standard implementation of the EM algorithm has a low probability of convergence, and reduces a potentially complex algorithm into a sequence of smaller, simpler, self-contained EM algorithms. We use the theory surrounding the EM algorithm to derive the theoretical results of our proposal, showing that an optimal solution over the parameter space is obtained. A simulation study is used to explore the finite sample properties of the proposed extension when there is missing data and measurement error. We observe that partitioning the EM algorithm into simpler steps may provide better bias reduction in the estimation of model parameters. The ability to breakdown a complicated problem in to a series of simpler, more accessible problems will permit a broader implementation of the EM algorithm, permit the use of software packages that now implement and/or automate the EM algorithm, and make the EM algorithm more accessible to a wider and more general audience.
Airborne differential absorption lidar system for water vapor investigations
NASA Technical Reports Server (NTRS)
Browell, E. V.; Carter, A. F.; Wilkerson, T. D.
1981-01-01
Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.
NASA Technical Reports Server (NTRS)
Virakas, G. I.; Matsyulevichyus, R. A.; Minkevichyus, K. P.; Potsyus, Z. Y.; Shirvinskas, B. D.
1973-01-01
Problems in measurement of irregularities in angular velocity of rotating assemblies in memory devices with rigid and flexible magnetic data carriers are discussed. A device and method for determination of change in angular velocities in various frequency and rotation rate ranges are examined. A schematic diagram of a photoelectric sensor for recording the signal pulses is provided. Mathematical models are developed to show the amount of error which can result from misalignment of the test equipment.
Error-Transparent Quantum Gates for Small Logical Qubit Architectures
NASA Astrophysics Data System (ADS)
Kapit, Eliot
2018-02-01
One of the largest obstacles to building a quantum computer is gate error, where the physical evolution of the state of a qubit or group of qubits during a gate operation does not match the intended unitary transformation. Gate error stems from a combination of control errors and random single qubit errors from interaction with the environment. While great strides have been made in mitigating control errors, intrinsic qubit error remains a serious problem that limits gate fidelity in modern qubit architectures. Simultaneously, recent developments of small error-corrected logical qubit devices promise significant increases in logical state lifetime, but translating those improvements into increases in gate fidelity is a complex challenge. In this Letter, we construct protocols for gates on and between small logical qubit devices which inherit the parent device's tolerance to single qubit errors which occur at any time before or during the gate. We consider two such devices, a passive implementation of the three-qubit bit flip code, and the author's own [E. Kapit, Phys. Rev. Lett. 116, 150501 (2016), 10.1103/PhysRevLett.116.150501] very small logical qubit (VSLQ) design, and propose error-tolerant gate sets for both. The effective logical gate error rate in these models displays superlinear error reduction with linear increases in single qubit lifetime, proving that passive error correction is capable of increasing gate fidelity. Using a standard phenomenological noise model for superconducting qubits, we demonstrate a realistic, universal one- and two-qubit gate set for the VSLQ, with error rates an order of magnitude lower than those for same-duration operations on single qubits or pairs of qubits. These developments further suggest that incorporating small logical qubits into a measurement based code could substantially improve code performance.
Assessment of ecologic regression in the study of lung cancer and indoor radon.
Stidley, C A; Samet, J M
1994-02-01
Ecologic regression studies conducted to assess the cancer risk of indoor radon to the general population are subject to methodological limitations, and they have given seemingly contradictory results. The authors use simulations to examine the effects of two major methodological problems that affect these studies: measurement error and misspecification of the risk model. In a simulation study of the effect of measurement error caused by the sampling process used to estimate radon exposure for a geographic unit, both the effect of radon and the standard error of the effect estimate were underestimated, with greater bias for smaller sample sizes. In another simulation study, which addressed the consequences of uncontrolled confounding by cigarette smoking, even small negative correlations between county geometric mean annual radon exposure and the proportion of smokers resulted in negative average estimates of the radon effect. A third study considered consequences of using simple linear ecologic models when the true underlying model relation between lung cancer and radon exposure is nonlinear. These examples quantify potential biases and demonstrate the limitations of estimating risks from ecologic studies of lung cancer and indoor radon.
Utilization of electrical impedance imaging for estimation of in-vivo tissue resistivities
NASA Astrophysics Data System (ADS)
Eyuboglu, B. Murat; Pilkington, Theo C.
1993-08-01
In order to determine in vivo resistivity of tissues in the thorax, the possibility of combining electrical impedance imaging (EII) techniques with (1) anatomical data extracted from high resolution images, (2) a prior knowledge of tissue resistivities, and (3) a priori noise information was assessed in this study. A Least Square Error Estimator (LSEE) and a statistically constrained Minimum Mean Square Error Estimator (MiMSEE) were implemented to estimate regional electrical resistivities from potential measurements made on the body surface. A two dimensional boundary element model of the human thorax, which consists of four different conductivity regions (the skeletal muscle, the heart, the right lung, and the left lung) was adopted to simulate the measured EII torso potentials. The calculated potentials were then perturbed by simulated instrumentation noise. The signal information used to form the statistical constraint for the MiMSEE was obtained from a prior knowledge of the physiological range of tissue resistivities. The noise constraint was determined from a priori knowledge of errors due to linearization of the forward problem and to the instrumentation noise.
NASA Technical Reports Server (NTRS)
Kirstetter, Pierre-Emmanuel; Hong, Y.; Gourley, J. J.; Schwaller, M.; Petersen, W; Zhang, J.
2012-01-01
Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem was addressed in a previous paper by comparison of 2A25 version 6 (V6) product with reference values derived from NOAA/NSSL's ground radar-based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to compare the new 2A25 version 7 (V7) products that were recently released as a replacement of V6. This new version is considered superior over land areas. Several aspects of the two versions are compared and quantified including rainfall rate distributions, systematic biases, and random errors. All analyses indicate V7 is an improvement over V6.
Relations between the Test of Variables of Attention (TOVA) and the Children's Memory Scale (CMS).
Riccio, Cynthia A; Garland, Beth H; Cohen, Morris J
2007-09-01
There is considerable overlap in the constructs of attention and memory. The objective of this study was to examine the relationship between the Test of Variables of Attention (TOVA), a measure of attention, to components of memory and learning as measured by the Children's Memory Scale (CMS). Participants (N = 105) were consecutive referrals to an out-patient facility, generally for learning or behavior problems, who were administered both the TOVA and the CMS. Significant correlations were found between the omissions score on the TOVA and subscales of the CMS. TOVA variability and TOVA reaction time correlated significantly with subscales of the CMS as well. TOVA commission errors did not correlate significantly with any CMS Index. Although significant, the correlation coefficients indicate that the CMS and TOVA are measuring either different constructs or similar constructs but in different ways. As such, both measures may be useful in distinguishing memory from attention problems.
Global error estimation based on the tolerance proportionality for some adaptive Runge-Kutta codes
NASA Astrophysics Data System (ADS)
Calvo, M.; González-Pinto, S.; Montijano, J. I.
2008-09-01
Modern codes for the numerical solution of Initial Value Problems (IVPs) in ODEs are based in adaptive methods that, for a user supplied tolerance [delta], attempt to advance the integration selecting the size of each step so that some measure of the local error is [similar, equals][delta]. Although this policy does not ensure that the global errors are under the prescribed tolerance, after the early studies of Stetter [Considerations concerning a theory for ODE-solvers, in: R. Burlisch, R.D. Grigorieff, J. Schröder (Eds.), Numerical Treatment of Differential Equations, Proceedings of Oberwolfach, 1976, Lecture Notes in Mathematics, vol. 631, Springer, Berlin, 1978, pp. 188-200; Tolerance proportionality in ODE codes, in: R. März (Ed.), Proceedings of the Second Conference on Numerical Treatment of Ordinary Differential Equations, Humbold University, Berlin, 1980, pp. 109-123] and the extensions of Higham [Global error versus tolerance for explicit Runge-Kutta methods, IMA J. Numer. Anal. 11 (1991) 457-480; The tolerance proportionality of adaptive ODE solvers, J. Comput. Appl. Math. 45 (1993) 227-236; The reliability of standard local error control algorithms for initial value ordinary differential equations, in: Proceedings: The Quality of Numerical Software: Assessment and Enhancement, IFIP Series, Springer, Berlin, 1997], it has been proved that in many existing explicit Runge-Kutta codes the global errors behave asymptotically as some rational power of [delta]. This step-size policy, for a given IVP, determines at each grid point tn a new step-size hn+1=h(tn;[delta]) so that h(t;[delta]) is a continuous function of t. In this paper a study of the tolerance proportionality property under a discontinuous step-size policy that does not allow to change the size of the step if the step-size ratio between two consecutive steps is close to unity is carried out. This theory is applied to obtain global error estimations in a few problems that have been solved with the code Gauss2 [S. Gonzalez-Pinto, R. Rojas-Bello, Gauss2, a Fortran 90 code for second order initial value problems,
Quotation accuracy in medical journal articles-a systematic review and meta-analysis.
Jergas, Hannah; Baethge, Christopher
2015-01-01
Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose-quotation errors-may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress.
Probabilistic numerical methods for PDE-constrained Bayesian inverse problems
NASA Astrophysics Data System (ADS)
Cockayne, Jon; Oates, Chris; Sullivan, Tim; Girolami, Mark
2017-06-01
This paper develops meshless methods for probabilistically describing discretisation error in the numerical solution of partial differential equations. This construction enables the solution of Bayesian inverse problems while accounting for the impact of the discretisation of the forward problem. In particular, this drives statistical inferences to be more conservative in the presence of significant solver error. Theoretical results are presented describing rates of convergence for the posteriors in both the forward and inverse problems. This method is tested on a challenging inverse problem with a nonlinear forward model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilo Valentin, Miguel Alejandro
2016-07-01
This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.
FSMRank: feature selection algorithm for learning to rank.
Lai, Han-Jiang; Pan, Yan; Tang, Yong; Yu, Rong
2013-06-01
In recent years, there has been growing interest in learning to rank. The introduction of feature selection into different learning problems has been proven effective. These facts motivate us to investigate the problem of feature selection for learning to rank. We propose a joint convex optimization formulation which minimizes ranking errors while simultaneously conducting feature selection. This optimization formulation provides a flexible framework in which we can easily incorporate various importance measures and similarity measures of the features. To solve this optimization problem, we use the Nesterov's approach to derive an accelerated gradient algorithm with a fast convergence rate O(1/T(2)). We further develop a generalization bound for the proposed optimization problem using the Rademacher complexities. Extensive experimental evaluations are conducted on the public LETOR benchmark datasets. The results demonstrate that the proposed method shows: 1) significant ranking performance gain compared to several feature selection baselines for ranking, and 2) very competitive performance compared to several state-of-the-art learning-to-rank algorithms.
Stability and error estimation for Component Adaptive Grid methods
NASA Technical Reports Server (NTRS)
Oliger, Joseph; Zhu, Xiaolei
1994-01-01
Component adaptive grid (CAG) methods for solving hyperbolic partial differential equations (PDE's) are discussed in this paper. Applying recent stability results for a class of numerical methods on uniform grids. The convergence of these methods for linear problems on component adaptive grids is established here. Furthermore, the computational error can be estimated on CAG's using the stability results. Using these estimates, the error can be controlled on CAG's. Thus, the solution can be computed efficiently on CAG's within a given error tolerance. Computational results for time dependent linear problems in one and two space dimensions are presented.
NASA Astrophysics Data System (ADS)
Wan, S.; He, W.
2016-12-01
The inverse problem of using the information of historical data to estimate model errors is one of the science frontier research topics. In this study, we investigate such a problem using the classic Lorenz (1963) equation as a prediction model and the Lorenz equation with a periodic evolutionary function as an accurate representation of reality to generate "observational data." On the basis of the intelligent features of evolutionary modeling (EM), including self-organization, self-adaptive and self-learning, the dynamic information contained in the historical data can be identified and extracted by computer automatically. Thereby, a new approach is proposed to estimate model errors based on EM in the present paper. Numerical tests demonstrate the ability of the new approach to correct model structural errors. In fact, it can actualize the combination of the statistics and dynamics to certain extent.
NASA Astrophysics Data System (ADS)
Peng, Te; Yang, Yangyang; Ma, Lina; Yang, Huayong
2016-10-01
A sensor system based on fiber Bragg grating (FBG) is presented which is to estimate the deflection of a lightweight flexible beam, including the tip position and the tip rotation angle. In this paper, the classical problem of the deflection of a lightweight flexible beam of linear elastic material is analysed. We present the differential equation governing the behavior of a physical system and show that this equation although straightforward in appearance, is in fact rather difficult to solve due to the presence of a non-linear term. We used epoxy glue to attach the FBG sensors to specific locations upper and lower surface of the beam in order to measure local strain measurements. A quasi-distributed FBG static strain sensor network is designed and established. The estimation results from FBG sensors are also compared to reference displacements from the ANSYS simulation results and the experimental results obtained in the laboratory in the static case. The errors of the estimation by FBG sensors are analysed for further error-correction and option-design. When the load weight is 20g, the precision is the highest, the position errors ex and ex are 0.19%, 0.14% respectively, the rotation error eθ, is 1.23%.
2014-04-01
Barrier methods for critical exponent problems in geometric analysis and mathematical physics, J. Erway and M. Holst, Submitted for publication ...TR-14-33 A Posteriori Error Analysis and Uncertainty Quantification for Adaptive Multiscale Operator Decomposition Methods for Multiphysics...Problems Approved for public release, distribution is unlimited. April 2014 HDTRA1-09-1-0036 Donald Estep and Michael
NASA Astrophysics Data System (ADS)
Navidi, N.; Landry, R., Jr.
2015-08-01
Nowadays, Global Positioning System (GPS) receivers are aided by some complementary radio navigation systems and Inertial Navigation Systems (INS) to obtain more accuracy and robustness in land vehicular navigation. Extended Kalman Filter (EKF) is an acceptable conventional method to estimate the position, the velocity, and the attitude of the navigation system when INS measurements are fused with GPS data. However, the usage of the low-cost Inertial Measurement Units (IMUs) based on the Micro-Electro-Mechanical Systems (MEMS), for the land navigation systems, reduces the precision and stability of the navigation system due to their inherent errors. The main goal of this paper is to provide a new model for fusing low-cost IMU and GPS measurements. The proposed model is based on EKF aided by Fuzzy Inference Systems (FIS) as a promising method to solve the mentioned problems. This model considers the parameters of the measurement noise to adjust the measurement and noise process covariance. The simulation results show the efficiency of the proposed method to reduce the navigation system errors compared with EKF.
Liquidus temperature and optical properties measurement by containerless techniques
NASA Technical Reports Server (NTRS)
Anderson, Collin D.
1993-01-01
Reactive alloy liquidus temperatures measured by conventional, contained techniques are often in error due to reactions with containers and gaseous impurities. This paper describes a new liquidus temperature measurement technique that avoids these problems by employing containerless processing. This technique relies on precise and accurate noncontact temperature measurements (NCTM), which are made possible by spectral emissivity values. The spectral emissivities, epsilon(sub lambda), are measured along with the optical properties (real, n, and imaginary, k, components of the index of refraction) using polarimetric techniques on electromagnetically levitated specimens. Results from work done at Vanderbilt University and Intersonics on the Ti-Al system are presented to demonstrate the above techniques.
Water vapor - The wet blanket of microwave interferometry
NASA Technical Reports Server (NTRS)
Resch, G. M.
1980-01-01
The various techniques that utilize microwave interferometry could be employed to determine distances of several thousand kilometers with an accuracy of 1 cm or 2 cm. Such measurements would be useful to obtain new knowledge of earth dynamics, greater insight into fundamental astronomical constants, and the ability to accurately navigate a spacecraft in interplanetary flight. There is, however, a basic problem, related to the presence of tropospheric water vapor, which has to be overcome before such measurements can be realized. Differing amounts of water vapor over the interferometer stations cause errors in the differential time of arrival which is the principal observable quantity. Approaches for overcoming this problem are considered, taking into account requirements for water vapor calibration to support interferometric techniques.
... and lens of your eye helps you focus. Refractive errors are vision problems that happen when the shape ... cornea, or aging of the lens. Four common refractive errors are Myopia, or nearsightedness - clear vision close up ...
NASA Astrophysics Data System (ADS)
Bu, Xianye; Dong, Hongli; Han, Fei; Li, Gongfa
2018-07-01
This paper is concerned with the distributed filtering problem for a class of time-varying systems subject to deception attacks and event-triggering protocols. Due to the bandwidth limitation, an event-triggered communication strategy is adopted to alleviate the data transmission pressure in the algorithm implementation process. The partial nodes-based filtering problem is considered, where only a partial of nodes can measure the information of the plant. Meanwhile, the measurement information possibly suffers the deception attacks in the transmission process. Sufficient conditions can be established such that the error dynamics satisfies the prescribed average ? performance constraints. The parameters of designed filters can be calculated by solving a series of recursive linear matrix inequalities. A simulation example is presented to demonstrate the effectiveness of the proposed filtering method in this paper.
Lee, Jung Keun; Park, Edward J.; Robinovitch, Stephen N.
2012-01-01
This paper proposes a Kalman filter-based attitude (i.e., roll and pitch) estimation algorithm using an inertial sensor composed of a triaxial accelerometer and a triaxial gyroscope. In particular, the proposed algorithm has been developed for accurate attitude estimation during dynamic conditions, in which external acceleration is present. Although external acceleration is the main source of the attitude estimation error and despite the need for its accurate estimation in many applications, this problem that can be critical for the attitude estimation has not been addressed explicitly in the literature. Accordingly, this paper addresses the combined estimation problem of the attitude and external acceleration. Experimental tests were conducted to verify the performance of the proposed algorithm in various dynamic condition settings and to provide further insight into the variations in the estimation accuracy. Furthermore, two different approaches for dealing with the estimation problem during dynamic conditions were compared, i.e., threshold-based switching approach versus acceleration model-based approach. Based on an external acceleration model, the proposed algorithm was capable of estimating accurate attitudes and external accelerations for short accelerated periods, showing its high effectiveness during short-term fast dynamic conditions. Contrariwise, when the testing condition involved prolonged high external accelerations, the proposed algorithm exhibited gradually increasing errors. However, as soon as the condition returned to static or quasi-static conditions, the algorithm was able to stabilize the estimation error, regaining its high estimation accuracy. PMID:22977288
A Physician-based Voluntary Reporting System for Adverse Events and Medical Errors
Weingart, Saul N; Callanan, Lawrence D; Ship, Amy N; Aronson, Mark D
2001-01-01
OBJECTIVE To create a voluntary reporting method for identifying adverse events (AEs) and potential adverse events (PAEs) among medical inpatients. DESIGN Medical house officers asked their peers about obstacles to care, injuries or extended hospitalizations, and problems with medications that affected their patients. Two independent reviewers coded event narratives for adverse outcomes, responsible parties, preventability, and process problems. We corroborated house officers' reports with hospital incident reports and conducted a retrospective chart review. SETTING The cardiac step-down, oncology, and medical intensive care units of an urban teaching hospital. INTERVENTION Structured confidential interviews by postgraduate year-2 and -3 medical residents of interns during work rounds. MEASUREMENTS AND MAIN RESULTS Respondents reported 88 events over 3 months. AEs occurred among 5 patients (0.5% of admissions) and PAEs among 48 patients (4.9% of admissions). Delayed diagnoses and treatments figured prominently among PAEs (54%). Clinicians were responsible for the greatest number of incidents (55%), followed by workers in the laboratory (11%), radiology (15%), and pharmacy (3%). Respondents identified a variety of problematic processes of care, including problems with diagnosis (16%), therapy (26%), and failure to provide clinical and support services (29%). We corroborated 84% of reported events in the medical record. Participants found voluntary peer reporting of medical errors unobtrusive and agreed that it could be implemented on a regular basis. CONCLUSIONS A physician-based voluntary reporting system for medical errors is feasible and acceptable to front-line clinicians. PMID:11903759
Multi-GNSS signal-in-space range error assessment - Methodology and results
NASA Astrophysics Data System (ADS)
Montenbruck, Oliver; Steigenberger, Peter; Hauschild, André
2018-06-01
The positioning accuracy of global and regional navigation satellite systems (GNSS/RNSS) depends on a variety of influence factors. For constellation-specific performance analyses it has become common practice to separate a geometry-related quality factor (the dilution of precision, DOP) from the measurement and modeling errors of the individual ranging measurements (known as user equivalent range error, UERE). The latter is further divided into user equipment errors and contributions related to the space and control segment. The present study reviews the fundamental concepts and underlying assumptions of signal-in-space range error (SISRE) analyses and presents a harmonized framework for multi-GNSS performance monitoring based on the comparison of broadcast and precise ephemerides. The implications of inconsistent geometric reference points, non-common time systems, and signal-specific range biases are analyzed, and strategies for coping with these issues in the definition and computation of SIS range errors are developed. The presented concepts are, furthermore, applied to current navigation satellite systems, and representative results are presented along with a discussion of constellation-specific problems in their determination. Based on data for the January to December 2017 time frame, representative global average root-mean-square (RMS) SISRE values of 0.2 m, 0.6 m, 1 m, and 2 m are obtained for Galileo, GPS, BeiDou-2, and GLONASS, respectively. Roughly two times larger values apply for the corresponding 95th-percentile values. Overall, the study contributes to a better understanding and harmonization of multi-GNSS SISRE analyses and their use as key performance indicators for the various constellations.
Unary probabilistic and quantum automata on promise problems
NASA Astrophysics Data System (ADS)
Gainutdinova, Aida; Yakaryılmaz, Abuzer
2018-02-01
We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error unary QFAs are more powerful than bounded-error unary PFAs, and, contrary to the binary language case, the computational power of Las-Vegas QFAs and bounded-error PFAs is equivalent to the computational power of deterministic finite automata (DFAs). Then, we present a new family of unary promise problems defined with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.
Mars Exploration Rover Potentiometer Problems, Failures and Lessons Learned
NASA Technical Reports Server (NTRS)
Balzer, Mark
2006-01-01
During qualification testing of three types of non-wire-wound precision potentiometers for the Mars Exploration Rover, a variety of problems and failures were encountered. This paper will describe some of the more interesting problems, detail their investigations and present their final solutions. The failures were found to be caused by design errors, manufacturing errors, improper handling, test errors, and carelessness. A trend of decreasing total resistance was noted, and a resistance histogram was used to identify an outlier. A gang fixture is described for simultaneously testing multiple pots, and real time X-ray imaging was used extensively to assist in the failure analyses. Lessons learned are provided.
Mars Exploration Rover potentiometer problems, failures and lessons learned
NASA Technical Reports Server (NTRS)
Balzer, Mark A.
2006-01-01
During qualification testing of three types of nonwire-wound precision potentiometers for the Mars Exploration Rover, a variety of problems and failures were encountered. This paper will describe some of the more interesting problems, detail their investigations and present their final solutions. The failures were found to be caused by design errors, manufacturing errors, improper handling, test errors, and carelessness. A trend of decreasing total resistance was noted, and a resistance histogram was used to identify an outlier. A gang fixture is described for simultaneously testing multiple pots, and real time X-ray imaging was used extensively to assist in the failure analyses. Lessons learned are provided.