Sample records for measurement errors caused

  1. Research on Measurement Accuracy of Laser Tracking System Based on Spherical Mirror with Rotation Errors of Gimbal Mount Axes

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoyao; Song, Huixu; Chen, Hongfang; Sun, Yanqiang

    2018-02-01

    This paper presents a novel experimental approach for confirming that spherical mirror of a laser tracking system can reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy. By simplifying the optical system model of laser tracking system based on spherical mirror, we can easily extract the laser ranging measurement error caused by rotation errors of gimbal mount axes with the positions of spherical mirror, biconvex lens, cat's eye reflector, and measuring beam. The motions of polarization beam splitter and biconvex lens along the optical axis and vertical direction of optical axis are driven by error motions of gimbal mount axes. In order to simplify the experimental process, the motion of biconvex lens is substituted by the motion of spherical mirror according to the principle of relative motion. The laser ranging measurement error caused by the rotation errors of gimbal mount axes could be recorded in the readings of laser interferometer. The experimental results showed that the laser ranging measurement error caused by rotation errors was less than 0.1 μm if radial error motion and axial error motion were within ±10 μm. The experimental method simplified the experimental procedure and the spherical mirror could reduce the influences of rotation errors of gimbal mount axes on the measurement accuracy of the laser tracking system.

  2. Precise method of compensating radiation-induced errors in a hot-cathode-ionization gauge with correcting electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeki, Hiroshi, E-mail: saeki@spring8.or.jp; Magome, Tamotsu, E-mail: saeki@spring8.or.jp

    2014-10-06

    To compensate pressure-measurement errors caused by a synchrotron radiation environment, a precise method using a hot-cathode-ionization-gauge head with correcting electrode, was developed and tested in a simulation experiment with excess electrons in the SPring-8 storage ring. This precise method to improve the measurement accuracy, can correctly reduce the pressure-measurement errors caused by electrons originating from the external environment, and originating from the primary gauge filament influenced by spatial conditions of the installed vacuum-gauge head. As the result of the simulation experiment to confirm the performance reducing the errors caused by the external environment, the pressure-measurement error using this method wasmore » approximately less than several percent in the pressure range from 10{sup −5} Pa to 10{sup −8} Pa. After the experiment, to confirm the performance reducing the error caused by spatial conditions, an additional experiment was carried out using a sleeve and showed that the improved function was available.« less

  3. Theoretical and experimental errors for in situ measurements of plant water potential.

    PubMed

    Shackel, K A

    1984-07-01

    Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (-0.6 to -1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design.

  4. Theoretical and Experimental Errors for In Situ Measurements of Plant Water Potential 1

    PubMed Central

    Shackel, Kenneth A.

    1984-01-01

    Errors in psychrometrically determined values of leaf water potential caused by tissue resistance to water vapor exchange and by lack of thermal equilibrium were evaluated using commercial in situ psychrometers (Wescor Inc., Logan, UT) on leaves of Tradescantia virginiana (L.). Theoretical errors in the dewpoint method of operation for these sensors were demonstrated. After correction for these errors, in situ measurements of leaf water potential indicated substantial errors caused by tissue resistance to water vapor exchange (4 to 6% reduction in apparent water potential per second of cooling time used) resulting from humidity depletions in the psychrometer chamber during the Peltier condensation process. These errors were avoided by use of a modified procedure for dewpoint measurement. Large changes in apparent water potential were caused by leaf and psychrometer exposure to moderate levels of irradiance. These changes were correlated with relatively small shifts in psychrometer zero offsets (−0.6 to −1.0 megapascals per microvolt), indicating substantial errors caused by nonisothermal conditions between the leaf and the psychrometer. Explicit correction for these errors is not possible with the current psychrometer design. PMID:16663701

  5. Multiple indicators, multiple causes measurement error models

    DOE PAGES

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; ...

    2014-06-25

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  6. Multiple Indicators, Multiple Causes Measurement Error Models

    PubMed Central

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.; Carroll, Raymond J.

    2014-01-01

    Multiple Indicators, Multiple Causes Models (MIMIC) are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times however when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this paper are: (1) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model, (2) to develop likelihood based estimation methods for the MIMIC ME model, (3) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. As a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure. PMID:24962535

  7. Multiple indicators, multiple causes measurement error models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekwe, Carmen D.; Carter, Randy L.; Cullings, Harry M.

    Multiple indicators, multiple causes (MIMIC) models are often employed by researchers studying the effects of an unobservable latent variable on a set of outcomes, when causes of the latent variable are observed. There are times, however, when the causes of the latent variable are not observed because measurements of the causal variable are contaminated by measurement error. The objectives of this study are as follows: (i) to develop a novel model by extending the classical linear MIMIC model to allow both Berkson and classical measurement errors, defining the MIMIC measurement error (MIMIC ME) model; (ii) to develop likelihood-based estimation methodsmore » for the MIMIC ME model; and (iii) to apply the newly defined MIMIC ME model to atomic bomb survivor data to study the impact of dyslipidemia and radiation dose on the physical manifestations of dyslipidemia. Finally, as a by-product of our work, we also obtain a data-driven estimate of the variance of the classical measurement error associated with an estimate of the amount of radiation dose received by atomic bomb survivors at the time of their exposure.« less

  8. Influence of non-ideal performance of lasers on displacement precision in single-grating heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Wang, Guochao; Xie, Xuedong; Yan, Shuhua

    2010-10-01

    Principle of the dual-wavelength single grating nanometer displacement measuring system, with a long range, high precision, and good stability, is presented. As a result of the nano-level high-precision displacement measurement, the error caused by a variety of adverse factors must be taken into account. In this paper, errors, due to the non-ideal performance of the dual-frequency laser, including linear error caused by wavelength instability and non-linear error caused by elliptic polarization of the laser, are mainly discussed and analyzed. On the basis of theoretical modeling, the corresponding error formulas are derived as well. Through simulation, the limit value of linear error caused by wavelength instability is 2nm, and on the assumption that 0.85 x T = , 1 Ty = of the polarizing beam splitter(PBS), the limit values of nonlinear-error caused by elliptic polarization are 1.49nm, 2.99nm, 4.49nm while the non-orthogonal angle is selected correspondingly at 1°, 2°, 3° respectively. The law of the error change is analyzed based on different values of Tx and Ty .

  9. Measuring quality in anatomic pathology.

    PubMed

    Raab, Stephen S; Grzybicki, Dana Marie

    2008-06-01

    This article focuses mainly on diagnostic accuracy in measuring quality in anatomic pathology, noting that measuring any quality metric is complex and demanding. The authors discuss standardization and its variability within and across areas of care delivery and efforts involving defining and measuring error to achieve pathology quality and patient safety. They propose that data linking error to patient outcome are critical for developing quality improvement initiatives targeting errors that cause patient harm in addition to using methods of root cause analysis, beyond those traditionally used in cytologic-histologic correlation, to assist in the development of error reduction and quality improvement plans.

  10. Effects of skilled nursing facility structure and process factors on medication errors during nursing home admission.

    PubMed

    Lane, Sandi J; Troyer, Jennifer L; Dienemann, Jacqueline A; Laditka, Sarah B; Blanchette, Christopher M

    2014-01-01

    Older adults are at greatest risk of medication errors during the transition period of the first 7 days after admission and readmission to a skilled nursing facility (SNF). The aim of this study was to evaluate structure- and process-related factors that contribute to medication errors and harm during transition periods at a SNF. Data for medication errors and potential medication errors during the 7-day transition period for residents entering North Carolina SNFs were from the Medication Error Quality Initiative-Individual Error database from October 2006 to September 2007. The impact of SNF structure and process measures on the number of reported medication errors and harm from errors were examined using bivariate and multivariate model methods. A total of 138 SNFs reported 581 transition period medication errors; 73 (12.6%) caused harm. Chain affiliation was associated with a reduction in the volume of errors during the transition period. One third of all reported transition errors occurred during the medication administration phase of the medication use process, where dose omissions were the most common type of error; however, dose omissions caused harm less often than wrong-dose errors did. Prescribing errors were much less common than administration errors but were much more likely to cause harm. Both structure and process measures of quality were related to the volume of medication errors.However, process quality measures may play a more important role in predicting harm from errors during the transition of a resident into an SNF. Medication errors during transition could be reduced by improving both prescribing processes and transcription and documentation of orders.

  11. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    PubMed

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  12. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1981-01-01

    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  13. The determination of carbon dioxide concentration using atmospheric pressure ionization mass spectrometry/isotopic dilution and errors in concentration measurements caused by dryers.

    PubMed

    DeLacy, Brendan G; Bandy, Alan R

    2008-01-01

    An atmospheric pressure ionization mass spectrometry/isotopically labeled standard (APIMS/ILS) method has been developed for the determination of carbon dioxide (CO(2)) concentration. Descriptions of the instrumental components, the ionization chemistry, and the statistics associated with the analytical method are provided. This method represents an alternative to the nondispersive infrared (NDIR) technique, which is currently used in the atmospheric community to determine atmospheric CO(2) concentrations. The APIMS/ILS and NDIR methods exhibit a decreased sensitivity for CO(2) in the presence of water vapor. Therefore, dryers such as a nafion dryer are used to remove water before detection. The APIMS/ILS method measures mixing ratios and demonstrates linearity and range in the presence or absence of a dryer. The NDIR technique, on the other hand, measures molar concentrations. The second half of this paper describes errors in molar concentration measurements that are caused by drying. An equation describing the errors was derived from the ideal gas law, the conservation of mass, and Dalton's Law. The purpose of this derivation was to quantify errors in the NDIR technique that are caused by drying. Laboratory experiments were conducted to verify the errors created solely by the dryer in CO(2) concentration measurements post-dryer. The laboratory experiments verified the theoretically predicted errors in the derived equations. There are numerous references in the literature that describe the use of a dryer in conjunction with the NDIR technique. However, these references do not address the errors that are caused by drying.

  14. [Errors in medicine. Causes, impact and improvement measures to improve patient safety].

    PubMed

    Waeschle, R M; Bauer, M; Schmidt, C E

    2015-09-01

    The guarantee of quality of care and patient safety is of major importance in hospitals even though increased economic pressure and work intensification are ubiquitously present. Nevertheless, adverse events still occur in 3-4 % of hospital stays and of these 25-50 % are estimated to be avoidable. The identification of possible causes of error and the development of measures for the prevention of medical errors are essential for patient safety. The implementation and continuous development of a constructive culture of error tolerance are fundamental.The origins of errors can be differentiated into systemic latent and individual active causes and components of both categories are typically involved when an error occurs. Systemic causes are, for example out of date structural environments, lack of clinical standards and low personnel density. These causes arise far away from the patient, e.g. management decisions and can remain unrecognized for a long time. Individual causes involve, e.g. confirmation bias, error of fixation and prospective memory failure. These causes have a direct impact on patient care and can result in immediate injury to patients. Stress, unclear information, complex systems and a lack of professional experience can promote individual causes. Awareness of possible causes of error is a fundamental precondition to establishing appropriate countermeasures.Error prevention should include actions directly affecting the causes of error and includes checklists and standard operating procedures (SOP) to avoid fixation and prospective memory failure and team resource management to improve communication and the generation of collective mental models. Critical incident reporting systems (CIRS) provide the opportunity to learn from previous incidents without resulting in injury to patients. Information technology (IT) support systems, such as the computerized physician order entry system, assist in the prevention of medication errors by providing information on dosage, pharmacological interactions, side effects and contraindications of medications.The major challenges for quality and risk management, for the heads of departments and the executive board is the implementation and support of the described actions and a sustained guidance of the staff involved in the modification management process. The global trigger tool is suitable for improving transparency and objectifying the frequency of medical errors.

  15. Quantization error of CCD cameras and their influence on phase calculation in fringe pattern analysis.

    PubMed

    Skydan, Oleksandr A; Lilley, Francis; Lalor, Michael J; Burton, David R

    2003-09-10

    We present an investigation into the phase errors that occur in fringe pattern analysis that are caused by quantization effects. When acquisition devices with a limited value of camera bit depth are used, there are a limited number of quantization levels available to record the signal. This may adversely affect the recorded signal and adds a potential source of instrumental error to the measurement system. Quantization effects also determine the accuracy that may be achieved by acquisition devices in a measurement system. We used the Fourier fringe analysis measurement technique. However, the principles can be applied equally well for other phase measuring techniques to yield a phase error distribution that is caused by the camera bit depth.

  16. Film thickness measurement based on nonlinear phase analysis using a Linnik microscopic white-light spectral interferometer.

    PubMed

    Guo, Tong; Chen, Zhuo; Li, Minghui; Wu, Juhong; Fu, Xing; Hu, Xiaotang

    2018-04-20

    Based on white-light spectral interferometry and the Linnik microscopic interference configuration, the nonlinear phase components of the spectral interferometric signal were analyzed for film thickness measurement. The spectral interferometric signal was obtained using a Linnik microscopic white-light spectral interferometer, which includes the nonlinear phase components associated with the effective thickness, the nonlinear phase error caused by the double-objective lens, and the nonlinear phase of the thin film itself. To determine the influence of the effective thickness, a wavelength-correction method was proposed that converts the effective thickness into a constant value; the nonlinear phase caused by the effective thickness can then be determined and subtracted from the total nonlinear phase. A method for the extraction of the nonlinear phase error caused by the double-objective lens was also proposed. Accurate thickness measurement of a thin film can be achieved by fitting the nonlinear phase of the thin film after removal of the nonlinear phase caused by the effective thickness and by the nonlinear phase error caused by the double-objective lens. The experimental results demonstrated that both the wavelength-correction method and the extraction method for the nonlinear phase error caused by the double-objective lens improve the accuracy of film thickness measurements.

  17. Porous plug for reducing orifice induced pressure error in airfoils

    NASA Technical Reports Server (NTRS)

    Plentovich, Elizabeth B. (Inventor); Gloss, Blair B. (Inventor); Eves, John W. (Inventor); Stack, John P. (Inventor)

    1988-01-01

    A porous plug is provided for the reduction or elimination of positive error caused by the orifice during static pressure measurements of airfoils. The porous plug is press fitted into the orifice, thereby preventing the error caused either by fluid flow turning into the exposed orifice or by the fluid flow stagnating at the downstream edge of the orifice. In addition, the porous plug is made flush with the outer surface of the airfoil, by filing and polishing, to provide a smooth surface which alleviates the error caused by imperfections in the orifice. The porous plug is preferably made of sintered metal, which allows air to pass through the pores, so that the static pressure measurements can be made by remote transducers.

  18. Partial compensation interferometry measurement system for parameter errors of conicoid surface

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Li, Tengfei; Hu, Yao; Wang, Shaopu; Ning, Yan; Chen, Zhuo

    2018-06-01

    Surface parameters, such as vertex radius of curvature and conic constant, are used to describe the shape of an aspheric surface. Surface parameter errors (SPEs) are deviations affecting the optical characteristics of an aspheric surface. Precise measurement of SPEs is critical in the evaluation of optical surfaces. In this paper, a partial compensation interferometry measurement system for SPE of a conicoid surface is proposed based on the theory of slope asphericity and the best compensation distance. The system is developed to measure the SPE-caused best compensation distance change and SPE-caused surface shape change and then calculate the SPEs with the iteration algorithm for accuracy improvement. Experimental results indicate that the average relative measurement accuracy of the proposed system could be better than 0.02% for the vertex radius of curvature error and 2% for the conic constant error.

  19. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.

    PubMed

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-09-03

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.

  20. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

    PubMed Central

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  1. Parallel computers - Estimate errors caused by imprecise data

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik; Bernat, Andrew; Villa, Elsa; Mariscal, Yvonne

    1991-01-01

    A new approach to the problem of estimating errors caused by imprecise data is proposed in the context of software engineering. A software device is used to produce an ideal solution to the problem, when the computer is capable of computing errors of arbitrary programs. The software engineering aspect of this problem is to describe a device for computing the error estimates in software terms and then to provide precise numbers with error estimates to the user. The feasibility of the program capable of computing both some quantity and its error estimate in the range of possible measurement errors is demonstrated.

  2. Effect of asymmetrical transfer coefficients of a non-polarizing beam splitter on the nonlinear error of the polarization interferometer

    NASA Astrophysics Data System (ADS)

    Zhao, Chen-Guang; Tan, Jiu-Bin; Liu, Tao

    2010-09-01

    The mechanism of a non-polarizing beam splitter (NPBS) with asymmetrical transfer coefficients causing the rotation of polarization direction is explained in principle, and the measurement nonlinear error caused by NPBS is analyzed based on Jones matrix theory. Theoretical calculations show that the nonlinear error changes periodically, and the error period and peak values increase with the deviation between transmissivities of p-polarization and s-polarization states. When the transmissivity of p-polarization is 53% and that of s-polarization is 48%, the maximum error reaches 2.7 nm. The imperfection of NPBS is one of the main error sources in simultaneous phase-shifting polarization interferometer, and its influence can not be neglected in the nanoscale ultra-precision measurement.

  3. Irregular analytical errors in diagnostic testing - a novel concept.

    PubMed

    Vogeser, Michael; Seger, Christoph

    2018-02-23

    In laboratory medicine, routine periodic analyses for internal and external quality control measurements interpreted by statistical methods are mandatory for batch clearance. Data analysis of these process-oriented measurements allows for insight into random analytical variation and systematic calibration bias over time. However, in such a setting, any individual sample is not under individual quality control. The quality control measurements act only at the batch level. Quantitative or qualitative data derived for many effects and interferences associated with an individual diagnostic sample can compromise any analyte. It is obvious that a process for a quality-control-sample-based approach of quality assurance is not sensitive to such errors. To address the potential causes and nature of such analytical interference in individual samples more systematically, we suggest the introduction of a new term called the irregular (individual) analytical error. Practically, this term can be applied in any analytical assay that is traceable to a reference measurement system. For an individual sample an irregular analytical error is defined as an inaccuracy (which is the deviation from a reference measurement procedure result) of a test result that is so high it cannot be explained by measurement uncertainty of the utilized routine assay operating within the accepted limitations of the associated process quality control measurements. The deviation can be defined as the linear combination of the process measurement uncertainty and the method bias for the reference measurement system. Such errors should be coined irregular analytical errors of the individual sample. The measurement result is compromised either by an irregular effect associated with the individual composition (matrix) of the sample or an individual single sample associated processing error in the analytical process. Currently, the availability of reference measurement procedures is still highly limited, but LC-isotope-dilution mass spectrometry methods are increasingly used for pre-market validation of routine diagnostic assays (these tests also involve substantial sets of clinical validation samples). Based on this definition/terminology, we list recognized causes of irregular analytical error as a risk catalog for clinical chemistry in this article. These issues include reproducible individual analytical errors (e.g. caused by anti-reagent antibodies) and non-reproducible, sporadic errors (e.g. errors due to incorrect pipetting volume due to air bubbles in a sample), which can both lead to inaccurate results and risks for patients.

  4. Reduction of Orifice-Induced Pressure Errors

    NASA Technical Reports Server (NTRS)

    Plentovich, Elizabeth B.; Gloss, Blair B.; Eves, John W.; Stack, John P.

    1987-01-01

    Use of porous-plug orifice reduces or eliminates errors, induced by orifice itself, in measuring static pressure on airfoil surface in wind-tunnel experiments. Piece of sintered metal press-fitted into static-pressure orifice so it matches surface contour of model. Porous material reduces orifice-induced pressure error associated with conventional orifice of same or smaller diameter. Also reduces or eliminates additional errors in pressure measurement caused by orifice imperfections. Provides more accurate measurements in regions with very thin boundary layers.

  5. Psychrometric Measurement of Leaf Water Potential: Lack of Error Attributable to Leaf Permeability.

    PubMed

    Barrs, H D

    1965-07-02

    A report that low permeability could cause gross errors in psychrometric determinations of water potential in leaves has not been confirmed. No measurable error from this source could be detected for either of two types of thermocouple psychrometer tested on four species, each at four levels of water potential. No source of error other than tissue respiration could be demonstrated.

  6. Deep data fusion method for missile-borne inertial/celestial system

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxi; Chen, Xiaofei; Lu, Jiazhen; Zhang, Hao

    2018-05-01

    Strap-down inertial-celestial integrated navigation system has the advantages of autonomy and high precision and is very useful for ballistic missiles. The star sensor installation error and inertial measurement error have a great influence for the system performance. Based on deep data fusion, this paper establishes measurement equations including star sensor installation error and proposes the deep fusion filter method. Simulations including misalignment error, star sensor installation error, IMU error are analyzed. Simulation results indicate that the deep fusion method can estimate the star sensor installation error and IMU error. Meanwhile, the method can restrain the misalignment errors caused by instrument errors.

  7. Error analysis and correction of lever-type stylus profilometer based on Nelder-Mead Simplex method

    NASA Astrophysics Data System (ADS)

    Hu, Chunbing; Chang, Suping; Li, Bo; Wang, Junwei; Zhang, Zhongyu

    2017-10-01

    Due to the high measurement accuracy and wide range of applications, lever-type stylus profilometry is commonly used in industrial research areas. However, the error caused by the lever structure has a great influence on the profile measurement, thus this paper analyzes the error of high-precision large-range lever-type stylus profilometry. The errors are corrected by the Nelder-Mead Simplex method, and the results are verified by the spherical surface calibration. It can be seen that this method can effectively reduce the measurement error and improve the accuracy of the stylus profilometry in large-scale measurement.

  8. Correcting AUC for Measurement Error.

    PubMed

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  9. Analysis of measured data of human body based on error correcting frequency

    NASA Astrophysics Data System (ADS)

    Jin, Aiyan; Peipei, Gao; Shang, Xiaomei

    2014-04-01

    Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.

  10. [Statistical Process Control (SPC) can help prevent treatment errors without increasing costs in radiotherapy].

    PubMed

    Govindarajan, R; Llueguera, E; Melero, A; Molero, J; Soler, N; Rueda, C; Paradinas, C

    2010-01-01

    Statistical Process Control (SPC) was applied to monitor patient set-up in radiotherapy and, when the measured set-up error values indicated a loss of process stability, its root cause was identified and eliminated to prevent set-up errors. Set up errors were measured for medial-lateral (ml), cranial-caudal (cc) and anterior-posterior (ap) dimensions and then the upper control limits were calculated. Once the control limits were known and the range variability was acceptable, treatment set-up errors were monitored using sub-groups of 3 patients, three times each shift. These values were plotted on a control chart in real time. Control limit values showed that the existing variation was acceptable. Set-up errors, measured and plotted on a X chart, helped monitor the set-up process stability and, if and when the stability was lost, treatment was interrupted, the particular cause responsible for the non-random pattern was identified and corrective action was taken before proceeding with the treatment. SPC protocol focuses on controlling the variability due to assignable cause instead of focusing on patient-to-patient variability which normally does not exist. Compared to weekly sampling of set-up error in each and every patient, which may only ensure that just those sampled sessions were set-up correctly, the SPC method enables set-up error prevention in all treatment sessions for all patients and, at the same time, reduces the control costs. Copyright © 2009 SECA. Published by Elsevier Espana. All rights reserved.

  11. Investigation on coupling error characteristics in angular rate matching based ship deformation measurement approach

    NASA Astrophysics Data System (ADS)

    Yang, Shuai; Wu, Wei; Wang, Xingshu; Xu, Zhiguang

    2018-01-01

    The coupling error in the measurement of ship hull deformation can significantly influence the attitude accuracy of the shipborne weapons and equipments. It is therefore important to study the characteristics of the coupling error. In this paper, an comprehensive investigation on the coupling error is reported, which has a potential of deducting the coupling error in the future. Firstly, the causes and characteristics of the coupling error are analyzed theoretically based on the basic theory of measuring ship deformation. Then, simulations are conducted for verifying the correctness of the theoretical analysis. Simulation results show that the cross-correlation between dynamic flexure and ship angular motion leads to the coupling error in measuring ship deformation, and coupling error increases with the correlation value between them. All the simulation results coincide with the theoretical analysis.

  12. Continuous glucose monitoring in newborn infants: how do errors in calibration measurements affect detected hypoglycemia?

    PubMed

    Thomas, Felicity; Signal, Mathew; Harris, Deborah L; Weston, Philip J; Harding, Jane E; Shaw, Geoffrey M; Chase, J Geoffrey

    2014-05-01

    Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia metrics in newborn infants. Data from 155 babies were used. Two timing and 3 BG meter error models (Abbott Optium Xceed, Roche Accu-Chek Inform II, Nova Statstrip) were created using empirical data. Monte-Carlo methods were employed, and each simulation was run 1000 times. Each set of patient data in each simulation had randomly selected timing and/or measurement error added to BG measurements before CGM data were calibrated. The number of hypoglycemic events, duration of hypoglycemia, and hypoglycemic index were then calculated using the CGM data and compared to baseline values. Timing error alone had little effect on hypoglycemia metrics, but measurement error caused substantial variation. Abbott results underreported the number of hypoglycemic events by up to 8 and Roche overreported by up to 4 where the original number reported was 2. Nova results were closest to baseline. Similar trends were observed in the other hypoglycemia metrics. Errors in blood glucose concentration measurements used for calibration of CGM devices can have a clinically important impact on detection of hypoglycemia. If CGM devices are going to be used for assessing hypoglycemia it is important to understand of the impact of these errors on CGM data. © 2014 Diabetes Technology Society.

  13. Fluorescence errors in integrating sphere measurements of remote phosphor type LED light sources

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Zong, Y.; Podobedov, V. B.; Nadal, M. E.; Hanselaer, P.; Ohno, Y.

    2011-05-01

    The relative spectral radiant flux error caused by phosphor fluorescence during integrating sphere measurements is investigated both theoretically and experimentally. Integrating sphere and goniophotometer measurements are compared and used for model validation, while a case study provides additional clarification. Criteria for reducing fluorescence errors to a degree of negligibility as well as a fluorescence error correction method based on simple matrix algebra are presented. Only remote phosphor type LED light sources are studied because of their large phosphor surfaces and high application potential in general lighting.

  14. Effect of patient positions on measurement errors of the knee-joint space on radiographs

    NASA Astrophysics Data System (ADS)

    Gilewska, Grazyna

    2001-08-01

    Osteoarthritis (OA) is one of the most important health problems these days. It is one of the most frequent causes of pain and disability of middle-aged and old people. Nowadays the radiograph is the most economic and available tool to evaluate changes in OA. Error of performance of radiographs of knee joint is the basic problem of their evaluation for clinical research. The purpose of evaluation of such radiographs in my study was measuring the knee-joint space on several radiographs performed at defined intervals. Attempt at evaluating errors caused by a radiologist of a patient was presented in this study. These errors resulted mainly from either incorrect conditions of performance or from a patient's fault. Once we have information about size of the errors, we will be able to assess which of these elements have the greatest influence on accuracy and repeatability of measurements of knee-joint space. And consequently we will be able to minimize their sources.

  15. Effect of phase errors in stepped-frequency radar systems

    NASA Astrophysics Data System (ADS)

    Vanbrundt, H. E.

    1988-04-01

    Stepped-frequency waveforms are being considered for inverse synthetic aperture radar (ISAR) imaging from ship and airborne platforms and for detailed radar cross section (RCS) measurements of ships and aircraft. These waveforms make it possible to achieve resolutions of 1.0 foot by using existing radar designs and processing technology. One problem not yet fully resolved in using stepped-frequency waveform for ISAR imaging is the deterioration in signal level caused by random frequency error. Random frequency error of the stepped-frequency source results in reduced peak responses and increased null responses. The resulting reduced signal-to-noise ratio is range dependent. Two of the major concerns addressed in this report are radar range limitations for ISAR and the error in calibration for RCS measurements caused by differences in range between a passive reflector used for an RCS reference and the target to be measured. In addressing these concerns, NOSC developed an analysis to assess the tolerable frequency error in terms of resulting power loss in signal power and signal-to-phase noise.

  16. Results from a Sting Whip Correction Verification Test at the Langley 16-Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Crawford, B. L.; Finley, T. D.

    2002-01-01

    In recent years, great strides have been made toward correcting the largest error in inertial Angle of Attack (AoA) measurements in wind tunnel models. This error source is commonly referred to as 'sting whip' and is caused by aerodynamically induced forces imparting dynamics on sting-mounted models. These aerodynamic forces cause the model to whip through an arc section in the pitch and/or yaw planes, thus generating a centrifugal acceleration and creating a bias error in the AoA measurement. It has been shown that, under certain conditions, this induced AoA error can be greater than one third of a degree. An error of this magnitude far exceeds the target AoA goal of 0.01 deg established at NASA Langley Research Center (LaRC) and elsewhere. New sting whip correction techniques being developed at LaRC are able to measure and reduce this sting whip error by an order of magnitude. With this increase of accuracy, the 0.01 deg AoA target is achievable under all but the most severe conditions.

  17. Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G

    NASA Astrophysics Data System (ADS)

    DeSalvo, Riccardo

    2015-06-01

    Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested.

  18. Error measuring system of rotary Inductosyn

    NASA Astrophysics Data System (ADS)

    Liu, Chengjun; Zou, Jibin; Fu, Xinghe

    2008-10-01

    The inductosyn is a kind of high-precision angle-position sensor. It has important applications in servo table, precision machine tool and other products. The precision of inductosyn is calibrated by its error. It's an important problem about the error measurement in the process of production and application of the inductosyn. At present, it mainly depends on the method of artificial measurement to obtain the error of inductosyn. Therefore, the disadvantages can't be ignored such as the high labour intensity of the operator, the occurrent error which is easy occurred and the poor repeatability, and so on. In order to solve these problems, a new automatic measurement method is put forward in this paper which based on a high precision optical dividing head. Error signal can be obtained by processing the output signal of inductosyn and optical dividing head precisely. When inductosyn rotating continuously, its zero position error can be measured dynamically, and zero error curves can be output automatically. The measuring and calculating errors caused by man-made factor can be overcome by this method, and it makes measuring process more quickly, exactly and reliably. Experiment proves that the accuracy of error measuring system is 1.1 arc-second (peak - peak value).

  19. Continuous Glucose Monitoring in Newborn Infants

    PubMed Central

    Thomas, Felicity; Signal, Mathew; Harris, Deborah L.; Weston, Philip J.; Harding, Jane E.; Shaw, Geoffrey M.

    2014-01-01

    Neonatal hypoglycemia is common and can cause serious brain injury. Continuous glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics calculated from them. The aim was to quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia metrics in newborn infants. Data from 155 babies were used. Two timing and 3 BG meter error models (Abbott Optium Xceed, Roche Accu-Chek Inform II, Nova Statstrip) were created using empirical data. Monte-Carlo methods were employed, and each simulation was run 1000 times. Each set of patient data in each simulation had randomly selected timing and/or measurement error added to BG measurements before CGM data were calibrated. The number of hypoglycemic events, duration of hypoglycemia, and hypoglycemic index were then calculated using the CGM data and compared to baseline values. Timing error alone had little effect on hypoglycemia metrics, but measurement error caused substantial variation. Abbott results underreported the number of hypoglycemic events by up to 8 and Roche overreported by up to 4 where the original number reported was 2. Nova results were closest to baseline. Similar trends were observed in the other hypoglycemia metrics. Errors in blood glucose concentration measurements used for calibration of CGM devices can have a clinically important impact on detection of hypoglycemia. If CGM devices are going to be used for assessing hypoglycemia it is important to understand of the impact of these errors on CGM data. PMID:24876618

  20. A new model of Ishikawa diagram for quality assessment

    NASA Astrophysics Data System (ADS)

    Liliana, Luca

    2016-11-01

    The paper presents the results of a study concerning the use of the Ishikawa diagram in analyzing the causes that determine errors in the evaluation of theparts precision in the machine construction field. The studied problem was"errors in the evaluation of partsprecision” and this constitutes the head of the Ishikawa diagram skeleton.All the possible, main and secondary causes that could generate the studied problem were identified. The most known Ishikawa models are 4M, 5M, 6M, the initials being in order: materials, methods, man, machines, mother nature, measurement. The paper shows the potential causes of the studied problem, which were firstly grouped in three categories, as follows: causes that lead to errors in assessing the dimensional accuracy, causes that determine errors in the evaluation of shape and position abnormalities and causes for errors in roughness evaluation. We took into account the main components of parts precision in the machine construction field. For each of the three categories of causes there were distributed potential secondary causes on groups of M (man, methods, machines, materials, environment/ medio ambiente-sp.). We opted for a new model of Ishikawa diagram, resulting from the composition of three fish skeletons corresponding to the main categories of parts accuracy.

  1. Distortion of Digital Image Correlation (DIC) Displacements and Strains from Heat Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, E. M. C.; Reu, P. L.

    “Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. We present that there are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heatmore » waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. In conclusion, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.« less

  2. Distortion of Digital Image Correlation (DIC) Displacements and Strains from Heat Waves

    DOE PAGES

    Jones, E. M. C.; Reu, P. L.

    2017-11-28

    “Heat waves” is a colloquial term used to describe convective currents in air formed when different objects in an area are at different temperatures. In the context of Digital Image Correlation (DIC) and other optical-based image processing techniques, imaging an object of interest through heat waves can significantly distort the apparent location and shape of the object. We present that there are many potential heat sources in DIC experiments, including but not limited to lights, cameras, hot ovens, and sunlight, yet error caused by heat waves is often overlooked. This paper first briefly presents three practical situations in which heatmore » waves contributed significant error to DIC measurements to motivate the investigation of heat waves in more detail. Then the theoretical background of how light is refracted through heat waves is presented, and the effects of heat waves on displacements and strains computed from DIC are characterized in detail. Finally, different filtering methods are investigated to reduce the displacement and strain errors caused by imaging through heat waves. The overarching conclusions from this work are that errors caused by heat waves are significantly higher than typical noise floors for DIC measurements, and that the errors are difficult to filter because the temporal and spatial frequencies of the errors are in the same range as those of typical signals of interest. In conclusion, eliminating or mitigating the effects of heat sources in a DIC experiment is the best solution to minimizing errors caused by heat waves.« less

  3. Accounting for hardware imperfections in EIT image reconstruction algorithms.

    PubMed

    Hartinger, Alzbeta E; Gagnon, Hervé; Guardo, Robert

    2007-07-01

    Electrical impedance tomography (EIT) is a non-invasive technique for imaging the conductivity distribution of a body section. Different types of EIT images can be reconstructed: absolute, time difference and frequency difference. Reconstruction algorithms are sensitive to many errors which translate into image artefacts. These errors generally result from incorrect modelling or inaccurate measurements. Every reconstruction algorithm incorporates a model of the physical set-up which must be as accurate as possible since any discrepancy with the actual set-up will cause image artefacts. Several methods have been proposed in the literature to improve the model realism, such as creating anatomical-shaped meshes, adding a complete electrode model and tracking changes in electrode contact impedances and positions. Absolute and frequency difference reconstruction algorithms are particularly sensitive to measurement errors and generally assume that measurements are made with an ideal EIT system. Real EIT systems have hardware imperfections that cause measurement errors. These errors translate into image artefacts since the reconstruction algorithm cannot properly discriminate genuine measurement variations produced by the medium under study from those caused by hardware imperfections. We therefore propose a method for eliminating these artefacts by integrating a model of the system hardware imperfections into the reconstruction algorithms. The effectiveness of the method has been evaluated by reconstructing absolute, time difference and frequency difference images with and without the hardware model from data acquired on a resistor mesh phantom. Results have shown that artefacts are smaller for images reconstructed with the model, especially for frequency difference imaging.

  4. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  5. Error analysis and experiments of attitude measurement using laser gyroscope

    NASA Astrophysics Data System (ADS)

    Ren, Xin-ran; Ma, Wen-li; Jiang, Ping; Huang, Jin-long; Pan, Nian; Guo, Shuai; Luo, Jun; Li, Xiao

    2018-03-01

    The precision of photoelectric tracking and measuring equipment on the vehicle and vessel is deteriorated by the platform's movement. Specifically, the platform's movement leads to the deviation or loss of the target, it also causes the jitter of visual axis and then produces image blur. In order to improve the precision of photoelectric equipment, the attitude of photoelectric equipment fixed with the platform must be measured. Currently, laser gyroscope is widely used to measure the attitude of the platform. However, the measurement accuracy of laser gyro is affected by its zero bias, scale factor, installation error and random error. In this paper, these errors were analyzed and compensated based on the laser gyro's error model. The static and dynamic experiments were carried out on a single axis turntable, and the error model was verified by comparing the gyro's output with an encoder with an accuracy of 0.1 arc sec. The accuracy of the gyroscope has increased from 7000 arc sec to 5 arc sec for an hour after error compensation. The method used in this paper is suitable for decreasing the laser gyro errors in inertial measurement applications.

  6. Aquatic habitat mapping with an acoustic doppler current profiler: Considerations for data quality

    USGS Publications Warehouse

    Gaeuman, David; Jacobson, Robert B.

    2005-01-01

    When mounted on a boat or other moving platform, acoustic Doppler current profilers (ADCPs) can be used to map a wide range of ecologically significant phenomena, including measures of fluid shear, turbulence, vorticity, and near-bed sediment transport. However, the instrument movement necessary for mapping applications can generate significant errors, many of which have not been inadequately described. This report focuses on the mechanisms by which moving-platform errors are generated, and quantifies their magnitudes under typical habitat-mapping conditions. The potential for velocity errors caused by mis-alignment of the instrument?s internal compass are widely recognized, but has not previously been quantified for moving instruments. Numerical analyses show that even relatively minor compass mis-alignments can produce significant velocity errors, depending on the ratio of absolute instrument velocity to the target velocity and on the relative directions of instrument and target motion. A maximum absolute instrument velocity of about 1 m/s is recommended for most mapping applications. Lower velocities are appropriate when making bed velocity measurements, an emerging application that makes use of ADCP bottom-tracking to measure the velocity of sediment particles at the bed. The mechanisms by which heterogeneities in the flow velocity field generate horizontal velocities errors are also quantified, and some basic limitations in the effectiveness of standard error-detection criteria for identifying these errors are described. Bed velocity measurements may be particularly vulnerable to errors caused by spatial variability in the sediment transport field.

  7. Metrological Software Test for Simulating the Method of Determining the Thermocouple Error in Situ During Operation

    NASA Astrophysics Data System (ADS)

    Chen, Jingliang; Su, Jun; Kochan, Orest; Levkiv, Mariana

    2018-04-01

    The simplified metrological software test (MST) for modeling the method of determining the thermocouple (TC) error in situ during operation is considered in the paper. The interaction between the proposed MST and a temperature measuring system is also reflected in order to study the error of determining the TC error in situ during operation. The modelling studies of the random error influence of the temperature measuring system, as well as interference magnitude (both the common and normal mode noises) on the error of determining the TC error in situ during operation using the proposed MST, have been carried out. The noise and interference of the order of 5-6 μV cause the error of about 0.2-0.3°C. It is shown that high noise immunity is essential for accurate temperature measurements using TCs.

  8. Note: Eddy current displacement sensors independent of target conductivity.

    PubMed

    Wang, Hongbo; Li, Wei; Feng, Zhihua

    2015-01-01

    Eddy current sensors (ECSs) are widely used for non-contact displacement measurement. In this note, the quantitative error of an ECS caused by target conductivity was analyzed using a complex image method. The response curves (L-x) of the ECS with different targets were similar and could be overlapped by shifting the curves on x direction with √2δ/2. Both finite element analysis and experiments match well with the theoretical analysis, which indicates that the measured error of high precision ECSs caused by target conductivity can be completely eliminated, and the ECSs can measure different materials precisely without calibration.

  9. SU-E-T-484: In Vivo Dosimetry Tolerances in External Beam Fast Neutron Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Gopan, O

    Purpose: Optical stimulated luminescence (OSL) dosimetry with Landauer Al2O3:C nanodots was developed at our institution as a passive in vivo dosimetry (IVD) system for patients treated with fast neutron therapy. The purpose of this study was to establish clinically relevant tolerance limits for detecting treatment errors requiring further investigation. Methods: Tolerance levels were estimated by conducting a series of IVD expected dose calculations for square field sizes ranging between 2.8 and 28.8 cm. For each field size evaluated, doses were calculated for open and internal wedged fields with angles of 30°, 45°, or 60°. Theoretical errors were computed for variationsmore » of incorrect beam configurations. Dose errors, defined as the percent difference from the expected dose calculation, were measured with groups of three nanodots placed in a 30 x 30 cm solid water phantom, at beam isocenter (150 cm SAD, 1.7 cm Dmax). The tolerances were applied to IVD patient measurements. Results: The overall accuracy of the nanodot measurements is 2–3% for open fields. Measurement errors agreed with calculated errors to within 3%. Theoretical estimates of dosimetric errors showed that IVD measurements with OSL nanodots will detect the absence of an internal wedge or a wrong wedge angle. Incorrect nanodot placement on a wedged field is more likely to be caught if the offset is in the direction of the “toe” of the wedge where the dose difference in percentage is about 12%. Errors caused by an incorrect flattening filter size produced a 2% measurement error that is not detectable by IVD measurement alone. Conclusion: IVD with nanodots will detect treatment errors associated with the incorrect implementation of the internal wedge. The results of this study will streamline the physicists’ investigations in determining the root cause of an IVD reading that is out of normally accepted tolerances.« less

  10. Error of the slanted edge method for measuring the modulation transfer function of imaging systems.

    PubMed

    Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu

    2018-03-01

    The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.

  11. Is the Intergenerational Transmission of High Cultural Activities Biased by the Retrospective Measurement of Parental High Cultural Activities?

    ERIC Educational Resources Information Center

    de Vries, Jannes; de Graaf, Paul M.

    2008-01-01

    In this article we study the bias caused by the conventional retrospective measurement of parental high cultural activities in the effects of parental high cultural activities and educational attainment on son's or daughter's high cultural activities. Multi-informant data show that there is both random measurement error and correlated error in the…

  12. The Effects of Measurement Error on Statistical Models for Analyzing Change. Final Report.

    ERIC Educational Resources Information Center

    Dunivant, Noel

    The results of six major projects are discussed including a comprehensive mathematical and statistical analysis of the problems caused by errors of measurement in linear models for assessing change. In a general matrix representation of the problem, several new analytic results are proved concerning the parameters which affect bias in…

  13. 25+ Years of the Hubble Space Telescope and a Simple Error That Cost Millions

    ERIC Educational Resources Information Center

    Shakerin, Said

    2016-01-01

    A simple mistake in properly setting up a measuring device caused millions of dollars to be spent in correcting the initial optical failure of the Hubble Space Telescope (HST). This short article is intended as a lesson for a physics laboratory and discussion of errors in measurement.

  14. Development of a Precise Polarization Modulator for UV Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Tsuneta, S.; Nakayama, S.; Tajima, T.

    2015-10-01

    We developed a polarization modulation unit (PMU) to rotate a waveplate continuously in order to observe solar magnetic fields by spectropolarimetry. The non-uniformity of the PMU rotation may cause errors in the measurement of the degree of linear polarization (scale error) and its angle (crosstalk between Stokes-Q and -U), although it does not cause an artificial linear polarization signal (spurious polarization). We rotated a waveplate with the PMU to obtain a polarization modulation curve and estimated the scale error and crosstalk caused by the rotation non-uniformity. The estimated scale error and crosstalk were {<} 0.01 % for both. This PMU will be used as a waveplate motor for the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) rocket experiment. We confirm that the PMU performs and functions sufficiently well for CLASP.

  15. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter.

    PubMed

    Bae, Youngchul

    2016-05-23

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  16. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    PubMed Central

    Bae, Youngchul

    2016-01-01

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision. PMID:27223291

  17. Space charge enhanced plasma gradient effects on satellite electric field measurements

    NASA Technical Reports Server (NTRS)

    Diebold, Dan; Hershkowitz, Noah; Dekock, J.; Intrator, T.; Hsieh, M-K.

    1991-01-01

    It has been recognized that plasma gradients can cause error in magnetospheric electric field measurements made by double probes. Space charge enhanced Plasma Gradient Induced Error (PGIE) is discussed in general terms, presenting the results of a laboratory experiment designed to demonstrate this error, and deriving a simple expression that quantifies this error. Experimental conditions were not identical to magnetospheric conditions, although efforts were made to insure the relevant physics applied to both cases. The experimental data demonstrate some of the possible errors in electric field measurements made by strongly emitting probes due to space charge effects in the presence of plasma gradients. Probe errors in space and laboratory conditions are discussed, as well as experimental error. In the final section, theoretical aspects are examined and an expression is derived for the maximum steady state space charge enhanced PGIE taken by two identical current biased probes.

  18. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Mao, Cuili; Lu, Rongsheng; Liu, Zhijian

    2018-07-01

    In fringe projection profilometry, the phase errors caused by the nonlinear intensity response of digital projectors needs to be correctly compensated. In this paper, a multi-frequency inverse-phase method is proposed. The theoretical model of periodical phase errors is analyzed. The periodical phase errors can be adaptively compensated in the wrapped maps by using a set of fringe patterns. The compensated phase is then unwrapped with multi-frequency method. Compared with conventional methods, the proposed method can greatly reduce the periodical phase error without calibrating measurement system. Some simulation and experimental results are presented to demonstrate the validity of the proposed approach.

  19. Quasi-eccentricity error modeling and compensation in vision metrology

    NASA Astrophysics Data System (ADS)

    Shen, Yijun; Zhang, Xu; Cheng, Wei; Zhu, Limin

    2018-04-01

    Circular targets are commonly used in vision applications for its detection accuracy and robustness. The eccentricity error of the circular target caused by perspective projection is one of the main factors of measurement error which needs to be compensated in high-accuracy measurement. In this study, the impact of the lens distortion on the eccentricity error is comprehensively investigated. The traditional eccentricity error turns to a quasi-eccentricity error in the non-linear camera model. The quasi-eccentricity error model is established by comparing the quasi-center of the distorted ellipse with the true projection of the object circle center. Then, an eccentricity error compensation framework is proposed which compensates the error by iteratively refining the image point to the true projection of the circle center. Both simulation and real experiment confirm the effectiveness of the proposed method in several vision applications.

  20. Eccentricity error identification and compensation for high-accuracy 3D optical measurement

    PubMed Central

    He, Dong; Liu, Xiaoli; Peng, Xiang; Ding, Yabin; Gao, Bruce Z

    2016-01-01

    The circular target has been widely used in various three-dimensional optical measurements, such as camera calibration, photogrammetry and structured light projection measurement system. The identification and compensation of the circular target systematic eccentricity error caused by perspective projection is an important issue for ensuring accurate measurement. This paper introduces a novel approach for identifying and correcting the eccentricity error with the help of a concentric circles target. Compared with previous eccentricity error correction methods, our approach does not require taking care of the geometric parameters of the measurement system regarding target and camera. Therefore, the proposed approach is very flexible in practical applications, and in particular, it is also applicable in the case of only one image with a single target available. The experimental results are presented to prove the efficiency and stability of the proposed approach for eccentricity error compensation. PMID:26900265

  1. Eccentricity error identification and compensation for high-accuracy 3D optical measurement.

    PubMed

    He, Dong; Liu, Xiaoli; Peng, Xiang; Ding, Yabin; Gao, Bruce Z

    2013-07-01

    The circular target has been widely used in various three-dimensional optical measurements, such as camera calibration, photogrammetry and structured light projection measurement system. The identification and compensation of the circular target systematic eccentricity error caused by perspective projection is an important issue for ensuring accurate measurement. This paper introduces a novel approach for identifying and correcting the eccentricity error with the help of a concentric circles target. Compared with previous eccentricity error correction methods, our approach does not require taking care of the geometric parameters of the measurement system regarding target and camera. Therefore, the proposed approach is very flexible in practical applications, and in particular, it is also applicable in the case of only one image with a single target available. The experimental results are presented to prove the efficiency and stability of the proposed approach for eccentricity error compensation.

  2. Errors in retarding potential analyzers caused by nonuniformity of the grid-plane potential.

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Frame, D. R.; Midgley, J. E.

    1972-01-01

    One aspect of the degradation in performance of retarding potential analyzers caused by potential depressions in the retarding grid is quantitatively estimated from laboratory measurements and theoretical calculations. A simple expression is obtained that permits the use of laboratory measurements of grid properties to make first-order corrections to flight data. Systematic positive errors in ion temperature of approximately 16% for the Ogo 4 instrument and 3% for the Ogo 6 instrument are deduced. The effects of the transverse electric fields arising from the grid potential depressions are not treated.

  3. Experimental investigation of strain errors in stereo-digital image correlation due to camera calibration

    NASA Astrophysics Data System (ADS)

    Shao, Xinxing; Zhu, Feipeng; Su, Zhilong; Dai, Xiangjun; Chen, Zhenning; He, Xiaoyuan

    2018-03-01

    The strain errors in stereo-digital image correlation (DIC) due to camera calibration were investigated using precisely controlled numerical experiments and real experiments. Three-dimensional rigid body motion tests were conducted to examine the effects of camera calibration on the measured results. For a fully accurate calibration, rigid body motion causes negligible strain errors. However, for inaccurately calibrated camera parameters and a short working distance, rigid body motion will lead to more than 50-μɛ strain errors, which significantly affects the measurement. In practical measurements, it is impossible to obtain a fully accurate calibration; therefore, considerable attention should be focused on attempting to avoid these types of errors, especially for high-accuracy strain measurements. It is necessary to avoid large rigid body motions in both two-dimensional DIC and stereo-DIC.

  4. Analysis on optical heterodyne frequency error of full-field heterodyne interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, Wenxi; Wu, Zhou; Lv, Xiaoyu; Kong, Xinxin; Guo, Xiaoli

    2017-06-01

    The full-field heterodyne interferometric measurement technology is beginning better applied by employing low frequency heterodyne acousto-optical modulators instead of complex electro-mechanical scanning devices. The optical element surface could be directly acquired by synchronously detecting the received signal phases of each pixel, because standard matrix detector as CCD and CMOS cameras could be used in heterodyne interferometer. Instead of the traditional four-step phase shifting phase calculating, Fourier spectral analysis method is used for phase extracting which brings lower sensitivity to sources of uncertainty and higher measurement accuracy. In this paper, two types of full-field heterodyne interferometer are described whose advantages and disadvantages are also specified. Heterodyne interferometer has to combine two different frequency beams to produce interference, which brings a variety of optical heterodyne frequency errors. Frequency mixing error and beat frequency error are two different kinds of inescapable heterodyne frequency errors. In this paper, the effects of frequency mixing error to surface measurement are derived. The relationship between the phase extraction accuracy and the errors are calculated. :: The tolerance of the extinction ratio of polarization splitting prism and the signal-to-noise ratio of stray light is given. The error of phase extraction by Fourier analysis that caused by beat frequency shifting is derived and calculated. We also propose an improved phase extraction method based on spectrum correction. An amplitude ratio spectrum correction algorithm with using Hanning window is used to correct the heterodyne signal phase extraction. The simulation results show that this method can effectively suppress the degradation of phase extracting caused by beat frequency error and reduce the measurement uncertainty of full-field heterodyne interferometer.

  5. Distribution of standing-wave errors in real-ear sound-level measurements.

    PubMed

    Richmond, Susan A; Kopun, Judy G; Neely, Stephen T; Tan, Hongyang; Gorga, Michael P

    2011-05-01

    Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level (FPL), minimize the influence of standing waves by calculating the forward-going sound waves separate from the reflections that cause errors. Previous research compared test performance (Burke et al., 2010) and threshold prediction (Rogers et al., 2010) using SPL and multiple FPL calibration conditions, and surprisingly found no significant improvements when using FPL relative to SPL, except at 8 kHz. The present study examined the calibration data collected by Burke et al. and Rogers et al. from 155 human subjects in order to describe the frequency location and magnitude of standing-wave pressure minima to see if these errors might explain trends in test performance. Results indicate that while individual results varied widely, pressure variability was larger around 4 kHz and smaller at 8 kHz, consistent with the dimensions of the adult ear canal. The present data suggest that standing-wave errors are not responsible for the historically poor (8 kHz) or good (4 kHz) performance of DPOAE measures at specific test frequencies.

  6. Transperineal prostate biopsy under magnetic resonance image guidance: a needle placement accuracy study.

    PubMed

    Blumenfeld, Philip; Hata, Nobuhiko; DiMaio, Simon; Zou, Kelly; Haker, Steven; Fichtinger, Gabor; Tempany, Clare M C

    2007-09-01

    To quantify needle placement accuracy of magnetic resonance image (MRI)-guided core needle biopsy of the prostate. A total of 10 biopsies were performed with 18-gauge (G) core biopsy needle via a percutaneous transperineal approach. Needle placement error was assessed by comparing the coordinates of preplanned targets with the needle tip measured from the intraprocedural coherent gradient echo images. The source of these errors was subsequently investigated by measuring displacement caused by needle deflection and needle susceptibility artifact shift in controlled phantom studies. Needle placement error due to misalignment of the needle template guide was also evaluated. The mean and standard deviation (SD) of errors in targeted biopsies was 6.5 +/- 3.5 mm. Phantom experiments showed significant placement error due to needle deflection with a needle with an asymmetrically beveled tip (3.2-8.7 mm depending on tissue type) but significantly smaller error with a symmetrical bevel (0.6-1.1 mm). Needle susceptibility artifacts observed a shift of 1.6 +/- 0.4 mm from the true needle axis. Misalignment of the needle template guide contributed an error of 1.5 +/- 0.3 mm. Needle placement error was clinically significant in MRI-guided biopsy for diagnosis of prostate cancer. Needle placement error due to needle deflection was the most significant cause of error, especially for needles with an asymmetrical bevel. (c) 2007 Wiley-Liss, Inc.

  7. Influence of video compression on the measurement error of the television system

    NASA Astrophysics Data System (ADS)

    Sotnik, A. V.; Yarishev, S. N.; Korotaev, V. V.

    2015-05-01

    Video data require a very large memory capacity. Optimal ratio quality / volume video encoding method is one of the most actual problem due to the urgent need to transfer large amounts of video over various networks. The technology of digital TV signal compression reduces the amount of data used for video stream representation. Video compression allows effective reduce the stream required for transmission and storage. It is important to take into account the uncertainties caused by compression of the video signal in the case of television measuring systems using. There are a lot digital compression methods. The aim of proposed work is research of video compression influence on the measurement error in television systems. Measurement error of the object parameter is the main characteristic of television measuring systems. Accuracy characterizes the difference between the measured value abd the actual parameter value. Errors caused by the optical system can be selected as a source of error in the television systems measurements. Method of the received video signal processing is also a source of error. Presence of error leads to large distortions in case of compression with constant data stream rate. Presence of errors increases the amount of data required to transmit or record an image frame in case of constant quality. The purpose of the intra-coding is reducing of the spatial redundancy within a frame (or field) of television image. This redundancy caused by the strong correlation between the elements of the image. It is possible to convert an array of image samples into a matrix of coefficients that are not correlated with each other, if one can find corresponding orthogonal transformation. It is possible to apply entropy coding to these uncorrelated coefficients and achieve a reduction in the digital stream. One can select such transformation that most of the matrix coefficients will be almost zero for typical images . Excluding these zero coefficients also possible reducing of the digital stream. Discrete cosine transformation is most widely used among possible orthogonal transformation. Errors of television measuring systems and data compression protocols analyzed In this paper. The main characteristics of measuring systems and detected sources of their error detected. The most effective methods of video compression are determined. The influence of video compression error on television measuring systems was researched. Obtained results will increase the accuracy of the measuring systems. In television image quality measuring system reduces distortion identical distortion in analog systems and specific distortions resulting from the process of coding / decoding digital video signal and errors in the transmission channel. By the distortions associated with encoding / decoding signal include quantization noise, reducing resolution, mosaic effect, "mosquito" effect edging on sharp drops brightness, blur colors, false patterns, the effect of "dirty window" and other defects. The size of video compression algorithms used in television measuring systems based on the image encoding with intra- and inter prediction individual fragments. The process of encoding / decoding image is non-linear in space and in time, because the quality of the playback of a movie at the reception depends on the pre- and post-history of a random, from the preceding and succeeding tracks, which can lead to distortion of the inadequacy of the sub-picture and a corresponding measuring signal.

  8. GPS measurement error gives rise to spurious 180 degree turning angles and strong directional biases in animal movement data.

    PubMed

    Hurford, Amy

    2009-05-20

    Movement data are frequently collected using Global Positioning System (GPS) receivers, but recorded GPS locations are subject to errors. While past studies have suggested methods to improve location accuracy, mechanistic movement models utilize distributions of turning angles and directional biases and these data present a new challenge in recognizing and reducing the effect of measurement error. I collected locations from a stationary GPS collar, analyzed a probabilistic model and used Monte Carlo simulations to understand how measurement error affects measured turning angles and directional biases. Results from each of the three methods were in complete agreement: measurement error gives rise to a systematic bias where a stationary animal is most likely to be measured as turning 180 degrees or moving towards a fixed point in space. These spurious effects occur in GPS data when the measured distance between locations is <20 meters. Measurement error must be considered as a possible cause of 180 degree turning angles in GPS data. Consequences of failing to account for measurement error are predicting overly tortuous movement, numerous returns to previously visited locations, inaccurately predicting species range, core areas, and the frequency of crossing linear features. By understanding the effect of GPS measurement error, ecologists are able to disregard false signals to more accurately design conservation plans for endangered wildlife.

  9. Influence of wheelchair front caster wheel on reverse directional stability.

    PubMed

    Guo, Songfeng; Cooper, Rory A; Corfman, Tom; Ding, Dan; Grindle, Garrett

    2003-01-01

    The purpose of this research was to study directional stability during reversing of rear-wheel drive, electric powered wheelchairs (EPW) under different initial front caster orientations. Specifically, the weight distribution differences caused by certain initial caster orientations were examined as a possible mechanism for causing directional instability that could lead to accidents. Directional stability was quantified by measuring the drive direction error of the EPW by a motion analysis system. The ground reaction forces were collected to determine the load on the front casters, as well as back-emf data to attain the speed of the motors. The drive direction error was found to be different for various initial caster orientations. Drive direction error was greatest when both casters were oriented 90 degrees to the left or right, and least when both casters were oriented forward. The results show that drive direction error corresponds to the loading difference on the casters. The data indicates that loading differences may cause asymmetric drag on the casters, which in turn causes unbalanced torque load on the motors. This leads to a difference in motor speed and drive direction error.

  10. Economic measurement of medical errors using a hospital claims database.

    PubMed

    David, Guy; Gunnarsson, Candace L; Waters, Heidi C; Horblyuk, Ruslan; Kaplan, Harold S

    2013-01-01

    The primary objective of this study was to estimate the occurrence and costs of medical errors from the hospital perspective. Methods from a recent actuarial study of medical errors were used to identify medical injuries. A visit qualified as an injury visit if at least 1 of 97 injury groupings occurred at that visit, and the percentage of injuries caused by medical error was estimated. Visits with more than four injuries were removed from the population to avoid overestimation of cost. Population estimates were extrapolated from the Premier hospital database to all US acute care hospitals. There were an estimated 161,655 medical errors in 2008 and 170,201 medical errors in 2009. Extrapolated to the entire US population, there were more than 4 million unique injury visits containing more than 1 million unique medical errors each year. This analysis estimated that the total annual cost of measurable medical errors in the United States was $985 million in 2008 and just over $1 billion in 2009. The median cost per error to hospitals was $892 for 2008 and rose to $939 in 2009. Nearly one third of all medical injuries were due to error in each year. Medical errors directly impact patient outcomes and hospitals' profitability, especially since 2008 when Medicare stopped reimbursing hospitals for care related to certain preventable medical errors. Hospitals must rigorously analyze causes of medical errors and implement comprehensive preventative programs to reduce their occurrence as the financial burden of medical errors shifts to hospitals. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  11. Technique for temperature compensation of eddy-current proximity probes

    NASA Technical Reports Server (NTRS)

    Masters, Robert M.

    1989-01-01

    Eddy-current proximity probes are used in turbomachinery evaluation testing and operation to measure distances, primarily vibration, deflection, or displacment of shafts, bearings and seals. Measurements of steady-state conditions made with standard eddy-current proximity probes are susceptible to error caused by temperature variations during normal operation of the component under investigation. Errors resulting from temperature effects for the specific probes used in this study were approximately 1.016 x 10 to the -3 mm/deg C over the temperature range of -252 to 100 C. This report examines temperature caused changes on the eddy-current proximity probe measurement system, establishes their origin, and discusses what may be done to minimize their effect on the output signal. In addition, recommendations are made for the installation and operation of the electronic components associated with an eddy-current proximity probe. Several techniques are described that provide active on-line error compensation for over 95 percent of the temperature effects.

  12. Analysis and correction for measurement error of edge sensors caused by deformation of guide flexure applied in the Thirty Meter Telescope SSA.

    PubMed

    Cao, Haifeng; Zhang, Jingxu; Yang, Fei; An, Qichang; Zhao, Hongchao; Guo, Peng

    2018-05-01

    The Thirty Meter Telescope (TMT) project will design and build a 30-m-diameter telescope for research in astronomy in visible and infrared wavelengths. The primary mirror of TMT is made up of 492 hexagonal mirror segments under active control. The highly segmented primary mirror will utilize edge sensors to align and stabilize the relative piston, tip, and tilt degrees of segments. The support system assembly (SSA) of the segmented mirror utilizes a guide flexure to decouple the axial support and lateral support, while its deformation will cause measurement error of the edge sensor. We have analyzed the theoretical relationship between the segment movement and the measurement value of the edge sensor. Further, we have proposed an error correction method with a matrix. The correction process and the simulation results of the edge sensor will be described in this paper.

  13. The Applicability of Standard Error of Measurement and Minimal Detectable Change to Motor Learning Research-A Behavioral Study.

    PubMed

    Furlan, Leonardo; Sterr, Annette

    2018-01-01

    Motor learning studies face the challenge of differentiating between real changes in performance and random measurement error. While the traditional p -value-based analyses of difference (e.g., t -tests, ANOVAs) provide information on the statistical significance of a reported change in performance scores, they do not inform as to the likely cause or origin of that change, that is, the contribution of both real modifications in performance and random measurement error to the reported change. One way of differentiating between real change and random measurement error is through the utilization of the statistics of standard error of measurement (SEM) and minimal detectable change (MDC). SEM is estimated from the standard deviation of a sample of scores at baseline and a test-retest reliability index of the measurement instrument or test employed. MDC, in turn, is estimated from SEM and a degree of confidence, usually 95%. The MDC value might be regarded as the minimum amount of change that needs to be observed for it to be considered a real change, or a change to which the contribution of real modifications in performance is likely to be greater than that of random measurement error. A computer-based motor task was designed to illustrate the applicability of SEM and MDC to motor learning research. Two studies were conducted with healthy participants. Study 1 assessed the test-retest reliability of the task and Study 2 consisted in a typical motor learning study, where participants practiced the task for five consecutive days. In Study 2, the data were analyzed with a traditional p -value-based analysis of difference (ANOVA) and also with SEM and MDC. The findings showed good test-retest reliability for the task and that the p -value-based analysis alone identified statistically significant improvements in performance over time even when the observed changes could in fact have been smaller than the MDC and thereby caused mostly by random measurement error, as opposed to by learning. We suggest therefore that motor learning studies could complement their p -value-based analyses of difference with statistics such as SEM and MDC in order to inform as to the likely cause or origin of any reported changes in performance.

  14. A simple model for studying rotation errors of gimbal mount axes in laser tracking system based on spherical mirror as a reflection unit

    NASA Astrophysics Data System (ADS)

    Song, Huixu; Shi, Zhaoyao; Chen, Hongfang; Sun, Yanqiang

    2018-01-01

    This paper presents a novel experimental approach and a simple model for verifying that spherical mirror of laser tracking system could lessen the effect of rotation errors of gimbal mount axes based on relative motion thinking. Enough material and evidence are provided to support that this simple model could replace complex optical system in laser tracking system. This experimental approach and model interchange the kinematic relationship between spherical mirror and gimbal mount axes in laser tracking system. Being fixed stably, gimbal mount axes' rotation error motions are replaced by spatial micro-displacements of spherical mirror. These motions are simulated by driving spherical mirror along the optical axis and vertical direction with the use of precision positioning platform. The effect on the laser ranging measurement accuracy of displacement caused by the rotation errors of gimbal mount axes could be recorded according to the outcome of laser interferometer. The experimental results show that laser ranging measurement error caused by the rotation errors is less than 0.1 μm if radial error motion and axial error motion are under 10 μm. The method based on relative motion thinking not only simplifies the experimental procedure but also achieves that spherical mirror owns the ability to reduce the effect of rotation errors of gimbal mount axes in laser tracking system.

  15. Impact of gradient timing error on the tissue sodium concentration bioscale measured using flexible twisted projection imaging

    NASA Astrophysics Data System (ADS)

    Lu, Aiming; Atkinson, Ian C.; Vaughn, J. Thomas; Thulborn, Keith R.

    2011-12-01

    The rapid biexponential transverse relaxation of the sodium MR signal from brain tissue requires efficient k-space sampling for quantitative imaging in a time that is acceptable for human subjects. The flexible twisted projection imaging (flexTPI) sequence has been shown to be suitable for quantitative sodium imaging with an ultra-short echo time to minimize signal loss. The fidelity of the k-space center location is affected by the readout gradient timing errors on the three physical axes, which is known to cause image distortion for projection-based acquisitions. This study investigated the impact of these timing errors on the voxel-wise accuracy of the tissue sodium concentration (TSC) bioscale measured with the flexTPI sequence. Our simulations show greater than 20% spatially varying quantification errors when the gradient timing errors are larger than 10 μs on all three axes. The quantification is more tolerant of gradient timing errors on the Z-axis. An existing method was used to measure the gradient timing errors with <1 μs error. The gradient timing error measurement is shown to be RF coil dependent, and timing error differences of up to ˜16 μs have been observed between different RF coils used on the same scanner. The measured timing errors can be corrected prospectively or retrospectively to obtain accurate TSC values.

  16. Structural power flow measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falter, K.J.; Keltie, R.F.

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors weremore » found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.« less

  17. Attenuation Compensation of Ultrasonic Wave in Soft Tissue for Acoustic Impedance Measurement of In vivo Bone by Transducer Vibration Method

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Masasumi; Nakamura, Yuuta; Ishiguro, Masataka; Moriya, Tadashi

    2007-07-01

    In this paper, we describe a method of compensating the attenuation of the ultrasound caused by soft tissue in the transducer vibration method for the measurement of the acoustic impedance of in vivo bone. In the in vivo measurement, the acoustic impedance of bone is measured through soft tissue; therefore, the amplitude of the ultrasound reflected from the bone is attenuated. This attenuation causes an error of the order of -20 to -30% when the acoustic impedance is determined from the measured signals. To compensate the attenuation, the attenuation coefficient and length of the soft tissue are measured by the transducer vibration method. In the experiment using a phantom, this method allows the measurement of the acoustic impedance typically with an error as small as -8 to 10%.

  18. Blood transfusion sampling and a greater role for error recovery.

    PubMed

    Oldham, Jane

    Patient identification errors in pre-transfusion blood sampling ('wrong blood in tube') are a persistent area of risk. These errors can potentially result in life-threatening complications. Current measures to address root causes of incidents and near misses have not resolved this problem and there is a need to look afresh at this issue. PROJECT PURPOSE: This narrative review of the literature is part of a wider system-improvement project designed to explore and seek a better understanding of the factors that contribute to transfusion sampling error as a prerequisite to examining current and potential approaches to error reduction. A broad search of the literature was undertaken to identify themes relating to this phenomenon. KEY DISCOVERIES: Two key themes emerged from the literature. Firstly, despite multi-faceted causes of error, the consistent element is the ever-present potential for human error. Secondly, current focus on error prevention could potentially be augmented with greater attention to error recovery. Exploring ways in which clinical staff taking samples might learn how to better identify their own errors is proposed to add to current safety initiatives.

  19. Prevalence of refractive error and visual impairment among rural school-age children of Goro District, Gurage Zone, Ethiopia.

    PubMed

    Kedir, Jafer; Girma, Abonesh

    2014-10-01

    Refractive error is one of the major causes of blindness and visual impairment in children; but community based studies are scarce especially in rural parts of Ethiopia. So, this study aims to assess the prevalence of refractive error and its magnitude as a cause of visual impairment among school-age children of rural community. This community-based cross-sectional descriptive study was conducted from March 1 to April 30, 2009 in rural villages of Goro district of Gurage Zone, found south west of Addis Ababa, the capital of Ethiopia. A multistage cluster sampling method was used with simple random selection of representative villages in the district. Chi-Square and t-tests were used in the data analysis. A total of 570 school-age children (age 7-15) were evaluated, 54% boys and 46% girls. The prevalence of refractive error was 3.5% (myopia 2.6% and hyperopia 0.9%). Refractive error was the major cause of visual impairment accounting for 54% of all causes in the study group. No child was found wearing corrective spectacles during the study period. Refractive error was the commonest cause of visual impairment in children of the district, but no measures were taken to reduce the burden in the community. So, large scale community level screening for refractive error should be conducted and integrated with regular school eye screening programs. Effective strategies need to be devised to provide low cost corrective spectacles in the rural community.

  20. Knowledge of healthcare professionals about medication errors in hospitals

    PubMed Central

    Abdel-Latif, Mohamed M. M.

    2016-01-01

    Context: Medication errors are the most common types of medical errors in hospitals and leading cause of morbidity and mortality among patients. Aims: The aim of the present study was to assess the knowledge of healthcare professionals about medication errors in hospitals. Settings and Design: A self-administered questionnaire was distributed to randomly selected healthcare professionals in eight hospitals in Madinah, Saudi Arabia. Subjects and Methods: An 18-item survey was designed and comprised questions on demographic data, knowledge of medication errors, availability of reporting systems in hospitals, attitudes toward error reporting, causes of medication errors. Statistical Analysis Used: Data were analyzed with Statistical Package for the Social Sciences software Version 17. Results: A total of 323 of healthcare professionals completed the questionnaire with 64.6% response rate of 138 (42.72%) physicians, 34 (10.53%) pharmacists, and 151 (46.75%) nurses. A majority of the participants had a good knowledge about medication errors concept and their dangers on patients. Only 68.7% of them were aware of reporting systems in hospitals. Healthcare professionals revealed that there was no clear mechanism available for reporting of errors in most hospitals. Prescribing (46.5%) and administration (29%) errors were the main causes of errors. The most frequently encountered medication errors were anti-hypertensives, antidiabetics, antibiotics, digoxin, and insulin. Conclusions: This study revealed differences in the awareness among healthcare professionals toward medication errors in hospitals. The poor knowledge about medication errors emphasized the urgent necessity to adopt appropriate measures to raise awareness about medication errors in Saudi hospitals. PMID:27330261

  1. Development of an Ontology to Model Medical Errors, Information Needs, and the Clinical Communication Space

    PubMed Central

    Stetson, Peter D.; McKnight, Lawrence K.; Bakken, Suzanne; Curran, Christine; Kubose, Tate T.; Cimino, James J.

    2002-01-01

    Medical errors are common, costly and often preventable. Work in understanding the proximal causes of medical errors demonstrates that systems failures predispose to adverse clinical events. Most of these systems failures are due to lack of appropriate information at the appropriate time during the course of clinical care. Problems with clinical communication are common proximal causes of medical errors. We have begun a project designed to measure the impact of wireless computing on medical errors. We report here on our efforts to develop an ontology representing the intersection of medical errors, information needs and the communication space. We will use this ontology to support the collection, storage and interpretation of project data. The ontology’s formal representation of the concepts in this novel domain will help guide the rational deployment of our informatics interventions. A real-life scenario is evaluated using the ontology in order to demonstrate its utility.

  2. Prevalence and causes of visual impairment in Asian and non-Hispanic white preschool children: Multi-ethnic Pediatric Eye Disease Study.

    PubMed

    Tarczy-Hornoch, Kristina; Cotter, Susan A; Borchert, Mark; McKean-Cowdin, Roberta; Lin, Jesse; Wen, Ge; Kim, Jeniffer; Varma, Rohit

    2013-06-01

    To determine the prevalence and causes of decreased visual acuity (VA). Population-based cross-sectional study. Multi-ethnic sample of children 30 to 72 months of age identified in Los Angeles. All eligible children underwent a comprehensive ophthalmic evaluation including monocular VA testing, cover testing, cycloplegic autorefraction, fundus evaluation, and VA retesting with refractive correction. Decreased VA was defined as presenting or best-measured VA worse than 20/50 in children 30 to 47 months of age and worse than 20/40 for children 48 months of age and older. The prevalence and causes of decreased VA were determined, for both presenting and best-measured VA, in the better-seeing and the worse-seeing eyes. Prevalence and causes of decreased vision. Presenting VA was assessed in 1840 children and best-measured VA was assessed in 1886 children. Presenting VA was decreased in the worse eye of 4.2% of Asian children and of 3.6% of non-Hispanic white (NHW) children. Close to one-fourth of these cases had no identifiable cause, and 81% of these resolved on retesting. Decreased presenting VA in the worse eye with an identifiable ophthalmic cause was present in 3.4% of Asian children and in 2.6% of NHW children. Decreased presenting VA attributable to simple refractive error (myopia ≥ 0.5 diopters [D]; hyperopia ≥ 3.0 D; astigmatism ≥ 2.0 D or ≥ 1.5 D for children older than 36 months) was present in the worse eye of 2.3% of Asian children and of 1.4% of NHW children and in the better eye of 0.5% of Asian children and of 0.3% of NHW children. Decreased best-measured VA attributable to a cause was present in the worse eye of 1.2% of both Asian children and NHW children and in the better eye of 0.2% of Asian and of 0.3% of NHW children. Amblyopia related to refractive error was the most common cause, and was 10 times as common as ocular disease. Severe visual impairment was rare. Seventy percent of all decreased VA in Asian and NHW preschool children and more than 90% of decreased VA with an identifiable cause is related to refractive error--either uncorrected refractive error or amblyopia resulting from refractive error. The author(s) have no proprietary or commercial interest in any materials discussed in this article. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. Method and apparatus for correcting eddy current signal voltage for temperature effects

    DOEpatents

    Kustra, Thomas A.; Caffarel, Alfred J.

    1990-01-01

    An apparatus and method for measuring physical characteristics of an electrically conductive material by the use of eddy-current techniques and compensating measurement errors caused by changes in temperature includes a switching arrangement connected between primary and reference coils of an eddy-current probe which allows the probe to be selectively connected between an eddy current output oscilloscope and a digital ohm-meter for measuring the resistances of the primary and reference coils substantially at the time of eddy current measurement. In this way, changes in resistance due to temperature effects can be completely taken into account in determining the true error in the eddy current measurement. The true error can consequently be converted into an equivalent eddy current measurement correction.

  4. A novel diagnosis method for a Hall plates-based rotary encoder with a magnetic concentrator.

    PubMed

    Meng, Bumin; Wang, Yaonan; Sun, Wei; Yuan, Xiaofang

    2014-07-31

    In the last few years, rotary encoders based on two-dimensional complementary metal oxide semiconductors (CMOS) Hall plates with a magnetic concentrator have been developed to measure contactless absolute angle. There are various error factors influencing the measuring accuracy, which are difficult to locate after the assembly of encoder. In this paper, a model-based rapid diagnosis method is presented. Based on an analysis of the error mechanism, an error model is built to compare minimum residual angle error and to quantify the error factors. Additionally, a modified particle swarm optimization (PSO) algorithm is used to reduce the calculated amount. The simulation and experimental results show that this diagnosis method is feasible to quantify the causes of the error and to reduce iteration significantly.

  5. Target thrust measurement for applied-field magnetoplasmadynamic thruster

    NASA Astrophysics Data System (ADS)

    Wang, B.; Yang, W.; Tang, H.; Li, Z.; Kitaeva, A.; Chen, Z.; Cao, J.; Herdrich, G.; Zhang, K.

    2018-07-01

    In this paper, we present a flat target thrust stand which is designed to measure the thrust of a steady-state applied-field magnetoplasmadynamic thruster (AF-MPDT). In our experiments we varied target-thruster distances and target size to analyze their influence on the target thrust measurement results. The obtained thrust-distance curves increase to local maximum and then decreases with the increasing distance, which means that the plume of the AF-MPDT can still accelerate outside the thruster exit. The peak positions are related to the target sizes: larger targets can make the peak positions further from the thruster and decrease the measurement errors. To further improve the reliability of measurement results, a thermal equilibrium assumption combined with Knudsen’s cosine law is adapted to analyze the error caused by the back stream of plume particles. Under the assumption, the error caused by particle backflow is no more than 3.6% and the largest difference between the measured thrust and the theoretical thrust is 14%. Moreover, it was verified that target thrust measurement can disturb the working of the AF-MPD thruster, and the influence on the thrust measurement result is no more than 1% in our experiment.

  6. Refraction error correction for deformation measurement by digital image correlation at elevated temperature

    NASA Astrophysics Data System (ADS)

    Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji

    2017-03-01

    An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.

  7. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    PubMed

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  8. Mismeasurement and the resonance of strong confounders: uncorrelated errors.

    PubMed

    Marshall, J R; Hastrup, J L

    1996-05-15

    Greenland first documented (Am J Epidemiol 1980; 112:564-9) that error in the measurement of a confounder could resonate--that it could bias estimates of other study variables, and that the bias could persist even with statistical adjustment for the confounder as measured. An important question is raised by this finding: can such bias be more than trivial within the bounds of realistic data configurations? The authors examine several situations involving dichotomous and continuous data in which a confounder and a null variable are measured with error, and they assess the extent of resultant bias in estimates of the effect of the null variable. They show that, with continuous variables, measurement error amounting to 40% of observed variance in the confounder could cause the observed impact of the null study variable to appear to alter risk by as much as 30%. Similarly, they show, with dichotomous independent variables, that 15% measurement error in the form of misclassification could lead the null study variable to appear to alter risk by as much as 50%. Such bias would result only from strong confounding. Measurement error would obscure the evidence that strong confounding is a likely problem. These results support the need for every epidemiologic inquiry to include evaluations of measurement error in each variable considered.

  9. Addressing Systematic Errors in Correlation Tracking on HMI Magnetograms

    NASA Astrophysics Data System (ADS)

    Mahajan, Sushant S.; Hathaway, David H.; Munoz-Jaramillo, Andres; Martens, Petrus C.

    2017-08-01

    Correlation tracking in solar magnetograms is an effective method to measure the differential rotation and meridional flow on the solar surface. However, since the tracking accuracy required to successfully measure meridional flow is very high, small systematic errors have a noticeable impact on measured meridional flow profiles. Additionally, the uncertainties of this kind of measurements have been historically underestimated, leading to controversy regarding flow profiles at high latitudes extracted from measurements which are unreliable near the solar limb.Here we present a set of systematic errors we have identified (and potential solutions), including bias caused by physical pixel sizes, center-to-limb systematics, and discrepancies between measurements performed using different time intervals. We have developed numerical techniques to get rid of these systematic errors and in the process improve the accuracy of the measurements by an order of magnitude.We also present a detailed analysis of uncertainties in these measurements using synthetic magnetograms and the quantification of an upper limit below which meridional flow measurements cannot be trusted as a function of latitude.

  10. Clinical measuring system for the form and position errors of circular workpieces using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Tan, Jiubin; Qiang, Xifu; Ding, Xuemei

    1991-08-01

    Optical sensors have two notable advantages in modern precision measurement. One is that they can be used in nondestructive measurement because the sensors need not touch the surfaces of workpieces in measuring. The other one is that they can strongly resist electromagnetic interferences, vibrations, and noises, so they are suitable to be used in machining sites. But the drift of light intensity and the changing of the reflection coefficient at different measuring positions of a workpiece may have great influence on measured results. To solve the problem, a spectroscopic differential characteristic compensating method is put forward. The method can be used effectively not only in compensating the measuring errors resulted from the drift of light intensity but also in eliminating the influence to measured results caused by the changing of the reflection coefficient. Also, the article analyzes the possibility of and the means of separating data errors of a clinical measuring system for form and position errors of circular workpieces.

  11. Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.

    PubMed

    Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing

    2016-01-01

    The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.

  12. AC orbit bump method of local impedance measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smaluk, Victor; Yang, Xi; Blednykh, Alexei

    A fast and precise technique of local impedance measurement has been developed and tested at NSLS-II. This technique is based on in-phase sine-wave (AC) excitation of four fast correctors adjacent to the vacuum chamber section, impedance of which is measured. The beam position is measured using synchronous detection. Use of the narrow-band sine-wave signal allows us to improve significantly the accuracy of the orbit bump method. Beam excitation by fast correctors results in elimination of the systematic error caused by hysteresis effect. The systematic error caused by orbit drift is also eliminated because the measured signal is not affected bymore » the orbit motion outside the excitation frequency range. In this article, the measurement technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented.« less

  13. AC orbit bump method of local impedance measurement

    DOE PAGES

    Smaluk, Victor; Yang, Xi; Blednykh, Alexei; ...

    2017-08-04

    A fast and precise technique of local impedance measurement has been developed and tested at NSLS-II. This technique is based on in-phase sine-wave (AC) excitation of four fast correctors adjacent to the vacuum chamber section, impedance of which is measured. The beam position is measured using synchronous detection. Use of the narrow-band sine-wave signal allows us to improve significantly the accuracy of the orbit bump method. Beam excitation by fast correctors results in elimination of the systematic error caused by hysteresis effect. The systematic error caused by orbit drift is also eliminated because the measured signal is not affected bymore » the orbit motion outside the excitation frequency range. In this article, the measurement technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented.« less

  14. Sub-nanometer periodic nonlinearity error in absolute distance interferometers

    NASA Astrophysics Data System (ADS)

    Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang

    2015-05-01

    Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.

  15. Error mechanism analyses of an ultra-precision stage for high speed scan motion over a large stroke

    NASA Astrophysics Data System (ADS)

    Wang, Shaokai; Tan, Jiubin; Cui, Jiwen

    2015-02-01

    Reticle Stage (RS) is designed to complete scan motion with high speed in nanometer-scale over a large stroke. Comparing with the allowable scan accuracy of a few nanometers, errors caused by any internal or external disturbances are critical and must not be ignored. In this paper, RS is firstly introduced in aspects of mechanical structure, forms of motion, and controlling method. Based on that, mechanisms of disturbances transferred to final servo-related error in scan direction are analyzed, including feedforward error, coupling between the large stroke stage (LS) and the short stroke stage (SS), and movement of measurement reference. Especially, different forms of coupling between SS and LS are discussed in detail. After theoretical analysis above, the contributions of these disturbances to final error are simulated numerically. The residual positioning error caused by feedforward error in acceleration process is about 2 nm after settling time, the coupling between SS and LS about 2.19 nm, and the movements of MF about 0.6 nm.

  16. Temperature-fluctuation-sensitive accumulative effect of the phase measurement errors in low-coherence interferometry in characterizing arrayed waveguide gratings.

    PubMed

    Zhao, Changyun; Wei, Bing; Yang, Longzhi; Wang, Gencheng; Wang, Yuehai; Jiang, Xiaoqing; Li, Yubo; Yang, Jianyi

    2015-09-20

    We investigate the accumulative effect of the phase measurement errors in characterizing optical multipath components by low-coherence interferometry. The accumulative effect is caused by the fluctuation of the environment temperature, which leads to the variation of the refractive index of the device under test. The resulting phase measurement errors accumulate with the increasing of the phase difference between the two interferometer arms. Our experiments were carried out to demonstrate that the accumulative effect is still obvious even though the thermo-optical coefficient of the device under test is quite small. Shortening the measurement time to reduce the fluctuation of the environment temperature can effectively restrain the accumulative effect. The experiments show that when the scanning speed increases to 4.8 mm/s, the slope of the phase measurement errors decreases to 5.52×10(-8), which means the accumulative effect can be ignored.

  17. Influence of ECG measurement accuracy on ECG diagnostic statements.

    PubMed

    Zywietz, C; Celikag, D; Joseph, G

    1996-01-01

    Computer analysis of electrocardiograms (ECGs) provides a large amount of ECG measurement data, which may be used for diagnostic classification and storage in ECG databases. Until now, neither error limits for ECG measurements have been specified nor has their influence on diagnostic statements been systematically investigated. An analytical method is presented to estimate the influence of measurement errors on the accuracy of diagnostic ECG statements. Systematic (offset) errors will usually result in an increase of false positive or false negative statements since they cause a shift of the working point on the receiver operating characteristics curve. Measurement error dispersion broadens the distribution function of discriminative measurement parameters and, therefore, usually increases the overlap between discriminative parameters. This results in a flattening of the receiver operating characteristics curve and an increase of false positive and false negative classifications. The method developed has been applied to ECG conduction defect diagnoses by using the proposed International Electrotechnical Commission's interval measurement tolerance limits. These limits appear too large because more than 30% of false positive atrial conduction defect statements and 10-18% of false intraventricular conduction defect statements could be expected due to tolerated measurement errors. To assure long-term usability of ECG measurement databases, it is recommended that systems provide its error tolerance limits obtained on a defined test set.

  18. A method for sensitivity analysis to assess the effects of measurement error in multiple exposure variables using external validation data.

    PubMed

    Agogo, George O; van der Voet, Hilko; van 't Veer, Pieter; Ferrari, Pietro; Muller, David C; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A; Boshuizen, Hendriek C

    2016-10-13

    Measurement error in self-reported dietary intakes is known to bias the association between dietary intake and a health outcome of interest such as risk of a disease. The association can be distorted further by mismeasured confounders, leading to invalid results and conclusions. It is, however, difficult to adjust for the bias in the association when there is no internal validation data. We proposed a method to adjust for the bias in the diet-disease association (hereafter, association), due to measurement error in dietary intake and a mismeasured confounder, when there is no internal validation data. The method combines prior information on the validity of the self-report instrument with the observed data to adjust for the bias in the association. We compared the proposed method with the method that ignores the confounder effect, and with the method that ignores measurement errors completely. We assessed the sensitivity of the estimates to various magnitudes of measurement error, error correlations and uncertainty in the literature-reported validation data. We applied the methods to fruits and vegetables (FV) intakes, cigarette smoking (confounder) and all-cause mortality data from the European Prospective Investigation into Cancer and Nutrition study. Using the proposed method resulted in about four times increase in the strength of association between FV intake and mortality. For weakly correlated errors, measurement error in the confounder minimally affected the hazard ratio estimate for FV intake. The effect was more pronounced for strong error correlations. The proposed method permits sensitivity analysis on measurement error structures and accounts for uncertainties in the reported validity coefficients. The method is useful in assessing the direction and quantifying the magnitude of bias in the association due to measurement errors in the confounders.

  19. [Failure modes and effects analysis in the prescription, validation and dispensing process].

    PubMed

    Delgado Silveira, E; Alvarez Díaz, A; Pérez Menéndez-Conde, C; Serna Pérez, J; Rodríguez Sagrado, M A; Bermejo Vicedo, T

    2012-01-01

    To apply a failure modes and effects analysis to the prescription, validation and dispensing process for hospitalised patients. A work group analysed all of the stages included in the process from prescription to dispensing, identifying the most critical errors and establishing potential failure modes which could produce a mistake. The possible causes, their potential effects, and the existing control systems were analysed to try and stop them from developing. The Hazard Score was calculated, choosing those that were ≥ 8, and a Severity Index = 4 was selected independently of the hazard Score value. Corrective measures and an implementation plan were proposed. A flow diagram that describes the whole process was obtained. A risk analysis was conducted of the chosen critical points, indicating: failure mode, cause, effect, severity, probability, Hazard Score, suggested preventative measure and strategy to achieve so. Failure modes chosen: Prescription on the nurse's form; progress or treatment order (paper); Prescription to incorrect patient; Transcription error by nursing staff and pharmacist; Error preparing the trolley. By applying a failure modes and effects analysis to the prescription, validation and dispensing process, we have been able to identify critical aspects, the stages in which errors may occur and the causes. It has allowed us to analyse the effects on the safety of the process, and establish measures to prevent or reduce them. Copyright © 2010 SEFH. Published by Elsevier Espana. All rights reserved.

  20. Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.

    PubMed

    Hibino, Kenichi; Kim, Yangjin

    2016-08-10

    In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error.

  1. DC-Compensated Current Transformer.

    PubMed

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-20

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.

  2. LANDSAT/coastal processes

    NASA Technical Reports Server (NTRS)

    James, W. P. (Principal Investigator); Hill, J. M.; Bright, J. B.

    1977-01-01

    The author has identified the following significant results. Correlations between the satellite radiance values water color, Secchi disk visibility, turbidity, and attenuation coefficients were generally good. The residual was due to several factors including systematic errors in the remotely sensed data, errors, small time and space variations in the water quality measurements, and errors caused by experimental design. Satellite radiance values were closely correlated with the optical properties of the water.

  3. Paediatric in-patient prescribing errors in Malaysia: a cross-sectional multicentre study.

    PubMed

    Khoo, Teik Beng; Tan, Jing Wen; Ng, Hoong Phak; Choo, Chong Ming; Bt Abdul Shukor, Intan Nor Chahaya; Teh, Siao Hean

    2017-06-01

    Background There is a lack of large comprehensive studies in developing countries on paediatric in-patient prescribing errors in different settings. Objectives To determine the characteristics of in-patient prescribing errors among paediatric patients. Setting General paediatric wards, neonatal intensive care units and paediatric intensive care units in government hospitals in Malaysia. Methods This is a cross-sectional multicentre study involving 17 participating hospitals. Drug charts were reviewed in each ward to identify the prescribing errors. All prescribing errors identified were further assessed for their potential clinical consequences, likely causes and contributing factors. Main outcome measures Incidence, types, potential clinical consequences, causes and contributing factors of the prescribing errors. Results The overall prescribing error rate was 9.2% out of 17,889 prescribed medications. There was no significant difference in the prescribing error rates between different types of hospitals or wards. The use of electronic prescribing had a higher prescribing error rate than manual prescribing (16.9 vs 8.2%, p < 0.05). Twenty eight (1.7%) prescribing errors were deemed to have serious potential clinical consequences and 2 (0.1%) were judged to be potentially fatal. Most of the errors were attributed to human factors, i.e. performance or knowledge deficit. The most common contributing factors were due to lack of supervision or of knowledge. Conclusions Although electronic prescribing may potentially improve safety, it may conversely cause prescribing errors due to suboptimal interfaces and cumbersome work processes. Junior doctors need specific training in paediatric prescribing and close supervision to reduce prescribing errors in paediatric in-patients.

  4. Minimizing Artifacts and Biases in Chamber-Based Measurements of Soil Respiration

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Savage, K.

    2001-05-01

    Soil respiration is one of the largest and most important fluxes of carbon in terrestrial ecosystems. The objectives of this paper are to review concerns about uncertainties of chamber-based measurements of CO2 emissions from soils, to evaluate the direction and magnitude of these potential errors, and to explain procedures that minimize these errors and biases. Disturbance of diffusion gradients cause underestimate of fluxes by less than 15% in most cases, and can be partially corrected for with curve fitting and/or can be minimized by using brief measurement periods. Under-pressurization or over-pressurization of the chamber caused by flow restrictions in air circulating designs can cause large errors, but can also be avoided with properly sized chamber vents and unrestricted flows. Somewhat larger pressure differentials are observed under windy conditions, and the accuracy of measurements made under such conditions needs more research. Spatial and temporal heterogeneity can be addressed with appropriate chamber sizes and numbers and frequency of sampling. For example, means of 8 randomly chosen flux measurements from a population of 36 measurements made with 300 cm2 chambers in tropical forests and pastures were within 25% of the full population mean 98% of the time and were within 10% of the full population mean 70% of the time. Comparisons of chamber-based measurements with tower-based measurements of total ecosystem respiration require analysis of the scale of variation within the purported tower footprint. In a forest at Howland, Maine, the differences in soil respiration rates among very poorly drained and well drained soils were large, but they mostly were fortuitously cancelled when evaluated for purported tower footprints of 600-2100 m length. While all of these potential sources of measurement error and sampling biases must be carefully considered, properly designed and deployed chambers provide a reliable means of accurately measuring soil respiration in terrestrial ecosystems.

  5. Evaluation of joint position sense measured by inversion angle replication error in patients with an osteochondral lesion of the talus.

    PubMed

    Nakasa, Tomoyuki; Adachi, Nobuo; Shibuya, Hayatoshi; Okuhara, Atsushi; Ochi, Mitsuo

    2013-01-01

    The etiology of the osteochondral lesion of the talar dome (OLT) remains unclear. A joint position sense deficit of the ankle is reported to be a possible cause of ankle disorder. Repeated contact of the articular surface of the talar dome with the plafond during inversion might be a cause of OLT. The aim of the present study was to evaluate the joint position sense deficit by measuring the replication error of the inversion angle in patients with OLT. The replication error, which is the difference between the index angle and replication angle in inversion, was measured in 15 patients with OLT. The replication error in 15 healthy volunteers was evaluated as a control group. The side to side differences of the replication errors between the patients with OLT and healthy volunteers and the replication errors in each angle between the involved and uninvolved ankle in the patients with OLT were investigated. Finally, the side to side differences of the replication errors between the patients with OLT with a traumatic and nontraumatic history were compared. The side to side difference in the patients with OLT (1.3° ± 0.2°) was significantly greater than that in the healthy subjects (0.4° ± 0.7°) (p ≤ .05). Significant differences were found between the involved and uninvolved sides at 10°, 15°, 20°, and 25° in the patients with OLT. No significant difference (p > .05) was found between the patients with traumatic and nontraumatic OLT. The present study found that the patients with OLT have a joint position sense deficit during inversion movement, regardless of a traumatic history. Although various factors for the etiology of OLT have been reported, the joint position sense deficit in inversion might be a cause of OLT. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Analysis of frequency mixing error on heterodyne interferometric ellipsometry

    NASA Astrophysics Data System (ADS)

    Deng, Yuan-long; Li, Xue-jin; Wu, Yu-bin; Hu, Ju-guang; Yao, Jian-quan

    2007-11-01

    A heterodyne interferometric ellipsometer, with no moving parts and a transverse Zeeman laser, is demonstrated. The modified Mach-Zehnder interferometer characterized as a separate frequency and common-path configuration is designed and theoretically analyzed. The experimental data show a fluctuation mainly resulting from the frequency mixing error which is caused by the imperfection of polarizing beam splitters (PBS), the elliptical polarization and non-orthogonality of light beams. The producing mechanism of the frequency mixing error and its influence on measurement are analyzed with the Jones matrix method; the calculation indicates that it results in an error up to several nanometres in the thickness measurement of thin films. The non-orthogonality has no contribution to the phase difference error when it is relatively small; the elliptical polarization and the imperfection of PBS have a major effect on the error.

  7. Six reasons why thermospheric measurements and models disagree

    NASA Technical Reports Server (NTRS)

    Moe, Kenneth

    1987-01-01

    The differences between thermospheric measurements and models are discussed. Sometimes the model is in error and at other times the measurements are, but it also is possible for both to be correct, yet have the comparison result in an apparent disagreement. These reasons are collected for disagreement, and, whenever possible, methods of reducing or eliminating them are suggested. The six causes of disagreement discussed are: actual errors caused by the limited knowledge of gas-surface interactions and by in-track winds; limitations of the thermospheric general circulation models due to incomplete knowledge of the energy sources and sinks as well as incompleteness of the parameterization which must be employed; and limitations imposed on the empirical models by the conceptual framework and the transient waves.

  8. Refractive optics to compensate x-ray mirror shape-errors

    NASA Astrophysics Data System (ADS)

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian

    2017-08-01

    Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.

  9. DC-Compensated Current Transformer †

    PubMed Central

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  10. Precise Positioning Method for Logistics Tracking Systems Using Personal Handy-Phone System Based on Mahalanobis Distance

    NASA Astrophysics Data System (ADS)

    Yokoi, Naoaki; Kawahara, Yasuhiro; Hosaka, Hiroshi; Sakata, Kenji

    Focusing on the Personal Handy-phone System (PHS) positioning service used in physical distribution logistics, a positioning error offset method for improving positioning accuracy is invented. A disadvantage of PHS positioning is that measurement errors caused by the fluctuation of radio waves due to buildings around the terminal are large, ranging from several tens to several hundreds of meters. In this study, an error offset method is developed, which learns patterns of positioning results (latitude and longitude) containing errors and the highest signal strength at major logistic points in advance, and matches them with new data measured in actual distribution processes according to the Mahalanobis distance. Then the matching resolution is improved to 1/40 that of the conventional error offset method.

  11. Global Precipitation Measurement (GPM) Ground Validation: Plans and Preparations

    NASA Technical Reports Server (NTRS)

    Schwaller, M.; Bidwell, S.; Durning, F. J.; Smith, E.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meteorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept, the planning, and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays an important role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper outlines GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial p d temporal structure of the error and plans for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. This paper discusses NASA locations for GV measurements as well as anticipated locations from international GPM partners. NASA's primary locations for validation measurements are an oceanic site at Kwajalein Atoll in the Republic of the Marshall Islands and a continental site in north-central Oklahoma at the U.S. Department of Energy's Atmospheric Radiation Measurement Program site.

  12. Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Liu, H.

    2007-10-01

    Near-infrared spectroscopy or imaging has been extensively applied to various biomedical applications since it can detect the concentrations of oxyhaemoglobin (HbO2), deoxyhaemoglobin (Hb) and total haemoglobin (Hbtotal) from deep tissues. To quantify concentrations of these haemoglobin derivatives, the extinction coefficient values of HbO2 and Hb have to be employed. However, it was not well recognized among researchers that small differences in extinction coefficients could cause significant errors in quantifying the concentrations of haemoglobin derivatives. In this study, we derived equations to estimate errors of haemoglobin derivatives caused by the variation of haemoglobin extinction coefficients. To prove our error analysis, we performed experiments using liquid-tissue phantoms containing 1% Intralipid in a phosphate-buffered saline solution. The gas intervention of pure oxygen was given in the solution to examine the oxygenation changes in the phantom, and 3 mL of human blood was added twice to show the changes in [Hbtotal]. The error calculation has shown that even a small variation (0.01 cm-1 mM-1) in extinction coefficients can produce appreciable relative errors in quantification of Δ[HbO2], Δ[Hb] and Δ[Hbtotal]. We have also observed that the error of Δ[Hbtotal] is not always larger than those of Δ[HbO2] and Δ[Hb]. This study concludes that we need to be aware of any variation in haemoglobin extinction coefficients, which could result from changes in temperature, and to utilize corresponding animal's haemoglobin extinction coefficients for the animal experiments, in order to obtain more accurate values of Δ[HbO2], Δ[Hb] and Δ[Hbtotal] from in vivo tissue measurements.

  13. Advanced Water Vapor Lidar Detection System

    NASA Technical Reports Server (NTRS)

    Elsayed-Ali, Hani

    1998-01-01

    In the present water vapor lidar system, the detected signal is sent over long cables to a waveform digitizer in a CAMAC crate. This has the disadvantage of transmitting analog signals for a relatively long distance, which is subjected to pickup noise, leading to a decrease in the signal to noise ratio. Generally, errors in the measurement of water vapor with the DIAL method arise from both random and systematic sources. Systematic errors in DIAL measurements are caused by both atmospheric and instrumentation effects. The selection of the on-line alexandrite laser with a narrow linewidth, suitable intensity and high spectral purity, and its operation at the center of the water vapor lines, ensures minimum influence in the DIAL measurement that are caused by the laser spectral distribution and avoid system overloads. Random errors are caused by noise in the detected signal. Variability of the photon statistics in the lidar return signal, noise resulting from detector dark current, and noise in the background signal are the main sources of random error. This type of error can be minimized by maximizing the signal to noise ratio. The increase in the signal to noise ratio can be achieved by several ways. One way is to increase the laser pulse energy, by increasing its amplitude or the pulse repetition rate. Another way, is to use a detector system with higher quantum efficiency and lower noise, on the other hand, the selection of a narrow band optical filter that rejects most of the day background light and retains high optical efficiency is an important issue. Following acquisition of the lidar data, we minimize random errors in the DIAL measurement by averaging the data, but this will result in the reduction of the vertical and horizontal resolutions. Thus, a trade off is necessary to achieve a balance between the spatial resolution and the measurement precision. Therefore, the main goal of this research effort is to increase the signal to noise ratio by a factor of 10 over the current system, using a newly evaluated, very low noise avalanche photo diode detector and constructing a 10 MHz waveform digitizer which will replace the current CAMAC system.

  14. Covariate Measurement Error Correction Methods in Mediation Analysis with Failure Time Data

    PubMed Central

    Zhao, Shanshan

    2014-01-01

    Summary Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This paper focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error and error associated with temporal variation. The underlying model with the ‘true’ mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling design. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. PMID:25139469

  15. Covariate measurement error correction methods in mediation analysis with failure time data.

    PubMed

    Zhao, Shanshan; Prentice, Ross L

    2014-12-01

    Mediation analysis is important for understanding the mechanisms whereby one variable causes changes in another. Measurement error could obscure the ability of the potential mediator to explain such changes. This article focuses on developing correction methods for measurement error in the mediator with failure time outcomes. We consider a broad definition of measurement error, including technical error, and error associated with temporal variation. The underlying model with the "true" mediator is assumed to be of the Cox proportional hazards model form. The induced hazard ratio for the observed mediator no longer has a simple form independent of the baseline hazard function, due to the conditioning event. We propose a mean-variance regression calibration approach and a follow-up time regression calibration approach, to approximate the partial likelihood for the induced hazard function. Both methods demonstrate value in assessing mediation effects in simulation studies. These methods are generalized to multiple biomarkers and to both case-cohort and nested case-control sampling designs. We apply these correction methods to the Women's Health Initiative hormone therapy trials to understand the mediation effect of several serum sex hormone measures on the relationship between postmenopausal hormone therapy and breast cancer risk. © 2014, The International Biometric Society.

  16. General error analysis in the relationship between free thyroxine and thyrotropin and its clinical relevance.

    PubMed

    Goede, Simon L; Leow, Melvin Khee-Shing

    2013-01-01

    This treatise investigates error sources in measurements applicable to the hypothalamus-pituitary-thyroid (HPT) system of analysis for homeostatic set point computation. The hypothalamus-pituitary transfer characteristic (HP curve) describes the relationship between plasma free thyroxine [FT4] and thyrotropin [TSH]. We define the origin, types, causes, and effects of errors that are commonly encountered in TFT measurements and examine how we can interpret these to construct a reliable HP function for set point establishment. The error sources in the clinical measurement procedures are identified and analyzed in relation to the constructed HP model. The main sources of measurement and interpretation uncertainties are (1) diurnal variations in [TSH], (2) TFT measurement variations influenced by timing of thyroid medications, (3) error sensitivity in ranges of [TSH] and [FT4] (laboratory assay dependent), (4) rounding/truncation of decimals in [FT4] which in turn amplify curve fitting errors in the [TSH] domain in the lower [FT4] range, (5) memory effects (rate-independent hysteresis effect). When the main uncertainties in thyroid function tests (TFT) are identified and analyzed, we can find the most acceptable model space with which we can construct the best HP function and the related set point area.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, T.; Bailey, J. E.; Loisel, G. P.

    Iron opacity calculations presently disagree with measurements at an electron temperature of ~180–195 eV and an electron density of (2–4)×10 22cm –3, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations thatmore » were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. Lastly, the results show that the errors considered here do not account for the previously observed model-data discrepancies.« less

  18. Liquid crystal point diffraction interferometer. Ph.D. Thesis - Arizona Univ., 1995

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.

    1995-01-01

    A new instrument, the liquid crystal point diffraction-interferometer (LCPDI), has been developed for the measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point diffraction interferometer (PDI) and adds to it phase stepping capability for quantitative interferogram analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of accurately measuring optical wavefronts with very high data density and with automated data reduction. This dissertation describes the theory of both the PDI and liquid crystal phase control. The design considerations for the LCPDI are presented, including manufacturing considerations. The operation and performance of the LCPDI are discussed, including sections regarding alignment, calibration, and amplitude modulation effects. The LCPDI is then demonstrated using two phase objects: defocus difference wavefront, and a temperature distribution across a heated chamber filled with silicone oil. The measured results are compared to theoretical or independently measured results and show excellent agreement. A computer simulation of the LCPDI was performed to verify the source of observed periodic phase measurement error. The error stems from intensity variations caused by dye molecules rotating within the liquid crystal layer. Methods are discussed for reducing this error. Algorithms are presented which reduce this error; they are also useful for any phase-stepping interferometer that has unwanted intensity fluctuations, such as those caused by unregulated lasers.

  19. Patient safety awareness among Undergraduate Medical Students in Pakistani Medical School.

    PubMed

    Kamran, Rizwana; Bari, Attia; Khan, Rehan Ahmed; Al-Eraky, Mohamed

    2018-01-01

    To measure the level of awareness of patient safety among undergraduate medical students in Pakistani Medical School and to find the difference with respect to gender and prior experience with medical error. This cross-sectional study was conducted at the University of Lahore (UOL), Pakistan from January to March 2017, and comprised final year medical students. Data was collected using a questionnaire 'APSQ- III' on 7 point Likert scale. Eight questions were reverse coded. Survey was anonymous. SPSS package 20 was used for statistical analysis. Questionnaire was filled by 122 students, with 81% response rate. The best score 6.17 was given for the 'team functioning', followed by 6.04 for 'long working hours as a cause of medical error'. The domains regarding involvement of patient, confidence to report medical errors and role of training and learning on patient safety scored high in the agreed range of >5. Reverse coded questions about 'professional incompetence as an error cause' and 'disclosure of errors' showed negative perception. No significant differences of perceptions were found with respect to gender and prior experience with medical error (p= >0.05). Undergraduate medical students at UOL had a positive attitude towards patient safety. However, there were misconceptions about causes of medical errors and error disclosure among students and patient safety education needs to be incorporated in medical curriculum of Pakistan.

  20. Observation of non-classical correlations in sequential measurements of photon polarization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F.

    2016-10-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength.

  1. Error Rates Resulting From Anemia Can Be Corrected in Multiple Commonly Used Point of Care Glucometers

    DTIC Science & Technology

    2008-01-01

    strategies, increasing the prevalence of both hypoglycemia and anemia in the ICU.14–20 The change in allogeneic blood transfusion practices occurred in...measurements in samples with low HCT levels.4,5,7,8,12 The error occurs because de- creased red blood cell causes less displacement of plasma, resulting...Nonlinear component regression was performed be- cause HCT has a nonlinear effect on accuracy of POC glucometers. A dual parameter correction factor was

  2. Improving laboratory data entry quality using Six Sigma.

    PubMed

    Elbireer, Ali; Le Chasseur, Julie; Jackson, Brooks

    2013-01-01

    The Uganda Makerere University provides clinical laboratory support to over 70 clients in Uganda. With increased volume, manual data entry errors have steadily increased, prompting laboratory managers to employ the Six Sigma method to evaluate and reduce their problems. The purpose of this paper is to describe how laboratory data entry quality was improved by using Six Sigma. The Six Sigma Quality Improvement (QI) project team followed a sequence of steps, starting with defining project goals, measuring data entry errors to assess current performance, analyzing data and determining data-entry error root causes. Finally the team implemented changes and control measures to address the root causes and to maintain improvements. Establishing the Six Sigma project required considerable resources and maintaining the gains requires additional personnel time and dedicated resources. After initiating the Six Sigma project, there was a 60.5 percent reduction in data entry errors from 423 errors a month (i.e. 4.34 Six Sigma) in the first month, down to an average 166 errors/month (i.e. 4.65 Six Sigma) over 12 months. The team estimated the average cost of identifying and fixing a data entry error to be $16.25 per error. Thus, reducing errors by an average of 257 errors per month over one year has saved the laboratory an estimated $50,115 a year. The Six Sigma QI project provides a replicable framework for Ugandan laboratory staff and other resource-limited organizations to promote quality environment. Laboratory staff can deliver excellent care at a lower cost, by applying QI principles. This innovative QI method of reducing data entry errors in medical laboratories may improve the clinical workflow processes and make cost savings across the health care continuum.

  3. Resolution-enhancement and sampling error correction based on molecular absorption line in frequency scanning interferometry

    NASA Astrophysics Data System (ADS)

    Pan, Hao; Qu, Xinghua; Shi, Chunzhao; Zhang, Fumin; Li, Yating

    2018-06-01

    The non-uniform interval resampling method has been widely used in frequency modulated continuous wave (FMCW) laser ranging. In the large-bandwidth and long-distance measurements, the range peak is deteriorated due to the fiber dispersion mismatch. In this study, we analyze the frequency-sampling error caused by the mismatch and measure it using the spectroscopy of molecular frequency references line. By using the adjacent points' replacement and spline interpolation technique, the sampling errors could be eliminated. The results demonstrated that proposed method is suitable for resolution-enhancement and high-precision measurement. Moreover, using the proposed method, we achieved the precision of absolute distance less than 45 μm within 8 m.

  4. Testing accelerometer rectification error caused by multidimensional composite inputs with double turntable centrifuge.

    PubMed

    Guan, W; Meng, X F; Dong, X M

    2014-12-01

    Rectification error is a critical characteristic of inertial accelerometers. Accelerometers working in operational situations are stimulated by composite inputs, including constant acceleration and vibration, from multiple directions. However, traditional methods for evaluating rectification error only use one-dimensional vibration. In this paper, a double turntable centrifuge (DTC) was utilized to produce the constant acceleration and vibration simultaneously and we tested the rectification error due to the composite accelerations. At first, we deduced the expression of the rectification error with the output of the DTC and a static model of the single-axis pendulous accelerometer under test. Theoretical investigation and analysis were carried out in accordance with the rectification error model. Then a detailed experimental procedure and testing results were described. We measured the rectification error with various constant accelerations at different frequencies and amplitudes of the vibration. The experimental results showed the distinguished characteristics of the rectification error caused by the composite accelerations. The linear relation between the constant acceleration and the rectification error was proved. The experimental procedure and results presented in this context can be referenced for the investigation of the characteristics of accelerometer with multiple inputs.

  5. Human error and human factors engineering in health care.

    PubMed

    Welch, D L

    1997-01-01

    Human error is inevitable. It happens in health care systems as it does in all other complex systems, and no measure of attention, training, dedication, or punishment is going to stop it. The discipline of human factors engineering (HFE) has been dealing with the causes and effects of human error since the 1940's. Originally applied to the design of increasingly complex military aircraft cockpits, HFE has since been effectively applied to the problem of human error in such diverse systems as nuclear power plants, NASA spacecraft, the process control industry, and computer software. Today the health care industry is becoming aware of the costs of human error and is turning to HFE for answers. Just as early experimental psychologists went beyond the label of "pilot error" to explain how the design of cockpits led to air crashes, today's HFE specialists are assisting the health care industry in identifying the causes of significant human errors in medicine and developing ways to eliminate or ameliorate them. This series of articles will explore the nature of human error and how HFE can be applied to reduce the likelihood of errors and mitigate their effects.

  6. Astigmatism error modification for absolute shape reconstruction using Fourier transform method

    NASA Astrophysics Data System (ADS)

    He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun

    2014-12-01

    A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.

  7. Use of Earth's magnetic field for mitigating gyroscope errors regardless of magnetic perturbation.

    PubMed

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth's magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth's magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment.

  8. Use of Earth’s Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation

    PubMed Central

    Afzal, Muhammad Haris; Renaudin, Valérie; Lachapelle, Gérard

    2011-01-01

    Most portable systems like smart-phones are equipped with low cost consumer grade sensors, making them useful as Pedestrian Navigation Systems (PNS). Measurements of these sensors are severely contaminated by errors caused due to instrumentation and environmental issues rendering the unaided navigation solution with these sensors of limited use. The overall navigation error budget associated with pedestrian navigation can be categorized into position/displacement errors and attitude/orientation errors. Most of the research is conducted for tackling and reducing the displacement errors, which either utilize Pedestrian Dead Reckoning (PDR) or special constraints like Zero velocity UPdaTes (ZUPT) and Zero Angular Rate Updates (ZARU). This article targets the orientation/attitude errors encountered in pedestrian navigation and develops a novel sensor fusion technique to utilize the Earth’s magnetic field, even perturbed, for attitude and rate gyroscope error estimation in pedestrian navigation environments where it is assumed that Global Navigation Satellite System (GNSS) navigation is denied. As the Earth’s magnetic field undergoes severe degradations in pedestrian navigation environments, a novel Quasi-Static magnetic Field (QSF) based attitude and angular rate error estimation technique is developed to effectively use magnetic measurements in highly perturbed environments. The QSF scheme is then used for generating the desired measurements for the proposed Extended Kalman Filter (EKF) based attitude estimator. Results indicate that the QSF measurements are capable of effectively estimating attitude and gyroscope errors, reducing the overall navigation error budget by over 80% in urban canyon environment. PMID:22247672

  9. [De-noising and measurement of pulse wave velocity of the wavelet].

    PubMed

    Liu, Baohua; Zhu, Honglian; Ren, Xiaohua

    2011-02-01

    Pulse wave velocity (PWV) is a vital index of the cardiovascular pathology, so that the accurate measurement of PWV can be of benefit for prevention and treatment of cardiovascular diseases. The noise in the measure system of pulse wave signal, rounding error and selection of the recording site all cause errors in the measure result. In this paper, with wavelet transformation to eliminate the noise and to raise the precision, and with the choice of the point whose slope was maximum as the recording site of the reconstructing pulse wave, the measuring system accuracy was improved.

  10. Bias correction by use of errors-in-variables regression models in studies with K-X-ray fluorescence bone lead measurements.

    PubMed

    Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard

    2011-01-01

    In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    PubMed

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  12. A simulation of GPS and differential GPS sensors

    NASA Technical Reports Server (NTRS)

    Rankin, James M.

    1993-01-01

    The Global Positioning System (GPS) is a revolutionary advance in navigation. Users can determine latitude, longitude, and altitude by receiving range information from at least four satellites. The statistical accuracy of the user's position is directly proportional to the statistical accuracy of the range measurement. Range errors are caused by clock errors, ephemeris errors, atmospheric delays, multipath errors, and receiver noise. Selective Availability, which the military uses to intentionally degrade accuracy for non-authorized users, is a major error source. The proportionality constant relating position errors to range errors is the Dilution of Precision (DOP) which is a function of the satellite geometry. Receivers separated by relatively short distances have the same satellite and atmospheric errors. Differential GPS (DGPS) removes these errors by transmitting pseudorange corrections from a fixed receiver to a mobile receiver. The corrected pseudorange at the moving receiver is now corrupted only by errors from the receiver clock, multipath, and measurement noise. This paper describes a software package that models position errors for various GPS and DGPS systems. The error model is used in the Real-Time Simulator and Cockpit Technology workstation simulations at NASA-LaRC. The GPS/DGPS sensor can simulate enroute navigation, instrument approaches, or on-airport navigation.

  13. Effect of single vision soft contact lenses on peripheral refraction.

    PubMed

    Kang, Pauline; Fan, Yvonne; Oh, Kelly; Trac, Kevin; Zhang, Frank; Swarbrick, Helen

    2012-07-01

    To investigate changes in peripheral refraction with under-, full, and over-correction of central refraction with commercially available single vision soft contact lenses (SCLs) in young myopic adults. Thirty-four myopic adult subjects were fitted with Proclear Sphere SCLs to under-correct (+0.75 DS), fully correct, and over-correct (-0.75 DS) their manifest central refractive error. Central and peripheral refraction were measured with no lens wear and subsequently with different levels of SCL central refractive error correction. The uncorrected refractive error was myopic at all locations along the horizontal meridian. Peripheral refraction was relatively hyperopic compared to center at 30 and 35° in the temporal visual field (VF) in low myopes and at 30 and 35° in the temporal VF and 10, 30, and 35° in the nasal VF in moderate myopes. All levels of SCL correction caused a hyperopic shift in refraction at all locations in the horizontal VF. The smallest hyperopic shift was demonstrated with under-correction followed by full correction and then by over-correction of central refractive error. An increase in relative peripheral hyperopia was measured with full correction SCLs compared with no correction in both low and moderate myopes. However, no difference in relative peripheral refraction profiles were found between under-, full, and over-correction. Under-, full, and over-correction of central refractive error with single vision SCLs caused a hyperopic shift in both central and peripheral refraction at all positions in the horizontal meridian. All levels of SCL correction caused the peripheral retina, which initially experienced absolute myopic defocus at baseline with no correction, to experience absolute hyperopic defocus. This peripheral hyperopia may be a possible cause of myopia progression reported with different types and levels of myopia correction.

  14. Prevalence of vision impairment and refractive error in school children in Ba Ria – Vung Tau province, Vietnam

    PubMed Central

    Paudel, Prakash; Ramson, Prasidh; Naduvilath, Thomas; Wilson, David; Phuong, Ha Thanh; Ho, Suit M; Giap, Nguyen V

    2014-01-01

    Background To assess the prevalence of vision impairment and refractive error in school children 12–15 years of age in Ba Ria – Vung Tau province, Vietnam. Design Prospective, cross-sectional study. Participants 2238 secondary school children. Methods Subjects were selected based on stratified multistage cluster sampling of 13 secondary schools from urban, rural and semi-urban areas. The examination included visual acuity measurements, ocular motility evaluation, cycloplegic autorefraction, and examination of the external eye, anterior segment, media and fundus. Main Outcome Measures Visual acuity and principal cause of vision impairment. Results The prevalence of uncorrected and presenting visual acuity ≤6/12 in the better eye were 19.4% (95% confidence interval, 12.5–26.3) and 12.2% (95% confidence interval, 8.8–15.6), respectively. Refractive error was the cause of vision impairment in 92.7%, amblyopia in 2.2%, cataract in 0.7%, retinal disorders in 0.4%, other causes in 1.5% and unexplained causes in the remaining 2.6%. The prevalence of vision impairment due to myopia in either eye (–0.50 diopter or greater) was 20.4% (95% confidence interval, 12.8–28.0), hyperopia (≥2.00 D) was 0.4% (95% confidence interval, 0.0–0.7) and emmetropia with astigmatism (≥0.75 D) was 0.7% (95% confidence interval, 0.2–1.2). Vision impairment due to myopia was associated with higher school grade and increased time spent reading and working on a computer. Conclusions Uncorrected refractive error, particularly myopia, among secondary school children in Vietnam is a major public health problem. School-based eye health initiative such as refractive error screening is warranted to reduce vision impairment. PMID:24299145

  15. Improved motor control method with measurements of fiber optics gyro (FOG) for dual-axis rotational inertial navigation system (RINS).

    PubMed

    Song, Tianxiao; Wang, Xueyun; Liang, Wenwei; Xing, Li

    2018-05-14

    Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier's roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.

  16. Numerical investigations of potential systematic uncertainties in iron opacity measurements at solar interior temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagayama, T.; Bailey, J. E.; Loisel, G. P.

    Iron opacity calculations presently disagree with measurements at an electron temperature of ~180–195 eV and an electron density of (2–4)×10 22cm –3, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations thatmore » were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. Lastly, the results show that the errors considered here do not account for the previously observed model-data discrepancies.« less

  17. Numerical investigations of potential systematic uncertainties in iron opacity measurements at solar interior temperatures

    DOE PAGES

    Nagayama, T.; Bailey, J. E.; Loisel, G. P.; ...

    2017-06-26

    Iron opacity calculations presently disagree with measurements at an electron temperature of ~180–195 eV and an electron density of (2–4)×10 22cm –3, conditions similar to those at the base of the solar convection zone. The measurements use x rays to volumetrically heat a thin iron sample that is tamped with low-Z materials. The opacity is inferred from spectrally resolved x-ray transmission measurements. Plasma self-emission, tamper attenuation, and temporal and spatial gradients can all potentially cause systematic errors in the measured opacity spectra. In this article we quantitatively evaluate these potential errors with numerical investigations. The analysis exploits computer simulations thatmore » were previously found to reproduce the experimentally measured plasma conditions. The simulations, combined with a spectral synthesis model, enable evaluations of individual and combined potential errors in order to estimate their potential effects on the opacity measurement. Lastly, the results show that the errors considered here do not account for the previously observed model-data discrepancies.« less

  18. An adaptive filter method for spacecraft using gravity assist

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Huang, Panpan; Fang, Jiancheng; Liu, Gang; Ge, Shuzhi Sam

    2015-04-01

    Celestial navigation (CeleNav) has been successfully used during gravity assist (GA) flyby for orbit determination in many deep space missions. Due to spacecraft attitude errors, ephemeris errors, the camera center-finding bias, and the frequency of the images before and after the GA flyby, the statistics of measurement noise cannot be accurately determined, and yet have time-varying characteristics, which may introduce large estimation error and even cause filter divergence. In this paper, an unscented Kalman filter (UKF) with adaptive measurement noise covariance, called ARUKF, is proposed to deal with this problem. ARUKF scales the measurement noise covariance according to the changes in innovation and residual sequences. Simulations demonstrate that ARUKF is robust to the inaccurate initial measurement noise covariance matrix and time-varying measurement noise. The impact factors in the ARUKF are also investigated.

  19. Refractive errors in Aminu Kano Teaching Hospital, Kano Nigeria.

    PubMed

    Lawan, Abdu; Eme, Okpo

    2011-12-01

    The aim of the study is to retrospectively determine the pattern of refractive errors seen in the eye clinic of Aminu Kano Teaching Hospital, Kano-Nigeria from January to December, 2008. The clinic refraction register was used to retrieve the case folders of all patients refracted during the review period. Information extracted includes patient's age, sex, and types of refractive error. All patients had basic eye examination (to rule out other causes of subnormal vision) including intra ocular pressure measurement and streak retinoscopy at two third meter working distance. The final subjective refraction correction given to the patients was used to categorise the type of refractive error. Refractive errors was observed in 1584 patients and accounted for 26.9% of clinic attendance. There were more females than males (M: F=1.0: 1.2). The common types of refractive errors are presbyopia in 644 patients (40%), various types of astigmatism in 527 patients (33%), myopia in 216 patients (14%), hypermetropia in 171 patients (11%) and aphakia in 26 patients (2%). Refractive errors are common causes of presentation in the eye clinic. Identification and correction of refractive errors should be an integral part of eye care delivery.

  20. Characterization of Unimorph-Membrane Microactuators and Error-Analysis of the Characterization Process

    NASA Technical Reports Server (NTRS)

    Wright, Matthew W.

    2005-01-01

    Microactuators are versatile, low-cost, low-mass electrical-mechanical devices that can be used in many applications. Microactuators consist of two electrodes sandwiching a PZT (piezo-electric) film between them. The centers of the microactuators deflect when a voltage is applied across the electrodes. In order to correctly apply this technology for use, it is important to fully characterize the actuation behavior. Measuring the deflection profile as a function of the voltage of various microactuators is crucial. This measurement process has errors associated with it, so it is being studied to determine the accuracy of the data. In certain applications, microactuators may undergo many cycles of deflection; testing various microactuators through many cycles of deflection simulates these circumstances. However, due to an unknown issue, many of the microactuators exhibit defects that cause them to fail when voltage is applied to their electrodes. These defects do not allow for the acquisition of significant deflection profiles. Vibrations are the largest cause of error in deflection measurements, and the microactuators withstand continuous cycles of deflection, yet the cause of damage is still to be determined. Future projects will be needed to characterize the deflection profiles of various microactuators and to overcome the defects in the microactuators that are currently present.

  1. Rapid, Accurate, and Non-Invasive Measurement of Zebrafish Axial Length and Other Eye Dimensions Using SD-OCT Allows Longitudinal Analysis of Myopia and Emmetropization

    PubMed Central

    Collery, Ross F.; Veth, Kerry N.; Dubis, Adam M.; Carroll, Joseph; Link, Brian A.

    2014-01-01

    Refractive errors in vision can be caused by aberrant axial length of the eye, irregular corneal shape, or lens abnormalities. Causes of eye length overgrowth include multiple genetic loci, and visual parameters. We evaluate zebrafish as a potential animal model for studies of the genetic, cellular, and signaling basis of emmetropization and myopia. Axial length and other eye dimensions of zebrafish were measured using spectral domain-optical coherence tomography (SD-OCT). We used ocular lens and body metrics to normalize and compare eye size and relative refractive error (difference between observed retinal radial length and controls) in wild-type and lrp2 zebrafish. Zebrafish were dark-reared to assess effects of visual deprivation on eye size. Two relative measurements, ocular axial length to body length and axial length to lens diameter, were found to accurately normalize comparisons of eye sizes between different sized fish (R2 = 0.9548, R2 = 0.9921). Ray-traced focal lengths of wild-type zebrafish lenses were equal to their retinal radii, while lrp2 eyes had longer retinal radii than focal lengths. Both genetic mutation (lrp2) and environmental manipulation (dark-rearing) caused elongated eye axes. lrp2 mutants had relative refractive errors of −0.327 compared to wild-types, and dark-reared wild-type fish had relative refractive errors of −0.132 compared to light-reared siblings. Therefore, zebrafish eye anatomy (axial length, lens radius, retinal radius) can be rapidly and accurately measured by SD-OCT, facilitating longitudinal studies of regulated eye growth and emmetropization. Specifically, genes homologous to human myopia candidates may be modified, inactivated or overexpressed in zebrafish, and myopia-sensitizing conditions used to probe gene-environment interactions. Our studies provide foundation for such investigations into genetic contributions that control eye size and impact refractive errors. PMID:25334040

  2. A study and simulation of the impact of high-order aberrations to overlay error distribution

    NASA Astrophysics Data System (ADS)

    Sun, G.; Wang, F.; Zhou, C.

    2011-03-01

    With reduction of design rules, a number of corresponding new technologies, such as i-HOPC, HOWA and DBO have been proposed and applied to eliminate overlay error. When these technologies are in use, any high-order error distribution needs to be clearly distinguished in order to remove the underlying causes. Lens aberrations are normally thought to mainly impact the Matching Machine Overlay (MMO). However, when using Image-Based overlay (IBO) measurement tools, aberrations become the dominant influence on single machine overlay (SMO) and even on stage repeatability performance. In this paper, several measurements of the error distributions of the lens of SMEE SSB600/10 prototype exposure tool are presented. Models that characterize the primary influence from lens magnification, high order distortion, coma aberration and telecentricity are shown. The contribution to stage repeatability (as measured with IBO tools) from the above errors was predicted with simulator and compared to experiments. Finally, the drift of every lens distortion that impact to SMO over several days was monitored and matched with the result of measurements.

  3. Eye of the Beholder: Stage Entrance Behavior and Facial Expression Affect Continuous Quality Ratings in Music Performance

    PubMed Central

    Waddell, George; Williamon, Aaron

    2017-01-01

    Judgments of music performance quality are commonly employed in music practice, education, and research. However, previous studies have demonstrated the limited reliability of such judgments, and there is now evidence that extraneous visual, social, and other “non-musical” features can unduly influence them. The present study employed continuous measurement techniques to examine how the process of forming a music quality judgment is affected by the manipulation of temporally specific visual cues. Video footage comprising an appropriate stage entrance and error-free performance served as the standard condition (Video 1). This footage was manipulated to provide four additional conditions, each identical save for a single variation: an inappropriate stage entrance (Video 2); the presence of an aural performance error midway through the piece (Video 3); the same error accompanied by a negative facial reaction by the performer (Video 4); the facial reaction with no corresponding aural error (Video 5). The participants were 53 musicians and 52 non-musicians (N = 105) who individually assessed the performance quality of one of the five randomly assigned videos via a digital continuous measurement interface and headphones. The results showed that participants viewing the “inappropriate” stage entrance made judgments significantly more quickly than those viewing the “appropriate” entrance, and while the poor entrance caused significantly lower initial scores among those with musical training, the effect did not persist long into the performance. The aural error caused an immediate drop in quality judgments that persisted to a lower final score only when accompanied by the frustrated facial expression from the pianist; the performance error alone caused a temporary drop only in the musicians' ratings, and the negative facial reaction alone caused no reaction regardless of participants' musical experience. These findings demonstrate the importance of visual information in forming evaluative and aesthetic judgments in musical contexts and highlight how visual cues dynamically influence those judgments over time. PMID:28487662

  4. Anatomy of an incident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E.; Trujillo, Stanley; Lawton, Cindy M.

    A traditional view of incidents is that they are caused by shortcomings in human competence, attention, or attitude. It may be under the label of “loss of situational awareness,” procedure “violation,” or “poor” management. A different view is that human error is not the cause of failure, but a symptom of failure – trouble deeper inside the system. In this perspective, human error is not the conclusion, but rather the starting point of investigations. During an investigation, three types of information are gathered: physical, documentary, and human (recall/experience). Through the causal analysis process, apparent cause or apparent causes are identifiedmore » as the most probable cause or causes of an incident or condition that management has the control to fix and for which effective recommendations for corrective actions can be generated. A causal analysis identifies relevant human performance factors. In the following presentation, the anatomy of a radiological incident is discussed, and one case study is presented. We analyzed the contributing factors that caused a radiological incident. When underlying conditions, decisions, actions, and inactions that contribute to the incident are identified. This includes weaknesses that may warrant improvements that tolerate error. Measures that reduce consequences or likelihood of recurrence are discussed.« less

  5. Anatomy of an incident

    DOE PAGES

    Cournoyer, Michael E.; Trujillo, Stanley; Lawton, Cindy M.; ...

    2016-03-23

    A traditional view of incidents is that they are caused by shortcomings in human competence, attention, or attitude. It may be under the label of “loss of situational awareness,” procedure “violation,” or “poor” management. A different view is that human error is not the cause of failure, but a symptom of failure – trouble deeper inside the system. In this perspective, human error is not the conclusion, but rather the starting point of investigations. During an investigation, three types of information are gathered: physical, documentary, and human (recall/experience). Through the causal analysis process, apparent cause or apparent causes are identifiedmore » as the most probable cause or causes of an incident or condition that management has the control to fix and for which effective recommendations for corrective actions can be generated. A causal analysis identifies relevant human performance factors. In the following presentation, the anatomy of a radiological incident is discussed, and one case study is presented. We analyzed the contributing factors that caused a radiological incident. When underlying conditions, decisions, actions, and inactions that contribute to the incident are identified. This includes weaknesses that may warrant improvements that tolerate error. Measures that reduce consequences or likelihood of recurrence are discussed.« less

  6. Analysis of the impact of error detection on computer performance

    NASA Technical Reports Server (NTRS)

    Shin, K. C.; Lee, Y. H.

    1983-01-01

    Conventionally, reliability analyses either assume that a fault/error is detected immediately following its occurrence, or neglect damages caused by latent errors. Though unrealistic, this assumption was imposed in order to avoid the difficulty of determining the respective probabilities that a fault induces an error and the error is then detected in a random amount of time after its occurrence. As a remedy for this problem a model is proposed to analyze the impact of error detection on computer performance under moderate assumptions. Error latency, the time interval between occurrence and the moment of detection, is used to measure the effectiveness of a detection mechanism. This model is used to: (1) predict the probability of producing an unreliable result, and (2) estimate the loss of computation due to fault and/or error.

  7. Preparations for Global Precipitation Measurement(GPM)Ground Validation

    NASA Technical Reports Server (NTRS)

    Bidwell, S. W.; Bibyk, I. K.; Duming, J. F.; Everett, D. F.; Smith, E. A.; Wolff, D. B.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meterorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays a critical role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper describes GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial and temporal structure of the error. This paper describes the GPM program for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. GPM will ensure that information gained through Ground Validation is applied to future improvements in the spaceborne retrieval algorithms. This paper discusses the potential locations for validation measurement and research, the anticipated contributions of GPM's international partners, and the interaction of Ground Validation with other GPM program elements.

  8. Use of Two-Part Regression Calibration Model to Correct for Measurement Error in Episodically Consumed Foods in a Single-Replicate Study Design: EPIC Case Study

    PubMed Central

    Agogo, George O.; van der Voet, Hilko; Veer, Pieter van’t; Ferrari, Pietro; Leenders, Max; Muller, David C.; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A.; Boshuizen, Hendriek

    2014-01-01

    In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model. PMID:25402487

  9. Quantitation Error in 1H MRS Caused by B1 Inhomogeneity and Chemical Shift Displacement.

    PubMed

    Watanabe, Hidehiro; Takaya, Nobuhiro

    2017-11-08

    The quantitation accuracy in proton magnetic resonance spectroscopy ( 1 H MRS) improves at higher B 0 field. However, a larger chemical shift displacement (CSD) and stronger B 1 inhomogeneity exist. In this work, we evaluate the quantitation accuracy for the spectra of metabolite mixtures in phantom experiments at 4.7T. We demonstrate a position-dependent error in quantitation and propose a correction method by measuring water signals. All experiments were conducted on a whole-body 4.7T magnetic resonance (MR) system with a quadrature volume coil for transmission and reception. We arranged three bottles filled with metabolite solutions of N-acetyl aspartate (NAA) and creatine (Cr) in a vertical row inside a cylindrical phantom filled with water. Peak areas of three singlets of NAA and Cr were measured on three 1 H spectra at three volume of interests (VOIs) inside three bottles. We also measured a series of water spectra with a shifted carrier frequency and measured a reception sensitivity map. The ratios of NAA and Cr at 3.92 ppm to Cr at 3.01 ppm differed amongst the three VOIs in peak area, which leads to a position-dependent error. The nature of slope depicting the relationship between peak areas and the shifted values of frequency was like that between the reception sensitivities and displacement at every VOI. CSD and inhomogeneity of reception sensitivity cause amplitude modulation along the direction of chemical shift on the spectra, resulting in a quantitation error. This error may be more significant at higher B 0 field where CSD and B 1 inhomogeneity are more severe. This error may also occur in reception using a surface coil having inhomogeneous B 1 . Since this type of error is around a few percent, the data should be analyzed with greater attention while discussing small differences in the studies of 1 H MRS.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Clifton, Andrew

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less

  11. The Combined Effects of Measurement Error and Omitting Confounders in the Single-Mediator Model

    PubMed Central

    Fritz, Matthew S.; Kenny, David A.; MacKinnon, David P.

    2016-01-01

    Mediation analysis requires a number of strong assumptions be met in order to make valid causal inferences. Failing to account for violations of these assumptions, such as not modeling measurement error or omitting a common cause of the effects in the model, can bias the parameter estimates of the mediated effect. When the independent variable is perfectly reliable, for example when participants are randomly assigned to levels of treatment, measurement error in the mediator tends to underestimate the mediated effect, while the omission of a confounding variable of the mediator to outcome relation tends to overestimate the mediated effect. Violations of these two assumptions often co-occur, however, in which case the mediated effect could be overestimated, underestimated, or even, in very rare circumstances, unbiased. In order to explore the combined effect of measurement error and omitted confounders in the same model, the impact of each violation on the single-mediator model is first examined individually. Then the combined effect of having measurement error and omitted confounders in the same model is discussed. Throughout, an empirical example is provided to illustrate the effect of violating these assumptions on the mediated effect. PMID:27739903

  12. Specificity of Atmospheric Correction of Satellite Data on Ocean Color in the Far East

    NASA Astrophysics Data System (ADS)

    Aleksanin, A. I.; Kachur, V. A.

    2017-12-01

    Calculation errors in ocean-brightness coefficients in the Far Eastern are analyzed for two atmospheric correction algorithms (NIR and MUMM). The daylight measurements in different water types show that the main error component is systematic and has a simple dependence on the magnitudes of the coefficients. The causes of the error behavior are considered. The most probable explanation for the large errors in ocean-color parameters in the Far East is a high concentration of continental aerosol absorbing light. A comparison between satellite and in situ measurements at AERONET stations in the United States and South Korea has been made. It is shown the errors in these two regions differ by up to 10 times upon close water turbidity and relatively high aerosol optical-depth computation precision in the case of using the NIR correction of the atmospheric effect.

  13. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okura, Yuki; Futamase, Toshifumi, E-mail: yuki.okura@nao.ac.jp, E-mail: tof@astr.tohoku.ac.jp

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging,more » but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of {nu} {approx} 11.7.« less

  14. Interceptive Beam Diagnostics - Signal Creation and Materials Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plum, Michael; Spallation Neutron Source, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN

    2004-11-10

    The focus of this tutorial will be on interceptive beam diagnostics such as wire scanners, screens, and harps. We will start with an overview of the various ways beams interact with materials to create signals useful for beam diagnostics systems. We will then discuss the errors in a harp or wire scanner profile measurement caused by errors in wire position, number of samples, and signal errors. Finally we will apply our results to two design examples-the SNS wire scanner system and the SNS target harp.

  15. Correction of phase-shifting error in wavelength scanning digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Wang, Jie; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian

    2018-05-01

    Digital holographic microscopy is a promising method for measuring complex micro-structures with high slopes. A quasi-common path interferometric apparatus is adopted to overcome environmental disturbances, and an acousto-optic tunable filter is used to obtain multi-wavelength holograms. However, the phase shifting error caused by the acousto-optic tunable filter reduces the measurement accuracy and, in turn, the reconstructed topographies are erroneous. In this paper, an accurate reconstruction approach is proposed. It corrects the phase-shifting errors by minimizing the difference between the ideal interferograms and the recorded ones. The restriction on the step number and uniformity of the phase shifting is relaxed in the interferometry, and the measurement accuracy for complex surfaces can also be improved. The universality and superiority of the proposed method are demonstrated by practical experiments and comparison to other measurement methods.

  16. Unavoidable electric current caused by inhomogeneities and its influence on measured material parameters of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Song, K.; Song, H. P.; Gao, C. F.

    2018-03-01

    It is well known that the key factor determining the performance of thermoelectric materials is the figure of merit, which depends on the thermal conductivity (TC), electrical conductivity, and Seebeck coefficient (SC). The electric current must be zero when measuring the TC and SC to avoid the occurrence of measurement errors. In this study, the complex-variable method is used to analyze the thermoelectric field near an elliptic inhomogeneity in an open circuit, and the field distributions are obtained in closed form. Our analysis shows that an electric current inevitably exists in both the matrix and the inhomogeneity even though the circuit is open. This unexpected electric current seriously affects the accuracy with which the TC and SC are measured. These measurement errors, both overall and local, are analyzed in detail. In addition, an error correction method is proposed based on the analytical results.

  17. Analysis and compensation of synchronous measurement error for multi-channel laser interferometer

    NASA Astrophysics Data System (ADS)

    Du, Shengwu; Hu, Jinchun; Zhu, Yu; Hu, Chuxiong

    2017-05-01

    Dual-frequency laser interferometer has been widely used in precision motion system as a displacement sensor, to achieve nanoscale positioning or synchronization accuracy. In a multi-channel laser interferometer synchronous measurement system, signal delays are different in the different channels, which will cause asynchronous measurement, and then lead to measurement error, synchronous measurement error (SME). Based on signal delay analysis of the measurement system, this paper presents a multi-channel SME framework for synchronous measurement, and establishes the model between SME and motion velocity. Further, a real-time compensation method for SME is proposed. This method has been verified in a self-developed laser interferometer signal processing board (SPB). The experiment result showed that, using this compensation method, at a motion velocity 0.89 m s-1, the max SME between two measuring channels in the SPB is 1.1 nm. This method is more easily implemented and applied to engineering than the method of directly testing smaller signal delay.

  18. Previous Estimates of Mitochondrial DNA Mutation Level Variance Did Not Account for Sampling Error: Comparing the mtDNA Genetic Bottleneck in Mice and Humans

    PubMed Central

    Wonnapinij, Passorn; Chinnery, Patrick F.; Samuels, David C.

    2010-01-01

    In cases of inherited pathogenic mitochondrial DNA (mtDNA) mutations, a mother and her offspring generally have large and seemingly random differences in the amount of mutated mtDNA that they carry. Comparisons of measured mtDNA mutation level variance values have become an important issue in determining the mechanisms that cause these large random shifts in mutation level. These variance measurements have been made with samples of quite modest size, which should be a source of concern because higher-order statistics, such as variance, are poorly estimated from small sample sizes. We have developed an analysis of the standard error of variance from a sample of size n, and we have defined error bars for variance measurements based on this standard error. We calculate variance error bars for several published sets of measurements of mtDNA mutation level variance and show how the addition of the error bars alters the interpretation of these experimental results. We compare variance measurements from human clinical data and from mouse models and show that the mutation level variance is clearly higher in the human data than it is in the mouse models at both the primary oocyte and offspring stages of inheritance. We discuss how the standard error of variance can be used in the design of experiments measuring mtDNA mutation level variance. Our results show that variance measurements based on fewer than 20 measurements are generally unreliable and ideally more than 50 measurements are required to reliably compare variances with less than a 2-fold difference. PMID:20362273

  19. Measurement uncertainty and feasibility study of a flush airdata system for a hypersonic flight experiment

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Moes, Timothy R.

    1994-01-01

    Presented is a feasibility and error analysis for a hypersonic flush airdata system on a hypersonic flight experiment (HYFLITE). HYFLITE heating loads make intrusive airdata measurement impractical. Although this analysis is specifically for the HYFLITE vehicle and trajectory, the problems analyzed are generally applicable to hypersonic vehicles. A layout of the flush-port matrix is shown. Surface pressures are related airdata parameters using a simple aerodynamic model. The model is linearized using small perturbations and inverted using nonlinear least-squares. Effects of various error sources on the overall uncertainty are evaluated using an error simulation. Error sources modeled include boundarylayer/viscous interactions, pneumatic lag, thermal transpiration in the sensor pressure tubing, misalignment in the matrix layout, thermal warping of the vehicle nose, sampling resolution, and transducer error. Using simulated pressure data for input to the estimation algorithm, effects caused by various error sources are analyzed by comparing estimator outputs with the original trajectory. To obtain ensemble averages the simulation is run repeatedly and output statistics are compiled. Output errors resulting from the various error sources are presented as a function of Mach number. Final uncertainties with all modeled error sources included are presented as a function of Mach number.

  20. PREVALENCE OF UNCORRECTED REFRACTIVE ERRORS IN ADULTS AGED 30 YEARS AND ABOVE IN A RURAL POPULATION IN PAKISTAN.

    PubMed

    Abdullah, Ayesha S; Jadoon, Milhammad Zahid; Akram, Mohammad; Awan, Zahid Hussain; Azam, Mohammad; Safdar, Mohammad; Nigar, Mohammad

    2015-01-01

    Uncorrected refractive errors are a leading cause of visual disability globally. This population-based study was done to estimate the prevalence of uncorrected refractive errors in adults aged 30 years and above of village Pawakah, Khyber Pakhtunkhwa (KPK), Pakistan. It was a cross-sectional survey in which 1000 individuals were included randomly. All the individuals were screened for uncorrected refractive errors and those whose visual acuity (VA) was found to be less than 6/6 were refracted. In whom refraction was found to be unsatisfactory (i.e., a best corrected visual acuity of <6/6) further examination was done to establish the cause for the subnormal vision. A total of 917 subjects participated in the survey (response rate 92%). The prevalence of uncorrected refractive errors was found to be 23.97% among males and 20% among females. The prevalence of visually disabling refractive errors was 6.89% in males and 5.71% in females. The prevalence was seen to increase with age, with maximum prevalence in 51-60 years age group. Hypermetropia (10.14%) was found to be the commonest refractive error followed by Myopia (6.00%) and Astigmatism (5.6%). The prevalence of Presbyopia was 57.5% (60.45% in males and 55.23% in females). Poor affordability was the commonest barrier to the use of spectacles, followed by unawareness. Cataract was the commonest reason for impaired vision after refractive correction. The prevalence of blindness was 1.96% (1.53% in males and 2.28% in females) in this community with cataract as the commonest cause. Despite being the most easily avoidable cause of subnormal vision uncorrected refractive errors still account for a major proportion of the burden of decreased vision in this area. Effective measures for the screening and affordable correction of uncorrected refractive errors need to be incorpora'ted into the health care delivery system.

  1. The effect of the dynamic wet troposphere on radio interferometric measurements

    NASA Technical Reports Server (NTRS)

    Treuhaft, R. N.; Lanyi, G. E.

    1987-01-01

    A statistical model of water vapor fluctuations is used to describe the effect of the dynamic wet troposphere on radio interferometric measurements. It is assumed that the spatial structure of refractivity is approximated by Kolmogorov turbulence theory, and that the temporal fluctuations are caused by spatial patterns moved over a site by the wind, and these assumptions are examined for the VLBI delay and delay rate observables. The results suggest that the delay rate measurement error is usually dominated by water vapor fluctuations, and water vapor induced VLBI parameter errors and correlations are determined as a function of the delay observable errors. A method is proposed for including the water vapor fluctuations in the parameter estimation method to obtain improved parameter estimates and parameter covariances.

  2. A fast two-plus-one phase-shifting algorithm for high-speed three-dimensional shape measurement system

    NASA Astrophysics Data System (ADS)

    Wang, Wenyun; Guo, Yingfu

    2008-12-01

    Phase-shifting methods for 3-D shape measurement have long been employed in optical metrology for their speed and accuracy. For real-time, accurate, 3-D shape measurement, a four-step phase-shifting algorithm which has the advantage of its symmetry is a good choice; however, its measurement error is sensitive to any fringe image errors caused by various sources such as motion blur. To alleviate this problem, a fast two-plus-one phase-shifting algorithm is proposed in this paper. This kind of technology will benefit many applications such as medical imaging, gaming, animation, computer vision, computer graphics, etc.

  3. Commentary: Reducing diagnostic errors: another role for checklists?

    PubMed

    Winters, Bradford D; Aswani, Monica S; Pronovost, Peter J

    2011-03-01

    Diagnostic errors are a widespread problem, although the true magnitude is unknown because they cannot currently be measured validly. These errors have received relatively little attention despite alarming estimates of associated harm and death. One promising intervention to reduce preventable harm is the checklist. This intervention has proven successful in aviation, in which situations are linear and deterministic (one alarm goes off and a checklist guides the flight crew to evaluate the cause). In health care, problems are multifactorial and complex. A checklist has been used to reduce central-line-associated bloodstream infections in intensive care units. Nevertheless, this checklist was incorporated in a culture-based safety program that engaged and changed behaviors and used robust measurement of infections to evaluate progress. In this issue, Ely and colleagues describe how three checklists could reduce the cognitive biases and mental shortcuts that underlie diagnostic errors, but point out that these tools still need to be tested. To be effective, they must reduce diagnostic errors (efficacy) and be routinely used in practice (effectiveness). Such tools must intuitively support how the human brain works, and under time pressures, clinicians rarely think in conditional probabilities when making decisions. To move forward, it is necessary to accurately measure diagnostic errors (which could come from mapping out the diagnostic process as the medication process has done and measuring errors at each step) and pilot test interventions such as these checklists to determine whether they work.

  4. Pressure beneath the Surface of a Fluid: Measuring the Correct Depth

    ERIC Educational Resources Information Center

    McCall, Richard P.

    2013-01-01

    Systematic errors can cause measurements to deviate from the actual value of the quantity being measured. Faulty equipment (such as a meterstick that is not marked correctly), inaccurate calibration of measuring devices (such as a scale to measure mass that has not been properly zeroed), and improper use of equipment by the experimenter (such as…

  5. Resection plane-dependent error in computed tomography volumetry of the right hepatic lobe in living liver donors

    PubMed Central

    Kwon, Heon-Ju; Kim, Bohyun; Kim, So Yeon; Lee, Chul Seung; Lee, Jeongjin; Song, Gi Won; Lee, Sung Gyu

    2018-01-01

    Background/Aims Computed tomography (CT) hepatic volumetry is currently accepted as the most reliable method for preoperative estimation of graft weight in living donor liver transplantation (LDLT). However, several factors can cause inaccuracies in CT volumetry compared to real graft weight. The purpose of this study was to determine the frequency and degree of resection plane-dependent error in CT volumetry of the right hepatic lobe in LDLT. Methods Forty-six living liver donors underwent CT before donor surgery and on postoperative day 7. Prospective CT volumetry (VP) was measured via the assumptive hepatectomy plane. Retrospective liver volume (VR) was measured using the actual plane by comparing preoperative and postoperative CT. Compared with intraoperatively measured weight (W), errors in percentage (%) VP and VR were evaluated. Plane-dependent error in VP was defined as the absolute difference between VP and VR. % plane-dependent error was defined as follows: |VP–VR|/W∙100. Results Mean VP, VR, and W were 761.9 mL, 755.0 mL, and 696.9 g. Mean and % errors in VP were 73.3 mL and 10.7%. Mean error and % error in VR were 64.4 mL and 9.3%. Mean plane-dependent error in VP was 32.4 mL. Mean % plane-dependent error was 4.7%. Plane-dependent error in VP exceeded 10% of W in approximately 10% of the subjects in our study. Conclusions There was approximately 5% plane-dependent error in liver VP on CT volumetry. Plane-dependent error in VP exceeded 10% of W in approximately 10% of LDLT donors in our study. This error should be considered, especially when CT volumetry is performed by a less experienced operator who is not well acquainted with the donor hepatectomy plane. PMID:28759989

  6. Linear error analysis of slope-area discharge determinations

    USGS Publications Warehouse

    Kirby, W.H.

    1987-01-01

    The slope-area method can be used to calculate peak flood discharges when current-meter measurements are not possible. This calculation depends on several quantities, such as water-surface fall, that are subject to large measurement errors. Other critical quantities, such as Manning's n, are not even amenable to direct measurement but can only be estimated. Finally, scour and fill may cause gross discrepancies between the observed condition of the channel and the hydraulic conditions during the flood peak. The effects of these potential errors on the accuracy of the computed discharge have been estimated by statistical error analysis using a Taylor-series approximation of the discharge formula and the well-known formula for the variance of a sum of correlated random variates. The resultant error variance of the computed discharge is a weighted sum of covariances of the various observational errors. The weights depend on the hydraulic and geometric configuration of the channel. The mathematical analysis confirms the rule of thumb that relative errors in computed discharge increase rapidly when velocity heads exceed the water-surface fall, when the flow field is expanding and when lateral velocity variation (alpha) is large. It also confirms the extreme importance of accurately assessing the presence of scour or fill. ?? 1987.

  7. Performance Data Errors in Air Carrier Operations: Causes and Countermeasures

    NASA Technical Reports Server (NTRS)

    Berman, Benjamin A.; Dismukes, R Key; Jobe, Kimberly K.

    2012-01-01

    Several airline accidents have occurred in recent years as the result of erroneous weight or performance data used to calculate V-speeds, flap/trim settings, required runway lengths, and/or required climb gradients. In this report we consider 4 recent studies of performance data error, report our own study of ASRS-reported incidents, and provide countermeasures that can reduce vulnerability to accidents caused by performance data errors. Performance data are generated through a lengthy process involving several employee groups and computer and/or paper-based systems. Although much of the airline indUStry 's concern has focused on errors pilots make in entering FMS data, we determined that errors occur at every stage of the process and that errors by ground personnel are probably at least as frequent and certainly as consequential as errors by pilots. Most of the errors we examined could in principle have been trapped by effective use of existing procedures or technology; however, the fact that they were not trapped anywhere indicates the need for better countermeasures. Existing procedures are often inadequately designed to mesh with the ways humans process information. Because procedures often do not take into account the ways in which information flows in actual flight ops and time pressures and interruptions experienced by pilots and ground personnel, vulnerability to error is greater. Some aspects of NextGen operations may exacerbate this vulnerability. We identify measures to reduce the number of errors and to help catch the errors that occur.

  8. A Rapid Method to Achieve Aero-Engine Blade Form Detection

    PubMed Central

    Sun, Bin; Li, Bing

    2015-01-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces. PMID:26039420

  9. A rapid method to achieve aero-engine blade form detection.

    PubMed

    Sun, Bin; Li, Bing

    2015-06-01

    This paper proposes a rapid method to detect aero-engine blade form, according to the characteristics of an aero-engine blade surface. This method first deduces an inclination error model in free-form surface measurements based on the non-contact laser triangulation principle. Then a four-coordinate measuring system was independently developed, a special fixture was designed according to the blade shape features, and a fast measurement of the blade features path was planned. Finally, by using the inclination error model for correction of acquired data, the measurement error that was caused by tilt form is compensated. As a result the measurement accuracy of the Laser Displacement Sensor was less than 10 μm. After the experimental verification, this method makes full use of optical non-contact measurement fast speed, high precision and wide measuring range of features. Using a standard gauge block as a measurement reference, the coordinate system conversion data is simple and practical. It not only improves the measurement accuracy of the blade surface, but also its measurement efficiency. Therefore, this method increases the value of the measurement of complex surfaces.

  10. Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment

    NASA Technical Reports Server (NTRS)

    Conrad, Patrick R.; Naasz, Bo J.

    2007-01-01

    The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown.

  11. Improving patient safety through quality assurance.

    PubMed

    Raab, Stephen S

    2006-05-01

    Anatomic pathology laboratories use several quality assurance tools to detect errors and to improve patient safety. To review some of the anatomic pathology laboratory patient safety quality assurance practices. Different standards and measures in anatomic pathology quality assurance and patient safety were reviewed. Frequency of anatomic pathology laboratory error, variability in the use of specific quality assurance practices, and use of data for error reduction initiatives. Anatomic pathology error frequencies vary according to the detection method used. Based on secondary review, a College of American Pathologists Q-Probes study showed that the mean laboratory error frequency was 6.7%. A College of American Pathologists Q-Tracks study measuring frozen section discrepancy found that laboratories improved the longer they monitored and shared data. There is a lack of standardization across laboratories even for governmentally mandated quality assurance practices, such as cytologic-histologic correlation. The National Institutes of Health funded a consortium of laboratories to benchmark laboratory error frequencies, perform root cause analysis, and design error reduction initiatives, using quality assurance data. Based on the cytologic-histologic correlation process, these laboratories found an aggregate nongynecologic error frequency of 10.8%. Based on gynecologic error data, the laboratory at my institution used Toyota production system processes to lower gynecologic error frequencies and to improve Papanicolaou test metrics. Laboratory quality assurance practices have been used to track error rates, and laboratories are starting to use these data for error reduction initiatives.

  12. The identification and repair of anomalous measurements in the measurement of big diameter based on rolling-wheel method

    NASA Astrophysics Data System (ADS)

    Chen, Haiou; Yu, Xiaofen

    2011-05-01

    Rolling-wheel method is an effective way of measuring big diameter. After amending the temperature error and pressure error, the uncertainty of measurement can not be φ =5um/m stably because of the influence of skid. The traditional method of identifying skid loses sight of the influences of the unstable motor speed, the appearance form error and the eccentric of installation of the big axis and rolling wheel and so on, so the method has its limitation. In this paper, a new method of multiple identification and repair is introduced, namely n diameters are measured and Chauvenet standard is used for identifying the anomalous measurements one by one, and then the average value of the remaining data is used for repairing identified anomalous measurements, and the next round identification and repair is carried out until the accuracy requirement of the measurement is satisfied. The result of experiments indicates that the method can identify anomalous measurements whose offsets caused by the skid are greater than 0.2φ , and the uncertainty of measurement has improved substantially.

  13. Use of autocorrelation scanning in DNA copy number analysis.

    PubMed

    Zhang, Liangcai; Zhang, Li

    2013-11-01

    Data quality is a critical issue in the analyses of DNA copy number alterations obtained from microarrays. It is commonly assumed that copy number alteration data can be modeled as piecewise constant and the measurement errors of different probes are independent. However, these assumptions do not always hold in practice. In some published datasets, we find that measurement errors are highly correlated between probes that interrogate nearby genomic loci, and the piecewise-constant model does not fit the data well. The correlated errors cause problems in downstream analysis, leading to a large number of DNA segments falsely identified as having copy number gains and losses. We developed a simple tool, called autocorrelation scanning profile, to assess the dependence of measurement error between neighboring probes. Autocorrelation scanning profile can be used to check data quality and refine the analysis of DNA copy number data, which we demonstrate in some typical datasets. lzhangli@mdanderson.org. Supplementary data are available at Bioinformatics online.

  14. Assessment of surface turbulent fluxes using geostationary satellite surface skin temperatures and a mixed layer planetary boundary layer scheme

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Stewart, Tod R.

    1989-01-01

    A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.

  15. A direct evaluation of the Geosat altimeter wet atmospheric range delay using very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.; Ryan, J.; Braatz, L.; Klosko, S. M.

    1993-01-01

    The overall accuracy of the U.S. Navy Geosat altimeter wet atmospheric range delay caused by refraction through the atmosphere is directly assessed by comparing the estimates made from the DMSP Special Sensor Microwave/Imager and the U.S. Navy Fleet Numerical Ocean Center forecast model for Geosat with measurements of total zenith columnar water vapor content from four VLBI sites. The assessment is made by comparing time series of range delay from various methods at each location. To determine the importance of diurnal variation in water vapor content in noncoincident estimates, the VLBI measurements were made at 15-min intervals over a few days. The VLBI measurements showed strong diurnal variations in columnar water vapor at several sites, causing errors of the order 3 cm rms in any noncoincident measurement of the wet troposphere range delay. These errors have an effect on studies of annual and interannual changes in sea level with Geosat data.

  16. Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error.

    PubMed

    Treleaven, Julia; Jull, Gwendolen; Sterling, Michele

    2003-01-01

    Dizziness and/or unsteadiness are common symptoms of chronic whiplash-associated disorders. This study aimed to report the characteristics of these symptoms and determine whether there was any relationship to cervical joint position error. Joint position error, the accuracy to return to the natural head posture following extension and rotation, was measured in 102 subjects with persistent whiplash-associated disorder and 44 control subjects. Whiplash subjects completed a neck pain index and answered questions about the characteristics of dizziness. The results indicated that subjects with whiplash-associated disorders had significantly greater joint position errors than control subjects. Within the whiplash group, those with dizziness had greater joint position errors than those without dizziness following rotation (rotation (R) 4.5 degrees (0.3) vs 2.9 degrees (0.4); rotation (L) 3.9 degrees (0.3) vs 2.8 degrees (0.4) respectively) and a higher neck pain index (55.3% (1.4) vs 43.1% (1.8)). Characteristics of the dizziness were consistent for those reported for a cervical cause but no characteristics could predict the magnitude of joint position error. Cervical mechanoreceptor dysfunction is a likely cause of dizziness in whiplash-associated disorder.

  17. A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.

    PubMed

    Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema

    2016-01-01

    A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.

  18. Forward scattering in two-beam laser interferometry

    NASA Astrophysics Data System (ADS)

    Mana, G.; Massa, E.; Sasso, C. P.

    2018-04-01

    A fractional error as large as 25 pm mm-1 at the zero optical-path difference has been observed in an optical interferometer measuring the displacement of an x-ray interferometer used to determine the lattice parameter of silicon. Detailed investigations have brought to light that the error was caused by light forward-scattered from the beam feeding the interferometer. This paper reports on the impact of forward-scattered light on the accuracy of two-beam optical interferometry applied to length metrology, and supplies a model capable of explaining the observed error.

  19. Application of Energy Function as a Measure of Error in the Numerical Solution for Online Transient Stability Assessment

    NASA Astrophysics Data System (ADS)

    Sarojkumar, K.; Krishna, S.

    2016-08-01

    Online dynamic security assessment (DSA) is a computationally intensive task. In order to reduce the amount of computation, screening of contingencies is performed. Screening involves analyzing the contingencies with the system described by a simpler model so that computation requirement is reduced. Screening identifies those contingencies which are sure to not cause instability and hence can be eliminated from further scrutiny. The numerical method and the step size used for screening should be chosen with a compromise between speed and accuracy. This paper proposes use of energy function as a measure of error in the numerical solution used for screening contingencies. The proposed measure of error can be used to determine the most accurate numerical method satisfying the time constraint of online DSA. Case studies on 17 generator system are reported.

  20. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback.

    PubMed

    Cler, Gabriel J; Lee, Jackson C; Mittelman, Talia; Stepp, Cara E; Bohland, Jason W

    2017-06-22

    Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. https://doi.org/10.23641/asha.5103067.

  1. Kinematic Analysis of Speech Sound Sequencing Errors Induced by Delayed Auditory Feedback

    PubMed Central

    Lee, Jackson C.; Mittelman, Talia; Stepp, Cara E.; Bohland, Jason W.

    2017-01-01

    Purpose Delayed auditory feedback (DAF) causes speakers to become disfluent and make phonological errors. Methods for assessing the kinematics of speech errors are lacking, with most DAF studies relying on auditory perceptual analyses, which may be problematic, as errors judged to be categorical may actually represent blends of sounds or articulatory errors. Method Eight typical speakers produced nonsense syllable sequences under normal and DAF (200 ms). Lip and tongue kinematics were captured with electromagnetic articulography. Time-locked acoustic recordings were transcribed, and the kinematics of utterances with and without perceived errors were analyzed with existing and novel quantitative methods. Results New multivariate measures showed that for 5 participants, kinematic variability for productions perceived to be error free was significantly increased under delay; these results were validated by using the spatiotemporal index measure. Analysis of error trials revealed both typical productions of a nontarget syllable and productions with articulatory kinematics that incorporated aspects of both the target and the perceived utterance. Conclusions This study is among the first to characterize articulatory changes under DAF and provides evidence for different classes of speech errors, which may not be perceptually salient. New methods were developed that may aid visualization and analysis of large kinematic data sets. Supplemental Material https://doi.org/10.23641/asha.5103067 PMID:28655038

  2. Errors in measurements by ultrasonic thickness gauges caused by the variation in ultrasonic velocity in constructional steels and metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, V.A.; Tarasenko, V.L.; Tselser, L.B.

    1988-09-01

    Numerical values of the variation in ultrasonic velocity in constructional metal alloys and the measurement errors related to them are systematized. The systematization is based on the measurement results of the group ultrasonic velocity made in the All-Union Scientific-Research Institute for Nondestructive Testing in 1983-1984 and also on the measurement results of the group velocity made by various authors. The variations in ultrasonic velocity were systematized for carbon, low-alloy, and medium-alloy constructional steels; high-alloy iron base alloys; nickel-base heat-resistant alloys; wrought aluminum constructional alloys; titanium alloys; and cast irons and copper alloys.

  3. Investigating the Causes of Medication Errors and Strategies to Prevention of Them from Nurses and Nursing Student Viewpoint

    PubMed Central

    Gorgich, Enam Alhagh Charkhat; Barfroshan, Sanam; Ghoreishi, Gholamreza; Yaghoobi, Maryam

    2016-01-01

    Introduction and Aim: Medication errors as a serious problem in world and one of the most common medical errors that threaten patient safety and may lead to even death of them. The purpose of this study was to investigate the causes of medication errors and strategies to prevention of them from nurses and nursing student viewpoint. Materials & Methods: This cross-sectional descriptive study was conducted on 327 nursing staff of khatam-al-anbia hospital and 62 intern nursing students in nursing and midwifery school of Zahedan, Iran, enrolled through the availability sampling in 2015. The data were collected by the valid and reliable questionnaire. To analyze the data, descriptive statistics, T-test and ANOVA were applied by use of SPSS16 software. Findings: The results showed that the most common causes of medications errors in nursing were tiredness due increased workload (97.8%), and in nursing students were drug calculation, (77.4%). The most important way for prevention in nurses and nursing student opinion, was reducing the work pressure by increasing the personnel, proportional to the number and condition of patients and also creating a unit as medication calculation. Also there was a significant relationship between the type of ward and the mean of medication errors in two groups. Conclusion: Based on the results it is recommended that nurse-managers resolve the human resources problem, provide workshops and in-service education about preparing medications, side-effects of drugs and pharmacological knowledge. Using electronic medications cards is a measure which reduces medications errors. PMID:27045413

  4. Why GPS makes distances bigger than they are

    PubMed Central

    Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried

    2016-01-01

    ABSTRACT Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is – on average – bigger than the true distance between these points. This systematic ‘overestimation of distance’ becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error (C). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected. PMID:27019610

  5. Estimation of shortwave hemispherical reflectance (albedo) from bidirectionally reflected radiance data

    NASA Technical Reports Server (NTRS)

    Starks, Patrick J.; Norman, John M.; Blad, Blaine L.; Walter-Shea, Elizabeth A.; Walthall, Charles L.

    1991-01-01

    An equation for estimating albedo from bidirectional reflectance data is proposed. The estimates of albedo are found to be greater than values obtained with simultaneous pyranometer measurements. Particular attention is given to potential sources of systematic errors including extrapolation of bidirectional reflectance data out to a view zenith angle of 90 deg, the use of inappropriate weighting coefficients in the numerator of the albedo equation, surface shadowing caused by the A-frame instrumentation used to measure the incoming and outgoing radiation fluxes, errors in estimates of the denominator of the proposed albedo equation, and a 'hot spot' contribution in bidirectional data measured by a modular multiband radiometer.

  6. Simultaneous measurement of temperature and strain using four connecting wires

    NASA Technical Reports Server (NTRS)

    Parker, Allen R., Jr.

    1993-01-01

    This paper describes a new signal-conditioning technique for measuring strain and temperature which uses fewer connecting wires than conventional techniques. Simultaneous measurement of temperature and strain has been achieved by using thermocouple wire to connect strain gages to signal conditioning. This signal conditioning uses a new method for demultiplexing sampled analog signals and the Anderson current loop circuit. Theory is presented along with data to confirm that strain gage resistance change is sensed without appreciable error because of thermoelectric effects. Furthermore, temperature is sensed without appreciable error because of voltage drops caused by strain gage excitation current flowing through the gage resistance.

  7. Delayed visual attention caused by high myopic refractive error.

    PubMed

    Winges, Kimberly M; Zarpellon, Ursula; Hou, Chuan; Good, William V

    2005-06-01

    Delayed visual maturation (DVM) is usually a retrospective diagnosis given to infants who are born with no or poor visually-directed behavior, despite normal acuity on objective testing, but who recover months later. This condition can be organized into several types based on associated neurodevelopmental or ocular findings, but the etiology of DVM is probably complex and involves multiple possible origins. Here we report two infants who presented with delayed visual maturation (attention). They were visually unresponsive at birth but were later found to have high myopic errors. Patient 1 had -4 D right eye, -5 D left eye. Patient 2 had -9 D o.u. Upon spectacle correction at 5 and 4 months, respectively, both infants immediately displayed visually-directed behavior, suggesting that a high refractive error was the cause of inattention in these patients. These findings could add to knowledge surrounding DVM and the diagnosis of apparently blind infants. Findings presented here also indicate the importance of prompt refractive error measurement in such cases.

  8. Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice

    PubMed Central

    Tkatchenko, Tatiana V.; Tkatchenko, Andrei V.

    2010-01-01

    Mice have increasingly been used as a model for studies of myopia. The key to successful use of mice for myopia research is the ability to obtain accurate measurements of refractive status of their eyes. In order to obtain accurate measurements of refractive errors in mice, the refraction needs to be performed along the optical axis of the eye. This represents a particular challenge, because mice are very difficult to immobilize. Recently, ketamine-xylazine anesthesia has been used to immobilize mice before measuring refractive errors, in combination with tropicamide ophthalmic solution to induce mydriasis. Although these drugs have increasingly been used while refracting mice, their effects on the refractive state of the mouse eye have not yet been investigated. Therefore, we have analyzed the effects of tropicamide eye drops and ketamine-xylazine anesthesia on refraction in P40 C57BL/6J mice. We have also explored two alternative methods to immobilize mice, i.e. the use of a restraining platform and pentobarbital anesthesia. We found that tropicamide caused a very small, but statistically significant, hyperopic shift in refraction. Pentobarbital did not have any substantial effect on refractive status, whereas ketamine-xylazine caused a large and highly significant hyperopic shift in refraction. We also found that the use of a restraining platform represents good alternative for immobilization of mice prior to refraction. Thus, our data suggest that ketamine-xylazine anesthesia should be avoided in studies of refractive development in mice and underscore the importance of providing appropriate experimental conditions when measuring refractive errors in mice. PMID:20813132

  9. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung.

    PubMed

    Holman, Beverley F; Cuplov, Vesna; Hutton, Brian F; Groves, Ashley M; Thielemans, Kris

    2016-04-21

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant (18)F-FDG and (18)F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.

  10. The effect of respiratory induced density variations on non-TOF PET quantitation in the lung

    NASA Astrophysics Data System (ADS)

    Holman, Beverley F.; Cuplov, Vesna; Hutton, Brian F.; Groves, Ashley M.; Thielemans, Kris

    2016-04-01

    Accurate PET quantitation requires a matched attenuation map. Obtaining matched CT attenuation maps in the thorax is difficult due to the respiratory cycle which causes both motion and density changes. Unlike with motion, little attention has been given to the effects of density changes in the lung on PET quantitation. This work aims to explore the extent of the errors caused by pulmonary density attenuation map mismatch on dynamic and static parameter estimates. Dynamic XCAT phantoms were utilised using clinically relevant 18F-FDG and 18F-FMISO time activity curves for all organs within the thorax to estimate the expected parameter errors. The simulations were then validated with PET data from 5 patients suffering from idiopathic pulmonary fibrosis who underwent PET/Cine-CT. The PET data were reconstructed with three gates obtained from the Cine-CT and the average Cine-CT. The lung TACs clearly displayed differences between true and measured curves with error depending on global activity distribution at the time of measurement. The density errors from using a mismatched attenuation map were found to have a considerable impact on PET quantitative accuracy. Maximum errors due to density mismatch were found to be as high as 25% in the XCAT simulation. Differences in patient derived kinetic parameter estimates and static concentration between the extreme gates were found to be as high as 31% and 14%, respectively. Overall our results show that respiratory associated density errors in the attenuation map affect quantitation throughout the lung, not just regions near boundaries. The extent of this error is dependent on the activity distribution in the thorax and hence on the tracer and time of acquisition. Consequently there may be a significant impact on estimated kinetic parameters throughout the lung.

  11. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; DeWeese, Keith; Vess, Melissa; O'Donnell, James R., Jr.; Welter, Gary

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  12. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; Deweese, Keith; Vess, Missie; Welter, Gary; O'Donnell, James R., Jr.

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation and Control (GNC) analysis team encountered four main on orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo-induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GNC engineers identified and tracked down the root causes. Flight data and GNC on board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  13. Anisotropy measurement of pyrolytic carbon layers of coated particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesyolkin, Ju. A., E-mail: Ju.Ves@yandex.ru; Ivanov, A. S., E-mail: asi.kiae@gmail.com; Trushkina, T. V.

    2015-12-15

    Equipment at the National Research Center Kurchatov Institute intended for the anisotropy determination of pyrolytic carbon layers in coated particles (CPs) of the GT-MGR reactor is tested and calibrated. The dependence of the anisotropy coefficient on the size of the measurement region is investigated. The results of measuring the optical anisotropy factor (OPTAF) for an aluminum mirror, rutile crystal, and available CP samples with the known characteristics measured previously using ORNL equipment (United States) are presented. In addition, measurements of CP samples prepared at VNIINM are performed. A strong dependence of the data on the preparation quality of metallographic sectionsmore » is found. Our investigations allow us to make the conclusion on the working capacity of the existing equipment for measuring the anisotropy of pyrolytic carbon CP coatings using the equipment at the Kurchatov Institute with the relative error of about 1%. It is shown that the elimination of the errors caused by the stochastic fluctuations in a measuring path by mathematical processing of the signal allows us to decrease the relative error of OPTAF measurements to ∼0.3%.« less

  14. A precision analogue integrator system for heavy current measurement in MFDC resistance spot welding

    NASA Astrophysics Data System (ADS)

    Xia, Yu-Jun; Zhang, Zhong-Dian; Xia, Zhen-Xin; Zhu, Shi-Liang; Zhang, Rui

    2016-02-01

    In order to control and monitor the quality of middle frequency direct current (MFDC) resistance spot welding (RSW), precision measurement of the welding current up to 100 kA is required, for which Rogowski coils are the only viable current transducers at present. Thus, a highly accurate analogue integrator is the key to restoring the converted signals collected from the Rogowski coils. Previous studies emphasised that the integration drift is a major factor that influences the performance of analogue integrators, but capacitive leakage error also has a significant impact on the result, especially in long-time pulse integration. In this article, new methods of measuring and compensating capacitive leakage error are proposed to fabricate a precision analogue integrator system for MFDC RSW. A voltage holding test is carried out to measure the integration error caused by capacitive leakage, and an original integrator with a feedback adder is designed to compensate capacitive leakage error in real time. The experimental results and statistical analysis show that the new analogue integrator system could constrain both drift and capacitive leakage error, of which the effect is robust to different voltage levels of output signals. The total integration error is limited within  ±0.09 mV s-1 0.005% s-1 or full scale at a 95% confidence level, which makes it possible to achieve the precision measurement of the welding current of MFDC RSW with Rogowski coils of 0.1% accuracy class.

  15. Error reduction study employing a pseudo-random binary sequence for use in acoustic pyrometry of gases

    NASA Astrophysics Data System (ADS)

    Ewan, B. C. R.; Ireland, S. N.

    2000-12-01

    Acoustic pyrometry uses the temperature dependence of sound speed in materials to measure temperature. This is normally achieved by measuring the transit time for a sound signal over a known path length and applying the material relation between temperature and velocity to extract an "average" temperature. Sources of error associated with the measurement of mean transit time are discussed in implementing the technique in gases, one of the principal causes being background noise in typical industrial environments. A number of transmitted signal and processing strategies which can be used in the area are examined and the expected error in mean transit time associated with each technique is quantified. Transmitted signals included pulses, pure frequencies, chirps, and pseudorandom binary sequences (prbs), while processing involves edge detection and correlation. Errors arise through the misinterpretation of the positions of edge arrival or correlation peaks due to instantaneous deviations associated with background noise and these become more severe as signal to noise amplitude ratios decrease. Population errors in the mean transit time are estimated for the different measurement strategies and it is concluded that PRBS combined with correlation can provide the lowest errors when operating in high noise environments. The operation of an instrument based on PRBS transmitted signals is described and test results under controlled noise conditions are presented. These confirm the value of the strategy and demonstrate that measurements can be made with signal to noise amplitude ratios down to 0.5.

  16. Accuracy assessment of high-rate GPS measurements for seismology

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Davis, J. L.; Ekström, G.

    2007-12-01

    Analysis of GPS measurements with a controlled laboratory system, built to simulate the ground motions caused by tectonic earthquakes and other transient geophysical signals such as glacial earthquakes, enables us to assess the technique of high-rate GPS. The root-mean-square (rms) position error of this system when undergoing realistic simulated seismic motions is 0.05~mm, with maximum position errors of 0.1~mm, thus providing "ground truth" GPS displacements. We have acquired an extensive set of high-rate GPS measurements while inducing seismic motions on a GPS antenna mounted on this system with a temporal spectrum similar to real seismic events. We found that, for a particular 15-min-long test event, the rms error of the 1-Hz GPS position estimates was 2.5~mm, with maximum position errors of 10~mm, and the error spectrum of the GPS estimates was approximately flicker noise. These results may however represent a best-case scenario since they were obtained over a short (~10~m) baseline, thereby greatly mitigating baseline-dependent errors, and when the number and distribution of satellites on the sky was good. For example, we have determined that the rms error can increase by a factor of 2--3 as the GPS constellation changes throughout the day, with an average value of 3.5~mm for eight identical, hourly-spaced, consecutive test events. The rms error also increases with increasing baseline, as one would expect, with an average rms error for a ~1400~km baseline of 9~mm. We will present an assessment of the accuracy of high-rate GPS based on these measurements, discuss the implications of this study for seismology, and describe new applications in glaciology.

  17. Study on the refractive errors of school going children of Pokhara city in Nepal.

    PubMed

    Niroula, D R; Saha, C G

    Refractive errors are the one of the most common visual disorders found worldwide in school going children and also it is one of the causes of blindness. It can easily be prevented, if timely proper measures are taken. In Kathmandu valley and Mechi Zone of Nepal, the distribution of refractive errors was found to be very high. No records are available from the Western part of Nepal. Considering the importance of the refractive errors the present study had been undertaken in Pokhara city. 964 subjects (474 boys, 490 girls) were selected between age groups 10 to 19 years from 6 schools representing different region of Pokhara. After Preliminary examination: on acuity of vision with Snellen's and Jaeger's charts, the subjects were referred to the Manipal Teaching Hospital, Pokhara for confirmation of the refractive errors. Sixty two schools children (6.43%), out of 964 had refractive errors. The myopia was found to be most common (4.05%). The refractive errors were found more in Private school children (9.29%) than Government school children (4.23%), which is statistically significant (P < 0.05). More boys (7.59%) were found to have suffered from refractive errors than girls (5.31%). Further, children with vegetarian diet (10.52%) had greater number of refractive errors than non-vegetarian diet children (6.17%). In the present study, percentage distribution of myopia was found to be higher (4.05%) than the hyperopia (1.24%) and astigmatism (1.14%). Interestingly, in the present study the refractive errors were found significantly higher in Private schools children than Government schools because the children who read in Private schools have higher socioeconomic status; spend more time in home work, watching Television and Computer as compared to government schools children. These near activities of the eyes causes stress on eyes of the children and might be one of the causes of developing myopia.

  18. WE-H-BRC-09: Simulated Errors in Mock Radiotherapy Plans to Quantify the Effectiveness of the Physics Plan Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopan, O; Kalet, A; Smith, W

    2016-06-15

    Purpose: A standard tool for ensuring the quality of radiation therapy treatments is the initial physics plan review. However, little is known about its performance in practice. The goal of this study is to measure the effectiveness of physics plan review by introducing simulated errors into “mock” treatment plans and measuring the performance of plan review by physicists. Methods: We generated six mock treatment plans containing multiple errors. These errors were based on incident learning system data both within the department and internationally (SAFRON). These errors were scored for severity and frequency. Those with the highest scores were included inmore » the simulations (13 errors total). Observer bias was minimized using a multiple co-correlated distractor approach. Eight physicists reviewed these plans for errors, with each physicist reviewing, on average, 3/6 plans. The confidence interval for the proportion of errors detected was computed using the Wilson score interval. Results: Simulated errors were detected in 65% of reviews [51–75%] (95% confidence interval [CI] in brackets). The following error scenarios had the highest detection rates: incorrect isocenter in DRRs/CBCT (91% [73–98%]) and a planned dose different from the prescribed dose (100% [61–100%]). Errors with low detection rates involved incorrect field parameters in record and verify system (38%, [18–61%]) and incorrect isocenter localization in planning system (29% [8–64%]). Though pre-treatment QA failure was reliably identified (100%), less than 20% of participants reported the error that caused the failure. Conclusion: This is one of the first quantitative studies of error detection. Although physics plan review is a key safety measure and can identify some errors with high fidelity, others errors are more challenging to detect. This data will guide future work on standardization and automation. Creating new checks or improving existing ones (i.e., via automation) will help in detecting those errors with low detection rates.« less

  19. Acetaminophen attenuates error evaluation in cortex

    PubMed Central

    Kam, Julia W.Y.; Heine, Steven J.; Inzlicht, Michael; Handy, Todd C.

    2016-01-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants’ ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual’s Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. PMID:26892161

  20. The incidence and severity of errors in pharmacist-written discharge medication orders.

    PubMed

    Onatade, Raliat; Sawieres, Sara; Veck, Alexandra; Smith, Lindsay; Gore, Shivani; Al-Azeib, Sumiah

    2017-08-01

    Background Errors in discharge prescriptions are problematic. When hospital pharmacists write discharge prescriptions improvements are seen in the quality and efficiency of discharge. There is limited information on the incidence of errors in pharmacists' medication orders. Objective To investigate the extent and clinical significance of errors in pharmacist-written discharge medication orders. Setting 1000-bed teaching hospital in London, UK. Method Pharmacists in this London hospital routinely write discharge medication orders as part of the clinical pharmacy service. Convenient days, based on researcher availability, between October 2013 and January 2014 were selected. Pre-registration pharmacists reviewed all discharge medication orders written by pharmacists on these days and identified discrepancies between the medication history, inpatient chart, patient records and discharge summary. A senior clinical pharmacist confirmed the presence of an error. Each error was assigned a potential clinical significance rating (based on the NCCMERP scale) by a physician and an independent senior clinical pharmacist, working separately. Main outcome measure Incidence of errors in pharmacist-written discharge medication orders. Results 509 prescriptions, written by 51 pharmacists, containing 4258 discharge medication orders were assessed (8.4 orders per prescription). Ten prescriptions (2%), contained a total of ten erroneous orders (order error rate-0.2%). The pharmacist considered that one error had the potential to cause temporary harm (0.02% of all orders). The physician did not rate any of the errors with the potential to cause harm. Conclusion The incidence of errors in pharmacists' discharge medication orders was low. The quality, safety and policy implications of pharmacists routinely writing discharge medication orders should be further explored.

  1. Center-to-Limb Variation of Deprojection Errors in SDO/HMI Vector Magnetograms

    NASA Astrophysics Data System (ADS)

    Falconer, David; Moore, Ronald; Barghouty, Nasser; Tiwari, Sanjiv K.; Khazanov, Igor

    2015-04-01

    For use in investigating the magnetic causes of coronal heating in active regions and for use in forecasting an active region’s productivity of major CME/flare eruptions, we have evaluated various sunspot-active-region magnetic measures (e.g., total magnetic flux, free-magnetic-energy proxies, magnetic twist measures) from HMI Active Region Patches (HARPs) after the HARP has been deprojected to disk center. From a few tens of thousand HARP vector magnetograms (of a few hundred sunspot active regions) that have been deprojected to disk center, we have determined that the errors in the whole-HARP magnetic measures from deprojection are negligibly small for HARPS deprojected from distances out to 45 heliocentric degrees. For some purposes the errors from deprojection are tolerable out to 60 degrees. We obtained this result by the following process. For each whole-HARP magnetic measure: 1) for each HARP disk passage, normalize the measured values by the measured value for that HARP at central meridian; 2) then for each 0.05 Rs annulus, average the values from all the HARPs in the annulus. This results in an average normalized value as a function of radius for each measure. Assuming no deprojection errors and that, among a large set of HARPs, the measure is as likely to decrease as to increase with HARP distance from disk center, the average of each annulus is expected to be unity, and, for a statistically large sample, the amount of deviation of the average from unity estimates the error from deprojection effects. The deprojection errors arise from 1) errors in the transverse field being deprojected into the vertical field for HARPs observed at large distances from disk center, 2) increasingly larger foreshortening at larger distances from disk center, and 3) possible errors in transverse-field-direction ambiguity resolution.From the compiled set of measured vales of whole-HARP magnetic nonpotentiality parameters measured from deprojected HARPs, we have examined the relation between each nonpotentiality parameter and the speed of CMEs from the measured active regions. For several different nonpotentiality parameters we find there is an upper limit to the CME speed, the limit increasing as the value of the parameter increases.

  2. An analysis of input errors in precipitation-runoff models using regression with errors in the independent variables

    USGS Publications Warehouse

    Troutman, Brent M.

    1982-01-01

    Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.

  3. Experimental and theoretical determination of sea-state bias in radar altimetry

    NASA Technical Reports Server (NTRS)

    Stewart, Robert H.

    1991-01-01

    The major unknown error in radar altimetry is due to waves on the sea surface which cause the mean radar-reflecting surface to be displaced from mean sea level. This is the electromagnetic bias. The primary motivation for the project was to understand the causes of the bias so that the error it produces in radar altimetry could be calculated and removed from altimeter measurements made from space by the Topex/Poseidon altimetric satellite. The goals of the project were: (1) observe radar scatter at vertical incidence using a simple radar on a platform for a wide variety of environmental conditions at the same time wind and wave conditions were measured; (2) calculate electromagnetic bias from the radar observations; (3) investigate the limitations of the present theory describing radar scatter at vertical incidence; (4) compare measured electromagnetic bias with bias calculated from theory using measurements of wind and waves made at the time of the radar measurements; and (5) if possible, extend the theory so bias can be calculated for a wider range of environmental conditions.

  4. Errors in Measuring Water Potentials of Small Samples Resulting from Water Adsorption by Thermocouple Psychrometer Chambers 1

    PubMed Central

    Bennett, Jerry M.; Cortes, Peter M.

    1985-01-01

    The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios. PMID:16664367

  5. Errors in measuring water potentials of small samples resulting from water adsorption by thermocouple psychrometer chambers.

    PubMed

    Bennett, J M; Cortes, P M

    1985-09-01

    The adsorption of water by thermocouple psychrometer assemblies is known to cause errors in the determination of water potential. Experiments were conducted to evaluate the effect of sample size and psychrometer chamber volume on measured water potentials of leaf discs, leaf segments, and sodium chloride solutions. Reasonable agreement was found between soybean (Glycine max L. Merr.) leaf water potentials measured on 5-millimeter radius leaf discs and large leaf segments. Results indicated that while errors due to adsorption may be significant when using small volumes of tissue, if sufficient tissue is used the errors are negligible. Because of the relationship between water potential and volume in plant tissue, the errors due to adsorption were larger with turgid tissue. Large psychrometers which were sealed into the sample chamber with latex tubing appeared to adsorb more water than those sealed with flexible plastic tubing. Estimates are provided of the amounts of water adsorbed by two different psychrometer assemblies and the amount of tissue sufficient for accurate measurements of leaf water potential with these assemblies. It is also demonstrated that water adsorption problems may have generated low water potential values which in prior studies have been attributed to large cut surface area to volume ratios.

  6. Interference susceptibility measurements for an MSK satellite communication link

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Fujikawa, Gene

    1992-01-01

    The results are presented of measurements of the degradation of an MSK satellite link due to modulated and CW (unmodulated) interference. These measurements were made using a hardware based satellite communication link simulator at NASA-Lewis. The results indicate the amount of bit error rate degradation caused by CW interference as a function of frequency and power level, and the degradation caused by adjacent channel and cochannel modulated interference as a function of interference power level. Results were obtained for both the uplink case (including satellite nonlinearity) and the downlink case (linear channel).

  7. Effects of specimen preparation on the electromagnetic property measurements of solid materials with an automatic network analyzer

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1986-01-01

    Effects of specimen preparation on measured values of an acrylic's electomagnetic properties at X-band microwave frequencies, TE sub 1,0 mode, utilizing an automatic network analyzer have been studied. For 1 percent or less error, a gap between the specimen edge and the 0.901-in. wall of the specimen holder was the most significant parameter. The gap had to be less than 0.002 in. The thickness variation and alignment errors in the direction parallel to the 0.901-in. wall were equally second most significant and had to be less than 1 degree. Errors in the measurement f the thickness were third most significant. They had to be less than 3 percent. The following parameters caused errors of 1 percent or less: ratios of specimen-holder thicknesses of more than 15 percent, gaps between the specimen edge and the 0.401-in. wall less than 0.045 in., position errors less than 15 percent, surface roughness, hickness variation in the direction parallel to the 0.401-in. wall less than 35 percent, and specimen alignment in the direction parallel to the 0.401-in. wall mass than 5 degrees.

  8. Addressing Phase Errors in Fat-Water Imaging Using a Mixed Magnitude/Complex Fitting Method

    PubMed Central

    Hernando, D.; Hines, C. D. G.; Yu, H.; Reeder, S.B.

    2012-01-01

    Accurate, noninvasive measurements of liver fat content are needed for the early diagnosis and quantitative staging of nonalcoholic fatty liver disease. Chemical shift-based fat quantification methods acquire images at multiple echo times using a multiecho spoiled gradient echo sequence, and provide fat fraction measurements through postprocessing. However, phase errors, such as those caused by eddy currents, can adversely affect fat quantification. These phase errors are typically most significant at the first echo of the echo train, and introduce bias in complex-based fat quantification techniques. These errors can be overcome using a magnitude-based technique (where the phase of all echoes is discarded), but at the cost of significantly degraded signal-to-noise ratio, particularly for certain choices of echo time combinations. In this work, we develop a reconstruction method that overcomes these phase errors without the signal-to-noise ratio penalty incurred by magnitude fitting. This method discards the phase of the first echo (which is often corrupted) while maintaining the phase of the remaining echoes (where phase is unaltered). We test the proposed method on 104 patient liver datasets (from 52 patients, each scanned twice), where the fat fraction measurements are compared to coregistered spectroscopy measurements. We demonstrate that mixed fitting is able to provide accurate fat fraction measurements with high signal-to-noise ratio and low bias over a wide choice of echo combinations. PMID:21713978

  9. Multiple imputation to account for measurement error in marginal structural models

    PubMed Central

    Edwards, Jessie K.; Cole, Stephen R.; Westreich, Daniel; Crane, Heidi; Eron, Joseph J.; Mathews, W. Christopher; Moore, Richard; Boswell, Stephen L.; Lesko, Catherine R.; Mugavero, Michael J.

    2015-01-01

    Background Marginal structural models are an important tool for observational studies. These models typically assume that variables are measured without error. We describe a method to account for differential and non-differential measurement error in a marginal structural model. Methods We illustrate the method estimating the joint effects of antiretroviral therapy initiation and current smoking on all-cause mortality in a United States cohort of 12,290 patients with HIV followed for up to 5 years between 1998 and 2011. Smoking status was likely measured with error, but a subset of 3686 patients who reported smoking status on separate questionnaires composed an internal validation subgroup. We compared a standard joint marginal structural model fit using inverse probability weights to a model that also accounted for misclassification of smoking status using multiple imputation. Results In the standard analysis, current smoking was not associated with increased risk of mortality. After accounting for misclassification, current smoking without therapy was associated with increased mortality [hazard ratio (HR): 1.2 (95% CI: 0.6, 2.3)]. The HR for current smoking and therapy (0.4 (95% CI: 0.2, 0.7)) was similar to the HR for no smoking and therapy (0.4; 95% CI: 0.2, 0.6). Conclusions Multiple imputation can be used to account for measurement error in concert with methods for causal inference to strengthen results from observational studies. PMID:26214338

  10. S-193 scatterometer transfer function analysis for data processing

    NASA Technical Reports Server (NTRS)

    Johnson, L.

    1974-01-01

    A mathematical model for converting raw data measurements of the S-193 scatterometer into processed values of radar scattering coefficient is presented. The argument is based on an approximation derived from the Radar Equation and actual operating principles of the S-193 Scatterometer hardware. Possible error sources are inaccuracies in transmitted wavelength, range, antenna illumination integrals, and the instrument itself. The dominant source of error in the calculation of scattering coefficent is accuracy of the range. All other ractors with the possible exception of illumination integral are not considered to cause significant error in the calculation of scattering coefficient.

  11. Procedures for dealing with certain types of noise and systematic errors common to many Hadamard transform optical systems

    NASA Technical Reports Server (NTRS)

    Harwit, M.

    1977-01-01

    Sources of noise and error correcting procedures characteristic of Hadamard transform optical systems were investigated. Reduction of spectral noise due to noise spikes in the data, the effect of random errors, the relative performance of Fourier and Hadamard transform spectrometers operated under identical detector-noise-limited conditions, and systematic means for dealing with mask defects are among the topics discussed. The distortion in Hadamard transform optical instruments caused by moving Masks, incorrect mask alignment, missing measurements, and diffraction is analyzed and techniques for reducing or eliminating this distortion are described.

  12. Irradiation setup at the U-120M cyclotron facility

    NASA Astrophysics Data System (ADS)

    Křížek, F.; Ferencei, J.; Matlocha, T.; Pospíšil, J.; Príbeli, P.; Raskina, V.; Isakov, A.; Štursa, J.; Vaňát, T.; Vysoká, K.

    2018-06-01

    This paper describes parameters of the proton beams provided by the U-120M cyclotron and the related irradiation setup at the open access irradiation facility at the Nuclear Physics Institute of the Czech Academy of Sciences. The facility is suitable for testing radiation hardness of various electronic components. The use of the setup is illustrated by a measurement of an error rate for errors caused by Single Event Transients in an SRAM-based Xilinx XC3S200 FPGA. This measurement provides an estimate of a possible occurrence of Single Event Transients. Data suggest that the variation of error rate of the Single Event Effects for different clock phase shifts is not significant enough to use clock phase alignment with the beam as a fault mitigation technique.

  13. Evaluation of dynamic electromagnetic tracking deviation

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Figl, Michael; Bax, Michael; Shahidi, Ramin; Bergmann, Helmar; Birkfellner, Wolfgang

    2009-02-01

    Electromagnetic tracking systems (EMTS's) are widely used in clinical applications. Many reports have evaluated their static behavior and errors caused by metallic objects were examined. Although there exist some publications concerning the dynamic behavior of EMTS's the measurement protocols are either difficult to reproduce with respect of the movement path or only accomplished at high technical effort. Because dynamic behavior is of major interest with respect to clinical applications we established a simple but effective modal measurement easy to repeat at other laboratories. We built a simple pendulum where the sensor of our EMTS (Aurora, NDI, CA) could be mounted. The pendulum was mounted on a special bearing to guarantee that the pendulum path is planar. This assumption was tested before starting the measurements. All relevant parameters defining the pendulum motion such as rotation center and length are determined by static measurement at satisfactory accuracy. Then position and orientation data were gathered over a time period of 8 seconds and timestamps were recorded. Data analysis provided a positioning error and an overall error combining both position and orientation. All errors were calculated by means of the well know equations concerning pendulum movement. Additionally, latency - the elapsed time from input motion until the immediate consequences of that input are available - was calculated using well-known equations for mechanical pendulums for different velocities. We repeated the measurements with different metal objects (rods made of stainless steel type 303 and 416) between field generator and pendulum. We found a root mean square error (eRMS) of 1.02mm with respect to the distance of the sensor position to the fit plane (maximum error emax = 2.31mm, minimum error emin = -2.36mm). The eRMS for positional error amounted to 1.32mm while the overall error was 3.24 mm. The latency at a pendulum angle of 0° (vertical) was 7.8ms.

  14. Resection plane-dependent error in computed tomography volumetry of the right hepatic lobe in living liver donors.

    PubMed

    Kwon, Heon-Ju; Kim, Kyoung Won; Kim, Bohyun; Kim, So Yeon; Lee, Chul Seung; Lee, Jeongjin; Song, Gi Won; Lee, Sung Gyu

    2018-03-01

    Computed tomography (CT) hepatic volumetry is currently accepted as the most reliable method for preoperative estimation of graft weight in living donor liver transplantation (LDLT). However, several factors can cause inaccuracies in CT volumetry compared to real graft weight. The purpose of this study was to determine the frequency and degree of resection plane-dependent error in CT volumetry of the right hepatic lobe in LDLT. Forty-six living liver donors underwent CT before donor surgery and on postoperative day 7. Prospective CT volumetry (V P ) was measured via the assumptive hepatectomy plane. Retrospective liver volume (V R ) was measured using the actual plane by comparing preoperative and postoperative CT. Compared with intraoperatively measured weight (W), errors in percentage (%) V P and V R were evaluated. Plane-dependent error in V P was defined as the absolute difference between V P and V R . % plane-dependent error was defined as follows: |V P -V R |/W∙100. Mean V P , V R , and W were 761.9 mL, 755.0 mL, and 696.9 g. Mean and % errors in V P were 73.3 mL and 10.7%. Mean error and % error in V R were 64.4 mL and 9.3%. Mean plane-dependent error in V P was 32.4 mL. Mean % plane-dependent error was 4.7%. Plane-dependent error in V P exceeded 10% of W in approximately 10% of the subjects in our study. There was approximately 5% plane-dependent error in liver V P on CT volumetry. Plane-dependent error in V P exceeded 10% of W in approximately 10% of LDLT donors in our study. This error should be considered, especially when CT volumetry is performed by a less experienced operator who is not well acquainted with the donor hepatectomy plane.

  15. Study on temperature measurement of gas turbine blade based on analysis of error caused by the reflected radiation and emission angle

    NASA Astrophysics Data System (ADS)

    Li, Dong; Feng, Chi; Gao, Shan; Chen, Liwei; Daniel, Ketui

    2018-06-01

    Accurate measurement of gas turbine blade temperature is of great significance as far as blade health monitoring is concerned. An important method for measuring this temperature is the use of a radiation pyrometer. In this research, error of the pyrometer caused by reflected radiation from the surfaces surrounding the target and the emission angle of the target was analyzed. Important parameters for this analysis were the view factor between interacting surfaces, spectral directional emissivity, pyrometer operating wavelength and the surface temperature distribution on the blades and the vanes. The interacting surface of the rotor blade and the vane models used were discretized using triangular surface elements from which contour integral was used to calculate the view factor between the surface elements. Spectral directional emissivities were obtained from an experimental setup of Ni based alloy samples. A pyrometer operating wavelength of 1.6 μm was chosen. Computational fluid dynamics software was used to simulate the temperature distribution of the rotor blade and the guide vane based on the actual gas turbine input parameters. Results obtained in this analysis show that temperature error introduced by reflected radiation and emission angle ranges from  ‑23 K to 49 K.

  16. Assessment of the measurement performance of the in-vessel system of gap 6 of the ITER plasma position reflectometer using a finite-difference time-domain Maxwell full-wave code.

    PubMed

    da Silva, F; Heuraux, S; Ricardo, E; Quental, P; Ferreira, J

    2016-11-01

    We conducted a first assessment of the measurement performance of the in-vessel components at gap 6 of the ITER plasma position reflectometry with the aid of a synthetic Ordinary Mode (O-mode) broadband frequency-modulated continuous-wave reflectometer implemented with REFMUL, a 2D finite-difference time-domain full-wave Maxwell code. These simulations take into account the system location within the vacuum vessel as well as its access to the plasma. The plasma case considered is a baseline scenario from Fusion for Energy. We concluded that for the analyzed scenario, (i) the plasma curvature and non-equatorial position of the antenna have neglectable impact on the measurements; (ii) the cavity-like space surrounding the antenna can cause deflection and splitting of the probing beam; and (iii) multi-reflections on the blanket wall cause a substantial error preventing the system from operating within the required error margin.

  17. Numerical analysis of the blade tip-timing signal of a fiber bundle sensor probe

    NASA Astrophysics Data System (ADS)

    Guo, Haotian; Duan, Fajie; Cheng, Zhonghai

    2015-03-01

    Blade tip-timing is the most effective method for online blade vibration measurement of large rotating machines like turbine engines. Fiber bundle sensors are utilized in tip-timing system to measure the arrival time of the blade. The model of the tip-timing signal of the fiber bundle sensor is established. Experiments are conducted and the results are in concordance with the model established. The rising speed of the tip-timing signal is analyzed. To minimize the tip-timing error, the effects of the clearance change between the sensor and the blade and the deflection of the tip surface are analyzed. Simulation results indicate that the variable gain amplifier, which amplifies the signals to a similar level, can eliminate the measurement error caused by the variation of the clearance between the sensor and blade. Increasing the clearance between the sensor and blade can reduce the measurement error introduced by deflection of the tip surface.

  18. Error in Dasibi flight measurements of atmospheric ozone due to instrument wall-loss

    NASA Technical Reports Server (NTRS)

    Ainsworth, J. E.; Hagemeyer, J. R.; Reed, E. I.

    1981-01-01

    Theory suggests that in laminar flow the percent loss of a trace constituent to the walls of a measuring instrument varies as P to the -2/3, where P is the total gas pressure. Preliminary laboratory ozone wall-loss measurements confirm this P to the -2/3 dependence. Accurate assessment of wall-loss is thus of particular importance for those balloon-borne instruments utilizing laminar flow at ambient pressure, since the ambient pressure decreases by a factor of 350 during ascent to 40 km. Measurements and extrapolations made for a Dasibi ozone monitor modified for balloon flight indicate that the wall-loss error at 40 km was between 6 and 30 percent and that the wall-loss error in the derived total ozone column-content for the region from the surface to 40 km altitude was between 2 and 10 percent. At 1000 mb, turbulence caused an order of magnitude increase in the Dasibi wall-loss.

  19. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation

    PubMed Central

    Gandevia, Simon C.; Herbert, Robert D.

    2016-01-01

    Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding. PMID:27294280

  20. Effect of Transducer Orientation on Errors in Ultrasound Image-Based Measurements of Human Medial Gastrocnemius Muscle Fascicle Length and Pennation.

    PubMed

    Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2016-01-01

    Ultrasound imaging is often used to measure muscle fascicle lengths and pennation angles in human muscles in vivo. Theoretically the most accurate measurements are made when the transducer is oriented so that the image plane aligns with muscle fascicles and, for measurements of pennation, when the image plane also intersects the aponeuroses perpendicularly. However this orientation is difficult to achieve and usually there is some degree of misalignment. Here, we used simulated ultrasound images based on three-dimensional models of the human medial gastrocnemius, derived from magnetic resonance and diffusion tensor images, to describe the relationship between transducer orientation and measurement errors. With the transducer oriented perpendicular to the surface of the leg, the error in measurement of fascicle lengths was about 0.4 mm per degree of misalignment of the ultrasound image with the muscle fascicles. If the transducer is then tipped by 20°, the error increases to 1.1 mm per degree of misalignment. For a given degree of misalignment of muscle fascicles with the image plane, the smallest absolute error in fascicle length measurements occurs when the transducer is held perpendicular to the surface of the leg. Misalignment of the transducer with the fascicles may cause fascicle length measurements to be underestimated or overestimated. Contrary to widely held beliefs, it is shown that pennation angles are always overestimated if the image is not perpendicular to the aponeurosis, even when the image is perfectly aligned with the fascicles. An analytical explanation is provided for this finding.

  1. Error compensation of single-antenna attitude determination using GNSS for Low-dynamic applications

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Yu, Chao; Cai, Miaomiao

    2017-04-01

    GNSS-based single-antenna pseudo-attitude determination method has attracted more and more attention from the field of high-dynamic navigation due to its low cost, low system complexity, and no temporal accumulated errors. Related researches indicate that this method can be an important complement or even an alternative to the traditional sensors for general accuracy requirement (such as small UAV navigation). The application of single-antenna attitude determining method to low-dynamic carrier has just started. Different from the traditional multi-antenna attitude measurement technique, the pseudo-attitude attitude determination method calculates the rotation angle of the carrier trajectory relative to the earth. Thus it inevitably contains some deviations comparing with the real attitude angle. In low-dynamic application, these deviations are particularly noticeable, which may not be ignored. The causes of the deviations can be roughly classified into three categories, including the measurement error, the offset error, and the lateral error. Empirical correction strategies for the formal two errors have been promoted in previous study, but lack of theoretical support. In this paper, we will provide quantitative description of the three type of errors and discuss the related error compensation methods. Vehicle and shipborne experiments were carried out to verify the feasibility of the proposed correction methods. Keywords: Error compensation; Single-antenna; GNSS; Attitude determination; Low-dynamic

  2. A rocket ozonesonde for geophysical research and satellite intercomparison

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Coley, R. L.; Kirschner, P. T.; Gammill, B.

    1979-01-01

    The in-situ rocketsonde for ozone profile measurements developed and flown for geophysical research and satellite comparison is reviewed. The measurement principle involves the chemiluminescence caused by ambient ozone striking a detector and passive pumping as a means of sampling the atmosphere as the sonde descends through the atmosphere on a parachute. The sonde is flown on a meteorological sounding rocket, and flight data are telemetered via the standard meteorological GMD ground receiving system. The payload operation, sensor performance, and calibration procedures simulating flight conditions are described. An error analysis indicated an absolute accuracy of about 12 percent and a precision of about 8 percent. These are combined to give a measurement error of 14 percent.

  3. A novel optical fiber displacement sensor of wider measurement range based on neural network

    NASA Astrophysics Data System (ADS)

    Guo, Yuan; Dai, Xue Feng; Wang, Yu Tian

    2006-02-01

    By studying on the output characteristics of random type optical fiber sensor and semicircular type optical fiber sensor, the ratio of the two output signals was used as the output signal of the whole system. Then the measurement range was enlarged, the linearity was improved, and the errors of reflective and absorbent changing of target surface are automatically compensated. Meantime, an optical fiber sensor model of correcting static error based on BP artificial neural network(ANN) is set up. So the intrinsic errors such as effects of fluctuations in the light, circuit excursion, the intensity losses in the fiber lines and the additional losses in the receiving fiber caused by bends are eliminated. By discussing in theory and experiment, the error of nonlinear is 2.9%, the measuring range reaches to 5-6mm and the relative accuracy is 2%.And this sensor has such characteristics as no electromagnetic interference, simple construction, high sensitivity, good accuracy and stability. Also the multi-point sensor system can be used to on-line and non-touch monitor in working locales.

  4. VINSON/AUTOVON Interface Applique for the Modem, Digital Data, AN/GSC-38

    DTIC Science & Technology

    1980-11-01

    Measurement Indication Result Before Step 6 None Noise and beeping are heard in handset After Step 7 None Noise and beepi ng disappear Condition Measurement...linear range due to the compression used. Lowering the levels below the compression range may give increased linearity, but may cause signal-to- noise ...are encountered where the bit error rate at 16 KB/S results is objectionable audio noise or causes the KY-58 to squelch. On these channels the bit

  5. Heterodyne range imaging as an alternative to photogrammetry

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian; Cree, Michael; Carnegie, Dale; Payne, Andrew; Conroy, Richard

    2007-01-01

    Solid-state full-field range imaging technology, capable of determining the distance to objects in a scene simultaneously for every pixel in an image, has recently achieved sub-millimeter distance measurement precision. With this level of precision, it is becoming practical to use this technology for high precision three-dimensional metrology applications. Compared to photogrammetry, range imaging has the advantages of requiring only one viewing angle, a relatively short measurement time, and simplistic fast data processing. In this paper we fist review the range imaging technology, then describe an experiment comparing both photogrammetric and range imaging measurements of a calibration block with attached retro-reflective targets. The results show that the range imaging approach exhibits errors of approximately 0.5 mm in-plane and almost 5 mm out-of-plane; however, these errors appear to be mostly systematic. We then proceed to examine the physical nature and characteristics of the image ranging technology and discuss the possible causes of these systematic errors. Also discussed is the potential for further system characterization and calibration to compensate for the range determination and other errors, which could possibly lead to three-dimensional measurement precision approaching that of photogrammetry.

  6. Optimization of Control Points Number at Coordinate Measurements based on the Monte-Carlo Method

    NASA Astrophysics Data System (ADS)

    Korolev, A. A.; Kochetkov, A. V.; Zakharov, O. V.

    2018-01-01

    Improving the quality of products causes an increase in the requirements for the accuracy of the dimensions and shape of the surfaces of the workpieces. This, in turn, raises the requirements for accuracy and productivity of measuring of the workpieces. The use of coordinate measuring machines is currently the most effective measuring tool for solving similar problems. The article proposes a method for optimizing the number of control points using Monte Carlo simulation. Based on the measurement of a small sample from batches of workpieces, statistical modeling is performed, which allows one to obtain interval estimates of the measurement error. This approach is demonstrated by examples of applications for flatness, cylindricity and sphericity. Four options of uniform and uneven arrangement of control points are considered and their comparison is given. It is revealed that when the number of control points decreases, the arithmetic mean decreases, the standard deviation of the measurement error increases and the probability of the measurement α-error increases. In general, it has been established that it is possible to repeatedly reduce the number of control points while maintaining the required measurement accuracy.

  7. NIST Ionization Chamber "A" Sample-Height Corrections.

    PubMed

    Fitzgerald, Ryan

    2012-01-01

    For over 30 years scientists in the NIST radioactivity group have been using their pressurized ionization chamber "A" (PIC "A") to make measurements of radioactivity and radioactive half-lives. We now have evidence that some of those reported measurements were incorrect due to slippage of the source positioning ring over time. The temporal change in the holder caused an error in the source-height within the chamber, which was thought to be invariant. This unaccounted-for height change caused a change in the detector response and thus a relative error in measured activity on the order of 10(-5) to 10(-3) per year, depending on the radionuclide. The drifting detector response affected calibration factors and half-life determinations. After discovering the problem, we carried out historic research and new sensitivity tests. As a result, we have created a quantitative model of the effect and have used that model to estimate corrections to some of the past measurement results from PIC "A". In this paper we report the details and results of that model. Meanwhile, we have fixed the positioning ring and are recalibrating the detector using primary measurement methods and enhanced quality control measures.

  8. Characterization of in Band Stray Light in SBUV-2 Instruments

    NASA Technical Reports Server (NTRS)

    Huang, L. K.; DeLand, M. T.; Taylor, S. L.; Flynn, L. E.

    2014-01-01

    Significant in-band stray light (IBSL) error at solar zenith angle (SZA) values larger than 77deg near sunset in 4 SBUV/2 (Solar Backscattered Ultraviolet) instruments, on board the NOAA-14, 17, 18 and 19 satellites, has been characterized. The IBSL error is caused by large surface reflection and scattering of the air-gapped depolarizer in front of the instrument's monochromator aperture. The source of the IBSL error is direct solar illumination of instrument components near the aperture rather than from earth shine. The IBSL contamination at 273 nm can reach 40% of earth radiance near sunset, which results in as much as a 50% error in the retrieved ozone from the upper stratosphere. We have analyzed SBUV/2 albedo measurements on both the dayside and nightside to develop an empirical model for the IBSL error. This error has been corrected in the V8.6 SBUV/2 ozone retrieval.

  9. Shared and unshared exposure measurement error in occupational cohort studies and their effects on statistical inference in proportional hazards models.

    PubMed

    Hoffmann, Sabine; Laurier, Dominique; Rage, Estelle; Guihenneuc, Chantal; Ancelet, Sophie

    2018-01-01

    Exposure measurement error represents one of the most important sources of uncertainty in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead to biased risk estimates and a distortion of the shape of the exposure-response relationship. In occupational cohort studies, the time-dependent nature of exposure and changes in the method of exposure assessment may create complex error structures. When a method of group-level exposure assessment is used, individual worker practices and the imprecision of the instrument used to measure the average exposure for a group of workers may give rise to errors that are shared between workers, within workers or both. In contrast to unshared measurement error, the effects of shared errors remain largely unknown. Moreover, exposure uncertainty and magnitude of exposure are typically highest for the earliest years of exposure. We conduct a simulation study based on exposure data of the French cohort of uranium miners to compare the effects of shared and unshared exposure uncertainty on risk estimation and on the shape of the exposure-response curve in proportional hazards models. Our results indicate that uncertainty components shared within workers cause more bias in risk estimation and a more severe attenuation of the exposure-response relationship than unshared exposure uncertainty or exposure uncertainty shared between individuals. These findings underline the importance of careful characterisation and modeling of exposure uncertainty in observational studies.

  10. The effect of the dynamic wet troposphere on VLBI measurements

    NASA Technical Reports Server (NTRS)

    Treuhaft, R. N.; Lanyi, G. E.

    1986-01-01

    Calculations using a statistical model of water vapor fluctuations yield the effect of the dynamic wet troposphere on Very Long Baseline Interferometry (VLBI) measurements. The statistical model arises from two primary assumptions: (1) the spatial structure of refractivity fluctuations can be closely approximated by elementary (Kolmogorov) turbulence theory, and (2) temporal fluctuations are caused by spatial patterns which are moved over a site by the wind. The consequences of these assumptions are outlined for the VLBI delay and delay rate observables. For example, wet troposphere induced rms delays for Deep Space Network (DSN) VLBI at 20-deg elevation are about 3 cm of delay per observation, which is smaller, on the average, than other known error sources in the current DSN VLBI data set. At 20-deg elevation for 200-s time intervals, water vapor induces approximately 1.5 x 10 to the minus 13th power s/s in the Allan standard deviation of interferometric delay, which is a measure of the delay rate observable error. In contrast to the delay error, the delay rate measurement error is dominated by water vapor fluctuations. Water vapor induced VLBI parameter errors and correlations are calculated. For the DSN, baseline length parameter errors due to water vapor fluctuations are in the range of 3 to 5 cm. The above physical assumptions also lead to a method for including the water vapor fluctuations in the parameter estimation procedure, which is used to extract baseline and source information from the VLBI observables.

  11. Shared and unshared exposure measurement error in occupational cohort studies and their effects on statistical inference in proportional hazards models

    PubMed Central

    Laurier, Dominique; Rage, Estelle

    2018-01-01

    Exposure measurement error represents one of the most important sources of uncertainty in epidemiology. When exposure uncertainty is not or only poorly accounted for, it can lead to biased risk estimates and a distortion of the shape of the exposure-response relationship. In occupational cohort studies, the time-dependent nature of exposure and changes in the method of exposure assessment may create complex error structures. When a method of group-level exposure assessment is used, individual worker practices and the imprecision of the instrument used to measure the average exposure for a group of workers may give rise to errors that are shared between workers, within workers or both. In contrast to unshared measurement error, the effects of shared errors remain largely unknown. Moreover, exposure uncertainty and magnitude of exposure are typically highest for the earliest years of exposure. We conduct a simulation study based on exposure data of the French cohort of uranium miners to compare the effects of shared and unshared exposure uncertainty on risk estimation and on the shape of the exposure-response curve in proportional hazards models. Our results indicate that uncertainty components shared within workers cause more bias in risk estimation and a more severe attenuation of the exposure-response relationship than unshared exposure uncertainty or exposure uncertainty shared between individuals. These findings underline the importance of careful characterisation and modeling of exposure uncertainty in observational studies. PMID:29408862

  12. Use of micro-lightguide spectrophotometry for evaluation of microcirculation in the small and large intestines of horses without gastrointestinal disease.

    PubMed

    Reichert, Christof; Kästner, Sabine B R; Hopster, Klaus; Rohn, Karl; Rötting, Anna K

    2014-11-01

    To evaluate the use of a micro-lightguide tissue spectrophotometer for measurement of tissue oxygenation and blood flow in the small and large intestines of horses under anesthesia. 13 adult horses without gastrointestinal disease. Horses were anesthetized and placed in dorsal recumbency. Ventral midline laparotomy was performed. Intestinal segments were exteriorized to obtain measurements. Spectrophotometric measurements of tissue oxygenation and regional blood flow of the jejunum and pelvic flexure were obtained under various conditions that were considered to have a potential effect on measurement accuracy. In addition, arterial oxygen saturation at the measuring sites was determined by use of pulse oximetry. 12,791 single measurements of oxygen saturation, relative amount of hemoglobin, and blood flow were obtained. Errors occurred in 381 of 12,791 (2.98%) measurements. Most measurement errors occurred when surgical lights were directed at the measuring site; covering the probe with the surgeon's hand did not eliminate this error source. No measurement errors were observed when the probe was positioned on the intestinal wall with room light, at the mesenteric side, or between the mesenteric and antimesenteric side. Values for blood flow had higher variability, and this was most likely caused by motion artifacts of the intestines. The micro-lightguide spectrophotometry system was easy to use on the small and large intestines of horses and provided rapid evaluation of the microcirculation. Results indicated that measurements should be performed with room light only and intestinal motion should be minimized.

  13. An effective temperature compensation approach for ultrasonic hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Tan, Xiaolong; Li, Min; Arsad, Norhana; Wen, Xiaoyan; Lu, Haifei

    2018-03-01

    Hydrogen is a kind of promising clean energy resource with a wide application prospect, which will, however, cause a serious security issue upon the leakage of hydrogen gas. The measurement of its concentration is of great significance. In a traditional approach of ultrasonic hydrogen sensing, a temperature drift of 0.1 °C results in a concentration error of about 250 ppm, which is intolerable for trace amount of gas sensing. In order to eliminate the influence brought by temperature drift, we propose a feasible approach named as linear compensation algorithm, which utilizes the linear relationship between the pulse count and temperature to compensate for the pulse count error (ΔN) caused by temperature drift. Experimental results demonstrate that our proposed approach is capable of improving the measurement accuracy and can easily detect sub-100 ppm of hydrogen concentration under variable temperature conditions.

  14. Evaluation of alignment error of micropore X-ray optics caused by hot plastic deformation

    NASA Astrophysics Data System (ADS)

    Numazawa, Masaki; Ishi, Daiki; Ezoe, Yuichiro; Takeuchi, Kazuma; Terada, Masaru; Fujitani, Maiko; Ishikawa, Kumi; Nakajima, Kazuo; Morishita, Kohei; Ohashi, Takaya; Mitsuda, Kazuhisa; Nakamura, Kasumi; Noda, Yusuke

    2018-06-01

    We report on the evaluation and characterization of micro-electromechanical system (MEMS) X-ray optics produced by silicon dry etching and hot plastic deformation. Sidewalls of micropores formed by etching through a silicon wafer are used as X-ray reflecting mirrors. The wafer is deformed into a spherical shape to focus parallel incidence X-rays. We quantitatively evaluated a mirror alignment error using an X-ray pencil beam (Al Kα line at 1.49 keV). The deviation angle caused only by the deformation was estimated from angular shifts of the X-ray focusing point before and after the deformation to be 2.7 ± 0.3 arcmin on average within the optics. This gives an angular resolution of 12.9 ± 1.4 arcmin in half-power diameter (HPD). The surface profile of the deformed optics measured using a NH-3Ns surface profiler (Mitaka Kohki) also indicated that the resolution was 11.4 ± 0.9 arcmin in HPD, suggesting that we can simply evaluate the alignment error caused by the hot plastic deformation.

  15. Cocaine Dependence Treatment Data: Methods for Measurement Error Problems With Predictors Derived From Stationary Stochastic Processes

    PubMed Central

    Guan, Yongtao; Li, Yehua; Sinha, Rajita

    2011-01-01

    In a cocaine dependence treatment study, we use linear and nonlinear regression models to model posttreatment cocaine craving scores and first cocaine relapse time. A subset of the covariates are summary statistics derived from baseline daily cocaine use trajectories, such as baseline cocaine use frequency and average daily use amount. These summary statistics are subject to estimation error and can therefore cause biased estimators for the regression coefficients. Unlike classical measurement error problems, the error we encounter here is heteroscedastic with an unknown distribution, and there are no replicates for the error-prone variables or instrumental variables. We propose two robust methods to correct for the bias: a computationally efficient method-of-moments-based method for linear regression models and a subsampling extrapolation method that is generally applicable to both linear and nonlinear regression models. Simulations and an application to the cocaine dependence treatment data are used to illustrate the efficacy of the proposed methods. Asymptotic theory and variance estimation for the proposed subsampling extrapolation method and some additional simulation results are described in the online supplementary material. PMID:21984854

  16. Results of the first complete static calibration of the RSRA rotor-load-measurement system

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    1984-01-01

    The compound Rotor System Research Aircraft (RSRA) is designed to make high-accuracy, simultaneous measurements of all rotor forces and moments in flight. Physical calibration of the rotor force- and moment-measurement system when installed in the aircraft is required to account for known errors and to ensure that measurement-system accuracy is traceable to the National Bureau of Standards. The first static calibration and associated analysis have been completed with good results. Hysteresis was a potential cause of static calibration errors, but was found to be negligible in flight compared to full-scale loads, and analytical methods have been devised to eliminate hysteresis effects on calibration data. Flight tests confirmed that the calibrated rotor-load-measurement system performs as expected in flight and that it can dependably make direct measurements of fuselage vertical drag in hover.

  17. Partial compensation interferometry for measurement of surface parameter error of high-order aspheric surfaces

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Li, Tengfei; Hu, Yao

    2018-01-01

    Surface parameters are the properties to describe the shape characters of aspheric surface, which mainly include vertex radius of curvature (VROC) and conic constant (CC). The VROC affects the basic properties, such as focal length of an aspheric surface, while the CC is the basis of classification for aspheric surface. The deviations of the two parameters are defined as surface parameter error (SPE). Precisely measuring SPE is critical for manufacturing and aligning aspheric surface. Generally, SPE of aspheric surface is measured directly by curvature fitting on the absolute profile measurement data from contact or non-contact testing. And most interferometry-based methods adopt null compensators or null computer-generated holograms to measure SPE. To our knowledge, there is no effective way to measure SPE of highorder aspheric surface with non-null interferometry. In this paper, based on the theory of slope asphericity and the best compensation distance (BCD) established in our previous work, we propose a SPE measurement method for high-order aspheric surface in partial compensation interferometry (PCI) system. In the procedure, firstly, we establish the system of two element equations by utilizing the SPE-caused BCD change and surface shape change. Then, we can simultaneously obtain the VROC error and CC error in PCI system by solving the equations. Simulations are made to verify the method, and the results show a high relative accuracy.

  18. Regression dilution bias: tools for correction methods and sample size calculation.

    PubMed

    Berglund, Lars

    2012-08-01

    Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.

  19. Decodoku: Quantum error rorrection as a simple puzzle game

    NASA Astrophysics Data System (ADS)

    Wootton, James

    To build quantum computers, we need to detect and manage any noise that occurs. This will be done using quantum error correction. At the hardware level, QEC is a multipartite system that stores information non-locally. Certain measurements are made which do not disturb the stored information, but which do allow signatures of errors to be detected. Then there is a software problem. How to take these measurement outcomes and determine: a) The errors that caused them, and (b) how to remove their effects. For qubit error correction, the algorithms required to do this are well known. For qudits, however, current methods are far from optimal. We consider the error correction problem of qubit surface codes. At the most basic level, this is a problem that can be expressed in terms of a grid of numbers. Using this fact, we take the inherent problem at the heart of quantum error correction, remove it from its quantum context, and presented in terms of simple grid based puzzle games. We have developed three versions of these puzzle games, focussing on different aspects of the required algorithms. These have been presented and iOS and Android apps, allowing the public to try their hand at developing good algorithms to solve the puzzles. For more information, see www.decodoku.com. Funding from the NCCR QSIT.

  20. Acetaminophen attenuates error evaluation in cortex.

    PubMed

    Randles, Daniel; Kam, Julia W Y; Heine, Steven J; Inzlicht, Michael; Handy, Todd C

    2016-06-01

    Acetaminophen has recently been recognized as having impacts that extend into the affective domain. In particular, double blind placebo controlled trials have revealed that acetaminophen reduces the magnitude of reactivity to social rejection, frustration, dissonance and to both negatively and positively valenced attitude objects. Given this diversity of consequences, it has been proposed that the psychological effects of acetaminophen may reflect a widespread blunting of evaluative processing. We tested this hypothesis using event-related potentials (ERPs). Sixty-two participants received acetaminophen or a placebo in a double-blind protocol and completed the Go/NoGo task. Participants' ERPs were observed following errors on the Go/NoGo task, in particular the error-related negativity (ERN; measured at FCz) and error-related positivity (Pe; measured at Pz and CPz). Results show that acetaminophen inhibits the Pe, but not the ERN, and the magnitude of an individual's Pe correlates positively with omission errors, partially mediating the effects of acetaminophen on the error rate. These results suggest that recently documented affective blunting caused by acetaminophen may best be described as an inhibition of evaluative processing. They also contribute to the growing work suggesting that the Pe is more strongly associated with conscious awareness of errors relative to the ERN. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  1. New Gear Transmission Error Measurement System Designed

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2001-01-01

    The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.

  2. Calculation of Ophthalmic Viscoelastic Device–Induced Focus Shift During Femtosecond Laser–Assisted Cataract Surgery

    PubMed Central

    de Freitas, Carolina P.; Cabot, Florence; Manns, Fabrice; Culbertson, William; Yoo, Sonia H.; Parel, Jean-Marie

    2015-01-01

    Purpose. To assess if a change in refractive index of the anterior chamber during femtosecond laser-assisted cataract surgery can affect the laser beam focus position. Methods. The index of refraction and chromatic dispersion of six ophthalmic viscoelastic devices (OVDs) was measured with an Abbe refractometer. Using the Gullstrand eye model, the index values were used to predict the error in the depth of a femtosecond laser cut when the anterior chamber is filled with OVD. Two sources of error produced by the change in refractive index were evaluated: the error in anterior capsule position measured with optical coherence tomography biometry and the shift in femtosecond laser beam focus depth. Results. The refractive indices of the OVDs measured ranged from 1.335 to 1.341 in the visible light (at 587 nm). The error in depth measurement of the refilled anterior chamber ranged from −5 to +7 μm. The OVD produced a shift of the femtosecond laser focus ranging from −1 to +6 μm. Replacement of the aqueous humor with OVDs with the densest compound produced a predicted error in cut depth of 13 μm anterior to the expected cut. Conclusions. Our calculations show that the change in refractive index due to anterior chamber refilling does not sufficiently shift the laser beam focus position to cause the incomplete capsulotomies reported during femtosecond laser–assisted cataract surgery. PMID:25626971

  3. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  4. Analytical quality goals derived from the total deviation from patients' homeostatic set points, with a margin for analytical errors.

    PubMed

    Bolann, B J; Asberg, A

    2004-01-01

    The deviation of test results from patients' homeostatic set points in steady-state conditions may complicate interpretation of the results and the comparison of results with clinical decision limits. In this study the total deviation from the homeostatic set point is defined as the maximum absolute deviation for 95% of measurements, and we present analytical quality requirements that prevent analytical error from increasing this deviation to more than about 12% above the value caused by biology alone. These quality requirements are: 1) The stable systematic error should be approximately 0, and 2) a systematic error that will be detected by the control program with 90% probability, should not be larger than half the value of the combined analytical and intra-individual standard deviation. As a result, when the most common control rules are used, the analytical standard deviation may be up to 0.15 times the intra-individual standard deviation. Analytical improvements beyond these requirements have little impact on the interpretability of measurement results.

  5. Rapid Measurement and Correction of Phase Errors from B0 Eddy Currents: Impact on Image Quality for Non-Cartesian Imaging

    PubMed Central

    Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.

    2014-01-01

    Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532

  6. Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.

  7. Medication administration errors in nursing homes using an automated medication dispensing system.

    PubMed

    van den Bemt, Patricia M L A; Idzinga, Jetske C; Robertz, Hans; Kormelink, Dennis Groot; Pels, Neske

    2009-01-01

    OBJECTIVE To identify the frequency of medication administration errors as well as their potential risk factors in nursing homes using a distribution robot. DESIGN The study was a prospective, observational study conducted within three nursing homes in the Netherlands caring for 180 individuals. MEASUREMENTS Medication errors were measured using the disguised observation technique. Types of medication errors were described. The correlation between several potential risk factors and the occurrence of medication errors was studied to identify potential causes for the errors. RESULTS In total 2,025 medication administrations to 127 clients were observed. In these administrations 428 errors were observed (21.2%). The most frequently occurring types of errors were use of wrong administration techniques (especially incorrect crushing of medication and not supervising the intake of medication) and wrong time errors (administering the medication at least 1 h early or late).The potential risk factors female gender (odds ratio (OR) 1.39; 95% confidence interval (CI) 1.05-1.83), ATC medication class antibiotics (OR 11.11; 95% CI 2.66-46.50), medication crushed (OR 7.83; 95% CI 5.40-11.36), number of dosages/day/client (OR 1.03; 95% CI 1.01-1.05), nursing home 2 (OR 3.97; 95% CI 2.86-5.50), medication not supplied by distribution robot (OR 2.92; 95% CI 2.04-4.18), time classes "7-10 am" (OR 2.28; 95% CI 1.50-3.47) and "10 am-2 pm" (OR 1.96; 1.18-3.27) and day of the week "Wednesday" (OR 1.46; 95% CI 1.03-2.07) are associated with a higher risk of administration errors. CONCLUSIONS Medication administration in nursing homes is prone to many errors. This study indicates that the handling of the medication after removing it from the robot packaging may contribute to this high error frequency, which may be reduced by training of nurse attendants, by automated clinical decision support and by measures to reduce workload.

  8. Prevalence of vision impairment and refractive error in school children in Ba Ria - Vung Tau province, Vietnam.

    PubMed

    Paudel, Prakash; Ramson, Prasidh; Naduvilath, Thomas; Wilson, David; Phuong, Ha Thanh; Ho, Suit M; Giap, Nguyen V

    2014-04-01

    To assess the prevalence of vision impairment and refractive error in school children 12-15 years of age in Ba Ria - Vung Tau province, Vietnam. Prospective, cross-sectional study. 2238 secondary school children. Subjects were selected based on stratified multistage cluster sampling of 13 secondary schools from urban, rural and semi-urban areas. The examination included visual acuity measurements, ocular motility evaluation, cycloplegic autorefraction, and examination of the external eye, anterior segment, media and fundus. Visual acuity and principal cause of vision impairment. The prevalence of uncorrected and presenting visual acuity ≤6/12 in the better eye were 19.4% (95% confidence interval, 12.5-26.3) and 12.2% (95% confidence interval, 8.8-15.6), respectively. Refractive error was the cause of vision impairment in 92.7%, amblyopia in 2.2%, cataract in 0.7%, retinal disorders in 0.4%, other causes in 1.5% and unexplained causes in the remaining 2.6%. The prevalence of vision impairment due to myopia in either eye (-0.50 diopter or greater) was 20.4% (95% confidence interval, 12.8-28.0), hyperopia (≥2.00 D) was 0.4% (95% confidence interval, 0.0-0.7) and emmetropia with astigmatism (≥0.75 D) was 0.7% (95% confidence interval, 0.2-1.2). Vision impairment due to myopia was associated with higher school grade and increased time spent reading and working on a computer. Uncorrected refractive error, particularly myopia, among secondary school children in Vietnam is a major public health problem. School-based eye health initiative such as refractive error screening is warranted to reduce vision impairment. © 2013 The Authors. Clinical & Experimental Ophthalmology published by Wiley Publishing Asia Pty Ltd on behalf of Royal Australian and New Zealand College of Ophthalmologists.

  9. Ionospheric Impacts on UHF Space Surveillance

    NASA Astrophysics Data System (ADS)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  10. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  11. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. S.

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmissionmore » and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less

  12. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    DOE PAGES

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; ...

    2018-02-28

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less

  13. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less

  14. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.

    2018-04-01

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.

  15. Estimation of Covariance Matrix on Bi-Response Longitudinal Data Analysis with Penalized Spline Regression

    NASA Astrophysics Data System (ADS)

    Islamiyati, A.; Fatmawati; Chamidah, N.

    2018-03-01

    The correlation assumption of the longitudinal data with bi-response occurs on the measurement between the subjects of observation and the response. It causes the auto-correlation of error, and this can be overcome by using a covariance matrix. In this article, we estimate the covariance matrix based on the penalized spline regression model. Penalized spline involves knot points and smoothing parameters simultaneously in controlling the smoothness of the curve. Based on our simulation study, the estimated regression model of the weighted penalized spline with covariance matrix gives a smaller error value compared to the error of the model without covariance matrix.

  16. Temperature corrections in routine spirometry.

    PubMed Central

    Cramer, D; Peacock, A; Denison, D

    1984-01-01

    Forced expiratory volume (FEV1) and forced vital capacity (FVC) were measured in nine normal subjects with three Vitalograph and three rolling seal spirometers at three different ambient temperatures (4 degrees C, 22 degrees C, 32 degrees C). When the results obtained with the rolling seal spirometer were converted to BTPS the agreement between measurements in the three environments improved, but when the Vitalograph measurements obtained in the hot and cold rooms were converted an error of up to 13% was introduced. The error was similar whether ambient or spirometer temperatures were used to make the conversion. In an attempt to explain the behaviour of the Vitalograph spirometers the compliance of their bellows was measured at the three temperatures. It was higher at the higher temperature (32 degrees C) and lower at the lower temperature (4 degrees C) than at the normal room temperature. These changes in instrument compliance could account for the differences in measured values between the two types of spirometer. It is concluded that the ATPS-BTPS conversion is valid and necessary for measurements made with rolling seal spirometers, but can cause substantial error if it is used for Vitalograph measurements made under conditions other than normal room temperature. PMID:6495245

  17. Neural Network Compensation for Frequency Cross-Talk in Laser Interferometry

    NASA Astrophysics Data System (ADS)

    Lee, Wooram; Heo, Gunhaeng; You, Kwanho

    The heterodyne laser interferometer acts as an ultra-precise measurement apparatus in semiconductor manufacture. However the periodical nonlinearity property caused from frequency cross-talk is an obstacle to improve the high measurement accuracy in nanometer scale. In order to minimize the nonlinearity error of the heterodyne interferometer, we propose a frequency cross-talk compensation algorithm using an artificial intelligence method. The feedforward neural network trained by back-propagation compensates the nonlinearity error and regulates to minimize the difference with the reference signal. With some experimental results, the improved accuracy is proved through comparison with the position value from a capacitive displacement sensor.

  18. The intention to disclose medical errors among doctors in a referral hospital in North Malaysia.

    PubMed

    Hs, Arvinder-Singh; Rashid, Abdul

    2017-01-23

    In this study, medical errors are defined as unintentional patient harm caused by a doctor's mistake. This topic, due to limited research, is poorly understood in Malaysia. The objective of this study was to determine the proportion of doctors intending to disclose medical errors, and their attitudes/perception pertaining to medical errors. This cross-sectional study was conducted at a tertiary public hospital from July- December 2015 among 276 randomly selected doctors. Data was collected using a standardized and validated self-administered questionnaire intending to measure disclosure and attitudes/perceptions. The scale had four vignettes in total two medical and two surgical. Each vignette consisted of five questions and each question measured the disclosure. Disclosure was categorised as "No Disclosure", "Partial Disclosure" or "Full Disclosure". Data was keyed in and analysed using STATA v 13.0. Only 10.1% (n = 28) intended to disclose medical errors. Most respondents felt that they possessed an attitude/perception of adequately disclosing errors to patients. There was a statistically significant difference (p < 0.001) when comparing the intention of disclosure with perceived disclosures. Most respondents were in common agreement that disclosing an error would make them less likely to get sued, that minor errors should be reported and that they experienced relief from disclosing errors. Most doctors in this study would not disclose medical errors although they perceived that the errors were serious and felt responsible for it. Poor disclosure could be due the fear of litigations and improper mechanisms/procedures available for disclosure.

  19. Reading Center Characterization of Central Retinal Vein Occlusion Using Optical Coherence Tomography During the COPERNICUS Trial.

    PubMed

    Decroos, Francis Char; Stinnett, Sandra S; Heydary, Cynthia S; Burns, Russell E; Jaffe, Glenn J

    2013-11-01

    To determine the impact of segmentation error correction and precision of standardized grading of time domain optical coherence tomography (OCT) scans obtained during an interventional study for macular edema secondary to central retinal vein occlusion (CRVO). A reading center team of two readers and a senior reader evaluated 1199 OCT scans. Manual segmentation error correction (SEC) was performed. The frequency of SEC, resulting change in central retinal thickness after SEC, and reproducibility of SEC were quantified. Optical coherence tomography characteristics associated with the need for SECs were determined. Reading center teams graded all scans, and the reproducibility of this evaluation for scan quality at the fovea and cystoid macular edema was determined on 97 scans. Segmentation errors were observed in 360 (30.0%) scans, of which 312 were interpretable. On these 312 scans, the mean machine-generated central subfield thickness (CST) was 507.4 ± 208.5 μm compared to 583.0 ± 266.2 μm after SEC. Segmentation error correction resulted in a mean absolute CST correction of 81.3 ± 162.0 μm from baseline uncorrected CST. Segmentation error correction was highly reproducible (intraclass correlation coefficient [ICC] = 0.99-1.00). Epiretinal membrane (odds ratio [OR] = 2.3, P < 0.0001), subretinal fluid (OR = 2.1, P = 0.0005), and increasing CST (OR = 1.6 per 100-μm increase, P < 0.001) were associated with need for SEC. Reading center teams reproducibly graded scan quality at the fovea (87% agreement, kappa = 0.64, 95% confidence interval [CI] 0.45-0.82) and cystoid macular edema (92% agreement, kappa = 0.84, 95% CI 0.74-0.94). Optical coherence tomography images obtained during an interventional CRVO treatment trial can be reproducibly graded. Segmentation errors can cause clinically meaningful deviation in central retinal thickness measurements; however, these errors can be corrected reproducibly in a reading center setting. Segmentation errors are common on these images, can cause clinically meaningful errors in central retinal thickness measurement, and can be corrected reproducibly in a reading center setting.

  20. Masked and unmasked error-related potentials during continuous control and feedback

    NASA Astrophysics Data System (ADS)

    Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.

    2018-06-01

    The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR  =  81.8% and average TNR  =  96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR  =  60.9% and average TNR  =  58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the feedback modality did not hinder the asynchronous detection of ErrPs.

  1. The deficit of joint position sense in the chronic unstable ankle as measured by inversion angle replication error.

    PubMed

    Nakasa, Tomoyuki; Fukuhara, Kohei; Adachi, Nobuo; Ochi, Mitsuo

    2008-05-01

    Functional instability is defined as a repeated ankle inversion sprain and a giving way sensation. Previous studies have described the damage of sensori-motor control in ankle sprain as being a possible cause of functional instability. The aim of this study was to evaluate the inversion angle replication errors in patients with functional instability after ankle sprain. The difference between the index angle and replication angle was measured in 12 subjects with functional instability, with the aim of evaluating the replication error. As a control group, the replication errors of 17 healthy volunteers were investigated. The side-to-side differences of the replication errors were compared between both the groups, and the relationship between the side-to-side differences of the replication errors and the mechanical instability were statistically analyzed in the unstable group. The side-to-side difference of the replication errors was 1.0 +/- 0.7 degrees in the unstable group and 0.2 +/- 0.7 degrees in the control group. There was a statistically significant difference between both the groups. The side-to-side differences of the replication errors in the unstable group did not statistically correlate to the anterior talar translation and talar tilt. The patients with functional instability had the deficit of joint position sense in comparison with healthy volunteers. The replication error did not correlate to the mechanical instability. The patients with functional instability should be treated appropriately in spite of having less mechanical instability.

  2. Patient safety awareness among Undergraduate Medical Students in Pakistani Medical School

    PubMed Central

    Kamran, Rizwana; Bari, Attia; Khan, Rehan Ahmed; Al-Eraky, Mohamed

    2018-01-01

    Objective: To measure the level of awareness of patient safety among undergraduate medical students in Pakistani Medical School and to find the difference with respect to gender and prior experience with medical error. Methods: This cross-sectional study was conducted at the University of Lahore (UOL), Pakistan from January to March 2017, and comprised final year medical students. Data was collected using a questionnaire ‘APSQ- III’ on 7 point Likert scale. Eight questions were reverse coded. Survey was anonymous. SPSS package 20 was used for statistical analysis. Results: Questionnaire was filled by 122 students, with 81% response rate. The best score 6.17 was given for the ‘team functioning’, followed by 6.04 for ‘long working hours as a cause of medical error’. The domains regarding involvement of patient, confidence to report medical errors and role of training and learning on patient safety scored high in the agreed range of >5. Reverse coded questions about ‘professional incompetence as an error cause’ and ‘disclosure of errors’ showed negative perception. No significant differences of perceptions were found with respect to gender and prior experience with medical error (p= >0.05). Conclusion: Undergraduate medical students at UOL had a positive attitude towards patient safety. However, there were misconceptions about causes of medical errors and error disclosure among students and patient safety education needs to be incorporated in medical curriculum of Pakistan. PMID:29805398

  3. Satellite radar altimetry over ice. Volume 1: Processing and corrections of Seasat data over Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Major, Judith A.; Martin, Thomas V.; Bindschadler, Robert A.

    1990-01-01

    The data-processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height errors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given.

  4. First-order approximation error analysis of Risley-prism-based beam directing system.

    PubMed

    Zhao, Yanyan; Yuan, Yan

    2014-12-01

    To improve the performance of a Risley-prism system for optical detection and measuring applications, it is necessary to be able to determine the direction of the outgoing beam with high accuracy. In previous works, error sources and their impact on the performance of the Risley-prism system have been analyzed, but their numerical approximation accuracy was not high. Besides, pointing error analysis of the Risley-prism system has provided results for the case when the component errors, prism orientation errors, and assembly errors are certain. In this work, the prototype of a Risley-prism system was designed. The first-order approximations of the error analysis were derived and compared with the exact results. The directing errors of a Risley-prism system associated with wedge-angle errors, prism mounting errors, and bearing assembly errors were analyzed based on the exact formula and the first-order approximation. The comparisons indicated that our first-order approximation is accurate. In addition, the combined errors produced by the wedge-angle errors and mounting errors of the two prisms together were derived and in both cases were proved to be the sum of errors caused by the first and the second prism separately. Based on these results, the system error of our prototype was estimated. The derived formulas can be implemented to evaluate beam directing errors of any Risley-prism beam directing system with a similar configuration.

  5. Telecom and scintillation first data analysis for DOMINO: laser communication between SOTA, onboard SOCRATES satellite, and MEO optical ground station

    NASA Astrophysics Data System (ADS)

    Phung, D.-H.; Samain, E.; Maurice, N.; Albanesse, D.; Mariey, H.; Aimar, M.; M. Lagarde, G.; Artaud, G.; Issler, J.-L.; Vedrenne, N.; Velluet, M.-T.; Toyoshima, M.; Akioka, M.; Kolev, D.; Munemasa, Y.; Takenaka, H.; Iwakiri, N.

    2016-03-01

    In collaboration between CNES, NICT, Geoazur, the first successful lasercom link between the micro-satellite SOCRATES and an OGS in Europe has been established. This paper presents some results of telecom and scintillation first data analysis for 4 successful links in June & July 2015 between SOTA terminal and MEO optical ground station (OGS) at Caussols France. The telecom and scintillation data have been continuously recorded during the passes by using a detector developed at the laboratory. An irradiance of 190 nW/m2 and 430 nW/m2 has been detected for 1549 nm and 976 nm downlinks at 35° elevation. Spectrums of power fluctuation measured at OGS are analyzed at different elevation angles and at different diameters of telescope aperture to determine fluctuations caused by pointing error (due to satellite & OGS telescope vibrations) and caused by atmospheric turbulence. Downlink & Uplink budgets are analyzed, the theoretical estimation matches well to measured power levels. Telecom signal forms and bit error rates (BER) of 1549 nm and 976 nm downlink are also shown at different diameters of telescope aperture. BER is 'Error Free' with full-aperture 1.5m telescope, and almost in `good channel' with 0.4 m sub-aperture of telescope. We also show the comparison between the expected and measured BER distributions.

  6. 42 CFR 431.992 - Corrective action plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CMS, designed to reduce improper payments in each program based on its analysis of the error causes in... State must take the following actions: (1) Data analysis. States must conduct data analysis such as reviewing clusters of errors, general error causes, characteristics, and frequency of errors that are...

  7. 42 CFR 431.992 - Corrective action plan.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CMS, designed to reduce improper payments in each program based on its analysis of the error causes in... State must take the following actions: (1) Data analysis. States must conduct data analysis such as reviewing clusters of errors, general error causes, characteristics, and frequency of errors that are...

  8. Magnetic Nanoparticle Thermometer: An Investigation of Minimum Error Transmission Path and AC Bias Error

    PubMed Central

    Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing

    2015-01-01

    The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188

  9. [Prevalence of refractive errors in 7 and 8 year-old children in the province of Western Pomerania].

    PubMed

    Muszyńska-Lachota, Izabela; Czepita, Damian; uczyńska, Violetta; Wysiecki, Przemysław

    2005-01-01

    To determine the prevalence of refractive errors in 7 and 8 year-old schoolchildren in the province of Western Pomerania. 140 pupils of elementary schools were examined. Measurements of visual acuity and retinoscopy after cycloplegia were carried out. Prevalence of hyperopia, myopia, and astigmatism was 76.1%, 3.3% and 5.1%, respectively. No statistically significant differences between 7 and 8 year-old children were found. 1. There is a relatively high prevalence of refractive errors, with hyperopia prevailing, among 7 and 8 year-old schoolchildren. 2. Myopia in young children is a cause for concern an further studies. 3. High prevalence of refractive errors in children calls for systematic examination and focused interviewing by medical professionals of the school health care system.

  10. The effect of rainfall measurement uncertainties on rainfall-runoff processes modelling.

    PubMed

    Stransky, D; Bares, V; Fatka, P

    2007-01-01

    Rainfall data are a crucial input for various tasks concerning the wet weather period. Nevertheless, their measurement is affected by random and systematic errors that cause an underestimation of the rainfall volume. Therefore, the general objective of the presented work was to assess the credibility of measured rainfall data and to evaluate the effect of measurement errors on urban drainage modelling tasks. Within the project, the methodology of the tipping bucket rain gauge (TBR) was defined and assessed in terms of uncertainty analysis. A set of 18 TBRs was calibrated and the results were compared to the previous calibration. This enables us to evaluate the ageing of TBRs. A propagation of calibration and other systematic errors through the rainfall-runoff model was performed on experimental catchment. It was found that the TBR calibration is important mainly for tasks connected with the assessment of peak values and high flow durations. The omission of calibration leads to up to 30% underestimation and the effect of other systematic errors can add a further 15%. The TBR calibration should be done every two years in order to catch up the ageing of TBR mechanics. Further, the authors recommend to adjust the dynamic test duration proportionally to generated rainfall intensity.

  11. A prospective three-step intervention study to prevent medication errors in drug handling in paediatric care.

    PubMed

    Niemann, Dorothee; Bertsche, Astrid; Meyrath, David; Koepf, Ellen D; Traiser, Carolin; Seebald, Katja; Schmitt, Claus P; Hoffmann, Georg F; Haefeli, Walter E; Bertsche, Thilo

    2015-01-01

    To prevent medication errors in drug handling in a paediatric ward. One in five preventable adverse drug events in hospitalised children is caused by medication errors. Errors in drug prescription have been studied frequently, but data regarding drug handling, including drug preparation and administration, are scarce. A three-step intervention study including monitoring procedure was used to detect and prevent medication errors in drug handling. After approval by the ethics committee, pharmacists monitored drug handling by nurses on an 18-bed paediatric ward in a university hospital prior to and following each intervention step. They also conducted a questionnaire survey aimed at identifying knowledge deficits. Each intervention step targeted different causes of errors. The handout mainly addressed knowledge deficits, the training course addressed errors caused by rule violations and slips, and the reference book addressed knowledge-, memory- and rule-based errors. The number of patients who were subjected to at least one medication error in drug handling decreased from 38/43 (88%) to 25/51 (49%) following the third intervention, and the overall frequency of errors decreased from 527 errors in 581 processes (91%) to 116/441 (26%). The issue of the handout reduced medication errors caused by knowledge deficits regarding, for instance, the correct 'volume of solvent for IV drugs' from 49-25%. Paediatric drug handling is prone to errors. A three-step intervention effectively decreased the high frequency of medication errors by addressing the diversity of their causes. Worldwide, nurses are in charge of drug handling, which constitutes an error-prone but often-neglected step in drug therapy. Detection and prevention of errors in daily routine is necessary for a safe and effective drug therapy. Our three-step intervention reduced errors and is suitable to be tested in other wards and settings. © 2014 John Wiley & Sons Ltd.

  12. Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I--Theory and simulations.

    PubMed

    Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D

    2002-07-01

    Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.

  13. Double peak-induced distance error in short-time-Fourier-transform-Brillouin optical time domain reflectometers event detection and the recovery method.

    PubMed

    Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi

    2015-10-01

    The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.

  14. Influence of measuring algorithm on shape accuracy in the compensating turning of high gradient thin-wall parts

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Guilin; Zhu, Dengchao; Li, Shengyi

    2015-02-01

    In order to meet the requirement of aerodynamics, the infrared domes or windows with conformal and thin-wall structure becomes the development trend of high-speed aircrafts in the future. But these parts usually have low stiffness, the cutting force will change along with the axial position, and it is very difficult to meet the requirement of shape accuracy by single machining. Therefore, on-machine measurement and compensating turning are used to control the shape errors caused by the fluctuation of cutting force and the change of stiffness. In this paper, on the basis of ultra precision diamond lathe, a contact measuring system with five DOFs is developed to achieve on-machine measurement of conformal thin-wall parts with high accuracy. According to high gradient surface, the optimizing algorithm is designed on the distribution of measuring points by using the data screening method. The influence rule of sampling frequency is analyzed on measuring errors, the best sampling frequency is found out based on planning algorithm, the effect of environmental factors and the fitting errors are controlled within lower range, and the measuring accuracy of conformal dome is greatly improved in the process of on-machine measurement. According to MgF2 conformal dome with high gradient, the compensating turning is implemented by using the designed on-machine measuring algorithm. The shape error is less than PV 0.8μm, greatly superior compared with PV 3μm before compensating turning, which verifies the correctness of measuring algorithm.

  15. Error-related brain activity predicts cocaine use after treatment at 3-month follow-up.

    PubMed

    Marhe, Reshmi; van de Wetering, Ben J M; Franken, Ingmar H A

    2013-04-15

    Relapse after treatment is one of the most important problems in drug dependency. Several studies suggest that lack of cognitive control is one of the causes of relapse. In this study, a relative new electrophysiologic index of cognitive control, the error-related negativity, is investigated to examine its suitability as a predictor of relapse. The error-related negativity was measured in 57 cocaine-dependent patients during their first week in detoxification treatment. Data from 49 participants were used to predict cocaine use at 3-month follow-up. Cocaine use at follow-up was measured by means of self-reported days of cocaine use in the last month verified by urine screening. A multiple hierarchical regression model was used to examine the predictive value of the error-related negativity while controlling for addiction severity and self-reported craving in the week before treatment. The error-related negativity was the only significant predictor in the model and added 7.4% of explained variance to the control variables, resulting in a total of 33.4% explained variance in the prediction of days of cocaine use at follow-up. A reduced error-related negativity measured during the first week of treatment was associated with more days of cocaine use at 3-month follow-up. Moreover, the error-related negativity was a stronger predictor of recent cocaine use than addiction severity and craving. These results suggest that underactive error-related brain activity might help to identify patients who are at risk of relapse as early as in the first week of detoxification treatment. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe

    NASA Astrophysics Data System (ADS)

    P, DREWS; H, NIEMANN; J, COSFELD; Y, GAO; J, GEIGER; O, GRULKE; M, HENKEL; D, HÖSCHEN; K, HOLLFELD; C, KILLER; A, KRÄMER-FLECKEN; Y, LIANG; S, LIU; D, NICOLAI; O, NEUBAUER; M, RACK; B, SCHWEER; G, SATHEESWARAN; L, RUDISCHHAUSER; N, SANDRI; N, WANG; the W7-X Team

    2018-05-01

    Controlling the heat and particle fluxes in the plasma edge and on the plasma facing components is important for the safe and effective operation of every magnetically confined fusion device. This was attempted on Wendelstein 7-X in the first operational campaign, with the modification of the magnetic configuration by use of the trim coils and tuning the field coil currents, commonly named iota scan. Ideally, the heat loads on the five limiters are equal. However, they differ between each limiter and are non-uniform, due to the (relatively small) error fields caused by the misalignment of components. It is therefore necessary to study the influence of the configuration changes on the transport of heat and particles in the plasma edge caused by the application of error fields and the change of the magnetic configuration. In this paper the up-stream measurements conducted with the combined probe are compared to the downstream measurements with the DIAS infrared camera on the limiter.

  17. Adjustment of QT dispersion assessed from 12 lead electrocardiograms for different numbers of analysed electrocardiographic leads: comparison of stability of different methods.

    PubMed Central

    Hnatkova, K; Malik, M; Kautzner, J; Gang, Y; Camm, A J

    1994-01-01

    OBJECTIVE--Normal electrocardiographic recordings were analysed to establish the influence of measurement of different numbers of electrocardiographic leads on the results of different formulas expressing QT dispersion and the effects of adjustment of QT dispersion obtained from a subset of an electrocardiogram to approximate to the true QT dispersion obtained from a complete electrocardiogram. SUBJECTS AND METHODS--Resting 12 lead electrocardiograms of 27 healthy people were investigated. In each lead, the QT interval was measured with a digitising board and QT dispersion was evaluated by three formulas: (A) the difference between the longest and the shortest QT interval among all leads; (B) the difference between the second longest and the second shortest QT interval; (C) SD of QT intervals in different leads. For each formula, the "true" dispersion was assessed from all measurable leads and then different combinations of leads were omitted. The mean relative differences between the QT dispersion with a given number of omitted leads and the "true" QT dispersion (mean relative errors) and the coefficients of variance of the results of QT dispersion obtained when omitting combinations of leads were compared for the different formulas. The procedure was repeated with an adjustment of each formula dividing its results by the square root of the number of measured leads. The same approach was used for the measurement of QT dispersion from the chest leads including a fourth formula (D) the SD of interlead differences weighted according to the distances between leads. For different formulas, the mean relative errors caused by omitting individual electrocardiographic leads were also assessed and the importance of individual leads for correct measurement of QT dispersion was investigated. RESULTS--The study found important differences between different formulas for assessment of QT dispersion with respect to compensation for missing measurements of QT interval. The standard max-min formula (A) performed poorly (mean relative errors of 6.1% to 18.5% for missing one to four leads) but was appropriately adjusted with the factor of 1/square root of n (n = number of measured leads). In a population of healthy people such an adjustment removed the systematic bias introduced by missing leads of the 12 lead electrocardiogram and significantly reduced the mean relative errors caused by the omission of several leads. The unadjusted SD was the optimum formula (C) for the analysis of 12 lead electrocardiograms, and the weighted standard deviation (D) was the optimum for the analysis of six lead chest electrocardiograms. The coefficients of variance of measurements of QT dispersion with different missing leads were very large (about 3 to 7 for one to four missing leads). Independently of the formula for measurement of QT dispersion, omission of different leads produced substantially different relative errors. In 12 lead electrocardiograms the largest relative errors (> 10%) were caused by omitting lead aVL or lead V1. CONCLUSIONS--Because of the large coefficients of variance, the concept of adjusting the QT dispersion for different numbers of electrocardiographic leads used in its assessment is difficult if not impossible to fulfil. Thus it is likely to be more appropriate to assess QT dispersion from standardised constant sets of electrocardiographic leads. PMID:7833200

  18. Assessment and Calibration of Ultrasonic Measurement Errors in Estimating Weathering Index of Stone Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Keehm, Y.

    2011-12-01

    Estimating the degree of weathering in stone cultural heritage, such as pagodas and statues is very important to plan conservation and restoration. The ultrasonic measurement is one of commonly-used techniques to evaluate weathering index of stone cultual properties, since it is easy to use and non-destructive. Typically we use a portable ultrasonic device, PUNDIT with exponential sensors. However, there are many factors to cause errors in measurements such as operators, sensor layouts or measurement directions. In this study, we carried out variety of measurements with different operators (male and female), different sensor layouts (direct and indirect), and sensor directions (anisotropy). For operators bias, we found that there were not significant differences by the operator's sex, while the pressure an operator exerts can create larger error in measurements. Calibrating with a standard sample for each operator is very essential in this case. For the sensor layout, we found that the indirect measurement (commonly used for cultural properties, since the direct measurement is difficult in most cases) gives lower velocity than the real one. We found that the correction coefficient is slightly different for different types of rocks: 1.50 for granite and sandstone and 1.46 for marble. From the sensor directions, we found that many rocks have slight anisotropy in their ultrasonic velocity measurement, though they are considered isotropic in macroscopic scale. Thus averaging four different directional measurement (0°, 45°, 90°, 135°) gives much less errors in measurements (the variance is 2-3 times smaller). In conclusion, we reported the error in ultrasonic meaurement of stone cultural properties by various sources quantitatively and suggested the amount of correction and procedures to calibrate the measurements. Acknowledgement: This study, which forms a part of the project, has been achieved with the support of national R&D project, which has been hosted by National Research Institute of Cultural Heritage of Cultural Heritage Administration(No. NRICH-1107-B01F).

  19. An automated microphysiological assay for toxicity evaluation.

    PubMed

    Eggert, S; Alexander, F A; Wiest, J

    2015-08-01

    Screening a newly developed drug, food additive or cosmetic ingredient for toxicity is a critical preliminary step before it can move forward in the development pipeline. Due to the sometimes dire consequences when a harmful agent is overlooked, toxicologists work under strict guidelines to effectively catalogue and classify new chemical agents. Conventional assays involve long experimental hours and many manual steps that increase the probability of user error; errors that can potentially manifest as inaccurate toxicology results. Automated assays can overcome many potential mistakes that arise due to human error. In the presented work, we created and validated a novel, automated platform for a microphysiological assay that can examine cellular attributes with sensors measuring changes in cellular metabolic rate, oxygen consumption, and vitality mediated by exposure to a potentially toxic agent. The system was validated with low buffer culture medium with varied conductivities that caused changes in the measured impedance on integrated impedance electrodes.

  20. Correction of electrode modelling errors in multi-frequency EIT imaging.

    PubMed

    Jehl, Markus; Holder, David

    2016-06-01

    The differentiation of haemorrhagic from ischaemic stroke using electrical impedance tomography (EIT) requires measurements at multiple frequencies, since the general lack of healthy measurements on the same patient excludes time-difference imaging methods. It has previously been shown that the inaccurate modelling of electrodes constitutes one of the largest sources of image artefacts in non-linear multi-frequency EIT applications. To address this issue, we augmented the conductivity Jacobian matrix with a Jacobian matrix with respect to electrode movement. Using this new algorithm, simulated ischaemic and haemorrhagic strokes in a realistic head model were reconstructed for varying degrees of electrode position errors. The simultaneous recovery of conductivity spectra and electrode positions removed most artefacts caused by inaccurately modelled electrodes. Reconstructions were stable for electrode position errors of up to 1.5 mm standard deviation along both surface dimensions. We conclude that this method can be used for electrode model correction in multi-frequency EIT.

  1. Self-calibration method of the inner lever-arm parameters for a tri-axis RINS

    NASA Astrophysics Data System (ADS)

    Song, Tianxiao; Li, Kui; Sui, Jie; Liu, Zengjun; Liu, Juncheng

    2017-11-01

    A rotational inertial navigation system (RINS) could improve navigation performance by modulating the inertial sensor errors with rotatable gimbals. When an inertial measurement unit (IMU) rotates, the deviations between the accelerometer-sensitive points and the IMU center will lead to an inner lever-arm effect. In this paper, a self-calibration method of the inner lever-arm parameters for a tri-axis RINS is proposed. A novel rotation scheme with variable angular rate rotation is designed to motivate the velocity errors caused by the inner lever-arm effect. By extending all inner lever-arm parameters as filter states, a Kalman filter with velocity errors as measurement is established to achieve the calibration. The accuracy and feasibility of the proposed method are illustrated by both simulations and experiments. The final results indicate that the inner lever-arm effect is significantly restrained after compensation by the calibration results.

  2. Real-time and accurate rail wear measurement method and experimental analysis.

    PubMed

    Liu, Zhen; Li, Fengjiao; Huang, Bangkui; Zhang, Guangjun

    2014-08-01

    When a train is running on uneven or curved rails, it generates violent vibrations on the rails. As a result, the light plane of the single-line structured light vision sensor is not vertical, causing errors in rail wear measurements (referred to as vibration errors in this paper). To avoid vibration errors, a novel rail wear measurement method is introduced in this paper, which involves three main steps. First, a multi-line structured light vision sensor (which has at least two linear laser projectors) projects a stripe-shaped light onto the inside of the rail. Second, the central points of the light stripes in the image are extracted quickly, and the three-dimensional profile of the rail is obtained based on the mathematical model of the structured light vision sensor. Then, the obtained rail profile is transformed from the measurement coordinate frame (MCF) to the standard rail coordinate frame (RCF) by taking the three-dimensional profile of the measured rail waist as the datum. Finally, rail wear constraint points are adopted to simplify the location of the rail wear points, and the profile composed of the rail wear points are compared with the standard rail profile in RCF to determine the rail wear. Both real data experiments and simulation experiments show that the vibration errors can be eliminated when the proposed method is used.

  3. Calibrating photometric redshifts of luminous red galaxies

    DOE PAGES

    Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; ...

    2005-05-01

    We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS–2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is σ~ 0.03 for redshifts less than 0.55 and worsens at higher redshift (~ 0.06more » for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.« less

  4. Neuro-Analogical Gate Tuning of Trajectory Data Fusion for a Mecanum-Wheeled Special Needs Chair

    PubMed Central

    ElSaharty, M. A.; zakzouk, Ezz Eldin

    2017-01-01

    Trajectory tracking of mobile wheeled chairs using internal shaft encoder and inertia measurement unit(IMU), exhibits several complications and accumulated errors in the tracking process due to wheel slippage, offset drift and integration approximations. These errors can be realized when comparing localization results from such sensors with a camera tracking system. In long trajectory tracking, such errors can accumulate and result in significant deviations which make data from these sensors unreliable for tracking. Meanwhile the utilization of an external camera tracking system is not always a feasible solution depending on the implementation environment. This paper presents a novel sensor fusion method that combines the measurements of internal sensors to accurately predict the location of the wheeled chair in an environment. The method introduces a new analogical OR gate structured with tuned parameters using multi-layer feedforward neural network denoted as “Neuro-Analogical Gate” (NAG). The resulting system minimize any deviation error caused by the sensors, thus accurately tracking the wheeled chair location without the requirement of an external camera tracking system. The fusion methodology has been tested with a prototype Mecanum wheel-based chair, and significant improvement over tracking response, error and performance has been observed. PMID:28045973

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Junhwan; Hwang, Sungui; Park, Kyihwan, E-mail: khpark@gist.ac.kr

    To utilize a time-of-flight-based laser scanner as a distance measurement sensor, the measurable distance and accuracy are the most important performance parameters to consider. For these purposes, the optical system and electronic signal processing of the laser scanner should be optimally designed in order to reduce a distance error caused by the optical crosstalk and wide dynamic range input. Optical system design for removing optical crosstalk problem is proposed in this work. Intensity control is also considered to solve the problem of a phase-shift variation in the signal processing circuit caused by object reflectivity. The experimental results for optical systemmore » and signal processing design are performed using 3D measurements.« less

  6. Outcome of cataract surgery at one year in Kenya, the Philippines and Bangladesh.

    PubMed

    Lindfield, R; Kuper, H; Polack, S; Eusebio, C; Mathenge, W; Wadud, Z; Rashid, A M; Foster, A

    2009-07-01

    To assess the change in vision following cataract surgery in Kenya, Bangladesh and the Philippines and to identify causes and predictors of poor outcome. Cases were identified through surveys, outreach and clinics. They underwent preoperative visual acuity measurement and ophthalmic examination. Cases were re-examined 8-15 months after cataract surgery. Information on age, gender, poverty and literacy was collected at baseline. 452 eyes of 346 people underwent surgery. 124 (27%) eyes had an adverse outcome. In Kenya and the Philippines, the main cause of adverse outcome was refractive error (37% and 49% respectively of all adverse outcomes) then comorbid ocular disease (26% and 27%). In Bangladesh, this was comorbid disease (58%) then surgical complications (21%). There was no significant association between adverse outcome and gender, age, literacy, poverty or preoperative visual acuity. Adverse outcomes following cataract surgery were frequent in the three countries. Main causes were refractive error and preoperative comorbidities. Many patients are not attaining the outcomes available with modern surgery. Focus should be on correcting refractive error, through operative techniques or postoperative refraction, and on a system for assessing comorbidities and communicating risk to patients. These are only achievable with a commitment to ongoing surgical audit.

  7. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1980-01-01

    Human error, a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents is investigated. Correction of the sources of human error requires that one attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations is presented. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  8. Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: Systematic error analysis and correction

    NASA Astrophysics Data System (ADS)

    Wu, Lifu; Zhu, Jianguo; Xie, Huimin; Zhou, Mengmeng

    2016-12-01

    Recently, we proposed a single-lens 3D digital image correlation (3D DIC) method and established a measurement system on the basis of a bilateral telecentric lens (BTL) and a bi-prism. This system can retrieve the 3D morphology of a target and measure its deformation using a single BTL with relatively high accuracy. Nevertheless, the system still suffers from systematic errors caused by manufacturing deficiency of the bi-prism and distortion of the BTL. In this study, in-depth evaluations of these errors and their effects on the measurement results are performed experimentally. The bi-prism deficiency and the BTL distortion are characterized by two in-plane rotation angles and several distortion coefficients, respectively. These values are obtained from a calibration process using a chessboard placed into the field of view of the system; this process is conducted after the measurement of tested specimen. A modified mathematical model is proposed, which takes these systematic errors into account and corrects them during 3D reconstruction. Experiments on retrieving the 3D positions of the chessboard grid corners and the morphology of a ceramic plate specimen are performed. The results of the experiments reveal that ignoring the bi-prism deficiency will induce attitude error to the retrieved morphology, and the BTL distortion can lead to its pseudo out-of-plane deformation. Correcting these problems can further improve the measurement accuracy of the bi-prism-based single-lens 3D DIC system.

  9. Use of dual coolant displacing media for in-process optical measurement of form profiles

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Xie, F.

    2018-07-01

    In-process measurement supports feedback control to reduce workpiece surface form error. Without it, the workpiece surface must be measured offline causing significant errors in workpiece positioning and reduced productivity. To offer better performance, a new in-process optical measurement method based on the use of dual coolant displacing media is proposed and studied, which uses an air and liquid phase together to resist coolant and to achieve in-process measurement. In the proposed new design, coolant is used to replace the previously used clean water to avoid coolant dilution. Compared with the previous methods, the distance between the applicator and the workpiece surface can be relaxed to 1 mm. The result is 4 times larger than before, thus permitting measurement of curved surfaces. The use of air is up to 1.5 times less than the best method previously available. For a sample workpiece with curved surfaces, the relative error of profile measurement under coolant conditions can be as small as 0.1% compared with the one under no coolant conditions. Problems in comparing measured 3D surfaces are discussed. A comparative study between a Bruker Npflex optical profiler and the developed new in-process optical profiler was conducted. For a surface area of 5.5 mm  ×  5.5 mm, the average measurement error under coolant conditions is only 0.693 µm. In addition, the error due to the new method is only 0.10 µm when compared between coolant and no coolant conditions. The effect of a thin liquid film on workpiece surface is discussed. The experimental results show that the new method can successfully solve the coolant dilution problem and is able to accurately measure the workpiece surface whilst fully submerged in the opaque coolant. The proposed new method is advantageous and should be very useful for in-process optical form profile measurement in precision machining.

  10. Dual-phase-shift spherical Fizeau interferometer for reduction of noise due to internally scattered light

    NASA Astrophysics Data System (ADS)

    Kumagai, Toshiki; Hibino, Kenichi; Nagaike, Yasunari

    2017-03-01

    Internally scattered light in a Fizeau interferometer is generated from dust, defects, imperfect coating of the optical components, and multiple reflections inside the collimator lens. It produces additional noise fringes in the observed interference image and degrades the repeatability of the phase measurement. A method to reduce the phase measurement error is proposed, in which the test surface is mechanically translated between each phase measurement in addition to an ordinary phase shift of the reference surface. It is shown that a linear combination of several measured phases at different test surface positions can reduce the phase errors caused by the scattered light. The combination can also compensate for the nonuniformity of the phase shift that occurs in spherical tests. A symmetric sampling of the phase measurements can cancel the additional primary spherical aberrations that occur when the test surface is out of the null position of the confocal configuration.

  11. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  12. Generic Protocol for the Verification of Ballast Water Treatment Technology. Version 5.1

    DTIC Science & Technology

    2010-09-01

    the Protocol ..................................................................................... 2 1.4 Verification Testing Process ...Volumes, Containers and Processing .................................................................38 Table 10. Recommendation for Water...or persistent distortion of a measurement process that causes errors in one direction. Challenge Water: Water supplied to a treatment system under

  13. Medical errors; causes, consequences, emotional response and resulting behavioral change

    PubMed Central

    Bari, Attia; Khan, Rehan Ahmed; Rathore, Ahsan Waheed

    2016-01-01

    Objective: To determine the causes of medical errors, the emotional and behavioral response of pediatric medicine residents to their medical errors and to determine their behavior change affecting their future training. Methods: One hundred thirty postgraduate residents were included in the study. Residents were asked to complete questionnaire about their errors and responses to their errors in three domains: emotional response, learning behavior and disclosure of the error. The names of the participants were kept confidential. Data was analyzed using SPSS version 20. Results: A total of 130 residents were included. Majority 128(98.5%) of these described some form of error. Serious errors that occurred were 24(19%), 63(48%) minor, 24(19%) near misses,2(2%) never encountered an error and 17(12%) did not mention type of error but mentioned causes and consequences. Only 73(57%) residents disclosed medical errors to their senior physician but disclosure to patient’s family was negligible 15(11%). Fatigue due to long duty hours 85(65%), inadequate experience 66(52%), inadequate supervision 58(48%) and complex case 58(45%) were common causes of medical errors. Negative emotions were common and were significantly associated with lack of knowledge (p=0.001), missing warning signs (p=<0.001), not seeking advice (p=0.003) and procedural complications (p=0.001). Medical errors had significant impact on resident’s behavior; 119(93%) residents became more careful, increased advice seeking from seniors 109(86%) and 109(86%) started paying more attention to details. Intrinsic causes of errors were significantly associated with increased information seeking behavior and vigilance (p=0.003) and (p=0.01) respectively. Conclusion: Medical errors committed by residents have inadequate disclosure to senior physicians and result in negative emotions but there was positive change in their behavior, which resulted in improvement in their future training and patient care. PMID:27375682

  14. Intelligent measurement and compensation of linear motor force ripple: a projection-based learning approach in the presence of noise

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Song, Fazhi; Yang, Xiaofeng; Dong, Yue; Tan, Jiubin

    2018-06-01

    Due to their structural simplicity, linear motors are increasingly receiving attention for use in high velocity and high precision applications. The force ripple, as a space-periodic disturbance, however, would deteriorate the achievable dynamic performance. Conventional force ripple measurement approaches are time-consuming and have high requirements on the experimental conditions. In this paper, a novel learning identification algorithm is proposed for force ripple intelligent measurement and compensation. Existing identification schemes always use all the error signals to update the parameters in the force ripple. However, the error induced by noise is non-effective for force ripple identification, and even deteriorates the identification process. In this paper only the most pertinent information in the error signal is utilized for force ripple identification. Firstly, the effective error signals caused by the reference trajectory and the force ripple are extracted by projecting the overall error signals onto a subspace spanned by the physical model of the linear motor as well as the sinusoidal model of the force ripple. The time delay in the linear motor is compensated in the basis functions. Then, a data-driven approach is proposed to design the learning gain. It balances the trade-off between convergence speed and robustness against noise. Simulation and experimental results validate the proposed method and confirm its effectiveness and superiority.

  15. Noncontact methods for measuring water-surface elevations and velocities in rivers: Implications for depth and discharge extraction

    USGS Publications Warehouse

    Nelson, Jonathan M.; Kinzel, Paul J.; McDonald, Richard R.; Schmeeckle, Mark

    2016-01-01

    Recently developed optical and videographic methods for measuring water-surface properties in a noninvasive manner hold great promise for extracting river hydraulic and bathymetric information. This paper describes such a technique, concentrating on the method of infrared videog- raphy for measuring surface velocities and both acoustic (laboratory-based) and laser-scanning (field-based) techniques for measuring water-surface elevations. In ideal laboratory situations with simple flows, appropriate spatial and temporal averaging results in accurate water-surface elevations and water-surface velocities. In test cases, this accuracy is sufficient to allow direct inversion of the governing equations of motion to produce estimates of depth and discharge. Unlike other optical techniques for determining local depth that rely on transmissivity of the water column (bathymetric lidar, multi/hyperspectral correlation), this method uses only water-surface information, so even deep and/or turbid flows can be investigated. However, significant errors arise in areas of nonhydrostatic spatial accelerations, such as those associated with flow over bedforms or other relatively steep obstacles. Using laboratory measurements for test cases, the cause of these errors is examined and both a simple semi-empirical method and computational results are presented that can potentially reduce bathymetric inversion errors.

  16. Effect of Anisotropy on Shape Measurement Accuracy of Silicon Wafer Using Three-Point-Support Inverting Method

    NASA Astrophysics Data System (ADS)

    Ito, Yukihiro; Natsu, Wataru; Kunieda, Masanori

    This paper describes the influences of anisotropy found in the elastic modulus of monocrystalline silicon wafers on the measurement accuracy of the three-point-support inverting method which can measure the warp and thickness of thin large panels simultaneously. Deflection due to gravity depends on the crystal orientation relative to the positions of the three-point-supports. Thus the deviation of actual crystal orientation from the direction indicated by the notch fabricated on the wafer causes measurement errors. Numerical analysis of the deflection confirmed that the uncertainty of thickness measurement increases from 0.168µm to 0.524µm due to this measurement error. In addition, experimental results showed that the rotation of crystal orientation relative to the three-point-supports is effective for preventing wafer vibration excited by disturbance vibration because the resonance frequency of wafers can be changed. Thus, surface shape measurement accuracy was improved by preventing resonant vibration during measurement.

  17. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity.

    PubMed

    Li, Jielin; Hassebrook, Laurence G; Guan, Chun

    2003-01-01

    Temporal frame-to-frame noise in multipattern structured light projection can significantly corrupt depth measurement repeatability. We present a rigorous stochastic analysis of phase-measuring-profilometry temporal noise as a function of the pattern parameters and the reconstruction coefficients. The analysis is used to optimize the two-frequency phase measurement technique. In phase-measuring profilometry, a sequence of phase-shifted sine-wave patterns is projected onto a surface. In two-frequency phase measurement, two sets of pattern sequences are used. The first, low-frequency set establishes a nonambiguous depth estimate, and the second, high-frequency set is unwrapped, based on the low-frequency estimate, to obtain an accurate depth estimate. If the second frequency is too low, then depth error is caused directly by temporal noise in the phase measurement. If the second frequency is too high, temporal noise triggers ambiguous unwrapping, resulting in depth measurement error. We present a solution for finding the second frequency, where intensity noise variance is at its minimum.

  18. [Medical errors: inevitable but preventable].

    PubMed

    Giard, R W

    2001-10-27

    Medical errors are increasingly reported in the lay press. Studies have shown dramatic error rates of 10 percent or even higher. From a methodological point of view, studying the frequency and causes of medical errors is far from simple. Clinical decisions on diagnostic or therapeutic interventions are always taken within a clinical context. Reviewing outcomes of interventions without taking into account both the intentions and the arguments for a particular action will limit the conclusions from a study on the rate and preventability of errors. The interpretation of the preventability of medical errors is fraught with difficulties and probably highly subjective. Blaming the doctor personally does not do justice to the actual situation and especially the organisational framework. Attention for and improvement of the organisational aspects of error are far more important then litigating the person. To err is and will remain human and if we want to reduce the incidence of faults we must be able to learn from our mistakes. That requires an open attitude towards medical mistakes, a continuous effort in their detection, a sound analysis and, where feasible, the institution of preventive measures.

  19. Adverse Drug Events caused by Serious Medication Administration Errors

    PubMed Central

    Sawarkar, Abhivyakti; Keohane, Carol A.; Maviglia, Saverio; Gandhi, Tejal K; Poon, Eric G

    2013-01-01

    OBJECTIVE To determine how often serious or life-threatening medication administration errors with the potential to cause patient harm (or potential adverse drug events) result in actual patient harm (or adverse drug events (ADEs)) in the hospital setting. DESIGN Retrospective chart review of clinical events that transpired following observed medication administration errors. BACKGROUND Medication errors are common at the medication administration stage for hospitalized patients. While many of these errors are considered capable of causing patient harm, it is not clear how often patients are actually harmed by these errors. METHODS In a previous study where 14,041 medication administrations in an acute-care hospital were directly observed, investigators discovered 1271 medication administration errors, of which 133 had the potential to cause serious or life-threatening harm to patients and were considered serious or life-threatening potential ADEs. In the current study, clinical reviewers conducted detailed chart reviews of cases where a serious or life-threatening potential ADE occurred to determine if an actual ADE developed following the potential ADE. Reviewers further assessed the severity of the ADE and attribution to the administration error. RESULTS Ten (7.5% [95% C.I. 6.98, 8.01]) actual adverse drug events or ADEs resulted from the 133 serious and life-threatening potential ADEs, of which 6 resulted in significant, three in serious, and one life threatening injury. Therefore 4 (3% [95% C.I. 2.12, 3.6]) serious and life threatening potential ADEs led to serious or life threatening ADEs. Half of the ten actual ADEs were caused by dosage or monitoring errors for anti-hypertensives. The life threatening ADE was caused by an error that was both a transcription and a timing error. CONCLUSION Potential ADEs at the medication administration stage can cause serious patient harm. Given previous estimates of serious or life-threatening potential ADE of 1.33 per 100 medication doses administered, in a hospital where 6 million doses are administered per year, about 4000 preventable ADEs would be attributable to medication administration errors annually. PMID:22791691

  20. The effect of sediment loading in Fennoscandia and the Barents Sea during the last glacial cycle on glacial isostatic adjustment observations

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; IJpelaar, Thijs

    2017-09-01

    Models for glacial isostatic adjustment (GIA) routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the loading effect of sediment deposition could cause measurable ongoing viscous readjustment. Here, we study the loading effect of glacially induced sediment redistribution (GISR) related to the Weichselian ice sheet in Fennoscandia and the Barents Sea. The surface loading effect and its effect on the gravitational potential is modeled by including changes in sediment thickness in the sea level equation following the method of Dalca et al. (2013). Sediment displacement estimates are estimated in two different ways: (i) from a compilation of studies on local features (trough mouth fans, large-scale failures, and basin flux) and (ii) from output of a coupled ice-sediment model. To account for uncertainty in Earth's rheology, three viscosity profiles are used. It is found that sediment transport can lead to changes in relative sea level of up to 2 m in the last 6000 years and larger effects occurring earlier in the deglaciation. This magnitude is below the error level of most of the relative sea level data because those data are sparse and errors increase with length of time before present. The effect on present-day uplift rates reaches a few tenths of millimeters per year in large parts of Norway and Sweden, which is around the measurement error of long-term GNSS (global navigation satellite system) monitoring networks. The maximum effect on present-day gravity rates as measured by the GRACE (Gravity Recovery and Climate Experiment) satellite mission is up to tenths of microgal per year, which is larger than the measurement error but below other error sources. Since GISR causes systematic uplift in most of mainland Scandinavia, including GISR in GIA models would improve the interpretation of GNSS and GRACE observations there.

  1. A new optical head tracing reflected light for nanoprofiler

    NASA Astrophysics Data System (ADS)

    Okuda, K.; Okita, K.; Tokuta, Y.; Kitayama, T.; Nakano, M.; Kudo, R.; Yamamura, K.; Endo, K.

    2014-09-01

    High accuracy optical elements are applied in various fields. For example, ultraprecise aspherical mirrors are necessary for developing third-generation synchrotron radiation and XFEL (X-ray Free Electron LASER) sources. In order to make such high accuracy optical elements, it is necessary to realize the measurement of aspherical mirrors with high accuracy. But there has been no measurement method which simultaneously achieves these demands yet. So, we develop the nanoprofiler that can directly measure the any surfaces figures with high accuracy. The nanoprofiler gets the normal vector and the coordinate of a measurement point with using LASER and the QPD (Quadrant Photo Diode) as a detector. And, from the normal vectors and their coordinates, the three-dimensional figure is calculated. In order to measure the figure, the nanoprofiler controls its five motion axis numerically to make the reflected light enter to the QPD's center. The control is based on the sample's design formula. We measured a concave spherical mirror with a radius of curvature of 400 mm by the deflection method which calculates the figure error from QPD's output, and compared the results with those using a Fizeau interferometer. The profile was consistent within the range of system error. The deflection method can't neglect the error caused from the QPD's spatial irregularity of sensitivity. In order to improve it, we have contrived the zero method which moves the QPD by the piezoelectric motion stage and calculates the figure error from the displacement.

  2. Determination of the precision error of the pulmonary artery thermodilution catheter using an in vitro continuous flow test rig.

    PubMed

    Yang, Xiao-Xing; Critchley, Lester A; Joynt, Gavin M

    2011-01-01

    Thermodilution cardiac output using a pulmonary artery catheter is the reference method against which all new methods of cardiac output measurement are judged. However, thermodilution lacks precision and has a quoted precision error of ± 20%. There is uncertainty about its true precision and this causes difficulty when validating new cardiac output technology. Our aim in this investigation was to determine the current precision error of thermodilution measurements. A test rig through which water circulated at different constant rates with ports to insert catheters into a flow chamber was assembled. Flow rate was measured by an externally placed transonic flowprobe and meter. The meter was calibrated by timed filling of a cylinder. Arrow and Edwards 7Fr thermodilution catheters, connected to a Siemens SC9000 cardiac output monitor, were tested. Thermodilution readings were made by injecting 5 mL of ice-cold water. Precision error was divided into random and systematic components, which were determined separately. Between-readings (random) variability was determined for each catheter by taking sets of 10 readings at different flow rates. Coefficient of variation (CV) was calculated for each set and averaged. Between-catheter systems (systematic) variability was derived by plotting calibration lines for sets of catheters. Slopes were used to estimate the systematic component. Performances of 3 cardiac output monitors were compared: Siemens SC9000, Siemens Sirecust 1261, and Philips MP50. Five Arrow and 5 Edwards catheters were tested using the Siemens SC9000 monitor. Flow rates between 0.7 and 7.0 L/min were studied. The CV (random error) for Arrow was 5.4% and for Edwards was 4.8%. The random precision error was ± 10.0% (95% confidence limits). CV (systematic error) was 5.8% and 6.0%, respectively. The systematic precision error was ± 11.6%. The total precision error of a single thermodilution reading was ± 15.3% and ± 13.0% for triplicate readings. Precision error increased by 45% when using the Sirecust monitor and 100% when using the Philips monitor. In vitro testing of pulmonary artery catheters enabled us to measure both the random and systematic error components of thermodilution cardiac output measurement, and thus calculate the precision error. Using the Siemens monitor, we established a precision error of ± 15.3% for single and ± 13.0% for triplicate reading, which was similar to the previous estimate of ± 20%. However, this precision error was significantly worsened by using the Sirecust and Philips monitors. Clinicians should recognize that the precision error of thermodilution cardiac output is dependent on the selection of catheter and monitor model.

  3. Hyperspectral Analysis of Soil Total Nitrogen in Subsided Land Using the Local Correlation Maximization-Complementary Superiority (LCMCS) Method.

    PubMed

    Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Xi, Xiuxiu

    2015-07-23

    The measurement of soil total nitrogen (TN) by hyperspectral remote sensing provides an important tool for soil restoration programs in areas with subsided land caused by the extraction of natural resources. This study used the local correlation maximization-complementary superiority method (LCMCS) to establish TN prediction models by considering the relationship between spectral reflectance (measured by an ASD FieldSpec 3 spectroradiometer) and TN based on spectral reflectance curves of soil samples collected from subsided land which is determined by synthetic aperture radar interferometry (InSAR) technology. Based on the 1655 selected effective bands of the optimal spectrum (OSP) of the first derivate differential of reciprocal logarithm ([log{1/R}]'), (correlation coefficients, p < 0.01), the optimal model of LCMCS method was obtained to determine the final model, which produced lower prediction errors (root mean square error of validation [RMSEV] = 0.89, mean relative error of validation [MREV] = 5.93%) when compared with models built by the local correlation maximization (LCM), complementary superiority (CS) and partial least squares regression (PLS) methods. The predictive effect of LCMCS model was optional in Cangzhou, Renqiu and Fengfeng District. Results indicate that the LCMCS method has great potential to monitor TN in subsided lands caused by the extraction of natural resources including groundwater, oil and coal.

  4. Concomitant prescribing and dispensing errors at a Brazilian hospital: a descriptive study

    PubMed Central

    Silva, Maria das Dores Graciano; Rosa, Mário Borges; Franklin, Bryony Dean; Reis, Adriano Max Moreira; Anchieta, Lêni Márcia; Mota, Joaquim Antônio César

    2011-01-01

    OBJECTIVE: To analyze the prevalence and types of prescribing and dispensing errors occurring with high-alert medications and to propose preventive measures to avoid errors with these medications. INTRODUCTION: The prevalence of adverse events in health care has increased, and medication errors are probably the most common cause of these events. Pediatric patients are known to be a high-risk group and are an important target in medication error prevention. METHODS: Observers collected data on prescribing and dispensing errors occurring with high-alert medications for pediatric inpatients in a university hospital. In addition to classifying the types of error that occurred, we identified cases of concomitant prescribing and dispensing errors. RESULTS: One or more prescribing errors, totaling 1,632 errors, were found in 632 (89.6%) of the 705 high-alert medications that were prescribed and dispensed. We also identified at least one dispensing error in each high-alert medication dispensed, totaling 1,707 errors. Among these dispensing errors, 723 (42.4%) content errors occurred concomitantly with the prescribing errors. A subset of dispensing errors may have occurred because of poor prescription quality. The observed concomitancy should be examined carefully because improvements in the prescribing process could potentially prevent these problems. CONCLUSION: The system of drug prescribing and dispensing at the hospital investigated in this study should be improved by incorporating the best practices of medication safety and preventing medication errors. High-alert medications may be used as triggers for improving the safety of the drug-utilization system. PMID:22012039

  5. The statistical fluctuation study of quantum key distribution in means of uncertainty principle

    NASA Astrophysics Data System (ADS)

    Liu, Dunwei; An, Huiyao; Zhang, Xiaoyu; Shi, Xuemei

    2018-03-01

    Laser defects in emitting single photon, photon signal attenuation and propagation of error cause our serious headaches in practical long-distance quantum key distribution (QKD) experiment for a long time. In this paper, we study the uncertainty principle in metrology and use this tool to analyze the statistical fluctuation of the number of received single photons, the yield of single photons and quantum bit error rate (QBER). After that we calculate the error between measured value and real value of every parameter, and concern the propagation error among all the measure values. We paraphrase the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) formula in consideration of those parameters and generate the QKD simulation result. In this study, with the increase in coding photon length, the safe distribution distance is longer and longer. When the coding photon's length is N = 10^{11}, the safe distribution distance can be almost 118 km. It gives a lower bound of safe transmission distance than without uncertainty principle's 127 km. So our study is in line with established theory, but we make it more realistic.

  6. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, H. -Y.; Klein, S. A.; Xie, S.

    Many weather forecasting and climate models simulate a warm surface air temperature (T2m) bias over mid-latitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multi-model intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to T2m bias using a short-term hindcast approach with observations mainly from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during the period of April to August 2011. The present study examines the contributionmore » of surface energy budget errors to the bias. All participating models simulate higher net shortwave and longwave radiative fluxes at the surface but there is no consistency on signs of biases in latent and sensible heat fluxes over the Central U.S. and ARM SGP. Nevertheless, biases in net shortwave and downward longwave fluxes, as well as surface evaporative fraction (EF) are the main contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF is affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis suggests that radiation errors are always an important source of T2m error for long-term climate runs with EF errors either of equal or lesser importance. However, for the short-term hindcasts, EF errors are more important provided a model has a substantial EF bias.« less

  7. Sensitivity of thermal inertia calculations to variations in environmental factors. [in mapping of Earth's surface by remote sensing

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Alley, R. E.; Schieldge, J. P.

    1984-01-01

    The sensitivity of thermal inertia (TI) calculations to errors in the measurement or parameterization of a number of environmental factors is considered here. The factors include effects of radiative transfer in the atmosphere, surface albedo and emissivity, variations in surface turbulent heat flux density, cloud cover, vegetative cover, and topography. The error analysis is based upon data from the Heat Capacity Mapping Mission (HCMM) satellite for July 1978 at three separate test sites in the deserts of the western United States. Results show that typical errors in atmospheric radiative transfer, cloud cover, and vegetative cover can individually cause root-mean-square (RMS) errors of about 10 percent (with atmospheric effects sometimes as large as 30-40 percent) in HCMM-derived thermal inertia images of 20,000-200,000 pixels.

  8. Medication Administration Errors in Nursing Homes Using an Automated Medication Dispensing System

    PubMed Central

    van den Bemt, Patricia M.L.A.; Idzinga, Jetske C.; Robertz, Hans; Kormelink, Dennis Groot; Pels, Neske

    2009-01-01

    Objective To identify the frequency of medication administration errors as well as their potential risk factors in nursing homes using a distribution robot. Design The study was a prospective, observational study conducted within three nursing homes in the Netherlands caring for 180 individuals. Measurements Medication errors were measured using the disguised observation technique. Types of medication errors were described. The correlation between several potential risk factors and the occurrence of medication errors was studied to identify potential causes for the errors. Results In total 2,025 medication administrations to 127 clients were observed. In these administrations 428 errors were observed (21.2%). The most frequently occurring types of errors were use of wrong administration techniques (especially incorrect crushing of medication and not supervising the intake of medication) and wrong time errors (administering the medication at least 1 h early or late).The potential risk factors female gender (odds ratio (OR) 1.39; 95% confidence interval (CI) 1.05–1.83), ATC medication class antibiotics (OR 11.11; 95% CI 2.66–46.50), medication crushed (OR 7.83; 95% CI 5.40–11.36), number of dosages/day/client (OR 1.03; 95% CI 1.01–1.05), nursing home 2 (OR 3.97; 95% CI 2.86–5.50), medication not supplied by distribution robot (OR 2.92; 95% CI 2.04–4.18), time classes “7–10 am” (OR 2.28; 95% CI 1.50–3.47) and “10 am-2 pm” (OR 1.96; 1.18–3.27) and day of the week “Wednesday” (OR 1.46; 95% CI 1.03–2.07) are associated with a higher risk of administration errors. Conclusions Medication administration in nursing homes is prone to many errors. This study indicates that the handling of the medication after removing it from the robot packaging may contribute to this high error frequency, which may be reduced by training of nurse attendants, by automated clinical decision support and by measures to reduce workload. PMID:19390109

  9. Identifying types and causes of errors in mortality data in a clinical registry using multiple information systems.

    PubMed

    Koetsier, Antonie; Peek, Niels; de Keizer, Nicolette

    2012-01-01

    Errors may occur in the registration of in-hospital mortality, making it less reliable as a quality indicator. We assessed the types of errors made in in-hospital mortality registration in the clinical quality registry National Intensive Care Evaluation (NICE) by comparing its mortality data to data from a national insurance claims database. Subsequently, we performed site visits at eleven Intensive Care Units (ICUs) to investigate the number, types and causes of errors made in in-hospital mortality registration. A total of 255 errors were found in the NICE registry. Two different types of software malfunction accounted for almost 80% of the errors. The remaining 20% were five types of manual transcription errors and human failures to record outcome data. Clinical registries should be aware of the possible existence of errors in recorded outcome data and understand their causes. In order to prevent errors, we recommend to thoroughly verify the software that is used in the registration process.

  10. Method for reducing measurement errors of a Langmuir probe with a protective RF shield

    NASA Astrophysics Data System (ADS)

    Riaby, V.; Masherov, P.; Savinov, V.; Yakunin, V.

    2018-04-01

    Probe measurements were conducted in the middle cross-section of an inductive, low-pressure xenon plasma using a straight cylindrical Langmuir probe with a bare metal shield that protected the probe from radio frequency interference. As a result, reliable radial distributions of the plasma parameters were obtained. Subsequent analyses of these measurements revealed that the electron energy distribution function (EEDF) deviated substantially from the Maxwellian functions and that this deviation depended on the length of the probe shield. To evaluate the shield's influence on the measurement results, in addition to the probe (which was moved radially as its shield length varied in the range of lsh1 = lmax-0), an additional L-shaped probe was inserted at a different location. This probe was moved differently from the first probe and provided confirmational measurements in the common special position where lsh1 = 0 and lsh2 ≠ 0. In this position, the second shield decreased all the plasma parameters. A comparison of the probe datasets identified the principles of the relationships between measurement errors and EEDF distortions caused by the bare probe shields. This dependence was used to correct the measurements performed using the first probe by eliminating the influence of its shield. Physical analyses based on earlier studies showed that these peculiarities are caused by a short-circuited double-probe effect that occurs in bare metal probe protective shields.

  11. A modified technique to reduce tibial keel cutting errors during an Oxford unicompartmental knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Tahara, Keitarou; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2017-03-01

    Bone cutting errors can cause malalignment of unicompartmental knee arthroplasties (UKA). Although the extent of tibial malalignment due to horizontal cutting errors has been well reported, there is a lack of studies evaluating malalignment as a consequence of keel cutting errors, particularly in the Oxford UKA. The purpose of this study was to examine keel cutting errors during Oxford UKA placement using a navigation system and to clarify whether two different tibial keel cutting techniques would have different error rates. The alignment of the tibial cut surface after a horizontal osteotomy and the surface of the tibial trial component was measured with a navigation system. Cutting error was defined as the angular difference between these measurements. The following two techniques were used: the standard "pushing" technique in 83 patients (group P) and a modified "dolphin" technique in 41 patients (group D). In all 123 patients studied, the mean absolute keel cutting error was 1.7° and 1.4° in the coronal and sagittal planes, respectively. In group P, there were 22 outlier patients (27 %) in the coronal plane and 13 (16 %) in the sagittal plane. Group D had three outlier patients (8 %) in the coronal plane and none (0 %) in the sagittal plane. Significant differences were observed in the outlier ratio of these techniques in both the sagittal (P = 0.014) and coronal (P = 0.008) planes. Our study demonstrated overall keel cutting errors of 1.7° in the coronal plane and 1.4° in the sagittal plane. The "dolphin" technique was found to significantly reduce keel cutting errors on the tibial side. This technique will be useful for accurate component positioning and therefore improve the longevity of Oxford UKAs. Retrospective comparative study, Level III.

  12. Soil permittivity response to bulk electrical conductivity for selected soil water sensors

    USDA-ARS?s Scientific Manuscript database

    Bulk electrical conductivity can dominate the low frequency dielectric loss spectrum in soils, masking changes in the real permittivity and causing errors in estimated water content. We examined the dependence of measured apparent permittivity (Ka) on bulk electrical conductivity in contrasting soil...

  13. Hospital-based transfusion error tracking from 2005 to 2010: identifying the key errors threatening patient transfusion safety.

    PubMed

    Maskens, Carolyn; Downie, Helen; Wendt, Alison; Lima, Ana; Merkley, Lisa; Lin, Yulia; Callum, Jeannie

    2014-01-01

    This report provides a comprehensive analysis of transfusion errors occurring at a large teaching hospital and aims to determine key errors that are threatening transfusion safety, despite implementation of safety measures. Errors were prospectively identified from 2005 to 2010. Error data were coded on a secure online database called the Transfusion Error Surveillance System. Errors were defined as any deviation from established standard operating procedures. Errors were identified by clinical and laboratory staff. Denominator data for volume of activity were used to calculate rates. A total of 15,134 errors were reported with a median number of 215 errors per month (range, 85-334). Overall, 9083 (60%) errors occurred on the transfusion service and 6051 (40%) on the clinical services. In total, 23 errors resulted in patient harm: 21 of these errors occurred on the clinical services and two in the transfusion service. Of the 23 harm events, 21 involved inappropriate use of blood. Errors with no harm were 657 times more common than events that caused harm. The most common high-severity clinical errors were sample labeling (37.5%) and inappropriate ordering of blood (28.8%). The most common high-severity error in the transfusion service was sample accepted despite not meeting acceptance criteria (18.3%). The cost of product and component loss due to errors was $593,337. Errors occurred at every point in the transfusion process, with the greatest potential risk of patient harm resulting from inappropriate ordering of blood products and errors in sample labeling. © 2013 American Association of Blood Banks (CME).

  14. Do the pyramids show continental drift?

    PubMed

    Pawley, G S; Abrahamsen, N

    1973-03-02

    The mystery of the orientation of the Great Pyramids of Giza has remained unexplained for many decades. The general alignment is 4 minutes west of north. It is argued that this is not a builders' error but is caused by movement over the centuries. Modern theories of continental drift do not predict quite such large movements, but other causes of polar wandering give even smaller shifts. Thus, continental drift is the most likely explanation, although somewhat implausible, especially as relevant measurements have been made over a 50-year period, whereas geophysical measurements of sea-floor spreading relate to million-year time scales.

  15. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread.

    PubMed

    Dong, Zhixu; Sun, Xingwei; Chen, Changzheng; Sun, Mengnan

    2018-04-13

    The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor's measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved.

  16. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread

    PubMed Central

    Sun, Xingwei; Chen, Changzheng; Sun, Mengnan

    2018-01-01

    The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor’s measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved. PMID:29652836

  17. Evaluation and error apportionment of an ensemble of ...

    EPA Pesticide Factsheets

    Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII.The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact

  18. Effect of ephemeris errors on the accuracy of the computation of the tangent point altitude of a solar scanning ray as measured by the SAGE 1 and 2 instruments

    NASA Technical Reports Server (NTRS)

    Buglia, James J.

    1989-01-01

    An analysis was made of the error in the minimum altitude of a geometric ray from an orbiting spacecraft to the Sun. The sunrise and sunset errors are highly correlated and are opposite in sign. With the ephemeris generated for the SAGE 1 instrument data reduction, these errors can be as large as 200 to 350 meters (1 sigma) after 7 days of orbit propagation. The bulk of this error results from errors in the position of the orbiting spacecraft rather than errors in computing the position of the Sun. These errors, in turn, result from the discontinuities in the ephemeris tapes resulting from the orbital determination process. Data taken from the end of the definitive ephemeris tape are used to generate the predict data for the time interval covered by the next arc of the orbit determination process. The predicted data are then updated by using the tracking data. The growth of these errors is very nearly linear, with a slight nonlinearity caused by the beta angle. An approximate analytic method is given, which predicts the magnitude of the errors and their growth in time with reasonable fidelity.

  19. Patients' perception of types of errors in palliative care - results from a qualitative interview study.

    PubMed

    Kiesewetter, Isabel; Schulz, Christian; Bausewein, Claudia; Fountain, Rita; Schmitz, Andrea

    2016-08-11

    Medical errors have been recognized as a relevant public health concern and research efforts to improve patient safety have increased. In palliative care, however, studies on errors are rare and mainly focus on quantitative measures. We aimed to explore how palliative care patients perceive and think about errors in palliative care and to generate an understanding of patients' perception of errors in that specialty. A semistructured qualitative interview study was conducted with patients who had received at least 1 week of palliative care in an inpatient or outpatient setting. All interviews were transcribed verbatim and analysed according to qualitative content analysis. Twelve patients from two centers were interviewed (7 women, median age 63.5 years, range 22-90 years). Eleven patients suffered from a malignancy. Days in palliative care ranged from 10 to 180 days (median 28 days). 96 categories emerged which were summed up under 11 umbrella terms definition, difference, type, cause, consequence, meaning, recognition, handling, prevention, person causing and affected person. A deductive model was developed assigning umbrella terms to error-theory-based factor levels (definition, type and process-related factors). 23 categories for type of error were identified, including 12 categories that can be considered as palliative care specific. On the level of process-related factors 3 palliative care specific categories emerged (recognition, meaning and consequence of errors). From the patients' perspective, there are some aspects of errors that could be considered as specific to palliative care. As the results of our study suggest, these palliative care-specific aspects seem to be very important from the patients' point of view and should receive further investigation. Moreover, the findings of this study can serve as a guide to further assess single aspects or categories of errors in palliative care in future research.

  20. National survey of blindness and low vision in Lebanon

    PubMed Central

    Mansour, A; Kassak, K.; Chaya, M.; Hourani, T.; Sibai, A.; Alameddine, M

    1997-01-01

    AIMS—To survey level of blindness and low vision in Lebanon.
METHODS—A population survey was undertaken in 10 148 individuals to measure the prevalence and identify the causes of blindness in Lebanon.
RESULTS—The prevalence of blindness was 0.6% and that of low vision 3.9%. The major causes of blindness were cataract (41.3%) and uncorrected large refractive error (12.6%).
CONCLUSION—Most causes of blindness in Lebanon can be controlled by various educational and medical programmes.

 PMID:9486035

  1. Scheduling periodic jobs using imprecise results

    NASA Technical Reports Server (NTRS)

    Chung, Jen-Yao; Liu, Jane W. S.; Lin, Kwei-Jay

    1987-01-01

    One approach to avoid timing faults in hard, real-time systems is to make available intermediate, imprecise results produced by real-time processes. When a result of the desired quality cannot be produced in time, an imprecise result of acceptable quality produced before the deadline can be used. The problem of scheduling periodic jobs to meet deadlines on a system that provides the necessary programming language primitives and run-time support for processes to return imprecise results is discussed. Since the scheduler may choose to terminate a task before it is completed, causing it to produce an acceptable but imprecise result, the amount of processor time assigned to any task in a valid schedule can be less than the amount of time required to complete the task. A meaningful formulation of the scheduling problem must take into account the overall quality of the results. Depending on the different types of undesirable effects caused by errors, jobs are classified as type N or type C. For type N jobs, the effects of errors in results produced in different periods are not cumulative. A reasonable performance measure is the average error over all jobs. Three heuristic algorithms that lead to feasible schedules with small average errors are described. For type C jobs, the undesirable effects of errors produced in different periods are cumulative. Schedulability criteria of type C jobs are discussed.

  2. Errors in otology.

    PubMed

    Kartush, J M

    1996-11-01

    Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.

  3. Landmark-Based Drift Compensation Algorithm for Inertial Pedestrian Navigation

    PubMed Central

    Munoz Diaz, Estefania; Caamano, Maria; Fuentes Sánchez, Francisco Javier

    2017-01-01

    The navigation of pedestrians based on inertial sensors, i.e., accelerometers and gyroscopes, has experienced a great growth over the last years. However, the noise of medium- and low-cost sensors causes a high error in the orientation estimation, particularly in the yaw angle. This error, called drift, is due to the bias of the z-axis gyroscope and other slow changing errors, such as temperature variations. We propose a seamless landmark-based drift compensation algorithm that only uses inertial measurements. The proposed algorithm adds a great value to the state of the art, because the vast majority of the drift elimination algorithms apply corrections to the estimated position, but not to the yaw angle estimation. Instead, the presented algorithm computes the drift value and uses it to prevent yaw errors and therefore position errors. In order to achieve this goal, a detector of landmarks, i.e., corners and stairs, and an association algorithm have been developed. The results of the experiments show that it is possible to reliably detect corners and stairs using only inertial measurements eliminating the need that the user takes any action, e.g., pressing a button. Associations between re-visited landmarks are successfully made taking into account the uncertainty of the position. After that, the drift is computed out of all associations and used during a post-processing stage to obtain a low-drifted yaw angle estimation, that leads to successfully drift compensated trajectories. The proposed algorithm has been tested with quasi-error-free turn rate measurements introducing known biases and with medium-cost gyroscopes in 3D indoor and outdoor scenarios. PMID:28671622

  4. Error field measurement, correction and heat flux balancing on Wendelstein 7-X

    DOE PAGES

    Lazerson, Samuel A.; Otte, Matthias; Jakubowski, Marcin; ...

    2017-03-10

    The measurement and correction of error fields in Wendelstein 7-X (W7-X) is critical to long pulse high beta operation, as small error fields may cause overloading of divertor plates in some configurations. Accordingly, as part of a broad collaborative effort, the detection and correction of error fields on the W7-X experiment has been performed using the trim coil system in conjunction with the flux surface mapping diagnostic and high resolution infrared camera. In the early commissioning phase of the experiment, the trim coils were used to open an n/m = 1/2 island chain in a specially designed magnetic configuration. Themore » flux surfacing mapping diagnostic was then able to directly image the magnetic topology of the experiment, allowing the inference of a small similar to 4 cm intrinsic island chain. The suspected main sources of the error field, slight misalignment and deformations of the superconducting coils, are then confirmed through experimental modeling using the detailed measurements of the coil positions. Observations of the limiters temperatures in module 5 shows a clear dependence of the limiter heat flux pattern as the perturbing fields are rotated. Plasma experiments without applied correcting fields show a significant asymmetry in neutral pressure (centered in module 4) and light emission (visible, H-alpha, CII, and CIII). Such pressure asymmetry is associated with plasma-wall (limiter) interaction asymmetries between the modules. Application of trim coil fields with n = 1 waveform correct the imbalance. Confirmation of the error fields allows the assessment of magnetic fields which resonate with the n/m = 5/5 island chain.« less

  5. Death Certification Errors and the Effect on Mortality Statistics.

    PubMed

    McGivern, Lauri; Shulman, Leanne; Carney, Jan K; Shapiro, Steven; Bundock, Elizabeth

    Errors in cause and manner of death on death certificates are common and affect families, mortality statistics, and public health research. The primary objective of this study was to characterize errors in the cause and manner of death on death certificates completed by non-Medical Examiners. A secondary objective was to determine the effects of errors on national mortality statistics. We retrospectively compared 601 death certificates completed between July 1, 2015, and January 31, 2016, from the Vermont Electronic Death Registration System with clinical summaries from medical records. Medical Examiners, blinded to original certificates, reviewed summaries, generated mock certificates, and compared mock certificates with original certificates. They then graded errors using a scale from 1 to 4 (higher numbers indicated increased impact on interpretation of the cause) to determine the prevalence of minor and major errors. They also compared International Classification of Diseases, 10th Revision (ICD-10) codes on original certificates with those on mock certificates. Of 601 original death certificates, 319 (53%) had errors; 305 (51%) had major errors; and 59 (10%) had minor errors. We found no significant differences by certifier type (physician vs nonphysician). We did find significant differences in major errors in place of death ( P < .001). Certificates for deaths occurring in hospitals were more likely to have major errors than certificates for deaths occurring at a private residence (59% vs 39%, P < .001). A total of 580 (93%) death certificates had a change in ICD-10 codes between the original and mock certificates, of which 348 (60%) had a change in the underlying cause-of-death code. Error rates on death certificates in Vermont are high and extend to ICD-10 coding, thereby affecting national mortality statistics. Surveillance and certifier education must expand beyond local and state efforts. Simplifying and standardizing underlying literal text for cause of death may improve accuracy, decrease coding errors, and improve national mortality statistics.

  6. Minimizing systematic errors from atmospheric multiple scattering and satellite viewing geometry in coastal zone color scanner level IIA imagery

    NASA Technical Reports Server (NTRS)

    Martin, D. L.; Perry, M. J.

    1994-01-01

    Water-leaving radiances and phytoplankton pigment concentrations are calculated from coastal zone color scanner (CZCS) radiance measurements by removing atmospheric Rayleigh and aerosol radiances from the total radiance signal measured at the satellite. The single greatest source of error in CZCS atmospheric correction algorithms in the assumption that these Rayleigh and aerosol radiances are separable. Multiple-scattering interactions between Rayleigh and aerosol components cause systematic errors in calculated aerosol radiances, and the magnitude of these errors is dependent on aerosol type and optical depth and on satellite viewing geometry. A technique was developed which extends the results of previous radiative transfer modeling by Gordon and Castano to predict the magnitude of these systematic errors for simulated CZCS orbital passes in which the ocean is viewed through a modeled, physically realistic atmosphere. The simulated image mathematically duplicates the exact satellite, Sun, and pixel locations of an actual CZCS image. Errors in the aerosol radiance at 443 nm are calculated for a range of aerosol optical depths. When pixels in the simulated image exceed an error threshhold, the corresponding pixels in the actual CZCS image are flagged and excluded from further analysis or from use in image compositing or compilation of pigment concentration databases. Studies based on time series analyses or compositing of CZCS imagery which do not address Rayleigh-aerosol multiple scattering should be interpreted cautiously, since the fundamental assumption used in their atmospheric correction algorithm is flawed.

  7. Reduction in Chemotherapy Mixing Errors Using Six Sigma: Illinois CancerCare Experience.

    PubMed

    Heard, Bridgette; Miller, Laura; Kumar, Pankaj

    2012-03-01

    Chemotherapy mixing errors (CTMRs), although rare, have serious consequences. Illinois CancerCare is a large practice with multiple satellite offices. The goal of this study was to reduce the number of CTMRs using Six Sigma methods. A Six Sigma team consisting of five participants (registered nurses and pharmacy technicians [PTs]) was formed. The team had 10 hours of Six Sigma training in the DMAIC (ie, Define, Measure, Analyze, Improve, Control) process. Measurement of errors started from the time the CT order was verified by the PT to the time of CT administration by the nurse. Data collection included retrospective error tracking software, system audits, and staff surveys. Root causes of CTMRs included inadequate knowledge of CT mixing protocol, inconsistencies in checking methods, and frequent changes in staffing of clinics. Initial CTMRs (n = 33,259) constituted 0.050%, with 77% of these errors affecting patients. The action plan included checklists, education, and competency testing. The postimplementation error rate (n = 33,376, annualized) over a 3-month period was reduced to 0.019%, with only 15% of errors affecting patients. Initial Sigma was calculated at 4.2; this process resulted in the improvement of Sigma to 5.2, representing a 100-fold reduction. Financial analysis demonstrated a reduction in annualized loss of revenue (administration charges and drug wastage) from $11,537.95 (Medicare Average Sales Price) before the start of the project to $1,262.40. The Six Sigma process is a powerful technique in the reduction of CTMRs.

  8. Transient fault behavior in a microprocessor: A case study

    NASA Technical Reports Server (NTRS)

    Duba, Patrick

    1989-01-01

    An experimental analysis is described which studies the susceptibility of a microprocessor based jet engine controller to upsets caused by current and voltage transients. A design automation environment which allows the run time injection of transients and the tracing from their impact device to the pin level is described. The resulting error data are categorized by the charge levels of the injected transients by location and by their potential to cause logic upsets, latched errors, and pin errors. The results show a 3 picoCouloumb threshold, below which the transients have little impact. An Arithmetic and Logic Unit transient is most likely to result in logic upsets and pin errors (i.e., impact the external environment). The transients in the countdown unit are potentially serious since they can result in latched errors, thus causing latent faults. Suggestions to protect the processor against these errors, by incorporating internal error detection and transient suppression techniques, are also made.

  9. The current and ideal state of anatomic pathology patient safety.

    PubMed

    Raab, Stephen Spencer

    2014-01-01

    An anatomic pathology diagnostic error may be secondary to a number of active and latent technical and/or cognitive components, which may occur anywhere along the total testing process in clinical and/or laboratory domains. For the pathologist interpretive steps of diagnosis, we examine Kahneman's framework of slow and fast thinking to explain different causes of error in precision (agreement) and in accuracy (truth). The pathologist cognitive diagnostic process involves image pattern recognition and a slow thinking error may be caused by the application of different rationally-constructed mental maps of image criteria/patterns by different pathologists. This type of error is partly related to a system failure in standardizing the application of these maps. A fast thinking error involves the flawed leap from image pattern to incorrect diagnosis. In the ideal state, anatomic pathology systems would target these cognitive error causes as well as the technical latent factors that lead to error.

  10. Deflectometry using a Hartmann screen to measure tilt, decentering and focus errors in a spherical surface

    NASA Astrophysics Data System (ADS)

    Muñoz-Potosi, A. F.; Granados-Agustín, F.; Campos-García, M.; Valdivieso-González, L. G.; Percino-Zacarias, M. E.

    2017-11-01

    Among the various techniques that can be used to assess the quality of optical surfaces, deflectometry evaluates the reflection experienced by rays impinging on a surface whose topography is under study. We propose the use of a screen spatial filter to select rays from a light source. The screen must be placed at a distance shorter than the radius of curvature of the surface under study. The location of the screen depends on the exit pupil of the system and the caustic area. The reflected rays are measured using an observation plane/screen/CCD located beyond the point of convergence of the rays. To implement an experimental design of the proposed technique and determine the topography of the surface under study, it is necessary to measure tilt, decentering and focus errors caused by mechanical misalignment, which could influence the results of this technique but are not related to the quality of the surface. The aim of this study is to analyze an ideal spherical surface with known radius of curvature to identify the variations introduced by such misalignment errors.

  11. Application of adaptive Kalman filter in vehicle laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Fan, Zhe; Sun, Qiao; Du, Lei; Bai, Jie; Liu, Jingyun

    2018-03-01

    Due to the variation of road conditions and motor characteristics of vehicle, great root-mean-square (rms) error and outliers would be caused. Application of Kalman filter in laser Doppler velocimetry(LDV) is important to improve the velocity measurement accuracy. In this paper, the state-space model is built by using current statistical model. A strategy containing two steps is adopted to make the filter adaptive and robust. First, the acceleration variance is adaptively adjusted by using the difference of predictive observation and measured observation. Second, the outliers would be identified and the measured noise variance would be adjusted according to the orthogonal property of innovation to reduce the impaction of outliers. The laboratory rotating table experiments show that adaptive Kalman filter greatly reduces the rms error from 0.59 cm/s to 0.22 cm/s and has eliminated all the outliers. Road experiments compared with a microwave radar show that the rms error of LDV is 0.0218 m/s, and it proves that the adaptive Kalman filtering is suitable for vehicle speed signal processing.

  12. [Medication errors in a neonatal unit: One of the main adverse events].

    PubMed

    Esqué Ruiz, M T; Moretones Suñol, M G; Rodríguez Miguélez, J M; Sánchez Ortiz, E; Izco Urroz, M; de Lamo Camino, M; Figueras Aloy, J

    2016-04-01

    Neonatal units are one of the hospital areas most exposed to the committing of treatment errors. A medication error (ME) is defined as the avoidable incident secondary to drug misuse that causes or may cause harm to the patient. The aim of this paper is to present the incidence of ME (including feeding) reported in our neonatal unit and its characteristics and possible causal factors. A list of the strategies implemented for prevention is presented. An analysis was performed on the ME declared in a neonatal unit. A total of 511 MEs have been reported over a period of seven years in the neonatal unit. The incidence in the critical care unit was 32.2 per 1000 hospital days or 20 per 100 patients, of which 0.22 per 1000 days had serious repercussions. The ME reported were, 39.5% prescribing errors, 68.1% administration errors, 0.6% were adverse drug reactions. Around two-thirds (65.4%) were produced by drugs, with 17% being intercepted. The large majority (89.4%) had no impact on the patient, but 0.6% caused permanent damage or death. Nurses reported 65.4% of MEs. The most commonly implicated causal factor was distraction (59%). Simple corrective action (alerts), and intermediate (protocols, clinical sessions and courses) and complex actions (causal analysis, monograph) were performed. It is essential to determine the current state of ME, in order to establish preventive measures and, together with teamwork and good practices, promote a climate of safety. Copyright © 2015 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  13. A root cause analysis project in a medication safety course.

    PubMed

    Schafer, Jason J

    2012-08-10

    To develop, implement, and evaluate team-based root cause analysis projects as part of a required medication safety course for second-year pharmacy students. Lectures, in-class activities, and out-of-class reading assignments were used to develop students' medication safety skills and introduce them to the culture of medication safety. Students applied these skills within teams by evaluating cases of medication errors using root cause analyses. Teams also developed error prevention strategies and formally presented their findings. Student performance was assessed using a medication errors evaluation rubric. Of the 211 students who completed the course, the majority performed well on root cause analysis assignments and rated them favorably on course evaluations. Medication error evaluation and prevention was successfully introduced in a medication safety course using team-based root cause analysis projects.

  14. Point-of-care blood glucose measurement errors overestimate hypoglycaemia rates in critically ill patients.

    PubMed

    Nya-Ngatchou, Jean-Jacques; Corl, Dawn; Onstad, Susan; Yin, Tom; Tylee, Tracy; Suhr, Louise; Thompson, Rachel E; Wisse, Brent E

    2015-02-01

    Hypoglycaemia is associated with morbidity and mortality in critically ill patients, and many hospitals have programmes to minimize hypoglycaemia rates. Recent studies have established the hypoglycaemic patient-day as a key metric and have published benchmark inpatient hypoglycaemia rates on the basis of point-of-care blood glucose data even though these values are prone to measurement errors. A retrospective, cohort study including all patients admitted to Harborview Medical Center Intensive Care Units (ICUs) during 2010 and 2011 was conducted to evaluate a quality improvement programme to reduce inappropriate documentation of point-of-care blood glucose measurement errors. Laboratory Medicine point-of-care blood glucose data and patient charts were reviewed to evaluate all episodes of hypoglycaemia. A quality improvement intervention decreased measurement errors from 31% of hypoglycaemic (<70 mg/dL) patient-days in 2010 to 14% in 2011 (p < 0.001) and decreased the observed hypoglycaemia rate from 4.3% of ICU patient-days to 3.4% (p < 0.001). Hypoglycaemic events were frequently recurrent or prolonged (~40%), and these events are not identified by the hypoglycaemic patient-day metric, which also may be confounded by a large number of very low risk or minimally monitored patient-days. Documentation of point-of-care blood glucose measurement errors likely overestimates ICU hypoglycaemia rates and can be reduced by a quality improvement effort. The currently used hypoglycaemic patient-day metric does not evaluate recurrent or prolonged events that may be more likely to cause patient harm. The monitored patient-day as currently defined may not be the optimal denominator to determine inpatient hypoglycaemic risk. Copyright © 2014 John Wiley & Sons, Ltd.

  15. Measurement error affects risk estimates for recruitment to the Hudson River stock of striped bass.

    PubMed

    Dunning, Dennis J; Ross, Quentin E; Munch, Stephan B; Ginzburg, Lev R

    2002-06-07

    We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years). Measurement error, estimated using two abundance indices from independent beach seine surveys conducted on the Hudson River, accounted for 50% of the variability in one index and 56% of the variability in the other. If a measurement error of 50% was ignored and all of the variability in abundance was attributed to natural causes, the risk that recruitment of age-1+ striped bass would decline by 80% or more after 15 years was 0.308 at the current level of entrainment mortality (11%). However, the risk decreased almost tenfold (0.032) if a measurement error of 50% was considered. The change in risk attributable to decreasing the entrainment mortality rate from 11 to 0% was very small (0.009) and similar in magnitude to the change in risk associated with an action proposed in Amendment #5 to the Interstate Fishery Management Plan for Atlantic striped bass (0.006)--an increase in the instantaneous fishing mortality rate from 0.33 to 0.4. The proposed increase in fishing mortality was not considered an adverse environmental impact, which suggests that potentially costly efforts to reduce entrainment mortality on the Hudson River stock of striped bass are not warranted.

  16. The Enigmatic Cornea and Intraocular Lens Calculations: The LXXIII Edward Jackson Memorial Lecture.

    PubMed

    Koch, Douglas D

    2016-11-01

    To review the progress and challenges in obtaining accurate corneal power measurements for intraocular lens (IOL) calculations. Personal perspective, review of literature, case presentations, and personal data. Through literature review findings, case presentations, and data from the author's center, the types of corneal measurement errors that can occur in IOL calculation are categorized and described, along with discussion of future options to improve accuracy. Advances in IOL calculation technology and formulas have greatly increased the accuracy of IOL calculations. Recent reports suggest that over 90% of normal eyes implanted with IOLs may achieve accuracy to within 0.5 diopter (D) of the refractive target. Though errors in estimation of corneal power can cause IOL calculation errors in eyes with normal corneas, greater difficulties in measuring corneal power are encountered in eyes with diseased, scarred, and postsurgical corneas. For these corneas, problematic issues are quantifying anterior corneal power and measuring posterior corneal power and astigmatism. Results in these eyes are improving, but 2 examples illustrate current limitations: (1) spherical accuracy within 0.5 D is achieved in only 70% of eyes with post-refractive surgery corneas, and (2) astigmatism accuracy within 0.5 D is achieved in only 80% of eyes implanted with toric IOLs. Corneal power measurements are a major source of error in IOL calculations. New corneal imaging technology and IOL calculation formulas have improved outcomes and hold the promise of ongoing progress. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. An image registration-based technique for noninvasive vascular elastography

    NASA Astrophysics Data System (ADS)

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-02-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in the regions far from the center of the vessel, causing a high error of displacement measurement. On the other hand, increasing the compression leads to a relatively large displacement in the regions near the center, which reduces the performance of the cross correlation-based methods. In this study, a non-rigid image registration-based technique is proposed to measure the tissue displacement for a relatively large compression. The results show that the error of the displacement measurement obtained by the proposed method is reduced by increasing the amount of compression while the error of the cross correlationbased method rises for a relatively large compression. We also used the synthetic aperture imaging method, benefiting the directivity diagram, to improve the image quality, especially in the superficial regions. The best relative root-mean-square error (RMSE) of the proposed method and the adaptive cross correlation method were 4.5% and 6%, respectively. Consequently, the proposed algorithm outperforms the conventional method and reduces the relative RMSE by 25%.

  18. DIAGNOSTIC MODEL EVALUATION FOR CARBONACEOUS PM 2.5 USING ORGANIC MARKERS MEASURED IN THE SOUTHEASTERN U.S.

    EPA Science Inventory

    Summertime concentrations of fine particulate carbon in the southeastern United States are consistently underestimated by air quality models. In an effort to understand the cause of this error, the Community Multiscale Air Quality (CMAQ) model is instrumented to track primary org...

  19. Are Charitable Giving and Religious Attendance Complements or Substitutes? The Role of Measurement Error

    ERIC Educational Resources Information Center

    Kim, Matthew

    2013-01-01

    Government policies sometimes cause unintended consequences for other potentially desirable behaviors. One such policy is the charitable tax deduction, which encourages charitable giving by allowing individuals to deduct giving from taxable income. Whether charitable giving and other desirable behaviors are complements or substitutes affect the…

  20. An Examination of the Causes and Solutions to Eyewitness Error

    PubMed Central

    Wise, Richard A.; Sartori, Giuseppe; Magnussen, Svein; Safer, Martin A.

    2014-01-01

    Eyewitness error is one of the leading causes of wrongful convictions. In fact, the American Psychological Association estimates that one in three eyewitnesses make an erroneous identification. In this review, we look briefly at some of the causes of eyewitness error. We examine what jurors, judges, attorneys, law officers, and experts from various countries know about eyewitness testimony and memory, and if they have the requisite knowledge and skills to accurately assess eyewitness testimony. We evaluate whether legal safeguards such as voir dire, motion-to-suppress an identification, cross-examination, jury instructions, and eyewitness expert testimony are effective in identifying eyewitness errors. Lastly, we discuss solutions to eyewitness error. PMID:25165459

  1. Effects of motion base and g-seat cueing of simulator pilot performance

    NASA Technical Reports Server (NTRS)

    Ashworth, B. R.; Mckissick, B. T.; Parrish, R. V.

    1984-01-01

    In order to measure and analyze the effects of a motion plus g-seat cueing system, a manned-flight-simulation experiment was conducted utilizing a pursuit tracking task and an F-16 simulation model in the NASA Langley visual/motion simulator. This experiment provided the information necessary to determine whether motion and g-seat cues have an additive effect on the performance of this task. With respect to the lateral tracking error and roll-control stick force, the answer is affirmative. It is shown that presenting the two cues simultaneously caused significant reductions in lateral tracking error and that using the g-seat and motion base separately provided essentially equal reductions in the pilot's lateral tracking error.

  2. Implementing technology to improve medication safety in healthcare facilities: a literature review.

    PubMed

    Hidle, Unn

    Medication errors remain one of the most common causes of patient injuries in the United States, with detrimental outcomes including adverse reactions and even death. By developing a better understanding of why and how medication errors occur, preventative measures may be implemented including technological advances. In this literature review, potential methods of reducing medication errors were explored. Furthermore, technology tools available for medication orders and administration are described, including advantages and disadvantages of each system. It was found that technology can be an excellent aid in improving safety of medication administration. However, computer technology cannot replace human intellect and intuition. Nurses should be involved when implementing any new computerized system in order to obtain the most appropriate and user-friendly structure.

  3. Assessing the Performance Management of National Preparedness - A Conceptual Model

    DTIC Science & Technology

    2015-12-01

    biased outcomes with “ambiguous and uncertain preparedness goals, a lack of agreement about what the measures should aim at and how they should be...there may also be undue influence, either intentionally or subconsciously , on how the data is presented. These influences are caused by the...ensure that data are free of systematic error or bias , and that what is intended to be measured is actually measured.”349 This step is critical to

  4. Using EHR Data to Detect Prescribing Errors in Rapidly Discontinued Medication Orders.

    PubMed

    Burlison, Jonathan D; McDaniel, Robert B; Baker, Donald K; Hasan, Murad; Robertson, Jennifer J; Howard, Scott C; Hoffman, James M

    2018-01-01

    Previous research developed a new method for locating prescribing errors in rapidly discontinued electronic medication orders. Although effective, the prospective design of that research hinders its feasibility for regular use. Our objectives were to assess a method to retrospectively detect prescribing errors, to characterize the identified errors, and to identify potential improvement opportunities. Electronically submitted medication orders from 28 randomly selected days that were discontinued within 120 minutes of submission were reviewed and categorized as most likely errors, nonerrors, or not enough information to determine status. Identified errors were evaluated by amount of time elapsed from original submission to discontinuation, error type, staff position, and potential clinical significance. Pearson's chi-square test was used to compare rates of errors across prescriber types. In all, 147 errors were identified in 305 medication orders. The method was most effective for orders that were discontinued within 90 minutes. Duplicate orders were most common; physicians in training had the highest error rate ( p  < 0.001), and 24 errors were potentially clinically significant. None of the errors were voluntarily reported. It is possible to identify prescribing errors in rapidly discontinued medication orders by using retrospective methods that do not require interrupting prescribers to discuss order details. Future research could validate our methods in different clinical settings. Regular use of this measure could help determine the causes of prescribing errors, track performance, and identify and evaluate interventions to improve prescribing systems and processes. Schattauer GmbH Stuttgart.

  5. An SEU resistant 256K SOI SRAM

    NASA Astrophysics Data System (ADS)

    Hite, L. R.; Lu, H.; Houston, T. W.; Hurta, D. S.; Bailey, W. E.

    1992-12-01

    A novel SEU (single event upset) resistant SRAM (static random access memory) cell has been implemented in a 256K SOI (silicon on insulator) SRAM that has attractive performance characteristics over the military temperature range of -55 to +125 C. These include worst-case access time of 40 ns with an active power of only 150 mW at 25 MHz, and a worst-case minimum WRITE pulse width of 20 ns. Measured SEU performance gives an Adams 10 percent worst-case error rate of 3.4 x 10 exp -11 errors/bit-day using the CRUP code with a conservative first-upset LET threshold. Modeling does show that higher bipolar gain than that measured on a sample from the SRAM lot would produce a lower error rate. Measurements show the worst-case supply voltage for SEU to be 5.5 V. Analysis has shown this to be primarily caused by the drain voltage dependence of the beta of the SOI parasitic bipolar transistor. Based on this, SEU experiments with SOI devices should include measurements as a function of supply voltage, rather than the traditional 4.5 V, to determine the worst-case condition.

  6. [Monitoring medication errors in personalised dispensing using the Sentinel Surveillance System method].

    PubMed

    Pérez-Cebrián, M; Font-Noguera, I; Doménech-Moral, L; Bosó-Ribelles, V; Romero-Boyero, P; Poveda-Andrés, J L

    2011-01-01

    To assess the efficacy of a new quality control strategy based on daily randomised sampling and monitoring a Sentinel Surveillance System (SSS) medication cart, in order to identify medication errors and their origin at different levels of the process. Prospective quality control study with one year follow-up. A SSS medication cart was randomly selected once a week and double-checked before dispensing medication. Medication errors were recorded before it was taken to the relevant hospital ward. Information concerning complaints after receiving medication and 24-hour monitoring were also noted. Type and origin error data were assessed by a Unit Dose Quality Control Group, which proposed relevant improvement measures. Thirty-four SSS carts were assessed, including 5130 medication lines and 9952 dispensed doses, corresponding to 753 patients. Ninety erroneous lines (1.8%) and 142 mistaken doses (1.4%) were identified at the Pharmacy Department. The most frequent error was dose duplication (38%) and its main cause inappropriate management and forgetfulness (69%). Fifty medication complaints (6.6% of patients) were mainly due to new treatment at admission (52%), and 41 (0.8% of all medication lines), did not completely match the prescription (0.6% lines) as recorded by the Pharmacy Department. Thirty-seven (4.9% of patients) medication complaints due to changes at admission and 32 matching errors (0.6% medication lines) were recorded. The main cause also was inappropriate management and forgetfulness (24%). The simultaneous recording of incidences due to complaints and new medication coincided in 33.3%. In addition, 433 (4.3%) of dispensed doses were returned to the Pharmacy Department. After the Unit Dose Quality Control Group conducted their feedback analysis, 64 improvement measures for Pharmacy Department nurses, 37 for pharmacists, and 24 for the hospital ward were introduced. The SSS programme has proven to be useful as a quality control strategy to identify Unit Dose Distribution System errors at initial, intermediate and final stages of the process, improving the involvement of the Pharmacy Department and ward nurses. Copyright © 2009 SEFH. Published by Elsevier Espana. All rights reserved.

  7. Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance.

    PubMed

    Salter, Bill J; Wang, Brian; Szegedi, Martin W; Rassiah-Szegedi, Prema; Shrieve, Dennis C; Cheng, Roger; Fuss, Martin

    2008-12-07

    Ultrasound (US) image guidance systems used in radiotherapy are typically calibrated for soft tissue applications, thus introducing errors in depth-from-transducer representation when used in media with a different speed of sound propagation (e.g. fat). This error is commonly referred to as the speed artifact. In this study we utilized a standard US phantom to demonstrate the existence of the speed artifact when using a commercial US image guidance system to image through layers of simulated body fat, and we compared the results with calculated/predicted values. A general purpose US phantom (speed of sound (SOS) = 1540 m s(-1)) was imaged on a multi-slice CT scanner at a 0.625 mm slice thickness and 0.5 mm x 0.5 mm axial pixel size. Target-simulating wires inside the phantom were contoured and later transferred to the US guidance system. Layers of various thickness (1-8 cm) of commercially manufactured fat-simulating material (SOS = 1435 m s(-1)) were placed on top of the phantom to study the depth-related alignment error. In order to demonstrate that the speed artifact is not caused by adding additional layers on top of the phantom, we repeated these measurements in an identical setup using commercially manufactured tissue-simulating material (SOS = 1540 m s(-1)) for the top layers. For the fat-simulating material used in this study, we observed the magnitude of the depth-related alignment errors resulting from the speed artifact to be 0.7 mm cm(-1) of fat imaged through. The measured alignment errors caused by the speed artifact agreed with the calculated values within one standard deviation for all of the different thicknesses of fat-simulating material studied here. We demonstrated the depth-related alignment error due to the speed artifact when using US image guidance for radiation treatment alignment and note that the presence of fat causes the target to be aliased to a depth greater than it actually is. For typical US guidance systems in use today, this will lead to delivery of the high dose region at a position slightly posterior to the intended region for a supine patient. When possible, care should be taken to avoid imaging through a thick layer of fat for larger patients in US alignments or, if unavoidable, the spatial inaccuracies introduced by the artifact should be considered by the physician during the formulation of the treatment plan.

  8. New methodology for adjusting rotating shadowband irradiometer measurements

    NASA Astrophysics Data System (ADS)

    Vignola, Frank; Peterson, Josh; Wilbert, Stefan; Blanc, Philippe; Geuder, Norbert; Kern, Chris

    2017-06-01

    A new method is developed for correcting systematic errors found in rotating shadowband irradiometer measurements. Since the responsivity of photodiode-based pyranometers typically utilized for RST sensors is dependent upon the wavelength of the incident radiation and the spectral distribution of the incident radiation is different for the Direct Normal Trradiance and the Diffuse Horizontal Trradiance, spectral effects have to be considered. These cause the most problematic errors when applying currently available correction functions to RST measurements. Hence, direct normal and diffuse contributions are analyzed and modeled separately. An additional advantage of this methodology is that it provides a prescription for how to modify the adjustment algorithms to locations with different atmospheric characteristics from the location where the calibration and adjustment algorithms were developed. A summary of results and areas for future efforts are then discussed.

  9. Custom-oriented wavefront sensor for human eye properties measurements

    NASA Astrophysics Data System (ADS)

    Galetskiy, Sergey; Letfullin, Renat; Dubinin, Alex; Cherezova, Tatyana; Belyakov, Alexey; Kudryashov, Alexis

    2005-12-01

    The problem of correct measurement of human eye aberrations is very important with the rising widespread of a surgical procedure for reducing refractive error in the eye, so called, LASIK (laser-assisted in situ keratomileusis). In this paper we show capabilities to measure aberrations by means of the aberrometer built in our lab together with Active Optics Ltd. We discuss the calibration of the aberrometer and show invalidity to use for the ophthalmic calibration purposes the analytical equation based on thin lens formula. We show that proper analytical equation suitable for calibration should have dependence on the square of the distance increment and we illustrate this both by experiment and by Zemax Ray tracing modeling. Also the error caused by inhomogeneous intensity distribution of the beam imaged onto the aberrometer's Shack-Hartmann sensor is discussed.

  10. Identifying the causes of road crashes in Europe

    PubMed Central

    Thomas, Pete; Morris, Andrew; Talbot, Rachel; Fagerlind, Helen

    2013-01-01

    This research applies a recently developed model of accident causation, developed to investigate industrial accidents, to a specially gathered sample of 997 crashes investigated in-depth in 6 countries. Based on the work of Hollnagel the model considers a collision to be a consequence of a breakdown in the interaction between road users, vehicles and the organisation of the traffic environment. 54% of road users experienced interpretation errors while 44% made observation errors and 37% planning errors. In contrast to other studies only 11% of drivers were identified as distracted and 8% inattentive. There was remarkably little variation in these errors between the main road user types. The application of the model to future in-depth crash studies offers the opportunity to identify new measures to improve safety and to mitigate the social impact of collisions. Examples given include the potential value of co-driver advisory technologies to reduce observation errors and predictive technologies to avoid conflicting interactions between road users. PMID:24406942

  11. Systematic ionospheric electron density tilts (SITs) at mid-latitudes and their associated HF bearing errors

    NASA Astrophysics Data System (ADS)

    Tedd, B. L.; Strangeways, H. J.; Jones, T. B.

    1985-11-01

    Systematic ionospheric tilts (SITs) at midlatitudes and the diurnal variation of bearing error for different transmission paths are examined. An explanation of diurnal variations of bearing error based on the dependence of ionospheric tilt on solar zenith angle and plasma transport processes is presented. The effect of vertical ion drift and the momentum transfer of neutral winds is investigated. During the daytime the transmissions are low and photochemical processes control SITs; however, at night transmissions are at higher heights and spatial and temporal variations of plasma transport processes influence SITs. A HF ray tracing technique which uses a three-dimensional ionospheric model based on predictions to simulate SIT-induced bearing errors is described; poor correlation with experimental data is observed and the causes for this are studied. A second model based on measured vertical-sounder data is proposed. Model two is applicable for predicting bearing error for a range of transmission paths and correlates well with experimental data.

  12. Inertial parameter identification using contact force information for an unknown object captured by a space manipulator

    NASA Astrophysics Data System (ADS)

    Chu, Zhongyi; Ma, Ye; Hou, Yueyang; Wang, Fengwen

    2017-02-01

    This paper presents a novel identification method for the intact inertial parameters of an unknown object in space captured by a manipulator in a space robotic system. With strong dynamic and kinematic coupling existing in the robotic system, the inertial parameter identification of the unknown object is essential for the ideal control strategy based on changes in the attitude and trajectory of the space robot via capturing operations. Conventional studies merely refer to the principle and theory of identification, and an error analysis process of identification is deficient for a practical scenario. To solve this issue, an analysis of the effect of errors on identification is illustrated first, and the accumulation of measurement or estimation errors causing poor identification precision is demonstrated. Meanwhile, a modified identification equation incorporating the contact force, as well as the force/torque of the end-effector, is proposed to weaken the accumulation of errors and improve the identification accuracy. Furthermore, considering a severe disturbance condition caused by various measured noises, the hybrid immune algorithm, Recursive Least Squares and Affine Projection Sign Algorithm (RLS-APSA), is employed to decode the modified identification equation to ensure a stable identification property. Finally, to verify the validity of the proposed identification method, the co-simulation of ADAMS-MATLAB is implemented by multi-degree of freedom models of a space robotic system, and the numerical results show a precise and stable identification performance, which is able to guarantee the execution of aerospace operations and prevent failed control strategies.

  13. Estimation of the optical errors on the luminescence imaging of water for proton beam

    NASA Astrophysics Data System (ADS)

    Yabe, Takuya; Komori, Masataka; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi

    2018-04-01

    Although luminescence imaging of water during proton-beam irradiation can be applied to range estimation, the height of the Bragg peak of the luminescence image was smaller than that measured with an ionization chamber. We hypothesized that the reasons of the difference were attributed to the optical phenomena; parallax errors of the optical system and the reflection of the luminescence from the water phantom. We estimated the errors cause by these optical phenomena affecting the luminescence image of water. To estimate the parallax error on the luminescence images, we measured the luminescence images during proton-beam irradiation using a cooled charge-coupled camera by changing the heights of the optical axis of the camera from those of the Bragg peak. When the heights of the optical axis matched to the depths of the Bragg peak, the Bragg peak heights in the depth profiles were the highest. The reflection of the luminescence of water with a black wall phantom was slightly smaller than that with a transparent phantom and changed the shapes of the depth profiles. We conclude that the parallax error significantly affects the heights of the Bragg peak and the reflection of the phantom affects the shapes of depth profiles of the luminescence images of water.

  14. Post-error response inhibition in high math-anxious individuals: Evidence from a multi-digit addition task.

    PubMed

    Núñez-Peña, M Isabel; Tubau, Elisabet; Suárez-Pellicioni, Macarena

    2017-06-01

    The aim of the study was to investigate how high math-anxious (HMA) individuals react to errors in an arithmetic task. Twenty HMA and 19 low math-anxious (LMA) individuals were presented with a multi-digit addition verification task and were given response feedback. Post-error adjustment measures (response time and accuracy) were analyzed in order to study differences between groups when faced with errors in an arithmetical task. Results showed that both HMA and LMA individuals were slower to respond following an error than following a correct answer. However, post-error accuracy effects emerged only for the HMA group, showing that they were also less accurate after having committed an error than after giving the right answer. Importantly, these differences were observed only when individuals needed to repeat the same response given in the previous trial. These results suggest that, for HMA individuals, errors caused reactive inhibition of the erroneous response, facilitating performance if the next problem required the alternative response but hampering it if the response was the same. This stronger reaction to errors could be a factor contributing to the difficulties that HMA individuals experience in learning math and doing math tasks. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Twice cutting method reduces tibial cutting error in unicompartmental knee arthroplasty.

    PubMed

    Inui, Hiroshi; Taketomi, Shuji; Yamagami, Ryota; Sanada, Takaki; Tanaka, Sakae

    2016-01-01

    Bone cutting error can be one of the causes of malalignment in unicompartmental knee arthroplasty (UKA). The amount of cutting error in total knee arthroplasty has been reported. However, none have investigated cutting error in UKA. The purpose of this study was to reveal the amount of cutting error in UKA when open cutting guide was used and clarify whether cutting the tibia horizontally twice using the same cutting guide reduced the cutting errors in UKA. We measured the alignment of the tibial cutting guides, the first-cut cutting surfaces and the second cut cutting surfaces using the navigation system in 50 UKAs. Cutting error was defined as the angular difference between the cutting guide and cutting surface. The mean absolute first-cut cutting error was 1.9° (1.1° varus) in the coronal plane and 1.1° (0.6° anterior slope) in the sagittal plane, whereas the mean absolute second-cut cutting error was 1.1° (0.6° varus) in the coronal plane and 1.1° (0.4° anterior slope) in the sagittal plane. Cutting the tibia horizontally twice reduced the cutting errors in the coronal plane significantly (P<0.05). Our study demonstrated that in UKA, cutting the tibia horizontally twice using the same cutting guide reduced cutting error in the coronal plane. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Detection and classification of medication errors at Joan XXIII University Hospital].

    PubMed

    Jornet Montaña, S; Canadell Vilarrasa, L; Calabuig Mũoz, M; Riera Sendra, G; Vuelta Arce, M; Bardají Ruiz, A; Gallart Mora, M J

    2004-01-01

    Medication errors are multifactorial and multidisciplinary, and may originate in processes such as drug prescription, transcription, dispensation, preparation and administration. The goal of this work was to measure the incidence of detectable medication errors that arise within a unit dose drug distribution and control system, from drug prescription to drug administration, by means of an observational method confined to the Pharmacy Department, as well as a voluntary, anonymous report system. The acceptance of this voluntary report system's implementation was also assessed. A prospective descriptive study was conducted. Data collection was performed at the Pharmacy Department from a review of prescribed medical orders, a review of pharmaceutical transcriptions, a review of dispensed medication and a review of medication returned in unit dose medication carts. A voluntary, anonymous report system centralized in the Pharmacy Department was also set up to detect medication errors. Prescription errors were the most frequent (1.12%), closely followed by dispensation errors (1.04%). Transcription errors (0.42%) and administration errors (0.69%) had the lowest overall incidence. Voluntary report involved only 4.25% of all detected errors, whereas unit dose medication cart review contributed the most to error detection. Recognizing the incidence and types of medication errors that occur in a health-care setting allows us to analyze their causes and effect changes in different stages of the process in order to ensure maximal patient safety.

  17. Using total quality management approach to improve patient safety by preventing medication error incidences*.

    PubMed

    Yousef, Nadin; Yousef, Farah

    2017-09-04

    Whereas one of the predominant causes of medication errors is a drug administration error, a previous study related to our investigations and reviews estimated that the incidences of medication errors constituted 6.7 out of 100 administrated medication doses. Therefore, we aimed by using six sigma approach to propose a way that reduces these errors to become less than 1 out of 100 administrated medication doses by improving healthcare professional education and clearer handwritten prescriptions. The study was held in a General Government Hospital. First, we systematically studied the current medication use process. Second, we used six sigma approach by utilizing the five-step DMAIC process (Define, Measure, Analyze, Implement, Control) to find out the real reasons behind such errors. This was to figure out a useful solution to avoid medication error incidences in daily healthcare professional practice. Data sheet was used in Data tool and Pareto diagrams were used in Analyzing tool. In our investigation, we reached out the real cause behind administrated medication errors. As Pareto diagrams used in our study showed that the fault percentage in administrated phase was 24.8%, while the percentage of errors related to prescribing phase was 42.8%, 1.7 folds. This means that the mistakes in prescribing phase, especially because of the poor handwritten prescriptions whose percentage in this phase was 17.6%, are responsible for the consequent) mistakes in this treatment process later on. Therefore, we proposed in this study an effective low cost strategy based on the behavior of healthcare workers as Guideline Recommendations to be followed by the physicians. This method can be a prior caution to decrease errors in prescribing phase which may lead to decrease the administrated medication error incidences to less than 1%. This improvement way of behavior can be efficient to improve hand written prescriptions and decrease the consequent errors related to administrated medication doses to less than the global standard; as a result, it enhances patient safety. However, we hope other studies will be made later in hospitals to practically evaluate how much effective our proposed systematic strategy really is in comparison with other suggested remedies in this field.

  18. On-line estimation and compensation of measurement delay in GPS/SINS integration

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Wang, Wei

    2008-10-01

    The chief aim of this paper is to propose a simple on-line estimation and compensation method of GPS/SINS measurement delay. The causes of time delay for GPS/SINS integration are analyzed in this paper. New Kalman filter state equations augmented by measurement delay and modified measurement equations are derived. Based on an open-loop Kalman filter, several simulations are run, results of which show that by the proposed method, the estimation and compensation error of measurement delay is below 0.1s.

  19. Impact of one-layer assumption on diffuse reflectance spectroscopy of skin

    NASA Astrophysics Data System (ADS)

    Hennessy, Ricky; Markey, Mia K.; Tunnell, James W.

    2015-02-01

    Diffuse reflectance spectroscopy (DRS) can be used to noninvasively measure skin properties. To extract skin properties from DRS spectra, you need a model that relates the reflectance to the tissue properties. Most models are based on the assumption that skin is homogenous. In reality, skin is composed of multiple layers, and the homogeneity assumption can lead to errors. In this study, we analyze the errors caused by the homogeneity assumption. This is accomplished by creating realistic skin spectra using a computational model, then extracting properties from those spectra using a one-layer model. The extracted parameters are then compared to the parameters used to create the modeled spectra. We used a wavelength range of 400 to 750 nm and a source detector separation of 250 μm. Our results show that use of a one-layer skin model causes underestimation of hemoglobin concentration [Hb] and melanin concentration [mel]. Additionally, the magnitude of the error is dependent on epidermal thickness. The one-layer assumption also causes [Hb] and [mel] to be correlated. Oxygen saturation is overestimated when it is below 50% and underestimated when it is above 50%. We also found that the vessel radius factor used to account for pigment packaging is correlated with epidermal thickness.

  20. Compensation method for the influence of angle of view on animal temperature measurement using thermal imaging camera combined with depth image.

    PubMed

    Jiao, Leizi; Dong, Daming; Zhao, Xiande; Han, Pengcheng

    2016-12-01

    In the study, we proposed an animal surface temperature measurement method based on Kinect sensor and infrared thermal imager to facilitate the screening of animals with febrile diseases. Due to random motion and small surface temperature variation of animals, the influence of the angle of view on temperature measurement is significant. The method proposed in the present study could compensate the temperature measurement error caused by the angle of view. Firstly, we analyzed the relationship between measured temperature and angle of view and established the mathematical model for compensating the influence of the angle of view with the correlation coefficient above 0.99. Secondly, the fusion method of depth and infrared thermal images was established for synchronous image capture with Kinect sensor and infrared thermal imager and the angle of view of each pixel was calculated. According to experimental results, without compensation treatment, the temperature image measured in the angle of view of 74° to 76° showed the difference of more than 2°C compared with that measured in the angle of view of 0°. However, after compensation treatment, the temperature difference range was only 0.03-1.2°C. This method is applicable for real-time compensation of errors caused by the angle of view during the temperature measurement process with the infrared thermal imager. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Flexible, multi-measurement guided wave damage detection under varying temperatures

    NASA Astrophysics Data System (ADS)

    Douglass, Alexander C. S.; Harley, Joel B.

    2018-04-01

    Temperature compensation in structural health monitoring helps identify damage in a structure by removing data variations due to environmental conditions, such as temperature. Stretch-based methods are one of the most commonly used temperature compensation methods. To account for variations in temperature, stretch-based methods optimally stretch signals in time to optimally match a measurement to a baseline. All of the data is then compared with the single baseline to determine the presence of damage. Yet, for these methods to be effective, the measurement and the baseline must satisfy the inherent assumptions of the temperature compensation method. In many scenarios, these assumptions are wrong, the methods generate error, and damage detection fails. To improve damage detection, a multi-measurement damage detection method is introduced. By using each measurement in the dataset as a baseline, error caused by imperfect temperature compensation is reduced. The multi-measurement method increases the detection effectiveness of our damage metric, or damage indicator, over time and reduces the presence of additional peaks caused by temperature that could be mistaken for damage. By using many baselines, the variance of the damage indicator is reduced and the effects from damage are amplified. Notably, the multi-measurement improves damage detection over single-measurement methods. This is demonstrated through an increase in the maximum of our damage signature from 0.55 to 0.95 (where large values, up to a maximum of one, represent a statistically significant change in the data due to damage).

  2. Pediatric vision screening using binocular retinal birefringencr scanning

    NASA Astrophysics Data System (ADS)

    Nassif, Deborah S.; Gramatikov, Boris; Guyton, David L.; Hunter, David G.

    2003-07-01

    Amblyopia, a leading cause of vision loss in childhood, is responsive to treatment if detected early in life. Risk factors for amblyopia, such as refractive error and strabismus, may be difficult to identify clinically in young children. Our laboratory has developed retinal birefringence scanning (RBS), in which a small spot of polarized light is scanned in a circle on the retina, and the returning light is measured for changes in polarization caused by the pattern of birefringent fibers that comprise the fovea. Binocular RBS (BRBS) detects the fixation of both eyes simultaneously and thus screens for strabismus, one of the risk factors of amblyopia. We have also developed a technique to automatically detect when the eye is in focus without measuring refractive error. This focus detection system utilizes a bull's eye photodetector optically conjugate to a point fixation source. Reflected light is focused back to the point source by the optical system of the eye, and if the subject focuses on the fixation source, the returning light will be focused on the detector. We have constructed a hand-held prototype combining BRBS and focus detection measurements in one quick (< 0.5 second) and accurate (theoretically detecting +/-1 of misalignment) measurement. This approach has the potential to reliably identify children at risk for amblyopia.

  3. Refractive errors in patients with newly diagnosed diabetes mellitus.

    PubMed

    Yarbağ, Abdülhekim; Yazar, Hayrullah; Akdoğan, Mehmet; Pekgör, Ahmet; Kaleli, Suleyman

    2015-01-01

    Diabetes mellitus is a complex metabolic disorder that involves the small blood vessels, often causing widespread damage to tissues, including the eyes' optic refractive error. In patients with newly diagnosed diabetes mellitus who have unstable blood glucose levels, refraction may be incorrect. We aimed to investigate refraction in patients who were recently diagnosed with diabetes and treated at our centre. This prospective study was performed from February 2013 to January 2014. Patients were diagnosed with diabetes mellitus using laboratory biochemical tests and clinical examination. Venous fasting plasma glucose (fpg) levels were measured along with refractive errors. Two measurements were taken: initially and after four weeks. The last difference between the initial and end refractive measurements were evaluated. Our patients were 100 males and 30 females who had been newly diagnosed with type II DM. The refractive and fpg levels were measured twice in all patients. The average values of the initial measurements were as follows: fpg level, 415 mg/dl; average refractive value, +2.5 D (Dioptres). The average end of period measurements were fpg, 203 mg/dl; average refractive value, +0.75 D. There is a statistically significant difference between after four weeks measurements with initially measurements of fasting plasma glucose (fpg) levels (p<0.05) and there is a statistically significant relationship between changes in fpg changes with glasses ID (p<0.05) and the disappearance of blurred vision (to be greater than 50% success rate) were statistically significant (p<0.05). Also, were detected upon all these results the absence of any age and sex effects (p>0.05). Refractive error is affected in patients with newly diagnosed diabetes mellitus; therefore, plasma glucose levels should be considered in the selection of glasses.

  4. Quantifying and correcting motion artifacts in MRI

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; Maclaren, Julian R.; Millane, Rick P.; Watts, Richard

    2006-08-01

    Patient motion during magnetic resonance imaging (MRI) can produce significant artifacts in a reconstructed image. Since measurements are made in the spatial frequency domain ('k-space'), rigid-body translational motion results in phase errors in the data samples while rotation causes location errors. A method is presented to detect and correct these errors via a modified sampling strategy, thereby achieving more accurate image reconstruction. The strategy involves sampling vertical and horizontal strips alternately in k-space and employs phase correlation within the overlapping segments to estimate translational motion. An extension, also based on correlation, is employed to estimate rotational motion. Results from simulations with computer-generated phantoms suggest that the algorithm is robust up to realistic noise levels. The work is being extended to physical phantoms. Provided that a reference image is available and the object is of limited extent, it is shown that a measure related to the amount of energy outside the support can be used to objectively compare the severity of motion-induced artifacts.

  5. A novel algorithm for laser self-mixing sensors used with the Kalman filter to measure displacement

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Liu, Ji-Gou

    2018-07-01

    This paper proposes a simple and effective method for estimating the feedback level factor C in a self-mixing interferometric sensor. It is used with a Kalman filter to retrieve the displacement. Without the complicated and onerous calculation process of the general C estimation method, a final equation is obtained. Thus, the estimation of C only involves a few simple calculations. It successfully retrieves the sinusoidal and aleatory displacement by means of simulated self-mixing signals in both weak and moderate feedback regimes. To deal with the errors resulting from noise and estimate bias of C and to further improve the retrieval precision, a Kalman filter is employed following the general phase unwrapping method. The simulation and experiment results show that the retrieved displacement using the C obtained with the proposed method is comparable to the joint estimation of C and α. Besides, the Kalman filter can significantly decrease measurement errors, especially the error caused by incorrectly locating the peak and valley positions of the signal.

  6. Prevention 0f Unwanted Free-Declaration of Static Obstacles in Probability Occupancy Grids

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Scholz, M.; Hohmann, R.

    2017-10-01

    Obstacle detection and avoidance are major research fields in unmanned aviation. Map based obstacle detection approaches often use discrete world representations such as probabilistic grid maps to fuse incremental environment data from different views or sensors to build a comprehensive representation. The integration of continuous measurements into a discrete representation can result in rounding errors which, in turn, leads to differences between the artificial model and real environment. The cause of these deviations is a low spatial resolution of the world representation comparison to the used sensor data. Differences between artificial representations which are used for path planning or obstacle avoidance and the real world can lead to unexpected behavior up to collisions with unmapped obstacles. This paper presents three approaches to the treatment of errors that can occur during the integration of continuous laser measurement in the discrete probabilistic grid. Further, the quality of the error prevention and the processing performance are compared with real sensor data.

  7. [Patient identification errors and biological samples in the analytical process: Is it possible to improve patient safety?].

    PubMed

    Cuadrado-Cenzual, M A; García Briñón, M; de Gracia Hills, Y; González Estecha, M; Collado Yurrita, L; de Pedro Moro, J A; Fernández Pérez, C; Arroyo Fernández, M

    2015-01-01

    Patient identification errors and biological samples are one of the problems with the highest risk factor in causing an adverse event in the patient. To detect and analyse the causes of patient identification errors in analytical requests (PIEAR) from emergency departments, and to develop improvement strategies. A process and protocol was designed, to be followed by all professionals involved in the requesting and performing of laboratory tests. Evaluation and monitoring indicators of PIEAR were determined, before and after the implementation of these improvement measures (years 2010-2014). A total of 316 PIEAR were detected in a total of 483,254 emergency service requests during the study period, representing a mean of 6.80/10,000 requests. Patient identification failure was the most frequent in all the 6-monthly periods assessed, with a significant difference (P<.0001). The improvement strategies applied showed to be effective in detecting PIEAR, as well as the prevention of such errors. However, we must continue working with this strategy, promoting a culture of safety for all the professionals involved, and trying to achieve the goal that 100% of the analytical and samples are properly identified. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  8. Minimizing Interpolation Bias and Precision Error in In Vivo μCT-based Measurements of Bone Structure and Dynamics

    PubMed Central

    de Bakker, Chantal M. J.; Altman, Allison R.; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X. Sherry

    2016-01-01

    In vivo μCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered μCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling. PMID:26786342

  9. Minimizing Interpolation Bias and Precision Error in In Vivo µCT-Based Measurements of Bone Structure and Dynamics.

    PubMed

    de Bakker, Chantal M J; Altman, Allison R; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X Sherry

    2016-08-01

    In vivo µCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered µCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling.

  10. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    DOE PAGES

    Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.; ...

    2018-02-16

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less

  11. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less

  12. Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Morcrette, C. J.; Van Weverberg, K.; Ma, H.-Y.; Ahlgrimm, M.; Bazile, E.; Berg, L. K.; Cheng, A.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Lee, W.-S.; Liu, Y.; Mellul, L.; Merryfield, W. J.; Qian, Y.; Roehrig, R.; Wang, Y.-C.; Xie, S.; Xu, K.-M.; Zhang, C.; Klein, S.; Petch, J.

    2018-03-01

    We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally, a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.

  13. Errors Analysis of Students in Mathematics Department to Learn Plane Geometry

    NASA Astrophysics Data System (ADS)

    Mirna, M.

    2018-04-01

    This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.

  14. An error covariance model for sea surface topography and velocity derived from TOPEX/POSEIDON altimetry

    NASA Technical Reports Server (NTRS)

    Tsaoussi, Lucia S.; Koblinsky, Chester J.

    1994-01-01

    In order to facilitate the use of satellite-derived sea surface topography and velocity oceanographic models, methodology is presented for deriving the total error covariance and its geographic distribution from TOPEX/POSEIDON measurements. The model is formulated using a parametric model fit to the altimeter range observations. The topography and velocity modeled with spherical harmonic expansions whose coefficients are found through optimal adjustment to the altimeter range residuals using Bayesian statistics. All other parameters, including the orbit, geoid, surface models, and range corrections are provided as unadjusted parameters. The maximum likelihood estimates and errors are derived from the probability density function of the altimeter range residuals conditioned with a priori information. Estimates of model errors for the unadjusted parameters are obtained from the TOPEX/POSEIDON postlaunch verification results and the error covariances for the orbit and the geoid, except for the ocean tides. The error in the ocean tides is modeled, first, as the difference between two global tide models and, second, as the correction to the present tide model, the correction derived from the TOPEX/POSEIDON data. A formal error covariance propagation scheme is used to derive the total error. Our global total error estimate for the TOPEX/POSEIDON topography relative to the geoid for one 10-day period is found tio be 11 cm RMS. When the error in the geoid is removed, thereby providing an estimate of the time dependent error, the uncertainty in the topography is 3.5 cm root mean square (RMS). This level of accuracy is consistent with direct comparisons of TOPEX/POSEIDON altimeter heights with tide gauge measurements at 28 stations. In addition, the error correlation length scales are derived globally in both east-west and north-south directions, which should prove useful for data assimilation. The largest error correlation length scales are found in the tropics. Errors in the velocity field are smallest in midlatitude regions. For both variables the largest errors caused by uncertainty in the geoid. More accurate representations of the geoid await a dedicated geopotential satellite mission. Substantial improvements in the accuracy of ocean tide models are expected in the very near future from research with TOPEX/POSEIDON data.

  15. Causes of blindness and visual impairment in Pakistan. The Pakistan national blindness and visual impairment survey

    PubMed Central

    Dineen, B; Bourne, R R A; Jadoon, Z; Shah, S P; Khan, M A; Foster, A; Gilbert, C E; Khan, M D

    2007-01-01

    Objective To determine the causes of blindness and visual impairment in adults (⩾30 years old) in Pakistan, and to explore socio‐demographic variations in cause. Methods A multi‐stage, stratified, cluster random sampling survey was used to select a nationally representative sample of adults. Each subject was interviewed, had their visual acuity measured and underwent autorefraction and fundus/optic disc examination. Those with a visual acuity of <6/12 in either eye underwent a more detailed ophthalmic examination. Causes of visual impairment were classified according to the accepted World Health Organization (WHO) methodology. An exploration of demographic variables was conducted using regression modeling. Results A sample of 16 507 adults (95.5% of those enumerated) was examined. Cataract was the most common cause of blindness (51.5%; defined as <3/60 in the better eye on presentation) followed by corneal opacity (11.8%), uncorrected aphakia (8.6%) and glaucoma (7.1%). Posterior capsular opacification accounted for 3.6% of blindness. Among the moderately visually impaired (<6/18 to ⩾6/60), refractive error was the most common cause (43%), followed by cataract (42%). Refractive error as a cause of severe visual impairment/blindness was significantly higher in rural dwellers than in urban dwellers (odds ratio (OR) 3.5, 95% CI 1.1 to 11.7). Significant provincial differences were also identified. Overall we estimate that 85.5% of causes were avoidable and that 904 000 adults in Pakistan have cataract (<6/60) requiring surgical intervention. Conclusions This comprehensive survey provides reliable estimates of the causes of blindness and visual impairment in Pakistan. Despite expanded surgical services, cataract still accounts for over half of the cases of blindness in Pakistan. One in eight blind adults has visual loss from sequelae of cataract surgery. Services for refractive errors need to be further expanded and integrated into eye care services, particularly those serving rural populations. PMID:17229806

  16. The causes of and factors associated with prescribing errors in hospital inpatients: a systematic review.

    PubMed

    Tully, Mary P; Ashcroft, Darren M; Dornan, Tim; Lewis, Penny J; Taylor, David; Wass, Val

    2009-01-01

    Prescribing errors are common, they result in adverse events and harm to patients and it is unclear how best to prevent them because recommendations are more often based on surmized rather than empirically collected data. The aim of this systematic review was to identify all informative published evidence concerning the causes of and factors associated with prescribing errors in specialist and non-specialist hospitals, collate it, analyse it qualitatively and synthesize conclusions from it. Seven electronic databases were searched for articles published between 1985-July 2008. The reference lists of all informative studies were searched for additional citations. To be included, a study had to be of handwritten prescriptions for adult or child inpatients that reported empirically collected data on the causes of or factors associated with errors. Publications in languages other than English and studies that evaluated errors for only one disease, one route of administration or one type of prescribing error were excluded. Seventeen papers reporting 16 studies, selected from 1268 papers identified by the search, were included in the review. Studies from the US and the UK in university-affiliated hospitals predominated (10/16 [62%]). The definition of a prescribing error varied widely and the included studies were highly heterogeneous. Causes were grouped according to Reason's model of accident causation into active failures, error-provoking conditions and latent conditions. The active failure most frequently cited was a mistake due to inadequate knowledge of the drug or the patient. Skills-based slips and memory lapses were also common. Where error-provoking conditions were reported, there was at least one per error. These included lack of training or experience, fatigue, stress, high workload for the prescriber and inadequate communication between healthcare professionals. Latent conditions included reluctance to question senior colleagues and inadequate provision of training. Prescribing errors are often multifactorial, with several active failures and error-provoking conditions often acting together to cause them. In the face of such complexity, solutions addressing a single cause, such as lack of knowledge, are likely to have only limited benefit. Further rigorous study, seeking potential ways of reducing error, needs to be conducted. Multifactorial interventions across many parts of the system are likely to be required.

  17. Do calculation errors by nurses cause medication errors in clinical practice? A literature review.

    PubMed

    Wright, Kerri

    2010-01-01

    This review aims to examine the literature available to ascertain whether medication errors in clinical practice are the result of nurses' miscalculating drug dosages. The research studies highlighting poor calculation skills of nurses and student nurses have been tested using written drug calculation tests in formal classroom settings [Kapborg, I., 1994. Calculation and administration of drug dosage by Swedish nurses, student nurses and physicians. International Journal for Quality in Health Care 6(4): 389 -395; Hutton, M., 1998. Nursing Mathematics: the importance of application Nursing Standard 13(11): 35-38; Weeks, K., Lynne, P., Torrance, C., 2000. Written drug dosage errors made by students: the threat to clinical effectiveness and the need for a new approach. Clinical Effectiveness in Nursing 4, 20-29]; Wright, K., 2004. Investigation to find strategies to improve student nurses' maths skills. British Journal Nursing 13(21) 1280-1287; Wright, K., 2005. An exploration into the most effective way to teach drug calculation skills to nursing students. Nurse Education Today 25, 430-436], but there have been no reviews of the literature on medication errors in practice that specifically look to see whether the medication errors are caused by nurses' poor calculation skills. The databases Medline, CINAHL, British Nursing Index (BNI), Journal of American Medical Association (JAMA) and Archives and Cochrane reviews were searched for research studies or systematic reviews which reported on the incidence or causes of drug errors in clinical practice. In total 33 articles met the criteria for this review. There were no studies that examined nurses' drug calculation errors in practice. As a result studies and systematic reviews that investigated the types and causes of drug errors were examined to establish whether miscalculations by nurses were the causes of errors. The review found insufficient evidence to suggest that medication errors are caused by nurses' poor calculation skills. Of the 33 studies reviewed only five articles specifically recorded information relating to calculation errors and only two of these detected errors using the direct observational approach. The literature suggests that there are other more pressing aspects of nurses' preparation and administration of medications which are contributing to medication errors in practice that require more urgent attention and calls into question the current focus on calculation and numeracy skills of pre registration and qualified nurses (NMC 2008). However, more research is required into the calculation errors in practice. In particular there is a need for a direct observational study on paediatric nurses as there are presently none examining this area of practice.

  18. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz.

    PubMed

    Yang, Lin; Dai, Meng; Xu, Canhua; Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects' heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection.

  19. The Frequency Spectral Properties of Electrode-Skin Contact Impedance on Human Head and Its Frequency-Dependent Effects on Frequency-Difference EIT in Stroke Detection from 10Hz to 1MHz

    PubMed Central

    Zhang, Ge; Li, Weichen; Fu, Feng; Shi, Xuetao; Dong, Xiuzhen

    2017-01-01

    Frequency-difference electrical impedance tomography (fdEIT) reconstructs frequency-dependent changes of a complex impedance distribution. It has a potential application in acute stroke detection because there are significant differences in impedance spectra between stroke lesions and normal brain tissues. However, fdEIT suffers from the influences of electrode-skin contact impedance since contact impedance varies greatly with frequency. When using fdEIT to detect stroke, it is critical to know the degree of measurement errors or image artifacts caused by contact impedance. To our knowledge, no study has systematically investigated the frequency spectral properties of electrode-skin contact impedance on human head and its frequency-dependent effects on fdEIT used in stroke detection within a wide frequency band (10 Hz-1 MHz). In this study, we first measured and analyzed the frequency spectral properties of electrode-skin contact impedance on 47 human subjects’ heads within 10 Hz-1 MHz. Then, we quantified the frequency-dependent effects of contact impedance on fdEIT in stroke detection in terms of the current distribution beneath the electrodes and the contact impedance imbalance between two measuring electrodes. The results showed that the contact impedance at high frequencies (>100 kHz) significantly changed the current distribution beneath the electrode, leading to nonnegligible errors in boundary voltages and artifacts in reconstructed images. The contact impedance imbalance at low frequencies (<1 kHz) also caused significant measurement errors. We conclude that the contact impedance has critical frequency-dependent influences on fdEIT and further studies on reducing such influences are necessary to improve the application of fdEIT in stroke detection. PMID:28107524

  20. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    PubMed

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  1. Hyperspectral Analysis of Soil Total Nitrogen in Subsided Land Using the Local Correlation Maximization-Complementary Superiority (LCMCS) Method

    PubMed Central

    Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Xi, Xiuxiu

    2015-01-01

    The measurement of soil total nitrogen (TN) by hyperspectral remote sensing provides an important tool for soil restoration programs in areas with subsided land caused by the extraction of natural resources. This study used the local correlation maximization-complementary superiority method (LCMCS) to establish TN prediction models by considering the relationship between spectral reflectance (measured by an ASD FieldSpec 3 spectroradiometer) and TN based on spectral reflectance curves of soil samples collected from subsided land which is determined by synthetic aperture radar interferometry (InSAR) technology. Based on the 1655 selected effective bands of the optimal spectrum (OSP) of the first derivate differential of reciprocal logarithm ([log{1/R}]′), (correlation coefficients, p < 0.01), the optimal model of LCMCS method was obtained to determine the final model, which produced lower prediction errors (root mean square error of validation [RMSEV] = 0.89, mean relative error of validation [MREV] = 5.93%) when compared with models built by the local correlation maximization (LCM), complementary superiority (CS) and partial least squares regression (PLS) methods. The predictive effect of LCMCS model was optional in Cangzhou, Renqiu and Fengfeng District. Results indicate that the LCMCS method has great potential to monitor TN in subsided lands caused by the extraction of natural resources including groundwater, oil and coal. PMID:26213935

  2. Design, calibration and validation of a novel 3D printed instrumented spatial linkage that measures changes in the rotational axes of the tibiofemoral joint.

    PubMed

    Bonny, Daniel P; Hull, M L; Howell, S M

    2014-01-01

    An accurate axis-finding technique is required to measure any changes from normal caused by total knee arthroplasty in the flexion-extension (F-E) and longitudinal rotation (LR) axes of the tibiofemoral joint. In a previous paper, we computationally determined how best to design and use an instrumented spatial linkage (ISL) to locate the F-E and LR axes such that rotational and translational errors were minimized. However, the ISL was not built and consequently was not calibrated; thus the errors in locating these axes were not quantified on an actual ISL. Moreover, previous methods to calibrate an ISL used calibration devices with accuracies that were either undocumented or insufficient for the device to serve as a gold-standard. Accordingly, the objectives were to (1) construct an ISL using the previously established guidelines,(2) calibrate the ISL using an improved method, and (3) quantify the error in measuring changes in the F-E and LR axes. A 3D printed ISL was constructed and calibrated using a coordinate measuring machine, which served as a gold standard. Validation was performed using a fixture that represented the tibiofemoral joint with an adjustable F-E axis and the errors in measuring changes to the positions and orientations of the F-E and LR axes were quantified. The resulting root mean squared errors (RMSEs) of the calibration residuals using the new calibration method were 0.24, 0.33, and 0.15 mm for the anterior-posterior, medial-lateral, and proximal-distal positions, respectively, and 0.11, 0.10, and 0.09 deg for varus-valgus, flexion-extension, and internal-external orientations, respectively. All RMSEs were below 0.29% of the respective full-scale range. When measuring changes to the F-E or LR axes, each orientation error was below 0.5 deg; when measuring changes in the F-E axis, each position error was below 1.0 mm. The largest position RMSE was when measuring a medial-lateral change in the LR axis (1.2 mm). Despite the large size of the ISL, these calibration residuals were better than those for previously published ISLs, particularly when measuring orientations, indicating that using a more accurate gold standard was beneficial in limiting the calibration residuals. The validation method demonstrated that this ISL is capable of accurately measuring clinically important changes (i.e. 1 mm and 1 deg) in the F-E and LR axes.

  3. Sensitivity analysis of periodic errors in heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Ganguly, Vasishta; Kim, Nam Ho; Kim, Hyo Soo; Schmitz, Tony

    2011-03-01

    Periodic errors in heterodyne displacement measuring interferometry occur due to frequency mixing in the interferometer. These nonlinearities are typically characterized as first- and second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported displacement about the true value. This study implements an existing analytical periodic error model in order to identify sensitivities of the first- and second-order periodic errors to the input parameters, including rotational misalignments of the polarizing beam splitter and mixing polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the two laser beams, and different transmission coefficients in the polarizing beam splitter. A local sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with respect to each input parameter about the nominal input values. Next, a variance-based approach is used to study the global sensitivities of the periodic errors by calculating the Sobol' sensitivity indices using Monte Carlo simulation. The effect of variation in the input uncertainty on the computed sensitivity indices is examined. It is seen that the first-order periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser frequencies, while the second-order error is most sensitive to the rotational misalignment between the laser beams and the polarizing beam splitter. A particle swarm optimization technique is finally used to predict the possible setup imperfections based on experimentally generated values for periodic errors.

  4. Predicting Error Bars for QSAR Models

    NASA Astrophysics Data System (ADS)

    Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-09-01

    Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches.

  5. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging. Calibrating the resonator measurements by checking the refractivity of dry gases which are known to better than 0.1% provides a method of controlling the systematic errors to 0.1%. The primary source of error in absorptivity and refractivity measurements is thus the ability to measure the concentration of water vapor in the resonator path. Over the whole thermodynamic range of interest the accuracy of water vapor measurement is 1.5%. However, over the range responsible for most of the radio delay (i.e. conditions in the bottom two kilometers of the atmosphere) the accuracy of water vapor measurements ranges from 0.5% to 1.0%. Therefore the precision of the resonator measurements could be held to 0.3% and the overall absolute accuracy of resonator-based absorption and refractivity measurements will range from 0.6% to 1.

  6. Assessing dangerous driving behavior during driving inattention: Psychometric adaptation and validation of the Attention-Related Driving Errors Scale in China.

    PubMed

    Qu, Weina; Ge, Yan; Zhang, Qian; Zhao, Wenguo; Zhang, Kan

    2015-07-01

    Driver inattention is a significant cause of motor vehicle collisions and incidents. The purpose of this study was to translate the Attention-Related Driving Error Scale (ARDES) into Chinese and to verify its reliability and validity. A total of 317 drivers completed the Chinese version of the ARDES, the Dula Dangerous Driving Index (DDDI), the Attention-Related Cognitive Errors Scale (ARCES) and the Mindful Attention Awareness Scale (MAAS) questionnaires. Specific sociodemographic variables and traffic violations were also measured. Psychometric results confirm that the ARDES-China has adequate psychometric properties (Cronbach's alpha=0.88) to be a useful tool for evaluating proneness to attentional errors in the Chinese driving population. First, ARDES-China scores were positively correlated with both DDDI scores and number of accidents in the prior year; in addition, ARDES-China scores were a significant predictor of dangerous driving behavior as measured by DDDI. Second, we found that ARDES-China scores were strongly correlated with ARCES scores and negatively correlated with MAAS scores. Finally, different demographic groups exhibited significant differences in ARDES scores; in particular, ARDES scores varied with years of driving experience. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Modeling Infrared Signal Reflections to Characterize Indoor Multipath Propagation

    PubMed Central

    De-La-Llana-Calvo, Álvaro; Lázaro-Galilea, José Luis; Gardel-Vicente, Alfredo; Rodríguez-Navarro, David; Bravo-Muñoz, Ignacio; Tsirigotis, Georgios; Iglesias-Miguel, Juan

    2017-01-01

    In this paper, we propose a model to characterize Infrared (IR) signal reflections on any kind of surface material, together with a simplified procedure to compute the model parameters. The model works within the framework of Local Positioning Systems (LPS) based on IR signals (IR-LPS) to evaluate the behavior of transmitted signal Multipaths (MP), which are the main cause of error in IR-LPS, and makes several contributions to mitigation methods. Current methods are based on physics, optics, geometry and empirical methods, but these do not meet our requirements because of the need to apply several different restrictions and employ complex tools. We propose a simplified model based on only two reflection components, together with a method for determining the model parameters based on 12 empirical measurements that are easily performed in the real environment where the IR-LPS is being applied. Our experimental results show that the model provides a comprehensive solution to the real behavior of IR MP, yielding small errors when comparing real and modeled data (the mean error ranges from 1% to 4% depending on the environment surface materials). Other state-of-the-art methods yielded mean errors ranging from 15% to 40% in test measurements. PMID:28406436

  8. Spectral purity study for IPDA lidar measurement of CO2

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Liu, Dong; Xie, Chen-Bo; Tan, Min; Deng, Qian; Xu, Ji-Wei; Tian, Xiao-Min; Wang, Zhen-Zhu; Wang, Bang-Xin; Wang, Ying-Jian

    2018-02-01

    A high sensitivity and global covered observation of carbon dioxide (CO2) is expected by space-borne integrated path differential absorption (IPDA) lidar which has been designed as the next generation measurement. The stringent precision of space-borne CO2 data, for example 1ppm or better, is required to address the largest number of carbon cycle science questions. Spectral purity, which is defined as the ratio of effective absorbed energy to the total energy transmitted, is one of the most important system parameters of IPDA lidar which directly influences the precision of CO2. Due to the column averaged dry air mixing ratio of CO2 is inferred from comparison of the two echo pulse signals, the laser output usually accompanied by an unexpected spectrally broadband background radiation would posing significant systematic error. In this study, the spectral energy density line shape and spectral impurity line shape are modeled as Lorentz line shape for the simulation, and the latter is assumed as an unabsorbed component by CO2. An error equation is deduced according to IPDA detecting theory for calculating the system error caused by spectral impurity. For a spectral purity of 99%, the induced error could reach up to 8.97 ppm.

  9. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  10. SSDA code to apply data assimilation in soil water flow modeling: Documentation and user manual

    USDA-ARS?s Scientific Manuscript database

    Soil water flow models are based on simplified assumptions about the mechanisms, processes, and parameters of water retention and flow. That causes errors in soil water flow model predictions. Data assimilation (DA) with the ensemble Kalman filter (EnKF) corrects modeling results based on measured s...

  11. Use of O-15 water and C-11 butanol to measure cerebral blood flow (CBF) and water permeability with positron emission tomography (PET)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herscovitch, P.; Raichle, M.E.; Kilbourn, M.R.

    1985-05-01

    Tracers used to measure CBF with PET and the Kety autoradiographic approach should freely cross the blood-brain barrier. 0-15 water, which is not freely permeable, may underestimate CBF, especially at higher flows. The authors determined this under-estimation relative to flow measured with a freely diffusible tracer, C-11 butanol and used these data to calculate the extraction (E) and permeability surface area product (PS) for 0-15 water. Paired flow measurements were made with 0-15 water (CBF-wat) and C-11 butanol (CBF-but) in eight normal human subjects. Average CBF-but, 55.6 ml/(min . 100g) was significantly greater than CBF-water, 47.6 ml/(min . 100g). Themore » ratio of regional gray matter (GM) flow to white matter (WM) flow was significantly greater with C-11 butanol, indicating a greater underestimation of CBF with 0-15 water in the higher flow GM. Average E for water was 0.92 in WM and 0.82 in GM. The mean PS in GM, 148 ml/(min . 100g), was significantly greater than in WM, 94 ml/(min . 100g). Simulation studies demonstrated that a measurement error in CBF-wat or CBF-but causes an approximately equivalent error in E but a considerably larger error in PS due to the sensitivity of the equation, PS=-CBF . ln(1-E), to variations in E. Modest errors in E and PS result from tissue heterogeneity that occurs due to the limited spatial resolution of PET. The authors' measurements of E and PS for water are similar to data obtained by more invasive methods and demonstrate the ability of PET to measure brain water permeability.« less

  12. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions

    NASA Technical Reports Server (NTRS)

    Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong

    2016-01-01

    Model benchmarking allows us to separate uncertainty in model predictions caused 1 by model inputs from uncertainty due to model structural error. We extend this method with a large-sample approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

  13. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions

    PubMed Central

    Nearing, Grey S.; Mocko, David M.; Peters-Lidard, Christa D.; Kumar, Sujay V.; Xia, Youlong

    2018-01-01

    Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a “large-sample” approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances. PMID:29697706

  14. Benchmarking NLDAS-2 Soil Moisture and Evapotranspiration to Separate Uncertainty Contributions.

    PubMed

    Nearing, Grey S; Mocko, David M; Peters-Lidard, Christa D; Kumar, Sujay V; Xia, Youlong

    2016-03-01

    Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from uncertainty due to model structural error. We extend this method with a "large-sample" approach (using data from multiple field sites) to measure prediction uncertainty caused by errors in (i) forcing data, (ii) model parameters, and (iii) model structure, and use it to compare the efficiency of soil moisture state and evapotranspiration flux predictions made by the four land surface models in the North American Land Data Assimilation System Phase 2 (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used only a fraction of the information available to them. This means that there is significant potential to improve all three components of the NLDAS-2 system. In particular, continued work toward refining the parameter maps and look-up tables, the forcing data measurement and processing, and also the land surface models themselves, has potential to result in improved estimates of surface mass and energy balances.

  15. Impact of documentation errors on accuracy of cause of death coding in an educational hospital in Southern Iran.

    PubMed

    Haghighi, Mohammad Hosein Hayavi; Dehghani, Mohammad; Teshnizi, Saeid Hoseini; Mahmoodi, Hamid

    2014-01-01

    Accurate cause of death coding leads to organised and usable death information but there are some factors that influence documentation on death certificates and therefore affect the coding. We reviewed the role of documentation errors on the accuracy of death coding at Shahid Mohammadi Hospital (SMH), Bandar Abbas, Iran. We studied the death certificates of all deceased patients in SMH from October 2010 to March 2011. Researchers determined and coded the underlying cause of death on the death certificates according to the guidelines issued by the World Health Organization in Volume 2 of the International Statistical Classification of Diseases and Health Related Problems-10th revision (ICD-10). Necessary ICD coding rules (such as the General Principle, Rules 1-3, the modification rules and other instructions about death coding) were applied to select the underlying cause of death on each certificate. Demographic details and documentation errors were then extracted. Data were analysed with descriptive statistics and chi square tests. The accuracy rate of causes of death coding was 51.7%, demonstrating a statistically significant relationship (p=.001) with major errors but not such a relationship with minor errors. Factors that result in poor quality of Cause of Death coding in SMH are lack of coder training, documentation errors and the undesirable structure of death certificates.

  16. AQMEII3: the EU and NA regional scale program of the ...

    EPA Pesticide Factsheets

    The presentation builds on the work presented last year at the 14th CMAS meeting and it is applied to the work performed in the context of the AQMEII-HTAP collaboration. The analysis is conducted within the framework of the third phase of AQMEII (Air Quality Model Evaluation International Initiative) and encompasses the gauging of model performance through measurement-to-model comparison, error decomposition and time series analysis of the models biases. Through the comparison of several regional-scale chemistry transport modelling systems applied to simulate meteorology and air quality over two continental areas, this study aims at i) apportioning the error to the responsible processes through time-scale analysis, and ii) help detecting causes of models error, and iii) identify the processes and scales most urgently requiring dedicated investigations. The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while the apportioning of the error into its constituent parts (bias, variance and covariance) can help assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the previous phases of AQMEII. The National Exposure Research Laboratory (NERL) Computational Exposur

  17. A new systematic calibration method of ring laser gyroscope inertial navigation system

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Gao, Chunfeng; Wang, Qi; Wang, Qun; Xiong, Zhenyu; Long, Xingwu

    2016-10-01

    Inertial navigation system has been the core component of both military and civil navigation systems. Before the INS is put into application, it is supposed to be calibrated in the laboratory in order to compensate repeatability error caused by manufacturing. Discrete calibration method cannot fulfill requirements of high-accurate calibration of the mechanically dithered ring laser gyroscope navigation system with shock absorbers. This paper has analyzed theories of error inspiration and separation in detail and presented a new systematic calibration method for ring laser gyroscope inertial navigation system. Error models and equations of calibrated Inertial Measurement Unit are given. Then proper rotation arrangement orders are depicted in order to establish the linear relationships between the change of velocity errors and calibrated parameter errors. Experiments have been set up to compare the systematic errors calculated by filtering calibration result with those obtained by discrete calibration result. The largest position error and velocity error of filtering calibration result are only 0.18 miles and 0.26m/s compared with 2 miles and 1.46m/s of discrete calibration result. These results have validated the new systematic calibration method and proved its importance for optimal design and accuracy improvement of calibration of mechanically dithered ring laser gyroscope inertial navigation system.

  18. Kalman Filter for Spinning Spacecraft Attitude Estimation

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  19. Interferometric detection of freeze-thaw displacements of Alaskan permafrost using ERS-1 data

    NASA Technical Reports Server (NTRS)

    Werner, Charles L.; Gabriel, Andrew K.

    1993-01-01

    The possibility of making large scale (50 km) measurements of motions of the earth's surface with high resolution (10 m) and very high accuracy (1 cm) from multipass SAR interferometry was established in 1989. Other experiments have confirmed the viability and usefulness of the method. Work is underway in various groups to measure displacements from volcanic activity, seismic events, glacier motion, and in the present study, freeze-thaw cycles in Alaskan permafrost. The ground is known to move significantly in these cycles, and provided that freezing does not cause image decorrelation, it should be possible to measure both ground swelling and subsidence. The authors have obtained data from multiple passes of ERS-1 over the Toolik Lake region of northern Alaska of suitable quality for interferometry. The data are processed into images, and single interferograms are formed in the usual manner. Phase unwrapping is performed, and the multipass baselines are estimated from the images using both orbit ephemerides and scene tie points. The phases are scaled by the baseline ratio, and a double-difference interferogram (DDI) is formed. It is found that there is a residual 'saddle-shape' phase error across the image, which is postulated to be caused by a small divergence (10(exp -2) deg.) in the orbits. A simulation of a DDI from divergent orbits confirms the shape and magnitude of the error. A two-dimensional least squares fit to the error is performed, which is used to correct the DDI. The final, corrected DDI shows significant phase (altitude) changes over the period of the observation.

  20. Solar Tracking Error Analysis of Fresnel Reflector

    PubMed Central

    Zheng, Jiantao; Yan, Junjie; Pei, Jie; Liu, Guanjie

    2014-01-01

    Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon. PMID:24895664

  1. Overview of medical errors and adverse events

    PubMed Central

    2012-01-01

    Safety is a global concept that encompasses efficiency, security of care, reactivity of caregivers, and satisfaction of patients and relatives. Patient safety has emerged as a major target for healthcare improvement. Quality assurance is a complex task, and patients in the intensive care unit (ICU) are more likely than other hospitalized patients to experience medical errors, due to the complexity of their conditions, need for urgent interventions, and considerable workload fluctuation. Medication errors are the most common medical errors and can induce adverse events. Two approaches are available for evaluating and improving quality-of-care: the room-for-improvement model, in which problems are identified, plans are made to resolve them, and the results of the plans are measured; and the monitoring model, in which quality indicators are defined as relevant to potential problems and then monitored periodically. Indicators that reflect structures, processes, or outcomes have been developed by medical societies. Surveillance of these indicators is organized at the hospital or national level. Using a combination of methods improves the results. Errors are caused by combinations of human factors and system factors, and information must be obtained on how people make errors in the ICU environment. Preventive strategies are more likely to be effective if they rely on a system-based approach, in which organizational flaws are remedied, rather than a human-based approach of encouraging people not to make errors. The development of a safety culture in the ICU is crucial to effective prevention and should occur before the evaluation of safety programs, which are more likely to be effective when they involve bundles of measures. PMID:22339769

  2. Validation of the ASTER Global Digital Elevation Model Version 2 over the conterminous United States

    USGS Publications Warehouse

    Gesch, Dean B.; Oimoen, Michael J.; Zhang, Zheng; Meyer, David J.; Danielson, Jeffrey J.

    2012-01-01

    The ASTER Global Digital Elevation Model Version 2 (GDEM v2) was evaluated over the conterminous United States in a manner similar to the validation conducted for the original GDEM Version 1 (v1) in 2009. The absolute vertical accuracy of GDEM v2 was calculated by comparison with more than 18,000 independent reference geodetic ground control points from the National Geodetic Survey. The root mean square error (RMSE) measured for GDEM v2 is 8.68 meters. This compares with the RMSE of 9.34 meters for GDEM v1. Another important descriptor of vertical accuracy is the mean error, or bias, which indicates if a DEM has an overall vertical offset from true ground level. The GDEM v2 mean error of -0.20 meters is a significant improvement over the GDEM v1 mean error of -3.69 meters. The absolute vertical accuracy assessment results, both mean error and RMSE, were segmented by land cover to examine the effects of cover types on measured errors. The GDEM v2 mean errors by land cover class verify that the presence of aboveground features (tree canopies and built structures) cause a positive elevation bias, as would be expected for an imaging system like ASTER. In open ground classes (little or no vegetation with significant aboveground height), GDEM v2 exhibits a negative bias on the order of 1 meter. GDEM v2 was also evaluated by differencing with the Shuttle Radar Topography Mission (SRTM) dataset. In many forested areas, GDEM v2 has elevations that are higher in the canopy than SRTM.

  3. Five-year lidar observational results and effects of El Chichon particles on Umkehr ozone data

    NASA Astrophysics Data System (ADS)

    Uchino, Osamu; Tabata, Isao; Kai, Kenji; Akita, Iwao

    1988-08-01

    Based on the values of integrated backscattering coefficient B, obtained from the ruby lidar measurements at the Meteorological Research Institude (MRI, at Tsukuba, Japan), the effect of dust particles due to two volcanic eruptions of Mt. El Chichon in 1982 on the Umkehr ozone data at the Tateno Aerological Observatory was determined. In addition, the effects of the aerosols on the Umkehr ozone data at Arosa, Switzerland were investigated using lidar data collected at Garmisch-Partenkirchen, Germany. It was found that both stratospheric and tropospheric aerosols induced a significant negative ozone error in the uppermost layers (33-47 km), caused a small and usually negative ozone error in layers between 16 and 33 km, and induced a significant positive ozone error in layers between 6 and 16 km.

  4. A description of medication errors reported by pharmacists in a neonatal intensive care unit.

    PubMed

    Pawluk, Shane; Jaam, Myriam; Hazi, Fatima; Al Hail, Moza Sulaiman; El Kassem, Wessam; Khalifa, Hanan; Thomas, Binny; Abdul Rouf, Pallivalappila

    2017-02-01

    Background Patients in the Neonatal Intensive Care Unit (NICU) are at an increased risk for medication errors. Objective The objective of this study is to describe the nature and setting of medication errors occurring in patients admitted to an NICU in Qatar based on a standard electronic system reported by pharmacists. Setting Neonatal intensive care unit, Doha, Qatar. Method This was a retrospective cross-sectional study on medication errors reported electronically by pharmacists in the NICU between January 1, 2014 and April 30, 2015. Main outcome measure Data collected included patient information, and incident details including error category, medications involved, and follow-up completed. Results A total of 201 NICU pharmacists-reported medication errors were submitted during the study period. All reported errors did not reach the patient and did not cause harm. Of the errors reported, 98.5% occurred in the prescribing phase of the medication process with 58.7% being due to calculation errors. Overall, 53 different medications were documented in error reports with the anti-infective agents being the most frequently cited. The majority of incidents indicated that the primary prescriber was contacted and the error was resolved before reaching the next phase of the medication process. Conclusion Medication errors reported by pharmacists occur most frequently in the prescribing phase of the medication process. Our data suggest that error reporting systems need to be specific to the population involved. Special attention should be paid to frequently used medications in the NICU as these were responsible for the greatest numbers of medication errors.

  5. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, J. F.; Klein, P. M.; Wharton, S.; Sathe, A.; Bonin, T. A.; Chilson, P. B.; Muschinski, A.

    2015-11-01

    Several errors occur when a traditional Doppler-beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers. Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  6. Evaluation of three lidar scanning strategies for turbulence measurements

    NASA Astrophysics Data System (ADS)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; Sathe, Ameya; Bonin, Timothy A.; Chilson, Phillip B.; Muschinski, Andreas

    2016-05-01

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity-azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused by VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.

  7. Low-Cost Ultrasonic Distance Sensor Arrays with Networked Error Correction

    PubMed Central

    Dai, Hongjun; Zhao, Shulin; Jia, Zhiping; Chen, Tianzhou

    2013-01-01

    Distance has been one of the basic factors in manufacturing and control fields, and ultrasonic distance sensors have been widely used as a low-cost measuring tool. However, the propagation of ultrasonic waves is greatly affected by environmental factors such as temperature, humidity and atmospheric pressure. In order to solve the problem of inaccurate measurement, which is significant within industry, this paper presents a novel ultrasonic distance sensor model using networked error correction (NEC) trained on experimental data. This is more accurate than other existing approaches because it uses information from indirect association with neighboring sensors, which has not been considered before. The NEC technique, focusing on optimization of the relationship of the topological structure of sensor arrays, is implemented for the compensation of erroneous measurements caused by the environment. We apply the maximum likelihood method to determine the optimal fusion data set and use a neighbor discovery algorithm to identify neighbor nodes at the top speed. Furthermore, we adopt the NEC optimization algorithm, which takes full advantage of the correlation coefficients for neighbor sensors. The experimental results demonstrate that the ranging errors of the NEC system are within 2.20%; furthermore, the mean absolute percentage error is reduced to 0.01% after three iterations of this method, which means that the proposed method performs extremely well. The optimized method of distance measurement we propose, with the capability of NEC, would bring a significant advantage for intelligent industrial automation. PMID:24013491

  8. Electroinduction disk sensor of electric field strength

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Korolyova, M. A.

    2018-01-01

    Measurement of the level of electric fields exposure to the technical and biological objects for a long time is an urgent task. To solve this problem, the required electric field sensors with specified metrological characteristics. The aim of the study is the establishment of theoretical assumptions for the calculation of the flat electric field sensors. It is proved that the accuracy of the sensor does not exceed 3% in the spatial range 0

  9. Method to improve the blade tip-timing accuracy of fiber bundle sensor under varying tip clearance

    NASA Astrophysics Data System (ADS)

    Duan, Fajie; Zhang, Jilong; Jiang, Jiajia; Guo, Haotian; Ye, Dechao

    2016-01-01

    Blade vibration measurement based on the blade tip-timing method has become an industry-standard procedure. Fiber bundle sensors are widely used for tip-timing measurement. However, the variation of clearance between the sensor and the blade will bring a tip-timing error to fiber bundle sensors due to the change in signal amplitude. This article presents methods based on software and hardware to reduce the error caused by the tip clearance change. The software method utilizes both the rising and falling edges of the tip-timing signal to determine the blade arrival time, and a calibration process suitable for asymmetric tip-timing signals is presented. The hardware method uses an automatic gain control circuit to stabilize the signal amplitude. Experiments are conducted and the results prove that both methods can effectively reduce the impact of tip clearance variation on the blade tip-timing and improve the accuracy of measurements.

  10. Effects of instrument imperfections on quantitative scanning transmission electron microscopy.

    PubMed

    Krause, Florian F; Schowalter, Marco; Grieb, Tim; Müller-Caspary, Knut; Mehrtens, Thorsten; Rosenauer, Andreas

    2016-02-01

    Several instrumental imperfections of transmission electron microscopes are characterized and their effects on the results of quantitative scanning electron microscopy (STEM) are investigated and quantified using simulations. Methods to either avoid influences of these imperfections during acquisition or to include them in reference calculations are proposed. Particularly, distortions inflicted on the diffraction pattern by an image-aberration corrector can cause severe errors of more than 20% if not accounted for. A procedure for their measurement is proposed here. Furthermore, afterglow phenomena and nonlinear behavior of the detector itself can lead to incorrect normalization of measured intensities. Single electrons accidentally impinging on the detector are another source of error but can also be exploited for threshold-less calibration of STEM images to absolute dose, incident beam current determination and measurement of the detector sensitivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Radar walking speed measurements of seniors in their apartments: technology for fall prevention.

    PubMed

    Cuddihy, Paul E; Yardibi, Tarik; Legenzoff, Zachary J; Liu, Liang; Phillips, Calvin E; Abbott, Carmen; Galambos, Colleen; Keller, James; Popescu, Mihail; Back, Jessica; Skubic, Marjorie; Rantz, Marilyn J

    2012-01-01

    Falls are a significant cause of injury and accidental death among persons over the age of 65. Gait velocity is one of the parameters which have been correlated to the risk of falling. We aim to build a system which monitors gait in seniors and reports any changes to caregivers, who can then perform a clinical assessment and perform corrective and preventative actions to reduce the likelihood of falls. In this paper, we deploy a Doppler radar-based gait measurement system into the apartments of thirteen seniors. In scripted walks, we show the system measures gait velocity with a mean error of 14.5% compared to the time recorded by a clinician. With a calibration factor, the mean error is reduced to 10.5%. The radar is a promising sensing technology for gait velocity in a day-to-day senior living environment.

  12. Divergence compensation for hardware-in-the-loop simulation of stiffness-varying discrete contact in space

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Zhao, Xianchao; Gao, Feng; Ren, Anye; Hu, Yan

    2016-11-01

    The hardware-in-the-loop (HIL) contact simulation for flying objects in space is challenging due to the divergence caused by the time delay. In this study, a divergence compensation approach is proposed for the stiffness-varying discrete contact. The dynamic response delay of the motion simulator and the force measurement delay are considered. For the force measurement delay, a phase lead based force compensation approach is used. For the dynamic response delay of the motion simulator, a response error based force compensation approach is used, where the compensation force is obtained from the real-time identified contact stiffness and real-time measured position response error. The dynamic response model of the motion simulator is not required. The simulations and experiments show that the simulation divergence can be compensated effectively and satisfactorily by using the proposed approach.

  13. Nondestructive measurement of the refractive index distribution of a glass molded lens by two-wavelength wavefronts.

    PubMed

    Sugimoto, Tomohiro

    2016-10-01

    This paper presents a nondestructive and non-exact-index-matching method for measuring the refractive index distribution of a glass molded lens with high refractivity. The method measures two-wavelength wavefronts of a test lens immersed in a liquid with a refractive index dispersion different from that of the test lens and calculates the refractive index distribution by eliminating the refractive index distribution error caused by the shape error of the test lens. The estimated uncertainties of the refractive index distributions of test lenses with nd≈1.77 and nd≈1.85 were 1.9×10-5  RMS and 2.4×10-5  RMS, respectively. I validated the proposed method by evaluating the agreement between the estimated uncertainties and experimental values.

  14. Fringe Capacitance Correction for a Coaxial Soil Cell

    PubMed Central

    Pelletier, Mathew G.; Viera, Joseph A.; Schwartz, Robert C.; Lascano, Robert J.; Evett, Steven R.; Green, Tim R.; Wanjura, John D.; Holt, Greg A.

    2011-01-01

    Accurate measurement of moisture content is a prime requirement in hydrological, geophysical and biogeochemical research as well as for material characterization and process control. Within these areas, accurate measurements of the surface area and bound water content is becoming increasingly important for providing answers to many fundamental questions ranging from characterization of cotton fiber maturity, to accurate characterization of soil water content in soil water conservation research to bio-plant water utilization to chemical reactions and diffusions of ionic species across membranes in cells as well as in the dense suspensions that occur in surface films. One promising technique to address the increasing demands for higher accuracy water content measurements is utilization of electrical permittivity characterization of materials. This technique has enjoyed a strong following in the soil-science and geological community through measurements of apparent permittivity via time-domain-reflectometry (TDR) as well in many process control applications. Recent research however, is indicating a need to increase the accuracy beyond that available from traditional TDR. The most logical pathway then becomes a transition from TDR based measurements to network analyzer measurements of absolute permittivity that will remove the adverse effects that high surface area soils and conductivity impart onto the measurements of apparent permittivity in traditional TDR applications. This research examines an observed experimental error for the coaxial probe, from which the modern TDR probe originated, which is hypothesized to be due to fringe capacitance. The research provides an experimental and theoretical basis for the cause of the error and provides a technique by which to correct the system to remove this source of error. To test this theory, a Poisson model of a coaxial cell was formulated to calculate the effective theoretical extra length caused by the fringe capacitance which is then used to correct the experimental results such that experimental measurements utilizing differing coaxial cell diameters and probe lengths, upon correction with the Poisson model derived correction factor, all produce the same results thereby lending support and for an augmented measurement technique for measurement of absolute permittivity. PMID:22346601

  15. 40 CFR Appendix B to Part 50 - Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conditions (25 °C, 760 mm Hg [101 kPa]), is determined from the measured flow rate and the sampling time. The... conveniently. c. Preclude leaks that would cause error in the measurement of the air volume passing through the... through the filter. b. Be rectangular in shape with a gabled roof, similar to the design shown in Figure 1...

  16. 40 CFR Appendix B to Part 50 - Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditions (25 °C, 760 mm Hg [101 kPa]), is determined from the measured flow rate and the sampling time. The... conveniently. c. Preclude leaks that would cause error in the measurement of the air volume passing through the... through the filter. b. Be rectangular in shape with a gabled roof, similar to the design shown in Figure 1...

  17. Evaluation of Two Computational Techniques of Calculating Multipath Using Global Positioning System Carrier Phase Measurements

    NASA Technical Reports Server (NTRS)

    Gomez, Susan F.; Hood, Laura; Panneton, Robert J.; Saunders, Penny E.; Adkins, Antha; Hwu, Shian U.; Lu, Ba P.

    1996-01-01

    Two computational techniques are used to calculate differential phase errors on Global Positioning System (GPS) carrier war phase measurements due to certain multipath-producing objects. The two computational techniques are a rigorous computati electromagnetics technique called Geometric Theory of Diffraction (GTD) and the other is a simple ray tracing method. The GTD technique has been used successfully to predict microwave propagation characteristics by taking into account the dominant multipath components due to reflections and diffractions from scattering structures. The ray tracing technique only solves for reflected signals. The results from the two techniques are compared to GPS differential carrier phase ns taken on the ground using a GPS receiver in the presence of typical International Space Station (ISS) interference structures. The calculations produced using the GTD code compared to the measured results better than the ray tracing technique. The agreement was good, demonstrating that the phase errors due to multipath can be modeled and characterized using the GTD technique and characterized to a lesser fidelity using the DECAT technique. However, some discrepancies were observed. Most of the discrepancies occurred at lower devations and were either due to phase center deviations of the antenna, the background multipath environment, or the receiver itself. Selected measured and predicted differential carrier phase error results are presented and compared. Results indicate that reflections and diffractions caused by the multipath producers, located near the GPS antennas, can produce phase shifts of greater than 10 mm, and as high as 95 mm. It should be noted tl the field test configuration was meant to simulate typical ISS structures, but the two environments are not identical. The GZ and DECAT techniques have been used to calculate phase errors due to multipath o the ISS configuration to quantify the expected attitude determination errors.

  18. Comparison of the accuracy of cone beam computed tomography and medical computed tomography: implications for clinical diagnostics with guided surgery.

    PubMed

    Abboud, Marcus; Calvo-Guirado, Jose Luis; Orentlicher, Gary; Wahl, Gerhard

    2013-01-01

    This study compared the accuracy of cone beam computed tomography (CBCT) and medical-grade CT in the context of evaluating the diagnostic value and accuracy of fiducial marker localization for reference marker-based guided surgery systems. Cadaver mandibles with attached radiopaque gutta-percha markers, as well as glass balls and composite cylinders of known dimensions, were measured manually with a highly accurate digital caliper. The objects were then scanned using a medical-grade CT scanner (Philips Brilliance 64) and five different CBCT scanners (Sirona Galileos, Morita 3D Accuitomo 80, Vatech PaX-Reve3D, 3M Imtech Iluma, and Planmeca ProMax 3D). The data were then imported into commercially available software, and measurements were made of the scanned markers and objects. CT and CBCT measurements were compared to each other and to the caliper measurements. The difference between the CBCT measurements and the caliper measurements was larger than the difference between the CT measurements and the caliper measurements. Measurements of the cadaver mandible and the geometric reference markers were highly accurate with CT. The average absolute errors of the human mandible measurements were 0.03 mm for CT and 0.23 mm for CBCT. The measurement errors of the geometric objects based on CT ranged between 0.00 and 0.12 mm, compared to an error range between 0.00 and 2.17 mm with the CBCT scanners. CT provided the most accurate images in this study, closely followed by one CBCT of the five tested. Although there were differences in the distance measurements of the hard tissue of the human mandible between CT and CBCT, these differences may not be of clinical significance for most diagnostic purposes. The fiducial marker localization error caused by some CBCT scanners may be a problem for guided surgery systems.

  19. Understanding the causes of intravenous medication administration errors in hospitals: a qualitative critical incident study

    PubMed Central

    Keers, Richard N; Williams, Steven D; Cooke, Jonathan; Ashcroft, Darren M

    2015-01-01

    Objectives To investigate the underlying causes of intravenous medication administration errors (MAEs) in National Health Service (NHS) hospitals. Setting Two NHS teaching hospitals in the North West of England. Participants Twenty nurses working in a range of inpatient clinical environments were identified and recruited using purposive sampling at each study site. Primary outcome measures Semistructured interviews were conducted with nurse participants using the critical incident technique, where they were asked to discuss perceived causes of intravenous MAEs that they had been directly involved with. Transcribed interviews were analysed using the Framework approach and emerging themes were categorised according to Reason's model of accident causation. Results In total, 21 intravenous MAEs were discussed containing 23 individual active failures which included slips and lapses (n=11), mistakes (n=8) and deliberate violations of policy (n=4). Each active failure was associated with a range of error and violation provoking conditions. The working environment was implicated when nurses lacked healthcare team support and/or were exposed to a perceived increased workload during ward rounds, shift changes or emergencies. Nurses frequently reported that the quality of intravenous dose-checking activities was compromised due to high perceived workload and working relationships. Nurses described using approaches such as subconscious functioning and prioritising to manage their duties, which at times contributed to errors. Conclusions Complex interactions between active and latent failures can lead to intravenous MAEs in hospitals. Future interventions may need to be multimodal in design in order to mitigate these risks and reduce the burden of intravenous MAEs. PMID:25770226

  20. Omnidirectional angle constraint based dynamic six-degree-of-freedom measurement for spacecraft rendezvous and docking simulation

    NASA Astrophysics Data System (ADS)

    Shi, Shendong; Yang, Linghui; Lin, Jiarui; Ren, Yongjie; Guo, Siyang; Zhu, Jigui

    2018-04-01

    In this paper we present a novel omnidirectional angle constraint based method for dynamic 6-DOF (six-degree-of-freedom) measurement. A photoelectric scanning measurement network is employed whose photoelectric receivers are fixed on the measured target. They are in a loop distribution and receive signals from rotating transmitters. Each receiver indicates an angle constraint direction. Therefore, omnidirectional angle constraints can be constructed in each rotation cycle. By solving the constrained optimization problem, 6-DOF information can be obtained, which is independent of traditional rigid coordinate system transformation. For the dynamic error caused by the measurement principle, we present an interpolation method for error reduction. Accuracy testing is performed in an 8  ×  8 m measurement area with four transmitters. The experimental results show that the dynamic orientation RMSEs (root-mean-square errors) are reduced from 0.077° to 0.044°, 0.040° to 0.030° and 0.032° to 0.015° in the X, Y, and Z axes, respectively. The dynamic position RMSE is reduced from 0.65 mm to 0.24 mm. This method is applied during the final approach phase in the rendezvous and docking simulation. Experiments under different conditions are performed in a 40  ×  30 m area, and the method is verified to be effective.

  1. Output Error Analysis of Planar 2-DOF Five-bar Mechanism

    NASA Astrophysics Data System (ADS)

    Niu, Kejia; Wang, Jun; Ting, Kwun-Lon; Tao, Fen; Cheng, Qunchao; Wang, Quan; Zhang, Kaiyang

    2018-03-01

    Aiming at the mechanism error caused by clearance of planar 2-DOF Five-bar motion pair, the method of equivalent joint clearance of kinematic pair to virtual link is applied. The structural error model of revolute joint clearance is established based on the N-bar rotation laws and the concept of joint rotation space, The influence of the clearance of the moving pair is studied on the output error of the mechanis. and the calculation method and basis of the maximum error are given. The error rotation space of the mechanism under the influence of joint clearance is obtained. The results show that this method can accurately calculate the joint space error rotation space, which provides a new way to analyze the planar parallel mechanism error caused by joint space.

  2. Error analysis of mathematical problems on TIMSS: A case of Indonesian secondary students

    NASA Astrophysics Data System (ADS)

    Priyani, H. A.; Ekawati, R.

    2018-01-01

    Indonesian students’ competence in solving mathematical problems is still considered as weak. It was pointed out by the results of international assessment such as TIMSS. This might be caused by various types of errors made. Hence, this study aimed at identifying students’ errors in solving mathematical problems in TIMSS in the topic of numbers that considered as the fundamental concept in Mathematics. This study applied descriptive qualitative analysis. The subject was three students with most errors in the test indicators who were taken from 34 students of 8th graders. Data was obtained through paper and pencil test and student’s’ interview. The error analysis indicated that in solving Applying level problem, the type of error that students made was operational errors. In addition, for reasoning level problem, there are three types of errors made such as conceptual errors, operational errors and principal errors. Meanwhile, analysis of the causes of students’ errors showed that students did not comprehend the mathematical problems given.

  3. Causes of medication administration errors in hospitals: a systematic review of quantitative and qualitative evidence.

    PubMed

    Keers, Richard N; Williams, Steven D; Cooke, Jonathan; Ashcroft, Darren M

    2013-11-01

    Underlying systems factors have been seen to be crucial contributors to the occurrence of medication errors. By understanding the causes of these errors, the most appropriate interventions can be designed and implemented to minimise their occurrence. This study aimed to systematically review and appraise empirical evidence relating to the causes of medication administration errors (MAEs) in hospital settings. Nine electronic databases (MEDLINE, EMBASE, International Pharmaceutical Abstracts, ASSIA, PsycINFO, British Nursing Index, CINAHL, Health Management Information Consortium and Social Science Citations Index) were searched between 1985 and May 2013. Inclusion and exclusion criteria were applied to identify eligible publications through title analysis followed by abstract and then full text examination. English language publications reporting empirical data on causes of MAEs were included. Reference lists of included articles and relevant review papers were hand searched for additional studies. Studies were excluded if they did not report data on specific MAEs, used accounts from individuals not directly involved in the MAE concerned or were presented as conference abstracts with insufficient detail. A total of 54 unique studies were included. Causes of MAEs were categorised according to Reason's model of accident causation. Studies were assessed to determine relevance to the research question and how likely the results were to reflect the potential underlying causes of MAEs based on the method(s) used. Slips and lapses were the most commonly reported unsafe acts, followed by knowledge-based mistakes and deliberate violations. Error-provoking conditions influencing administration errors included inadequate written communication (prescriptions, documentation, transcription), problems with medicines supply and storage (pharmacy dispensing errors and ward stock management), high perceived workload, problems with ward-based equipment (access, functionality), patient factors (availability, acuity), staff health status (fatigue, stress) and interruptions/distractions during drug administration. Few studies sought to determine the causes of intravenous MAEs. A number of latent pathway conditions were less well explored, including local working culture and high-level managerial decisions. Causes were often described superficially; this may be related to the use of quantitative surveys and observation methods in many studies, limited use of established error causation frameworks to analyse data and a predominant focus on issues other than the causes of MAEs among studies. As only English language publications were included, some relevant studies may have been missed. Limited evidence from studies included in this systematic review suggests that MAEs are influenced by multiple systems factors, but if and how these arise and interconnect to lead to errors remains to be fully determined. Further research with a theoretical focus is needed to investigate the MAE causation pathway, with an emphasis on ensuring interventions designed to minimise MAEs target recognised underlying causes of errors to maximise their impact.

  4. Medication Administration Errors in an Adult Emergency Department of a Tertiary Health Care Facility in Ghana.

    PubMed

    Acheampong, Franklin; Tetteh, Ashalley Raymond; Anto, Berko Panyin

    2016-12-01

    This study determined the incidence, types, clinical significance, and potential causes of medication administration errors (MAEs) at the emergency department (ED) of a tertiary health care facility in Ghana. This study used a cross-sectional nonparticipant observational technique. Study participants (nurses) were observed preparing and administering medication at the ED of a 2000-bed tertiary care hospital in Accra, Ghana. The observations were then compared with patients' medication charts, and identified errors were clarified with staff for possible causes. Of the 1332 observations made, involving 338 patients and 49 nurses, 362 had errors, representing 27.2%. However, the error rate excluding "lack of drug availability" fell to 12.8%. Without wrong time error, the error rate was 22.8%. The 2 most frequent error types were omission (n = 281, 77.6%) and wrong time (n = 58, 16%) errors. Omission error was mainly due to unavailability of medicine, 48.9% (n = 177). Although only one of the errors was potentially fatal, 26.7% were definitely clinically severe. The common themes that dominated the probable causes of MAEs were unavailability, staff factors, patient factors, prescription, and communication problems. This study gives credence to similar studies in different settings that MAEs occur frequently in the ED of hospitals. Most of the errors identified were not potentially fatal; however, preventive strategies need to be used to make life-saving processes such as drug administration in such specialized units error-free.

  5. Computation and measurement of cell decision making errors using single cell data

    PubMed Central

    Habibi, Iman; Cheong, Raymond; Levchenko, Andre; Emamian, Effat S.; Abdi, Ali

    2017-01-01

    In this study a new computational method is developed to quantify decision making errors in cells, caused by noise and signaling failures. Analysis of tumor necrosis factor (TNF) signaling pathway which regulates the transcription factor Nuclear Factor κB (NF-κB) using this method identifies two types of incorrect cell decisions called false alarm and miss. These two events represent, respectively, declaring a signal which is not present and missing a signal that does exist. Using single cell experimental data and the developed method, we compute false alarm and miss error probabilities in wild-type cells and provide a formulation which shows how these metrics depend on the signal transduction noise level. We also show that in the presence of abnormalities in a cell, decision making processes can be significantly affected, compared to a wild-type cell, and the method is able to model and measure such effects. In the TNF—NF-κB pathway, the method computes and reveals changes in false alarm and miss probabilities in A20-deficient cells, caused by cell’s inability to inhibit TNF-induced NF-κB response. In biological terms, a higher false alarm metric in this abnormal TNF signaling system indicates perceiving more cytokine signals which in fact do not exist at the system input, whereas a higher miss metric indicates that it is highly likely to miss signals that actually exist. Overall, this study demonstrates the ability of the developed method for modeling cell decision making errors under normal and abnormal conditions, and in the presence of transduction noise uncertainty. Compared to the previously reported pathway capacity metric, our results suggest that the introduced decision error metrics characterize signaling failures more accurately. This is mainly because while capacity is a useful metric to study information transmission in signaling pathways, it does not capture the overlap between TNF-induced noisy response curves. PMID:28379950

  6. Computation and measurement of cell decision making errors using single cell data.

    PubMed

    Habibi, Iman; Cheong, Raymond; Lipniacki, Tomasz; Levchenko, Andre; Emamian, Effat S; Abdi, Ali

    2017-04-01

    In this study a new computational method is developed to quantify decision making errors in cells, caused by noise and signaling failures. Analysis of tumor necrosis factor (TNF) signaling pathway which regulates the transcription factor Nuclear Factor κB (NF-κB) using this method identifies two types of incorrect cell decisions called false alarm and miss. These two events represent, respectively, declaring a signal which is not present and missing a signal that does exist. Using single cell experimental data and the developed method, we compute false alarm and miss error probabilities in wild-type cells and provide a formulation which shows how these metrics depend on the signal transduction noise level. We also show that in the presence of abnormalities in a cell, decision making processes can be significantly affected, compared to a wild-type cell, and the method is able to model and measure such effects. In the TNF-NF-κB pathway, the method computes and reveals changes in false alarm and miss probabilities in A20-deficient cells, caused by cell's inability to inhibit TNF-induced NF-κB response. In biological terms, a higher false alarm metric in this abnormal TNF signaling system indicates perceiving more cytokine signals which in fact do not exist at the system input, whereas a higher miss metric indicates that it is highly likely to miss signals that actually exist. Overall, this study demonstrates the ability of the developed method for modeling cell decision making errors under normal and abnormal conditions, and in the presence of transduction noise uncertainty. Compared to the previously reported pathway capacity metric, our results suggest that the introduced decision error metrics characterize signaling failures more accurately. This is mainly because while capacity is a useful metric to study information transmission in signaling pathways, it does not capture the overlap between TNF-induced noisy response curves.

  7. Measurement system for 3-D foot coordinates and parameters

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Li, Yunhui; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-12-01

    The 3-D foot-shape measurement system based on laser-line-scanning principle and the model of the measurement system were presented. Errors caused by nonlinearity of CCD cameras and caused by installation can be eliminated by using the global calibration method for CCD cameras, which based on nonlinear coordinate mapping function and the optimized method. A local foot coordinate system is defined with the Pternion and the Acropodion extracted from the boundaries of foot projections. The characteristic points can thus be located and foot parameters be extracted automatically by the local foot coordinate system and the related sections. Foot measurements for about 200 participants were conducted and the measurement results for male and female participants were presented. 3-D foot coordinates and parameters measurement makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers.

  8. 46 CFR 520.14 - Special permission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Commission, in its discretion and for good cause shown, to permit increases or decreases in rates... its discretion and for good cause shown, permit departures from the requirements of this part. (b) Clerical errors. Typographical and/or clerical errors constitute good cause for the exercise of special...

  9. 46 CFR 520.14 - Special permission.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the Commission, in its discretion and for good cause shown, to permit increases or decreases in rates... its discretion and for good cause shown, permit departures from the requirements of this part. (b) Clerical errors. Typographical and/or clerical errors constitute good cause for the exercise of special...

  10. Probing the cosmic causes of errors in supercomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Cosmic rays from outer space are causing errors in supercomputers. The neutrons that pass through the CPU may be causing binary data to flip leading to incorrect calculations. Los Alamos National Laboratory has developed detectors to determine how much data is being corrupted by these cosmic particles.

  11. Optimizer convergence and local minima errors and their clinical importance

    NASA Astrophysics Data System (ADS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R.

    2003-09-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  12. Optimizer convergence and local minima errors and their clinical importance.

    PubMed

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-09-07

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization.

  13. Contagious error sources would need time travel to prevent quantum computation

    NASA Astrophysics Data System (ADS)

    Kalai, Gil; Kuperberg, Greg

    2015-08-01

    We consider an error model for quantum computing that consists of "contagious quantum germs" that can infect every output qubit when at least one input qubit is infected. Once a germ actively causes error, it continues to cause error indefinitely for every qubit it infects, with arbitrary quantum entanglement and correlation. Although this error model looks much worse than quasi-independent error, we show that it reduces to quasi-independent error with the technique of quantum teleportation. The construction, which was previously described by Knill, is that every quantum circuit can be converted to a mixed circuit with bounded quantum depth. We also consider the restriction of bounded quantum depth from the point of view of quantum complexity classes.

  14. AQMEII3 evaluation of regional NA/EU simulations and ...

    EPA Pesticide Factsheets

    Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impac

  15. Low-dimensional Representation of Error Covariance

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan

    2000-01-01

    Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.

  16. Reduction in chemotherapy order errors with computerized physician order entry.

    PubMed

    Meisenberg, Barry R; Wright, Robert R; Brady-Copertino, Catherine J

    2014-01-01

    To measure the number and type of errors associated with chemotherapy order composition associated with three sequential methods of ordering: handwritten orders, preprinted orders, and computerized physician order entry (CPOE) embedded in the electronic health record. From 2008 to 2012, a sample of completed chemotherapy orders were reviewed by a pharmacist for the number and type of errors as part of routine performance improvement monitoring. Error frequencies for each of the three distinct methods of composing chemotherapy orders were compared using statistical methods. The rate of problematic order sets-those requiring significant rework for clarification-was reduced from 30.6% with handwritten orders to 12.6% with preprinted orders (preprinted v handwritten, P < .001) to 2.2% with CPOE (preprinted v CPOE, P < .001). The incidence of errors capable of causing harm was reduced from 4.2% with handwritten orders to 1.5% with preprinted orders (preprinted v handwritten, P < .001) to 0.1% with CPOE (CPOE v preprinted, P < .001). The number of problem- and error-containing chemotherapy orders was reduced sequentially by preprinted order sets and then by CPOE. CPOE is associated with low error rates, but it did not eliminate all errors, and the technology can introduce novel types of errors not seen with traditional handwritten or preprinted orders. Vigilance even with CPOE is still required to avoid patient harm.

  17. CAT & MAUS: A novel system for true dynamic motion measurement of underlying bony structures with compensation for soft tissue movement.

    PubMed

    Jia, Rui; Monk, Paul; Murray, David; Noble, J Alison; Mellon, Stephen

    2017-09-06

    Optoelectronic motion capture systems are widely employed to measure the movement of human joints. However, there can be a significant discrepancy between the data obtained by a motion capture system (MCS) and the actual movement of underlying bony structures, which is attributed to soft tissue artefact. In this paper, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system with an augmented globally optimal registration algorithm is presented to dynamically track the underlying bony structure during movement. The augmented registration part of CAT & MAUS was validated with a high system accuracy of 80%. The Euclidean distance between the marker-based bony landmark and the bony landmark tracked by CAT & MAUS was calculated to quantify the measurement error of an MCS caused by soft tissue artefact during movement. The average Euclidean distance between the target bony landmark measured by each of the CAT & MAUS system and the MCS alone varied from 8.32mm to 16.87mm in gait. This indicates the discrepancy between the MCS measured bony landmark and the actual underlying bony landmark. Moreover, Procrustes analysis was applied to demonstrate that CAT & MAUS reduces the deformation of the body segment shape modeled by markers during motion. The augmented CAT & MAUS system shows its potential to dynamically detect and locate actual underlying bony landmarks, which reduces the MCS measurement error caused by soft tissue artefact during movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Attitudes of Mashhad Public Hospital's Nurses and Midwives toward the Causes and Rates of Medical Errors Reporting.

    PubMed

    Mobarakabadi, Sedigheh Sedigh; Ebrahimipour, Hosein; Najar, Ali Vafaie; Janghorban, Roksana; Azarkish, Fatemeh

    2017-03-01

    Patient's safety is one of the main objective in healthcare services; however medical errors are a prevalent potential occurrence for the patients in treatment systems. Medical errors lead to an increase in mortality rate of the patients and challenges such as prolonging of the inpatient period in the hospitals and increased cost. Controlling the medical errors is very important, because these errors besides being costly, threaten the patient's safety. To evaluate the attitudes of nurses and midwives toward the causes and rates of medical errors reporting. It was a cross-sectional observational study. The study population was 140 midwives and nurses employed in Mashhad Public Hospitals. The data collection was done through Goldstone 2001 revised questionnaire. SPSS 11.5 software was used for data analysis. To analyze data, descriptive and inferential analytic statistics were used. Standard deviation and relative frequency distribution, descriptive statistics were used for calculation of the mean and the results were adjusted as tables and charts. Chi-square test was used for the inferential analysis of the data. Most of midwives and nurses (39.4%) were in age range of 25 to 34 years and the lowest percentage (2.2%) were in age range of 55-59 years. The highest average of medical errors was related to employees with three-four years of work experience, while the lowest average was related to those with one-two years of work experience. The highest average of medical errors was during the evening shift, while the lowest were during the night shift. Three main causes of medical errors were considered: illegibile physician prescription orders, similarity of names in different drugs and nurse fatigueness. The most important causes for medical errors from the viewpoints of nurses and midwives are illegible physician's order, drug name similarity with other drugs, nurse's fatigueness and damaged label or packaging of the drug, respectively. Head nurse feedback, peer feedback, fear of punishment or job loss were considered as reasons for under reporting of medical errors. This research demonstrates the need for greater attention to be paid to the causes of medical errors.

  19. Descriptions of verbal communication errors between staff. An analysis of 84 root cause analysis-reports from Danish hospitals.

    PubMed

    Rabøl, Louise Isager; Andersen, Mette Lehmann; Østergaard, Doris; Bjørn, Brian; Lilja, Beth; Mogensen, Torben

    2011-03-01

    Poor teamwork and communication between healthcare staff are correlated to patient safety incidents. However, the organisational factors responsible for these issues are unexplored. Root cause analyses (RCA) use human factors thinking to analyse the systems behind severe patient safety incidents. The objective of this study is to review RCA reports (RCAR) for characteristics of verbal communication errors between hospital staff in an organisational perspective. Two independent raters analysed 84 RCARs, conducted in six Danish hospitals between 2004 and 2006, for descriptions and characteristics of verbal communication errors such as handover errors and error during teamwork. Raters found description of verbal communication errors in 44 reports (52%). These included handover errors (35 (86%)), communication errors between different staff groups (19 (43%)), misunderstandings (13 (30%)), communication errors between junior and senior staff members (11 (25%)), hesitance in speaking up (10 (23%)) and communication errors during teamwork (8 (18%)). The kappa values were 0.44-0.78. Unproceduralized communication and information exchange via telephone, related to transfer between units and consults from other specialties, were particularly vulnerable processes. With the risk of bias in mind, it is concluded that more than half of the RCARs described erroneous verbal communication between staff members as root causes of or contributing factors of severe patient safety incidents. The RCARs rich descriptions of the incidents revealed the organisational factors and needs related to these errors.

  20. Four dimensional observations of clouds from geosynchronous orbit using stereo display and measurement techniques on an interactive information processing system

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Desjardins, M.; Shenk, W. E.

    1979-01-01

    Simultaneous Geosynchronous Operational Environmental Satellite (GOES) 1 km resolution visible image pairs can provide quantitative three dimensional measurements of clouds. These data have great potential for severe storms research and as a basic parameter measurement source for other areas of meteorology (e.g. climate). These stereo cloud height measurements are not subject to the errors and ambiguities caused by unknown cloud emissivity and temperature profiles that are associated with infrared techniques. This effort describes the display and measurement of stereo data using digital processing techniques.

  1. [What Surgeons Should Know about Risk Management].

    PubMed

    Strametz, R; Tannheimer, M; Rall, M

    2017-02-01

    Background: The fact that medical treatment is associated with errors has long been recognized. Based on the principle of "first do no harm", numerous efforts have since been made to prevent such errors or limit their impact. However, recent statistics show that these measures do not sufficiently prevent grave mistakes with serious consequences. Preventable mistakes such as wrong patient or wrong site surgery still frequently occur in error statistics. Methods: Based on insight from research on human error, in due consideration of recent legislative regulations in Germany, the authors give an overview of the clinical risk management tools needed to identify risks in surgery, analyse their causes, and determine adequate measures to manage those risks depending on their relevance. The use and limitations of critical incident reporting systems (CIRS), safety checklists and crisis resource management (CRM) are highlighted. Also the rationale for IT systems to support the risk management process is addressed. Results/Conclusion: No single tool of risk management can be effective as a standalone instrument, but unfolds its effect only when embedded in a superordinate risk management system, which integrates tailor-made elements to increase patient safety into the workflows of each organisation. Competence in choosing adequate tools, effective IT systems to support the risk management process as well as leadership and commitment to constructive handling of human error are crucial components to establish a safety culture in surgery. Georg Thieme Verlag KG Stuttgart · New York.

  2. Improved Correction System for Vibration Sensitive Inertial Angle of Attack Measurement Devices

    NASA Technical Reports Server (NTRS)

    Crawford, Bradley L.; Finley, Tom D.

    2000-01-01

    Inertial angle of attack (AoA) devices currently in use at NASA Langley Research Center (LaRC) are subject to inaccuracies due to centrifugal accelerations caused by model dynamics, also known as sting whip. Recent literature suggests that these errors can be as high as 0.25 deg. With the current AoA accuracy target at LaRC being 0.01 deg., there is a dire need for improvement. With other errors in the inertial system (temperature, rectification, resolution, etc.) having been reduced to acceptable levels, a system is currently being developed at LaRC to measure and correct for the sting-whip-induced errors. By using miniaturized piezoelectric accelerometers and magnetohydrodynamic rate sensors, not only can the total centrifugal acceleration be measured, but yaw and pitch dynamics in the tunnel can also be characterized. These corrections can be used to determine a tunnel's past performance and can also indicate where efforts need to be concentrated to reduce these dynamics. Included in this paper are data on individual sensors, laboratory testing techniques, package evaluation, and wind tunnel test results on a High Speed Research (HSR) model in the Langley 16-Foot Transonic Wind Tunnel.

  3. Experimental/clinical evaluation of EIT image reconstruction with l1 data and image norms

    NASA Astrophysics Data System (ADS)

    Mamatjan, Yasin; Borsic, Andrea; Gürsoy, Doga; Adler, Andy

    2013-04-01

    Electrical impedance tomography (EIT) image reconstruction is ill-posed, and the spatial resolution of reconstructed images is low due to the diffuse propagation of current and limited number of independent measurements. Generally, image reconstruction is formulated using a regularized scheme in which l2 norms are preferred for both the data misfit and image prior terms due to computational convenience which result in smooth solutions. However, recent work on a Primal Dual-Interior Point Method (PDIPM) framework showed its effectiveness in dealing with the minimization problem. l1 norms on data and regularization terms in EIT image reconstruction address both problems of reconstruction with sharp edges and dealing with measurement errors. We aim for a clinical and experimental evaluation of the PDIPM method by selecting scenarios (human lung and dog breathing) with known electrode errors, which require a rigorous regularization and cause the failure of reconstructions with l2 norm. Results demonstrate the applicability of PDIPM algorithms, especially l1 data and regularization norms for clinical applications of EIT showing that l1 solution is not only more robust to measurement errors in clinical setting, but also provides high contrast resolution on organ boundaries.

  4. [Does clinical risk management require a structured conflict management?].

    PubMed

    Neumann, Stefan

    2015-01-01

    A key element of clinical risk management is the analysis of errors causing near misses or patient damage. After analyzing the causes and circumstances, measures for process improvement have to be taken. Process management, human resource development and other established methods are used. If an interpersonal conflict is a contributory factor to the error, there is usually no structured conflict management available which includes selection criteria for various methods of conflict processing. The European University Viadrina in Frankfurt (Oder) has created a process model for introducing a structured conflict management system which is suitable for hospitals and could fill the gap in the methodological spectrum of clinical risk management. There is initial evidence that a structured conflict management reduces staff fluctuation and hidden conflict costs. This article should be understood as an impulse for discussion on to what extent the range of methods of clinical risk management should be complemented by conflict management.

  5. A case of suicide by self-injection of adrenaline.

    PubMed

    Palmiere, Cristian; Bévalot, Fabien; Malicier, Daniel; Grouzmann, Eric; Fracasso, Tony; Fanton, Laurent

    2015-09-01

    Adrenaline (epinephrine) auto-injectors provide life-saving pre-hospital treatment for individuals experiencing anaphylaxis in a community setting. Errors in handling adrenaline auto-injectors, particularly by children and healthcare professionals, have been reported. Reports of adrenaline overdoses are limited in the medical literature. In most of these cases, accidental adrenaline administration results from medical error. Exogenous administration of catecholamine is responsible for cardiovascular and metabolic responses, which may cause supraventricular tachycardia, ventricular dysrhythmias and myocardial ischemia. The authors present a unique autopsy case involving a 34 year-old woman who intentionally self-injected adrenaline using an adrenaline auto-injector as part of a suicide plan. Catecholamines and metanephrines were measured in peripheral and cardiac blood as well as urine and vitreous humor. Based on the results of all postmortem investigations, the cause of death was determined to be cardiac dysrhythmia and cardiac arrest following adrenaline self-injection.

  6. Comparing optical test methods for a lightweight primary mirror of a space-borne Cassegrain telescope

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Cheng; Chang, Shenq-Tsong; Yu, Zong-Ru; Lin, Yu-Chuan; Ho, Cheng-Fong; Huang, Ting-Ming; Chen, Cheng-Huan

    2014-09-01

    A Cassegrain telescope with a 450 mm clear aperture was developed for use in a spaceborne optical remote-sensing instrument. Self-weight deformation and thermal distortion were considered: to this end, Zerodur was used to manufacture the primary mirror. The lightweight scheme adopted a hexagonal cell structure yielding a lightweight ratio of 50%. In general, optical testing on a lightweight mirror is a critical technique during both the manufacturing and assembly processes. To prevent unexpected measurement errors that cause erroneous judgment, this paper proposes a novel and reliable analytical method for optical testing, called the bench test. The proposed algorithm was used to distinguish the manufacturing form error from surface deformation caused by the mounting, supporter and gravity effects for the optical testing. The performance of the proposed bench test was compared with a conventional vertical setup for optical testing during the manufacturing process of the lightweight mirror.

  7. Truth or consequences: the intertemporal consistency of adolescent self-report on the Youth Risk Behavior Survey.

    PubMed

    Rosenbaum, Janet E

    2009-06-01

    Surveys are the primary information source about adolescents' health risk behaviors, but adolescents may not report their behaviors accurately. Survey data are used for formulating adolescent health policy, and inaccurate data can cause mistakes in policy creation and evaluation. The author used test-retest data from the Youth Risk Behavior Survey (United States, 2000) to compare adolescents' responses to 72 questions about their risk behaviors at a 2-week interval. Each question was evaluated for prevalence change and 3 measures of unreliability: inconsistency (retraction and apparent initiation), agreement measured as tetrachoric correlation, and estimated error due to inconsistency assessed with a Bayesian method. Results showed that adolescents report their sex, drug, alcohol, and tobacco histories more consistently than other risk behaviors in a 2-week period, opposite their tendency over longer intervals. Compared with other Youth Risk Behavior Survey topics, most sex, drug, alcohol, and tobacco items had stable prevalence estimates, higher average agreement, and lower estimated measurement error. Adolescents reported their weight control behaviors more unreliably than other behaviors, particularly problematic because of the increased investment in adolescent obesity research and reliance on annual surveys for surveillance and policy evaluation. Most weight control items had unstable prevalence estimates, lower average agreement, and greater estimated measurement error than other topics.

  8. [A method of measuring presampled modulation transfer function using a rationalized approximation of geometrical edge slope].

    PubMed

    Honda, Michitaka

    2014-04-01

    Several improvements were implemented in the edge method of presampled modulation transfer function measurements (MTFs). The estimation technique for edge angle was newly developed by applying an algorithm for principal components analysis. The error in the estimation was statistically confirmed to be less than 0.01 even in the presence of quantum noise. Secondly, the geometrical edge slope was approximated using a rationalized number, making it possible to obtain an oversampled edge response function (ESF) with equal intervals. Thirdly, the final MTFs were estimated using the average of multiple MTFs calculated for local areas. This averaging operation eliminates the errors caused by the rationalized approximation. Computer-simulated images were used to evaluate the accuracy of our method. The relative error between the estimated MTF and the theoretical MTF at the Nyquist frequency was less than 0.5% when the MTF was expressed as a sinc function. For MTFs representing an indirect detector and phase-contrast detector, good agreement was also observed for the estimated MTFs for each. The high accuracy of the MTF estimation was also confirmed, even for edge angles of around 10 degrees, which suggests the potential for simplification of the measurement conditions. The proposed method could be incorporated into an automated measurement technique using a software application.

  9. Bayesian Analysis of Silica Exposure and Lung Cancer Using Human and Animal Studies.

    PubMed

    Bartell, Scott M; Hamra, Ghassan Badri; Steenland, Kyle

    2017-03-01

    Bayesian methods can be used to incorporate external information into epidemiologic exposure-response analyses of silica and lung cancer. We used data from a pooled mortality analysis of silica and lung cancer (n = 65,980), using untransformed and log-transformed cumulative exposure. Animal data came from chronic silica inhalation studies using rats. We conducted Bayesian analyses with informative priors based on the animal data and different cross-species extrapolation factors. We also conducted analyses with exposure measurement error corrections in the absence of a gold standard, assuming Berkson-type error that increased with increasing exposure. The pooled animal data exposure-response coefficient was markedly higher (log exposure) or lower (untransformed exposure) than the coefficient for the pooled human data. With 10-fold uncertainty, the animal prior had little effect on results for pooled analyses and only modest effects in some individual studies. One-fold uncertainty produced markedly different results for both pooled and individual studies. Measurement error correction had little effect in pooled analyses using log exposure. Using untransformed exposure, measurement error correction caused a 5% decrease in the exposure-response coefficient for the pooled analysis and marked changes in some individual studies. The animal prior had more impact for smaller human studies and for one-fold versus three- or 10-fold uncertainty. Adjustment for Berkson error using Bayesian methods had little effect on the exposure-response coefficient when exposure was log transformed or when the sample size was large. See video abstract at, http://links.lww.com/EDE/B160.

  10. Identification of factors which affect the tendency towards and attitudes of emergency unit nurses to make medical errors.

    PubMed

    Kiymaz, Dilek; Koç, Zeliha

    2018-03-01

    To determine individual and professional factors affecting the tendency of emergency unit nurses to make medical errors and their attitudes towards these errors in Turkey. Compared with other units, the emergency unit is an environment where there is an increased tendency for making medical errors due to its intensive and rapid pace, noise and complex and dynamic structure. A descriptive cross-sectional study. The study was carried out from 25 July 2014-16 September 2015 with the participation of 284 nurses who volunteered to take part in the study. Data were gathered using the data collection survey for nurses, the Medical Error Tendency Scale and the Medical Error Attitude Scale. It was determined that 40.1% of the nurses previously witnessed medical errors, 19.4% made a medical error in the last year, 17.6% of medical errors were caused by medication errors where the wrong medication was administered in the wrong dose, and none of the nurses filled out a case report form about the medical errors they made. Regarding the factors that caused medical errors in the emergency unit, 91.2% of the nurses stated excessive workload as a cause; 85.1% stated an insufficient number of nurses; and 75.4% stated fatigue, exhaustion and burnout. The study showed that nurses who loved their job were satisfied with their unit and who always worked during day shifts had a lower medical error tendency. It is suggested to consider the following actions: increase awareness about medical errors, organise training to reduce errors in medication administration, develop procedures and protocols specific to the emergency unit health care and create an environment which is not punitive wherein nurses can safely report medical errors. © 2017 John Wiley & Sons Ltd.

  11. Nonlinear effects in the time measurement device based on surface acoustic wave filter excitation.

    PubMed

    Prochazka, Ivan; Panek, Petr

    2009-07-01

    A transversal surface acoustic wave filter has been used as a time interpolator in a time interval measurement device. We are presenting the experiments and results of an analysis of the nonlinear effects in such a time interpolator. The analysis shows that the nonlinear distortion in the time interpolator circuits causes a deterministic measurement error which can be understood as the time interpolation nonlinearity. The dependence of this error on time of the measured events can be expressed as a sparse Fourier series thus it usually oscillates very quickly in comparison to the clock period. The theoretical model is in good agreement with experiments carried out on an experimental two-channel timing system. Using highly linear amplifiers in the time interpolator and adjusting the filter excitation level to the optimum, we have achieved the interpolation nonlinearity below 0.2 ps. The overall single-shot precision of the experimental timing device is 0.9 ps rms in each channel.

  12. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    DOE PAGES

    Li, T. S.; DePoy, D. L.; Marshall, J. L.; ...

    2016-06-01

    Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less

  13. Atmospheric Dispersion Effects in Weak Lensing Measurements

    DOE PAGES

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore » statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less

  14. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004

    PubMed Central

    Pascolini, Donatella; Mariotti, Silvio P; Pokharel, Gopal P

    2008-01-01

    Abstract Estimates of the prevalence of visual impairment caused by uncorrected refractive errors in 2004 have been determined at regional and global levels for people aged 5 years and over from recent published and unpublished surveys. The estimates were based on the prevalence of visual acuity of less than 6/18 in the better eye with the currently available refractive correction that could be improved to equal to or better than 6/18 by refraction or pinhole. A total of 153 million people (range of uncertainty: 123 million to 184 million) are estimated to be visually impaired from uncorrected refractive errors, of whom eight million are blind. This cause of visual impairment has been overlooked in previous estimates that were based on best-corrected vision. Combined with the 161 million people visually impaired estimated in 2002 according to best-corrected vision, 314 million people are visually impaired from all causes: uncorrected refractive errors become the main cause of low vision and the second cause of blindness. Uncorrected refractive errors can hamper performance at school, reduce employability and productivity, and generally impair quality of life. Yet the correction of refractive errors with appropriate spectacles is among the most cost-effective interventions in eye health care. The results presented in this paper help to unearth a formerly hidden problem of public health dimensions and promote policy development and implementation, programmatic decision-making and corrective interventions, as well as stimulate research. PMID:18235892

  15. What is the acceptable hemolysis index for the measurements of plasma potassium, LDH and AST?

    PubMed

    Rousseau, Nathalie; Pige, Raphaëlle; Cohen, Richard; Pecquet, Matthieu

    2016-06-01

    Hemolysis is a cause of variability in test results for plasma potassium, LDH and AST and is a non-negligible part of measurement uncertainty. However, allowable levels of hemolysis provided by reagent suppliers take neither analytical variability (trueness and precision) nor the measurand into account. Using a calibration range of hemolysis, we measured the plasma concentrations of potassium, LDH and AST, and hemolysis indices with a Cobas C501 analyzer (Roche Diagnostics(®), Meylan, France). Based on the allowable total error (according to Ricós et al.) and the expanded measurement uncertainty equation we calculated the maximum allowable bias for two concentrations of each measurand. Finally, we determined the allowable hemolysis indices for all three measurands. We observed a linear relationship between the observed increases of concentration and hemolysis indices. The LDH measurement was the most sensitive to hemolysis, followed by AST and potassium measurements. The determination of the allowable hemolysis index depends on the targeted measurand, its concentration and the chosen level of requirement of allowable total error.

  16. Translational errors in expression of Shiga toxin from pathogenic Escherichia coli as measured by MALDI-TOF-TOF and Orbitrap mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Introduction: Shiga toxin (Stx) is an AB5 toxin expressed by Shiga toxin-producing E. coli (STEC) and Shigella dysenteriae. The Stx holotoxin attaches to surface receptors of eukaryotic cells. After cellular envelopment, the toxin disrupts ribosomal protein synthesis causing cell death. Variations i...

  17. Prompting Faster Reading during Fluency Assessments: The Impact of Skill Level and Comprehension Measures on Changes in Performance

    ERIC Educational Resources Information Center

    Forbes, Bethany E.; Skinner, Christopher H.; Maurer, Kristin; Taylor, Emily; Schall, Megan; Cazzell, Samantha; Ciancio, Dennis; Conley, Matt; Conley, Elisha

    2015-01-01

    Working with middle-school students, we replicated and extended research on oral reading fluency (ORF) assessments and prompting students to read faster. Altering ORF administration procedures by instructing students to read fast caused statistically significant increases in their words correct per minute (WCPM) and errors, which was moderated by…

  18. In the Aftermath: Attitudes of Anesthesiologists to Supportive Strategies After an Unexpected Intraoperative Patient Death.

    PubMed

    Heard, Gaylene C; Thomas, Rowan D; Sanderson, Penelope M

    2016-05-01

    Although most anesthesiologists will have 1 catastrophic perioperative event or more during their careers, there has been little research on their attitudes to assistive strategies after the event. There are wide-ranging emotional consequences for anesthesiologists involved in an unexpected intraoperative patient death, particularly if the anesthesiologist made an error. We used a between-groups survey study design to ask whether there are different attitudes to assistive strategies when a hypothetical patient death is caused by a drug error versus not caused by an error. First, we explored attitudes to generalized supportive strategies. Second, we examined our hypothesis that the presence of an error causing the hypothetical patient death would increase the perceived social stigma and self-stigma of help-seeking. Finally, we examined the strategies to assist help-seeking. An anonymous, mailed, self-administered survey was conducted with 1600 consultant anesthesiologists in Australia on the mailing list of the Australian and New Zealand College of Anaesthetists. The participants were randomized into "error" versus "no-error" groups for the hypothetical scenario of patient death due to anaphylaxis. Nonparametric, descriptive, parametric, and inferential tests were used for data analysis. P' is used where P values were corrected for multiple comparisons. There was a usable response rate of 48.9%. When an error had caused the hypothetical patient death, participants were more likely to agree with 4 of the 5 statements about support, including need for time off (P' = 0.003), counseling (P' < 0.001), a formal strategy for assistance (P' < 0.001), and the anesthesiologist not performing further cases that day (P' = 0.047). There were no differences between groups in perceived self-stigma (P = 0.98) or social stigma (P = 0.15) of seeking counseling, whether or not an error had caused the hypothetical patient death. Finally, when an error had caused the patient death, participants were more likely to agree with 2 of the 5 statements about help-seeking, including the need for a formal, hospital-based process that provides information on where to obtain professional counseling (P' = 0.006) and the availability of after-hours counseling services (P' = 0.035). Our participants were more likely to agree with assistive strategies such as not performing further work that day, time off, counseling, formal support strategies, and availability of after-hours counseling services, when the hypothetical patient death from anaphylaxis was due to an error. The perceived stigma toward attending counseling was not affected by the presence or absence of an error as the cause of the patient death, disproving our hypothesis.

  19. Three-Signal Method for Accurate Measurements of Depolarization Ratio with Lidar

    NASA Technical Reports Server (NTRS)

    Reichardt, Jens; Baumgart, Rudolf; McGee, Thomsa J.

    2003-01-01

    A method is presented that permits the determination of atmospheric depolarization-ratio profiles from three elastic-backscatter lidar signals with different sensitivity to the state of polarization of the backscattered light. The three-signal method is insensitive to experimental errors and does not require calibration of the measurement, which could cause large systematic uncertainties of the results, as is the case in the lidar technique conventionally used for the observation of depolarization ratios.

  20. Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission.

    PubMed

    Rollins, A W; Thornberry, T D; Gao, R S; Smith, J B; Sayres, D S; Sargent, M R; Schiller, C; Krämer, M; Spelten, N; Hurst, D F; Jordan, A F; Hall, E G; Vömel, H; Diskin, G S; Podolske, J R; Christensen, L E; Rosenlof, K H; Jensen, E J; Fahey, D W

    2014-02-27

    Acquiring accurate measurements of water vapor at the low mixing ratios (< 10 ppm) encountered in the upper troposphere and lower stratosphere (UT/LS) has proven to be a significant analytical challenge evidenced by persistent disagreements between high-precision hygrometers. These disagreements have caused uncertainties in the description of the physical processes controlling dehydration of air in the tropical tropopause layer and entry of water into the stratosphere and have hindered validation of satellite water vapor retrievals. A 2011 airborne intercomparison of a large group of in situ hygrometers onboard the NASA WB-57F high-altitude research aircraft and balloons has provided an excellent opportunity to evaluate progress in the scientific community toward improved measurement agreement. In this work we intercompare the measurements from the Midlatitude Airborne Cirrus Properties Experiment (MACPEX) and discuss the quality of agreement. Differences between values reported by the instruments were reduced in comparison to some prior campaigns but were nonnegligible and on the order of 20% (0.8 ppm). Our analysis suggests that unrecognized errors in the quantification of instrumental background for some or all of the hygrometers are a likely cause. Until these errors are understood, differences at this level will continue to somewhat limit our understanding of cirrus microphysical processes and dehydration in the tropical tropopause layer.

  1. Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission

    PubMed Central

    Rollins, A. W.; Thornberry, T. D.; Gao, R. S.; Smith, J. B.; Sayres, D. S.; Sargent, M. R.; Schiller, C.; Krämer, M.; Spelten, N.; Hurst, D. F.; Jordan, A. F.; Hall, E. G.; Vömel, H.; Diskin, G. S.; Podolske, J. R.; Christensen, L. E.; Rosenlof, K. H.; Jensen, E. J.; Fahey, D. W.

    2017-01-01

    Acquiring accurate measurements of water vapor at the low mixing ratios (< 10 ppm) encountered in the upper troposphere and lower stratosphere (UT/LS) has proven to be a significant analytical challenge evidenced by persistent disagreements between high-precision hygrometers. These disagreements have caused uncertainties in the description of the physical processes controlling dehydration of air in the tropical tropopause layer and entry of water into the stratosphere and have hindered validation of satellite water vapor retrievals. A 2011 airborne intercomparison of a large group of in situ hygrometers onboard the NASA WB-57F high-altitude research aircraft and balloons has provided an excellent opportunity to evaluate progress in the scientific community toward improved measurement agreement. In this work we intercompare the measurements from the Midlatitude Airborne Cirrus Properties Experiment (MACPEX) and discuss the quality of agreement. Differences between values reported by the instruments were reduced in comparison to some prior campaigns but were nonnegligible and on the order of 20% (0.8 ppm). Our analysis suggests that unrecognized errors in the quantification of instrumental background for some or all of the hygrometers are a likely cause. Until these errors are understood, differences at this level will continue to somewhat limit our understanding of cirrus microphysical processes and dehydration in the tropical tropopause layer. PMID:28845379

  2. Precision VUV Spectro-Polarimetry for Solar Chromospheric Magnetic Field Measurements

    NASA Astrophysics Data System (ADS)

    Ishikawa, R.; Bando, T.; Hara, H.; Ishikawa, S.; Kano, R.; Kubo, M.; Katsukawa, Y.; Kobiki, T.; Narukage, N.; Suematsu, Y.; Tsuneta, S.; Aoki, K.; Miyagawa, K.; Ichimoto, K.; Kobayashi, K.; Auchère, F.; Clasp Team

    2014-10-01

    The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a VUV spectro-polarimeter optimized for measuring the linear polarization of the Lyman-α line (121.6 nm) to be launched in 2015 with NASA's sounding rocket (Ishikawa et al. 2011; Narukage et al. 2011; Kano et al. 2012; Kobayashi et al. 2012). With this experiment, we aim to (1) observe the scattering polarization in the Lyman-α line, (2) detect the Hanle effect, and (3) assess the magnetic fields in the upper chromosphere and transition region for the first time. The polarization measurement error consists of scale error δ a (error in amplitude of linear polarization), azimuth error Δφ (error in the direction of linear polarization), and spurious polarization ɛ (false linear polarization signals). The error ɛ should be suppressed below 0.1% in the Lyman-α core (121.567 nm ±0.02 nm), and 0.5% in the Lyman-α wing (121.567 nm ±0.05 nm), based on our scientific requirements shown in Table 2 of Kubo et al. (2014). From scientific justification, we adopt Δ φ<2° and δ a<10% as the instrument requirements. The spectro-polarimeter features a continuously rotating MgF2 waveplate (Ishikawa et al. 2013), a dual-beam spectrograph with a spherical grating working also as a beam splitter, and two polarization analyzers (Bridou et al. 2011), which are mounted at 90 degree from each other to measure two orthogonal polarization simultaneously. For the optical layout of the CLASP instrument, see Figure 3 in Kubo et al. (2014). Considering the continuous rotation of the half-waveplate, the modulation efficiency is 0.64 both for Stokes Q and U. All the raw data are returned and demodulation (successive addition or subtraction of images) is done on the ground. We control the CLASP polarization performance in the following three steps. First, we evaluate the throughput and polarization properties of each optical component in the Lyman-α line, using the Ultraviolet Synchrotron ORbital Radiation Facility (UVSOR) at the Institute for Molecular Science. The second step is polarization calibration of the spectro-polarimeter after alignment. Since the spurious polarization caused by the axisymmetric telescope is estimated to be negligibly small because of the symmetry (Ishikawa et al. 2014), we do not perform end-to-end polarization calibration. As the final step, before the scientific observation near the limb, we make a short observation at the Sun center and verify the polarization sensitivity, because the scattering polarization is expected to be close to zero at the Sun center due to symmetric geometry. In order to clarify whether we will be able to achieve the required polarization sensitivity and accuracy via these steps, we exercise polarization error budget, by investigating all the possible causes and their magnitudes of polarization errors, all of which are not necessarily verified by the polarization calibration. Based on these error budgets, we conclude that a polarization sensitivity of 0.1% in the line core, δ a<10% and Δ φ<2° can be achieved combined with the polarization calibration of the spectro-polarimeter and the onboard calibration at the Sun center(refer to Ishikawa et al. 2014, for the detail). We are currently conducting verification tests of the flight components and development of the UV light source for the polarization calibration. From 2014 spring, we will begin the integration, alignment, and calibration. We will update the error budgets throughout the course of these tests.

  3. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  4. Constrained motion estimation-based error resilient coding for HEVC

    NASA Astrophysics Data System (ADS)

    Guo, Weihan; Zhang, Yongfei; Li, Bo

    2018-04-01

    Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.

  5. Errors in veterinary practice: preliminary lessons for building better veterinary teams.

    PubMed

    Kinnison, T; Guile, D; May, S A

    2015-11-14

    Case studies in two typical UK veterinary practices were undertaken to explore teamwork, including interprofessional working. Each study involved one week of whole team observation based on practice locations (reception, operating theatre), one week of shadowing six focus individuals (veterinary surgeons, veterinary nurses and administrators) and a final week consisting of semistructured interviews regarding teamwork. Errors emerged as a finding of the study. The definition of errors was inclusive, pertaining to inputs or omitted actions with potential adverse outcomes for patients, clients or the practice. The 40 identified instances could be grouped into clinical errors (dosing/drugs, surgical preparation, lack of follow-up), lost item errors, and most frequently, communication errors (records, procedures, missing face-to-face communication, mistakes within face-to-face communication). The qualitative nature of the study allowed the underlying cause of the errors to be explored. In addition to some individual mistakes, system faults were identified as a major cause of errors. Observed examples and interviews demonstrated several challenges to interprofessional teamworking which may cause errors, including: lack of time, part-time staff leading to frequent handovers, branch differences and individual veterinary surgeon work preferences. Lessons are drawn for building better veterinary teams and implications for Disciplinary Proceedings considered. British Veterinary Association.

  6. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods.

    PubMed

    Schwartz, Mathew; Dixon, Philippe C

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM.

  7. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods

    PubMed Central

    Dixon, Philippe C.

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM. PMID:29293565

  8. Flow tilt angle measurements using lidar anemometry

    NASA Astrophysics Data System (ADS)

    Dellwik, Ebba; Mann, Jakob

    2010-05-01

    A new way of estimating near-surface mean flow tilt angles from ground based Doppler lidar measurements is presented. The results are compared with traditional mast based in-situ sonic anemometry. The tilt angle assessed with the lidar is based on 10 or 30 minute mean values of the velocity field from a conically scanning lidar. In this mode of measurement, the lidar beam is rotated in a circle by a prism with a fixed angle to the vertical at varying focus distances. By fitting a trigonometric function to the scans, the mean vertical velocity can be estimated. Lidar measurements from (1) a fetch-limited beech forest site taken at 48-175m above ground level, (2) a reference site in flat agricultural terrain and (3) a second reference site in very complex terrain are presented. The method to derive flow tilt angles and mean vertical velocities from lidar has several advantages compared to sonic anemometry; there is no flow distortion caused by the instrument itself, there are no temperature effects and the instrument misalignment can be corrected for by comparing tilt estimates at various heights. Contrary to mast-based instruments, the lidar measures the wind field with the exact same alignment error at a multitude of heights. Disadvantages with estimating vertical velocities from a lidar compared to mast-based measurements are slightly increased levels of statistical errors due to limited sampling time, because the sampling is disjunct and a requirement for homogeneous flow. The estimated mean vertical velocity is biased if the flow over the scanned circle is not homogeneous. However, the error on the mean vertical velocity due to flow inhomogeneity can be approximated by a function of the angle of the lidar beam to the vertical, the measurement height and the vertical gradient of the mean vertical velocity, whereas the error due to flow inhomogeneity on the horizontal mean wind speed is independent of the lidar beam angle. For the presented measurements over forest, it is evaluated that the systematic error due to the inhomogeneity of the flow is less than 0.2 degrees. Other possibilities for utilizing lidars for flow tilt angle and mean vertical velocities are discussed.

  9. Experimental power spectral density analysis for mid- to high-spatial frequency surface error control.

    PubMed

    Hoyo, Javier Del; Choi, Heejoo; Burge, James H; Kim, Geon-Hee; Kim, Dae Wook

    2017-06-20

    The control of surface errors as a function of spatial frequency is critical during the fabrication of modern optical systems. A large-scale surface figure error is controlled by a guided removal process, such as computer-controlled optical surfacing. Smaller-scale surface errors are controlled by polishing process parameters. Surface errors of only a few millimeters may degrade the performance of an optical system, causing background noise from scattered light and reducing imaging contrast for large optical systems. Conventionally, the microsurface roughness is often given by the root mean square at a high spatial frequency range, with errors within a 0.5×0.5  mm local surface map with 500×500 pixels. This surface specification is not adequate to fully describe the characteristics for advanced optical systems. The process for controlling and minimizing mid- to high-spatial frequency surface errors with periods of up to ∼2-3  mm was investigated for many optical fabrication conditions using the measured surface power spectral density (PSD) of a finished Zerodur optical surface. Then, the surface PSD was systematically related to various fabrication process parameters, such as the grinding methods, polishing interface materials, and polishing compounds. The retraceable experimental polishing conditions and processes used to produce an optimal optical surface PSD are presented.

  10. Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect

    NASA Astrophysics Data System (ADS)

    Ni, Yan-Chun; Zhang, Feng-Liang

    2018-05-01

    Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method.

  11. [Allocation of attentional resource and monitoring processes under rapid serial visual presentation].

    PubMed

    Nishiura, K

    1998-08-01

    With the use of rapid serial visual presentation (RSVP), the present study investigated the cause of target intrusion errors and functioning of monitoring processes. Eighteen students participated in Experiment 1, and 24 in Experiment 2. In Experiment 1, different target intrusion errors were found depending on different kinds of letters --romaji, hiragana, and kanji. In Experiment 2, stimulus set size and context information were manipulated in an attempt to explore the cause of post-target intrusion errors. Results showed that as stimulus set size increased, the post-target intrusion errors also increased, but contextual information did not affect the errors. Results concerning mean report probability indicated that increased allocation of attentional resource to response-defining dimension was the cause of the errors. In addition, results concerning confidence rating showed that monitoring of temporal and contextual information was extremely accurate, but it was not so for stimulus information. These results suggest that attentional resource is different from monitoring resource.

  12. Analyzing Software Errors in Safety-Critical Embedded Systems

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.

    1994-01-01

    This paper analyzes the root causes of safty-related software faults identified as potentially hazardous to the system are distributed somewhat differently over the set of possible error causes than non-safety-related software faults.

  13. Lies, Damned Lies, and Survey Self-Reports? Identity as a Cause of Measurement Bias

    PubMed Central

    Brenner, Philip S.; DeLamater, John

    2017-01-01

    Explanations of error in survey self-reports have focused on social desirability: that respondents answer questions about normative behavior to appear prosocial to interviewers. However, this paradigm fails to explain why bias occurs even in self-administered modes like mail and web surveys. We offer an alternative explanation rooted in identity theory that focuses on measurement directiveness as a cause of bias. After completing questions about physical exercise on a web survey, respondents completed a text message–based reporting procedure, sending updates on their major activities for five days. Random assignment was then made to one of two conditions: instructions mentioned the focus of the study, physical exercise, or not. Survey responses, text updates, and records from recreation facilities were compared. Direct measures generated bias—overreporting in survey measures and reactivity in the directive text condition—but the nondirective text condition generated unbiased measures. Findings are discussed in terms of identity. PMID:29038609

  14. Lies, Damned Lies, and Survey Self-Reports? Identity as a Cause of Measurement Bias.

    PubMed

    Brenner, Philip S; DeLamater, John

    2016-12-01

    Explanations of error in survey self-reports have focused on social desirability: that respondents answer questions about normative behavior to appear prosocial to interviewers. However, this paradigm fails to explain why bias occurs even in self-administered modes like mail and web surveys. We offer an alternative explanation rooted in identity theory that focuses on measurement directiveness as a cause of bias. After completing questions about physical exercise on a web survey, respondents completed a text message-based reporting procedure, sending updates on their major activities for five days. Random assignment was then made to one of two conditions: instructions mentioned the focus of the study, physical exercise, or not. Survey responses, text updates, and records from recreation facilities were compared. Direct measures generated bias-overreporting in survey measures and reactivity in the directive text condition-but the nondirective text condition generated unbiased measures. Findings are discussed in terms of identity.

  15. Causes of low vision and blindness in rural Indonesia

    PubMed Central

    Saw, S-M; Husain, R; Gazzard, G M; Koh, D; Widjaja, D; Tan, D T H

    2003-01-01

    Aim: To determine the prevalence rates and major contributing causes of low vision and blindness in adults in a rural setting in Indonesia Methods: A population based prevalence survey of adults 21 years or older (n=989) was conducted in five rural villages and one provincial town in Sumatra, Indonesia. One stage household cluster sampling procedure was employed where 100 households were randomly selected from each village or town. Bilateral low vision was defined as habitual VA (measured using tumbling “E” logMAR charts) in the better eye worse than 6/18 and 3/60 or better, based on the WHO criteria. Bilateral blindness was defined as habitual VA worse than 3/60 in the better eye. The anterior segment and lens of subjects with low vision or blindness (both unilateral and bilateral) (n=66) were examined using a portable slit lamp and fundus examination was performed using indirect ophthalmoscopy. Results: The overall age adjusted (adjusted to the 1990 Indonesia census population) prevalence rate of bilateral low vision was 5.8% (95% confidence interval (CI) 4.2 to 7.4) and bilateral blindness was 2.2% (95% CI 1.1 to 3.2). The rates of low vision and blindness increased with age. The major contributing causes for bilateral low vision were cataract (61.3%), uncorrected refractive error (12.9%), and amblyopia (12.9%), and the major cause of bilateral blindness was cataract (62.5%). The major causes of unilateral low vision were cataract (48.0%) and uncorrected refractive error (12.0%), and major causes of unilateral blindness were amblyopia (50.0%) and trauma (50.0%). Conclusions: The rates of habitual low vision and blindness in provincial Sumatra, Indonesia, are similar to other developing rural countries in Asia. Blindness is largely preventable, as the major contributing causes (cataract and uncorrected refractive error) are amenable to treatment. PMID:12928268

  16. High Sensitivity Gravity Measurements in the Adverse Environment of Oil Wells

    NASA Astrophysics Data System (ADS)

    Pfutzner, Harold

    2014-03-01

    Bulk density is a primary measurement within oil and gas reservoirs and is the basis of most reserves calculations by oil companies. The measurement is performed with a gamma-ray source and two scintillation gamma-ray detectors from within newly drilled exploration and production wells. This nuclear density measurement, while very precise is also very shallow and is therefore susceptible to errors due to any alteration of the formation and fluids in the vicinity of the borehole caused by the drilling process. Measuring acceleration due to gravity along a well provides a direct measure of bulk density with a very large depth of investigation that makes it practically immune to errors from near-borehole effects. Advances in gravity sensors and associated mechanics and electronics provide an opportunity for routine borehole gravity measurements with comparable density precision to the nuclear density measurement and with sufficient ruggedness to survive the rough handling and high temperatures experienced in oil well logging. We will describe a borehole gravity meter and its use under very realistic conditions in an oil well in Saudi Arabia. The density measurements will be presented. Alberto Marsala (2), Paul Wanjau (1), Olivier Moyal (1), and Justin Mlcak (1); (1) Schlumberger, (2) Saudi Aramco.

  17. Predicting Error Bars for QSAR Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeter, Timon; Technische Universitaet Berlin, Department of Computer Science, Franklinstrasse 28/29, 10587 Berlin; Schwaighofer, Anton

    2007-09-18

    Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D{sub 7} models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniquesmore » for the other modelling approaches.« less

  18. Further evaluation of the constrained least squares electromagnetic compensation method

    NASA Technical Reports Server (NTRS)

    Smith, William T.

    1991-01-01

    Technologies exist for construction of antennas with adaptive surfaces that can compensate for many of the larger distortions caused by thermal and gravitational forces. However, as the frequency and size of reflectors increase, the subtle surface errors become significant and degrade the overall electromagnetic performance. Electromagnetic (EM) compensation through an adaptive feed array offers means for mitigation of surface distortion effects. Implementation of EM compensation is investigated with the measured surface errors of the NASA 15 meter hoop/column reflector antenna. Computer simulations are presented for: (1) a hybrid EM compensation technique, and (2) evaluating the performance of a given EM compensation method when implemented with discretized weights.

  19. Image-guided spatial localization of heterogeneous compartments for magnetic resonance

    PubMed Central

    An, Li; Shen, Jun

    2015-01-01

    Purpose: Image-guided localization SPectral Localization Achieved by Sensitivity Heterogeneity (SPLASH) allows rapid measurement of signals from irregularly shaped anatomical compartments without using phase encoding gradients. Here, the authors propose a novel method to address the issue of heterogeneous signal distribution within the localized compartments. Methods: Each compartment was subdivided into multiple subcompartments and their spectra were solved by Tikhonov regularization to enforce smoothness within each compartment. The spectrum of a given compartment was generated by combining the spectra of the components of that compartment. The proposed method was first tested using Monte Carlo simulations and then applied to reconstructing in vivo spectra from irregularly shaped ischemic stroke and normal tissue compartments. Results: Monte Carlo simulations demonstrate that the proposed regularized SPLASH method significantly reduces localization and metabolite quantification errors. In vivo results show that the intracompartment regularization results in ∼40% reduction of error in metabolite quantification. Conclusions: The proposed method significantly reduces localization errors and metabolite quantification errors caused by intracompartment heterogeneous signal distribution. PMID:26328977

  20. Estimating pore and cement volumes in thin section

    USGS Publications Warehouse

    Halley, R.B.

    1978-01-01

    Point count estimates of pore, grain and cement volumes from thin sections are inaccurate, often by more than 100 percent, even though they may be surprisingly precise (reproducibility + or - 3 percent). Errors are produced by: 1) inclusion of submicroscopic pore space within solid volume and 2) edge effects caused by grain curvature within a 30-micron thick thin section. Submicroscopic porosity may be measured by various physical tests or may be visually estimated from scanning electron micrographs. Edge error takes the form of an envelope around grains and increases with decreasing grain size and sorting, increasing grain irregularity and tighter grain packing. Cements are greatly involved in edge error because of their position at grain peripheries and their generally small grain size. Edge error is minimized by methods which reduce the thickness of the sample viewed during point counting. Methods which effectively reduce thickness include use of ultra-thin thin sections or acetate peels, point counting in reflected light, or carefully focusing and counting on the upper surface of the thin section.

  1. On the representation and estimation of spatial uncertainty. [for mobile robot

    NASA Technical Reports Server (NTRS)

    Smith, Randall C.; Cheeseman, Peter

    1987-01-01

    This paper describes a general method for estimating the nominal relationship and expected error (covariance) between coordinate frames representing the relative locations of objects. The frames may be known only indirectly through a series of spatial relationships, each with its associated error, arising from diverse causes, including positioning errors, measurement errors, or tolerances in part dimensions. This estimation method can be used to answer such questions as whether a camera attached to a robot is likely to have a particular reference object in its field of view. The calculated estimates agree well with those from an independent Monte Carlo simulation. The method makes it possible to decide in advance whether an uncertain relationship is known accurately enough for some task and, if not, how much of an improvement in locational knowledge a proposed sensor will provide. The method presented can be generalized to six degrees of freedom and provides a practical means of estimating the relationships (position and orientation) among objects, as well as estimating the uncertainty associated with the relationships.

  2. [Effect of physical properties of respiratory gas on pneumotachographic measurement of ventilation in newborn infants].

    PubMed

    Foitzik, B; Schmalisch, G; Wauer, R R

    1994-04-01

    The measurement of ventilation in neonates has a number of specific characteristics; in contrast to lung function testing in adults, the inspiratory gas for neonates is often conditioned. In pneumotachographs (PNT) based on Hagen-Poiseuille's law, changes in physical characteristics of respiratory gas (temperature, humidity, pressure and oxygen fraction [FiO2]) produce a volume change as calculated with the ideal gas equation p*V/T = const; in addition, the viscosity of the gas is also changed, thus leading to measuring errors. In clinical practice, the effect of viscosity on volume measurement is often ignored. The accuracy of these empirical laws was investigated in a size 0 Fleisch-PNT using a flow-through technique and variously processed respiratory gas. Spontaneous breathing was simulated with the aid of a calibration syringe (20 ml) and a rate of 30 min-1. The largest change in viscosity (11.6% at 22 degrees C and dry gas) is found with an increase in FiO2 (21...100%). A rise in temperature from 24 to 35 degrees C (dry air) produced an increase in viscosity of 5.2%. An increase of humidity (0...90%, 35 degrees C) decreased the viscosity by 3%. A partial compensation of these viscosity errors is thus possible. Pressure change (0...50 mbar, under ambient conditions) caused no measurable viscosity error. With the exception of temperature, the measurements have shown good agreement between the measured volume measuring errors and those calculated from viscosity changes. If the respiratory gas differs from ambient air (e.g. elevated FiO2) or if the PNT is calibrated under BTPS conditions, changes in viscosity must not be neglected when performing accurate ventilation measurements. On the basis of the well-known physical laws of Dalton, Thiesen and Sutherland, a numerical correction of adequate accuracy is possible.

  3. Slow Learner Errors Analysis in Solving Fractions Problems in Inclusive Junior High School Class

    NASA Astrophysics Data System (ADS)

    Novitasari, N.; Lukito, A.; Ekawati, R.

    2018-01-01

    A slow learner whose IQ is between 71 and 89 will have difficulties in solving mathematics problems that often lead to errors. The errors could be analyzed to where the errors may occur and its type. This research is qualitative descriptive which aims to describe the locations, types, and causes of slow learner errors in the inclusive junior high school class in solving the fraction problem. The subject of this research is one slow learner of seventh-grade student which was selected through direct observation by the researcher and through discussion with mathematics teacher and special tutor which handles the slow learner students. Data collection methods used in this study are written tasks and semistructured interviews. The collected data was analyzed by Newman’s Error Analysis (NEA). Results show that there are four locations of errors, namely comprehension, transformation, process skills, and encoding errors. There are four types of errors, such as concept, principle, algorithm, and counting errors. The results of this error analysis will help teachers to identify the causes of the errors made by the slow learner.

  4. High temperature strain measurement with a resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  5. SU-E-T-257: Output Constancy: Reducing Measurement Variations in a Large Practice Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedrick, K; Fitzgerald, T; Miller, R

    2014-06-01

    Purpose: To standardize output constancy check procedures in a large medical physics practice group covering multiple sites, in order to identify and reduce small systematic errors caused by differences in equipment and the procedures of multiple physicists. Methods: A standardized machine output constancy check for both photons and electrons was instituted within the practice group in 2010. After conducting annual TG-51 measurements in water and adjusting the linac to deliver 1.00 cGy/MU at Dmax, an acrylic phantom (comparable at all sites) and PTW farmer ion chamber are used to obtain monthly output constancy reference readings. From the collected charge reading,more » measurements of air pressure and temperature, and chamber Ndw and Pelec, a value we call the Kacrylic factor is determined, relating the chamber reading in acrylic to the dose in water with standard set-up conditions. This procedure easily allows for multiple equipment combinations to be used at any site. The Kacrylic factors and output results from all sites and machines are logged monthly in a central database and used to monitor trends in calibration and output. Results: The practice group consists of 19 sites, currently with 34 Varian and 8 Elekta linacs (24 Varian and 5 Elekta linacs in 2010). Over the past three years, the standard deviation of Kacrylic factors measured on all machines decreased by 20% for photons and high energy electrons as systematic errors were found and reduced. Low energy electrons showed very little change in the distribution of Kacrylic values. Small errors in linac beam data were found by investigating outlier Kacrylic values. Conclusion: While the use of acrylic phantoms introduces an additional source of error through small differences in depth and effective depth, the new standardized procedure eliminates potential sources of error from using many different phantoms and results in more consistent output constancy measurements.« less

  6. HMI Measured Doppler Velocity Contamination from the SDO Orbit Velocity

    NASA Astrophysics Data System (ADS)

    Scherrer, Phil; HMI Team

    2016-10-01

    The Problem: The SDO satellite is in an inclined Geo-sync orbit which allows uninterrupted views of the Sun nearly 98% of the time. This orbit has a velocity of about 3,500 m/s with the solar line-of-sight component varying with time of day and time of year. Due to remaining calibration errors in wavelength filters the orbit velocity leaks into the line-of-sight solar velocity and magnetic field measurements. Since the same model of the filter is used in the Milne-Eddington inversions used to generate the vector magnetic field data, the orbit velocity also contaminates the vector magnetic products. These errors contribute 12h and 24h variations in most HMI data products and are known as the 24-hour problem. Early in the mission we made a patch to the calibration that corrected the disk mean velocity. The resulting LOS velocity has been used for helioseismology with no apparent problems. The velocity signal has about a 1% scale error that varies with time of day and with velocity, i.e. it is non-linear for large velocities. This causes leaks into the LOS field (which is simply the difference between velocity measured in LCP and RCP rescaled for the Zeeman splitting). This poster reviews the measurement process, shows examples of the problem, and describes recent work at resolving the issues. Since the errors are in the filter characterization it makes most sense to work first on the LOS data products since they, unlike the vector products, are directly and simply related to the filter profile without assumptions on the solar atmosphere, filling factors, etc. Therefore this poster is strictly limited to understanding how to better understand the filter profiles as they vary across the field and with time of day and time in years resulting in velocity errors of up to a percent and LOS field estimates with errors up to a few percent (of the standard LOS magnetograph method based on measuring the differences in wavelength of the line centroids in LCP and RCP light). We expect that when better filter profiles are available it will be possible to generate improved vector field data products as well.

  7. Improving the quality of self-monitoring blood glucose measurement: a study in reducing calibration errors.

    PubMed

    Baum, John M; Monhaut, Nanette M; Parker, Donald R; Price, Christopher P

    2006-06-01

    Two independent studies reported that 16% of people who self-monitor blood glucose used incorrectly coded meters. The degree of analytical error, however, was not characterized. Our study objectives were to demonstrate that miscoding can cause analytical errors and to characterize the potential amount of bias that can occur. The impact of calibration error with three selfblood glucose monitoring systems (BGMSs), one of which has an autocoding feature, is reported. Fresh capillary fingerstick blood from 50 subjects, 18 men and 32 women ranging in age from 23 to 82 years, was used to measure glucose with three BGMSs. Two BGMSs required manual coding and were purposely miscoded using numbers different from the one recommended for the reagent lot used. Two properly coded meters of each BGMS were included to assess within-system variability. Different reagent lots were used to challenge a third system that had autocoding capability and could not be miscoded. Some within-system comparisons showed deviations of greater than +/-30% when results obtained with miscoded meters were compared with data obtained with ones programmed using the correct code number. Similar erroneous results were found when the miscoded meter results were compared with those obtained with a glucose analyzer. For some miscoded meter and test strip combinations, error grid analysis showed that 90% of results fell into zones indicating altered clinical action. Such inaccuracies were not found with the BGMS having the autocoding feature. When certain meter code number settings of two BGMSs were used in conjunction with test strips having code numbers that did not match, statistically and clinically inaccurate results were obtained. Coding errors resulted in analytical errors of greater than +/-30% (-31.6 to +60.9%). These results confirm the value of a BGMS with an automatic coding feature.

  8. Retrospective analysis of refractive errors in children with vision impairment.

    PubMed

    Du, Jojo W; Schmid, Katrina L; Bevan, Jennifer D; Frater, Karen M; Ollett, Rhondelle; Hein, Bronwyn

    2005-09-01

    Emmetropization is the reduction in neonatal refractive errors that occurs after birth. Ocular disease may affect this process. We aimed to determine the relative frequency of ocular conditions causing vision impairment in the pediatric population and characterize the refractive anomalies present. We also compared the causes of vision impairment in children today to those between 1974 and 1981. Causes of vision impairment and refractive data of 872 children attending a pediatric low-vision clinic from 1985 to 2002 were retrospectively collated. As a result of associated impairments, refractive data were not available for 59 children. An analysis was made of the causes of vision impairment, the distribution of refractive errors in children with vision impairment, and the average type of refractive error for the most commonly seen conditions. We found that cortical or cerebral vision impairment (CVI) was the most common condition causing vision impairment, accounting for 27.6% of cases. This was followed by albinism (10.6%), retinopathy of prematurity (ROP; 7.0%), optic atrophy (6.2%), and optic nerve hypoplasia (5.3%). Vision impairment was associated with ametropia; fewer than 25% of the children had refractive errors < or = +/-1 D. The refractive error frequency plots (for 0 to 2-, 6 to 8-, and 12 to 14-year age bands) had a Gaussian distribution indicating that the emmetropization process was abnormal. The mean spherical equivalent refractive error of the children (n = 813) was +0.78 +/- 6.00 D with 0.94 +/- 1.24 D of astigmatism and 0.92 +/- 2.15 D of anisometropia. Most conditions causing vision impairment such as albinism were associated with low amounts of hyperopia. Moderate myopia was observed in children with ROP. The relative frequency of ocular conditions causing vision impairment in children has changed since the 1970s. Children with vision impairment often have an associated ametropia suggesting that the emmetropization system is also impaired.

  9. Sources of medical error in refractive surgery.

    PubMed

    Moshirfar, Majid; Simpson, Rachel G; Dave, Sonal B; Christiansen, Steven M; Edmonds, Jason N; Culbertson, William W; Pascucci, Stephen E; Sher, Neal A; Cano, David B; Trattler, William B

    2013-05-01

    To evaluate the causes of laser programming errors in refractive surgery and outcomes in these cases. In this multicenter, retrospective chart review, 22 eyes of 18 patients who had incorrect data entered into the refractive laser computer system at the time of treatment were evaluated. Cases were analyzed to uncover the etiology of these errors, patient follow-up treatments, and final outcomes. The results were used to identify potential methods to avoid similar errors in the future. Every patient experienced compromised uncorrected visual acuity requiring additional intervention, and 7 of 22 eyes (32%) lost corrected distance visual acuity (CDVA) of at least one line. Sixteen patients were suitable candidates for additional surgical correction to address these residual visual symptoms and six were not. Thirteen of 22 eyes (59%) received surgical follow-up treatment; nine eyes were treated with contact lenses. After follow-up treatment, six patients (27%) still had a loss of one line or more of CDVA. Three significant sources of error were identified: errors of cylinder conversion, data entry, and patient identification error. Twenty-seven percent of eyes with laser programming errors ultimately lost one or more lines of CDVA. Patients who underwent surgical revision had better outcomes than those who did not. Many of the mistakes identified were likely avoidable had preventive measures been taken, such as strict adherence to patient verification protocol or rigorous rechecking of treatment parameters. Copyright 2013, SLACK Incorporated.

  10. ATC operational error analysis.

    DOT National Transportation Integrated Search

    1972-01-01

    The primary causes of operational errors are discussed and the effects of these errors on an ATC system's performance are described. No attempt is made to specify possible error models for the spectrum of blunders that can occur although previous res...

  11. Improvement of Parameter Estimations in Tumor Growth Inhibition Models on Xenografted Animals: Handling Sacrifice Censoring and Error Caused by Experimental Measurement on Larger Tumor Sizes.

    PubMed

    Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie

    2016-09-01

    The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).

  12. Assessment of ecologic regression in the study of lung cancer and indoor radon.

    PubMed

    Stidley, C A; Samet, J M

    1994-02-01

    Ecologic regression studies conducted to assess the cancer risk of indoor radon to the general population are subject to methodological limitations, and they have given seemingly contradictory results. The authors use simulations to examine the effects of two major methodological problems that affect these studies: measurement error and misspecification of the risk model. In a simulation study of the effect of measurement error caused by the sampling process used to estimate radon exposure for a geographic unit, both the effect of radon and the standard error of the effect estimate were underestimated, with greater bias for smaller sample sizes. In another simulation study, which addressed the consequences of uncontrolled confounding by cigarette smoking, even small negative correlations between county geometric mean annual radon exposure and the proportion of smokers resulted in negative average estimates of the radon effect. A third study considered consequences of using simple linear ecologic models when the true underlying model relation between lung cancer and radon exposure is nonlinear. These examples quantify potential biases and demonstrate the limitations of estimating risks from ecologic studies of lung cancer and indoor radon.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.J.; Bouchard, A.M.; Osbourn, G.C.

    Future generation automated human biometric identification and verification will require multiple features/sensors together with internal and external information sources to achieve high performance, accuracy, and reliability in uncontrolled environments. The primary objective of the proposed research is to develop a theoretical and practical basis for identifying and verifying people using standoff biometric features that can be obtained with minimal inconvenience during the verification process. The basic problem involves selecting sensors and discovering features that provide sufficient information to reliably verify a person`s identity under the uncertainties caused by measurement errors and tactics of uncooperative subjects. A system was developed formore » discovering hand, face, ear, and voice features and fusing them to verify the identity of people. The system obtains its robustness and reliability by fusing many coarse and easily measured features into a near minimal probability of error decision algorithm.« less

  14. Quality of death notification forms in North West Bank/Palestine: a descriptive study.

    PubMed

    Qaddumi, Jamal A S; Nazzal, Zaher; Yacoup, Allam R S; Mansour, Mahmoud

    2017-04-11

    The death notification forms (DNFs) are important documents. Thus, inability to fill it properly by physicians will affect the national mortality report and, consequently, the evidence-based decision making. The errors in filling DNFs are common all over the world and are different in types and causes. We aimed to evaluate the quality of DNFs in terms of completeness and types of errors in the cause of death section. A descriptive study was conducted to review 2707 DNFs in North West Bank/Palestine during the year 2012 using data abstraction sheets. SPSS 17.0 was used to show the frequency of major and minor errors committed in filling the DNFs. Surprisingly, only 1% of the examined DNFs had their cause of death section filled completely correct. The immediate cause of death was correctly identified in 5.9% of all DNFs and the underlying cause of death was correctly reported in 55.4% of them. The sequence was incorrect in 41.5% of the DNFs. The most frequently documented minor error was "Not writing Time intervals" error (97.0%). Almost all DNFs contained at least one minor or major error. This high percentage of errors may affect the mortality and morbidity statistics, public health research and the process of providing evidence for health policy. Training workshops on DNF completion for newly recruited employees and at the beginning of the residency program are recommended on a regular basis. As well, we recommend reviewing the national DNFs to simplify it and make it consistent with updated evidence-based guidelines and recommendation.

  15. Improving the twilight model for polar cap absorption nowcasts

    NASA Astrophysics Data System (ADS)

    Rogers, N. C.; Kero, A.; Honary, F.; Verronen, P. T.; Warrington, E. M.; Danskin, D. W.

    2016-11-01

    During solar proton events (SPE), energetic protons ionize the polar mesosphere causing HF radio wave attenuation, more strongly on the dayside where the effective recombination coefficient, αeff, is low. Polar cap absorption models predict the 30 MHz cosmic noise absorption, A, measured by riometers, based on real-time measurements of the integrated proton flux-energy spectrum, J. However, empirical models in common use cannot account for regional and day-to-day variations in the daytime and nighttime profiles of αeff(z) or the related sensitivity parameter, m=A>/&sqrt;J. Large prediction errors occur during twilight when m changes rapidly, and due to errors locating the rigidity cutoff latitude. Modeling the twilight change in m as a linear or Gauss error-function transition over a range of solar-zenith angles (χl < χ < χu) provides a better fit to measurements than selecting day or night αeff profiles based on the Earth-shadow height. Optimal model parameters were determined for several polar cap riometers for large SPEs in 1998-2005. The optimal χl parameter was found to be most variable, with smaller values (as low as 60°) postsunrise compared with presunset and with positive correlation between riometers over a wide area. Day and night values of m exhibited higher correlation for closely spaced riometers. A nowcast simulation is presented in which rigidity boundary latitude and twilight model parameters are optimized by assimilating age-weighted measurements from 25 riometers. The technique reduces model bias, and root-mean-square errors are reduced by up to 30% compared with a model employing no riometer data assimilation.

  16. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE PAGES

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia; ...

    2016-05-03

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  17. Evaluation of three lidar scanning strategies for turbulence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Klein, Petra M.; Wharton, Sonia

    Several errors occur when a traditional Doppler beam swinging (DBS) or velocity–azimuth display (VAD) strategy is used to measure turbulence with a lidar. To mitigate some of these errors, a scanning strategy was recently developed which employs six beam positions to independently estimate the u, v, and w velocity variances and covariances. In order to assess the ability of these different scanning techniques to measure turbulence, a Halo scanning lidar, WindCube v2 pulsed lidar, and ZephIR continuous wave lidar were deployed at field sites in Oklahoma and Colorado with collocated sonic anemometers.Results indicate that the six-beam strategy mitigates some of the errors caused bymore » VAD and DBS scans, but the strategy is strongly affected by errors in the variance measured at the different beam positions. The ZephIR and WindCube lidars overestimated horizontal variance values by over 60 % under unstable conditions as a result of variance contamination, where additional variance components contaminate the true value of the variance. A correction method was developed for the WindCube lidar that uses variance calculated from the vertical beam position to reduce variance contamination in the u and v variance components. The correction method reduced WindCube variance estimates by over 20 % at both the Oklahoma and Colorado sites under unstable conditions, when variance contamination is largest. This correction method can be easily applied to other lidars that contain a vertical beam position and is a promising method for accurately estimating turbulence with commercially available lidars.« less

  18. Quantitative analysis of the radiation error for aerial coiled-fiber-optic distributed temperature sensing deployments using reinforcing fabric as support structure

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Sayde, Chadi; Thomas, Christoph K.

    2017-06-01

    In recent years, the spatial resolution of fiber-optic distributed temperature sensing (DTS) has been enhanced in various studies by helically coiling the fiber around a support structure. While solid polyvinyl chloride tubes are an appropriate support structure under water, they can produce considerable errors in aerial deployments due to the radiative heating or cooling. We used meshed reinforcing fabric as a novel support structure to measure high-resolution vertical temperature profiles with a height of several meters above a meadow and within and above a small lake. This study aimed at quantifying the radiation error for the coiled DTS system and the contribution caused by the novel support structure via heat conduction. A quantitative and comprehensive energy balance model is proposed and tested, which includes the shortwave radiative, longwave radiative, convective, and conductive heat transfers and allows for modeling fiber temperatures as well as quantifying the radiation error. The sensitivity of the energy balance model to the conduction error caused by the reinforcing fabric is discussed in terms of its albedo, emissivity, and thermal conductivity. Modeled radiation errors amounted to -1.0 and 1.3 K at 2 m height but ranged up to 2.8 K for very high incoming shortwave radiation (1000 J s-1 m-2) and very weak winds (0.1 m s-1). After correcting for the radiation error by means of the presented energy balance, the root mean square error between DTS and reference air temperatures from an aspirated resistance thermometer or an ultrasonic anemometer was 0.42 and 0.26 K above the meadow and the lake, respectively. Conduction between reinforcing fabric and fiber cable had a small effect on fiber temperatures (< 0.18 K). Only for locations where the plastic rings that supported the reinforcing fabric touched the fiber-optic cable were significant temperature artifacts of up to 2.5 K observed. Overall, the reinforcing fabric offers several advantages over conventional support structures published to date in the literature as it minimizes both radiation and conduction errors.

  19. TOGA/COARE AMMR 1992 data processing

    NASA Technical Reports Server (NTRS)

    Kunkee, D. B.

    1994-01-01

    The complete set of Tropical Ocean and Global Atmosphere (TOGA)/Coupled Ocean Atmosphere Response Experiment (COARE) flight data for the 91.65 GHz Airborne Meteorological Radiometer (AMMR92) contains data from nineteen flights: two test flights, four transit flights, and thirteen experimental flights. The data flight occurred between December 16, 1992 and February 28, 1993. Data collection from the AMMR92 during the first ten flights of TOGA/COARE was performed using the executable code TSK30041. These are IBM PC/XT programs used by the NASA Goddard Space Flight Center (GSFC). During one flight, inconsistencies were found during the operation of the AMMR92 using the GSFC data acquisition system. Consequently, the Georgia Tech (GT) data acquisition system was used during all successive TOGA/COARE flights. These inconsistencies were found during the data processing to affect the recorded data as well. Errors are caused by an insufficient pre- and post-calibration setting period for the splash-plate mechanism. The splash-plate operates asynchronusly with the data acquisition system (there is no position feedback to the GSFC or GT data system). This condition caused both the calibration and the post-calibration scene measurement to be corrupted on a randomly occurring basis when the GSFC system was used. This problem did not occur with the GT data acquisition system due to sufficient allowance for splash-plate settling. After TOGA/COARE it was determined that calibration of the instrument was a function of the scene brightness temperature. Therefore, the orientation error in the main antenna beam of the AMMR92 is hypothesized to be caused by misalignment of the internal 'splash-plate' responsible for directing the antenna beam toward the scene or toward the calibration loads. Misalignment of the splash-plate is responsible for 'scene feedthrough' during calibration. Laboratory investigation at Georgia Tech found that each polarization is affected differently by the splash-plate alignment error. This is likely to cause significant and unique errors in the absolute calibration of each channel.

  20. TOGA/COARE AMMR 1992 data processing

    NASA Astrophysics Data System (ADS)

    Kunkee, D. B.

    1994-05-01

    The complete set of Tropical Ocean and Global Atmosphere (TOGA)/Coupled Ocean Atmosphere Response Experiment (COARE) flight data for the 91.65 GHz Airborne Meteorological Radiometer (AMMR92) contains data from nineteen flights: two test flights, four transit flights, and thirteen experimental flights. The data flight occurred between December 16, 1992 and February 28, 1993. Data collection from the AMMR92 during the first ten flights of TOGA/COARE was performed using the executable code TSK30041. These are IBM PC/XT programs used by the NASA Goddard Space Flight Center (GSFC). During one flight, inconsistencies were found during the operation of the AMMR92 using the GSFC data acquisition system. Consequently, the Georgia Tech (GT) data acquisition system was used during all successive TOGA/COARE flights. These inconsistencies were found during the data processing to affect the recorded data as well. Errors are caused by an insufficient pre- and post-calibration setting period for the splash-plate mechanism. The splash-plate operates asynchronusly with the data acquisition system (there is no position feedback to the GSFC or GT data system). This condition caused both the calibration and the post-calibration scene measurement to be corrupted on a randomly occurring basis when the GSFC system was used. This problem did not occur with the GT data acquisition system due to sufficient allowance for splash-plate settling. After TOGA/COARE it was determined that calibration of the instrument was a function of the scene brightness temperature. Therefore, the orientation error in the main antenna beam of the AMMR92 is hypothesized to be caused by misalignment of the internal 'splash-plate' responsible for directing the antenna beam toward the scene or toward the calibration loads. Misalignment of the splash-plate is responsible for 'scene feedthrough' during calibration. Laboratory investigation at Georgia Tech found that each polarization is affected differently by the splash-plate alignment error. This is likely to cause significant and unique errors in the absolute calibration of each channel.

Top