Sample records for measurement program science

  1. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... Measurement Science and Engineering Program; Availability of Funds AGENCY: National Institute of Standards and... Measurement Science and Engineering Program. This program is intended to promote research, training, and... Visiting Fellow Measurement Science and Engineering Program are as follows: 1. To advance, through...

  2. Accreditation standards for undergraduate forensic science programs

    NASA Astrophysics Data System (ADS)

    Miller, Marilyn Tebbs

    Undergraduate forensic science programs are experiencing unprecedented growth in numbers of programs offered and, as a result, student enrollments are increasing. Currently, however, these programs are not subject to professional specialized accreditation. This study sought to identify desirable student outcome measures for undergraduate forensic science programs that should be incorporated into such an accreditation process. To determine desirable student outcomes, three types of data were collected and analyzed. All the existing undergraduate forensic science programs in the United States were examined with regard to the input measures of degree requirements and curriculum content, and for the output measures of mission statements and student competencies. Accreditation procedures and guidelines for three other science-based disciplines, computer science, dietetics, and nursing, were examined to provide guidance on accreditation processes for forensic science education programs. Expert opinion on outcomes for program graduates was solicited from the major stakeholders of undergraduate forensic science programs-forensic science educators, crime laboratory directors, and recent graduates. Opinions were gathered by using a structured Internet-based survey; the total response rate was 48%. Examination of the existing undergraduate forensic science programs revealed that these programs do not use outcome measures. Of the accreditation processes for other science-based programs, nursing education provided the best model for forensic science education, due primarily to the balance between the generality and the specificity of the outcome measures. From the analysis of the questionnaire data, preliminary student outcomes, both general and discipline-specific, suitable for use in the accreditation of undergraduate forensic science programs were determined. The preliminary results were reviewed by a panel of experts and, based on their recommendations, the outcomes identified were revised and refined. The results of this study were used to identify student outcomes and to suggest accreditation standards and an accreditation process for undergraduate forensic science programs based on those outcomes.

  3. The Splashdown Effect: Measuring the Effect of Science Enrichment Programs on Science Attitudes of Gifted High School Girls and Boys

    ERIC Educational Resources Information Center

    Stake, Jayne E.; Mares, Kenneth R.

    2005-01-01

    The benefits of enrichment programs for the enhancement of students' science achievement are well established. However, little evidence is available on the value of these programs for increasing students' confidence and motivation for science. One problem in measuring changes in students' science attitudes is that students may suffer from a…

  4. Improving epistemological beliefs and moral judgment through an STS-based science ethics education program.

    PubMed

    Han, Hyemin; Jeong, Changwoo

    2014-03-01

    This study develops a Science-Technology-Society (STS)-based science ethics education program for high school students majoring in or planning to major in science and engineering. Our education program includes the fields of philosophy, history, sociology and ethics of science and technology, and other STS-related theories. We expected our STS-based science ethics education program to promote students' epistemological beliefs and moral judgment development. These psychological constructs are needed to properly solve complicated moral and social dilemmas in the fields of science and engineering. We applied this program to a group of Korean high school science students gifted in science and engineering. To measure the effects of this program, we used an essay-based qualitative measurement. The results indicate that there was significant development in both epistemological beliefs and moral judgment. In closing, we briefly discuss the need to develop epistemological beliefs and moral judgment using an STS-based science ethics education program.

  5. A concept for performance management for Federal science programs

    USGS Publications Warehouse

    Whalen, Kevin G.

    2017-11-06

    The demonstration of clear linkages between planning, funding, outcomes, and performance management has created unique challenges for U.S. Federal science programs. An approach is presented here that characterizes science program strategic objectives by one of five “activity types”: (1) knowledge discovery, (2) knowledge development and delivery, (3) science support, (4) inventory and monitoring, and (5) knowledge synthesis and assessment. The activity types relate to performance measurement tools for tracking outcomes of research funded under the objective. The result is a multi-time scale, integrated performance measure that tracks individual performance metrics synthetically while also measuring progress toward long-term outcomes. Tracking performance on individual metrics provides explicit linkages to root causes of potentially suboptimal performance and captures both internal and external program drivers, such as customer relations and science support for managers. Functionally connecting strategic planning objectives with performance measurement tools is a practical approach for publicly funded science agencies that links planning, outcomes, and performance management—an enterprise that has created unique challenges for public-sector research and development programs.

  6. Programs of the Office of the Science Advisor (OSA)

    EPA Pesticide Factsheets

    Office of the Science Advisor provides leadership in cross-Agency science and science policy. Program areas: Risk Assessment, Science and Technology Policy, Human Subjects Research, Environmental Measurement and Modeling, Scientific Integrity.

  7. Teacher Research Programs Participation Improves Student Achievement in Science

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2009-12-01

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers’ skills in communicating science to students. We have measured the impact of New York City public high school science teacher participation in Columbia University’s Summer Research Program for Science Teachers on their students’ academic performance in science. In the year prior to program entry, students of participating and non-participating teachers passed a New York State Regents science examination at the same rate. In years three and four following program entry, participating teachers’ students passed Regents science exams at a higher rate (p = 0.049) than non-participating teachers’ students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings.

  8. An Assessment of Research-Doctorate Programs in the United States: Mathematical & Physical Sciences.

    ERIC Educational Resources Information Center

    Jones, Lyle V., Ed.; And Others

    The quality of doctoral-level chemistry (N=145), computer science (N=58), geoscience (N=91), mathematics (N=115), physics (N=123), and statistics/biostatistics (N=64) programs at United States universities was assessed, using 16 measures. These measures focused on variables related to: program size; characteristics of graduates; reputational…

  9. Valid and Reliable Science Content Assessments for Science Teachers

    ERIC Educational Resources Information Center

    Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn

    2013-01-01

    Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper…

  10. Teachers' participation in research programs improves their students' achievement in science.

    PubMed

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  11. Solid Earth science in the 1990s. Volume 3: Measurement techniques and technology

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Reports are contained from the NASA Workshop on Solid Earth Science in the 1990s. The techniques and technologies needed to address the program objectives are discussed. The Measurement Technique and Technology Panel identified (1) candidate measurement systems for each of the measurements required for the Solid Earth Science Program that would fall under the NASA purview; (2) the capabilities and limitations of each technique; and (3) the developments necessary for each technique to meet the science panel requirements. In nearly all cases, current technology or a development path with existing technology was identified as capable of meeting the requirements of the science panels. These technologies and development paths are discussed.

  12. Examination of Attitude and Interest Measures for 4-H Science Evaluation

    ERIC Educational Resources Information Center

    Lewis, Kendra M.; Worker, Steven M.

    2015-01-01

    Science education research has demonstrated the influence of affect on learning. The National 4-H Science Logic Model outlines outcomes from youth participation in 4-H science programs, which includes attitude and interest outcomes. The associated measure, the National 4-H Science Common Measure, assesses these attitude constructs and not other…

  13. Science Teacher Education in Australia: Initiatives and Challenges to Improve the Quality of Teaching

    NASA Astrophysics Data System (ADS)

    Treagust, David F.; Won, Mihye; Petersen, Jacinta; Wynne, Georgie

    2015-02-01

    In this article, we describe how teachers in the Australian school system are educated to teach science and the different qualifications that teachers need to enter the profession. The latest comparisons of Australian students in international science assessments have brought about various accountability measures to improve the quality of science teachers at all levels. We discuss the issues and implications of government initiatives in preservice and early career teacher education programs, such as the implementation of national science curriculum, the stricter entry requirements to teacher education programs, an alternative pathway to teaching and the measure of effectiveness of teacher education programs. The politicized discussion and initiatives to improve the quality of science teacher education in Australia are still unfolding as we write in 2014.

  14. Evaluating Student Success and Progress in the Maryland Sea Grant REU Program

    NASA Astrophysics Data System (ADS)

    Moser, F. C.; Allen, M. R.; Clark, J.

    2012-12-01

    The Maryland Sea Grant's Research Experiences for Undergraduate (REU) 12-week summer program is in its 24th year. This estuarine science-focused program has evolved, based in part on our use of assessment tools to measure the program's effectiveness. Our goal is to understand the REU program's effectiveness in such areas as improving student understanding of scientific research, scientific ethics and marine science careers. Initially, our assessment approach was limited to short surveys that used qualitative answers from students about their experience. However, in the last decade we have developed a more comprehensive approach to measure program effectiveness. Currently, we use paired pre- and post-survey questions to estimate student growth during the program. These matching questions evaluate the student's change in knowledge and perception of science research over the course of the summer program. Additionally, we administer several surveys during the 12 weeks of the program to measure immediate responses of students to program activities and to gauge the students' evolving attitudes to customize each year's program. Our 2011 cohort showed consistent improvement in numerous areas, including understanding the nature of science (pre: 4.35, post: 4.64 on a 5 point scale), what graduate school is like (3.71, 4.42), the job of a researcher (4.07, 4.50), and career options in science (3.86, 4.42). Student confidence also increased in numerous skills required for good scientists. To analyze the long-term impact of our program, we survey our alumni to assess graduate degrees earned and career choices. A large percentage (72%) of our tracked alumni have continued on to graduate school, with subsequent careers spanning the academic (51%), public (24%) and private (25%) sectors. These assessments demonstrate that our program is successful in meeting our key objectives of strengthening the training of undergraduates in the sciences and retaining them in marine science careers.

  15. MEaSUREs Data and Information

    Atmospheric Science Data Center

    2017-06-06

    ... Making Earth Science Data Records for Use in Research Environments ( MEaSUREs ) supports the NASA Earth Science research ... data sets from the MEaSUREs program.   NASA Water Vapor Project - MEaSUREs (NVAP-M) Airborne Database for ...

  16. The Validation of the Citizen Science Self-Efficacy Scale (CSSES)

    ERIC Educational Resources Information Center

    Hiller, Suzanne E.

    2016-01-01

    Citizen science programs provide opportunities for students to help professional scientists while fostering science achievement and motivation. Instruments which measure the effects of this type of programs on student motivational beliefs are limited. The purpose of this study was to describe the process of examining the reliability and validity…

  17. Identity and science learning in African American students in informal science education contexts

    NASA Astrophysics Data System (ADS)

    James, Sylvia M.

    2007-12-01

    Science education researchers are recognizing the need to consider identity and other sociocultural factors when examining causes of the science achievement gap for African American students. Non-school settings may hold greater promise than formal schooling to promote identities that are conductive to science learning in African Americans. This mixed-methods study explored the relationship between participation in out-of-school-time (OST) science enrichment programs and African American middle and high school students' racial and ethnic identity (RED, social identity as science learners, and achievement. Pre-post questionnaires used a previously validated model of REI combined with an original subscale that was developed to measure social identity as science learners. Case studies of two programs allowed for an analysis of the informal learning setting. The treatment group (N = 36) consisted of African American middle and high school students in five OST science programs, while the control group (N = 54) students were enrolled in science classes in public schools in the mid-Atlantic region. Results of a t-test of independent means indicated that there was no significant difference between the treatment and control group on measures of REI or science identity. However, the treatment group earned significantly higher science grades compared to the control group, and an ANOVA revealed a significant relationship between science identity and the intention to pursue post-secondary science studies. Although not significant, MANOVA results indicated that students who participated in OST programs exhibited gradual increases in RD and science identity over time according to grade level and gender. Follow-up analysis revealed significant relationships between awareness of racism, gender, and length of time in OST programs. The case studies illustrated that a unique community of practice exists within the OST programs. Access to authentic science learning experiences, youth development, social interactions, and relationships with staff emerged as key elements of successful science enrichment programs, Collectively, the results suggest that informal learning settings are supportive environments for science learning. Further study is needed to examine the pattern of increasing REI and science identity over time, the impact of youth development and agency, and potential implications for science in school and informal learning contexts.

  18. Impact of Informal Science Education on Children's Attitudes About Science

    NASA Astrophysics Data System (ADS)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  19. The Impact of an Informal Science Program on Students' Science Knowledge and Interest

    ERIC Educational Resources Information Center

    Zandstra, Anne Maria

    2012-01-01

    In this sequential explanatory mixed methods study, quantitative and qualitative data were used to measure the impact of an informal science program on eleventh grade students' science knowledge and interest. The local GEAR UP project has been working for six years with a cohort of students who were in eleventh and twelfth grade during the time of…

  20. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  1. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    NASA Astrophysics Data System (ADS)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  2. SWOT Hydrology in the classroom

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. M.; Destaerke, D.; Butler, D. M.; Pavelsky, T.

    2014-12-01

    The Surface Water and Ocean Topography (SWOT) Mission Education Program will participate in the multinational, multiagency program, Global Learning and Observations to Benefit the Environment (GLOBE). GLOBE is a worldwide hands-on, primary and secondary school-based science and education community of over 24,000 schools in more than 100 countries. Over 1.5 million students have contributed more than 23 million measurements to the GLOBE database for use in inquiry-based science projects. The objectives of the program are to promote the teaching and learning of science; enhance environmental awareness, literacy and stewardship; and contribute to science research and environmental monitoring.SWOT will measure sea surface height and the heights, slopes, and inundated areas of rivers, lakes, and wetlands. This new SWOT-GLOBE partnership will focus on the limnology aspects of SWOT. These measurements will be useful in monitoring the hydrologic cycle, flooding, and climate impacts of a changing environment.GLOBE's cadre of teachers are trained in five core areas of Earth system science, including hydrology. The SWOT Education teams at NASA and CNES are working with the GLOBE Program implementers to develop and promote a new protocol under the Hydrology topic area for students to measure attributes of surface water bodies that will support mission science objectives. This protocol will outline and describe a methodology to measure width and height of rivers and lakes.This new GLOBE protocol will be included in training to provide teachers with expertise and confidence in engaging students in this new scientific investigation. Performing this additional measurement will enhance GLOBE students experience in scientific investigation, and will provide useful measurements to SWOT researchers that can support the SWOT mission research goals.SWOT public engagement will involve communicating the value of its river and lake height measurements, lake water storage, and river discharge. This is also important to the GLOBE Program as curriculum integration of its hydrology measurements can be enhanced by strengthened ties to the concepts of watersheds and the hydrologic cycle. Understanding can also be increased of the relation of lake and river levels to drought and water supply.

  3. Effective Secondary Science Programs: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    Cheung, Alan; Slavin, Robert E.; Kim, Elizabeth; Lake, Cynthia

    2015-01-01

    This article reports a systematic review of research on science programs in grades 6-12. Twenty-one studies met inclusion criteria including use of randomized or matched assignment to conditions, measures that assess content emphasized equally in experimental and control groups, and a duration of at least 12 weeks. Programs fell into four…

  4. Effective Secondary Science Programs: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    Cheung, Alan; Slavin, Robert E.; Kim, Elizabeth; Lake, Cynthia

    2017-01-01

    This article reports a systematic review of research on science programs in grades 6-12. Twenty-one studies met inclusion criteria including use of randomized or quasi-experimental assignment to conditions, measures that assess content emphasized equally in experimental and control groups, and a duration of at least 12 weeks. Programs fell into…

  5. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    NASA Astrophysics Data System (ADS)

    Kim, Hanna

    2016-04-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at increasing female students' interest in science and science-related careers. This study examined the effectiveness of InSTEP on 123 female students' pre-assessment and post-assessment changes in attitudes toward science and content knowledge of selected science concepts. An attitude survey, a science content test with multiple-choice questions, written assignments, and interviews to collect data were all used to measure students' attitudes and content knowledge. A within-group, repeated measure design was conducted, and the results indicated that at the post-intervention level, InSTEP increased the participants' positive attitudes toward science, science-related careers, and content knowledge of selected science concepts.

  6. The Impact of the Norton High School Early College Program on the Academic Performance of Students at Norton High School

    ERIC Educational Resources Information Center

    Barba, Eric Matthew

    2012-01-01

    The purpose of this study was to evaluate the effect of the Norton High School Early College Early College Program on academic measures for students at Norton High School. Measures of achievement include the results of the English Language Arts (ELA), Mathematics, Social Science, and Science portions of the California Standards Test (CST), Student…

  7. NASA Tech Briefs, December 1994. Volume 18, No. 12

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports

  8. LC21-Hopes and Cautions for the Library of Congress; The NSF National Science, Mathematics, Engineering, and Technology Education Digital Library (NSDL) Program: A Progress Report; A Grammar of Dublin Core; Measuring the Impact of an Electronic Journal Collection on Library Costs: A Framework and Preliminary Observations; Emulation As a Digital Preservation Strategy.

    ERIC Educational Resources Information Center

    O'Donnell, James J.; Zia, Lee L.; Baker, Thomas; Montgomery, Carol Hansen; Granger, Stewart

    2000-01-01

    Includes five articles: (1) discusses Library of Congress efforts to include digital materials; (2) describes the National Science Foundation (NSF) digital library program to improve science, math, engineering, and technology education; (3) explains Dublin Core grammar; (4) measures the impact of electronic journals on library costs; and (5)…

  9. Beyond the atmosphere: Early years of space science

    NASA Technical Reports Server (NTRS)

    Newell, H. E.

    1980-01-01

    From the rocket measurements of the upper atmosphere and Sun that began in 1946, space science gradually emerged as a new field of scientific activity. The course of the United State space program is viewed in an historical context. Major emphasis is on NASA and its programs. The funding, staffing, organization, and priorities of the space program were reviewed.

  10. Making Earth Science Data Records for Use in Research Environments (MEaSUREs) Projects Data and Services at the GES DISC

    NASA Technical Reports Server (NTRS)

    Vollmer, Bruce E.; Ostrenga, D.; Savtchenko, A.; Johnson, J.; Wei, J.; Teng, W.; Gerasimov, I.

    2011-01-01

    NASA's Earth Science Program is dedicated to advancing Earth remote sensing and pioneering the scientific use of satellite measurements to improve human understanding of our home planet. Through the MEaSUREs Program, NASA is continuing its commitment to expand understanding of the Earth system using consistent data records. Emphasis is on linking together multiple data sources to form coherent time-series, and facilitating the use of extensive data in the development of comprehensive Earth system models. A primary focus of the MEaSUREs Program is the creation of Earth System Data Records (ESDRs). An ESDR is defined as a unified and coherent set of observations of a given parameter of the Earth system, which is optimized to meet specific requirements for addressing science questions. These records are critical for understanding Earth System processes; for the assessment of variability, long-term trends, and change in the Earth System; and for providing input and validation means to modeling efforts. Seven MEaSUREs projects will be archived and distributed through services at the Goddard Earth Sciences Data and Information Services Center (GES DISC).

  11. NASA Tech Briefs, February 1997. Volume 2, No. 2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics include: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports

  12. NASA Tech Briefs, February 1994. Volume 18, No. 2

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Topics covered include: Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences; Books and Reports

  13. Earth system science: A program for global change

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Earth System Sciences Committee (ESSC) was appointed to consider directions for the NASA Earth-sciences program, with the following charge: review the science of the Earth as a system of interacting components; recommend an implementation strategy for Earth studies; and define the role of NASA in such a program. The challenge to the Earth system science is to develop the capability to predict those changes that will occur in the next decade to century, both naturally and in response to human activity. Sustained, long-term measurements of global variables; fundamental descriptions of the Earth and its history; research foci and process studies; development of Earth system models; an information system for Earth system science; coordination of Federal agencies; and international cooperation are examined.

  14. From Implementation to Outcomes to Impacts: Designing a Comprehensive Program Evaluation

    NASA Astrophysics Data System (ADS)

    Shebby, S.

    2015-12-01

    Funders are often interested in learning about the impact of program activities, yet before the impacts are determined, educational evaluations should first examine program implementation and outcomes. Implementation evaluation examines how and the extent to which program activities are delivered as intended, including the extent to which activities reached the targeted participants. Outcome evaluation is comprised of a systematic examination of the effects that a program has on program participants, such as changes in knowledge, attitudes, beliefs, values, and behaviors. In this presentation, presenters will share insights on evaluating the implementation, outcomes, and impacts associated with an online science curriculum for K-2 students. The science curriculum was designed to provide students with access to science concepts and skills in an interactive and innovative environment, and teachers with embedded, aligned, and on-demand professional development. One of the most important—and challenging—steps in this evaluation was to select outcomes that were well-defined, measurable, and aligned to program activities, as well as relevant to program stakeholders. An additional challenge was to measure implementation given limited access to the classroom environment. This presentation will include a discussion of the process evaluators used to select appropriate implementation indicators and outcomes (teacher and student), design an evaluation approach, and craft data collection instruments. Although examples provided are specific to the K-2 science intervention, the best practices discussed are pertinent to all program and event evaluations. Impact evaluation goes beyond implementation and outcome evaluation to inform whether a program is working or not. It requires a comparison group to inform what outcomes would have been in the absence of the intervention. As such, this presentation will also include a discussion of impacts, including how impacts are defined and measured, and some common challenges in evaluating program impact.

  15. Enabling Earth Science Measurements with NASA UAS Capabilites

    NASA Technical Reports Server (NTRS)

    Albertson, Randal; Schoenung, Susan; Fladeland, Matthew M.; Cutler, Frank; Tagg, Bruce

    2015-01-01

    NASA's Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA's UAS work, Altair and Ikkana not only flew wildfires in the Western US, but also provided major programs for the development of real-time data download and processing capabilities. In early 2014, an advanced L-band Synthetic Aperture Radar (SAR) also flew for the first time on Global Hawk, proving the utility of UAVSAR, which has been flying successfully on a manned aircraft. In this paper, we focus on two topics: 1) the results of a NASA program called UAS-Enabled Earth Science, in which three different science teams flew (at least) two different UAS to demonstrate platform performance, airspace integration, sensor performance, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks, especially measurements from several payload suites consisting of multiple instruments. The latest upgrades to data processing, communications, tracking and flight planning systems will also be described.

  16. Pathway to future sustainable land imaging: the compact hyperspectral prism spectrometer

    NASA Astrophysics Data System (ADS)

    Kampe, Thomas U.; Good, William S.

    2017-09-01

    NASA's Sustainable Land Imaging (SLI) program, managed through the Earth Science Technology Office, aims to develop technologies that will provide future Landsat-like measurements. SLI aims to develop a new generation of smaller, more capable, less costly payloads that meet or exceed current imaging capabilities. One projects funded by this program is Ball's Compact Hyperspectral Prism Spectrometer (CHPS), a visible-to-shortwave imaging spectrometer that provides legacy Landsat data products as well as hyperspectral coverage suitable for a broad range of land science products. CHPS exhibits extremely low straylight and accommodates full aperture, full optical path calibration needed to ensure the high radiometric accuracy demanded by SLI measurement objectives. Low polarization sensitivity in visible to near-infrared bands facilitates coastal water science as first demonstrated by the exceptional performance of the Operational Land Imager. Our goal is to mature CHPS imaging spectrometer technology for infusion into the SLI program. Our effort builds on technology development initiated by Ball IRAD investment and includes laboratory and airborne demonstration, data distribution to science collaborators, and maturation of technology for spaceborne demonstration. CHPS is a three year program with expected exiting technology readiness of TRL-6. The 2013 NRC report Landsat and Beyond: Sustaining and Enhancing the Nations Land Imaging Program recommended that the nation should "maintain a sustained, space-based, land-imaging program, while ensuring the continuity of 42-years of multispectral information." We are confident that CHPS provides a path to achieve this goal while enabling new science measurements and significantly reducing the cost, size, and volume of the VSWIR instrument.

  17. The Impact of Participation in an Ancillary Science and Mathematics Program (SEMAA) on Engagement Rates of Middle School Students in Regular Mathematics Classrooms

    ERIC Educational Resources Information Center

    Seaton, Daniel M.; Carr, Donna

    2005-01-01

    The purpose of this study was to investigate the impact of participation in a federally sponsored, short-term, cocurricular, mathematics and science program (Science Engineering Mathematics Aerospace Academy, SEMAA) on the engagement rates of sixth- and seventh-grade students in public school mathematics classes. Engagement was measured with the…

  18. Nuclear Test-Experimental Science: Annual report, fiscal year 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challengesmore » and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program.« less

  19. The implementation of a discovery-oriented science education program in a rural elementary school

    NASA Astrophysics Data System (ADS)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine statistical significance. Teachers, students, and parents responding to the attitudinal survey concerning science education at the school were asked to mark each of four statements in one of three ways: "Agree," "Unsure," or "Disagree." Teachers, students, and parents were also given the opportunity to make comments. The results of the 1998 attitudinal surveys administered to teachers, students, and parents at the school indicated that teachers at the school generally held negative perceptions about the science education program in place at the school. Students were also generally negative in their opinions about science education at the school and parents were somewhat neutral in their opinions. After the Science and Technology for Children program was implemented at the school site, opinions concerning science education at the school changed. The 1999 attitudinal surveys indicated that teachers, students, and parents at the school expressed more positive than negative responses concerning science education.

  20. Summaries of research projects for fiscal years 1996 and 1997, medical applications and biophysical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Medical Applications and Biophysical Research Division of the Office of Biological and Environmental Research supports and manages research in several distinct areas of science and technology. The projects described in this book are grouped by the main budgetary areas: General Life Sciences (structural molecular biology), Medical Applications (primarily nuclear medicine) and Measurement Science (analytical chemistry instrumentation), Environmental Management Science Program, and the Small Business Innovation Research Program. The research funded by this division complements that of the other two divisions in the Office of Biological and Environmental Research (OBER): Health Effects and Life Sciences Research, and Environmental Sciences. Mostmore » of the OBER programs are planned and administered jointly by the staff of two or all three of the divisions. This summary book provides information on research supported in these program areas during Fiscal Years 1996 and 1997.« less

  1. Situating Second-Year Success: Understanding Second-Year STEM Experiences at a Liberal Arts College

    PubMed Central

    Gregg-Jolly, Leslie; Swartz, Jim; Iverson, Ellen; Stern, Joyce; Brown, Narren; Lopatto, David

    2016-01-01

    Challenges particular to second-year students have been identified that can impact persistence in science, technology, engineering, and mathematics (STEM) fields. We implemented a program to improve student success in intermediate-level science courses by helping students to feel they belonged and could succeed in STEM. We used survey measures of perceptions and attitudes and then qualitative measures to characterize the impact of support strategies, including peer mentoring, a second-year science student retreat, learning and advising support resources, and department-specific activities. Analysis of registration and transcript information revealed underperformance by students of color (SOC) and first-generation (FG) students in 200-level science courses. Comparison of these data before and during programming revealed significant improvement in success rates of these students in 200-level biology and chemistry courses, but success rates of SOC and FG students remain lower than the overall rate for 200-level science courses. Contemporaneous with the program, qualitative and quantitative measures of student attitudes revealed a high level of belongingness and support. The results suggest that a focus on students’ metacognition about their own abilities and strategic knowledge of how to succeed may be a fruitful direction for future research. PMID:27587855

  2. Exploration of Epistemological Beliefs in a Summer Science Program for High Achieving Students(1)

    NASA Astrophysics Data System (ADS)

    Cormier, Sebastien; Raia, F.; Steinberg, R.

    2006-12-01

    We will describe changes in epistemology of students in a comprehensive summer science program for high achieving students at City College New York. The program focuses on having students participate in the process of scientific discovery using inquiry based activities such as the astronomy units from Physics by Inquiry(2). Multiple tools were used throughout the program to study student epistemological beliefs about science. We administered a Likert scale survey about how science is done as well as multiple content questions from which student beliefs were inferred. Instructor perspectives on student epistemologies are used in conjunction with these tools to study improvements and correlations between the different measures. (1) Supported in part by the National Science Foundation (2) Physics by Inquiry, L.C. McDermott, John Wiley & Sons, Inc., New York, 1996

  3. Selection to Ensure Study Success: Looking for Multiple Criteria in the Case of a European Master of Science Program in Business

    ERIC Educational Resources Information Center

    Fastre, Greet; Gijselaers, Wim H.; Segers, Mien

    2008-01-01

    The authors report relations between entrance criteria and study success in a program for a master of science in business. Based on the admission criteria broadly used in European business schools and the findings of prior research, the present authors measured eight criteria for study success in the master's degree program. The authors applied…

  4. 2002 Mississippi Curriculum Framework: Comprehensive Consumer & Homemaking Education (Program CIP: 20.0101 - Comprehensive Consumer & Homemaking Education). Family and Consumer Sciences (Program CIP: 20.0192 - Family and Consumer Sciences)

    ERIC Educational Resources Information Center

    Arthur, Jan; Blackwell, Michelle; Clemmer, Phyllis; Cocroft, Shunda; Everett, Laurelie; Green, Coretta; West, Brenda; Yarbrough, Ruthie

    2002-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  5. Suborbital Science Program: Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  6. Fluids and Materials Science Studies Utilizing the Microgravity-vibration Isolation Mount (MIM)

    NASA Technical Reports Server (NTRS)

    Herring, Rodney; Tryggvason, Bjarni; Duval, Walter

    1998-01-01

    Canada's Microgravity Sciences Program (MSP) is the smallest program of the ISS partners and so can participate in only a few, highly focused projects in order to make a scientific and technological impact. One focused project involves determining the effect of accelerations (g-jitter) on scientific measurements in a microgravity environment utilizing the Microgravity-vibration Isolation Mount (MIM). Many experiments share the common characteristic of having a fluid stage in their process. The quality of the experimental measurements have been expected to be affected by g-jitters which has lead the ISS program to include specifications to limit the level of acceleration allowed on a subset of experimental racks. From finite element analysis (FEM), the ISS structure will not be able to meet the acceleration specifications. Therefore, isolation systems are necessary. Fluid science results and materials science results show significant sensitivity to g-jitter. The work done to date should be viewed only as a first look at the issue of g-jitter sensitivity. The work should continue with high priority such that the international science community and the ISS program can address the requirement and settle on an agreed to overall approach as soon as possible.

  7. Measuring the implementation of early childhood development programs.

    PubMed

    Aboud, Frances E; Prado, Elizabeth L

    2018-05-01

    In this paper we describe ways to measure variables of interest when evaluating the implementation of a program to improve early childhood development (ECD). The variables apply to programs delivered to parents in group sessions and home or clinic visits, as well as in early group care for children. Measurements for four categories of variables are included: training and assessment of delivery agents and supervisors; program features such as quality of delivery, reach, and dosage; recipients' acceptance and enactment; and stakeholders' engagement. Quantitative and qualitative methods are described, along with when measures might be taken throughout the processes of planning, preparing, and implementing. A few standard measures are available, along with others that researchers can select and modify according to their goals. Descriptions of measures include who might collect the information, from whom, and when, along with how information might be analyzed and findings used. By converging on a set of common methods to measure implementation variables, investigators can work toward improving programs, identifying gaps that impede the scalability and sustainability of programs, and, over time, ascertain program features that lead to successful outcomes. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  8. Measuring Science Curriculum Improvement Study Teachers' Attitudinal Changes Toward Science.

    ERIC Educational Resources Information Center

    Hovey, Larry Michael

    Investigated were three questions related to the relationship between a science teacher's attitude regarding the use of a newer science program, in this instance the Science Curriculum Improvement Study (SCIS): (1) Could the Projective Tests of Attitudes, originally designed for fifth-grade students, be modified for use with adults? (2) Is there a…

  9. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  10. SNR-based queue observations at CFHT

    NASA Astrophysics Data System (ADS)

    Devost, Daniel; Moutou, Claire; Manset, Nadine; Mahoney, Billy; Burdullis, Todd; Cuillandre, Jean-Charles; Racine, René

    2016-07-01

    In an effort to optimize the night time utilizing the exquisite weather on Maunakea, CFHT has equipped its dome with vents and is now moving its Queued Scheduled Observing (QSO)1 based operations toward Signal to Noise Ratio (SNR) observing. In this new mode, individual exposure times for a science program are estimated using a model that uses measurements of the weather conditions as input and the science program is considered completed when the depth required by the scientific requirements are reached. These changes allow CFHT to make better use of the excellent seeing conditions provided by Maunakea, allowing us to complete programs in a shorter time than allocated to the science programs.

  11. NASA Tech Briefs, July 2000. Volume 24, No. 7

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.

  12. 2008 Mississippi Curriculum Framework: Family and Consumer Sciences. (Program CIP: 19.9999 - Family and Consumer Sciences)

    ERIC Educational Resources Information Center

    Rosetti, Pamela; Byrd, Jenean; West, Brenda; Bigham, Melody

    2008-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  13. Measuring Growth on a Museum Field Trip: Dinosaur Bones and Tree Cross Sections

    ERIC Educational Resources Information Center

    Sedzielarz, Maija; Robinson, Christopher

    2007-01-01

    The MathPacks program at the Science Museum of Minnesota provides students with in-depth understanding of real-world applications of mathematics and science. Students measure museum specimens and investigate ratios, patterns, and mapping while simulating the work of scientists.

  14. A study of the effectiveness of the primary education improvement program (science) in selected schools of Northern Nigeria

    NASA Astrophysics Data System (ADS)

    Brown, Desmond P.; Reed, Jack A.

    The Primary Education Improvement Program (Science) developed in Nigeria from 1970-1980 adopted a process approach to the teaching of science for children in Classes One and Two of primary school. In that insufficient formative data were available a study was organized to evaluate the attainment of the program's major objectives in terms of the children's ability to practice process skills. The study also attempted to measure children's interest, active participation and understanding of the lessons, as well as the availability of materials and ease of preparing and teaching the lessons for the teachers. Data were collected by means of teacher opinionnaires and a children's test to measure the attainment of process skills. The teachers who completed the opinionnaires rated the program as successful in terms of all the measured criteria. Children in the experimental and control groups were tested and their performances were compared. The results indicated that there were some significant differences in total test scores in favor of the experimental group after one year of primary school but none after two years. The program, though highly rated by teachers, did not produce the intended changes in children's behavior.

  15. A Rapid Prototyping Look at NASA's Next Generation Earth-Observing Satellites; Opportunities for Global Change Research and Applications

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.

    2006-12-01

    The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.

  16. Evaluating the High School Lunar Research Projects Program

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science instrument is an open-ended, modified version of the Views of Nature of Science questionnaire. The science attitudes Likert-scale instrument is a modified version of the Attitudes Toward Science Inventory. The lunar science content instrument was developed by CLSE education staff. All three of these instruments are administered to students before and after their research experience to measure the program's impact on student views of the nature of science, attitudes toward science, and knowledge of lunar science. All instruments are administered online via Survey Monkey®. When asked if the program changed the way they view the Moon, 77.4% of students (n=53) replied "yes" and described their increase in knowledge of the formation of the Moon, lunar surface processes, etc. Just under half (41.5%) of the students reported that their experience in the program has contributed to their consideration of a career in science. When asked about obstacles teams had to overcome, teachers described issues with time, student motivation and technology. However, every teacher enthusiastically agreed that the authentic research experience was worthwhile to their students. Detailed evaluation results for the 2011-2012 program will be presented.

  17. Electro-optic and holographic measurement techniques for the atmospheric sciences. [considering spacecraft simulation applications

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Lemons, J. F.; Kurtz, R. L.; Liu, H.-K.

    1977-01-01

    A comprehensive examination is made of recent advanced research directions in the applications of electro-optical and holographic instrumentations and methods to atmospheric sciences problems. In addition, an overview is given of the in-house research program for environmental and atmospheric measurements with emphasis on particulates systems. Special treatment is made of the instrument methods and applications work in the areas of laser scattering spectrometers and pulsed holography sizing systems. Selected engineering tests data on space simulation chamber programs are discussed.

  18. Science--A Process Approach, Product Development Report No. 8.

    ERIC Educational Resources Information Center

    Sanderson, Barbara A.; Kratochvil, Daniel W.

    Science - A Process Approach, a science program for grades kindergarten through sixth, mainly focuses on scientific processes: observing, classifying, using numbers, measuring, space/time relationships, communicating, predicting, inferring, defining operationally, formulating hypotheses, interpreting data, controlling variables, and experimenting.…

  19. Mentor and protege attitudes towards the science mentoring program

    NASA Astrophysics Data System (ADS)

    Rios Jimenez, Noemaris

    The purpose of this study was to examine mentor and protege attitudes towards the science mentoring program. This study focused on the attitudes that proteges and mentors participating in the Puerto Rico Statewide Systemic Initiative (PRSSI) have towards the PRSSI mentoring program and the mentoring relationship. The data was gathered from a questionnaire for mentors and beginning teachers designed by Reiman and Edelfelt in 1990. It was used to measure the mentor and protege attitudes towards the science mentoring program by three variables: mentor-protege relationship, professional development, and supportive school climate. Data were collected from 56 science teachers (proteges) and 21 mentors from fourteen (14) junior high schools. Descriptive statistics were used to indicate both proteges and mentor attitudes towards the science mentoring program. T-tests were conducted to establish if there was a statistically significant difference between protege and mentor attitudes. In conclusion, the attitudes of mentors and proteges in regard to mentor-protege relationship, professional development, and supportive school climate were similar.

  20. Science Writer's Guide to Landsat 7

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Earth Observing System (EOS), the centerpiece of NASA's Earth science program, is a suite of spacecraft and interdisciplinary science investigations dedicated to advancing our understanding of global change. The flagship EOS satellite, Terra (formerly EOS AM-1), scheduled for launch in July 1999, will provide key measurements of the physical and radiative properties of clouds; air-land and air-sea exchanges of energy, carbon, and water; trace gases; and volcanoes. Flying in formation with Terra, Landsat 7 will make global high spatial resolution measurements of land surface and surrounding coastal regions. Other upcoming EOS missions and instruments include QuikSCAT, to collect sea surface wind data; the Stratospheric Gas and Aerosol Experiment (SAGE III), to create global profiles of key atmospheric gases; and the Active Cavity Radiometer Irradiance Monitors (ACRIM) to measure the energy output of the Sun. The second of the major, multi-instrument EOS platforms, PM-1, is scheduled for launch in 2000. Interdisciplinary research projects sponsored by EOS use specific Earth science data sets for a broader investigation into the function of Earth systems. Current EOS research spans a wide range of sciences, including atmospheric chemistry, hydrology, land use, and marine ecosystems. The EOS program has been managed since 1990 by the Goddard Space Flight Center in Greenbelt, Md., for NASA's Office of Earth Science in Washington, D. C. Additional information on the program can be found on the EOS Project Science Office Web site (http://eospso.gsfc.nasa.gov).

  1. A turnkey data logger program for field-scale energy flux density measurements using eddy covariance and surface renewal

    USDA-ARS?s Scientific Manuscript database

    Micrometeorological methods and ecosystem-scale energy and mass flux density measurements have become increasingly important in soil, agricultural, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Eddy cov...

  2. State-of-the-science on prevention of elder abuse and lessons learned from child abuse and domestic violence prevention: Toward a conceptual framework for research

    PubMed Central

    Teresi, Jeanne A.; Burnes, David; Skowron, Elizabeth A.; Dutton, Mary Ann; Mosqueda, Laura; Lachs, Mark S.; Pillemer, Karl

    2017-01-01

    The goal of this review is to discuss the state-of-the-science in elder abuse prevention. Findings from evidence-based programs to reduce elder abuse are discussed, drawing from findings and insights from evidence-based programs for child maltreatment and domestic/ intimate partner violence. A conceptual measurement model for the study of elder abuse is presented, and linked to possible measures of risk factors and outcomes. Advances in neuroscience in child maltreatment and novel measurement strategies for outcome assessment are presented. PMID:27676289

  3. State of the science on prevention of elder abuse and lessons learned from child abuse and domestic violence prevention: Toward a conceptual framework for research.

    PubMed

    Teresi, Jeanne A; Burnes, David; Skowron, Elizabeth A; Dutton, Mary Ann; Mosqueda, Laura; Lachs, Mark S; Pillemer, Karl

    2016-01-01

    The goal of this review is to discuss the state of the science in elder abuse prevention. Findings from evidence-based programs to reduce elder abuse are discussed, drawing from findings and insights from evidence-based programs for child maltreatment and domestic/intimate partner violence. A conceptual measurement model for the study of elder abuse is presented and linked to possible measures of risk factors and outcomes. Advances in neuroscience in child maltreatment and novel measurement strategies for outcome assessment are presented.

  4. Valid and reliable authentic assessment of culminating student performance in the biomedical sciences.

    PubMed

    Oh, Deborah M; Kim, Joshua M; Garcia, Raymond E; Krilowicz, Beverly L

    2005-06-01

    There is increasing pressure, both from institutions central to the national scientific mission and from regional and national accrediting agencies, on natural sciences faculty to move beyond course examinations as measures of student performance and to instead develop and use reliable and valid authentic assessment measures for both individual courses and for degree-granting programs. We report here on a capstone course developed by two natural sciences departments, Biological Sciences and Chemistry/Biochemistry, which engages students in an important culminating experience, requiring synthesis of skills and knowledge developed throughout the program while providing the departments with important assessment information for use in program improvement. The student work products produced in the course, a written grant proposal, and an oral summary of the proposal, provide a rich source of data regarding student performance on an authentic assessment task. The validity and reliability of the instruments and the resulting student performance data were demonstrated by collaborative review by content experts and a variety of statistical measures of interrater reliability, including percentage agreement, intraclass correlations, and generalizability coefficients. The high interrater reliability reported when the assessment instruments were used for the first time by a group of external evaluators suggests that the assessment process and instruments reported here will be easily adopted by other natural science faculty.

  5. Outreach and education in urban Los Angeles Schools: integration of research into middle and high school science curriculum through the NSF GK-12 SEE-LA program

    NASA Astrophysics Data System (ADS)

    Daniel, J. C.; Hogue, T. S.; Moldwin, M. B.; Nonacs, P.

    2012-12-01

    A National Science Foundation Graduate Teaching Fellows in K- 12 Education program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/ ) partners UCLA faculty and graduate students (fellows) with urban middle and high school science teachers and their students to foster programs of science and engineering exploration that bring the environment of Los Angeles into the classroom. UCLA science and engineering graduate fellows serve as scientists-in-residence at four partner schools to integrate inquiry-based science lessons, facilitate advancements in science content teaching, and ultimately, to improve their own science communication skills. As part of their fellowship, graduate students are required to develop three "major" lessons, including one based on their PhD research at UCLA. During the first four years of the project, the SEE-LA fellows have developed a range of research-based activities, including lessons on sustainable fisheries, ecosystems and remote sensing, earthquakes, urban water quality including invertebrate observations, and post-fire soil chemistry, among others. This presentation will provide an overview of the SEE-LA GK-12 program and development of research lessons that also address California State Science Standards. We also discuss potential sustainability of GK-12 type outreach and education programs. The SEE-LA program has provided development of graduate student communication and teaching skills while also contributing significantly to the integration of science education into K-12 curriculum in Los Angeles schools.

  6. Assessment of an outreach program for eighth-grade science students: Measurement of affective and cognitive gains

    NASA Astrophysics Data System (ADS)

    Hauge, James Brian

    1998-12-01

    The College of Sciences and Mathematics Science Outreach Initiative was a program designed to attract students with the interest and ability to succeed in science and to keep them interested until they entered college. In this way, the Initiative sought to address the problem of a projected shortfall of scientists and engineers in the future. This study was conducted to evaluate the goals of the eighth grade component of the COSAM Initiative. These goals included: increased interest in and self-efficacy relating to science, increased achievement in science and mathematics, and increased enrollment in science and mathematics classes. Data were collected from 48 participants and 43 non-participants with surveys and from student records. Pre-treatment Chi-Square tests revealed that the groups did not differ in ethnicity, race, family income, parents' education, or parents' occupation. The surveys used were a total battery interest survey including (1) the Learning Science Things Survey (to measure interest in science topics), the Activities Interest Survey (to measure interest in science activities), the Career Orientation Survey (to measure interest in science careers) and the Learning Methods Survey (to measure interest in learning by experiential methods), (2) the Saturday Academy Survey (to measure self-efficacy concerning science activities), (3) the Saturday Academy Electronics/Eye Quiz (to test ability relating to science activities), and (4) the Summer Science Camp Survey (to measure interest in and self-efficacy concerning science activities). Student grades, SAT, and OLSAT scores, and the kinds of science and mathematics courses enrolled in during seventh and eighth grades were obtained from school records. Analysis of data using a mixed ANOVA design revealed that participation in the COSAM Initiative had no significant effect on interest in science as measured by the total battery survey. Similar analysis of Saturday Academy Survey data revealed that the participant group showed significantly greater gains in self-efficacy regarding science activities than did the non-participant group. No correlation was found between self-efficacy and ability as measured by the Electronics/Eye Quiz. Analysis of Summer Science Camp Survey data with paired samples tests revealed that interest and self-efficacy significantly increased after treatment. Interest and self-efficacy relating to Summer Science Camp activities were positively correlated after treatment. No significant effects were detected to indicate that participation in the COSAM Initiative positively affected school grades, standardized test scores, or increased the number of science and mathematics courses in which students enrolled.

  7. The Chi-Sci Scholars Program: "Developing Community and Challenging Racially Inequitable Measures of Success at a Minority-Serving Institution on Chicago's Southside"

    ERIC Educational Resources Information Center

    Sabella, Mel S.; Mardis, Kristy L.

    2017-01-01

    Ensuring that all students who want to pursue degrees and careers in science can do so is an important goal of a number of undergraduate STEM equity programs throughout the United States. Many of these programs, which promote diversity and the importance of diversity in science, directly address the 2012 PCAST report, which notes that "1…

  8. The long-term impact of a math, science and technology program on grade school girls

    NASA Astrophysics Data System (ADS)

    Sullivan, Sandra Judd

    The purpose of this study was to determine if a math, science, and technology intervention program improved grade school girls' attitudes and stereotypes toward science and scientists, as well as participation levels in science-related activities, two years after their participating in the program. The intervention program evaluated was Operation SMART, developed by Girls Incorporated. Participants were recruited from the 6th and 7th grades from two public middle schools in Northern California. One hundred twenty-seven girls signed up for the survey and were assigned to either the SMART group (previous SMART participants) or Non-SMART group (no previous experience with SMART). The survey consisted of five parts: (1) a background information sheet, (2) the Modified Attitudes Toward Science Inventory, (3) the What Do You Do? survey, (4) the Draw-A-Scientist Test-Revised, and (5) a career interests and role models/influencer survey. Results indicated that there were no significant differences between the SMART and Non-SMART groups on any of the test measures. However, middle school attended did have a significant effect on the outcome variables. Girls from Middle School A reported more positive attitudes toward science, while girls from Middle School B reported higher participation levels in extracurricular science activities. Possible explanations for these findings suggest too much time had passed between treatment effect and time of measurement as well as the strong influence of teacher and school environment on girls' attitudes and stereotypes. Recommendations for future research are discussed.

  9. Excursions in technology policy

    NASA Technical Reports Server (NTRS)

    Archibald, Robert B.

    1995-01-01

    This technical report presents a summary of three distinct projects: (1) Measuring economic benefits; (2) Evaluating the SBIR program; and (3) A model for evaluating changes in support for science and technology. the first project deals with the Technology Applications Group (TAG) at NASA Langley Research Center. The mission of TAG is to assist firms interested in commercializing technologies. TAG is a relatively new group as is the emphasis on technology commercialization for NASA. One problem faced by TAG and similar groups at other centers is measuring their effectiveness. The first project this summer, a paper entitled, 'Measuring the Economic Benefits of Technology Transfer from a National Laboratory: A Primer,' focused on this measurement problem. We found that the existing studies of the impact of technology transfer on the economy were conceptually flawed. The 'primer' outlines the appropriate theoretical framework for measuring the economic benefits of technology transfer. The second project discusses, one of the programs of TAG, the Small Business Innovation Research (SBIR) program. This program has led to over 400 contracts with Small Business since its inception in 1985. The program has never been evaluated. Crucial questions such as those about the extent of commercial successes from the contracts need to be answered. This summer we designed and implemented a performance evaluation survey instrument. The analysis of the data will take place in the fall. The discussion of the third project focuses on a model for evaluating changes in support for science and technology. At present several powerful forces are combining to change the environment for science and technology policy. The end of the cold war eliminated the rationale for federal support for many projects. The new- found Congressional conviction to balance the budget without tax increases combined with demographic changes which automatically increase spending for some politically popular programs will make it difficult to find funding for science and technology. Also, the two political parties have very different conceptions of the appropriate future for research and development spending. All these changes create the potential for serious, perhaps unintended, consequences for the economic future of the country. In a paper entitled, 'A Conceptual Framework for Evaluating the Impact of Changes in Federal Support for Science and Technology,' we introduce a model to evaluate the effects of changes in federal spending for science and technology. This paper both provides a way of organizing informed discussions and points out important research topics for science and technology policy.

  10. National Assessment Program--Science Literacy Year 6 Technical Report, 2006

    ERIC Educational Resources Information Center

    Wu, Margaret; Donovan, Jenny; Hutton, Penny; Lennon, Melissa

    2008-01-01

    In July 2001, the Ministerial Council on Education, Employment, Training and Youth Affairs (MCEETYA) agreed to the development of assessment instruments and key performance measures for reporting on student skills, knowledge and understandings in primary science. It directed the newly established Performance Measurement and Reporting Taskforce…

  11. National Assessment Program--Science Literacy Year 6 School Release Materials, 2006

    ERIC Educational Resources Information Center

    Donovan, Jenny; Hutton, Penny; Lennon, Melissa; O'Connor, Gayl; Morrissey, Noni

    2008-01-01

    In July 2001, the Ministerial Council on Education, Employment, Training and Youth Affairs (MCEETYA) agreed to the development of assessment instruments and key performance measures for reporting on student skills, knowledge and understandings in primary science. It directed the newly established Performance Measurement and Reporting Taskforce…

  12. Math Science Partnership of Southwest Pennsylvania: Measuring Progress toward Goals. Monograph

    ERIC Educational Resources Information Center

    Pane, John F.; Williams, Valerie L.; Olmsted, Stuart S.; Yuan, Kun; Spindler, Eleanor; Slaughter, Mary Ellen

    2009-01-01

    In 2003, the Allegheny Intermediate Unit received a grant under the National Science Foundation's Math and Science Partnership program to establish the Math Science Partnership of Southwest Pennsylvania (MSP). The MSP brings together regional K-12 school districts, institutions of higher education, and intermediate units with the goals of…

  13. Surrounded by Science: Learning Science in Informal Environments

    ERIC Educational Resources Information Center

    Fenichel, Marilyn; Schweingruber, Heidi A.

    2010-01-01

    Practitioners in informal science settings--museums, after-school programs, science and technology centers, media enterprises, libraries, aquariums, zoos, and botanical gardens--are interested in finding out what learning looks like, how to measure it, and what they can do to ensure that people of all ages, from different backgrounds and cultures,…

  14. PROJECT SUCCESS: Marine Science. (Introductory Packet, Basic Marine Science Laboratory Techniques, Oceanographic Instruments, Individual Projects, Bibliography).

    ERIC Educational Resources Information Center

    Demaray, Bryan

    Five packets comprise the marine science component of an enrichment program for gifted elementary students. Considered in the introductory section are identification (pre/post measure) procedures. Remaining packets address the following topics (subtopics in parentheses): basic marine science laboratory techniques (microscope techniques and metric…

  15. Valid and Reliable Science Content Assessments for Science Teachers

    NASA Astrophysics Data System (ADS)

    Tretter, Thomas R.; Brown, Sherri L.; Bush, William S.; Saderholm, Jon C.; Holmes, Vicki-Lynn

    2013-03-01

    Science teachers' content knowledge is an important influence on student learning, highlighting an ongoing need for programs, and assessments of those programs, designed to support teacher learning of science. Valid and reliable assessments of teacher science knowledge are needed for direct measurement of this crucial variable. This paper describes multiple sources of validity and reliability (Cronbach's alpha greater than 0.8) evidence for physical, life, and earth/space science assessments—part of the Diagnostic Teacher Assessments of Mathematics and Science (DTAMS) project. Validity was strengthened by systematic synthesis of relevant documents, extensive use of external reviewers, and field tests with 900 teachers during assessment development process. Subsequent results from 4,400 teachers, analyzed with Rasch IRT modeling techniques, offer construct and concurrent validity evidence.

  16. PhD programs in nursing in the United States: visibility of American Association of Colleges of Nursing core curricular elements and emerging areas of science.

    PubMed

    Wyman, Jean F; Henly, Susan J

    2015-01-01

    Preparing nursing doctoral students with knowledge and skills for developing science, stewarding the discipline, and educating future researchers is critical. This study examined the content of 120 U.S. PhD programs in nursing as communicated on program websites in 2012. Most programs included theory, research design, and statistics courses. Nursing inquiry courses were evidenced on only half the websites. Course work or research experiences in informatics were mentioned on 22.5% of the websites; biophysical measurement and genetics/genomics were mentioned on fewer than 8% of program websites. Required research experiences and instruction in scientific integrity/research ethics were more common when programs had Institutional Training Award funding (National Institutes of Health T32 mechanism) or were located at a university with a Clinical and Translational Science Award. Changes in education for the next generation of PhD students are critically needed to support advancement of nursing science. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Microgravity Program strategic plan, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The all encompassing objective of the NASA Microgravity Program is the use of space as a lab to conduct research and development. The on-orbit microgravity environment, with its substantially reduced buoyancy forces, hydrostatic pressures, and sedimentation, enables the conduction of scientific studies not possible on Earth. This environment allows processes to be isolated and controlled with an accuracy that cannot be obtained in the terrestrial environment. The Microgravity Science and Applications Div. has defined three major science categories in order to develop a program structure: fundamental science, including the study of the behavior of fluids, transport phenomena, condensed matter physics, and combustion science; materials science, including electronic and photonic materials, metals and alloys, and glasses and ceramics; and biotechnology, focusing on macromolecular crystal growth as well as cell and molecular science. Experiments in these areas seek to provide observations of complex phenomena and measurements of physical attributes with a precision that is enabled by the microgravity environment.

  18. NASA's Earth Science Flight Program Meets the Challenges of Today and Tomorrow

    NASA Technical Reports Server (NTRS)

    Ianson, Eric E.

    2016-01-01

    NASA's Earth science flight program is a dynamic undertaking that consists of a large fleet of operating satellites, an array of satellite and instrument projects in various stages of development, a robust airborne science program, and a massive data archiving and distribution system. Each element of the flight program is complex and present unique challenges. NASA builds upon its successes and learns from its setbacks to manage this evolving portfolio to meet NASA's Earth science objectives. NASA fleet of 16 operating missions provide a wide range of scientific measurements made from dedicated Earth science satellites and from instruments mounted to the International Space Station. For operational missions, the program must address issues such as an aging satellites operating well beyond their prime mission, constellation flying, and collision avoidance with other spacecraft and orbital debris. Projects in development are divided into two broad categories: systematic missions and pathfinders. The Earth Systematic Missions (ESM) include a broad range of multi-disciplinary Earth-observing research satellite missions aimed at understanding the Earth system and its response to natural and human-induced forces and changes. Understanding these forces will help determine how to predict future changes, and how to mitigate or adapt to these changes. The Earth System Science Pathfinder (ESSP) program provides frequent, regular, competitively selected Earth science research opportunities that accommodate new and emerging scientific priorities and measurement capabilities. This results in a series of relatively low-cost, small-sized investigations and missions. Principal investigators whose scientific objectives support a variety of studies lead these missions, including studies of the atmosphere, oceans, land surface, polar ice regions, or solid Earth. This portfolio of missions and investigations provides opportunity for investment in innovative Earth science that enhances NASA's capability for better understanding the current state of the Earth system. ESM and ESSP projects often involve partnerships with other US agencies and/or international organizations. This adds to the complexity of mission development, but allows for a greater scientific return on NASA's investments. The Earth Science Airborne Science Program provides manned and unmanned aircraft systems that further science and advance the use of satellite data. NASA uses these assets worldwide in campaigns to investigate extreme weather events, observe Earth system processes, obtain data for Earth science modeling activities, and calibrate instruments flying aboard Earth science spacecraft. The Airborne Science Program has six dedicated aircraft and access to many other platforms. The Earth Science Multi-Mission Operations program acquires, preserves, and distributes observational data from operating spacecraft to support Earth Science research focus areas. The Earth Observing System Data and Information System (EOSDIS), which has been in operations since 1994, primarily accomplishes this. EOSDIS acquires, processes, archives, and distributes Earth Science data and information products. The archiving of NASA Earth Science information happens at eight Distributed Active Archive Centers (DAACs) and four disciplinary data centers located across the United States. The DAACs specialize by topic area, and make their data available to researchers around the world. The DAACs currently house over 9 petabytes of data, growing at a rate of 6.4 terabytes per day. NASA's current Earth Science portfolio is responsive to the National Research Council (NRC) 2007 Earth Science Decadal Survey and well as the 2010 NASA Response to President Obama's Climate Plan. As the program evolves into the future it will leverage the lessons learned from the current missions in operations and development, and plan for adjustments to future objectives in response to the anticipated 2017 NRC Decadal Survey.

  19. The NIH Science of Behavior Change Program: Transforming the science through a focus on mechanisms of change

    PubMed Central

    Nielsen, Lisbeth; Riddle, Melissa; King, Jonathan W.; Aklin, Will M.; Chen, Wen; Clark, David; Collier, Elaine; Czajkowski, Susan; Esposito, Layla; Ferrer, Rebecca; Green, Paige; Hunter, Christine; Kehl, Karen; King, Rosalind; Onken, Lisa; Simmons, Janine M.; Stoeckel, Luke; Stoney, Catherine; Tully, Lois; Weber, Wendy

    2017-01-01

    The goal of the NIH Science of Behavior Change (SOBC) Common Fund Program is to provide the basis for an experimental medicine approach to behavior change that focuses on identifying and measuring the mechanisms that underlie behavioral patterns we are trying to change. This paper frames the development of the program within a discussion of the substantial disease burden in the U.S. attributable to behavioral factors, and details our strategies for breaking down the disease- and condition-focused silos in the behavior change field to accelerate discovery and translation. These principles serve as the foundation for our vision for a unified science of behavior change at the NIH and in the broader research community. PMID:29110885

  20. Teacher Research Experience Programs = Increase in Student Achievement

    NASA Astrophysics Data System (ADS)

    Dubner, J.

    2010-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.

  1. In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Bin; Liu, Ming-Gang; Chen, Wei-Jie; Han, Xiao-Biao; Chen, Jie; Lin, Xiu-Qi; Lin, Jia-Li; Luo, Hui; Liao, Qiang; Zang, Wen-Jie; Chen, Yin-Song; Qiu, Yun-Ling; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun

    2015-09-01

    In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2″ Thomas Swan close coupled showerhead metal organic chemical vapor deposition (MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses (tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, GaN grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded AlGaN buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).

  2. Workshop on the Suborbital Science Sounding Rocket Program, Volume 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The unique characteristics of the sounding rocket program is described, with its importance to space science stressed, especially in providing UARS correlative measurements. The program provided opportunities to do innovative scientific studies in regions not other wise accessible; it was a testbed for developing new technologies; and its key attributes were flexibility, reliability, and economy. The proceedings of the workshop are presented in viewgraph form, including the objectives of the workshop and the workshop agenda.

  3. Measuring the Impact of a Science Center on Its Community

    ERIC Educational Resources Information Center

    Falk, John H.; Needham, Mark D.

    2011-01-01

    A range of sources support science learning, including the formal education system, libraries, museums, nature and Science Centers, aquariums and zoos, botanical gardens and arboretums, television programs, film and video, newspapers, radio, books and magazines, the Internet, community and health organizations, environmental organizations, and…

  4. The Integration of Creative Drama in an Inquiry-Based Elementary Program: The Effect on Student Attitude and Conceptual Learning

    NASA Astrophysics Data System (ADS)

    Hendrix, Rebecca; Eick, Charles; Shannon, David

    2012-11-01

    Creative drama activities designed to help children learn difficult science concepts were integrated into an inquiry-based elementary science program. Children (n = 38) in an upper elementary enrichment program at one primary school were the participants in this action research. The teacher-researcher taught students the Full Option Science System™ (FOSS) modules of sound (fourth grade) and solar energy (fifth grade) with the integration of creative drama activities in treatment classes. A 2 × 2 × (2) Mixed ANOVA was used to examine differences in the learning outcomes and attitudes toward science between groups (drama and non-drama) and grade levels (4th and 5th grades) over time (pre/post). Learning was measured using the tests included with the FOSS modules. A shortened version of the Three Dimension Elementary Science Attitude Survey measured attitudes toward science. Students in the drama treatment group had significantly higher learning gains ( F = 160.2, p < 0.001) than students in the non-drama control group with students in grade four reporting significantly greater learning outcomes ( F = 14.3, p < 0.001) than grade five. There was a significantly statistical decrease in student attitudes toward science ( F = 7.5, p < 0.01), though a small change. Creative drama was an effective strategy to increase science conceptual learning in this group of diverse elementary enrichment students when used as an active extension to the pre-existing inquiry-based science curriculum.

  5. NASA Tech Briefs, February 2000. Volume 24, No. 2

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Mathematics and Information Sciences; Computers and Peripherals.

  6. NASA Tech Briefs, April 2000. Volume 24, No. 4

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Imaging/Video/Display Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Test and Measurement; Mathematics and Information Sciences; Books and Reports.

  7. Improving STEM Program Quality in Out-of-School-Time: Tool Development and Validation

    ERIC Educational Resources Information Center

    Shah, Ashima Mathur; Wylie, Caroline; Gitomer, Drew; Noam, Gil

    2018-01-01

    In and out-of-school time (OST) experiences are viewed as complementary in contributing to students' interest, engagement, and performance in science, technology, engineering, and mathematics (STEM). While tools exist to measure quality in general afterschool settings and others to measure structured science classroom experiences, there is a need…

  8. Measuring Model-Based High School Science Instruction: Development and Application of a Student Survey

    ERIC Educational Resources Information Center

    Fulmer, Gavin W.; Liang, Ling L.

    2013-01-01

    This study tested a student survey to detect differences in instruction between teachers in a modeling-based science program and comparison group teachers. The Instructional Activities Survey measured teachers' frequency of modeling, inquiry, and lecture instruction. Factor analysis and Rasch modeling identified three subscales, Modeling and…

  9. Measuring Model-Based High School Science Instruction: Development and Application of a Student Survey

    NASA Astrophysics Data System (ADS)

    Fulmer, Gavin W.; Liang, Ling L.

    2013-02-01

    This study tested a student survey to detect differences in instruction between teachers in a modeling-based science program and comparison group teachers. The Instructional Activities Survey measured teachers' frequency of modeling, inquiry, and lecture instruction. Factor analysis and Rasch modeling identified three subscales, Modeling and Reflecting, Communicating and Relating, and Investigative Inquiry. As predicted, treatment group teachers engaged in modeling and inquiry instruction more than comparison teachers, with effect sizes between 0.55 and 1.25. This study demonstrates the utility of student report data in measuring teachers' classroom practices and in evaluating outcomes of a professional development program.

  10. Cross section measurements at LANSCE for defense, science and applications

    DOE PAGES

    Nelson, Ronald O.; Schwengner, R.; Zuber, K.

    2015-05-28

    The Los Alamos Neutron Science Center (LANSCE) has three neutron sources that are used for nuclear science measurements. These sources are driven by an 800 MeV proton linear accelerator and cover an energy range from sub-thermal to hundreds of MeV. Research at the facilities is performed under the auspices of a US DOE user program under which research proposals are rated for merit by a program advisory committee and are scheduled based on merit and availability of beam time. A wide variety of instruments is operated at the neutron flight paths at LANSCE including neutron detector arrays, gamma-ray detector arrays,more » fission fragment detectors, and charged particle detectors. These instruments provide nuclear data for multiple uses that range from increasing knowledge in fundamental science to satisfying data needs for diverse applications such as nuclear energy, global security, and industrial applications. In addition, highlights of recent research related to cross sections measurements are presented, and future research initiatives are discussed.« less

  11. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    NASA Astrophysics Data System (ADS)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-02-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of gain in science knowledge as measured by the Iowa Test of Basic Skills in Science (ITBS-S). The original BUGS participants and contrasts have now completed high school and entered college, allowing researchers to assess the long-term impact of the BUGS program. Fourteen former BUGS participants completed two instruments to assess their perceptions of science and science, technology, engineering, and mathematics (STEM) careers. Their results were compared to four contrast groups composed entirely of females: 12 former BUGS contrasts, 10 college science majors, 10 non-science majors, and 9 current STEM professionals. Results indicate that BUGS participants have higher perceptions of science careers than BUGS contrasts. There were no significant differences between BUGS participants, Science Majors, and STEM professionals in their perceptions of science and STEM careers, whereas the BUGS contrast group was significantly lower than BUGS participants, Science Majors, and STEM Professionals. Additional results and implications are discussed within.

  12. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  13. The Influence of Laboratory Instruction on Science Achievement and Attitude toward Science among Ninth Grade Students across Gender Differences.

    ERIC Educational Resources Information Center

    Freedman, Michael P.

    This study investigated the use of a hands-on laboratory program as a means of improving attitude toward science and increasing achievement levels in science knowledge among students in a ninth grade physical science course. Using a posttest-only control group design, a curriculum referenced objective final examination was used to measure student…

  14. Microgravity Research Results and Experiences from the NASA Mir Space Station Program

    NASA Technical Reports Server (NTRS)

    Schagheck, R. A.; Trach, B.

    2000-01-01

    The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Most importantly this paper highlights the various disciplines of microgravity research conducted during the International Space Station, Phase 1 Program onboard the Mir Station. A capsulation of significant research and the applicability of our findings are provided. In addition, a brief discussion of how future microgravity science gathering capabilities, hardware development and payload operations techniques have enhanced our ability to conduct long duration microgravity research.

  15. How well do middle school science programs measure up? Findings from Project 2061's curriculum review

    NASA Astrophysics Data System (ADS)

    Kesidou, Sofia; Roseman, Jo Ellen

    2002-08-01

    The purposes of this study were to examine how well middle school programs support the attainment of key scientific ideas specified in national science standards, and to identify typical strengths and weaknesses of these programs using research-based criteria. Nine widely used programs were examined by teams of teachers and specialists in research on teaching and learning. Reviewers found that whereas key ideas were generally present in the programs, they were typically buried between detailed or even unrelated ideas. Programs only rarely provided students with a sense of purpose for the units of study, took account of student beliefs that interfere with learning, engaged students with relevant phenomena to make abstract scientific ideas plausible, modeled the use of scientific knowledge so that students could apply what they learned in everyday situations, or scaffolded student efforts to make meaning of key phenomena and ideas presented in the programs. New middle school science programs that reflect findings from learning research are needed to support teachers better in helping students learn key ideas in science. The criteria and findings from this study on the inadequacies in existing programs could serve as guidelines in new curriculum development.

  16. Development of The Science Processes Test.

    ERIC Educational Resources Information Center

    Ludeman, Robert R.

    Presented is a description and copy of a test manual developed to include items in the test on the basis of children's performance; each item correlated highly with performance on an external criterion. The external criterion was the Individual Competency Measures of the elementary science program Science - A Process Approach (SAPA). The test…

  17. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    NASA Technical Reports Server (NTRS)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  18. NASA Tech Briefs, November 2000. Volume 24, No. 11

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Data Acquisition.

  19. Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Lian, Bao-Wang; Nie, Min; Jin, Jiao

    2017-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61172071), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711), the International Scientific Cooperation Program of Shaanxi Province, China (Grant No. 2015KW-013), and the Natural Science Foundation Research Project of Shaanxi Province, China (Grant No. 2016JQ6033).

  20. Measurement, Ratios, and Graphing: Safety First. A Lesson Guide with Activities in Mathematics, Science, and Technology. NASA CONNECT.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Hampton, VA. Langley Research Center.

    NASA CONNECT is an annual series of free integrated mathematics, science, and technology instructional distance learning programs for students in grades 5-8. Each program has three components: (1) a 30-minute television broadcast which can be viewed live or taped for later use; (2) an interactive Web activity that allows teachers to integrate…

  1. Rigorous Measures of Implementation: A Methodological Framework for Evaluating Innovative STEM Programs

    ERIC Educational Resources Information Center

    Cassata-Widera, Amy; Century, Jeanne; Kim, Dae Y.

    2011-01-01

    The practical need for multidimensional measures of fidelity of implementation (FOI) of reform-based science, technology, engineering, and mathematics (STEM) instructional materials, combined with a theoretical need in the field for a shared conceptual framework that could support accumulating knowledge on specific enacted program elements across…

  2. The NIH Science of Behavior Change Program: Transforming the science through a focus on mechanisms of change.

    PubMed

    Nielsen, Lisbeth; Riddle, Melissa; King, Jonathan W; Aklin, Will M; Chen, Wen; Clark, David; Collier, Elaine; Czajkowski, Susan; Esposito, Layla; Ferrer, Rebecca; Green, Paige; Hunter, Christine; Kehl, Karen; King, Rosalind; Onken, Lisa; Simmons, Janine M; Stoeckel, Luke; Stoney, Catherine; Tully, Lois; Weber, Wendy

    2018-02-01

    The goal of the NIH Science of Behavior Change (SOBC) Common Fund Program is to provide the basis for an experimental medicine approach to behavior change that focuses on identifying and measuring the mechanisms that underlie behavioral patterns we are trying to change. This paper frames the development of the program within a discussion of the substantial disease burden in the U.S. attributable to behavioral factors, and details our strategies for breaking down the disease- and condition-focused silos in the behavior change field to accelerate discovery and translation. These principles serve as the foundation for our vision for a unified science of behavior change at the NIH and in the broader research community. Copyright © 2017. Published by Elsevier Ltd.

  3. Developing Common Measures in Evaluation Capacity Building: An Iterative Science and Practice Process

    ERIC Educational Resources Information Center

    Labin, Susan N.

    2014-01-01

    A fundamental reason for doing evaluation capacity building (ECB) is to improve program outcomes. Developing common measures of outcomes and the activities, processes, and factors that lead to these outcomes is an important step in moving the science and the practice of ECB forward. This article identifies a number of existing ECB measurement…

  4. New Millennium Program: Servicing Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, F.

    1999-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints.

  5. NASA Tech Briefs, August 2000. Volume 24, No. 8

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Simulation/Virtual Reality; Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Medical Design.

  6. Lessons Learned from NASA UAV Science Demonstration Program Missions

    NASA Technical Reports Server (NTRS)

    Wegener, Steven S.; Schoenung, Susan M.

    2003-01-01

    During the summer of 2002, two airborne missions were flown as part of a NASA Earth Science Enterprise program to demonstrate the use of uninhabited aerial vehicles (UAVs) to perform earth science. One mission, the Altus Cumulus Electrification Study (ACES), successfully measured lightning storms in the vicinity of Key West, Florida, during storm season using a high-altitude Altus(TM) UAV. In the other, a solar-powered UAV, the Pathfinder Plus, flew a high-resolution imaging mission over coffee fields in Kauai, Hawaii, to help guide the harvest.

  7. Development and Evaluation of Science and Technology Education Program Using Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Ikemitsu, H.; Nango, K.

    2016-06-01

    This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.

  8. Elementary Science Education in Classrooms and Outdoors: Stakeholder Views, Gender, Ethnicity, and Testing

    ERIC Educational Resources Information Center

    Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Stevenson, Kathryn Tate

    2014-01-01

    In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students'…

  9. Using Inquiry-Based Interventions to Improve Secondary Students' Interest in Science and Technology

    ERIC Educational Resources Information Center

    Potvin, Patrice; Hasni, Abdelkrim; Sy, Ousmane

    2017-01-01

    Nine secondary school teachers participated in a five day training program where they developed inquiry-based pedagogical interventions for their science classes. Student interest and self-concept in school science and technology were measured before and after the interventions. Increases in interest and self-concept were compared with the results…

  10. The development and validation of The Inquiry Science Observation Coding Sheet.

    PubMed

    Brandon, P R; Taum, A K H; Young, D B; Pottenger, F M

    2008-08-01

    Evaluation reports increasingly document the degree of program implementation, particularly the extent to which programs adhere to prescribed steps and procedures. Many reports are cursory, however, and few, if any, fully portray the long and winding path taken when developing evaluation instruments, particularly observation instruments. In this article, we describe the development of an observational method for evaluating the degree to which K-12 inquiry science programs are implemented, including the many steps and decisions that occurred during the development, and present evidence for the reliability and validity of the data that we collected with the instrument. The article introduces a method for measuring the adherence of inquiry science implementation and gives evaluators a full picture of what they might expect when developing observation instruments for assessing the degree of program implementation.

  11. The influence of female social models in corporate STEM initiatives on girls' math and science attitudes

    NASA Astrophysics Data System (ADS)

    Medeiros, Donald J.

    The United States' Science, Technology, Engineering, and Mathematics (STEM) workforce is growing slower than in the past, in comparison to demand, and in comparison to other countries. Competitive talent conditions require the United States to develop a strong pipeline of STEM talent within its own citizens. Given the number of female college graduates and their underrepresentation in the STEM workforce, women provide the greatest opportunity for fulfilling this need. The term social model represents the individuals and media that shape children's self-perceptions. Social models have been shown to positively influence girl's perceptions of the value of math and science as well as their expectations of success. This study examined differences in attitudes towards math and science among student participants in corporate STEM programs. Differences were measured based on participant gender and ethnicity, their mentor's gender and ethnicity, and program design differences. The research purpose was to inform the design of corporate STEM programs to improve female participants' attitudes towards math and science and eventually increase the number of women in the STEM workforce. Over three hundred students in differing corporate STEM programs completed math and science attitudinal scales at the start and end of their programs. Study results revealed, prior to program start, female participants had a better attitude towards math and science than male participants. Analysis of the Trends in International Mathematics and Science Study data showed similar results. Overall program results demonstrated higher post program math and science attitudes with no differences based on gender, age, or ethnicity of the participant or mentor. Participants with high program or mentor satisfaction were found to have higher attitudes towards math and science. These results may suggest improving female academic choice requires more focus on their expectations of success than perceived task value. Male attitudes towards women's role in STEM fields may also require attention. Increasing attitudes seems best achieved through ensuring a highly satisfying experience with the program and their mentor. Study results suggest this requires more considerations than simply matching mentor and mentee race or gender. Reliability results of attitudinal scales provided guidance on assessment strategies.

  12. Situating Second-Year Success: Understanding Second-Year STEM Experiences at a Liberal Arts College.

    PubMed

    Gregg-Jolly, Leslie; Swartz, Jim; Iverson, Ellen; Stern, Joyce; Brown, Narren; Lopatto, David

    2016-01-01

    Challenges particular to second-year students have been identified that can impact persistence in science, technology, engineering, and mathematics (STEM) fields. We implemented a program to improve student success in intermediate-level science courses by helping students to feel they belonged and could succeed in STEM. We used survey measures of perceptions and attitudes and then qualitative measures to characterize the impact of support strategies, including peer mentoring, a second-year science student retreat, learning and advising support resources, and department-specific activities. Analysis of registration and transcript information revealed underperformance by students of color (SOC) and first-generation (FG) students in 200-level science courses. Comparison of these data before and during programming revealed significant improvement in success rates of these students in 200-level biology and chemistry courses, but success rates of SOC and FG students remain lower than the overall rate for 200-level science courses. Contemporaneous with the program, qualitative and quantitative measures of student attitudes revealed a high level of belongingness and support. The results suggest that a focus on students' metacognition about their own abilities and strategic knowledge of how to succeed may be a fruitful direction for future research. © 2016 L. Gregg-Jolly et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Little Scientists: Identity, Self-Efficacy, and Attitude Toward Science in a Girls' Science Camp

    NASA Astrophysics Data System (ADS)

    Todd, Brandy

    Underrepresentation of women and minorities in the science, technology, and engineering (STEM) fields is a perennial concern for researchers and policy-makers. Many causes of this problem have been identified. Less is known about what constitutes effective methods for increasing women's participation in STEM. This study examines the role that identity formation plays in encouraging girls to pursue STEM education and careers utilizing data from a cohort-based, informal science enrichment program that targets middle-school-aged girls. A Mixed-methods design was employed to examine girls' science interests, efficacy, attitudes, and identity---referred to as affinities. Quantitative data were collected before and after program participation using science affinity scales. Qualitative data included observations, focus groups, and individual interviews. This study builds on past research conducted on the same program. The study is presented in three components: fidelity of implementation, participant affinities, and science identity theory building. Quantitative and qualitative measures reveal that the program was implemented with high fidelity. Participants had high initial affinities for science as compared to a contrast group. Analysis of qualitative data of science affinities revealed several themes in girls' attitudes, experiences, and intentions toward science. Emergent themes discussed include girls' preferences and interests in science, gender and science efficacy, attitudes toward science, and elements of science identities. Archetypes of emergent science identities developed in this study (expert, experimenter, and inventor) inform different ways in which girls engage with and envision science study and careers. Implications for best practice in fostering science engagement and identities in middle-school-aged girls include the importance of hands-on science activities, the need for enthusiastic relatable role models, and an emphasis on deep understanding of scientific principles.

  14. Elementary Science Education in Classrooms and Outdoors: Stakeholder views, gender, ethnicity, and testing

    NASA Astrophysics Data System (ADS)

    Carrier, Sarah J.; Thomson, Margareta M.; Tugurian, Linda P.; Tate Stevenson, Kathryn

    2014-09-01

    In this article, we present a mixed-methods study of 2 schools' elementary science programs including outdoor instruction specific to each school's culture. We explore fifth-grade students in measures of science knowledge, environmental attitudes, and outdoor comfort levels including gender and ethnic differences. We further examine students' science and outdoor views and activity choices along with those of adults (teachers, parents, and principals). Significant differences were found between pre- and posttest measures along with gender and ethnic differences with respect to students' science knowledge and environmental attitudes. Interview data exposed limitations of outdoor learning at both schools including standardized test pressures, teachers' views of science instruction, and desultory connections of alternative learning settings to 'school' science.

  15. The journey of a science teacher: Preparing female students in the Training Future Scientists after school program

    NASA Astrophysics Data System (ADS)

    Robinson-Hill, Rona M.

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal science programs, urban girls, self-efficacy, cooperative learning, peer learning, female adolescents, and after-school urban education This dissertation study was funded by two grants, the 2013 spring dissertation grant from the University of Missouri St. Louis and a philanthropic grant from Dr. Courtney Crim.

  16. Transfer of Analytical Skills From Subject to Subject - Reality or Fiction?

    NASA Astrophysics Data System (ADS)

    de Oliveira, G.; Murray, D. P.; Veeger, A.; Caulkin, J.; Brand, S.; Fogleman, J.; Dooley, H.

    2013-12-01

    The Rhode Island Technology Enhanced Science (RITES) Project is a partnership aimed at improving science education in Rhode Island. Most of the school districts in the state and five institutions of higher education participate in it. RITES was funded by the NSF Math and Science Partnership program, to a large extent because a statewide partnership would elucidate strategies that could be implemented in a diversity of environments throughout the country. The project has become an authentic and equal partnership that benefits both K-12 and higher education institutions; it has succeeded in improving science education by several measures, including gains in teacher content knowledge and in student performance on standardized exams. One of the centerpieces of the project is a professional development (PD) program, which has engaged more than 65% of the middle and secondary levels science teachers in the state. In this presentation we discuss outcomes of the PD, which shed light on questions of general interest to science educators. It is widely held that inquiry skills should be transferrable from one scientific domain to another regardless of content, and this premise was central to the original design philosophy of RITES PD. Nevertheless, although many educators embrace this view, it is a hypothesis that has been mostly untested. That is because there are few environments where an appropriate tool is in place to measure inquiry skills. RITES was uniquely positioned to measure the impact of its PD on student inquiry skills, and whether those skills would translate to topics not covered in classroom activities. New England has a multi-state consortium with a common assessment program, which measures inquiry skills in addition to content knowledge. Inquiry tasks on the New England Common Assessment Program (NECAP) may use any science topic. RITES offers technology-based classroom investigations for all areas of science, but it is nigh impossible to match inquiry opportunities during the academic year with the content of the NECAP inquiry tasks, as the latter continually change. An analysis of the NECAP inquiry assessment shows that students of RITES teachers do significantly better than others on inquiry. Moreover, no correlation has been found between the topics of the PDs and the NECAP inquiry tasks. These results will be discussed in this presentation along with insights from pre/post assessments of content knowledge specific to RITES investigations.

  17. Inquiry-Based Learning Put to the Test: Medium-Term Effects of a Science and Technology for Children Programme

    ERIC Educational Resources Information Center

    Mellander, Erik; Svärdh, Joakim

    2018-01-01

    We evaluate the effects of participation in the Swedish version of the Science and Technology for Children Program on content and process skills in sciences, in grade 9. The Swedish version, called Natural Sciences and Technology for All (NTA), is predominantly employed in grades 1-6. Our outcome measures are scores and grades on nationwide…

  18. Measuring Student Engagement in an Online Program

    ERIC Educational Resources Information Center

    Bigatel, Paula; Williams, Vicki

    2015-01-01

    In an effort to measure the effectiveness of faculty development courses promoting student engagement, the faculty development unit of Penn State's Online Campus conducted a pilot study within a large online Bachelor of Science in Business (BSB) program. In all, 2,296 students were surveyed in the spring and summer semesters of 2014 in order to…

  19. Integrated medical and behavioral laboratory measurement system engineering analysis and laboratory specification

    NASA Technical Reports Server (NTRS)

    Grave, C.; Margold, D. W.

    1973-01-01

    Site selection, program planning, cost and design studies for support of the IMBLMS program were investigated. Accomplishments are reported for the following areas: analysis of responses to site selection criteria, space-oriented biotechnology, life sciences payload definition, and program information transfer.

  20. Assessment Study of an Undergraduate Research Training Abroad Program

    ERIC Educational Resources Information Center

    Nieto-Fernandez, Fernando; Race, Kathryn; Quarless, Duncan A.

    2013-01-01

    The Old Westbury Neuroscience International Research Program (OWNIP) encourages undergraduate students from health disparities populations and underrepresented minorities to pursue careers in basic science, biomedical, clinical, and behavioral health research fields. To evaluate this program, several measures were used tracked through an online…

  1. PREFACE: SPECIAL ISSUE OF ATMOSPHERIC ENVIRONMENT ON FINDINGS FROM EPA'S PARTICULATE MATTER SUPERSITES PROGRAM

    EPA Science Inventory

    The Supersites Program is a methods development and evaluation, measurements, modeling, and data analysis program designed to provide key stakeholders in the science, regulatory, and policy communities with information to support primarily implementation of National Ambient Air Q...

  2. Evolution of the Earth Observing System (EOS) Data and Information System (EOSDIS)

    NASA Technical Reports Server (NTRS)

    Ramapriyan, Hampapuram K.; Behnke, Jeanne; Sofinowski, Edwin; Lowe, Dawn; Esfandiari, Mary Ann

    2008-01-01

    One of the strategic goals of the U.S. National Aeronautics and Space Administration (NASA) is to "Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of the human spaceflight program to focus on exploration". An important sub-goal of this goal is to "Study Earth from space to advance scientific understanding and meet societal needs." NASA meets this subgoal in partnership with other U.S. agencies and international organizations through its Earth science program. A major component of NASA s Earth science program is the Earth Observing System (EOS). The EOS program was started in 1990 with the primary purpose of modeling global climate change. This program consists of a set of space-borne instruments, science teams, and a data system. The instruments are designed to obtain highly accurate, frequent and global measurements of geophysical properties of land, oceans and atmosphere. The science teams are responsible for designing the instruments as well as scientific algorithms to derive information from the instrument measurements. The data system, called the EOS Data and Information System (EOSDIS), produces data products using those algorithms as well as archives and distributes such products. The first of the EOS instruments were launched in November 1997 on the Japanese satellite called the Tropical Rainfall Measuring Mission (TRMM) and the last, on the U.S. satellite Aura, were launched in July 2004. The instrument science teams have been active since the inception of the program in 1990 and have participation from Brazil, Canada, France, Japan, Netherlands, United Kingdom and U.S. The development of EOSDIS was initiated in 1990, and this data system has been serving the user community since 1994. The purpose of this chapter is to discuss the history and evolution of EOSDIS since its beginnings to the present and indicate how it continues to evolve into the future. this chapter is organized as follows. Sect. 7.2 provides a discussion of EOSDIS, its elements and their functions. Sect. 7.3 provides details regarding the move towards more distributed systems for supporting both the core and community needs to be served by NASA Earth science data systems. Sect. 7.4 discusses the use of standards and interfaces and their importance in EOSDIS. Sect. 7.5 provides details about the EOSDIS Evolution Study. Sect. 7.6 presents the implementation of the EOSDIS Evolution plan. Sect. 7.7 briefly outlines the progress that the implementation has made towards the 2015 Vision, followed by a summary in Sect. 7.8.

  3. Preparing for Humans at Mars, MPPG Updates to Strategic Knowledge Gaps and Collaboration with Science Missions

    NASA Technical Reports Server (NTRS)

    Baker, John; Wargo, Michael J.; Beaty, David

    2013-01-01

    The Mars Program Planning Group (MPPG) was an agency wide effort, chartered in March 2012 by the NASA Associate Administrator for Science, in collaboration with NASA's Associate Administrator for Human Exploration and Operations, the Chief Scientist, and the Chief Technologist. NASA tasked the MPPG to develop foundations for a program-level architecture for robotic exploration of Mars that is consistent with the President's challenge of sending humans to the Mars system in the decade of the 2030s and responsive to the primary scientific goals of the 2011 NRC Decadal Survey for Planetary Science. The Mars Exploration Program Analysis Group (MEPAG) also sponsored a Precursor measurement Strategy Analysis Group (P-SAG) to revisit prior assessments of required precursor measurements for the human exploration of Mars. This paper will discuss the key results of the MPPG and P-SAG efforts to update and refine our understanding of the Strategic Knowledge Gaps (SKGs) required to successfully conduct human Mars missions.

  4. Measurement of the absolute branching fraction of D+ → K̅0 e+νe via K̅0 → π 0 π 0

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lü, H. J.; Lü, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lü, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2016-11-01

    By analyzing 2.93 fb-1 data collected at the center-of-mass energy with the BESIII detector, we measure the absolute branching fraction of the semileptonic decay D+ → K̅0 e+νe to be ℬ(D + → K̅0 e+νe) = (8.59 ± 0.14 ± 0.21)% using , where the first uncertainty is statistical and the second systematic. Our result is consistent with previous measurements within uncertainties.. Supported by National Key Basic Research Program of China (2009CB825204, 2015CB856700), National Natural Science Foundation of China (NSFC) (10935007, 11125525, 11235011, 11305180, 11322544, 11335008, 11425524, 11475123), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201, U1532101), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Natural Science Foundation of China (NSFC) (11405046, U1332103), Russian Foundation for Basic Research (14-07-91152), Swedish Resarch Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-SC0012069, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  5. National Guard State Partnership Program: Measuring Effectiveness

    DTIC Science & Technology

    2013-06-14

    and General Staff College in partial fulfillment of the requirements for the degree MASTER OF MILITARY ART AND SCIENCE Homeland Security...Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 ii MASTER OF MILITARY ART AND SCIENCE THESIS APPROVAL PAGE Name of Candidate: MAJ Andrew O...OF MILITARY ART AND SCIENCE THESIS APPROVAL PAGE ............ iii ABSTRACT

  6. NASA Tech Briefs, May 1995. Volume 19, No. 5

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This issue features an resource report on Jet Propulsion Laboratory and a special focus on advanced composites and plastics. It also contains articles on electronic components and circuits, electronic systems, physical sciences, computer programs, mechanics, machinery, manufacturing and fabrication, mathematics and information sciences, and life sciences. This issue also contains a supplement on federal laboratory test and measurements.

  7. Proceedings of the 66th National Conference on Weights and Measures, 1981

    NASA Astrophysics Data System (ADS)

    Wollin, H. F.; Barbrow, L. E.; Heffernan, A. P.

    1981-12-01

    Major issues discussed included measurement science education, enforcement uniformly, national type approval, inch pound and metric labeling provisions, new design and performance requirements for weighing and measuring technology, metric conversion of retail gasoline dispensers, weights and measures program evaluation studies of model State laws and regulations and their adoption by citation or other means by State and local jurisdictions, and report of States conducting grain moisture meter testing programs.

  8. A Teacher Professional Development Program for an Authentic Citizen-Science Program: GLOBE at Night

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.; Sparks, R.

    2009-12-01

    An authentic science research program in the classroom can take many forms as can the teacher professional development that accompanies the programs. One different approach invites educators to invoke 21st century skills with their students while focusing on a real-world issue of both local and global concern. The citizen-science program on light pollution, GLOBE at Night, has students and the general public measure the darkness of their local skies and contribute observations online to a world map. They do this by looking toward Orion for the faintest stars and matching what they see to one of seven different star maps. (For more precise measurements, digital sky-brightness meters are used.) These measurements can be compared with data from the previous 4 years, as well as with satellite data, population densities, and electrical power-usage maps. Measurements can be examined online via Google Earth or other tools and are downloadable as datasets from the website. Data from multiple locations in one city or region are especially interesting, and have been used as the basis of research in a classroom or science fair project or even to inform the development of public policy. This year, GLOBE at Night has been expanding its role in training educators on fundamental concepts and data collection to include more data analysis for a topical variety of local projects. Many on-site workshops have and are being given to teachers in grades 5 through high school. Some of the U.S. school communities created mini-campaigns that combined local students with public advocates and representatives from local city and county governments, and also collaborated with students in Wales, Canada, Romania and north-central Chile (near major observatories). Internationally, training has been given via on-line forums, telecon-powerpoint presentations, videoconferencing via Skype, and blogs. Informal educators have come from national and international networks of science, technology and nature centers, as well as amateur astronomer associations. From these various experiences, we will discuss success stories and lessons learned as well as future plans for sustainability. This work was supported by a grant from the National Science Foundation (NSF) Astronomy Division. GLOBE at Night is hosted by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with NSF.

  9. Radio-science performance analysis software

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Asmar, S. W.

    1995-02-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  10. Radio-Science Performance Analysis Software

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Asmar, S. W.

    1994-10-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussion on operating the program set on Galileo and Ulysses data will be presented.

  11. Radio-science performance analysis software

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Asmar, S. W.

    1995-01-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  12. Space radiation health program plan

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Radiation Health Program intends to establish the scientific basis for the radiation protection of humans engaged in the exploration of space, with particular emphasis on the establishment of a firm knowledge base to support cancer risk assessment for future planetary exploration. This document sets forth the technical and management components involved in the implementation of the Space Radiation Health Program, which is a major part of the Life Sciences Division (LSD) effort in the Office of Space Science and Applications (OSSA) at the National Aeronautics and Space Administration (NASA). For the purpose of implementing this program, the Life Sciences Division supports scientific research into the fundamental mechanisms of radiation effects on living systems and the interaction of radiation with cells, tissues, and organs, and the development of instruments and processes for measuring radiation and its effects. The Life Sciences Division supports researchers at universities, NASA field centers, non-profit research institutes and national laboratories; establishes interagency agreements for cooperative use and development of facilities; and conducts a space-based research program using available and future spaceflight vehicles.

  13. My Teacher got a Trip to Kitt Peak Observatory, but all I got was This Lousy Data CD: Lessons Learned in Optimizing a Teacher Professional Development Program for Solar Research

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Hill, F.; Plymate, C.

    2005-12-01

    The solar project in "Teacher Leaders in Research-Based Science Education" program provides the opportunity for teachers to study the Sun with the world's largest solar telescope. This exciting program is designed for middle and high school science teachers with more than 5 years experience teaching science. Funded by a National Science Foundation (NSF) Teacher Retention and Renewal grant, teachers learn how to acquire astronomy data and support their students in conducting authentic astronomy research projects. In addition, the program enhances their skills as leaders and mentors for those science teachers new to the profession. The TLRBSE program includes: 1) A 14-week online distance learning program with an emphasis on spectroscopy and data imaging; 2) A 2-week in-residence workshop at the National Optical Astronomy Observatory in Tucson, including several nights of research observing at a world-class observatory; 3) A program of ongoing mentoring support for beginning teachers; and 4) Partial funding to attend a national NSTA meeting with the mentees; 5) A journal to publish student and teacher research results and 6) Access to ongoing research, via further observing runs or archival data. Various factors have played a part in the evolution of the solar project. It began as an activity that used sunspots to measure the solar rotation rate. Then it progressed to a comparison of active regions (e.g., the areas of sunspots) at various wavelengths, to measuring the splitting of infrared spectral lines due to strong magnetic fields in active regions, and to measuring the amount of polarization due to weak magnetic fields. Challenges were presented as the project evolved from an activity to a hands-on observing experience fully reflecting the scientific research process. Some of the issues and trade-offs we will discuss are hands-on observing experience vs. remote observing, archival data retrieval vs. talking data, and more vs. less scientific assistance in the project. Group dynamics among the teachers also played a significant role in determining the cohort's success in research. The move to accommodate a minimum in the solar cycle dictated a change in the scientific program. Cross-platform issues arose as the software reduction and analysis became more sophisticated. Future instrumentation and telescopes offered further changes in scientific goals. Factors beyond the preparation of the course and observing material, training of the teachers, maintaining the program and on-going support of the teachers will also be discussed. These aspects of the solar project will be highlighted as we continue to morph into an improved version of the project. The TLRBSE Program is funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  14. OCO-2 Post Launch Briefing

    NASA Image and Video Library

    2014-07-02

    Ralph Basilio, OCO-2 project manager, Jet Propulsion Laboratory, left, Mike Miller, senior vice president, Science and Environmental Satellite Programs, Orbital Sciences Space Systems Group,and Geoff Yoder, deputy associate administrator for programs, Science Mission Directorate, NASA Headquarters, right, discuss the successful launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Wednesday, July 2, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  15. Evolution of collaboration within the US long term ecological research network

    Treesearch

    Jeffrey C. Johnson; Robert R. Christian; James W. Brunt; Caleb R. Hickman; Robert B. Waide

    2010-01-01

    The US Long Term Ecological Research (LTER) program began in 1980 with the mission of addressing long-term ecological phenomena through research at individual sites, as well as comparative and synthetic activities among sites. We applied network science measures to assess how the LTER program has achieved its mission using intersite publications as the measure of...

  16. Science experiences of citizen scientists in entomology research

    NASA Astrophysics Data System (ADS)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and the value of qualitative methodologies in citizen science research. Citizen science is championed for its ability to extend the geographic, temporal and spatial reach of a research team. It can also extend the educational reach through citizen scientists that have acquired the role of expert.

  17. Probability-Based Inference in a Domain of Proportional Reasoning Tasks

    DTIC Science & Technology

    1992-01-01

    Embretson, S.E. (1985). Multicomponent latent trait models for test design. In SE. Embretson (Ed.), Test design: Developments in psychology and...J.C. Conoley, & J. Witt (Eds.), The influence of cognitive psychology on testing and measurement: The Buros-Nebraska Symposium on measurement and...Mislevy Educational Testing Service This research was sponsored in part by the Cognitive Science Program Cognitive and Neural Sciences Division Office of

  18. Kids Making Sense of Air Quality Around Them Through a Hands-On, STEM-Based Program

    NASA Astrophysics Data System (ADS)

    Dye, T.

    2015-12-01

    Air pollution in many parts of the world is harming millions of people, shortening lives, and taking a toll on our ecosystem. Cities in India, China, and even the United States frequently exceed air quality standards. The use of localized data is a powerful enhancement to regulatory monitoring site data. Learning about air quality at a local level is a powerful driver for change. The Kids Making Sense program unites Science, Technology, Engineering, and Mathematics (STEM) education with a complete measurement and environmental education system that teaches youth about air pollution and empowers them to drive positive change in their communities. With this program, youth learn about particle pollution, its sources, and health effects. A half-day lecture is followed by hands-on activity using handheld air sensors paired with an app on smartphones. Students make measurements around schools to discover pollution sources and cleaner areas. Next, the data they collect are crowdsourced on a website for guided discussion and data interpretation. This program meets Next Generation Science Standards, encourages project-based learning and deep understanding of applied science, and allows students to practice science like real scientists. The program has been successfully implemented in several schools in the United States and Asia, including New York City, San Francisco, Los Angeles, and Sacramento in the United States, and Taipei and Taichung in Taiwan. During this talk, we'll provide an overview of the program, discuss some of the challenges, and lay out the next steps for Kids Making Sense.

  19. An Assessment of an Operational Educational Accountability System for Continuing Education in the Health Professions.

    ERIC Educational Resources Information Center

    Walsh, Patrick L.

    1982-01-01

    The Educational Quality Assessment and Assurance System for continuing education in health sciences includes three components to measure inputs, processes, and outcomes. They are (1) Program Coordinator Competency List, (2) Quality Assessment and Assurance Program, and (3) evaluation of educational programs. (SK)

  20. Post-Mortem and Effective Measure of Science Programs: A Study of Bangladesh Open University

    ERIC Educational Resources Information Center

    Numan, Sharker Md.; Islam, Md. Anwarul; Shah, A. K. M. Azad

    2013-01-01

    Distance education can be more learners centered if distance educators are aware of the problems, needs, attitudes and characteristics of their learners. The aim of this study was to compare the learners' profile in terms of their attitude and demography between the learners of computer science and health science. A cross-sectional study design…

  1. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    PubMed Central

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  2. The Influence of Laboratory Instruction on Science Achievement and Attitude Toward Science across Gender Differences

    NASA Astrophysics Data System (ADS)

    Freedman, Michael P.

    This study investigated the use of a hands-on laboratory program to improve attitudes toward science and increase achievement levels in science knowledge among students in a ninth grade physical science course. An objective final examination measured achievement in science knowledge, and a Q sort survey measured attitude toward science. A t test compared the groups' differences in achievement and attitude toward science. An analysis of covariance determined the effect of the laboratory treatment on the dependent variable, with attitude toward science as the covariable. The findings showed that students with regular laboratory instruction scored significantly higher (p < .05) on achievement in science knowledge than those without laboratory instruction, girls with regular laboratory instruction scored significantly higher (p < .05) on achievement in science knowledge than those without laboratory instruction, and girls and boys within the treatment group did not differ significantly on achievement in science knowledge. No significant differences were reported in attitude toward science between or within groups.

  3. Measuring the Value of AI in Space Science and Exploration

    NASA Astrophysics Data System (ADS)

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  4. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1985-01-07

    Institute of General and Forensic Psychiatry imeni V. P. Serskiy; Psychosomatic Department, No 1 Municipalr Clinic imeni N. I. Pirogov [Abstract] A brief...and includes hypnosis and supportive measures. The personal, social and economic impact of this program is discussed. More than 1000 persons have

  5. Dividends from Technology Applied.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    National Aeronautics and Space Administration's (NASA) Applications Program employs aerospace science/technology to provide direct public benefit. Topics related to this program discussed include: Landsat, earth crustal study (plate tectonics), search and rescue systems, radiation measurement, upper atmosphere research, space materials processing,…

  6. AMF3 ARM's Research Facility at Oliktok Point Alaska

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Lucero, D. A.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Roesler, E. L.

    2015-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at AMF3 and the challenges of powering an Arctic site without the use of grid power.

  7. Measurement of the integrated Luminosities of cross-section scan data samples around the {\\rm{\\psi }}(3770) mass region

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Begzsuren, K.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chang, W. L.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Cossio, F.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garillon, B.; Garzia, I.; Gilman, A.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, L. M.; Gu, M. H.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Guskov, A.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Irshad, M.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuessner, M.; Kupsc, A.; Kurth, M.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leiber, S.; Leithoff, H.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, J. W.; Li, K. J.; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, L. Z.; Libby, J.; Lin, C. X.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, D. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. L.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lusso, S.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mangoni, A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu; Muramatsu, H.; Mustafa, A.; Nakhoul, S.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peng, Z. Y.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shan, X. Y.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, X.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tan, Y. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, C. W.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, X.; Xia, Y.; Xiao, D.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, F.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, S. L.; Yang, Y. H.; Yang, Y. X.; Yang, Yifan; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. F.; Zhang, T. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Q.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, A. N.; Zhu, J.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2018-05-01

    To investigate the nature of the {{\\psi }}(3770) resonance and to measure the cross section for {{{e}}}+{{{e}}}-\\to {{D}}\\bar{{{D}}}, a cross-section scan data sample, distributed among 41 center-of-mass energy points from 3.73 to 3.89 GeV, was taken with the BESIII detector operated at the BEPCII collider in the year 2010. By analyzing the large angle Bhabha scattering events, we measure the integrated luminosity of the data sample at each center-of-mass energy point. The total integrated luminosity of the data sample is 76.16+/- 0.04+/- 0.61 {pb}}-1, where the first uncertainty is statistical and the second systematic. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11235011, 11335008, 11425524, 11625523, 11635010), the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, the CAS Center for Excellence in Particle Physics (CCEPP), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1332201, U1532257, U1532258), CAS Key Research Program of Frontier Sciences (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359, Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Science and Technology fund, The Swedish Research Council, U. S. Department of Energy (DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504, DE-SC-0012069), University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  8. Evaluation of the NOAA CAREERS Weather Camp's Effectiveness in Promoting Atmospheric Science amongst High School Students

    NASA Astrophysics Data System (ADS)

    Olgin, J. G.; Fitzgerald, R. M.; Morris, V. R.

    2013-12-01

    The NOAA Center for Atmospheric Science (NCAS) sponsors the Channeling Atmospheric Research into Educational Experiences Reaching Students program (CAREERS); a program that manages a network of weather camps for students in secondary education with particular focus on increasing access for students from traditionally underrepresented backgrounds. Hosted by a college or university, the primary mission goals of the program are to engage students in discussions, lectures and interactive projects to better learn and comprehend a suite of atmospheric science disciplines (i.e. weather forecasting, environmental modeling, atmospheric data acquisition), and guide talented students towards higher education to pursue careers in atmospheric science primarily, or toward other STEM field professions. The need to evaluate and analyze the program's efficacy is crucial for continued growth and sustainability. Therefore a means to identify and measure the success of the program's initiatives will be addressed. Two Hispanic serving institutions, the University of Texas at El Paso (UTEP) and the University of Puerto Rico in Mayaguez (UPRM), both hosted the CAREER weather camps during the summers of 2012 and 2013, and provide the basis of this initial analysis. Participants performed entrance surveys of their knowledge of atmospheric science prior to the course. They were then re-evaluated through exit surveys over the topics covered during the weather camp. These data will be analyzed to correlate which program activities worked best in increasing participant awareness (i.e. geology tours of the local area, discussion on local climate variations, geophysical and geochemical demonstrations), and comprehension of atmospheric science. A comparison between the two universities on their uniqueness in program design and execution will also highlight those activities that best progressed CAREERS' program goals. Results from this analysis, along with possible new strategies for improved program sustainability will be explored. NOAA Center for Atmospheric Science (NCAS) sponsors the CAREERS Weather Camps

  9. The Impact of an Informal Science Program on Students' Science Knowledge and Interest

    NASA Astrophysics Data System (ADS)

    Zandstra, Anne Maria

    In this sequential explanatory mixed methods study, quantitative and qualitative data were used to measure the impact of an informal science program on eleventh grade students' science knowledge and interest. The local GEAR UP project has been working for six years with a cohort of students who were in eleventh and twelfth grade during the time of the study. Participants of this study were 122 eleventh grade students from this cohort. In the first, quantitative phase, state standardized test scores and a modified version of the Test of Science Related Attitudes (TOSRA) were used to measure participants' science knowledge and interest respectively. The findings of the quantitative phase revealed a small but significant correlation between students' attendance at the program elements (in total number of hours) and their science knowledge. In addition, small but significant correlations were found between (1) students' attendance at the mathematics program element and their total interest scores, (2) their mathematics attendance and the career interest subscore, and (3) their total attendance and the normality of scientist subscore. The qualitative data in the second phase consisted of focus group interviews with fourteen of the participants. Results of this phase showed that the majority of the focus group participants agreed that they had learned something from the GEAR UP field trips and half of them thought the field trips had impacted their grades and test scores. Furthermore, a majority of the focus group participants concurred that their experiences in the field trips had increased their interest in science. The purpose of the qualitative phase of this study was to provide explanations for the results of the quantitative phase. Explanations for the correlation between attendance and knowledge were that the field trips covered the same content as the formal science classes and that students learned more because they perceived the field trips as fun and hands-on. The correlations between attendance and interest were explained by the fact that students had the opportunity to see interesting aspects of science and interact with real scientists during the field trips.

  10. What is "good reasoning" about global warming? A comparison of high school students and specialists

    NASA Astrophysics Data System (ADS)

    Adams, Stephen Thomas

    This study compares the knowledge and reasoning about global warming of 10 twelfth grade students and 6 specialists, including scientists and policy analysts. The study uses global warming as a context for addressing the broad objective of formulating goals for scientific literacy. Subjects evaluated a set of articles about global warming and evaluated policies proposed to ameliorate global warming, including a gasoline tax and a "feebate" system of fees and rebates on automobiles. All students and one scientist participated in a full treatment involving interviews and activities with a computer program (discussed below), averaging about 3.75 hours. In addition, five specialists participated in interviews only, averaging one hour. One line of analysis focuses on knowledge content, examining how subjects applied perspectives from both natural and social sciences. This analysis is positioned as an empirical component to the movement to develop content standards for science education, as exemplified by the recommendations of Science for All Americans (SFAA). Some aspects of competent performance in the present study hinged upon knowledge and skills advocated by SFAA (e.g., fluency with themes of science such as scale). Other aspects involved such skills as evaluating economic interests behind a scientific argument in the media or considering hidden costs in a policy area. By characterizing a range of approaches to how students and specialists performed the experimental tasks, the present study affords a view of scientific literacy not possible without this type of information. Another line of analysis investigates a measure of coherent argumentation from a computer program, Convince Me, in relation to policy reasoning. The program is based on a connectionist model, ECHO. Subjects used the program to create arguments about the aforementioned policies. The study compares Convince Me's Model's Fit argumentation measure to other measures, including ratings of 6 human judges about the quality of the arguments, a measure of the stability of subjects' views, and the number of statements in subjects' arguments. The pattern of significant correlations among several of these measures, plus interview findings, help to clarify cognitive and educational issues involved with using Convince Me (or related programs) in this area.

  11. Global Learning and Observation to Benefit the Environment (GLOBE) Mission EARTH (GME) program delivers climate change science content, pedagogy, and data resources to K12 educators, future teachers, and professional development providers.

    NASA Astrophysics Data System (ADS)

    Ostrom, T.

    2017-12-01

    This presentation will include a series of visuals that discuss how hands-on learning activities and field investigations from the the Global Learning and Observation to Benefit the Environment (GLOBE) Mission EARTH (GME) program deliver climate change science content, pedagogy, and data resources to K12 educators, future teachers, and professional development providers. The GME program poster presentation will also show how teachers strengthen student preparation for Science, Technology, Engineering, Art and Mathematics (STEAM)-related careers while promoting diversity in the future STEM workforce. In addition to engaging students in scientific inquiry, the GME program poster will show how career exploration and preparation experiences is accomplished through direct connection to scientists and real science practices. The poster will show which hands-on learning activities that are being implemented in more than 30,000 schools worldwide, with over a million students, teachers, and scientists collecting environmental measurements using the GLOBE scientific protocols. This poster will also include how Next Generation Science Standards connect to GME learning progressions by grade strands. The poster will present the first year of results from the implementation of the GME program. Data is currently being agrigated by the east, midwest and westen regional operations.

  12. Using a Moodle-Based Professional Development Program to Train Science Teachers to Teach for Creativity and its Effectiveness on their Teaching Practices

    NASA Astrophysics Data System (ADS)

    Al-Balushi, Sulaiman M.; Al-Abdali, Nasser S.

    2015-08-01

    This study describes a distance learning professional development program that we designed for the purpose of training science teachers to teach for creativity. The Moodle platform was used to host the training. To ensure that trainees would benefit from this distance learning program, we designed the instructional activities according to the Community of Inquiry framework, which consists of three main elements: cognitive presence, teaching presence and social presence. Nineteen science teachers in Oman engaged in the training, which lasted for 36 working days. To measure the effectiveness of the training program on science teachers' instructional practices related to teaching for creativity, we used a pre-post one-group quasi-experimental design. An observation form was used to assess and document participants' practices. Paired t test results showed that there was a statistically significant improvement in science teachers' practices related to teaching for creativity. During the implementation of the training program, we observed that cognitive presence and teaching presence were the two most successful elements of the program. The training program involved participants in different instructional activities which were designed to help them understand the role of creativity in science; a wide range of instructional techniques designed to nurture students' creativity was discussed. The program also provided participants with opportunities to relate their practices to teaching for creativity and to design and implement lesson plans geared toward teaching for creativity. However, the social presence element was not satisfying. Participants' virtual interactions with each other and their engagement in online discussion forums were limited. This paper provides some recommendations to overcome such pitfalls.

  13. Dwight Nicholson Medal Lecture: Science and Society

    NASA Astrophysics Data System (ADS)

    Dahlberg, E. Dan

    2014-03-01

    I will present some background as to the current ``scientific state'' of our society and some ideas of how we got into the fix we are in. I will then describe The Physics Force a program we developed to popularize physics. It has proven to be a very successful and entertaining outreach program of the College of Science and Engineering in the University of Minnesota developed to make science exciting and fun for students of all ages, from 6 to 106. The Force performed variations of The Physics Circus, our most popular show, at Disney's Epcot Center, parts of it were shown on Newton's Apple and several of us have performed demonstrations on the Knoff-Hoff Show, a very successful German T.V. science program. The goal of The Physics Force is to show students and the public Science is Fun, Science is Interesting, and Science is Understandable. By all measures we have available, we are extremely successful in reaching our goals. In the last three year cycle of our University support about 110,000 residents of Minnesota (or about 2% of the total population) saw a Physics Force performance; over the last decade the total is around 250,000!

  14. Initial Science Teacher Education in Portugal: The Thoughts of Teacher Educators About the Effects of the Bologna Process

    NASA Astrophysics Data System (ADS)

    Leite, Laurinda; Dourado, Luís; Morgado, Sofia

    2016-12-01

    Between the 1980s and 2007, Portugal used to have one-stage (5-year period) initial teacher education (ITE) programs. In 2007 and consistent with the Bologna process guidelines, Portuguese teacher education moved toward a two-stage model, which includes a 3-year undergraduate program of subject matter that leads to a licenciatura (or bachelor) degree and a 3-year professional master in the teaching of a subject. The way that teacher educators perceive the ITE programs effects the education of prospective teachers and consequently the future of science education. This paper aims at analyzing how science teacher educators perceived the changes that took place in this formal way of educating junior school (7th-9th grades) and high school (10th-12th grades) science teachers in Portugal, due to the implementation of the Bologna guidelines. To attain the objectives of the study, 33 science teacher educators including science specialists and science education specialists answered an open-ended online questionnaire, which focused on the strengths and weaknesses of the pre- and post-Bologna ITE programs, the overall quality of teacher education and measures for improving ITE. The results indicate that science teacher educators were quite happy with all of the ITE models, but they expressed the belief that both the science and the teaching practice components should be strengthened in the post-Bologna masters in teaching. Meanwhile, changes were introduced in Portuguese educational laws, and they proved to be consistent with the opinions of the participants. However, the professional development of teacher educators along with evidence-based ITE programs seems to be necessary conditions for overcoming the challenges that teacher education is still facing in Portugal and worldwide.

  15. 78 FR 77138 - Proposed Collection; 60-day Comment Request: The Atherosclerosis Risk in Communities Study (ARIC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... the occurrence of and the trends for cardiovascular diseases among men, women, African Americans and... factors associated with both atherosclerosis and clinical cardiovascular diseases and (2) measure..., Epidemiology Branch, Program in Prevention and Population Sciences, Division of Cardiovascular Sciences...

  16. Partnerships Between K-12 Schools and Universities: Who Benefits?

    NASA Astrophysics Data System (ADS)

    Regens, N.; Hall-Wallace, M. K.

    2001-05-01

    Collaborations between K-12 schools and universities for the purpose of improving science education are growing in number, but many question their effectiveness. After many years of outreach to local teachers, schools and districts, we have developed a collaboration that more effectively addresses school district goals and needs while providing university faculty and graduate students with real opportunities to contribute to science education in the schools. Funded by the NSF GK-12 program, we are working directly with school district curriculum specialists and classroom teachers to implement inquiry-based science investigations. Projects range from developing long-term research projects in middle and high school classrooms to assisting K-6 teachers in using kit-based science curriculum. As part of our program, we have gathered several types of data to document the impact of our efforts. Using surveys of knowledge and attitudes, we measured significant improvements in college student's knowledge and attitudes about inquiry teaching methods and the K-12 education system. Through analysis of the college student's journals, we have also documented critical elements of an effective collaboration. These journals, combined with evaluations by classroom teachers, provide evidence of how the program impacts the graduate students professionally. We have also surveyed classroom teachers to measure the impact of the college students on their attitudes about teaching science and the long-term impact of the collaboration on their classroom teaching.

  17. Implementation Measurement for Evidence-Based Violence Prevention Programs in Communities.

    PubMed

    Massetti, Greta M; Holland, Kristin M; Gorman-Smith, Deborah

    2016-08-01

    Increasing attention to the evaluation, dissemination, and implementation of evidence-based programs (EBPs) has led to significant advancements in the science of community-based violence prevention. One of the prevailing challenges in moving from science to community involves implementing EBPs and strategies with quality. The CDC-funded National Centers of Excellence in Youth Violence Prevention (YVPCs) partner with communities to implement a comprehensive community-based strategy to prevent violence and to evaluate that strategy for impact on community-wide rates of violence. As part of their implementation approach, YVPCs document implementation of and fidelity to the components of the comprehensive youth violence prevention strategy. We describe the strategies and methods used by the six YVPCs to assess implementation and to use implementation data to inform program improvement efforts. The information presented describes the approach and measurement strategies employed by each center and for each program implemented in the partner communities. YVPCs employ both established and innovative strategies for measurement and tracking of implementation across a broad range of programs, practices, and strategies. The work of the YVPCs highlights the need to use data to understand the relationship between implementation of EBPs and youth violence outcomes.

  18. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  19. Transmittal of Geotail Prelaunch Mission Operation Report

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Geotail is an element in the International Solar Terrestrial Physics (ISTP) Program. The overall goal of the ISTP Program is to employ simultaneous and closely coordinated remote observations of the sun and in situ observations both in the undisturbed heliosphere near Earth and in Earth s magnetosphere to measure, model, and quantitatively assess the processes in the sun/Earth interaction chain. In the early phase of the Program, simultaneous measurements in the key regions of geospace from Geotail and the two U.S. satellites of the Global Geospace Science (GGS) Program, Wind and Polar, along with equatorial measurements, will be used to characterize global energy transfer.

  20. The 2012 CASPER Physics Circus

    NASA Astrophysics Data System (ADS)

    Carmona Reyes, Jorge; Land-Zandstra, Anne; Cheng, Joyce; Douglass, Angela; Harris, Brandon; Zhang, Zhuanhao; Chen, Mudi; Matthews, Lorin; Hyde, Truell

    2012-10-01

    The CASPER Physics Circus is one component of a CASPER ongoing educational outreach initiative known as the CASPER Seamless Pathway. The Physics Circus is funded by the United States Department of Education and is designed to increase interest in, engagement with, and understanding of science, technology, engineering and mathematics (STEM) within students in grades 6 through 12. The program's material and curriculum is aligned with both TEKS (Texas Essentials Knowledge and Skills) and National Science and Mathematics Standards, with its components (theatre, hands-on exhibitions, game show, professional development and curriculum) reinforcing these goals in a creative and entertaining format. Pre- and post-assessments measuring both content understanding and attitude towards science were conducted for a representative sample of the cohort and the analyzed data will be presented. The role the Circus plays within CASPER's Seamless Pathway will also be discussed along with other current CASPER programs including its High School Scholars program, CASPER's Interns program and CASPER NSF funded REU/RET programs for college undergraduates and K-12 teachers.

  1. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division, NASA Headquarters, left, Kent Kellogg, SMAP project manager, NASA Jet Propulsion Laboratory (JPL), second from left, Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, second from right, and Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program, NASA Headquarters, right, are seen during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  2. Solar Sail Models and Test Measurements Correspondence for Validation Requirements Definition

    NASA Technical Reports Server (NTRS)

    Ewing, Anthony; Adams, Charles

    2004-01-01

    Solar sails are being developed as a mission-enabling technology in support of future NASA science missions. Current efforts have advanced solar sail technology sufficient to justify a flight validation program. A primary objective of this activity is to test and validate solar sail models that are currently under development so that they may be used with confidence in future science mission development (e.g., scalable to larger sails). Both system and model validation requirements must be defined early in the program to guide design cycles and to ensure that relevant and sufficient test data will be obtained to conduct model validation to the level required. A process of model identification, model input/output documentation, model sensitivity analyses, and test measurement correspondence is required so that decisions can be made to satisfy validation requirements within program constraints.

  3. Scientific involvement in Skylab by the Space Sciences Laboratory of the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Winkler, C. E. (Editor)

    1973-01-01

    The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.

  4. Techniques and Measurements. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 1.

    ERIC Educational Resources Information Center

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit is designed to: (1) introduce students to and familiarize them with working in the school laboratory;…

  5. Scientists and Educators Working Together: Everyone Teaches, Everyone Learns

    NASA Astrophysics Data System (ADS)

    Lebofsky, Larry A.; Lebofsky, N. R.; McCarthy, D. W.; Canizo, T. L.; Schmitt, W.; Higgins, M. L.

    2013-10-01

    The primary author has been working with three of the authors (Lebofsky, McCarthy, and Cañizo) for nearly 25 years and Schmitt and Higgins for 17 and 8 years, respectively. This collaboration can be summed up with the phrase: “everyone teaches, everyone learns.” What NASA calls E/PO and educators call STEM/STEAM, requires a team effort. Exploration of the Solar System and beyond is a team effort, from research programs to space missions. The same is true for science education. Research scientists with a long-term involvement in science education have come together with science educators, classroom teachers, and informal science educators to create a powerful STEM education team. Scientists provide the science content and act as role models. Science educators provide the pedagogy and are the bridge between the scientists and the teacher. Classroom teachers and informal science educators bring their real-life experiences working in classrooms and in informal settings and can demonstrate scientists’ approaches to problem solving and make curriculum more engaging. Together, we provide activities that are grade-level appropriate, inquiry-based, tied to the literacy, math, and science standards, and connected directly to up-to-date science content and ongoing research. Our programs have included astronomy camps for youth and adults, professional development for teachers, in-school and after-school programs, family science events, and programs in libraries, science centers, and museums. What lessons have we learned? We are all professionals and can learn from each other. By engaging kids and having them participate in activities and ask questions, we can empower them to be the presenters for others, even their families. The activities highlighted on our poster represent programs and collaborations that date back more than two decades: Use models and engage the audience, do not just lecture. Connect the activity with ongoing science and get participants outside to look at the real sky: do a Moon journal, measure shadows, observe constellations, and look through a telescope—the sky is more than just string, balls, or a computer program.

  6. The National Shipbuilding Research Program. 1997 Ship Production Symposium, Paper Number 20: Design and Production of ANZAC Frigates for the RAN and RNZN: Progress Towards International Competitiveness

    DTIC Science & Technology

    1997-04-01

    and New Zealand Industry Involvement ANZIP Australian and New Zealand Industry Program ASSC ANZAC Ship Support Centre ASTEC Australian Science...of performance measurement systems and benchmarking.” In September 1994, the Australian Science, Technology and Engineering Council ( ASTEC ) commenced...more in- depth analysis of the key issues facing Australia in a number of areas. Five Partnerships have been established, one of which is the ASTEC

  7. Developing an Assessment Process for a Master's of Science Degree in a Pharmaceutical Sciences Program.

    PubMed

    Bloom, Timothy J; Hall, Julie M; Liu, Qinfeng; Stagner, William C; Adams, Michael L

    2016-09-25

    Objective. To develop a program-level assessment process for a master's of science degree in a pharmaceutical sciences (MSPS) program. Design. Program-level goals were created and mapped to course learning objectives. Embedded assessment tools were created by each course director and used to gather information related to program-level goals. Initial assessment iterations involved a subset of offered courses, and course directors met with the department assessment committee to review the quality of the assessment tools as well as the data collected with them. Insights from these discussions were used to improve the process. When all courses were used for collecting program-level assessment data, a modified system of guided reflection was used to reduce demands on committee members. Assessment. The first two iterations of collecting program-level assessment revealed problems with both the assessment tools and the program goals themselves. Course directors were inconsistent in the Bloom's Taxonomy level at which they assessed student achievement of program goals. Moreover, inappropriate mapping of program goals to course learning objectives were identified. These issues led to unreliable measures of how well students were doing with regard to program-level goals. Peer discussions between course directors and the assessment committee led to modification of program goals as well as improved assessment data collection tools. Conclusion. By starting with a subset of courses and using course-embedded assessment tools, a program-level assessment process was created with little difficulty. Involving all faculty members and avoiding comparisons between courses made obtaining faculty buy-in easier. Peer discussion often resulted in consensus on how to improve assessment tools.

  8. A Multi-Year Study of the Impact of the Rice Model Teacher Professional Development on Elementary Science Teachers

    NASA Astrophysics Data System (ADS)

    Viorica Diaconu, Dana; Radigan, Judy; Suskavcevic, Milijana; Nichol, Carolyn

    2012-04-01

    A teacher professional development program for in-service elementary school science teachers, the Rice Elementary Model Science Lab (REMSL), was developed for urban school districts serving predominately high-poverty, high-minority students. Teachers with diverse skills and science capacities came together in Professional Learning Communities, one full day each week throughout an academic year, to create a classroom culture for science instruction. Approximately 80 teachers each year received professional development in science content and pedagogy using the same inquiry-based constructivist methods that the teachers were expected to use in their classrooms. During this four-year study, scientists and educators worked with elementary teachers in a year-long model science lab environment to provide science content and science pedagogy. The effectiveness of the program was measured using a mix of quantitative and qualitative methods that allowed the researchers to triangulate the findings from quantitative measures, such as content test and surveys, with the emerging themes from the qualitative instruments, such as class observations and participant interviews. Results showed that, in all four years, teachers from the REMSL Treatment group have significantly increased their science content knowledge (p < 0.05). During the last two years, their gains in science content knowledge, use of inquiry-based instruction and leadership skills were significantly higher than those of the Control group teachers' (p < 0.01, p < 0.001 and p < 0.05, respectively). Three themes resonated in the interviews with participants: science content knowledge growth, constructivist pedagogy and leadership skills.

  9. Tools to Assess the Impact of Teacher Enhancement Programs

    NASA Astrophysics Data System (ADS)

    Heatherly, S. A.; Maddalena, R. J.; Govett, A.; Hemler, D.

    1997-05-01

    Beginning in 1994, the NRAO has hosted an NSF-funded program, ``Research Experience in Teacher Preparation (RETP),'' in which inservice and preservice science teachers participate in residential institutes lasting one or two weeks. While on site, they conduct open-ended investigations using a 40-foot diameter working radio telescope. The aim of RETP has been to deepen and personalize participants' understanding of the nature of science, and to assist them in applying their newfound knowledge to their classroom teaching. So far RETP, and the teacher enhancement programs from which it evolved, have trained 434 inservice and 69 preservice teachers. The impact of the research experience on teachers' perceptions of themselves as professionals and their views of science was initially assessed through open-ended questionnaires and participant journals. From teachers' responses we learned that the research experience has a profound, positive influence on participants' views of science and increased their confidence in using research-based teaching methods. However, determining what actually happens in the classroom is harder to evaluate and requires a more structured approach. Therefore, to determine what changes occurred in teachers and their students, five survey instruments were developed. The instruments: 1) assess changes in teachers' perceptions of their ability to conduct research; 2) gauge teachers' perceptions of three aspects of the institute; 3) measure changes in teachers' concerns about implementing classroom research projects; 4) evaluate the development of teachers' understanding into the nature of science; and 5) determine changes in their students' perceptions of science and science class. To increase the reliability of the instruments, the survey questions were tested for internal consistency. Early results show that the RETP program has significantly affected participants and their students. These instruments are useful not only for evaluating this program but also for evaluating other teacher enhancement and preparation programs.

  10. 76 FR 93 - Summer Undergraduate Research Fellowships (SURF) NIST Gaithersburg and Boulder Programs...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ...: Catalog of Federal Domestic Assistance Name and Number: Measurement and Engineering Research and Standards... engineering sciences and, as the lead Federal agency for technology transfer, it provides a strong interface... enables the Center for Nanoscale Science and Technology (CNST), Engineering Laboratory (EL), Information...

  11. Soft Skills in Practice and in Education: An Evaluation

    ERIC Educational Resources Information Center

    Wahl, Harald; Kaufmann, Christian; Eckkrammer, Florian; Mense, Alexander; Gollner, Helmut; Himmler, Christian; Rogner, Wolf; Baierl, Thomas; Slobodian, Roman

    2012-01-01

    The paper measures the soft skills needs of companies and industry to technical oriented academic graduates, especially coming from IT course programs like business informatics, computer science, or information management. Therefore, between March and September 2010, two groups of researchers at the University of Applied Sciences (UAS) Technikum…

  12. Science Laboratory Safety: Findings and Implications for Teacher Education.

    ERIC Educational Resources Information Center

    Swami, Piyush

    1986-01-01

    Summarizes a survey of the condition of high school science laboratories in the greater Cincinnati area (N=36). Reports safety measures undertaken for fire and burn and eye and face protection, waste disposal, storage facilities, and ventilation. Offers suggestions and plans for enriching safety education programs for teachers. (ML)

  13. Inquiry-based science: Preparing human capital for the 21 st century and beyond

    NASA Astrophysics Data System (ADS)

    Boyd, Yolanda F.

    High school students need to graduate with 21st century skills to be college and career ready and to be competitive in a global marketplace. A positive trend exists favoring inquiry-based instructional practices that purportedly not only increase science content knowledge, but also 21 st century skill development. A suburban school district, Areal Township (pseudonym), implemented an inquiry-based science program based on this trend; however, the degree to which the program has been meeting students' needs for science content knowledge and 21st century skills development has not been explored. If we were to understand the process by which an inquiry-based science program contributes to attainment of science content and 21st century skill development, then we might be able to improve the delivery of the program and provide a model to be adopted by other schools. Therefore, the purpose of this descriptive case study was to engage with multiple stakeholders to formatively assess the successes and obstacles for helping students to achieve science content and 21st century skills through an inquiry-based curriculum. Using constructivist theory, this study aimed to address the following central research question: How does the implementation of an inquiry-based program within the Areal Township School District (ATSD) support the acquisition of science content knowledge and the development of 21st century skills? This study found that 21st century skill development is embedded in inquiry-based instructional practices. These practices engage students in meaningful learning that spirals in content and is measured using diverse assessments. Time to do inquiry-based science and adequate time for collegial collaboration were obstacles for educators in grades K-5. Other obstacles were turnkey professional development and a lack of ongoing program monitoring, as a result of imposed extrinsic factors from state and federal mandates. Lastly, it was discovered that not all parts of the curriculum adopted a full inquiry-based approach.

  14. Science and Engineering of the Environment of Los Angeles: A GK-12 Experiment at Developing Science Communications Skills in UCLA's Graduate Program

    NASA Astrophysics Data System (ADS)

    Moldwin, M. B.; Hogue, T. S.; Nonacs, P.; Shope, R. E.; Daniel, J.

    2008-12-01

    Many science and research skills are taught by osmosis in graduate programs with the expectation that students will develop good communication skills (speaking, writing, and networking) by observing others, attending meetings, and self reflection. A new National Science Foundation Graduate Teaching Fellows in K- 12 Education (GK-12; http://ehrweb.aaas.org/gk12new/) program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/overview.html ) attempts to make the development of good communication skills an explicit part of the graduate program of science and engineering students. SEE-LA places the graduate fellows in two pairs of middle and high schools within Los Angeles to act as scientists-in- residence. They are partnered with two master science teachers and spend two-days per week in the classroom. They are not student teachers, or teacher aides, but scientists who contribute their content expertise, excitement and experience with research, and new ideas for classroom activities and lessons that incorporate inquiry science. During the one-year fellowship, the graduate students also attend a year-long Preparing Future Faculty seminar that discusses many skills needed as they begin their academic or research careers. Students are also required to include a brief (two-page) summary of their research that their middle or high school students would be able to understand as part of their published thesis. Having students actively thinking about and communicating their science to a pre-college audience provides important science communication training and helps contribute to science education. University and local pre- college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the dissemination of sound science to K-12 teachers and students.

  15. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  16. Evaluating Psychosocial Mechanisms Underlying STEM Persistence in Undergraduates: Evidence of Impact from a Six-Day Pre–College Engagement STEM Academy Program

    PubMed Central

    Findley-Van Nostrand, Danielle; Pollenz, Richard S.

    2017-01-01

    The persistence of undergraduate students in science, technology, engineering, and mathematics (STEM) disciplines is a national issue based on STEM workforce projections. We implemented a weeklong pre–college engagement STEM Academy (SA) program aimed at addressing several areas related to STEM retention. We validated an instrument that was developed based on existing, validated measures and examined several psychosocial constructs related to STEM (science identity, self-efficacy, sense of belonging to the university and to STEM, career expectancies, and intention to leave STEM majors) before and after the program. We also compared students in the SA program with a matched comparison group of first-year students. Results show that SA students significantly increased in science identity and sense of belonging to STEM and to the university, all predictive of increased STEM retention and a primary aim of the program. Relative to the matched comparison group, SA students began their first semester with higher STEM self-efficacy, sense of belonging, and science identity, positive career expectancies, and lower intention to leave STEM. The SA cohort showed 98% first-year retention and 92% STEM major retention. The SA program serves as a model of a scalable, first-level, cocurricular engagement experience to enhance psychosocial factors that impact undergraduate persistence in STEM. PMID:28572178

  17. Bridging the Technology Readiness "Valley of Death" Utilizing Nanosats

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.; Millar, Pamela S.; Norton, Charles D.

    2015-01-01

    Incorporating new technology is a hallmark of space missions. Missions demand ever-improving tools and techniques to allow them to meet the mission science requirements. In Earth Science, these technologies are normally expressed in new instrument capabilities that can enable new measurement concepts, extended capabilities of existing measurement techniques, or totally new detection capabilities, and also, information systems technologies that can enhance data analysis or enable new data analyses to advance modeling and prediction capabilities. Incorporating new technologies has never been easy. There is a large development step beyond demonstration in a laboratory or on an airborne platform to the eventual space environment that is sometimes referred to as the "technology valley of death." Studies have shown that non-validated technology is a primary cause of NASA and DoD mission delays and cost overruns. With the demise of the New Millennium Program within NASA, opportunities for demonstrating technologies in space have been rare. Many technologies are suitable for a flight project after only ground testing. However, some require validation in a relevant or a space flight environment, which cannot be fully tested on the ground or in airborne systems. NASA's Earth Science Technology Program has initiated a nimble program to provide a fairly rapid turn-around of space validated technologies, and thereby reducing future mission risk in incorporating new technologies. The program, called In-Space Validation of Earth Science Technology (InVEST), now has five tasks in development. Each are 3U CubeSats and they are targeted for launch opportunities in the 2016 time period. Prior to formalizing an InVEST program, the technology program office was asked to demonstrate how the program would work and what sort of technologies could benefit from space validation. Three projects were developed and launched, and have demonstrated the technologies that they set out to validate. This paper will provide a brief status of the pre-InVEST CubeSats, and discuss the development and status of the InVEST program. Figure

  18. Aeronautical Sciences Advanced Studies Program. Delivery Order 0002: Plasma Modeling Program

    DTIC Science & Technology

    2009-04-01

    reach the stagnation point of the airfoil. However, the effect is much more pronounced at the trailing edge region of the airfoil and its wake region...presents measured results that provide an indication of the amount of noise in the pitot probe measurements. The second presents the results of...is the noise problems that occurred in the measurements when a magnetic field was applied. For this reason the results with a magnetic field applied

  19. AMF3 ARM's Research Facility and MAOS at Oliktok Point Alaska

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Roesler, E. L.

    2016-12-01

    Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data to determine the impact that clouds and aerosols have on solar radiation. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. A Mobile Aerosol Observing System (MAOS) has been added to AMF3 in 2016 more details of the instrumentation at www.arm.gov/sites/amf/mobile-aos. Data from these instruments are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at the ARM Program's AMF3 and highlight the newest addition to AMF3, the Mobile Aerosol Observing System (MAOS).

  20. End of Program Assessments and Their Association with Early Career Success in LIS

    ERIC Educational Resources Information Center

    Rathbun-Grubb, Susan

    2016-01-01

    Analyses of North American LIS program alumni survey data indicate that the completion of any end of program assessment (EPA) or capstone is associated with certain early-career success measures. Using data collected in the Workforce Issues in Library and Information Science 2 project (WILIS 2), we examined the type of EPAs (internships,…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. DeLooper; A. DeMeo; P. Lucas

    The U. S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has an energetic science education program and outreach effort. This overview describes the components of the programs and evaluates the changes that have occurred in this effort during the last several years. Efforts have been expanded to reach more students, as well as the public in general. The primary goal is to inform the public regarding the fusion and plasma research at PPPL and to excite students so that they can appreciate science and technology. A student's interest in science can be raised by tours, summer research experiences, in-classroommore » presentations, plasma expos, teacher workshops and web-based materials. The ultimate result of this effort is a better-informed public, as well as an increase in the number of women and minorities who choose science as a vocation. Measuring the results is difficult, but current metrics are reviewed. The science education and outreach programs are supported by a de dicated core group of individuals and supplemented by other members of the PPPL staff and consultants who perform various outreach and educational activities.« less

  2. Building a Science Community of Effective Advocates: The Case of the Union of Concerned Scientists Science Network

    NASA Astrophysics Data System (ADS)

    Varga, M.; Worcester, J.

    2017-12-01

    The Union of Concerned Scientists (UCS) Science Network is a community of over 20,000 scientists, engineers, economists, public health specialists, and technical experts that inform and advocate for science-based solutions to some of our nation's most pressing problems. The role of the community manager here is to train and prepare Science Network members to be effective advocates for science-based decision making, and also to identify opportunities for them to put their skills and expertise into action on science and public health issues. As an organizational asset, but also an important resource to its members, it is crucial that the Science Network demonstrate its impact. But measuring impact when it comes to engagement and advocacy can be difficult. Here we will define a glossary of terms relating to community management and scientist engagement, delve into tracking and measurement of actions taken within a community, and connect the dots between tracking metrics and measuring impact. Measuring impact in community management is a growing field, and here we will also suggest future research that will help standardize impact measurement, as well as bring attention to the growing and unique role that scientist communities can have on policy and public engagement goals. This work has been informed by the American Association for the Advancement of Science's inaugural cohort of the Community Engagement Fellows Program.

  3. Polymer Science. Program CIP: 15.0607

    ERIC Educational Resources Information Center

    Research and Curriculum Unit, 2010

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  4. St. Paul's Pig Pack.

    ERIC Educational Resources Information Center

    Miller, Penny Folley

    1982-01-01

    Describes a guinea pig (cavy) breeding and management program developed as part of an elementary school science curriculum. Includes comments on show competitions (sponsored by the American Rabbit Breeders Association) to measure the success of the breeding program and to enable children to experience the business world. (Author/JN)

  5. Health Sciences. Program CIP: 51.0000

    ERIC Educational Resources Information Center

    Murdock, Ashleigh, Ed.

    2007-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  6. 1997 NASA/MSFC Summer Teacher Enrichment Program

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a report on the follow-up activities conducted for the 1997 NASA Summer Teacher Enrichment Program (STEP), which was held at the George C. Marshall Space Flight Center (MSFC) for the seventh consecutive year. The program was conducted as a six-week session with 17 sixth through twelfth grade math and science teachers from a six-state region (Alabama, Arkansas, Iowa, Louisiana, Mississippi and Missouri). The program began on June 8, 1997, and ended on July 25, 1997. The long-term objectives of the program are to: increase the nation's scientific and technical talent pool with a special emphasis on underrepresented groups, improve the quality of pre-college math and science education, improve math and science literacy, and improve NASA's and pre-college education's understandings of each other's operating environments and needs. Short-term measurable objectives for the MSFC STEP are to: improve the teachers' content and pedagogy knowledge in science and/or mathematics, integrate applications from the teachers' STEP laboratory experiences into science and math curricula, increase the teachers' use of instructional technology, enhance the teachers' leadership skills by requiring them to present workshops and/or inservice programs for other teachers, require the support of the participating teacher(s) by the local school administration through a written commitment, and create networks and partnerships within the education community, both pre-college and college. The follow-up activities for the 1997 STEP included the following: academic-year questionnaire, site visits, academic-year workshop, verification of commitment of support, and additional NASA support.

  7. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  8. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SA Edgerton; LR Roeder

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhousemore » gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.« less

  9. Can You See the Stars? Citizen-Science Programs to Measure Night Sky Brightness

    NASA Astrophysics Data System (ADS)

    Walker, Constance E.

    2009-05-01

    For the IYA2009 Dark Skies Awareness Cornerstone Project, partners in dark-sky, astronomy and environmental education are promoting three citizen-scientist programs that measure light pollution at local levels worldwide. These programs take the form of "star hunts", providing people with fun and direct ways to acquire heightened awareness about light pollution through first-hand observations of the night sky. Together the programs are spanning the entire IYA, namely: GLOBE at Night in March, Great World Wide Star Count in October, and How Many Stars during the rest of the year. Citizen-scientists - students, educators, amateur astronomers and the general public - measure the darkness of their local skies and contribute observations online to a world map. Anyone anywhere anytime can look within particular constellations for the faintest stars and match them to one of seven star maps. For more precise measurements, digital sky-brightness meters can be used. Measurements, along with the measurement location, time, and date, are submitted online, and within a few days to weeks a world map showing results is available. These measurements can be compared with data from previous years, as well as with satellite data, population densities, and electrical power-usage maps. Measurements are available online via Google Earth or other tools and as downloadable datasets. Data from multiple locations in one city or region are especially interesting, and can be used as the basis of a class project or science fair experiment, or even to inform the development of public policy. In the last few years these programs successfully conducted campaigns in which more than 35,000 observations were submitted from over 100 countries. The presentation will provide an update, describe how people can become involved and take a look ahead at the program's sustainability. For further information about these and other Dark Skies Awareness programs, please visit www.darkskiesawareness.org.

  10. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest.

    PubMed

    Ward, Tony J; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path . Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  11. A Model for Postdoctoral Education That Promotes Minority and Majority Success in the Biomedical Sciences

    PubMed Central

    Eisen, Arri; Eaton, Douglas C.

    2017-01-01

    How does the United States maintain the highest-quality research and teaching in its professional science workforce and ensure that those in this workforce are effectively trained and representative of national demographics? In the pathway to science careers, the postdoctoral stage is formative, providing the experiences that define the independent work of one’s first faculty position. It is also a stage in which underrepresented minorities (URMs) disproportionately lose interest in pursuing academic careers in science and, models suggest, a point at which interventions to increase proportions of URMs in such careers could be most effective. We present a mixed-methods, case study analysis from 17 years of the Fellowships in Research and Science Teaching (FIRST) postdoctoral program, to our knowledge the largest and longest continuously running science postdoctoral program in the United States. We demonstrate that FIRST fellows, in sharp contrast to postdocs overall, are inclusive of URMs (50% African American; 70% women) and as or more successful in their fellowships and beyond as a comparison group (measured by publication rate, attainment of employment in academic science careers, and eventual research grant support). Analysis of alumni surveys and focus group discussions reveals that FIRST fellows place highest value on the cohort-driven community and the developmental teaching and research training the program provides. PMID:29196426

  12. Air Toxics Under the Big Sky: examining the effectiveness of authentic scientific research on high school students' science skills and interest

    NASA Astrophysics Data System (ADS)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-04-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  13. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students’ Science Skills and Interest

    PubMed Central

    Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom. PMID:28286375

  14. Quantitative deformation measurements and analysis of the ferrite-austenite banded structure in a 2205 duplex stainless steel at 250 °C

    NASA Astrophysics Data System (ADS)

    Liu, Ji-Hua

    2018-03-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11472187 and 11602166), the National Basic Research Program of China (Grant No. 2014CB046805), and the Natural Science Foundation of Tianjin, China (Grant No. 16JCYBJC40500).

  15. Effective Programs for Elementary Science: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Lake, Cynthia; Hanley, Pam; Thurston, Allen

    2012-01-01

    This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A…

  16. Experimental Evaluations of Elementary Science Programs: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Lake, Cynthia; Hanley, Pam; Thurston, Allen

    2014-01-01

    This article presents a systematic review of research on the achievement outcomes of all types of approaches to teaching science in elementary schools. Study inclusion criteria included use of randomized or matched control groups, a study duration of at least 4 weeks, and use of achievement measures independent of the experimental treatment. A…

  17. Distance Education in Library and Information Science Education: Trends and Issues.

    ERIC Educational Resources Information Center

    Zepp, Diana

    This study measured current trends in distance education in the United States within Library and Information Science programs. The study was conducted, for the period 1989 to 1998, through a content analysis of journal articles from the "Library Literature" database, and through a content analysis of graduate catalogs from American Library…

  18. Science education policy for emergency, conflict, and post-conflict: An analysis of trends and implications for the science education program in Uganda

    NASA Astrophysics Data System (ADS)

    Udongo, Betty Pacutho

    This study analyzes the impact of armed conflicts on the development of education policy and particularly science education program in Uganda. Since independence from the British colonial rule, Uganda has experienced a series of armed conflicts, with the most devastating being the 21 years of conflict in Northern Uganda. The research study was guided by the following questions: (1) What is the level of government funding towards improving science education program in Uganda? (2) Have recent initiatives, such as free Primary and Secondary education, compulsory science, and 75% sponsorship for science-based courses, had a measurable impact on the proportion of students from the conflict-affected regions who enter tertiary institutions to pursue science and technology programs? (3) To what extent do the Ugandan Education Policy and, in particular, the Science Education Policy effectively address the educational needs of students affected by armed conflicts? The study employed a mixed method design where both quantitative and qualitative data were collected and analyzed. Quantitative data were obtained from a comprehensive search of policy documents and content analysis of literature on education policy, science education programs, and impact of conflicts on educational delivery. Qualitative data were obtained from surveys and interviews distributed to policy makers, central government and the local government officials, teachers, and students from the war-ravaged Northern Uganda. Analysis of policy documents and respondents' views revealed that Uganda does not have a science education policy, and the present education policy does not fully address the educational needs of students studying in conflict-affected regions. It was further observed that fewer students from the conflict-affected regions qualify for government scholarship to study science courses in higher institutions of learning. The study recommended the following policy interventions: (a) affirmative admission in higher institutions of learning, (b) curriculum reform, (c) professional development of teachers, (d) school security and safety, (e) science and technology education, and (f) increased funding for emergency education. The study proposes a model of "Schools as Islands of Peace and Hope" with science education as the tool for post-conflict economic recovery, as a blue print for emergency education policy framework.

  19. Cross-Cultural Collaboration in Earth Science Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Stephens, S.; Gordon, L. S.; Kopplin, M. R.

    2006-12-01

    Alaskan Native elders, other local experts, scientists and educators worked collaboratively in providing professional development science workshops and follow-up support for K-12 teachers. Cognizant of the commonalities between western science and Native knowledge, the Observing Locally Connecting Globally (OLCG) program blended GLOBE Earth science measurements, traditional knowledge and best teaching practices including culturally responsive science curriculum, in engaging teachers and students in climate change research. Native observations and knowledge were used to scaffold some local environmental studies undertaken by Alaskan teachers and their students. OLCG partnered with the Project Jukebox of the University of Alaska Fairbanks Oral History Program to produce digitized interviews of Native experts and a scientist on climate change. Sample interviews for students to use in asking Native experts about their observations and knowledge on environmental changes as well as other educational materials have been posted on the program website http://www.uaf.edu/olcg. Links to the climate change interviews, the Alaska Cultural Standards for Schools, Teachers and Students, and other relevant resource materials have also been included in the website. Results of pre- and post-institute assessment showed an increase in teacher comfort level with teaching science and integrating Native knowledge in the classroom. Teacher journals indicated the program's positive influence on their math and science teaching methods and curriculum. Student attitude and achievement assessments showed a significant increase in post-test (end of school year) scores from pre-test (beginning of the school year) scores. Other lessons learned from this project will also be presented.

  20. Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Fu; Zhang, He-Qiu; Liang, Hong-Wei; Peng, Xin-Cun; Zou, Ji-Jun; Tang, Bin; Du, Guo-Tong

    2017-08-01

    Not Available Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005, the Key Program of National Natural Science Foundation of China under Grant No 41330318, the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515, the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006, the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501, and the Engineering Research Center of Nuclear Technology Application (East China Institute of Technology) Ministry of Education under Grant No HJSJYB2016-1.

  1. The New Millennium Program Space Technology 5 (ST-5) Mission

    NASA Technical Reports Server (NTRS)

    Webb, Evan H.; Carlisle, Candace C.; Slavin, James A.

    2005-01-01

    The Space Technology 5 (ST-5) Project is part of NASA's New Millennium Program. ST-5 will consist of a constellation of three 25kg microsatellites. The mission goals are to demonstrate the research-quality science capability of the ST-5 spacecraft; to operate the three spacecraft as a constellation; and to design, develop and flight-validate three capable microsatellites with new technologies. ST-5 will be launched by a Pegasus XL into an elliptical polar (sun-synchronous) orbit. The three-month flight demonstration phase, beginning in March 2006, will validate the ability to perform science measurements, as well as the technologies and constellation operations. ST-5's technologies and concepts will enable future microsatellite science missions.

  2. Fundamental remote science research program. Part 2: Status report of the mathematical pattern recognition and image analysis project

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of he Earth from remotely sensed measurements of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inferences about the Earth. This report summarizes the progress that has been made toward this program goal by each of the principal investigators in the MPRIA Program.

  3. Evolution of a Teacher Professional Development Program that Promotes Teacher and Student Research

    NASA Astrophysics Data System (ADS)

    Pompea, S. M.; Croft, S. K.; Garmany, C. D.; Walker, C. E.

    2005-12-01

    The Research Based Science Education (RBSE) and Teacher Leaders in Research Based Science (TLRBSE) programs at the National Optical Astronomy Observatory have been evolving for nearly ten years. Our current program is actually a team of programs aiding teachers in doing research with small telescopes, large research-grade telescopes, astronomical data archives, and the Spitzer Space Telescope. Along the way, as these programs evolved, a number of basic questions were continuously discussed by the very talented program team. These questions included: 1) What is real research and why should we encourage it? 2) How can it be successfully brought to the classroom? 3) What is the relative importance of teacher content knowledge versus science process knowledge? 4) How frustrating should an authentic research experience be? 5) How do we measure the success of our professional development program? 6) How should be evaluate and publish student work? 7) How can teachers work together on a team to pursue research? 8) What is the model for interaction of teachers and researchers - equal partners versus the graduate student/apprentice model? 9) What is the ideal mix of skills for a professional development team at NOAO? 10) What role can distance learning play in professional preparation? 11) What tools are needed for data analysis? 12) How can we stay funded? Our evolving program has also been used as a test bed to examine new models of teacher's professional development that may aid our outreach efforts in the Large Synoptic Survey Telescope program, the Thirty-Meter Telescope program, and the National Virtual Observatory program. We will describe a variety of lessons learned (and relearned) and try to describe best practices in promoting teacher and student research. The TLRBSE Program is funded by the National Science Foundation under ESI 0101982, funded through the AURA/NSF Cooperative Agreement AST-9613615. NOAO is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under cooperative agreement with the National Science Foundation.

  4. Materials and Chemical Science and Technology | Research | NREL

    Science.gov Websites

    Applications and Performance Developing high-efficiency crystalline PV, measuring PV cell/module performance Cells and Hydrogen Program Developing, integrating, and demonstrating hydrogen production/delivery /storage through core programs and EFRCs Point of Contact Bill Tumas MCST Research Advisors/Fellows Senior

  5. Using the Principles of BIO2010 to Develop an Introductory, Interdisciplinary Course for Biology Students

    PubMed Central

    Adams, Peter; Goos, Merrilyn

    2010-01-01

    Modern biological sciences require practitioners to have increasing levels of knowledge, competence, and skills in mathematics and programming. A recent review of the science curriculum at the University of Queensland, a large, research-intensive institution in Australia, resulted in the development of a more quantitatively rigorous undergraduate program. Inspired by the National Research Council's BIO2010 report, a new interdisciplinary first-year course (SCIE1000) was created, incorporating mathematics and computer programming in the context of modern science. In this study, the perceptions of biological science students enrolled in SCIE1000 in 2008 and 2009 are measured. Analysis indicates that, as a result of taking SCIE1000, biological science students gained a positive appreciation of the importance of mathematics in their discipline. However, the data revealed that SCIE1000 did not contribute positively to gains in appreciation for computing and only slightly influenced students' motivation to enroll in upper-level quantitative-based courses. Further comparisons between 2008 and 2009 demonstrated the positive effect of using genuine, real-world contexts to enhance student perceptions toward the relevance of mathematics. The results support the recommendation from BIO2010 that mathematics should be introduced to biology students in first-year courses using real-world examples, while challenging the benefits of introducing programming in first-year courses. PMID:20810961

  6. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  7. Increasing Access for Economically Disadvantaged Students: The NSF/CSEM & S-STEM Programs at Louisiana State University

    NASA Astrophysics Data System (ADS)

    Wilson, Zakiya S.; Iyengar, Sitharama S.; Pang, Su-Seng; Warner, Isiah M.; Luces, Candace A.

    2012-10-01

    Increasing college degree attainment for students from disadvantaged backgrounds is a prominent component of numerous state and federal legislation focused on higher education. In 1999, the National Science Foundation (NSF) instituted the "Computer Science, Engineering, and Mathematics Scholarships" (CSEMS) program; this initiative was designed to provide greater access and support to academically talented students from economically disadvantaged backgrounds. Originally intended to provide financial support to lower income students, this NSF program also advocated that additional professional development and advising would be strategies to increase undergraduate persistence to graduation. This innovative program for economically disadvantaged students was extended in 2004 to include students from other disciplines including the physical and life sciences as well as the technology fields, and the new name of the program was Scholarships for Science, Technology, Engineering and Mathematics (S-STEM). The implementation of these two programs in Louisiana State University (LSU) has shown significant and measurable success since 2000, making LSU a Model University in providing support to economically disadvantaged students within the STEM disciplines. The achievement of these programs is evidenced by the graduation rates of its participants. This report provides details on the educational model employed through the CSEMS/S-STEM projects at LSU and provides a path to success for increasing student retention rates in STEM disciplines. While the LSU's experience is presented as a case study, the potential relevance of this innovative mentoring program in conjunction with the financial support system is discussed in detail.

  8. New Measures Assessing Predictors of Academic Persistence for Historically Underrepresented Racial/Ethnic Undergraduates in Science

    PubMed Central

    Byars-Winston, Angela; Rogers, Jenna; Branchaw, Janet; Pribbenow, Christine; Hanke, Ryan; Pfund, Christine

    2016-01-01

    An important step in broadening participation of historically underrepresented (HU) racial/ethnic groups in the sciences is the creation of measures validated with these groups that will allow for greater confidence in the results of investigations into factors that predict their persistence. This study introduces new measures of theoretically derived factors emanating from social cognitive and social identity theories associated with persistence for HU racial/ethnic groups in science disciplines. The purpose of this study was to investigate: 1) the internal reliability and factor analyses for measures of research-related self-efficacy beliefs, sources of self-efficacy, outcome expectations, and science identity; and 2) potential group differences in responses to the measures, examining the main and interaction effects of gender and race/ethnicity. Survey data came from a national sample of 688 undergraduate students in science majors who were primarily black/African American and Hispanic/Latino/a with a 2:1 ratio of females to males. Analyses yielded acceptable validity statistics and race × gender group differences were observed in mean responses to several measures. Implications for broadening participation of HU groups in the sciences are discussed regarding future tests of predictive models of student persistence and training programs to consider cultural diversity factors in their design. PMID:27521235

  9. The Geospace Mission Definition Team report

    NASA Astrophysics Data System (ADS)

    Kintner, P.; Spann, J.

    The Geospace Mission Definition Team (GMDT) is the portion of the Living With a Star (LWS) Program that has been charged by NASA to examine how the Geospace environment responds to solar variability. The goal is to provide science recommendations that guide NASA in the formulation of Geospace missions. The GMDT's first meeting with September 10, 2001 and has met on four subsequent dates. The top level space weather effects were initially defined by the LWS Science Architecture Team (SAT). From these effects the GMDT has distilled general objectives and specific objectives. These objectives have been prioritized and compelling science questions have been identified that are required to address the objectives. A set of candidate missions has been defined with minimum, baseline, and augmentation measurements identified. The priority science questions focus on two broad areas: (1) ionospheric variability, especially at mid-latitudes, that affects navigation and communications and (2) the source, acceleration mechanisms, and sinks of the radiation belts that degrade satellite lifetimes, produce surface charging, and threaten manned space flight. In addition the measurements required for understanding ionospheric variability will also address science issues associated with thermospheric satellite drag and orbital prediction. Candidate missions to address these science focii have been developed and studied. The team concludes that it is possible to address the compelling science questions with a cost effective program that yields major advances in our understanding of space weather science, that inspires and validates better ionospheric and magnetospheric models, and that will enable operational advances mitigating the societal impacts of space weather.

  10. Measuring Implementation of Evidence-Based Programs Targeting Young Children at Risk for Emotional/Behavioral Disorders: Conceptual Issues and Recommendations

    ERIC Educational Resources Information Center

    Sutherland, Kevin S.; McLeod, Bryce D.; Conroy, Maureen A.; Cox, Julia R.

    2013-01-01

    Young children with and at risk for emotional/behavioral disorders (EBD) present challenges for early childhood teachers. Evidence-based programs designed to address these young children's behavior problems exist, but there are a number of barriers to implementing these programs in early childhood settings. Advancing the science of treatment…

  11. "Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"

    NASA Astrophysics Data System (ADS)

    Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.

  12. Credentialing Data Scientists: A Domain Repository Perspective

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Furukawa, H.

    2015-12-01

    A career in data science can have many paths: data curation, data analysis, metadata modeling - all of these in different commercial or scientific applications. Can a certification as 'data scientist' provide the guarantee that an applicant or candidate for a data science position has just the right skills? How valuable is a 'generic' certification as data scientist for an employer looking to fill a data science position? Credentials that are more specific and discipline-oriented may be more valuable to both the employer and the job candidate. One employment sector for data scientists are the data repositories that provide discipline-specific data services for science communities. Data science positions within domain repositories include a wide range of responsibilities in support of the full data life cycle - from data preservation and curation to development of data models, ontologies, and user interfaces, to development of data analysis and visualization tools to community education and outreach, and require a substantial degree of discipline-specific knowledge of scientific data acquisition and analysis workflows, data quality measures, and data cultures. Can there be certification programs for domain-specific data scientists that help build the urgently needed workforce for the repositories? The American Geophysical Union has recently started an initiative to develop a program for data science continuing education and data science professional certification for the Earth and space sciences. An Editorial Board has been charged to identify and develop curricula and content for these programs and to provide input and feedback in the implementation of the program. This presentation will report on the progress of this initiative and evaluate its utility for the needs of domain repositories in the Earth and space sciences.

  13. Challenges and strategies in applying performance measurement to federal public health programs.

    PubMed

    DeGroff, Amy; Schooley, Michael; Chapel, Thomas; Poister, Theodore H

    2010-11-01

    Performance measurement is widely accepted in public health as an important management tool supporting program improvement and accountability. However, several challenges impede developing and implementing performance measurement systems at the federal level, including the complexity of public health problems that reflect multiple determinants and involve outcomes that may take years to achieve, the decentralized and networked nature of public health program implementation, and the lack of reliable and consistent data sources and other issues related to measurement. All three of these challenges hinder the ability to attribute program results to specific public health program efforts. The purpose of this paper is to explore these issues in detail and offer potential solutions that support the development of robust and practical performance measures to meet the needs for program improvement and accountability. Adapting performance measurement to public health programs is both an evolving science and art. Through the strategies presented here, appropriate systems can be developed and monitored to support the production of meaningful data that will inform effective decision making at multiple levels. Published by Elsevier Ltd.

  14. State of the science on implementation research in early child development and future directions.

    PubMed

    Aboud, Frances E; Yousafzai, Aisha K; Nores, Milagros

    2018-05-01

    We summarize the state of the field of implementation research and practice for early child development and propose recommendations. First, conclusions are drawn regarding what is generally known about the implementation of early childhood development programs, based on papers and discussions leading to a published series on the topic. Second, recommendations for short-term activities emphasize the use of newly published guidelines for reporting data collection methods and results for implementation processes; knowledge of the guidelines and a menu of measures allows for planning ahead. Additional recommendations include careful documentation of early-stage implementation, such as adapting a program to a different context and assessing feasibility, as well as the process of sustaining and scaling up a program. Using existing implementation information by building on and improving past programs and translating them into policy are recommended. Longer term goals are to identify implementation characteristics of effective programs and determinants of these characteristics. © 2018 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  15. NASA Tech Briefs, June 2000. Volume 24, No. 6

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Computers and Peripherals;

  16. Lanl Neutron-Induced Fission Cross Section Measurement Program

    NASA Astrophysics Data System (ADS)

    Laptev, A. B.; Tovesson, F.; Hill, T. S.

    2014-09-01

    A well established program of neutron-induced fission cross section measurement at Los Alamos Neutron Science Center (LANSCE) is supporting the Fuel Cycle Research program (FC R&D). Combining measurements at two LANSCE facilities, the Lujan Center and the Weapons Neutron Research facility (WNR), cover neutron energies over 10 orders of magnitude: from sub-thermal up to 200 MeV. A parallel-plate fission ionization chamber was used as a fission fragment detector. The 235U(n,f) standard was used as the reference. Fission cross sections have been measured for multiple actinides. The new data presented here completes the suite of long-lived Uranium isotopes that were investigated with this experimental approach. The cross section data are presented in comparison with existing evaluations and previous measurements.

  17. Numeric data distribution: The vital role of data exchange in today's world

    NASA Technical Reports Server (NTRS)

    Chase, Malcolm W.

    1994-01-01

    The major aim of the NIST standard Reference Data Program (SRD) is to provide critically evaluated numeric data to the scientific and technical community in a convenient and accessible form. A second aim of the program is to provide feedback into the experimental and theoretical programs to help raise the general standards of measurement. By communicating the experience gained in evaluating the world output of data in the physical sciences, NIST/SRD helps to advance the level of experimental techniques and improve the reliability of physical measurements.

  18. Science achievement of students in the Republic of Yemen and implications for improvement of science instruction

    NASA Astrophysics Data System (ADS)

    Ismail, Nageeb Kassem

    The purpose of this study was to establish a research base from which strategies could be developed for improving science education in Yemen. The study measured the achievement in general science of Yemeni students attending primary, preparatory, and secondary schools, and their counterparts attending three- or five-year education programs in primary teacher training institutions. A sample of 1,984 students from six major cities in Yemen was given the Second International Science Study test in May 1988. Achievement scores of these selected groups were compared. The mean achievement in general science was 11.93 for science track students, 9.21 for three-year teacher training institution students, and 8.49 for five-year teacher training institution students. These mean scores were based on a total of 35 items. This low level of achievement was further verified by making comparisons of the achievement of selected groups from Yemeni high schools in six cities with each other. The following factors were measured in this study: location, grade level, gender and type of science program studied. Selected groups from Yemeni high schools were also compared to their peers in other nations. The researcher compared students of the science track and teacher training institutions to their counterparts in 13 nations and students of the literature track to their counterparts in eight nations. Fifth and ninth grade students' scores were compared with the scores of their counterparts in 15 and 17 nations respectively. In every comparison, every Yemeni group ranked at the bottom of the achievement list. (Jacobson W., & Doran, R. 1988) The outcomes of this research indicate the profound need for improving science programs in all grade levels in Yemen. The research recommendations for improvement in science education in Yemen fall into four areas: a change in attitudes toward education, a change in teacher education, a change in classroom conditions, and a change in educational opportunities for women. Because this research study was based on a sizable sample and many hypotheses were tested, this work has contributed appreciable to the base of data available to future researchers. This study also implemented use of the SISS instrument for the first time in Arabic.

  19. The Role and Evolution of NASA's Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    One of the three strategic goals of NASA is to Advance understanding of Earth and develop technologies to improve the quality of life on our home planet (NASA strategic plan 2014). NASA's Earth Science Data System (ESDS) Program directly supports this goal. NASA has been launching satellites for civilian Earth observations for over 40 years, and collecting data from various types of instruments. Especially since 1990, with the start of the Earth Observing System (EOS) Program, which was a part of the Mission to Planet Earth, the observations have been significantly more extensive in their volumes, variety and velocity. Frequent, global observations are made in support of Earth system science. An open data policy has been in effect since 1990, with no period of exclusive access and non-discriminatory access to data, free of charge. NASA currently holds nearly 10 petabytes of Earth science data including satellite, air-borne, and ground-based measurements and derived geophysical parameter products in digital form. Millions of users around the world are using NASA data for Earth science research and applications. In 2014, over a billion data files were downloaded by users from NASAs EOS Data and Information System (EOSDIS), a system with 12 Distributed Active Archive Centers (DAACs) across the U. S. As a core component of the ESDS Program, EOSDIS has been operating since 1994, and has been evolving continuously with advances in information technology. The ESDS Program influences as well as benefits from advances in Earth Science Informatics. The presentation will provide an overview of the role and evolution of NASAs ESDS Program.

  20. A Preparatory Program to Identify the Single Best Transiting Exoplanet for JWST Early Release Science

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin

    2016-10-01

    JWST will revolutionize transiting exoplanet atmospheric science due to its capability for continuous, long-duration observations and, compared to existing space-based facilities, its larger collecting area, spectral coverage, and resolution. However, it is unclear precisely how well JWST will perform and which of its myriad instruments and observing modes will be best suited for transiting exoplanet studies. The Early Release Science (ERS) program was devised to provide early and open access to a broad suite of JWST science observations subject to key data analysis challenges so that the community can quickly build experience and develop a list of best observing practices prior to the Cycle 2 proposal deadline. In a recent paper, we identified 12 transiting exoplanets (dubbed community targets) that may be suitable for time-series observations within the ERS program; however, a critical unknown for the most favorable targets is the presence of obscuring clouds. To properly assess each observing mode, it is vital that the selected community target has measurable and identifiable spectroscopic features. We propose HST/WFC3 observations of four exoplanets to identify the single best target by first measuring the size of their 1.4-micron water vapor features. Next, we will perform follow-up Spitzer observations of the top two targets to determine the slopes in their infrared transmission spectra. Together, these measurements will provide the most robust determination of clouds/hazes with the minimum amount of telescope time. Cycle 24 is our final opportunity to identify suitable community targets with cloud-free atmospheres prior to the ERS proposal deadline in mid-2017.

  1. Reflections on a vision for integrated research and monitoring after 15 years

    USGS Publications Warehouse

    Murdoch, Peter S.; McHale, Michael; Baron, Jill S.

    2014-01-01

    In May of 1998, Owen Bricker and his co-author Michael Ruggiero introduced a conceptual design for integrating the Nation’s environmental research and monitoring programs. The Framework for Integrated Monitoring and Related Research was an organizing strategy for relating data collected by various programs, at multiple spatial and temporal scales, and by multiple science disciplines to solve complex ecological issues that individual research or monitoring programs were not designed to address. The concept nested existing intensive monitoring and research stations within national and regional surveys, remotely sensed data, and inventories to produce a collaborative program for multi-scale, multi-network integrated environmental monitoring and research. Analyses of gaps in data needed for specific issues would drive decisions on network improvements or enhancements. Data contributions to the Framework from existing networks would help indicate critical research and monitoring programs to protect during budget reductions. Significant progress has been made since 1998 on refining the Framework strategy. Methods and models for projecting scientific information across spatial and temporal scales have been improved, and a few regional pilots of multi-scale data-integration concepts have been attempted. The links between science and decision-making are also slowly improving and being incorporated into science practice. Experiments with the Framework strategy since 1998 have revealed the foundational elements essential to its successful implementation, such as defining core measurements, establishing standards of data collection and management, integrating research and long-term monitoring, and describing baseline ecological conditions. They have also shown us the remaining challenges to establishing the Framework concept: protecting and enhancing critical long-term monitoring, filling gaps in measurement methods, improving science for decision support, and integrating the disparate integrated science efforts now underway. In the 15 years since the Bricker and Ruggiero (Ecol Appl 8(2):326–329, 1998) paper challenged us with a new paradigm for bringing sound and comprehensive science to environmental decisions, the scientific community can take pride in the progress that has been made, while also taking stock of the challenges ahead for completing the Framework vision.

  2. Preschoolers' Recall of Science Content from Educational Videos Presented with and without Songs

    ERIC Educational Resources Information Center

    Schechter, Rachel L.

    2013-01-01

    This experimental investigation evaluated the impact of educational songs on a child's ability to recall scientific content from an educational television program. Preschoolers' comprehension of the educational content was examined by measuring children's ability to recall the featured science content (the function of a pulley and…

  3. A Model Program in Science, Mathematics, and Technology. Final Report TP87-9.

    ERIC Educational Resources Information Center

    McDowell, Ceasar; And Others

    Over the past 5 years parents, industry leaders, and policy makers have called repeatedly for the improvement of mathematics and science education in urban schools and for measures to insure that all students are "technologically literate." Various efforts at the national, state, and local levels have emerged in response to these calls, with…

  4. Situating Second-Year Success: Understanding Second-Year STEM Experiences at a Liberal Arts College

    ERIC Educational Resources Information Center

    Gregg-Jolly, Leslie; Swartz, Jim; Iverson, Ellen; Stern, Joyce; Brown, Narren; Lopatto, David

    2016-01-01

    Challenges particular to second-year students have been identified that can impact persistence in science, technology, engineering, and mathematics (STEM) fields. We implemented a program to improve student success in intermediate-level science courses by helping students to feel they belonged and could succeed in STEM. We used survey measures of…

  5. Teaching Science with Web-Based Inquiry Projects: An Exploratory Investigation

    ERIC Educational Resources Information Center

    Webb, Aubree M.; Knight, Stephanie L.; Wu, X. Ben; Schielack, Jane F.

    2014-01-01

    The purpose of this research is to explore a new computer-based interactive learning approach to assess the impact on student learning and attitudes toward science in a large university ecology classroom. A comparison was done with an established program to measure the relative impact of the new approach. The first inquiry project, BearCam, gives…

  6. Using Citation Analysis Methods to Assess the Influence of Science, Technology, Engineering, and Mathematics Education Evaluations

    ERIC Educational Resources Information Center

    Greenseid, Lija O.; Lawrenz, Frances

    2011-01-01

    This study explores the use of citation analysis methods to assess the influence of program evaluations conducted within the area of science, technology, engineering, and mathematics (STEM) education. Citation analysis is widely used within scientific research communities to measure the relative influence of scientific research enterprises and/or…

  7. Fundamental remote sensing science research program. Part 1: Status report of the mathematical pattern recognition and image analysis project

    NASA Technical Reports Server (NTRS)

    Heydorn, R. D.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of the Earth from remotely sensed measurement of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inference about the Earth.

  8. Characteristics and Trade-Offs of Doppler Lidar Global Wind Profiling

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G David

    2004-01-01

    Accurate, global profiling of wind velocity is highly desired by NASA, NOAA, the DOD/DOC/NASA Integrated Program Office (IPO)/NPOESS, DOD, and others for many applications such as validation and improvement of climate models, and improved weather prediction. The most promising technology to deliver this measurement from space is Doppler Wind Lidar (DWL). The NASA/NOAA Global Tropospheric Wind Sounder (GTWS) program is currently in the process of generating the science requirements for a space-based sensor. In order to optimize the process of defining science requirements, it is important for the scientific and user community to understand the nature of the wind measurements that DWL can make. These measurements are very different from those made by passive imaging sensors or by active radar sensors. The purpose of this paper is to convey the sampling characteristics and data product trade-offs of an orbiting DWL.

  9. Self-Assessment of Graduate Programs in the Biomedical Sciences: Narrative Guide and Companion Survey Instruments. Report of the Task Force on Benchmarks of Success in Graduate Programs: AAMC GREAT Group.

    ERIC Educational Resources Information Center

    Association of American Medical Colleges, Washington, DC.

    The purpose of this guide, developed by the Association of American Medical Colleges group on Graduate Research, Education, and Training (GREAT), is to outline a model process by which graduate programs can measure program success and that can be adapted to particular circumstances and priorities. The first sections of the guide examine the…

  10. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    PubMed Central

    Amolins, Michael W.; Ezrailson, Cathy M.; Pearce, David A.; Elliott, Amy J.

    2015-01-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. PMID:26628658

  11. Evaluating the effectiveness of a laboratory-based professional development program for science educators.

    PubMed

    Amolins, Michael W; Ezrailson, Cathy M; Pearce, David A; Elliott, Amy J; Vitiello, Peter F

    2015-12-01

    The process of developing effective science educators has been a long-standing objective of the broader education community. Numerous studies have recommended not only depth in a teacher's subject area but also a breadth of professional development grounded in constructivist principles, allowing for successful student-centered and inquiry-based instruction. Few programs, however, have addressed the integration of the scientific research laboratory into the science classroom as a viable approach to professional development. Additionally, while occasional laboratory training programs have emerged in recent years, many lack a component for translating acquired skills into reformed classroom instruction. Given the rapid development and demand for knowledgeable employees and an informed population from the biotech and medical industries in recent years, it would appear to be particularly advantageous for the physiology and broader science education communities to consider this issue. The goal of this study was to examine the effectiveness of a laboratory-based professional development program focused on the integration of reformed teaching principles into the classrooms of secondary teachers. This was measured through the program's ability to instill in its participants elevated academic success while gaining fulfillment in the classroom. The findings demonstrated a significant improvement in the use of student-centered instruction and other reformed methods by program participants as well as improved self-efficacy, confidence, and job satisfaction. Also revealed was a reluctance to refashion established classroom protocols. The combination of these outcomes allowed for construction of an experiential framework for professional development in applied science education that supports an atmosphere of reformed teaching in the classroom. Copyright © 2015 The American Physiological Society.

  12. Three-year program to improve critical 1-micron Qsw laser technology for Earth observation

    NASA Astrophysics Data System (ADS)

    Sakaizawa, Daisuke; Chishiki, Yoshikazu; Satoh, Yohei; Hanada, Tatsuyuki; Yamakawa, Shiro; Ogawa, Takayo; Wada, Satoshi; Ishii, Shoken; Mizutani, Kohei; Yasui, Motoaki

    2012-11-01

    Laser remote sensing technologies are valuable for a variety of scientific requirements. These measurement techniques are involved in several earth science areas, including atmospheric chemistry, aerosols and clouds, wind speed and directions, prediction of pollution, oceanic mixed layer depth, vegetation canopy height (biomass), ice sheet, surface topography, and others. Much of these measurements have been performed from the ground to aircraft over the past decades. To improve knowledge of these science areas with transport models (e.g. AGCM), further advances of vertical profile are required. JAXA collaborated with NICT and RIKEN started a new cross-sectional 3-year program to improve a technology readiness of the critical 1-micron wavelengths from 2011. The efficient frequency conversions such as second and third harmonic generation and optical parametric oscillation/generation are applied. A variety of elements are common issues to lidar instruments, which includes heat rejection using high thermal conductivity materials, laser diode life time and reliability, wavelength control, and suppression of contamination control. And the program has invested in several critical areas including advanced laser transmitter technologies to enable science measurements and improvement of knowledge for space-based laser diode arrays, Pockels cells, advanced nonlinear wavelength conversion technology for space-based LIDIRs. Final goal is aim to realize 15 watt class Q-switched pulse laser over 3-year lifetime.

  13. What A Long Strange Trip It's Been: Lessons Learned From NASA EOS, LTER, NEON, CZO And On To The Future With Sustainable Research Networks

    NASA Astrophysics Data System (ADS)

    Williams, M. W.

    2014-12-01

    The traditional, small-scale, incremental approach to environmental science is changing as researchers embrace a more integrated and multi-disciplinary approach to understanding how our natural systems work today and how they may respond in the future to forcings such as climate change. In situ networks are evolving in response to these challenges so as to provide the appropriate measurements to develop high-resolution spatial and temporal data sets across a wide range of platforms from microbial measurements to remote sensing. These large programs provide a unique set of challenges when compared to more traditional programs. Here I provide insights learned from my participation in a number of large programs, including NASA EOS, LTER, CZO, NEON, and WSC and how those experiences in environmental science can help us move forward towards more applied applications of environmental science, including sustainability initiatives. I'll chat about the importance of managerial and management skills, which most of us scientists prefer to avoid. I'll also chat about making decisions about what long-term measurements to make and when to stop. Data management is still the weakest part of environmental networks; what needs to be done. We have learned that these networks provide an important knowledge base that can lead to informed decisions leading to environmental, energy, social and cultural sustainability.

  14. Spitzer - Hot & Colorful Student Activities

    NASA Astrophysics Data System (ADS)

    McDonald, D.; Rebull, L. M.; DeWolf, C.; Guastella, P.; Johnson, C. H.; Schaefers, J.; Spuck, T.; McDonald, J. G., III; DeWolf, T.; Brock, S.; Boerma, J.; Bemis, G.; Paulsen, K.; Yueh, N.; Peter, A.; Wassmer, W.; Haber, R.; Scaramucci, A.; Butchart, J.; Holcomb, A.; Karns, B.; Kennedy, S.; Siegel, R.; Weiser, S.

    2009-01-01

    In this poster, we present the results of several activities developed for the general science student to explore infrared light. The first activity involved measuring infrared radiation using an updated version of Newton's experiment of splitting white light and finding IR radiation. The second used Leslie's cube to allow students to observe different radiators, while the third used a modern infrared thermometer to measure and identify IR sources in an enclosed box. The last activity involved students making false-color images from narrow-band filter images from data sets from Spitzer Space Telescope, STScI Digitized Sky Survey and other sources. Using computer programs like Adobe Photoshop and free software such as ds9, Spot and Leopard, poster-like images were created by the students. This research is funded by the Spitzer Science Center (SSC) and the National Optical Astronomy Observatory (NOAO). Please see our companion poster, Johnson et al., on the science aspect of this program, and another poster on the educational aspects, Guastella et al.

  15. The Examination of the Effects of Functional Training Program Applied on Instable Ground on Anaerobic Capacities of Elite Martial Arts Athletes

    ERIC Educational Resources Information Center

    Caglayan, Atakan; Ozbar, Nurper

    2017-01-01

    The aim of this study is to measure both dynamic balance of elite martial arts athletes doing functional strength exercises on instable ground and the effects of circuit training program on their anaerobic capacities, and compare them with those following classical training program. Students studying in Faculty of Sport Sciences at Duzce…

  16. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  17. Beams-becoming enthusiastic about math and science - A Department of Energy research laboratory/school district partnership program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strozak, K.; Gagnon, S.

    1994-12-31

    BEAMS immerses fifth and sixth grade classes in CEBAF`s environment for a week of school. By exposing students and teachers to science`s excitement, challenges, and opportunities, BEAMS motivates students, enhances teachers, and involves parents, with the goal of improving scientific literacy and work force readiness. CEBAF and its school partners are extending BEAMS into a multi-year program, integrating educational partnerships active in the region. The planned focus emphasizes grades four through ten. A long-term evaluation model, incorporating measures of students attitudes, achievement, and academic course choices is being implemented. Three years of data on student attitudinal changes, referenced against controls,more » have been analyzed.« less

  18. The contributions and future direction of Program Science in HIV/STI prevention.

    PubMed

    Becker, Marissa; Mishra, Sharmistha; Aral, Sevgi; Bhattacharjee, Parinita; Lorway, Rob; Green, Kalada; Anthony, John; Isac, Shajy; Emmanuel, Faran; Musyoki, Helgar; Lazarus, Lisa; Thompson, Laura H; Cheuk, Eve; Blanchard, James F

    2018-01-01

    Program Science is an iterative, multi-phase research and program framework where programs drive the scientific inquiry, and both program and science are aligned towards a collective goal of improving population health. To achieve this, Program Science involves the systematic application of theoretical and empirical knowledge to optimize the scale, quality and impact of public health programs. Program Science tools and approaches developed for strategic planning, program implementation, and program management and evaluation have been incorporated into HIV and sexually transmitted infection prevention programs in Kenya, Nigeria, India, and the United States. In this paper, we highlight key scientific contributions that emerged from the growing application of Program Science in the field of HIV and STI prevention, and conclude by proposing future directions for Program Science.

  19. Linear units improve articulation between social and physical constructs: An example from caregiver parameterization for children supported by complex medical technologies

    NASA Astrophysics Data System (ADS)

    Bezruczko, N.; Stanley, T.; Battle, M.; Latty, C.

    2016-11-01

    Despite broad sweeping pronouncements by international research organizations that social sciences are being integrated into global research programs, little attention has been directed toward obstacles blocking productive collaborations. In particular, social sciences routinely implement nonlinear, ordinal measures, which fundamentally inhibit integration with overarching scientific paradigms. The widely promoted general linear model in contemporary social science methods is largely based on untransformed scores and ratings, which are neither objective nor linear. This issue has historically separated physical and social sciences, which this report now asserts is unnecessary. In this research, nonlinear, subjective caregiver ratings of confidence to care for children supported by complex, medical technologies were transformed to an objective scale defined by logits (N=70). Transparent linear units from this transformation provided foundational insights into measurement properties of a social- humanistic caregiving construct, which clarified physical and social caregiver implications. Parameterized items and ratings were also subjected to multivariate hierarchical analysis, then decomposed to demonstrate theoretical coherence (R2 >.50), which provided further support for convergence of mathematical parameterization, physical expectations, and a social-humanistic construct. These results present substantial support for improving integration of social sciences with contemporary scientific research programs by emphasizing construction of common variables with objective, linear units.

  20. A-Train Education Activities: Partnerships to Engage Citizens with Atmospheric Science

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.; Taylor, J.; Chambers, L. H.; Graham, S.; Butcher, G. J.

    2016-12-01

    Since the launch of Aqua in 2002, the A-Train satellites have been at the forefront of observing Earth's atmosphere using the wide variety of instruments on the spacecraft in the formation. Similarly, the A-Train missions have also taken a variety of perspectives on engaging the general public with NASA science. These approaches have included a range of formal education partnerships featuring the GLOBE program (including a cloud observation network through CloudSat, several initiatives to understand and measure aerosols, and development of a new elementary story book), unique citizen-science activities such as Students' Cloud Observations On Line (S'COOL), connections with the PBS Kids SciGirls program, and much more. An education component was also featured at the first A-Train symposium in New Orleans, engaging local educators to learn about the many education resources available from the A-Train missions. Increasingly, the mission education teams have been working together to drive home thematic science content, such as the roles of clouds in our climate system and regular measurements of Earth's radiant energy balance. This paper describes the evolution of A-Train education efforts over the past decade, highlights key achievements, and presents information on new initiatives to continue to engage the public with A-Train science.

  1. School Science Comes Alive. Phase Three

    NASA Technical Reports Server (NTRS)

    Hartline, Frederick F.

    1997-01-01

    Phase 3 of the School Science Comes Alive Program (S(sup 2)CAP) created an exciting, science - enrichment experience for third, fourth and fifth graders and their teachers and enhanced the science-teaching skills of teacher teams at each of four participating elementary schools on Virginia's Peninsula. The schools involved enroll a majority of Black students, many of whom are from economically disadvantaged households. Designed to build on the highly successful S(sup 2)CAP program of the preceding two years, this project brought college faculty together with classroom teachers and trained volunteers in a cooperative effort to make a lasting difference in the quality of science education at the four schools. In total, this program touched approximately 1000 the school children, more than half of whom are black, giving them direct and indirect exposure to the spirit of inquiry and adventure of the world-wide science community. In S(sup 2)CAP Phase 3, a large measure of responsibility was placed on the classroom teachers, thus creating a more sustainable partnership between college faculty and grade school teacher. Our college physics professors coached and supported teams of teachers from each school at intensive training workshops. A volunteer program provided each teacher with one or more trained volunteers to assist in class with the hands-on activities that have been central to the S2CAP program. Most of the equipment for these activities was constructed during the workshops by the teachers and volunteers from low cost materials provided by the program. Two types of volunteers were enlisted: science smart black college students and technically trained retirees (many of whom are ex-NASA employees). One goal of this program was to increase the numbers of minority students who see science as an interesting and exciting subject, to make the science period a time which students look forward to in the school day. Such an attitude is expected to translate naturally into a higher interest in science and engineering as a career for these students. A second goal was to create a sustainable improvement in the way science is taught at the elementary level. By the end of the program we expected that our teachers would be significantly more self reliant in using hands-on-activities as a part of their science curricula than they were prior to their involvement with S2CAP. In summary, S2CAP Phase 3 offered intensive training workshops for teachers and supporting volunteers followed by stimulating hands-on activities in the classroom for the children. These components combined to amplify the experience, enthusiasm, and ideas of our scientists in a way that complements the normal elementary school curriculum in each of the two school systems involved.

  2. Luminosity measurements for the R scan experiment at BESIII

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Y. Y.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2017-06-01

    By analyzing the large-angle Bhabha scattering events e+e- → (γ)e+e- and diphoton events e+e- → (γ)γγ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. The results are important inputs for the R value and J/ψ resonance parameter measurements. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (10935007, 11121092, 11125525, 11235011, 11322544, 11335008, 11375170, 11275189, 11079030, 11475164, 11475169, 11005109, 10979095, 11275211), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201, U1532102). (KJCX2-YW-N29, KJCX2-YW-N45). 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  3. Crowd-Sourcing with K-12 citizen scientists: The Continuing Evolution of the GLOBE Program

    NASA Astrophysics Data System (ADS)

    Murphy, T.; Wegner, K.; Andersen, T. J.

    2016-12-01

    Twenty years ago, the Internet was still in its infancy, citizen science was a relatively unknown term, and the idea of a global citizen science database was unheard of. Then the Global Learning and Observations to Benefit the Environment (GLOBE) Program was proposed and this all changed. GLOBE was one of the first K-12 citizen science programs on a global scale. An initial large scale ramp-up of the program was followed by the establishment of a network of partners in countries and within the U.S. Now in the 21st century, the program has over 50 protocols in atmosphere, biosphere, hydrosphere and pedosphere, almost 140 million measurements in the database, a visualization system, collaborations with NASA satellite mission scientists (GPM, SMAP) and other scientists, as well as research projects by GLOBE students. As technology changed over the past two decades, it was integrated into the program's outreach efforts to existing and new members with the result that the program now has a strong social media presence. In 2016, a new app was launched which opened up GLOBE and data entry to citizen scientists of all ages. The app is aimed at fresh audiences, beyond the traditional GLOBE K-12 community. Groups targeted included: scouting organizations, museums, 4H, science learning centers, retirement communities, etc. to broaden participation in the program and increase the number of data available to students and scientists. Through the 20 years of GLOBE, lessons have been learned about changing the management of this type of large-scale program, the use of technology to enhance and improve the experience for members, and increasing community involvement in the program.

  4. Upward Bound: An Untapped Fountain Of Youth Wanting To Learn About Math And Science

    NASA Astrophysics Data System (ADS)

    Gillis-Davis, J. J.; Sherman, S. B.; Gillis-Davis, L. C.; Svelling, K. L.

    2009-12-01

    We developed a two-phased curricula aimed at high school students in Hawaii’s Upward Bound (UB) programs. The course, called “Tour Through the Solar System”, was tested in the summer 2008-2009 programs of two of the four Hawaii UB programs. Authorized by Congress in 1965, UB is a federal program funded by the U.S. Department of Education to serve students underrepresented in higher education. Students enrolled in UB are predominantly low income, or from families in which neither parent holds a bachelor’s degree. UB programs make a measurable improvement in retaining high school students in the education pipeline in part by using innovative educational and outreach programs to spark students’ interest in learning while building academic self-confidence. Curricula developed for UB are sustainable because there are 964 programs in the United States, and U territories. Education and outreach products can be presented at regional and national meetings, which directors of the UB programs attend. Broad regulations and varied instruction formats allow curriculum developers a flexible and creative framework for developing classes. For instance, regulations stipulate that programs must provide participants with academic instruction in mathematics, laboratory sciences, composition, literature, and foreign languages in preparation for college entrance. UB meets these guidelines through school-year academic activities and a six-week summer school program. In designing our curricula the primary goals were to help students learn how to learn and encourage them to develop an interest in the fields of science, technology, engineering and math using NASA planetary data sets in a Problem-Based Learning (PBL) environment. Our focus on planetary science stems from our familiarity with the data sets, our view that NASA data sets are a naturally inspirational tool to engage high school students, and its cross-disciplinary character: encompassing geology, chemistry, astronomy, physics, math, and engineering. In addition, learning science through inquiry and experimentation lends tangible examples to abstract principles. Our curricula (available on-line for sharing) are comprised of (1) modular classroom lesson plans, (2) teacher tutorials, and (3) hands-on laboratory experiments. Each set of summer classes has a theme; the first set of summer classes centered on factors that affect climate on any planet. For example, students measured solar activity by counting sunspots and learned about the greenhouse effect by conducting experiments with colored bottles. The second summer focused on how the electromagnetic spectrum is fundamental to remote sensing. During our summer 2009 program the Lunar Reconnaissance Orbiter launched, and with its many instruments served as a shining example of how the electromagnetic spectrum is used to study planetary bodies. Thus, NASA archived and student-collected data sets used in a PBL setting provide the basic foundation for helping students learn science and math concepts, while the UB programs ensure sustainability by providing a fountain of youth who want to learn.

  5. NASA Tech Briefs, September 2000. Volume 24, No. 9

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Topics include: Sensors; Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Bio-Medical; semiconductors/ICs; Books and Reports.

  6. Training Programs of the National Institute of General Medical Sciences, 1971-1980.

    ERIC Educational Resources Information Center

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    The study predicts future requirements for biological scientists by specialty area, future supply within area, and the effects of National Institutes of Health program alternatives on requirements and supply measures. At present and for the forseeable future, approved training grants for critical shortage areas are funded as rapidly as centers of…

  7. Linear Multimedia Benefits To Enhance Students' Ability To Comprehend Complex Subjects.

    ERIC Educational Resources Information Center

    Handal, Gilbert A.; Leiner, Marie A.; Gonzalez, Carlos; Rogel, Erika

    The main objective of this program was to produce animated educational material to stimulate students' interest and learning process related to the sciences and to measure their impact. The program material was designed to support middle school educators with an effective, accessible, and novel didactic tool produced specifically to enhance and…

  8. The New Millenium Program: Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space environment. This approach is not needed for all technologies, but it is usually essential to validate advanced system architectures or new measurement concepts. The NMP has recently revised its processes for defining candidate validation flights, and selecting technologies for these flights. The NMP now employs integrated project formulation teams, 'Which include scientists, technologists, and mission planners, to incorporate technology suites into candidate validation flights. These teams develop competing concepts, which can be rigorously evaluated prior to selection for flight. The technology providers for each concept are selected through an open, competitive, process during the project formulation phase. If their concept is selected for flight, they are incorporated into the Project Implementation Team, which develops, integrates, tests, launches, and operates the technology validation flight. Throughout the project implementation phase, the Implementation Team will document and disseminate their validation results to facilitate the infusion of their validated technologies into future OSS and OES science missions. The NMP has successfully launched its first two Deep Space flights for the OSS, and is currently implementing its first two Earth Orbiting flights for the OES. The next OSS and OES flights are currently being defined. Even though these flights are focused on specific Space Science and Earth Science themes, they are designed to validate a range of technologies that could benefit both enterprises, including advanced propulsion, communications, autonomous operations and navigation, multifunctional structures, microelectronics, and advanced instruments. Specific examples of these technologies will be provided in our presentation. The processes developed by the NMP also provide benefits across the Space and Earth Science enterprises. In particular, the extensive, nation-wide technology infrastructure developed by the NMP enhances the access to breakthrough technologies for both enterprises.

  9. Professional development that works: Impacting elementary science teachers' learning and practice during the implementation of an inquiry-oriented science curriculum

    NASA Astrophysics Data System (ADS)

    Schlang, Jodi A.

    One of the most important factors for developing science literacy for all students is teacher knowledge of science content and pedagogy. This study was designed to evaluate the impact of professional development on teacher learning, changes in teacher behavior, and student learning. The goal was to develop a deeper understanding of how the Elementary Science Teaching and Learning (ESTL) program affected teacher learning and changed teacher behavior in the classroom. This study also provided insight into the effect of the ESTL program on student learning during the first year of the professional development. This mixed method case study was used to examine the link between participation in the ESTL program, teacher learning, changes in teacher classroom behavior, and student learning. Qualitative observations and videotaped sessions provided rich description of the professional development and implementation of inquiry-oriented strategies in participant's classrooms. Artifacts and interviews provided evidence of teacher learning and changes in teacher behaviors. Quantitative data included self-report survey data examining changes in teacher behavior and the measurement of student learning used both science district assessment scores and CSAP writing scores. Key findings include: (1) teacher learning was reported in the areas of questioning and scope and sequence of the curriculum occurred; (2) statistically significant changes teacher behavior were reported and were noted in teacher interviews; (3) participation in the ESTL program did not positively impact student learning; (4) unanticipated findings include the role of camaraderie in professional development and the role of additional training in teacher's confidence in both their own teaching and in helping others; and, (5) teacher's perceptions identified the role of inquiry-based science curriculum as providing the rich experiences necessary for improved student writing. Overall participation in the ESTL program increased the implementation of inquiry-oriented strategies and it strengthened teacher inquiry-based science teaching in the classroom even though no increases were found in student test scores.

  10. Integrating long-term science projects into K-12 curriculum: Fostering teacher-student engagement in urban environmental research through an NSF UCLA GK-12 program

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Moldwin, M.; Nonacs, P.; Daniel, J.; Shope, R.

    2009-12-01

    A National Science Foundation Graduate Teaching Fellows in K- 12 Education program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA) has just completed its first year (of a five-year program) and has greatly expanded UCLA’s science and engineering partnerships with LA Unified and Culver City Unified School Districts. The SEE-LA program partners UCLA faculty, graduate students (fellows), middle and high school science teachers and their students into a program of science and engineering exploration that brings the environment of Los Angeles into the classroom. UCLA graduate fellows serve as scientists-in-residence at the four partner schools to integrate inquiry-based science and engineering lessons, facilitate advancements in science content teaching, and ultimately, to improve their own science communication skills. As part of their fellowship, graduate students are required to develop three inquiry-based lessons in their partner classroom, including a lesson focused on their dissertation research, a lesson focused on the environmental/watershed theme of the project, and a lesson that involves longer-term data collection and synthesis with the grade 6-12 teachers and students. The developed long-term projects ideally involve continued observations and analysis through the five-year project and beyond. During the first year of the project, the ten SEE-LA fellows developed a range of long-term research projects, from seasonal invertebrate observations in an urban stream system, to home energy consumption surveys, to a school bioblitz (quantification of campus animals and insects). Examples of lesson development and integration in the classroom setting will be highlighted as well as tools required for sustainability of the projects. University and local pre-college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the integration of sustainable research projects into K-12 curriculum.

  11. The effects of integrated mathematics/science curriculum and instruction on mathematics achievement and student attitudes in grade six

    NASA Astrophysics Data System (ADS)

    Hill, Mary Denise

    The purpose of this study was to determine whether integrating mathematics and science curriculum and teaching practices significantly improves achievement in mathematics and attitudes towards mathematics among sixth grade students in South Texas. The study was conducted during the 2001--2002 school year. A causal-comparative ex post facto research design was used to explore the effects of integrated mathematics and science classrooms compared to classrooms of traditional, isolated mathematics and science teaching practices on student achievement and student attitudes. Achievement was based on the Spring 2002 Mathematics portion of the standardized Texas Assessment of Academic Skills (TAAS) Texas Learning Index (TLI) scores and individual student's mathematics Grade Point Average (GPA). Measurement of student attitudes was based on the results of the Integrated Mathematics Attitudinal Survey (IMAS), created by the researcher for this study. The sample population included 349 Grade 6 mathematics students attending one middle school involved in a pilot program utilizing integrated mathematics/science curriculum and teaching practices in a South Texas urban school district. The research involved 337 of the 349 sixth grade students to study the effects of mathematics/science curriculum and teaching practices on achievement and 207 of the 349 sixth grade students to study the effects of mathematics/science curriculum on attitudes concerning mathematics. The data were analyzed using chi square analyses, independent samples t-tests, and the analysis of variance (ANOVA). Statistical significance was determined at the .05 level of significance. Significant relationships were found when analyzing the proficiency of mathematics skills and individual growth of mathematics achievement. Chi square analyses indicated that the students in the integrated mathematics/science classrooms were more likely to exhibit individual growth and proficiency of mathematics skills based on the results of TAAS. Independent samples t-tests indicated that students in the integrated mathematics/science program scored significantly higher than the students in the traditional program in mean achievement scores and in mean growth of scores based on the results of TAAS. No significant differences were found when comparing mathematics anxiety scores between students in the integrated mathematics/science program and the traditional program. However, additional significant differences were identified when students in the integrated mathematics/science program scored higher than the students in the traditional program when analyzing the overall mean student attitude scores concerning mathematics and the mean scores of attitudinal values of mathematics in society.

  12. Investigating the motivational behavior of pupils during outdoor science teaching within self-determination theory.

    PubMed

    Dettweiler, Ulrich; Ünlü, Ali; Lauterbach, Gabriele; Becker, Christoph; Gschrey, Bernhard

    2015-01-01

    This paper presents data from a mixed-method pilot study (n = 84) searching into learning psychological aspects of an outdoor science teaching program. We use data from qualitative explorations into the pupils' learning motivation during field observation, a group interview, and open questionnaires, in order to understand quantitative measures from the Self-Determination Index (SDI), and the Practical Orientation (PO) of the program. Our data suggest that lower self-regulated pupils in "normal" science classes show a significantly higher self-regulated learning motivational behavior in the outdoor educational setting (p < 10(-4)), and that the outdoor-teaching has generally been perceived as more practical than teaching at the normal school context (p < 10(-4)), irrespective of gender or school culture. We are going to provide in-depth analyses of all quantitative findings with our qualitative data and thus explain the findings logically, with respect to the direction of the statistical interpretation, and substantially, with respect to the meaning of the discoveries. We conclude that outdoor programming appears to be a suitable tool to trigger interest in science in youngsters, especially for less motivated pupils.

  13. IcePod - A versatile Science Platform for the New York Air National Guard's LC-130 Aircraft

    NASA Astrophysics Data System (ADS)

    Frearson, N.; Bell, R. E.; Zappa, C. J.

    2011-12-01

    The ICEPOD program is a five-year effort to develop an ice imaging system mounted on New York Air National Guard (NYANG) LC-130 aircraft to map the surface and sub-surface topography of ice sheets, ice streams and outlet glaciers for the NSF Major Research Instrumentation program. The project is funded by the American Recovery and Reinvestment Act. The fundamental goal of the ICEPOD program is to develop an instrumentation package that can capture the dynamics of the changing polar regions, focusing on ice and ocean systems. The vision is that this instrumentation will be operated both on routine flights of the NYANG in the polar regions, such as on missions between McMurdo and South Pole Station, and on targeted science missions, from mapping sea ice and outlet glaciers such as those surrounding Ross Island or Greenland to quantifying the drainage systems from large subglacial lakes in East Antarctica. It is a key aspect of the design that at the conclusion of this program, the Pod, Deployment Arm and Data Acquisition and Management system will become available for use by the science community at large to install their own instruments onto. The science requirements for the primary instruments in the Icepod program have been defined and can be viewed on-line at www.ldeo.columbia.edu/icepod. As a consequence, the instrumentation will consist of a scanning laser for precise measurements of the ice surface, stereo-photogrammetry from both visible and infrared imaging cameras to document the ice surface and temperature, a VHF coherent, pulsed radar to recover ice thickness and constrain the distribution of water at the ice sheet bed and an L-band radar to measure surface accumulation or sea-ice thickness. All instrument data sets will be time-tagged and geo-referenced by recording precision GPS satellite data integrated with inertial measurement technology integrated into the pod. There will also be two operational modes - a low altitude flight mode that will optimize the imaging systems and a high altitude flight mode that will facilitate wider use of the instrumentation suite on routine NYANG support missions. Proposals for new observations are welcome. The sensor system will become a research facility operated for the science community, and data will be maintained at and provided through a polar data center.

  14. Chronic pain self-management support with pain science education and exercise (COMMENCE): study protocol for a randomized controlled trial.

    PubMed

    Miller, Jordan; MacDermid, Joy C; Walton, David M; Richardson, Julie

    2015-10-14

    Previous research suggests that self-management programs for people with chronic pain improve knowledge and self-efficacy but result in negligible effects on function. This study will investigate the effectiveness self-management support with pain science education and exercise on improving function for people with chronic pain in comparison to a wait-list control. A secondary objective is to determine which variables help to predict response to the intervention. This study will be an unblinded, randomized controlled trial with 110 participants comparing a 6-week program that includes self-management support, pain science education and exercise to a wait-list control. The primary outcome will be function measured by the Short Musculoskeletal Function Assessment - Dysfunction Index. Secondary outcomes will include pain intensity measured by a numeric pain rating scale, pain interference measured by the eight-item PROMIS pain interference item-bank, how much patients are bothered by functional problems measured by the Short Musculoskeletal Function Assessment - Bother Index, catastrophic thinking measured by the Pain Catastrophizing Scale, fear of movement/re-injury measured by the 11-item Tampa Scale of Kinesiophobia, sense of perceived injustice measured by the Injustice Experience Questionnaire, self-efficacy measured by the Pain Self-Efficacy Questionnaire, pain sensitivity measured by pressure pain threshold and cold sensitivity testing, fatigue measured by a numeric fatigue rating scale, pain neurophysiology knowledge measured by the Neurophysiology of Pain Questionnaire, healthcare utilization measured by number of visits to a healthcare provider, and work status. Assessments will be completed at baseline, 7 and 18 weeks. After the 18-week assessment, the groups will crossover; however, we anticipate carry-over effects with the treatment. Therefore, data from after the crossover will be used to estimate within-group changes and to determine predictors of response that are not for direct between-group comparisons. Mixed effects modelling will be used to determine between-group differences for all primary and secondary outcomes. A series of multiple regression models will be used to determine predictors of treatment response. This study has the potential to inform future self-management programming through evaluation of a self-management program that aims to improve function as the primary outcome. ClinicalTrials.gov NCT02422459 , registered on 13 April 2015.

  15. NASA/MSFC FY91 Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W. (Editor)

    1991-01-01

    The reports presented at the annual Marshall Research Review of Earth Science and Applications are compiled. The following subject areas are covered: understanding of atmospheric processes in a variety of spatial and temporal scales; measurements of geophysical parameters; measurements on a global scale from space; the Mission to Planet Earth Program (comprised of and Earth Observation System and the scientific strategy to analyze these data); and satellite data analysis and fundamental studies of atmospheric dynamics.

  16. Measurement of Nitroaromatic Explosives by Micellar Electrokinetic Chromatography in Waters Collected Along a Tropical Estuary

    DTIC Science & Technology

    2014-02-07

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/ 6110 --14-9504 Measurement of Nitroaromatic Explosives by Micellar Electrokinetic...Carolina CaMeron lindsay Science & Engineering Apprenticeship Program Office of Naval Research Arlington, Virginia i REPORT DOCUMENTATION PAGE Form...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2 . REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE

  17. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  18. Calcium II K Line as a Measure of Activity: Meshing Sac Peak and Solis Measurements

    NASA Astrophysics Data System (ADS)

    Urbach, Elana; Earley, J.; Keil, S.

    2012-05-01

    The Calcium II K line is an important indicator of solar and stellar activity. Disk integrated Ca K measurements have been taken at the Evans Solar Facility at Sacramento Peak Observatory since 1976. This instrument will be shut down by the end of the year, and the observations will be continued by the Solis Integrated Sunlight Spectrometer (ISS), which has been taking measurements since 2006. We attempt to regress the measurements from Sacramento Peak and ISS. In addition, we compare the Ca K measurements with disk averaged line of sight magnetic field measurements, which will help us predict the magnetic field of other stars. We also compare the measurements with Lyman α, allowing us to use Ca K as an extreme ultraviolet (EUV) proxy. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) [or Research Experiences for Teachers (RET)] site program, which is co-funded by the Department of Defense in partnership with the National Science Foundation REU/RET Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  19. A Mixed Methods Approach to Determining the Impact of a Geoscience Field Research Program upon Science Teachers' Knowledge, Beliefs, and Instructional Practices

    ERIC Educational Resources Information Center

    Luera, Gail; Murray, Kent

    2016-01-01

    A mixed methods research approach was used to investigate the impact of a geosciences research institute upon 62 science teachers' knowledge, beliefs, and teaching practices related to teaching the geosciences. Pre- and postinstitute quantitative and qualitative assessments revealed mixed results. Results of a quantitative measure found a…

  20. Science Library of Test Items. Volume Three. Mastery Testing Programme. Introduction and Manual.

    ERIC Educational Resources Information Center

    New South Wales Dept. of Education, Sydney (Australia).

    A set of short tests aimed at measuring student mastery of specific skills in the natural sciences are presented with a description of the mastery program's purposes, development, and methods. Mastery learning, criterion-referenced testing, and the scope of skills to be tested are defined. Each of the multiple choice tests for grades 7 through 10…

  1. Measuring the Impact of Termite Prevention Curricula in Hawaii Public Schools in an Area-Wide Extension Program

    ERIC Educational Resources Information Center

    Mason, Makena; Aihara-Sasaki, Maria; Grace, J. Kenneth

    2013-01-01

    The efficacy of Educate to Eradicate, a K-12 service-learning science curricula developed as part of a statewide, community-based Extension effort for termite prevention, was evaluated. The curricula use termite biology and control as the basis for science education and have been implemented in over 350 Hawaii public school classrooms with more…

  2. The Effect of the Integration of Computing Technology in a Science Curriculum on Female Students' Self-Efficacy Attitudes

    ERIC Educational Resources Information Center

    Cady, Donna; Terrell, Steven R.

    2008-01-01

    Females are underrepresented in technology-related careers and educational programs; many researchers suggest this can be traced back to negative feelings of computer self-efficacy developed as early as the age of 10. This study investigated the effect of embedding technology into a 5th grade science classroom and measuring its effect on…

  3. Exploring the Relationship among New Literacies, Reading, Mathematics and Science Performance of Turkish Students in PISA 2012

    ERIC Educational Resources Information Center

    Arikan, Serkan; Yildirim, Kasim; Erbilgin, Evrim

    2016-01-01

    Turkish students on average had lower scores than OECD countries on mathematics, science, and reading at international assessment programs. As PISA measures the extent to which 15-year-old students are prepared to handle the challenges they may encounter in their future lives, and evaluates students' ability to reflect and to apply their knowledge…

  4. Science teachers and docents as mentors to science and mathematics undergraduates in formal and information settings. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koran, J.J. Jr.

    Twenty-four undergraduate science and mathematics majors who were juniors and seniors in the colleges of Liberal Arts and Sciences and Engineering were recruited, and paid, to participate in an orientation seminar and act as teacher aides in regional schools and the Florida Museum of Natural History. Aides worked with teachers in the schools one semester and as docents in the natural history museum a second semester. Mentoring took place by the principal investigator and participating teachers and docents throughout the program. Success of the program was measured by a specially prepared attitude instrument which was administered to participants before themore » mentoring started and when it ended each semester. Written logs (field notes) were also prepared and submitted by participants at the end of each semester. Further, a tally was kept of the number of participants who decided to go into science or mathematics teaching as a result of the experience.« less

  5. Research Experiences in Teacher Preparation: Effectiveness of the Green Bank preservice teacher enhancement program

    NASA Astrophysics Data System (ADS)

    Hemler, Debra A.

    1997-11-01

    The purpose of this study was to examine the effectiveness of the preservice teacher component of the Research Experiences in Teacher Preparation (RETP) project aimed at enhancing teacher perceptions of the nature of science, science research, and science teaching. Data was collected for three preservice teacher groups during the three phases of the program: (I) a one week institute held at the National Radio Astronomy Observatory in Green Bank, West Virginia where teachers performed astronomy research using a 40 foot diameter radio telescope; (II) a secondary science methods course; and (III) student teaching placements. Four Likert-type instruments were developed and administered pre and post-institute to assess changes in perceptions of science, attitudes toward research, concerns about implementing research in the classroom, and evaluation of the institute. Instruments were re-administered following the methods course and student teaching. Observations of classroom students conducting research were completed for seven preservice teacher participants in their student teaching placements. Analysis, using t-tests, showed a significant increase in preservice teachers perceptions of their ability to do research. Preservice teachers were not concerned about implementing research in their placements. No significant change was measured in their understanding of the nature of science and science teaching. Concept maps demonstrated a significant increase in radio astronomy content knowledge. Participants responded that the value of institute components, quality of the research elements, and preparation for implementing research in the classroom were "good" to "excellent". Following the methods course (Phase II) no significant change in their understanding of the nature of science or concerns about implementing projects in the classroom were measured. Of the 7 preservice teachers who were observed implementing research projects, 5 projects were consistent with the Green Bank model. Student teachers who had initiated research in their classrooms had fewer concerns about doing them than those that had not. No significant change was measured in their perceptions of science and science teaching. The RETP project serves as a viable constructivist model for exposing preservice teachers to science research and transferring that experience to the classroom.

  6. The Pisgah Astronomical Research Institute

    NASA Astrophysics Data System (ADS)

    Cline, J. Donald; Castelaz, M.

    2009-01-01

    Pisgah Astronomical Research Institute is a not-for-profit foundation located at a former NASA tracking station in the Pisgah National Forest in western North Carolina. PARI is celebrating its 10th year. During its ten years, PARI has developed and implemented innovative science education programs. The science education programs are hands-on experimentally based, mixing disciplines in astronomy, computer science, earth and atmospheric science, engineering, and multimedia. The basic tools for the educational programs include a 4.6-m radio telescope accessible via the Internet, a StarLab planetarium, the Astronomical Photographic Data Archive (APDA), a distributed computing online environment to classify stars called SCOPE, and remotely accessible optical telescopes. The PARI 200 acre campus has a 4.6-m, a 12-m and two 26-m radio telescopes, optical solar telescopes, a Polaris monitoring telescope, 0.4-m and 0.35-m optical research telescopes, and earth and atmospheric science instruments. PARI is also the home of APDA, a repository for astronomical photographic plate collections which will eventually be digitized and made available online. PARI has collaborated with visiting scientists who have developed their research with PARI telescopes and lab facilities. Current experiments include: the Dedicated Interferometer for Rapid Variability (Dennison et al. 2007, Astronomical and Astrophysical Transactions, 26, 557); the Plate Boundary Observatory operated by UNAVCO; the Clemson University Fabry-Perot Interferometers (Meriwether 2008, Journal of Geophysical Research, submitted) measuring high velocity winds and temperatures in the Thermosphere, and the Western Carolina University - PARI variable star program. Current status of the education and research programs and instruments will be presented. Also, development plans will be reviewed. Development plans include the greening of PARI with the installation of solar panels to power the optical telescopes, a new distance learning center, and enhancements to the atmospheric and earth science suite of instrumentation.

  7. Dealing with Foreign Students and Scholars in an Age of Terrorism: Visa Backlogs and Tracking Systems. Hearing before the Committee on Science. House of Representatives, One Hundred Eighth Congress, First Session (March 26, 2003).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Committee on Science.

    The House Science Committee held a hearing on the enhanced security measures foreign students and scholars in science, mathematics, and engineering face when they apply for a visa and subsequently enroll in an academic or exchange program in the United States. This hearing was the second in a series on the need for balance between heightened…

  8. Measurement science and manufacturing science research

    NASA Technical Reports Server (NTRS)

    Phillips, D. Howard

    1987-01-01

    The research program of Semiconductor Research Corp. is managed as three overlapping areas: Manufacturing Sciences, Design Sciences and Microstructure Sciences. A total of 40 universities are participating in the performance of over 200 research tasks. The goals and direction of Manufacturing Sciences research became more clearly focused through the efforts of the Manufacturing Sciences Committee of the SRC Technical Advisory Board (TAB). The mission of the SRC Manufacturing Research is the quantification, control, and understanding of semiconductor manufacturing process necessary to achieve a predictable and profitable product output in the competitive environment of the next decade. The 1994 integrated circuit factory must demonstrate a three level hierarchy of control: (1) operation control, (2) process control, and (3) process design. These levels of control are briefly discussed.

  9. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  10. National 4-H Common Measures: Initial Evaluation from California 4-H

    ERIC Educational Resources Information Center

    Lewis, Kendra M.; Horrillo, Shannon J.; Widaman, Keith; Worker, Steven M.; Trzesniewski, Kali

    2015-01-01

    Evaluation is a key component to learning about the effectiveness of a program. This article provides descriptive statistics of the newly developed National 4-H Common Measures (science, healthy living, citizenship, and youth development) based on data from 721 California 4-H youth. The measures were evaluated for their reliability and validity of…

  11. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  12. Creating a Learning Continuum: A Critical Look at the Intersection of Prior Knowledge, Outdoor Education, and Next Generation Science Standards Disciplinary Core Ideas and Practices

    NASA Astrophysics Data System (ADS)

    Schlobohm, Trisha Leigh

    Outdoor School is a cherished educational tradition in the Portland, OR region. This program's success is attributed to its presumed ability to positively impact affective and cognitive student outcomes. Residential programs such as Outdoor School are considered to be an important supplement to the classroom model of learning because they offer an authentic, contextually rich learning environment. References to relevant literature support the idea that student gains in affective and cognitive domains occur as a result of the multi-sensory, enjoyable, hands-on nature of outdoor learning. The sample population for this study was 115 sixth graders from a demographically diverse Portland, OR school district. This study used an instrument developed by the Common Measures System that was administered to students as part of Outdoor School's professional and program development project. The affective student outcome data measured by the Common Measures instrument was complemented by a formative assessment probe ascertaining prior knowledge of the definition of plants and field notes detailing Field Study instructor lesson content. This first part of this study examined the changes that take place in students' attitudes toward science as a result of attending Outdoor School. The second part took a look at how Outdoor School instruction in the Plants field study aligned with NGSS MS-LS Disciplinary Core Ideas and Practices. The third section of the study compared how Outdoor School instruction in the Plants Field Study and students' prior knowledge of what defines a plant aligned with NGSS MS-LS DCIs. The intent of the research was to arrive at a more nuanced understanding of how students' attitudes toward science are influenced by participating in an outdoor education program and contribute to the development of a continuum between classroom and outdoor school learning using Next Generation Science Standards Disciplinary Core Ideas and Practices as a framework. Results of this study were intended to inform outdoor education program development, add to the existing body of research, and inform future research projects.

  13. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    NASA Astrophysics Data System (ADS)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  14. Quantifying the Sources and Sinks of Greenhouse Gases: What Does It Take to Satisfy Scientific and Decision-Making Needs?

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Keller, K.; Ogle, S. M.; Smith, S.

    2014-12-01

    Changes in the sources and sinks of greenhouse gases (GHGs) are key drivers of anthropogenic climate change. It is hence not surprising that current and emerging U.S. governmental science priorities and programs focused on climate change (e.g. a U.S. Carbon Cycle Science Plan; the U.S. Carbon Cycle Science Program, the U.S. Global Change Research Program, Executive Order 13653 'Preparing the U.S. for the Impacts of Climate Change') all call for an improved understanding of these sources and sinks.. Measurements of the total atmospheric burden of these gases are well established, but measurements of their sources and sinks are difficult to make over spatial and temporal scales that are relevant for scientific and decisionmaking needs. Quantifying the uncertainty in these measurements is particularly challenging. This talk reviews the intersection of the state of knowledge of GHG sources and sinks, focusing in particular on CO2 and CH4, and science and decision-making needs for this information. Different science and decision-making needs require differing levels of uncertainty. A number of high-priority needs (early detection of changes in the Earth system, projections of future climate, support of markets or regulations) often require a high degree of accuracy and/or precision. We will critically evaluate current U.S. planning to documents to infer current perceived needs for GHG source/sink quantification, attempting to translate these needs into quantitative uncertainty metrics. We will compare these perceived needs with the current state of the art of GHG source/sink quantification, including the apparent pattern of systematic differences between so-called "top down" and "bottom-up" flux estimates. This comparison will enable us to identify where needs can be readily satisfied, and where gaps in technology exist. Finally, we will examine what steps could be taken to close existing gaps.

  15. A Mars Exploration Discovery Program

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Paige, D. A.

    2000-07-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  16. A Mars Exploration Discovery Program

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    2000-01-01

    The Mars Exploration Program should consider following the Discovery Program model. In the Discovery Program a team of scientists led by a PI develop the science goals of their mission, decide what payload achieves the necessary measurements most effectively, and then choose a spacecraft with the capabilities needed to carry the payload to the desired target body. The primary constraints associated with the Discovery missions are time and money. The proposer must convince reviewers that their mission has scientific merit and is feasible. Every Announcement of Opportunity has resulted in a collection of creative ideas that fit within advertised constraints. Following this model, a "Mars Discovery Program" would issue an Announcement of Opportunity for each launch opportunity with schedule constraints dictated by the launch window and fiscal constraints in accord with the program budget. All else would be left to the proposer to choose, based on the science the team wants to accomplish, consistent with the program theme of "Life, Climate and Resources". A proposer could propose a lander, an orbiter, a fleet of SCOUT vehicles or penetrators, an airplane, a balloon mission, a large rover, a small rover, etc. depending on what made the most sense for the science investigation and payload. As in the Discovery program, overall feasibility relative to cost, schedule and technology readiness would be evaluated and be part of the selection process.

  17. The Effect of a Zoo-Based Experiential Academic Science Program on High School Students' Math and Science Achievement and Perceptions of School Climate

    NASA Astrophysics Data System (ADS)

    Mulkerrin, Elizabeth A.

    The purpose of this study was to determine the effect of an 11th-grade and 12th-grade zoo-based academic high school experiential science program compared to a same school-district school-based academic high school experiential science program on students' pretest and posttest science, math, and reading achievement, and student perceptions of program relevance, rigor, and relationships. Science coursework delivery site served as the study's independent variable for the two naturally formed groups representing students (n = 18) who completed a zoo-based experiential academic high school science program and students (n = 18) who completed a school-based experiential academic high school science program. Students in the first group, a zoo-based experiential academic high school science program, completed real world, hands-on projects at the zoo while students in the second group, those students who completed a school-based experiential academic high school science program, completed real world, simulated projects in the classroom. These groups comprised the two research arms of the study. Both groups of students were selected from the same school district. The study's two dependent variables were achievement and school climate. Achievement was analyzed using norm-referenced 11th-grade pretest PLAN and 12th-grade posttest ACT test composite scores. Null hypotheses were rejected in the direction of improved test scores for both science program groups---students who completed the zoo-based experiential academic high school science program (p < .001) and students who completed the school-based experiential academic high school science program (p < .001). The posttest-posttest ACT test composite score comparison was not statistically different ( p = .93) indicating program equipoise for students enrolled in both science programs. No overall weighted grade point average score improvement was observed for students in either science group, however, null hypotheses were rejected in the direction of improved science grade point average scores for 11th-grade (p < .01) and 12th-grade (p = .01) students who completed the zoo-based experiential academic high school science program. Null hypotheses were not rejected for between group posttest science grade point average scores and school district criterion reference math and reading test scores. Finally, students who completed the zoo-based experiential academic high school science program had statistically improved pretest-posttest perceptions of program relationship scores (p < .05) and compared to students who completed the school-based experiential academic high school science program had statistically greater posttest perceptions of program relevance (p < .001), perceptions of program rigor (p < .001), and perceptions of program relationships (p < .001).

  18. Twentieth Century Moon: The Evolution of Lunar Science, 1955 - 2002

    NASA Technical Reports Server (NTRS)

    Templeton, T. C.; Kinney, A. L.

    2008-01-01

    Here we discuss thc bibliographic record of Lunar Science as published in refereed journals from 1955 to 2002. New tools in bibliometrics, i.e. the study of publications and citations, reveal the structure of this scientific field by measuring and visualizing connections between published papers. This approach is especially powerful when applied to a well defined field such as Lunar Science, which is strongly affected by policy and the actions resulting from policy, most obviously gathering samples from the Moon. This poster presents some results obtained by processing a dataset of lunar science bibliographic records through a bibliographic visualization program.

  19. The International State of Research on Measurement of Competency in Higher Education

    ERIC Educational Resources Information Center

    Zlatkin-Troitschanskaia, Olga; Shavelson, Richard J.; Kuhn, Christiane

    2015-01-01

    With the Program for International Student Assessment and Trends in International Mathematics and Science Study surveys, competency assessment became an important policy instrument in the school sector; only recently has international competency measurement gained attention in higher education with the Assessment of Higher Education Learning…

  20. Businesses assisting K--12 science instruction: Four case studies of long-term school partnerships

    NASA Astrophysics Data System (ADS)

    van Trieste, Lynne M.

    Businesses lack enough qualified applicants to fill the increasing need for scientists and engineers while educators lack many resources for science programs in K-12 schools. This series of case studies searched for successful collaborations between the two in four geographic locations: Boise, Idaho; Dallas, Texas; Los Angeles County, California, and Orange County, California. These science education partnerships were investigated to gain an understanding of long-term partnership structure, functioning and evaluation methods. Forty-nine individual interviews with representatives from the groups of stakeholders these programs impact were also conducted. Stakeholder groups included students, teachers, parents, school administrators, business liaisons, and non-profit representatives. Several recurring themes in these partnerships reinforced the existing literature research findings. Collaboration and communication between partners, teacher professional development, the need for more minority and female representation in physical science careers, and self-efficacy in relation to how people come to view their scientific abilities, are among these themes. Topics such as program replication, the importance of role models, programs using "hands-on" activities, reward systems for program participants, and program outcome measurement also emerged from the cases investigated. Third-party assistance by a non-profit entity is occurring within all of these partnerships. This assistance ranges from a service providing material resources such as equipment, lesson plans and meeting space, to managing the partnership fundraising, program development and evaluations. Discussions based upon the findings that support or threaten sustainment of these four partnerships, what a "perfect" partnership might look like, and areas in need of further investigation conclude this study.

  1. Academic Medical Product Development: An Emerging Alliance of Technology Transfer Organizations and the CTSA

    PubMed Central

    Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott

    2014-01-01

    Abstract To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health‐related inventions. The technology transfer Offices (TTO) of CTSA‐funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP‐KFC) developed a survey to explore how CTSA‐funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well‐connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health‐related inventions as measured by follow‐on funding and industry involvement; either as a consulting partner or licensee. PMID:24945893

  2. Academic medical product development: an emerging alliance of technology transfer organizations and the CTSA.

    PubMed

    Rose, Lynn M; Everts, Maaike; Heller, Caren; Burke, Christine; Hafer, Nathaniel; Steele, Scott

    2014-12-01

    To bring the benefits of science more quickly to patient care, the NIH National Center Advancing Translational Sciences (NCATS) supports programs that enhance the development, testing, and implementation of new medical products and procedures. The NCATS clinical and translational science award (CTSA) program is central to that mission; creating an academic home for clinical and translational science and supporting those involved in the discovery and development of new health-related inventions. The technology transfer Offices (TTO) of CTSA-funded universities can be important partners in the development process; facilitating the transfer of medical research to the commercial sector for further development and ultimately, distribution to patients. The Aggregating Intellectual Property (IP) Working Group (AWG) of the CTSA public private partnerships key function committee (PPP-KFC) developed a survey to explore how CTSA-funded institutions currently interface with their respective TTOs to support medical product development. The results suggest a range of relationships across institutions; approximately half have formal collaborative programs, but only a few have well-connected programs. Models of collaborations are described and provided as examples of successful CTSA/TTO partnerships that have increased the value of health-related inventions as measured by follow-on funding and industry involvement; either as a consulting partner or licensee. © 2014 Wiley Periodicals, Inc.

  3. Involving International Student Teams in GPS and GRS Surveys to Study Cryospheric Change in Greenland and the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Mayer, H.

    2009-12-01

    In the course of research programs to develop a methodology for the study of microtopography of ice and snow surfaces, we placed a strong emphasis on the involvement of students. This project provided the opportunity to engage students in every step from building the instrument through development of the data processing, the actual field measurements, processing of the resultant data, their evaluation and interpretation to the final publication in scientific journals. The development of the Glacier Roughness Sensor (GRS) incorporating Global Positioning System (GPS) technology and the fieldwork on the Greenland Inland Ice were particularly fascinating and instructive for students. In a related snow-hydrological research project on Niwot Ridge in the Colorado Front Range, we involved students in two season-long measurement campaigns in a high alpine environment. Students from the Universität Trier, Germany, and the University of Colorado Boulder participated in this project to learn about the value of international collaboration in science. Funding was provided by Deutsche Forschungsgemeinschaft (Antarctic and Arctic Program) and the U.S. National Science Foundation (Hydrological Sciences Program). Students participated in preparatory classes and field camps, selected their own research projects and received university credit towards their degrees in geography or environmental sciences. All student participants in the MICROTOP projects have gone on to higher university education and become professionally exceptionally successful. Students setting up camp on the Greenland Ice Sheet during expedition MICROTOP 99.

  4. Indicators of science, technology, engineering, and math (STEM) career interest among middle school students in the USA

    NASA Astrophysics Data System (ADS)

    Mills, Leila A.

    This study examines middle school students' perceptions of a future career in a science, math, engineering, or technology (STEM) career field. Gender, grade, predispositions to STEM contents, and learner dispositions are examined for changing perceptions and development in career-related choice behavior. Student perceptions as measured by validated measurement instruments are analyzed pre and post participation in a STEM intervention energy-monitoring program that was offered in several U.S. middle schools during the 2009-2010, 2010-2011 school years. A multiple linear regression (MLR) model, developed by incorporating predictors identified by an examination of the literature and a hypothesis-generating pilot study for prediction of STEM career interest, is introduced. Theories on the career choice development process from authors such as Ginzberg, Eccles, and Lent are examined as the basis for recognition of career concept development among students. Multiple linear regression statistics, correlation analysis, and analyses of means are used to examine student data from two separate program years. Study research questions focus on predictive ability, RSQ, of MLR models by gender/grade, and significance of model predictors in order to determine the most significant predictors of STEM career interest, and changes in students' perceptions pre and post program participation. Analysis revealed increases in the perceptions of a science career, decreases in perceptions of a STEM career, increase of the significance of science and mathematics to predictive models, and significant increases in students' perceptions of creative tendencies.

  5. An Experimental Study of a BSCS-Style Laboratory Approach for University General Biology.

    ERIC Educational Resources Information Center

    Leonard, William H.

    1983-01-01

    A Biological Sciences Curriculum Study (BSCS) inquiry approach for university general biology laboratory was tested against a well-established commercial program judged to be highly directive. The BSCS was found to be more effective in learning biology laboratory concepts than the commercial program as measured by a laboratory concepts test.…

  6. Investigating the Nature of Dark Energy using Type Ia Supernovae with WFIRST-AFTA Space Mission

    NASA Astrophysics Data System (ADS)

    Perlmutter, Saul

    Scientifically, the WFIRST supernova program is unique: it makes possible a dark energy measurement that no other space mission or ground-based project is addressing, a measurement that will set the standard in determining the expansion history of the universe continuously from low to high redshifts (0.1 < z < 1.7). In the context of the WFIRST Science Definition Team several participants in this proposal have developed a first version of a supernova program, described in the WFIRST SDT Report. While this program was judged to be a robust one, and the estimates of the sensitivity to the cosmological parameters were felt to be reliable, due to limitations of time the analysis was clearly limited in depth on a number of issues. The objective of this proposal is to further develop this program. Technically this is the WFIRST measurement that arguably requires the most advanced project development, since it requires near-real-time analysis and follow-up with WFIRST, and since it is using the IFU spectrograph in the WFI package, the IFU being the WFIRST instrument that does not yet have a completely consistent set of specifications in the design iteration of the SDT report. In this proposal for the WFIRST Scientific Investigation Team, focused primarily on the supernova dark energy measurements, we address these crucial technical needs by bringing the larger supernova community's expertise on the science elements together with a smaller focused team that can produce the specific deliverables. Thus the objectives of this 5 year proposal are the following: 1. Development of scientific performance requirements for the study of Dark Energy using Type Ia supernovae 2. Design an observing strategy using the Wide Field Instrument (WFI) and the Integral Field Spectrometer Unit (IFU) 3. Development of science data analysis techniques and data analysis software 4. Development of ground and space calibration requirements and estimating realistic correlated errors, both statistical and systematic 5. Development of simulations and data challenges to validate the above 6. Development of complete plans in coordination with WFIRST project, for all aspects of science simulations, precursor observations, ground calibration, observational needs, data processing, anciliary data collection/incorporation, analysis, dissemination and documentation of the proposed science investigation. The 5 year program also intends to provide the following deliverables: 1. Documentation describing detailed scientific performance requirements 2. Documentation describing a design of an observing program 3. Documentation of science data analysis techniques 4. Simulations and data challenges to validate the above items 5. Algorithms used to perform processing of science data to serve as a basis for the WFIRST pipeline To achieve these objectives the plan is to set up a Supernova Project Office, seven Supernova Working Groups, and two Supernova Software Deliverables Teams. During the recent years of work with the Science Definition Team, it has been clear that the WFIRST Project Office requires a continuous series of scientific answers to the stream of design and requirements questions that arise in the development of the mission. One of the highest priorities of the Supernova Project Office will be to coordinate with the WFIRST Project Office and be the one-stop-shopping source of answers to such questions. The second topic of this proposal is Weak Lensing (WL). The intrinsic broad wavelength coverage and excellent flux calibration of the IFU spectra will provide an important training for the photometric redshift measurements, beyond what is possible from the ground, required for the WL survey. At this time the IFU design details are not fully developed, and our studies will ensure that the WL photo-z requirements are folded into a realistic final IFU design.

  7. Carrier behavior of HgTe under high pressure revealed by Hall effect measurement

    NASA Astrophysics Data System (ADS)

    Hu, Ting-Jing; Cui, Xiao-Yan; Li, Xue-Fei; Wang, Jing-Shu; Lv, Xiu-Mei; Wang, Ling-Sheng; Yang, Jing-Hai; Gao, Chun-Xiao

    2015-11-01

    We investigate the carrier behavior of HgTe under high pressures up to 23 GPa using in situ Hall effect measurements. As the phase transitions from zinc blende to cinnabar, then to rock salt, and finally to Cmcm occur, all the parameters change discontinuously. The conductivity variation under compression is described by the carrier parameters. For the zinc blende phase, both the decrease of carrier concentration and the increase of mobility indicate the overlapped valence band and conduction band separates with pressure. Pressure causes an increase in the hole concentration of HgTe in the cinnabar phase, which leads to the carrier-type inversion and the lowest mobility at 5.6 GPa. In the phase transition process from zinc blende to rock salt, Te atoms are the major ones in atomic movements in the pressure regions of 1.0-1.5 GPa and 1.8-3.1 GPa, whereas Hg atoms are the major ones in the pressure regions of 1.5-1.8 GPa and 3.1-7.7 GPa. The polar optical scattering of the rock salt phase decreases with pressure. Project supported by the National Basic Research Program of China (Grant No. 2011CB808204), the National Natural Science Foundation of China (Grant Nos. 11374121, 51441006, and 51479220), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404137), the Program for the Development of Science and Technology of Jilin province, China (Grant Nos. 201201079 and 201215222), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 0520306), and the Open Project Program of State Key Laboratory of Superhard Materials of China (Grant No. 201208).

  8. Modular biowaste monitoring system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1975-01-01

    The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.

  9. A quantitative study of a physics-first pilot program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasero, Spencer Lee; /Northern Illinois U.

    Hundreds of high schools around the United States have inverted the traditional core sequence of high school science courses, putting physics first, followed by chemistry, and then biology. A quarter-century of theory, opinion, and anecdote are available, but the literature lacks empirical evidence of the effects of the program. The current study was designed to investigate the effects of the program on science achievement gain, growth in attitude toward science, and growth in understanding of the nature of scientific knowledge. One hundred eighty-five honor students participated in this quasi-experiment, self-selecting into either the traditional or inverted sequence. Students took themore » Explore test as freshmen, and the Plan test as sophomores. Gain scores were calculated for the composite scores and for the science and mathematics subscale scores. A two-factor analysis of variance (ANOVA) on course sequence and cohort showed significantly greater composite score gains by students taking the inverted sequence. Participants were administered surveys measuring attitude toward science and understanding of the nature of scientific knowledge twice per year. A multilevel growth model, compared across program groups, did not show any significant effect of the inverted sequence on either attitude or understanding of the nature of scientific knowledge. The sole significant parameter showed a decline in student attitude independent of course sequence toward science over the first two years of high school. The results of this study support the theory that moving physics to the front of the science sequence can improve achievement. The importance of the composite gain score on tests vertically aligned with the high-stakes ACT is discussed, and several ideas for extensions of the current study are offered.« less

  10. NASA Airborne Astronomy Ambassadors (AAA) Professional Development and NASA Connections

    NASA Astrophysics Data System (ADS)

    Backman, D. E.; Clark, C.; Harman, P. K.

    2017-12-01

    NASA's Airborne Astronomy Ambassadors (AAA) program is a three-part professional development (PD) experience for high school physics, astronomy, and earth science teachers. AAA PD consists of: (1) blended learning via webinars, asynchronous content learning, and in-person workshops, (2) a STEM immersion experience at NASA Armstrong's B703 science research aircraft facility in Palmdale, California, and (3) ongoing opportunities for connection with NASA astrophysics and planetary science Subject Matter Experts (SMEs). AAA implementation in 2016-18 involves partnerships between the SETI Institute and seven school districts in northern and southern California. AAAs in the current cohort were selected by the school districts based on criteria developed by AAA program staff working with WestEd evaluation consultants. The selected teachers were then randomly assigned by WestEd to a Group A or B to support controlled testing of student learning. Group A completed their PD during January - August 2017, then participated in NASA SOFIA science flights during fall 2017. Group B will act as a control during the 2017-18 school year, then will complete their professional development and SOFIA flights during 2018. A two-week AAA electromagnetic spectrum and multi-wavelength astronomy curriculum aligned with the Science Framework for California Public Schools and Next Generation Science Standards was developed by program staff for classroom delivery. The curriculum (as well as the AAA's pre-flight PD) capitalizes on NASA content by using "science snapshot" case studies regarding astronomy research conducted by SOFIA. AAAs also interact with NASA SMEs during flight weeks and will translate that interaction into classroom content. The AAA program will make controlled measurements of student gains in standards-based learning plus changes in student attitudes towards STEM, and observe & record the AAAs' implementation of curricular changes. Funded by NASA: NNX16AC51

  11. The effect of the Advanced Placement Training and Incentive Program on increasing enrollment and performance on Advanced Placement science exams

    NASA Astrophysics Data System (ADS)

    Ramsey, Susan Brady

    The purpose of this study is to examine the effectiveness of the National Math and Science Initiative's Advanced Placement Training and Incentive Program (APTIP) on the number of students taking AP science courses and their performance. The study evaluated 39 schools over a six-year period in six states that participate in the APTIP. The National Math and Science Initiative provided data for cohort I. A general linear model for repeated measures was used to evaluate the data. Data was evaluated three years prior to the intervention and three years during the intervention, which will actually continue for two more years (2012 and 2013) since cohort I schools were awarded five years of support. Students in APTIP schools enrolled in more AP science exams (AP Biology, AP Chemistry, AP Environmental Science, and AP Physics-B) over the course of the intervention. The quantity of students earning qualifying scores increased during the intervention years. APTIP is a multi-tiered program that includes seven days of teacher training, three six-hour student prep sessions, school equipment, reduced exam fees, and monetary incentives for students and teachers. This program positively impacted the quantity of enrollment and qualifying scores during the three years evaluated in this study. Increases in the number of female and African American students' test takers their and qualifying scores were seen in all three years of the APTIP intervention. This study supports the premise that the first step to increasing the Science, technology, engineering, and math (STEM) pipeline is giving access to advanced courses to more students in high schools.

  12. What Is and Who Can Do Science? Supporting Youth of Colors' Identities as Learners, Doers, and Change Agents in Science

    NASA Astrophysics Data System (ADS)

    Visintainer, Tammie Ann

    This research explores trajectories of developing the practices of and identification with science for high school students of color as they participate in summer science research programs. This study examines students' incoming ideas of what science is (i.e. science practices) and who does/can do science and how these ideas shift following program participation. In addition, this study explores the aspects of students' identities that are most salient in the science programs and how these aspects are supported or reimagined based on the program resources made available. This research utilizes four main data sources: 1) pre and post program student surveys, 2) pre and post program focal student interviews, 3) scientist instructor interviews, and 4) program observations. Findings show that students' ideas about what science is (i.e. science practices) and who can do science shifted together through participation in the practices of science. Findings illustrate the emergence of an identity generative process: that engaging in science practices (e.g. collecting data) and the accompanying program resources generated new possibilities for students (e.g. capable science learner). Findings show that the program resources made available for science practices determined how the practices "functioned" for students. Furthermore, findings document links between an instructor's vision, the design of program resources that engage students in science practices, and students' learning and identity construction. For example, a mentor that employed a politically relevant and racially conscious lens made unique resources available that allowed students to identify as capable science learners and agents of change in their community. This research shows that youth of color can imagine and take up new possibilities for who they can be in science when their science and racial identities are supported in science programs. Findings highlight the need to re-center race in research involving science identity construction for youth of color. Findings from this research inform the design of learning environments that create multiple pathways for learning and identity construction in science. Findings can be applied to the creation of opportunities in science programs, classrooms and teacher education that foster successful and meaningful engagement with science practices and empower youth of color as capable learners, doers, and changes agents in science.

  13. High performance computing and communications: Advancing the frontiers of information technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996.« less

  14. Student attitudes toward science and sciencerelated careers: A program designed to promote a stimulating gender-free learning environment

    NASA Astrophysics Data System (ADS)

    Mason, Cheryl L.; Butler Kahle, Jane

    A project designed to foster the full and fair participation of girls in high-school science classes addressed obstacles, both perceived and actual, to equal participation. In order to modify existing classroom techniques and environments, a Teacher Intervention Program was designed. By means of a workshop and periodic personal communications, teachers were sensitized to the importance of a stimulating, gender-free learning environment. In addition, they were presented with a variety of methods and materials which had been shown to encourage girls in science. Twelve teachers, who were selected randomly, taught in diverse communities throughout one Midwestern state. The subjects tested were students in 24 general biology classes taught by the 12 teachers. Although both qualitative and quantitative measures were used during the research, only the quantitative results are discussed in this paper. Using ANOVA's, treatment group by student sex, a comparison of the mean scores was made for all students, as well as for all females and for all males. The results indicated that the experimental group, compared to the control group, had significantly higher mean scores on tests of attitudes toward science, perceptions of science, extracurricular science activities, and interest in a science-related career.

  15. Highlights from PISA 2006: Performance of U.S. 15-Year-Old Students in Science and Mathematics Literacy in an International Context. NCES 2008-016

    ERIC Educational Resources Information Center

    Baldi, Stephane; Jin, Ying; Green, Patricia J.; Herget, Deborah

    2007-01-01

    The Program for International Student Assessment (PISA) is a system of international assessments administered by the Organization for Economic Cooperation and Development (OECD) that measures 15-year-olds' performance in reading literacy, mathematics literacy, and science literacy every 3 years. This report focuses on the performance of U.S.…

  16. A Study of the Level of Math Preparedness of Manufacturing Sciences Students in the Fall Semester of 2005

    ERIC Educational Resources Information Center

    Henning, Mark C.

    2007-01-01

    The main objective of this study was to gauge preparedness in math with achievement in first semester math for the fall 2005 intake of Manufacturing Sciences Division post-secondary program students. The data used to measure this level of preparedness was gleaned from students' high school Grade 12 (new and old curriculum) or Ontario Academic…

  17. Scientific Modeling for Inquiring Teachers Network (SMIT'N): The Influence on Elementary Teachers' Views of Nature of Science, Inquiry, and Modeling

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Townsend, J. Scott; Donnelly, Lisa A.; Hanson, Deborah L.; Tira, Praweena; White, Orvil

    2009-01-01

    This paper summarizes the findings from a K-6 professional development program that emphasized scientific inquiry and nature of science within the theme of scientific modeling. During the 2-week summer workshop and follow up school year workshops, the instruction modeled a 5-E learning cycle approach. Pre and posttesting measured teachers' views…

  18. Climate Change Student Summits: A Model that Works (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, L. T.

    2013-12-01

    The C2S2: Climate Change Student Summit project has completed four years of activities plus a year-long longitudinal evaluation with demonstrated positive impacts beyond the life of the project on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up from its Midwestern roots to achieve measurable national impact. A NOAA Environmental Literacy grant allowed ANDRILL (ANtarctic geological DRILLing) to grow a 2008 pilot program involving 2 Midwestern sites, to a program 4 years later involving 10 sites. The excellent geographical coverage included 9 of the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. Through the delivery of two professional development (PD) workshops, a unique opportunity was provided for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. For maximum contact hours, the PD experience was extended throughout the school year through the use of an online grouphub. Student teams were involved in a creative investigative science research and presentation experience culminating in a Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program was based on combining multiple aspects, such as encouraging the active involvement of scientists and early career researchers both in the professional development workshops and in the Student Summit. Another key factor was the close working relationships between informal and formal science entities, including involvement of informal science learning facilities and informal science education leaders. The program also created cutting-edge curriculum materials titled the ELF, (Environmental Literacy Framework with a focus on climate change), providing an earth systems approach to climate change education which have been successfully integrated into existing curricula in grades 4-12, as well as at numerous science museums.

  19. The 159th national meeting of the American Association for the advancement of science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume is the program/abstracts for the 1993 national meeting of the American Association for the Advancement of Science. The meeting was held in Boston from 11-16 February 1993. Symposia dealt with works on the following topics; perspectives on human genetics; confronting AIDS; biology, cells bugs; medical research society; social psychology neuroscience; future chemistry, from carbon to silicon; measuring the matter energy of the universe; earth's ever-changing atmosphere; causing coping with environmental change; agricultural biotechnology, plant protection production; science corporate enterprise; examining reforming the economic system; science, ethics the law; communicating science to the public; information technology the changing facemore » of science; mathematics, concepts computations; international cooperation human survival; science for everyone; science religion, examining both; anthropology, dynamics of human history; international science issues; improving formal science education; and science education reform in America. Separate abstracts have been prepared for articles from this volume.« less

  20. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    PubMed

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. © 2017 M. J. Drinkwater et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    NASA Astrophysics Data System (ADS)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the researchers involved in this complex solar system.

  2. SPSS programs for the measurement of nonindependence in standard dyadic designs.

    PubMed

    Alferes, Valentim R; Kenny, David A

    2009-02-01

    Dyadic research is becoming more common in the social and behavioral sciences. The most common dyadic design is one in which two persons are measured on the same set of variables. Very often, the first analysis of dyadic data is to determine the extent to which the responses of the two persons are correlated-that is, whether there is nonindependence in the data. We describe two user-friendly SPSS programs for measuring nonindependence of dyadic data. Both programs can be used for distinguishable and indistinguishable dyad members. Inter1.sps is appropriate for interval measures. Inter2.sps applies to categorical variables. The SPSS syntax and data files related to this article may be downloaded as supplemental materials from brm.psychonomic-journals.org/content/supplemental.

  3. Toward a microgravity research strategy

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Recommendations of the Committee on Microgravity Research (CMGR) of the Space Studies Board of the National Research Council are found in the Summary and Recommendations in the front of the report. The CMGR recommends a long-range research strategy. The main rationale for the microgravity research program should be to improve our fundamental scientific and technical knowledge base, particularly in the areas that are likely to lead to improvements in processing and manufacturing on earth. The CMGR recommends research be categorized as Biological science and technology, Combustion, Fluid science, Fundamental phenomena, Materials, and Processing science and technology. The committee also recommends that NASA apply a set of value criteria and measurement indicators to define the research and analysis program more clearly. The CMGR recommends that the funding level for research and analysis in microgravity science be established as a fixed percentage of the total program of NASA's Microgravity Science and Applications Division in order to build a strong scientific base for future experiments. The committee also recommends a cost-effective approach to experiments. Finally the CMGR recommends that a thorough technical review of the centers for commercial development of space be conducted to determine the quality of their activities and to ascertain to what degree their original mission has been accomplished.

  4. Synoptic water-level measurements of the Upper Floridan aquifer in Florida and parts of Georgia, South Carolina, and Alabama, May-June 2010

    USGS Publications Warehouse

    Kinnaman, Sandra L.

    2012-01-01

    Water levels for the Upper Floridan aquifer were measured throughout Florida and in parts of Georgia, South Carolina, and Alabama in May-June 2010. These measurements were compiled for the U.S. Geological Survey (USGS) Floridan Aquifer System Groundwater Availability Study and conducted as part of the USGS Groundwater Resources Program. Data were collected by personnel from the USGS Florida Water Science Center, Georgia Water Science Center, South Carolina Water Science Center and several state and county agencies in Florida, Georgia, South Carolina, and Alabama using standard techniques. Data collected by USGS personnel are stored in the USGS National Water Information System (NWIS), Groundwater Site-Inventory System (GWSI). Furnished records from cooperators are stored in NWIS/GWSI when possible, but are available from the source agency.

  5. Analysis of reference transactions using packaged computer programs.

    PubMed

    Calabretta, N; Ross, R

    1984-01-01

    Motivated by a continuing education class attended by the authors on the measurement of reference desk activities, the reference department at Scott Memorial Library initiated a project to gather data on reference desk transactions and to analyze the data by using packaged computer programs. The programs utilized for the project were SPSS (Statistical Package for the Social Sciences) and SAS (Statistical Analysis System). The planning, implementation and development of the project are described.

  6. Bias in Research Grant Evaluation Has Dire Consequences for Small Universities.

    PubMed

    Murray, Dennis L; Morris, Douglas; Lavoie, Claude; Leavitt, Peter R; MacIsaac, Hugh; Masson, Michael E J; Villard, Marc-Andre

    2016-01-01

    Federal funding for basic scientific research is the cornerstone of societal progress, economy, health and well-being. There is a direct relationship between financial investment in science and a nation's scientific discoveries, making it a priority for governments to distribute public funding appropriately in support of the best science. However, research grant proposal success rate and funding level can be skewed toward certain groups of applicants, and such skew may be driven by systemic bias arising during grant proposal evaluation and scoring. Policies to best redress this problem are not well established. Here, we show that funding success and grant amounts for applications to Canada's Natural Sciences and Engineering Research Council (NSERC) Discovery Grant program (2011-2014) are consistently lower for applicants from small institutions. This pattern persists across applicant experience levels, is consistent among three criteria used to score grant proposals, and therefore is interpreted as representing systemic bias targeting applicants from small institutions. When current funding success rates are projected forward, forecasts reveal that future science funding at small schools in Canada will decline precipitously in the next decade, if skews are left uncorrected. We show that a recently-adopted pilot program to bolster success by lowering standards for select applicants from small institutions will not erase funding skew, nor will several other post-evaluation corrective measures. Rather, to support objective and robust review of grant applications, it is necessary for research councils to address evaluation skew directly, by adopting procedures such as blind review of research proposals and bibliometric assessment of performance. Such measures will be important in restoring confidence in the objectivity and fairness of science funding decisions. Likewise, small institutions can improve their research success by more strongly supporting productive researchers and developing competitive graduate programming opportunities.

  7. Place-based and data-rich citizen science as a precursor for conservation action.

    PubMed

    Haywood, Benjamin K; Parrish, Julia K; Dolliver, Jane

    2016-06-01

    Environmental education strategies have customarily placed substantial focus on enhancing ecological knowledge and literacy with the hope that, upon discovering relevant facts and concepts, participants will be better equipped to process and dissect environmental issues and, therefore, make more informed decisions. The assumption is that informed citizens will become active citizens--enthusiastically lobbying for, and participating in, conservation-oriented action. We surveyed and interviewed and used performance data from 432 participants in the Coastal Observation and Seabird Survey Team (COASST), a scientifically rigorous citizen science program, to explore measurable change in and links between understanding and action. We found that participation in rigorous citizen science was associated with significant increases in participant knowledge and skills; a greater connection to place and, secondarily, to community; and an increasing awareness of the relative impact of anthropogenic activities on local ecosystems specifically through increasing scientific understanding of the ecosystem and factors affecting it. Our results suggest that a place-based, data-rich experience linked explicitly to local, regional, and global issues can lead to measurable change in individual and collective action, expressed in our case study principally through participation in citizen science and community action and communication of program results to personal acquaintances and elected officials. We propose the following tenets of conservation literacy based on emergent themes and the connections between them explicit in our data: place-based learning creates personal meaning making; individual experience nested within collective (i.e., program-wide) experience facilitates an understanding of the ecosystem process and function at local and regional scales; and science-based meaning making creates informed concern (i.e., the ability to discern both natural and anthropogenic forcing), which allows individuals to develop a personalized prioritization schema and engage in conservation action. © 2016 Society for Conservation Biology.

  8. Bias in Research Grant Evaluation Has Dire Consequences for Small Universities

    PubMed Central

    Murray, Dennis L.; Morris, Douglas; Lavoie, Claude; Leavitt, Peter R.; MacIsaac, Hugh; Masson, Michael E. J.; Villard, Marc-Andre

    2016-01-01

    Federal funding for basic scientific research is the cornerstone of societal progress, economy, health and well-being. There is a direct relationship between financial investment in science and a nation’s scientific discoveries, making it a priority for governments to distribute public funding appropriately in support of the best science. However, research grant proposal success rate and funding level can be skewed toward certain groups of applicants, and such skew may be driven by systemic bias arising during grant proposal evaluation and scoring. Policies to best redress this problem are not well established. Here, we show that funding success and grant amounts for applications to Canada’s Natural Sciences and Engineering Research Council (NSERC) Discovery Grant program (2011–2014) are consistently lower for applicants from small institutions. This pattern persists across applicant experience levels, is consistent among three criteria used to score grant proposals, and therefore is interpreted as representing systemic bias targeting applicants from small institutions. When current funding success rates are projected forward, forecasts reveal that future science funding at small schools in Canada will decline precipitously in the next decade, if skews are left uncorrected. We show that a recently-adopted pilot program to bolster success by lowering standards for select applicants from small institutions will not erase funding skew, nor will several other post-evaluation corrective measures. Rather, to support objective and robust review of grant applications, it is necessary for research councils to address evaluation skew directly, by adopting procedures such as blind review of research proposals and bibliometric assessment of performance. Such measures will be important in restoring confidence in the objectivity and fairness of science funding decisions. Likewise, small institutions can improve their research success by more strongly supporting productive researchers and developing competitive graduate programming opportunities. PMID:27258385

  9. Final Report: High Spectral Resolution Atmospheric Emitted Radiance Studies with the ARM UAV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revercomb, Henry E.

    1999-12-31

    The active participation in the Atmospheric Radiation Measurement (ARM) Unmanned Airborne Vehicle (UAV) science team that was anticipated in the grant proposal was indefinitely delayed after the first year due to a programmatic decision to exclude the high spectral resolution observations from the existing ARM UAV program. However, this report shows that substantial progress toward the science objectives of this grant have made with the help of separate funding from NASA and other agencies. In the four year grant period (including time extensions), a new high spectral resolution instrument has been flown and has successfully demonstrated the ability to obtainmore » measurements of the type needed in the conduct of this grant. In the near term, the third water vapor intensive observing period (WVIOP-3) in October 2000 will provide an opportunity to bring the high spectral resolution observations of upwelling radiance into the ARM program to complement the downwelling radiance observations from the existing ARM AERI instruments. We look forward to a time when the ARM-UAV program is able to extend its scope to include the capability for making these high spectral resolution measurements from a UAV platform.« less

  10. Recent Advances in Resonance Region Nuclear Data Measurements and Analyses for Supporting Nuclear Energy Applications

    NASA Astrophysics Data System (ADS)

    Dunn, Michael

    2008-10-01

    For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.

  11. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  12. Validation of the early childhood attitude toward women in science scale (ECWiSS): A pilot administration

    NASA Astrophysics Data System (ADS)

    Mulkey, Lynn M.

    The intention of this research was to measure attitudes of young children toward women scientists. A 27-item instrument, the Early Childhood Women in Science Scale (ECWiSS) was validated in a test case of the proposition that differential socialization predicts entry into the scientific talent pool. Estimates of internal consistency indicated that the scale is highly reliable. Known groups and correlates procedures, employed to determine the validity of the instrument, revealed that the scale is able to discriminate significant differences between groups and distinguishes three dimensions of attitude (role-specific self-concept, home-related sex-role conflict, and work-related sex-role conflict). Results of the analyses also confirmed the anticipated pattern of correlations with measures of another construct. The findings suggest the utility of the ECWiSS for measurement of early childhood attitudes in models of the ascriptive and/or meritocratic processes affecting recruitment to science and more generally in program and curriculum evaluation where attitude toward women in science is the construct of interest.

  13. Measuring the impact of an API-first mentality with ScienceBase after 4.5 years

    NASA Astrophysics Data System (ADS)

    Bristol, S.; Tekell, S.

    2016-12-01

    ScienceBase is a research infrastructure developed and operated by the U.S. Geological Survey with users and uses across a number of other agency and organization partners. Over four years ago, we released an Application Programming Interface (API) as the foundation of the system and took on the mindset that our progress would be measured by the uptake of the API by others beyond ourselves in developing interesting applications. We now measure success more by someone finding ScienceBase, organizing their data and information, developing an innovative API-driven application and then serendipitous discovery through a science meeting. Because of the way we built the RESTful API, we can characterize what parts of the system are employed. Analysis of usage data helps us take the supposition out of what works and guides design and funding decisions. This analytics-based process facilitates regular adjustments to our thinking and allows us to test design decisions as hypotheses rather than untestable aspirations.

  14. Scrutinizing a Survey-Based Measure of Science and Mathematics Teacher Knowledge: Relationship to Observations of Teaching Practice

    NASA Astrophysics Data System (ADS)

    Talbot, Robert M.

    2017-12-01

    There is a clear need for valid and reliable instrumentation that measures teacher knowledge. However, the process of investigating and making a case for instrument validity is not a simple undertaking; rather, it is a complex endeavor. This paper presents the empirical case of one aspect of such an instrument validation effort. The particular instrument under scrutiny was developed in order to determine the effect of a teacher education program on novice science and mathematics teachers' strategic knowledge (SK). The relationship between novice science and mathematics teachers' SK as measured by a survey and their SK as inferred from observations of practice using a widely used observation protocol is the subject of this paper. Moderate correlations between parts of the observation-based construct and the SK construct were observed. However, the main finding of this work is that the context in which the measurement is made (in situ observations vs. ex situ survey) is an essential factor in establishing the validity of the measurement itself.

  15. The interdisciplinary effect of hands-on science as measured by the Tennessee Comprehensive Assessment Program (TCAP)

    NASA Astrophysics Data System (ADS)

    Cherry, Elvis H.

    This study examined the difference in scale scores from Tennessee's standardized test the Tennessee Comprehensive Assessment Program (TCAP). Archival data from the years 2002 and 2005 were compared using ANOVA tests at < .01 and < .05 levels. TCAP/NCE Scale Scores for academic subjects of Science, Math, Social Studies and Reading were used. 3922 student test results were divided into groups based on the number of years the student had a trained hands-on science teacher. Trained hands-on science teachers were identified from Metropolitan Nashville Public Schools (MNPS) Science Department inservice records, which gave information on the teacher's participation in The Hands-on Science Initiative, Biology Gateway and Physical Science training. This information included not only that the teacher had be trained but also the dates of training. The study revealed 1600 students who attended MNPS between the years 2002 and 2005; in grades five through seven that never had a hands-on science trained teacher. About 1600 students in those same years had a hands-on science teacher for only one year, and 588 students had a hands-on science teacher for two of the three years. Lastly of the 3922 students in the study there were 44 students who had a hands-on science teacher for all three years. The results of the ANOVA test showed statistically significant gains in science, math and social studies but not in reading for students who had trained hands-on science teachers for at least one year.

  16. Outcomes and Processes in the Meyerhoff Scholars Program: STEM PhD Completion, Sense of Community, Perceived Program Benefit, Science Identity, and Research Self-Efficacy

    PubMed Central

    Maton, Kenneth I.; Beason, Tiffany S.; Godsay, Surbhi; Sto. Domingo, Mariano R.; Bailey, TaShara C.; Sun, Shuyan; Hrabowski, Freeman A.

    2016-01-01

    Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs than comparison students. The first of two studies in this report extends the prior research by examining levels of PhD completion for Meyerhoff (N = 479) versus comparison sample (N = 249) students among the first 16 cohorts. Entering African-American Meyerhoff students were 4.8 times more likely to complete STEM PhDs than comparison sample students. To enhance understanding of potential mechanisms of influence, the second study used data from the 22nd (Fall 2010) to 25th (Fall 2013) cohorts (N = 109) to test the hypothesis that perceived program benefit at the end of freshman year would mediate the relationship between sense of community at the end of Summer Bridge and science identity and research self-efficacy at the end of sophomore year. Study 2 results indicated that perceived program benefit fully mediated the relationship between sense of community and both criterion measures. The findings underscore the potential of comprehensive STEM intervention programs to enhance PhD completion, and suggest mechanisms of influence. PMID:27587857

  17. Exploring the parent agency through a culturally relevant and inclusive science program

    NASA Astrophysics Data System (ADS)

    Hagiwara, Sumi

    2002-01-01

    Science education reform calls for the inclusivity of all learners, the same should also apply to immigrant Latino/a parents. The Literacy in Food and the Environment (LIFE) program, a two-year inner-city middle-school science curriculum designed to teach science, nutrition and the environment through investigations of food is analyzed based on quantitative and qualitative data gathered during 1999--2001. A sample of 19 immigrant Latino/a parents participated in 12 workshops and collaborated with teachers in the classroom to implement the curriculum. A quantitative analysis of year one using a pre/post test design measured the impact of the program on the parents' science knowledge, attitude and beliefs about science and participating in their child's science education, and food choices and behavior. Four mothers continued with the program in year two. Qualitative data was gathered to create descriptive case studies. From the data I developed an interpretive discussion based on cross case analysis using a grounded theory method, When compared to a comparison group (n = 13), quantitative results showed significantly higher outcomes for science knowledge on the topics of energy flow (65% intervention vs, 37% control, p < .005), transformation of matter (86% interventions vs. 72% control, p, .05), the food system (61% intervention vs. 52% control, p < .005) and food packaging (87% intervention vs. 57% control, p < .005). Pretest/posttest comparisons indicate an increase in the parents' attitudes towards participating in science class (11.9 pre to 14.4 post on a 16 point scale, p < .05), doing science at home (42.3 pre vs. 46.3 post on a 48 point scale, p < .05) and using and doing science (11.5 pre vs. 13.3 post on a 16 point scale, p < .10). Impacts on food choices and behaviors were not significant. From the case studies emerged themes around: (1) the mothers' scientific epistemologies informed by connections made between themselves and science, (2) the influence of culture and language in positioning self in science and in school, (3) the mothers' experience as socially transformative. By engaging parents inside the classroom with science taught through food, parents' knowledge, attitudes and beliefs around science improved, as they developed a sense of agency transforming their role from parent to educator.

  18. Development of a Remote Sensing and Microgravity Student GAS Payload

    NASA Technical Reports Server (NTRS)

    Branly, Rolando; Ritter, Joe; Friedfeld, Robert; Ackerman, Eric; Carruthers, Carl; Faranda, Jon

    1999-01-01

    The G-781 Terrestrial and Atmospheric Multi-Spectral Explorer payload (TAMSE) is the result of an educational partnership between Broward and Brevard Community Colleges with the Association of Small Payload Researchers (ASPR) and the Florida Space Institute, University of Central Florida. The effort focuses on flying nine experiments, including three earth viewing remote sensing experiments, three microgravity experiments involving crystal growth, and three radiation measurement experiments. The G-781 science team, composed of both student and faculty members, has been working on this payload since 1995. The dream of flying the first Florida educational GAS experiment led to the flight of a passive Radiation dosimetry experiment on STS-91 (ASPR-GraDEx-I), which will be reflown as part of TAMSE. This project has lead to the development of a mature space science program within the schools. Many students have been positively touched by direct involvement with NASA and the GAS program as well as with other flight programs e.g. the KC-135 flight program. Several students have changed majors, and selected physics, engineering, and other science career paths as a result of the experience. The importance of interdisciplinary training is fundamental to this payload and to the teaching of the natural sciences. These innovative student oriented projects will payoff not only in new science data, but also in accomplishing training for the next generation of environmental and space scientists. The details the TAMSE payload design are presented in this paper.

  19. Tablet and Face-to-Face Hybrid Professional Development: Providing Earth Systems Science Educators Authentic Research Opportunities through The GLOBE Program at Purdue University

    NASA Astrophysics Data System (ADS)

    Wegner, K.; Branch, B. D.; Smith, S. C.

    2013-12-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide hands-on, primary and secondary school-based science and education program (www.globe.gov). GLOBE's vision promotes and supports students, teachers and scientists to collaborate on inquiry-based authentic science investigations of the environment and the Earth system working in close partnership with NASA, NOAA and NSF Earth System Science Projects (ESSP's) in study and research about the dynamics of Earth's environment. GLOBE Partners conduct face-to-face Professional Development in more than 110 countries, providing authentic scientific research experience in five investigation areas: atmosphere, earth as a system, hydrology, land cover, and soil. This presentation will provide a sample for a new framework of Professional Development that was implemented in July 2013 at Purdue University lead by Mr. Steven Smith who has tested GLOBE training materials for future training. The presentation will demonstrate how institutions can provide educators authentic scientific research opportunities through various components, including: - Carrying out authentic research investigations - Learning how to enter their authentic research data into the GLOBE database and visualize it on the GLOBE website - Learn how to access to NASA's Earth System Science resources via GLOBE's new online 'e-Training Program' - Exploring the connections of their soil protocol measurements and the history of the soil in their area through iPad soils app - LIDAR data exposure, Hydrology data exposure

  20. Accessorizing Building Science – A Web Platform to Support Multiple Market Transformation Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madison, Michael C.; Antonopoulos, Chrissi A.; Dowson, Scott T.

    As demand for improved energy efficiency in homes increases, builders need information on the latest findings in building science, rapidly ramping-up energy codes, and technical requirements for labeling programs. The Building America Solution Center is a Department of Energy (DOE) website containing hundreds of expert guides designed to help residential builders install efficiency measures in new and existing homes. Builders can package measures with other media for customized content. Website content provides technical support to market transformation programs such as ENERGY STAR and has been cloned and adapted to provide content for the Better Buildings Residential Program. The Solution Centermore » uses the Drupal open source content management platform to combine a variety of media in an interactive manner to make information easily accessible. Developers designed a unique taxonomy to organize and manage content. That taxonomy was translated into web-based modules that allow users to rapidly traverse structured content with related topics, and media. We will present information on the current design of the Solution Center and the underlying technology used to manage the content. The paper will explore development of features, such as “Field Kits” that allow users to bundle and save content for quick access, along with the ability to export PDF versions of content. Finally, we will discuss development of an Android based mobile application, and a visualization tool for interacting with Building Science Publications that allows the user to dynamically search the entire Building America Library.« less

  1. The Stanford Medical Youth Science Program: Educational and Science-Related Outcomes

    ERIC Educational Resources Information Center

    Crump, Casey; Ned, Judith; Winkleby, Marilyn A.

    2015-01-01

    Biomedical preparatory programs (pipeline programs) have been developed at colleges and universities to better prepare youth for entering science- and health-related careers, but outcomes of such programs have seldom been rigorously evaluated. We conducted a matched cohort study to evaluate the Stanford Medical Youth Science Program's Summer…

  2. Teachers' voices: A comparison of two secondary science teacher preparation programs

    NASA Astrophysics Data System (ADS)

    Kohlhaas Labuda, Kathryn

    This dissertation, using cross-case qualitative methodology, investigates the salient and latent features of two philosophically different university-based secondary science teacher preparation programs. Written documents from the two programs and from the Salish I Research project provided the salient data. New teachers' interview transcripts provided the latent data. This study provides the opportunity to hear teachers voice their perceptions of preparation programs. Three questions were investigated in this research study. First, What are the salient features of two different secondary science teacher preparation programs? Second, What are the latent features of two different secondary science teacher programs as perceived by new teachers? Third, How do new secondary science teachers from different programs perceive their preservice programs? The last question incorporates teachers' perceptions of gaps and coherence in the programs and teachers' recommendations to improve their preservice programs. Salient features of the programs revealed differences in the types of certification, and the amounts and types of required course work. Both programs certified teachers at the secondary science level, but only M program certified their teachers as elementary science specialists. Program M required more semester hours of education and science course work than Program S. Although teachers from both programs perceived little coherence between their science and education courses, S-teachers presented a more fragmented picture of their education program and perceived fewer benefits from the program. Lack of relevance and courses that focused on elementary teaching were perceived as part of the problem. M-teachers perceived some cohesion through the use of cohorts in three consecutive semesters of science methods courses that provided multiple field experiences prior to student teaching. S-teachers did not perceive an organized philosophy of their program. M-teachers' perceptions of the philosophy of their program revolved about research based teaching. S-teachers reported more research experiences. S-teachers perceived better student-science faculty relationship, while M-teachers reported stronger student-education faculty relationships. Teachers from both programs recommended more field experiences that resembled more closely the real life situations of teachers. They recommended smaller classes in both science and education courses. They suggested eliminating or altering courses that were not beneficial.

  3. Solar cell and photonics outreach for middle school students and teachers

    NASA Astrophysics Data System (ADS)

    Gilchrist, Pamela O.; Alexander, Alonzo B.

    2017-08-01

    This paper will describe the curriculum development process employed to develop a solar cell and photonics curriculum unit for students underrepresented in science, technology, engineering and mathematics fields. Information will explain how the curriculum unit was piloted with middle and high school teachers from public schools in North Carolina, high school students from underrepresented groups in an informal science program, and workshop settings. Measures used to develop the curriculum materials for middle school students will be presented along with program findings documenting students' urban versus rural interest in STEM, career aspirations, and 21st century learning skills in informal learning settings.

  4. Effective Programs for Elementary Science: A Best-Evidence Synthesis. Educator's Summary

    ERIC Educational Resources Information Center

    Center for Research and Reform in Education, 2012

    2012-01-01

    Which science programs have been proven to help elementary students to succeed? To find out, this review summarizes evidence on three types of programs designed to improve the science achievement of students in grades K-6: (1) Inquiry-oriented programs without science kits, such as Increasing Conceptual Challenge, Science IDEAS, and Collaborative…

  5. Induction Programs for the Support and Development of Beginning Teachers of Science. National Science Teachers Association Position Statement

    ERIC Educational Resources Information Center

    National Science Teachers Association (NJ1), 2007

    2007-01-01

    The National Science Teachers Association (NSTA) recommends that schools and teacher preparation programs provide new teachers of science with comprehensive induction programs. Research suggests these programs should address specifics for teachers of science, involve trained mentors, provide adequate time to support continual learning of new…

  6. Science Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents 26 activities, experiments, demonstrations, games, and computer programs for biology, chemistry, and physics. Background information, laboratory procedures, equipment lists, and instructional strategies are given. Topics include eye measurements, nutrition, soil test tube rack, population dynamics, angular momentum, transition metals,…

  7. Science at NASA field centers: Findings and recommendations on the scope, strength and interactions of science and science-related technology programs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Great achievements by NASA and other space agencies have shown us what opportunities lie in the opening of the space frontier. A broad and vigorous science program in NASA is vital to full U.S. exploitation of these new opportunities. Today, science in NASA Centers is characterized by its breadth, relevance, and excellence. The NASA in-house science program and its links to university programs constitute a vitally important national resource. Maintaining excellence as a foundation for the future is a fundamental responsibility of NASA, one that requires constant attention and effort. This report by the NASA Center Science Assessment Team documents the current state of science within NASA and recommends actions to maintain a healthy program. NASA scientists have always played key roles in planning, guiding, and conducting national programs in space science. The review of Center science programs is intended to ensure that both NASA and the nation can depend on their continuing contribution in these roles.

  8. Science in action: An interdisciplinary science education program

    NASA Technical Reports Server (NTRS)

    Horton, Linda L.

    1992-01-01

    Science in Action is an education outreach program for pre-collegiate students. It is based on the concept that, in order to interest students in science, they must see science and scientists at work. The program encompasses the full range of scientific disciplines - the core sciences, engineering, and mathematics. A unique aspect of the program is the involvement and support of scientists and engineers representing local professional societies, industries, business, and academic institutions. An outline of the program is given.

  9. Derived Born cross sections of e+e‑ annihilation into open charm mesons from CLEO-c measurements

    NASA Astrophysics Data System (ADS)

    Dong, Xiang-Kun; Wang, Liang-Liang; Yuan, Chang-Zheng

    2018-04-01

    The exclusive Born cross sections of the production of D0, D+ and {{{D}}}{{s}}{{+}} mesons in e+e‑ annihilation at 13 energy points between 3.970 and 4.260 GeV are obtained by applying corrections for initial state radiation and vacuum polarization to the observed cross sections measured by the CLEO-c experiment. Both the statistical and the systematic uncertainties for the obtained Born cross sections are estimated. Supported in part by National Natural Science Foundation of China (NSFC) (11235011, 11475187, 11521505, U1632106), the Ministry of Science and Technology of China (2015CB856701), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH011) and the CAS Center for Excellence in Particle Physics (CCEPP)

  10. A study of science leadership and science standards in exemplary standards-based science programs

    NASA Astrophysics Data System (ADS)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary science programs teachers value continuous personal development, teachers are provided on-going science professional development opportunities to improve instructional practices, teachers reflect and share professional practices, and teachers establish professional learning communities within their classrooms; and (f) Culture of shared leadership-In exemplary science programs instructional leadership purposes and values are consistently shared among all stakeholders which are outlined in the standards. These results are potentially useful for understanding exemplary standards-based science programs and science instructional leadership practices as a model for science programs trying to improve science education so that all students can have a true scientific learning experience.

  11. Pilot Studies for Enhanced Forest Land Measurement

    Treesearch

    R. Birdsey; D. Hollinger; L. Heath; C. Hoover; R. Kolka; M. L. Smith; M. Ryan

    2003-01-01

    Land measurements will make a significant contribution towards answering the science questions that motivate the North American Carbon Program (NACP):What is the carbon balance of North America and adjacent ocean basins, and how is the balance changing over time? What are the sources and sinks, and the geographic patterns of carbon fluxes?...

  12. Representing Targets of Measurement within Evidence-Centered Design

    ERIC Educational Resources Information Center

    Ewing, Maureen; Packman, Sheryl; Hamen, Cynthia; Thurber, Allison Clark

    2010-01-01

    In the last few years, the Advanced Placement (AP) Program[R] has used evidence-centered assessment design (ECD) to articulate the knowledge, skills, and abilities to be taught in the course and measured on the summative exam for four science courses, three history courses, and six world language courses; its application to calculus and English…

  13. Science and Science Education Go Hand-in-Hand: The Impact of the NASA Science Mission Directorate Education and Public Outreach Program

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Peticolas, L.; Schwerin, T.; Shipp, S.; Manning, J. G.

    2014-07-01

    For nearly two decades, NASA has embedded education and public outreach (EPO) in its Earth and space science missions and research programs on the principle that science education is most effective when educators and scientists work hand-in-hand. Four Science EPO Forums organize the respective NASA Science Mission Directorate (SMD) Astrophysics, Earth Science, Heliophysics, and Planetary Science EPO programs into a coordinated, efficient, and effective nationwide effort. The NASA SMD EPO program evaluates EPO impacts that support NASA's policy of providing a direct return-on-investment for the American public, advances STEM education and literacy, and enables students and educators to participate in the practice of science as embodied in the 2013 Next Generation Science Standards. Leads of the four NASA SMD Science EPO Forums provided big-picture perspectives on NASA's effort to incorporate authentic science into the nation's STEM education and scientific literacy, highlighting examples of program effectiveness and impact. Attendees gained an increased awareness of the depth and breadth of NASA SMD's EPO programs and achievements, the magnitude of its impacts through representative examples, and the ways current and future EPO programs can build upon the work being done.

  14. Hydrology Applications of the GRACE missions

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. M.; Ivins, E. R.; Jasinski, M. F.

    2014-12-01

    NASA and their German space agency partners have a rich history of global gravity observations beginning with the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002. The science goals of the mission include providing monthly maps of variations in the gravity field, where the major time-varying signal is due to water motion in the Earth system. GRACE has a unique ability to observe the mass flux of water movement at monthly time scales. The hydrology applications of the GRACE mission include measurements of seasonal storage of surface and subsurface water and evapotranspiration at the land-ocean-atmosphere boundary. These variables are invaluable for improved modeling and prediction of Earth system processes. Other mission-critical science objectives include measurements that are a key component of NASA's ongoing climate measuring capabilities. Successful strategies to enhance science and practical applications of the proposed GRACE-Follow On (GRACE-FO) mission, scheduled to launch in 2017, will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities. NASA's Applied Sciences Program is supporting collaboration on an applied approach to identifying communities of potential and of practice in order to identify and promote the societal benefits of these and future gravity missions. The objective is to engage applications-oriented users and organizations and enable them to envision possible applications and end-user needs as a way to increase the benefits of these missions to the nations. The focus of activities for this applications program include; engaging the science community in order to identify applications and current and potential data users, developing a written Applications Plan, conducting workshops and user tutorials, providing ready access to information via web pages, developing databases of key and interested users/scientists, creating printed materials (posters, brochures) that identify key capabilities and applications of the missions and data, and participation in key science meetings and decision support processes.

  15. Investigating the motivational behavior of pupils during outdoor science teaching within self-determination theory

    PubMed Central

    Dettweiler, Ulrich; Ünlü, Ali; Lauterbach, Gabriele; Becker, Christoph; Gschrey, Bernhard

    2015-01-01

    This paper presents data from a mixed-method pilot study (n = 84) searching into learning psychological aspects of an outdoor science teaching program. We use data from qualitative explorations into the pupils' learning motivation during field observation, a group interview, and open questionnaires, in order to understand quantitative measures from the Self-Determination Index (SDI), and the Practical Orientation (PO) of the program. Our data suggest that lower self-regulated pupils in “normal” science classes show a significantly higher self-regulated learning motivational behavior in the outdoor educational setting (p < 10−4), and that the outdoor-teaching has generally been perceived as more practical than teaching at the normal school context (p < 10−4), irrespective of gender or school culture. We are going to provide in-depth analyses of all quantitative findings with our qualitative data and thus explain the findings logically, with respect to the direction of the statistical interpretation, and substantially, with respect to the meaning of the discoveries. We conclude that outdoor programming appears to be a suitable tool to trigger interest in science in youngsters, especially for less motivated pupils. PMID:25741301

  16. Gender and Ability Attentional Differences while Watching an Educational Television Program.

    ERIC Educational Resources Information Center

    Clariana, Roy B.

    This study investigated the attention or arousal of above and below average boys and girls while viewing a science television program on videotape. Skin resistance (GSR) was measured by a biosensor attached to a microcomputer and served as the dependent variable. Analysis of the data included a 2x2x8 ANOVA of gender v. ability v. GSR. The…

  17. Components of the Motor Program: The Cerebellum as an Internal Clock. Cognitive Science Program, Technical Report No 86-7.

    ERIC Educational Resources Information Center

    Ivry, Richard B.; Keele, Steven W.

    This report summarizes the initial phase of research with neurological patients on timing functions. Parkinsonian, cerebellar, cortical and peripheral neuropathy patients as well as college aged and elderly control subjects were tested on two separate measures of timing functions. The first task involved the production of timed intervals and used…

  18. The Impact of Advanced Greenhouse Gas Measurement Science on Policy Goals and Research Strategies

    NASA Astrophysics Data System (ADS)

    Abrahams, L.; Clavin, C.; McKittrick, A.

    2016-12-01

    In support of the Paris agreement, accurate characterizations of U.S. greenhouse gas (GHG) emissions estimates have been area of increased scientific focus. Over the last several years, the scientific community has placed significant emphasis on understanding, quantifying, and reconciling measurement and modeling methods that characterize methane emissions from petroleum and natural gas sources. This work has prompted national policy discussions and led to the improvement of regional and national methane emissions estimates. Research campaigns focusing on reconciling atmospheric measurements ("top-down") and process-based emissions estimates ("bottom-up") have sought to identify where measurement technology advances could inform policy objectives. A clear next step is development and deployment of advanced detection capabilities that could aid U.S. emissions mitigation and verification goals. The breadth of policy-relevant outcomes associated with advances in GHG measurement science are demonstrated by recent improvements in the petroleum and natural gas sector emission estimates in the EPA Greenhouse Gas Inventory, ambitious efforts to apply inverse modeling results to inform or validate national GHG inventory, and outcomes from federal GHG measurement science technology development programs. In this work, we explore the variety of policy-relevant outcomes impacted by advances in GHG measurement science, with an emphasis on improving GHG inventory estimates, identifying emissions mitigation strategies, and informing technology development requirements.

  19. Space Interferometry Science Working Group

    NASA Astrophysics Data System (ADS)

    Ridgway, Stephen T.

    1992-12-01

    Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.

  20. An upgraded SCUBA-2 for JCMT

    NASA Astrophysics Data System (ADS)

    Bintley, Dan; Dempsey, Jessica T.; Friberg, Per; Holland, Wayne S.; MacIntosh, Michael J.

    2016-07-01

    SCUBA-2 is a state of the art wide field camera on the JCMT. SCUBA-2 has been fully operational since November 2011, producing a wide range of science results, including a unique series of survey programs. A new large survey programme commenced in 2015, which included for the first time, polarisation sensitive measurements using POL-2, the polarimeter ancillary instrument. We discuss proposals and the science case for upgrading SCUBA-2 with new detector arrays that will keep SCUBA-2 and the JCMT at the forefront of continuum submillimetre science.

  1. A Program to Prepare Graduate Students for Careers in Climate Adaptation Science

    NASA Astrophysics Data System (ADS)

    Huntly, N.; Belmont, P.; Flint, C.; Gordillo, L.; Howe, P. D.; Lutz, J. A.; Null, S. E.; Reed, S.; Rosenberg, D. E.; Wang, S. Y.

    2017-12-01

    We describe our experiences creating a graduate program that addresses the need for a next generation of scientists who can produce, communicate, and help implement actionable science. The Climate Adaptation Science (CAS) graduate program, funded by the National Science Foundation Research Traineeship (NRT) program, prepares graduate students for careers at the interfaces of science with policy and management in the field of climate adaptation, which is a major 21st-century challenge for science and society. The program is interdisciplinary, with students and faculty from natural, social, and physical sciences, engineering, and mathematics, and is based around interdisciplinary team research in collaboration with partners from outside of academia who have climate adaptation science needs. The program embeds students in a cycle of creating and implementing actionable science through a two-part internship, with partners from government, non-governmental organizations, and industry, that brackets and informs a year of interdisciplinary team research. The program is communication-rich, with events that foster information exchange and understanding across disciplines and workplaces. We describe the CAS program, our experiences in developing it, the research and internship experiences of students in the program, and initial metrics and feedback on the effectiveness of the program.

  2. Measurement of Yields and Fluctuations using Background and Calibration Data from the LUX Detector

    NASA Astrophysics Data System (ADS)

    Pease, Evan; LUX Collaboration

    2016-03-01

    The Large Underground Xenon (LUX) detector is a 350-kg liquid xenon (LXe) time-projection chamber designed for the direct detection of weakly-interacting massive particles (WIMPs), a leading dark matter candidate. LUX operates on the 4850-foot level of the Sanford Underground Research Facility in Lead, SD. Monoenergetic electronic recoil (ER) peaks in the WIMP search and calibration data from the first underground science run of the LUX detector have been used to measure ER light and charge yields in LXe between 5.2 keV and 662 keV. The energy resolution of the LUX detector at these energies will also be presented. Recombination fluctuations are observed to follow a linear dependence on the number of ions for the energies in this study, and this dependence is consistent with low-energy measurements made with a tritium beta source in the LUX detector. Using these results and additional measurements of the recoil bands from tritium and D-D neutron calibrations, I will compare recombination fluctuations in LXe response to electronic and nuclear recoils. The presenter is supported by the U.S. Department of Energy, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract DE-AC05-06OR23100.

  3. Progress Report on the US Critical Zone Observatory Program

    NASA Astrophysics Data System (ADS)

    Barrera, E. C.

    2014-12-01

    The Critical Zone Observatory (CZO) program supported by the National Science Foundation originated from the recommendation of the Earth Science community published in the National Research Council report "Basic Research Opportunities in Earth Sciences" (2001) to establish natural laboratories to study processes and systems of the Critical Zone - the surface and near-surface environment sustaining nearly all terrestrial life. After a number of critical zone community workshops to develop a science plan, the CZO program was initiated in 2007 with three sites and has now grown to 10 sites and a National Office, which coordinates research, education and outreach activities of the network. Several of the CZO sites are collocated with sites supported by the US Long Term Ecological Research (LTER) and the Long Term Agricultural Research (LTAR) programs, and the National Ecological Observatory Network (NEON). Future collaboration with additional sites of these networks will add to the potential to answer questions in a more comprehensive manner and in a larger regional scale about the critical zone form and function. At the international level, CZOs have been established in many countries and strong collaborations with the US program have been in place for many years. The next step is the development of a coordinated international program of critical zone research. The success of the CZO network of sites can be measured in transformative results that elucidate properties and processes controlling the critical zone and how the critical zone structure, stores and fluxes respond to climate and land use change. This understanding of the critical zone can be used to enhance resilience and sustainability, and restore ecosystem function. Thus, CZO science can address major societal challenges. The US CZO network is a facility open to research of the critical zone community at large. Scientific data and information about the US program are available at www.criticalzone.org.

  4. The Utilization of the Seven Principles for Good Practices of Full-Time and Adjunct Faculty in Teaching Health & Science in Community Colleges

    ERIC Educational Resources Information Center

    Musaitif, Linda M.

    2013-01-01

    Purpose: The purpose of this study was to determine the degree to which undergraduate full-time and adjunct faculty members in the health and science programs at community colleges in Southern California utilize the seven principles of good practice as measured by the Faculty Inventory of the Seven Principles for Good Practice in Undergraduate…

  5. Real Life Science with Dandelions and Project BudBurst.

    PubMed

    Johnson, Katherine A

    2016-03-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education.

  6. Science Library of Test Items. Volume Eight. Mastery Testing Program. Series 3 & 4 Supplements to Introduction and Manual.

    ERIC Educational Resources Information Center

    New South Wales Dept. of Education, Sydney (Australia).

    Continuing a series of short tests aimed at measuring student mastery of specific skills in the natural sciences, this supplementary volume includes teachers' notes, a users' guide and inspection copies of test items 27 to 50. Answer keys and test scoring statistics are provided. The items are designed for grades 7 through 10, and a list of the…

  7. The Growing Phenomenon of School Gardens: Measuring Their Variation and Their Affect on Students' Sense of Responsibility and Attitudes toward Science and the Environment

    ERIC Educational Resources Information Center

    Skelly, Sonja M.; Bradley, Jennifer Campbell

    2007-01-01

    This article summarizes a 2000 study of school garden programs and their variation and the impact of such variation on 427 third-grade students' sense of responsibility and attitudes toward science and the environment. A teacher questionnaire was developed to gain insight into how teachers use school gardens with their students and in their…

  8. Performance of U.S. 15-Year-Old Students in Mathematics, Science, and Reading Literacy in an International Context. First Look at PISA 2012. NCES 2014-024

    ERIC Educational Resources Information Center

    Kelly, Dana; Nord, Christine Winquist; Jenkins, Frank; Chan, Jessica Ying; Kastberg, David

    2013-01-01

    The Program for International Student Assessment (PISA) is a system of international assessments that allows countries to compare outcomes of learning as students near the end of compulsory schooling. PISA core assessments measure the performance of 15-year-old students in mathematics, science, and reading literacy every 3 years. Coordinated by…

  9. Science Library of Test Items. Volume Thirteen. Mastery Testing Program. [Mastery Tests Series 5.] Tests M51-M65.

    ERIC Educational Resources Information Center

    New South Wales Dept. of Education, Sydney (Australia).

    As part of a series of tests to measure mastery of specific skills in the natural sciences, copies of tests 51 through 65 include: (51) interpreting atomic and mass numbers; (52) extrapolating from a geological map; (53) matching geological sections and maps; (54) identifying parts of the human eye; (55) identifying the functions of parts of a…

  10. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  11. Interdisciplinary Teaching in a Water Educational Training Science Program: Its Impact on Science Concept Knowledge, Writing Performance, and Interest in Science and Writing of Elementary Students.

    ERIC Educational Resources Information Center

    Moore-Hart, Margaret A.; Liggit, Peggy; Daisey, Peggy

    This paper presents a study investigating the effects of the Water Education Training (WET) program on students' performance in science. The WET Program is an after school program using an interdisciplinary approach which has three main objectives: improving science concept knowledge, writing performance, and attitudes toward science and writing.…

  12. Long-Term Participants: A Museum Program Enhances Girls' STEM Interest, Motivation, and Persistence

    ERIC Educational Resources Information Center

    Adams, Jennifer D.; Gupta, Preeti; Cotumaccio, Alix

    2014-01-01

    Out-of-school time (OST) science programs, such as the Lang Science Program, play an important role in influencing the trajectory of science learning for many young people. OST programs are especially important for students from groups underrepresented in science, who, more often than not, attend schools with inadequate science education…

  13. Human Exploration Science Office (KX) Overview

    NASA Technical Reports Server (NTRS)

    Calhoun, Tracy A.

    2014-01-01

    The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides expertise in the application of engineering imagery to spaceflight. The team links NASA programs and private industry with imagery capabilities developed and honed through decades of human spaceflight, including imagery integration, imaging assets, imagery data management, and photogrammetric analysis. The team is currently supporting several NASA programs, including commercial demonstration missions. The Earth Science and Remote Sensing Team is responsible for integrating the scientific use of Earth-observation assets onboard the ISS, which consist of externally mounted sensors and crew photography capabilities. This team facilitates collaboration on remote sensing and participates in research with academic organizations and other Government agencies, not only in conjunction with ISS science, but also for planetary exploration and regional environmental/geological studies. Human exploration science focuses on science strategies for future human exploration missions to the Moon, Mars, asteroids, and beyond. This function provides communication and coordination between the science community and mission planners. ARES scientists support the operation of robotic missions (i.e., Mars Exploration Rovers and the Mars Science Laboratory), contribute to the interpretation of returned mission data, and translate robotic mission technologies and techniques to human spaceflight.

  14. GLOBE at Night: a Worldwide Citizen-Science Program to Increase Awareness of Light Pollution by Measuring Night Sky Brightness

    NASA Astrophysics Data System (ADS)

    Walker, C. E.; Pompea, S. M.

    2011-12-01

    The emphasis in the international citizen-science, star-hunting campaign, GLOBE at Night, is in bringing awareness to the public on issues of light pollution. Light pollution threatens not only observatory sites and our "right to starlight", but can affect energy consumption, wildlife and health. GLOBE at Night has successfully reached a few 100,000 citizen-scientists. What has contributed to its success? Foundational resources are available to facilitate the public's participation in promoting dark skies awareness. The GLOBE at Night website explains clearly the simple-to-participate-in 5 step program and offers background information and interactive games on key concepts. To promote the campaign via popular social media, GLOBE at Night created Facebook and Twitter pages. The program has been expanded to include trainings of the general public, but especially educators in schools, museums and science centers, in unique ways. Education kits for dark skies awareness have been distributed at the training workshops. The kit includes material for a light shielding demonstration, a digital Sky Quality Meter and "Dark Skies Rangers" activities. The activities are on how unshielded light wastes energy, how light pollution affects wildlife and how one can participate in a citizen-science star-hunt like GLOBE at Night. To increase participation in the 2011 campaign, children and adults submitted their sky brightness measurements in real time with smart phones or tablets using the web application at www.globeatnight.org/webapp/. With smart phones and tablets, the location, date and time register automatically. For those without smart mobile devices, user-friendly tools on the GLOBE at Night report page were reconfigured to determine latitude and longitude more easily and accurately. As a proto-type for taking multiple measurements, people in Tucson found it easy to adopt a street and take measurements every mile for the length of the street. The grid of measurements canvassed the town, allowing for comparisons of light levels over time (hours, days, years) or searching for dark sky oases or light polluted areas. The increase to 2 campaigns in 2011 re-enforces these studies. The intent is to offer the program year-round for seasonal studies. The data can also be used to compare with datasets on wildlife, health, and energy consumption. Recently, NOAO and the Arizona Game and Fish Department have started a project with GLOBE at Night data and bat telemetry to examine a dark skies corridor in Tucson where the endangered bats fly. In addition, a 2nd new Web application (www.globeatnight.org/mapapp/) allows for mapping GLOBE at Night data points within a specified distance around a city or an area of choice. The resulting maps are bookmarkable and shareable. The presentation will highlight the education and outreach value of the program's resources and outcomes, lessons learned, successes and pitfalls in communicating awareness with the public and attracting young people to study science.

  15. Electron Microscopy Lab

    Science.gov Websites

    Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research Science Seaborg Institute Fellows Conferences Research Opportunities Center for Integrated

  16. SAGE III Educational Outreach and Student's On-Line Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Woods, D. C.; Moore, S. W.; Walters, S. C.

    2002-05-01

    Students On-Line Atmospheric Research (SOLAR) is a NASA-sponsored educational outreach program aimed at raising the level of interest in science among elementary, middle, and high school students. SOLAR is supported by, and closely linked to, NASA's Stratospheric Aerosol and Gas Experiment III (SAGE III). SAGE III, launched on a Russian METEOR 3M spacecraft in December 2001, is a key component of NASA's Earth Observing System. It will monitor the quantity and distribution of aerosols, ozone, clouds, and other important trace gases in the upper atmosphere. Early data from SAGE III indicate that the instrument is performing as expected. SAGE III measurements will extend the long-term data record established by its predecessors, SAGE I and SAGE II, which spans from 1979 to the present. In addition, SAGE III's added measurement capabilities will provide more detailed data on certain atmospheric species. SOLAR selects interesting topics related to the science issues addressed by the SAGE III experiments, and develops educational materials and projects to enhance science teaching, and to help students realize the relevance of these issues to our lives on Earth. For example, SOLAR highlights some of the major questions regarding the health of the atmosphere such as possible influences of aerosols on global climate, and atmospheric processes related to ozone depletion. The program features projects to give students hands-on experience with scientific equipment and help develop skills in collecting, analyzing, and reporting science results. SOLAR focuses on helping teachers become familiar with current research in the atmospheric sciences, helping teachers integrate SOLAR developed educational materials into their curriculum. SOLAR gives special presentations at national and regional science teacher conferences and conducts a summer teacher workshop at the NASA Langley Research Center. This poster will highlight some of the key features of the SOLAR program and will present descriptions of student projects, teacher workshops, and SOLAR resources.

  17. Outcomes and Processes in the Meyerhoff Scholars Program: STEM PhD Completion, Sense of Community, Perceived Program Benefit, Science Identity, and Research Self-Efficacy.

    PubMed

    Maton, Kenneth I; Beason, Tiffany S; Godsay, Surbhi; Sto Domingo, Mariano R; Bailey, TaShara C; Sun, Shuyan; Hrabowski, Freeman A

    2016-01-01

    Previous research has shown that the Meyerhoff Scholars Program at the University of Maryland, Baltimore County, is an effective intervention for high-achieving underrepresented minority (URM) students; African-American Meyerhoff students are significantly more likely to enter science, technology, engineering, and mathematics (STEM) PhD programs than comparison students. The first of two studies in this report extends the prior research by examining levels of PhD completion for Meyerhoff (N = 479) versus comparison sample (N = 249) students among the first 16 cohorts. Entering African-American Meyerhoff students were 4.8 times more likely to complete STEM PhDs than comparison sample students. To enhance understanding of potential mechanisms of influence, the second study used data from the 22nd (Fall 2010) to 25th (Fall 2013) cohorts (N = 109) to test the hypothesis that perceived program benefit at the end of freshman year would mediate the relationship between sense of community at the end of Summer Bridge and science identity and research self-efficacy at the end of sophomore year. Study 2 results indicated that perceived program benefit fully mediated the relationship between sense of community and both criterion measures. The findings underscore the potential of comprehensive STEM intervention programs to enhance PhD completion, and suggest mechanisms of influence. © 2016 K. I. Maton et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Integrating Genetics and Social Science: Genetic Risk Scores

    PubMed Central

    Belsky, Daniel W.; Israel, Salomon

    2014-01-01

    The sequencing of the human genome and the advent of low-cost genome-wide assays that generate millions of observations of individual genomes in a matter of hours constitute a disruptive innovation for social science. Many public-use social science datasets have or will soon add genome-wide genetic data. With these new data come technical challenges, but also new possibilities. Among these, the lowest hanging fruit and the most potentially disruptive to existing research programs is the ability to measure previously invisible contours of health and disease risk within populations. In this article, we outline why now is the time for social scientists to bring genetics into their research programs. We discuss how to select genetic variants to study. We explain how the polygenic architecture of complex traits and the low penetrance of individual genetic loci pose challenges to research integrating genetics and social science. We introduce genetic risk scores as a method of addressing these challenges and provide guidance on how genetic risk scores can be constructed. We conclude by outlining research questions that are ripe for social science inquiry. PMID:25343363

  19. Practical Application of Research in Science Education (PARSE) -- A New Collaboration for K-12 Science Teacher Professional Development

    NASA Astrophysics Data System (ADS)

    Zwicker, Andrew; Lopez, Jose; Clayton, James

    2008-11-01

    A new collaboration between PPPL, St. Peter's College, the Liberty Science Center, and the Jersey City Public School District was formed in order to create a unique K-12 teacher professional development program. St. Peter's College, located in Jersey City, NJ, is a liberal arts college in an urban setting. The Liberty Science Center (LSC) is the largest education resource in the New Jersey-New York City region. The Jersey City School District has 28,000 students of which approximately 90% are from populations traditionally under-represented in science. The new program is centered upon topics surrounding energy and the environment. In the first year, beginning in 2009, 15-20 teachers will participate in a pilot course that includes hands-on research at PPPL and St. Peter's, the creation of new curricular materials, and pedagogical techniques. Scientists, master teachers, and education professors will teach the course. In subsequent years, the number of participants will be significantly expanded and the curricular material disseminated to other school districts. In addition, an outside evaluator will measure the educational outcome throughout the project.

  20. Career Resources

    Science.gov Websites

    Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs

  1. New Hire

    Science.gov Websites

    Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Energy Programs

  2. Evaluating the Effectiveness of the 2002-2003 NASA SCIence Files(TM) Program

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Lambert, Matthew A.; Williams, Amy C.

    2004-01-01

    NASA SCIence Files (tm) is a research-, inquiry-, and standards-based, integrated mathematics, science, and technology series of 60-minute instructional distance learning (television and web-based) programs for students in grades 3-5. Respondents who evaluated the programs in the 2002-2003 NASA SCIence Files (tm) series reported that (1) they used the programs in the series; (2) the goals and objectives for the series were met; (3) the programs were aligned with the national mathematics, science, and technology standards; (4) the program content was developmentally appropriate for grade level; and (5) the programs in the series enhanced and enriched the teaching of mathematics, science, and technology.

  3. Education and Outreach at the Earthscope National Office: 2012 Update on Activities and Broader Impacts

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Arrowsmith, R.; Fouch, M. J.; Garnero, E. J.; Taylor, W. L.; Bohon, W.; Pacheco, H. A.; Schwab, P.; Baumback, D.; Pettis, L.; Colunga, J.; Robinson, S.; Dick, C.

    2012-12-01

    The EarthScope Program (www.earthscope.org) funded by the National Science Foundation fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of seismology, geodesy, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. EarthScope scientific data and findings are transforming the study of Earth structure and processes throughout the planet. These data enhance the understanding and mitigation of hazards and inform environmental and economic applications of geoscience. The EarthScope Program also offers significant resources and opportunities for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO) at Arizona State University serves all EarthScope stakeholders, including researchers, educators, students, and the general public. ESNO continues to actively support and promote E&O with programmatic activities such as a regularly updated presence on the web and social media, newsletters, biannual national conferences, workshops for E&O providers and informal educators (interpreters), collaborative interaction with other Earth science organizations, continuing education for researchers, promotion of place-based education, and support for regional K-12 teacher professional-development programs led by EarthScope stakeholders. EarthScope E&O, coordinated by ESNO, leads the compilation and dissemination of the data, findings, and legacy of the epic EarthScope Program. In this presentation we offer updated reports and outcomes from ESNO E&O activities, including web and social-media upgrades, the Earth Science E&O Provider Summit for partnering organizations, the Central Appalachian Interpretive Workshop for informal Earth science educators, the U.S. Science and Engineering Fair, and collaborative efforts with partner organizations. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  4. The effectiveness of a long-term professional development program on teachers' self-efficacy, attitudes, skills, and knowledge using a thematic learning approach

    NASA Astrophysics Data System (ADS)

    Tinnin, Richard Kinna

    The purpose of this research study was to determine the effectiveness of a long-term professional development program on self-efficacy beliefs, science attitudes, skills, and knowledge of elementary teachers. The target school was located in the Lower Rio Grande Valley of Texas. Major elements of the study included the use of thematic science strands, use of the 5E constructivist-oriented instructional model, a focus on the interdisciplinary nature of the science process skills, and guided, inquiry-based learning experiences. These elements mirror the principles identified as being essential components of effective professional development for mathematics, and science education (Fullan, 1985; Sparks & Loucks-Horsley, 1990; Loucks-Horsley, 1997). The research team was actively involved with the participants for a total of 30 days at their school over the 24 months of the study. During each training, the research team modeled the 5E constructivist-oriented instructional strategy, and the interdisciplinary nature of the science process skills, set up a wide variety of activity centers, and provided the teachers with opportunities to improve their attitudes, skills, and knowledge of the science content, and teaching strategies. The 15 participants completed pre-, post-, and post-post-Leadership Team Surreys. Quantitative data analyses of gain scores measuring level of confidence to teach Marine and Earth Science, content knowledge, and teaching strategies were significant, p < .001. The participants' efficacy-beliefs and outcome expectancy were assessed with a pre- and posttest Science Teacher Self-Efficacy Beliefs Instrument that measures both elements. Self-efficacy beliefs were significant at p < .001. Outcome expectancies were not significant, p > .05. Qualitative analysis of reflective journal comments, classroom observations, and the participants understanding, and use of science process skills across the curriculum supported the quantitative data results. The data demonstrate significant improvement in the self-efficacy beliefs, attitudes, skills, and knowledge toward teaching science of the Pre-Kindergarten--2nd -grade teachers who participated in this long-term professional development study.

  5. Turning Content into Conversation: How The GLOBE Program is Growing its Brand Online

    NASA Astrophysics Data System (ADS)

    Zwerin, R.; Randolph, J. G.; Andersen, T.; Mackaro, J.; Malmberg, J.; Tessendorf, S. A.; Wegner, K.

    2012-12-01

    Social Media is now a ubiquitous way for individuals, corporations, governments and communities to communicate. However, the same does not hold quite as true for the science community as many science educators, thought leaders and science programs are either reluctant or unable to build and cultivate a meaningful social media strategy. This presentation will show how The GLOBE Program uses social media to disseminate messages, build a meaningful and engaged following and grow a brand on an international scale using a proprietary Inside-Out strategy that leverages social media platforms such as Facebook, LinkedIn, Twitter, YouTube and Blogs to significantly increase influencers on a worldwide scale. In addition, this poster presentation will be interactive, so viewers will be able to touch and feel the social experience. Moreover, GLOBE representatives will be on hand to talk viewers through how they can implement a social media strategy that will allow them to turn their content into meaningful conversation. About The GLOBE Program: GLOBE is a science and education program that connects a network of students, teachers and scientists from around the world to better understand, sustain and improve Earth's environment at local, regional and global scales. By engaging students in hands-on learning of Earth system science, GLOBE is an innovative way for teachers to get students of all ages excited about scientific discovery locally and globally. To date, more than 23 million measurements have been contributed to the GLOBE database, creating meaningful, standardized, global research-quality data sets that can be used in support of student and professional scientific research. Since beginning operations in 1995, over 58,000 trained teachers and 1.5 million students in 112 countries have participated in GLOBE. For more information or to become involved, visit www.globe.gov.

  6. Innovations in Delta Differential One-Way Range: from Viking to Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Border, James S.

    2009-01-01

    The Deep Space Network has provided the capability for very-long-baseline interferometry measurements in support of spacecraft navigation since the late 1970s. Both system implementation and the importance of such measurements to flight projects have evolved significantly over the past three decades. Innovations introduced through research and development programs have led to much better performance. This paper provides an overview of the development and use of interferometric tracking techniques in the DSN starting with the Viking era and continuing with a description of the current system and its planned use to support Mars Science Laboratory.

  7. Innovations in College Science Teaching.

    ERIC Educational Resources Information Center

    Penick, John E., Ed.; Dunkhase, John A., Ed.

    Fifteen innovative college science programs based on survey results about perceptions of excellence in college science teaching are presented. The goals, program origins, special features of the programs, evaluations, and conclusions are described for each. Discussed are the commonalities among this collection of 15 college science programs and…

  8. 75 FR 70925 - Office of the Assistant Secretary for Planning and Evaluation; Medicare Program; Meeting of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... estimation involving economics and actuarial science. Panelists are not restricted, however, in the topics... actuarial and economic assumptions and methods by which Trustees might more accurately measure health...

  9. 76 FR 558 - Office of the Assistant Secretary for Planning and Evaluation; Medicare Program; Meeting of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... technical aspects of estimation involving economics and actuarial science. Panelists are not restricted... actuarial and economic assumptions and methods by which Trustees might more accurately measure health...

  10. Arctic Connections, an Interactive CD-ROM Program for Middle School Science

    NASA Astrophysics Data System (ADS)

    Elias, S. A.

    2003-12-01

    In this project we developed an interactive CD-ROM program for middle school students, accompanied by an interactive web site. The project was sponsored by a grant from the NSF ESIE Instructional Materials Development program. One of the major goals of this project was to involve middle school students in inquiry-based science education, using topics that are of interest to students in Arctic communities. Native Alaskan students have traditionally done poorly in science at the secondary level, and few have gone on to major in the sciences in college or to pursue scientific careers. Part of the problem is a perceived dichotomy between science and traditional Native ways of knowing about the natural world. Hence some students reject the scientific method as being foreign to their native culture. Our goal was to help bridge this cultural barrier, and to demonstrate to native students that the scientific method is not antithetical to their traditional way of life. The program uses story modules that discuss both scientific and Native ways of understanding, through the use of action-adventure stories and brief learning modules. The aim was to show students the relevance of science to their daily lives, and to convince them that scientific methods are a vital tool in solving major problems in arctic communities. Each action-adventure story contains a series of problems that the program user must solve through interactive participation, in order for the story to progress. The interactive elements include answering quiz questions correctly, measuring pH by comparing litmus paper colors, measuring archaeological artifact dimensions, finding the location of fossil bones in a photograph, and correctly identifying photographs of whale species, arctic plants, and fish. The stories contain a mixture of live-action film sequences and voice-over sketch art story boards. The ten modules include such topics as arctic flora and fauna (including terrestrial and sea mammals), arctic solar phenomena, the archaeology and ice-age history of Alaska, water quality, sea ice, permafrost, and climatology. The topics are designed to show connections between the past, present, and future of the Arctic, highlighting problems that can be addressed by scientific inquiry. The accompanying teacher's guide contains a series of hands-on experiments and additional learning materials for each module. The scientific information contained in the modules was refereed by a team of experts who have also volunteered to respond to student questions via e-mail. During the last three years, the program has been field tested in middle schools in Barrow, Kotzebue, Fairbanks, and Anchorage, Alaska. These tests have brought many suggestions for improvements from both teachers and students. The program is in its final evaluation phase, and will be available to schools early in 2004.

  11. Coherence and Divergence of Megatrends in Science and Engineering

    NASA Astrophysics Data System (ADS)

    Roco, M. C.

    2002-04-01

    Scientific discoveries and technological innovations are at the core of human endeavor, and it is estimated that their role will only increase in time. Such advancements evolve in coherence, with areas of confluence and temporary divergences, which bring synergism and that stimulate further developments following in average an exponential growth. Six increasingly interconnected megatrends are perceived as dominating the scene for the next decades: (a) information and computing, (b) nanoscale science and engineering (S&E), (c) biology and bio-environmental approaches, (d) medical sciences and enhancing human physical capabilities, (e) cognitive sciences and enhancing intellectual abilities, and (f) collective behavior and system approach. This paper presents a perspective on the process of identification, planning and program implementation of S&E megatrends, with illustration for the US research initiative on nanoscale science, engineering, and technology. The interplay between coherence and divergence, leading to unifying science and converging technologies, does not develop only among simultaneous scientific trends but also along time and across geopolitical boundaries. There is no single way of development of S&E, and here is the role of taking visionary measures. Societal implication scientists need to be involved from the conceptual phase of a program responding to a S&E megatrend.

  12. The Howard University Program in Atmospheric Sciences (HUPAS): A Program Exemplifying Diversity and Opportunity

    ERIC Educational Resources Information Center

    Morris, Vernon R.; Joseph, Everette; Smith, Sonya; Yu, Tsann-wang

    2012-01-01

    This paper discusses experiences and lessons learned from developing an interdisciplinary graduate program (IDP) during the last 10 y: The Howard University Graduate Program in Atmospheric Sciences (HUPAS). HUPAS is the first advanced degree program in the atmospheric sciences, or related fields such as meteorology and earth system sciences,…

  13. A review of forensic science higher education programs in the United States: bachelor's and master's degrees.

    PubMed

    Tregar, Kristen L; Proni, Gloria

    2010-11-01

    As the number of forensic science programs offered at higher education institutions rises, and more students express an interest in them, it is important to gain information regarding the offerings in terms of courses, equipment available to students, degree requirements, and other important aspects of the programs. A survey was conducted examining the existing bachelor's and master's forensic science programs in the U.S. Of the responding institutions, relatively few were, at the time of the survey, accredited by the forensic science Education Programs Accreditation Commission (FEPAC). In general, the standards of the responding programs vary considerably primarily in terms of their size and subjects coverage. While it is clear that the standards for the forensic science programs investigated are not homogeneous, the majority of the programs provide a strong science curriculum, faculties with advanced degrees, and interesting forensic-oriented courses. © 2010 American Academy of Forensic Sciences.

  14. The book availability study as an objective measure of performance in a health sciences library.

    PubMed Central

    Kolner, S J; Welch, E C

    1985-01-01

    In its search for an objective overall diagnostic evaluation, the University of Illinois Library of the Health Sciences' Program Evaluation Committee selected a book availability measure; it is easy to administer and repeat, results are reproducible, and comparable data exist for other academic and health sciences libraries. The study followed the standard methodology in the literature with minor modifications. Patrons searching for particular books were asked to record item(s) needed and the outcome of the search. Library staff members then determined the reasons for failures in obtaining desired items. The results of the study are five performance scores. The first four represent the percentage probability of a library's operating with ideal effectiveness; the last provides an overall performance score. The scores of the Library of the Health Sciences demonstrated no unusual availability problems. The study was easy to implement and provided meaningful, quantitative, and objective data. PMID:3995202

  15. Innovative Space Sciences Education Programs for Young People

    NASA Astrophysics Data System (ADS)

    Inbar, T.

    2002-01-01

    The future of the world is greatly depends on space. Through space sciences education programs with the main focus is on young people, the society, as a whole will gain in the years to come. The Weizmann Institute of Science is the leading scientific research center in Israel. After the need for science education programs for young students was recognized, the institute established its Youth Activities Section, which serves as the institute's outreach for the general population of school children nation-wide. The youth activities section holds courses, seminars, science camps etc. for almost 40 years. As an instructor in the youth activities section since 1990, my focus is space sciences programs, such as rocketry courses, planetarium demonstrations, astronomical observations and special events - all in the creed of bringing the space science to everyone, in a enjoyable, innovative and creative way. Two of the courses conducted combines' scientific knowledge, hands-on experience and a glimpse into the work of space programs: the rocketry courses offered a unique chance of design, build and fly actual rockets, to height of about 800 meters. The students conduct research on the rockets, such as aerial photography, environmental measurements and aerodynamic research - using student built wind tunnel. The space engineering course extend the high frontier of the students into space: the objective of a two year course is to design, build an launch an experiments package to space, using one of NASA's GAS programs. These courses, combined with special guest lectures by Weizmann institute's senior researchers, tours to facilities like satellite control center, clean rooms, the aeronautical industry, give the students a chance to meet with "the real world" of space sciences applications and industry, and this - in turn - will have payback effect on the society as a whole in years to come. The activities of space sciences education include two portable planetariums, 4 telescopes and special "mobile science" project, which travel to hundreds of school annually, and bring to them mini exhibitions, scientific activities and lectures. Special events are held when something unique happened: in the last years we have had the Galileo special event when the spacecraft arrived at Jupiter; SL-9 event; Mars Pathfinder special event; Mir re- entry event - to name a few. For 11 years, on July 20 we have the Apollo memorial lecture, and a meteors observation night on August 11. The 12 years of experience I have in teaching space sciences subjects to k-12 students, university students and adults, combines with three years as a director of interactive science museum, allowed me to implement my vision of promoting the general knowledge about space and to move a little more in the direction of creating a space oriented, open and globally interacted society in Israel.

  16. An Investigation of Pre-Service Science Teachers' Level of Efficacy in the Undergraduate Science Teacher Education Program and Pedagogical Formation Program

    ERIC Educational Resources Information Center

    Çetin, Oguz

    2017-01-01

    The purpose of this research is to comparatively investigate the efficacy levels of pre-service science (Science, Biology, Physics, and Chemistry) teachers enrolled at the Undergraduate Program of Science Teacher Education and Pedagogical Formation Program. A total of 275 pre-service teachers who were studying in different programmes in the…

  17. Effectiveness of a Science Agricultural Summer Experience (SASE) in Recruiting Students to Natural Resources Management

    NASA Astrophysics Data System (ADS)

    Martinez, Edward; Lindline, Jennifer; Petronis, Michael S.; Pilotti, Maura

    2012-12-01

    The Bureau of Labor Statistics projects an increase in Natural Resource Management (NRM) jobs within the next 10 years due to baby-boomer retirements and a 12% increase in demand for these occupations. Despite this trend, college enrollment in NRM disciplines has declined. Even more critical is the fact that the soon-to-be-majority Hispanic population is underrepresented in NRM disciplines. The goal of the present study was to determine if an in-residence, two-week, summer science program for underrepresented minorities would not only increase interest in science, actual science knowledge, and perceived science knowledge, but also have an overall impact on underrepresented minority students' decisions to attend college, major in a scientific discipline and pursue a career in science. During a four-year period, 76 high school students participated in a Science Agricultural Summer Experience (SASE) in Northern New Mexico. A pre/post science-knowledge exam and satisfaction survey were administered to participants. We demonstrate that participants improved significantly ( p < .05) in all areas measured. In particular, comfort with science field and lab activities, science knowledge and perceived science knowledge were enhanced after exposure to the program. Students not only found science exciting and approachable after participation, but also exhibited increased interest in pursuing a degree and career in science. Of the 76 SASE participants within graduation age ( n = 44), all graduated from high school; and 86% enrolled in college. These findings suggest that the implemented SASE initiative was effective in recruiting and increasing the confidence and abilities of underrepresented minority students in science.

  18. AAAS Communicating Science Program: Reflections on Evaluation

    NASA Astrophysics Data System (ADS)

    Braha, J.

    2015-12-01

    The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.

  19. EarthScope National Office (ESNO) Education and Outreach Program and its Broader Impacts: 2015 Update and Handoff to the Next ESNO

    NASA Astrophysics Data System (ADS)

    Semken, S. C.; Robinson, S.; Bohon, W.; Arrowsmith, R.; Garnero, E.; Baumback, D.; Boot, K. E.; Dick, C.

    2015-12-01

    The EarthScope Program (www.earthscope.org), funded by the National Science Foundation, fosters interdisciplinary exploration of the geologic structure and evolution of the North American continent by means of geodesy, seismology, magnetotellurics, in-situ fault-zone sampling, geochronology, and high-resolution topographic measurements. Data and scientific findings from EarthScope are impacting and revolutionizing wide areas of geoscientific research, the understanding and mitigation of geologic hazards, and applications of geoscience to environmental sustainability. The EarthScope Program also produces and disseminates resources and programs for education and outreach (E&O) in the Earth system sciences. The EarthScope National Office (ESNO), operated by Arizona State University from 2011 to 2015, serves all EarthScope stakeholders, including researchers, educators, students, and the general public. ESNO supports and promotes E&O through social media and the web, inSights newsletters and published articles, E&O workshops for informal educators (interpreters), an annual Speaker Series, assistance to K-12 STEM teacher professional development projects led by EarthScope researchers, continuing education for researchers, collaborations with other Earth-science E&O providers, and a biennial National Meeting. Significant activities during the final year of ESNO at ASU included the EarthScope National Meeting in Vermont; Native Science professional-development workshops for Native American teachers in Arizona and Minnesota; a sustained E&O presence online; and preparation for the transition of ESNO from ASU to the next host institution. The EarthScope National Office is supported by the National Science Foundation under grants EAR-1101100 and EAR-1216301. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

  20. Determination of the number of ψ(3686) events at BESIII

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, J. V.; Bertani, M.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, Y.; Fava, L.; Feldbauer, F.; Feng, C. Q.; Fu, C. D.; Gao, Q.; Gao, Y.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, Y. P.; Han, Y. L.; Harris, F. A.; He, K. L.; He, M.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, T.; Huang, G. S.; Huang, J. S.; Huang, L.; Huang, X. T.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Kloss, B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Kang; Li, Ke; Li, Lei; Li, P. R.; Li, Q. J.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang.; Liu, Feng.; Liu, H. B.; Liu, H. M.; Liu, Huihui.; Liu, J.; Liu, J. P.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang.; Liu, Zhiqing.; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, H. L.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Sarantsev, A.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Toth, D.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, W.; Wang, X. F.; Wang(Yadi, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Zafar, A. A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, R.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Yao.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling.; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2018-02-01

    The numbers of ψ(3686) events accumulated by the BESIII detector for the data taken during 2009 and 2012 are determined to be (107.0+/- 0.8)× {10}6 and (341.1+/- 2.1)× {10}6, respectively, by counting inclusive hadronic events, where the uncertainties are systematic and the statistical uncertainties are negligible. The number of events for the sample taken in 2009 is consistent with that of the previous measurement. The total number of ψ(3686) events for the two data taking periods is (448.1+/- 2.9)× {10}6. Supported by the Ministry of Science and Technology of China (2009CB825200), National Natural Science Foundation of China (NSFC) (11235011, 11322544, 11335008, 11425524, 11475207), the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, the Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179014), Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1532257, U1532258), Joint Funds of the National Natural Science Foundation of China (11079008), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, German Research Foundation DFG (Collaborative Research Center CRC 1044), Istituto Nazionale di Fisica Nucleare, Italy, Koninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03), Ministry of Development of Turkey (DPT2006K-120470), National Natural Science Foundation of China (11205082), The Swedish Research Council, U. S. Department of Energy (DE-FG02-05ER41374, DE-SC-0010118, DE-SC-0010504), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  1. A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Stefan, Schmuck; Zhao, Hailin; John, Fessey; Paul, Trimble; Liu, Xiang; Zhu, Zeying; Zang, Qing; Hu, Liqun

    2016-12-01

    A Michelson interferometer, on loan from EFDA-JET (Culham, United Kingdom) has recently been commissioned on the experimental advanced superconducting tokamak (EAST, ASIPP, Hefei, China). Following a successful in-situ absolute calibration the instrument is able to measure the electron cyclotron emission (ECE) spectrum, from 80 GHz to 350 GHz in extraordinary mode (X-mode) polarization, with high accuracy. This allows the independent determination of the electron temperature profile from observation of the second harmonic ECE and the possible identification of non-Maxwellian features by comparing higher harmonic emission with numerical simulations. The in-situ calibration results are presented together with the initial measured temperature profiles. These measurements are then discussed and compared with other independent temperature profile measurements. This paper also describes the main hardware features of the diagnostic and the associated commissioning test results. supported by National Natural Science Foundation of China (Nos. 11405211, 11275233), and the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB106002, 2015GB101000), and the RCUK Energy Programme (No. EP/I501045), partly supported by the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (NSFC: No. 11261140328)

  2. Science Education at Riverside Middle School A Case Study

    NASA Astrophysics Data System (ADS)

    Smiley, Bettie Ann Pickens

    For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue college degrees and careers in science, technology, engineering, and mathematics. According to the results of national assessments, the gender gap in science achievement begins to be evident in the middle school years. Gender and school science achievement involve a complex set of factors associated with schools and child/family systems that may include school leadership, institutional practices, curriculum content, teacher training programs, teacher expectations, student interests, parental involvement, and cultural values. This ethnographic case study was designed to explore the context for science education reform and the participation of middle school girls. The study analyzed and compared teaching strategies and female student engagement in sixth, seventh, and eighth grade science classrooms. The setting was a middle school situated in a district that was well-known for its achievement in reading, math, and technology. Findings from the study indicated that while classroom instruction was predominantly organized around traditional school science, the girls were more disciplined and outperformed the boys. The size of the classrooms, time to prepare for hands-on activities, and obtaining resources were identified as barriers to teaching science in ways that aligned with recent national science reform initiatives. Parents who participated in the study were very supportive of their daughters' academic progress and career goals. A few of the parents suggested that the school's science program include more hands-on activities; instruction designed for the advanced learner; and information related to future careers. Overall the teachers and students perceived their science program to be gender fair. Eighth grade participants who had career goals related to science and engineering, indicated that their science instruction did not provide the rigor they needed to improve their critical skills for advanced placement in high school. Recommendations include the need for professional development on inquiry-based science, equitable student achievement, and diverse perspectives in science education.

  3. The California State University, Los Angeles Biomedical Sciences Program.

    ERIC Educational Resources Information Center

    Gutierrez, Carlos G.; Brown, Costello L.

    The Biomedical Sciences Program at California State University, Los Angeles (CSULA), is described. The federally funded program was designed to help economically disadvantaged students to pursue careers in biomedical sciences. The program provided academic support in mathematics, science, and English; study skills development; experiences in…

  4. STEM enrichment programs and graduate school matriculation: the role of science identity salience

    PubMed Central

    Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education. PMID:24578606

  5. STEM enrichment programs and graduate school matriculation: the role of science identity salience.

    PubMed

    Merolla, David M; Serpe, Richard T

    2013-12-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student performance, degree completion, interest in science and graduate enrollment. Moreover, research suggests that beyond improving performance in STEM, and providing access to research experience and faculty mentoring, enrichment programs may also increase the degree to which students identify as scientists. However, researchers investigating the role of science identity on student outcomes have focused primarily on subjective outcomes, leaving a critical question of whether science identity also influences objective outcomes such as whether students attend graduate school. Using identity theory, this study addresses this issue by investigating science identity as a mechanism linking enrichment program participation to matriculation into graduate science programs. Quantitative results from a panel study of 694 students indicate that science identity salience, along with research experience and college GPA, mediate the effect of enrichment program participation on graduate school matriculation. Further, results indicate that although the social psychological process by which science identity salience develops operates independently from student GPA, science identity amplifies the effect of achievement on graduate school matriculation. These results indicate that policies seeking to increase the efficacy of enrichment programs and increase representation in STEM graduate programs should be sensitive to the social and academic aspects of STEM education.

  6. A study of the long term impact of an inquiry-based science program on student's attitudes towards science and interest in science careers

    NASA Astrophysics Data System (ADS)

    Gibson, Helen Lussier

    One reason science enrichment programs were created was to address the underrepresentation of women and minorities in science. These programs were designed to increase underrepresented groups' interest in science and science careers. One attempt to increase students' interest in science was the Summer Science Exploration Program (SSEP). The SSEP was a two week, inquiry-based summer science camp offered by Hampshire College for students entering grades seven and eight. Students who participated were from three neighboring school districts in Western Massachusetts. The goal of the program was to stimulate greater interest in science and scientific careers among middle school students, in particular among females and students of color. A review of the literature of inquiry-based science programs revealed that the effect of inquiry-based programs on students' attitudes towards science is typically investigated shortly after the end of the treatment period. The findings from this study contribute to our understanding of the long-term impact of inquiry-based science enrichment programs on students' attitude towards science and their interest in science careers. The data collected consisted of quantitative survey data as well as qualitative data through case studies of selected participants from the sample population. This study was guided by the following questions: (1) What was the nature and extent of the impact of the Summer Science Exploration Program (SSEP) on students' attitudes towards science and interest in science careers, in particular among females and students of color? (2) What factors, if any, other than participation in SSEP impacted students' attitude towards science and interest in scientific careers? (3) In what other ways, if any, did the participants benefit from the program? Conclusions drawn from the data indicate that SSEP helped participants maintain a high level of interest in science. In contrast, students who applied but were not accepted showed a decrease in their attitude towards science and their interest in science careers over time, compared to the participants. The interviews suggested that students enjoyed the inquiry-based approach that was used at camp. In addition, students said they found the hands-on inquiry-based approach used at camp more interesting than traditional methods of instruction (lectures and note taking) used at school. Recommendations for future research are presented.

  7. System of Programmed Modules for Measuring Photographs with a Gamma-Telescope

    NASA Technical Reports Server (NTRS)

    Averin, S. A.; Veselova, G. V.; Navasardyan, G. V.

    1978-01-01

    Physical experiments using tracking cameras resulted in hundreds of thousands of stereo photographs of events being received. To process such a large volume of information, automatic and semiautomatic measuring systems are required. At the Institute of Space Research of the Academy of Science of the USSR, a system for processing film information from the spark gamma-telescope was developed. The system is based on a BPS-75 projector in line with the minicomputer Elektronika 1001. The report describes this system. The various computer programs available to the operators are discussed.

  8. Advances in the NASA Earth Science Division Applied Science Program

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Bonniksen, C. K.; Escobar, V. M.

    2016-12-01

    The NASA Earth Science Division's Applied Science Program advances the understanding of and ability to used remote sensing data in support of socio-economic needs. The integration of socio-economic considerations in to NASA Earth Science projects has advanced significantly. The large variety of acquisition methods used has required innovative implementation options. The integration of application themes and the implementation of application science activities in flight project is continuing to evolve. The creation of the recently released Earth Science Division, Directive on Project Applications Program and the addition of an application science requirement in the recent EVM-2 solicitation document NASA's current intent. Continuing improvement in the Earth Science Applications Science Program are expected in the areas of thematic integration, Project Applications Program tailoring for Class D missions and transfer of knowledge between scientists and projects.

  9. Measurements of the center-of-mass energies at BESIII via the di-muon process

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; C. Ai, X.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini, Ferroli R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Q. Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Fang, Liu; Feng, Liu; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. Y.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A. A.; Savrié, M.; Schoenning, B. K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, A. Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; , S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2016-06-01

    From 2011 to 2014, the BESIII experiment collected about 5 fb-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- → γISR/FSRμ+μ-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125525, 11235011, 11322544, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  10. Magnon gap formation and charge density wave effect on thermoelectric properties in SmNiC2 compound

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Hee; Rhyee, Jong-Soo; Kwon, Yong Seung

    2013-03-01

    We studied the magnetic, electrical, and thermal properties of polycrystalline compound of SmNiC2. The electrical resistivity and magnetization measurement show the interplay between the charge density wave at TCDW = 157 K and the ferromagnetic ordering of Tc = 18 K. Below the ferromagnetic transition temperature, we observed the magnon gap formation of 4.3 ~ 4.4 meV by ρ(T) and Cp(T) measurements. The charge density wave is attributed to the increase of Seebeck coefficient resulting in the increase of power factor S2 σ . The thermoelectric figure-of-merit ZT significantly increases due to the increase of power factor at TCDW = 157 K. Here we argue that the competing interaction between electron-phonon and electron-magnon couplings exhibits the unconventional behavior of electrical and thermal properties. This research was supported by Basic Science Research Program (2011-0021335), Nano-Material Technology Development Program (2011-0030147), and Mid-career Research Program (Strategy) (No. 2012R1A2A1A03005174) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

  11. Care management program evaluation: constituents, conflicts, and moves toward standardization.

    PubMed

    Long, D Adam; Perry, Theodore L; Pelletier, Kenneth R; Lehman, Gregg O

    2006-06-01

    Care management program evaluations bring together constituents from finance, medicine, and social sciences. The differing assumptions and scientific philosophies that these constituents bring to the task often lead to frustrations and even contentions. Given the forms and variations of care management programs, the difficulty associated with program outcomes measurement should not be surprising. It is no wonder then that methods for clinical and economic evaluations of program efficacy continue to be debated and have yet to be standardized. We describe these somewhat hidden processes, examine where the industry stands, and provide recommendations for steps to standardize evaluation methodology.

  12. Laboratory Directed Research and Development 1998 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work inmore » atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.« less

  13. New Measures Assessing Predictors of Academic Persistence for Historically Underrepresented Racial/Ethnic Undergraduates in Science.

    PubMed

    Byars-Winston, Angela; Rogers, Jenna; Branchaw, Janet; Pribbenow, Christine; Hanke, Ryan; Pfund, Christine

    2016-01-01

    An important step in broadening participation of historically underrepresented (HU) racial/ethnic groups in the sciences is the creation of measures validated with these groups that will allow for greater confidence in the results of investigations into factors that predict their persistence. This study introduces new measures of theoretically derived factors emanating from social cognitive and social identity theories associated with persistence for HU racial/ethnic groups in science disciplines. The purpose of this study was to investigate: 1) the internal reliability and factor analyses for measures of research-related self-efficacy beliefs, sources of self-efficacy, outcome expectations, and science identity; and 2) potential group differences in responses to the measures, examining the main and interaction effects of gender and race/ethnicity. Survey data came from a national sample of 688 undergraduate students in science majors who were primarily black/African American and Hispanic/Latino/a with a 2:1 ratio of females to males. Analyses yielded acceptable validity statistics and race × gender group differences were observed in mean responses to several measures. Implications for broadening participation of HU groups in the sciences are discussed regarding future tests of predictive models of student persistence and training programs to consider cultural diversity factors in their design. © 2016 A. Byars-Winston et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. After-Hours Science: Microchips and Onion Dip.

    ERIC Educational Resources Information Center

    Brugger, Steve

    1984-01-01

    Computer programs were developed for a science center nutrition exhibit. The exhibit was recognized by the National Science Teachers Association Search for Excellence in Science Education as an outstanding science program. The computer programs (Apple II) and their use in the exhibit are described. (BC)

  15. Prevention Programs and Scientific Nonsense.

    ERIC Educational Resources Information Center

    Gorman, D. M.

    2003-01-01

    Discusses attempts to examine the scientific base of widely advocated prevention programs, describing how one professor experienced hostility when examining program evaluation data. It focuses on science and the learned theory; science, anti-science, and pseudo-science; anti-science and health promotion; pseudoscience and health promotion; and…

  16. Evaluation of a statewide science inservice and outreach program: Teacher and student outcomes

    NASA Astrophysics Data System (ADS)

    Lott, Kimberly Hardiman

    Alabama Science in Motion (ASIM) is a statewide in-service and outreach program designed to provide in-service training for teachers in technology and content knowledge. ASIM is also designed to increase student interest in science and future science careers. The goals of ASIM include: to complement, enhance and facilitate implementation of the Alabama Course of Study: Science, to increase student interest in science and scientific careers, and to provide high school science teachers with curriculum development and staff development opportunities that will enhance their subject-content expertise, technology background, and instructional skills. This study was conducted to evaluate the goals and other measurable outcomes of the chemistry component of ASIM. Data were collected from 19 chemistry teachers and 182 students that participated in ASIM and 6 chemistry teachers and 42 students that do not participate in ASIM using both surveys and student records. Pre-treatment Chi-Square tests revealed that the teachers did not differ in years of chemistry teaching experience, major in college, and number of classes other than chemistry taught. Pre-treatment Chi-Square tests revealed that the students did not differ in age, ethnicity, school classification, or school type. The teacher survey used measured attitudes towards inquiry-based teaching, frequency of technology used by teacher self-report and perceived teaching ability of chemistry topics from the Alabama Course of Study-Science. The student surveys used were the Test of Science Related Attitudes (TOSRA) and a modified version of the Test of Integrated Process Skills (TIPS). The students' science scores from the Stanford Achievement Test (SAT-9) were also obtained from student records. Analysis of teacher data using a MANOVA design revealed that participation in ASIM had a significantly positive effect on teacher attitude towards inquiry-based teaching and the frequency of technology used; however, there was no significant effect on the perceived teaching ability of topics from the Alabama Course of Study-Science. Similar analysis of student data revealed that participation in ASIM had a significantly positive effect on student process skills acquisition and science achievement, but there were no significant effects on science attitudes.

  17. Implementation Options For the Solar System Exploration Survey's "Jupiter Polar Orbiter with Probes" Mission

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.

    2002-09-01

    In July of this year the National Academy of Science released a draft of its report, "New Frontiers in the Solar System: An Integrated Exploration Strategy," briefly describing the current state of solar system planetary science and the most important science objectives for the next decade (2003-2013). It includes a prioritized list of five mission concepts that might be flown as part of NASA's fledgling New Frontiers Program; each "concept" is more a list of science or measurement objectives than a full mission concept, since it does not specify implementation details in most cases. Number three on that list is the "Jupiter Polar Orbiter with Probes" ("JPOP") mission. This mission concept combines the strengths of previously described or proposed Jupiter missions into a single mission, and gains from the synergies of some of the newly-combined investigations. The primary science objectives are: 1. Determine if Jupiter has a central core 2. Determine the deep abundance of water (and other volatiles) 3. Measure Jupiter's deep winds 4. Determine the structure of Jupiter's dynamo magnetic field 5. Sample in situ Jupiter's polar magnetosphere This paper examines some of the implementation options for a JPOP mission, and gives relative advantages and disadvantages. Given the New Frontier Program's maximum cost to NASA of \\650M, plus an approx. \\120M cap on international contributions, implementing the full range of JPOP science objectives in a single New Frontiers mission may be challenging. This work was performed at the Jet Propulsion Laboratory / California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  18. Inspiring science achievement: a mixed methods examination of the practices and characteristics of successful science programs in diverse high schools

    NASA Astrophysics Data System (ADS)

    Scogin, Stephen C.; Cavlazoglu, Baki; LeBlanc, Jennifer; Stuessy, Carol L.

    2017-08-01

    While the achievement gap in science exists in the US, research associated with our investigation reveals some high school science programs serving diverse student bodies are successfully closing the gap. Using a mixed methods approach, we identified and investigated ten high schools in a large Southwestern state that fit the definition of "highly successful, highly diverse". By conducting interviews with science liaisons associated with each school and reviewing the literature, we developed a rubric identifying specific characteristics associated with successful science programs. These characteristics and practices included setting high expectations for students, providing extensive teacher support for student learning, and utilizing student-centered pedagogy. We used the rubric to assess the successful high school science programs and compare them to other high school science programs in the state (i.e., less successful and less diverse high school science programs). Highly successful, highly diverse schools were very different in their approach to science education when compared to the other programs. The findings from this study will help schools with diverse students to strengthen hiring practices, enhance teacher support mechanisms, and develop student-focused strategies in the classroom that increase science achievement.

  19. Development and Implementation of Science and Technology Ethics Education Program for Prospective Science Teachers

    ERIC Educational Resources Information Center

    Rhee, Hyang-yon; Choi, Kyunghee

    2014-01-01

    The purposes of this study were (1) to develop a science and technology (ST) ethics education program for prospective science teachers, (2) to examine the effect of the program on the perceptions of the participants, in terms of their ethics and education concerns, and (3) to evaluate the impact of the program design. The program utilized…

  20. Simple, Accurate, Low-cost RO Science with the Iridium-NEXT Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Meehan, T.; Mannucci, A. J.

    2011-12-01

    Over the last decade, a disparate collection of GNSS-RO instruments have been measuring the refractivity of the Earth's ionosphere and atmosphere. These measurements have proven to be robust and precise data sets for operational weather, climate and geospace sciences. Future GNSS-RO weather and science will most benefit from a large number of profiles (10000+/day), with lower latency and greater accuracy in the lowest 5 km altitude. For weather, latencies below 90 minutes are required, 30 minutes desired. Space weather latency requirements are more stringent, with 15 minutes being a long sought goal. Climate studies benefit from averaging measurements uniformly distributed over the Earth, acquired over decades, with local time sampling errors minimized by dense coverage or well designed orbits. There's much more of course, because space GNSS science is still nascent but with gathering momentum among the international community. Although individual GNSS-RO instruments are relatively cheap as space hardware goes, growing the measurement density can be costly when a dozen or more are required for a single program. In this presentation, we propose a novel technique for greatly reducing the cost of a constellation of GNSS-RO instruments and discuss the science trade-offs of this approach versus the more traditional GNSS-RO designs.

  1. Positions Toward Science Studies in Medicine Among University Graduates of Medicine and the Teenaged Participants of the "Medical Systems" Study Program

    NASA Astrophysics Data System (ADS)

    Ben-Zvi-Assaraf, Orit; Even-Israel, Chava

    2011-08-01

    The "Medical Systems" program was designed to introduce high school students to the world of advanced medicine. Its premise was to use an applied scientific discipline like medicine to encourage high-school students' interest in basic science. This study compares the teen-aged graduates of "Medical Systems" with fourth and fifth-year medical students. It aims to identify the attitudes of these two groups towards medical science and basic sciences in medicine. The population included 94 graduates of "Medical Systems" from schools throughout Israel, who had also completed an advanced-level course in a basic science (biology, chemistry or physics), and 96 medical students from different Israeli universities. The students' attitudes were measured using West et al.'s questionnaire (Med Educ 16(4):188-191, 1982), which assesses both the attitude of the participants towards basic science knowledge, and their attitude towards their learning experience in medical school. Nine participants from each group were also interviewed using a semi-structured interview protocol. The results showed essential differences in the attitudes of the two groups. The high school students consider scientific knowledge far more essential for a physician than do the medical students, who also showed a far lower estimation of the effectiveness of their science studies.

  2. EDITORIAL: The 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009) The 9th International Symposium on Measurement Science and Intelligent Instruments (ISMTII-2009)

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri

    2010-05-01

    The papers for this special feature have been selected for publication after the successful measurement forum that took place in Saint Petersburg, Russia, in 2009. ISMTII-2009 presented state-of-the-art approaches and solutions in the most challenging areas and focused on microscale and nanoscale measurements and metrology; novel measurements and diagnostic technologies, including nondestructive and dimensional inspection; measurements for geometrical and mechanical quantities, terahertz technologies for science, industry and biomedicine; intelligent measuring instruments and systems for industry and transport; optical and x-ray tomography and interferometry, metrology and characterization of materials, measurements and metrology for the humanitarian fields; and education in measurement science. We believe that scientists and specialists around the world found there the newest information on measurement technology and intelligent instruments, and this will stimulate work in these areas which is an essential part of progress in measurement. The ISMTII Symposia have been held successfully every two years from 1989 in the People's Republic of China, Hungary, Egypt, Hong Kong, UK and Japan under the direction of ICMI. In 2009 the ISMTII measuring forum took place in Russia, and it is a great honour for our country, as well as for the Russian Academy of Sciences and its Siberian Branch—Novosibirsk Scientific Center. This Symposium was located in historic Saint Petersburg, which from its foundation has been a unique bridge of communication between countries on all continents, and participation provided an excellent opportunity for the exchange of experience, information and knowledge between specialists from different countries and fields. On behalf of the Organizers, Steering Committee and International Program Committee I would like to thank all the participants for their valuable contributions without which this special feature would not have become reality, as well as the reviewers for their careful evaluation of the papers. My special thanks go to the publishing team of the Measurement Science and Technology journal.

  3. Measuring Confidence Levels of Male and Female Students in Open Access Enabling Courses

    ERIC Educational Resources Information Center

    Atherton, Mirella

    2015-01-01

    The study of confidence was undertaken at the University of Newcastle with students selecting science courses at two campuses. The students were enrolled in open access programs and aimed to gain access to undergraduate studies in various disciplines at University. The "third person effect" was used to measure the confidence levels of…

  4. A Model for Postdoctoral Education That Promotes Minority and Majority Success in the Biomedical Sciences.

    PubMed

    Eisen, Arri; Eaton, Douglas C

    2017-01-01

    How does the United States maintain the highest-quality research and teaching in its professional science workforce and ensure that those in this workforce are effectively trained and representative of national demographics? In the pathway to science careers, the postdoctoral stage is formative, providing the experiences that define the independent work of one's first faculty position. It is also a stage in which underrepresented minorities (URMs) disproportionately lose interest in pursuing academic careers in science and, models suggest, a point at which interventions to increase proportions of URMs in such careers could be most effective. We present a mixed-methods, case study analysis from 17 years of the Fellowships in Research and Science Teaching (FIRST) postdoctoral program, to our knowledge the largest and longest continuously running science postdoctoral program in the United States. We demonstrate that FIRST fellows, in sharp contrast to postdocs overall, are inclusive of URMs (50% African American; 70% women) and as or more successful in their fellowships and beyond as a comparison group (measured by publication rate, attainment of employment in academic science careers, and eventual research grant support). Analysis of alumni surveys and focus group discussions reveals that FIRST fellows place highest value on the cohort-driven community and the developmental teaching and research training the program provides. © 2017 A. Eisen and D. C. Eaton. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. Forest Watch: a K-12 Outreach Program to Engage Young Students in Authentic, Hands-On Science

    NASA Astrophysics Data System (ADS)

    Rock, B. N.; Gagnon, M.

    2008-12-01

    The Forest Watch Program is a K-12 science outreach program developed at the University of New Hampshire (UNH) in 1991. The program engages pre-college teachers and their students in assisting researchers at UNH in the assessment of the state-of-health of white pine (Pinus strobus), a known bio- indicator species for exposure to elevated levels of ground-level ozone. Students participate in three types of activities: 1. selection, collection, and analysis of needle samples from five permanently tagged white pine trees near their school; 2. Study of needles in their classroom and sending a set of needles to UNH for spectral analysis; and 3. analysis of remote sensing data (Landsat TM) provided of their local area using freeware software (MultiSpec). Student-derived foliar symptomology, needle length, needle retention, and tree biometrics, plus the spectral indices, allow UNH researchers to characterize annual variations in tree state-of-health, and to correlate that state-of-health with annual summer ozone levels collected by the EPA and state environmental monitoring networks. The results suggest that regional air quality and state- of-health of trees has improved since 1991. Annual student data and the yearly spectral variations, for the same trees, suggest that white pine health has improved dramatically since 1997/8. This improvement in tree health corresponds with improved regional air quality. An evaluation of student data reliability has been conducted and suggests that the DBH measurements are a most reliable indicator of tree growth. Student data are more reliable if multiple sets of measurements are made and averaged together, compared with single sets of measurements. Based on both student data and spectral analysis of student-provided branch samples, the greatest damage (chlorosis) occurs in trees located along the seacoast areas. Participation in Forest Watch introduces students to the scientific method via an authentic research program. The program is designed in partnership with participating teachers, and thus meets New England state science and mathematics curricula for K-12 education. Student participation in Forest Watch has resulted in an improved understanding of inter-annual white pine state-of-health response to improved air quality across the New England region.

  6. The Australian Science Facilities Program: A Study of Its Influence on Science Education in Australian Schools.

    ERIC Educational Resources Information Center

    Ainley, John G.

    This report is a study conducted by the Australian Council for Educational Research to evaluate the influence of science material resources, provided under the Australian Science Facilities Program, on science education in Australia. Under the Australian Science Facilities Program some $123 million was spent, between July 1964 and June 1975, on…

  7. Clock Agreement Among Parallel Supercomputer Nodes

    DOE Data Explorer

    Jones, Terry R.; Koenig, Gregory A.

    2014-04-30

    This dataset presents measurements that quantify the clock synchronization time-agreement characteristics among several high performance computers including the current world's most powerful machine for open science, the U.S. Department of Energy's Titan machine sited at Oak Ridge National Laboratory. These ultra-fast machines derive much of their computational capability from extreme node counts (over 18000 nodes in the case of the Titan machine). Time-agreement is commonly utilized by parallel programming applications and tools, distributed programming application and tools, and system software. Our time-agreement measurements detail the degree of time variance between nodes and how that variance changes over time. The dataset includes empirical measurements and the accompanying spreadsheets.

  8. Toward full life cycle control: Adding maintenance measurement to the SEL

    NASA Technical Reports Server (NTRS)

    Rombach, H. Dieter; Ulery, Bradford T.; Valett, Jon D.

    1992-01-01

    Organization-wide measurement of software products and processes is needed to establish full life cycle control over software products. The Software Engineering Laboratory (SEL)--a joint venture between NASA GSFC, the University of Maryland, and Computer Sciences Corporation--started measurement of software development more than 15 years ago. Recently, the measurement of maintenance was added to the scope of the SEL. In this article, the maintenance measurement program is presented as an addition to the already existing and well-established SEL development measurement program and evaluated in terms of its immediate benefits and long-term improvement potential. Immediate benefits of this program for the SEL include an increased understanding of the maintenance domain, the differences and commonalities between development and maintenance, and the cause-effect relationships between development and maintenance. Initial results from a sample maintenance study are presented to substantiate these benefits. The long-term potential of this program includes the use of maintenance baselines to better plan and manage future projects and to improve development and maintenance practices for future projects wherever warranted.

  9. Technical developments at the NASA Space Radiation Laboratory.

    PubMed

    Lowenstein, D I; Rusek, A

    2007-06-01

    The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described.

  10. Real Life Science with Dandelions and Project BudBurst

    PubMed Central

    Johnson, Katherine A.

    2016-01-01

    Project BudBurst is a national citizen-science project that tracks bloom times and other phenological data for plants across the country. Data from Project BudBurst are being used to measure the effects of climate change. Students can participate in this project by watching any of the plants on the list, including the common dandelion, which makes the program easy and accessible to everyone. Journal of Microbiology & Biology Education PMID:27047605

  11. Report of the Defense Science Board Task Force on Department of Defense Biological Safety and Security Program

    DTIC Science & Technology

    2009-05-01

    Three (NAMRU-3) - Lima, Peru : Naval Medical Research Center Detachment (NMRCD) *These labs are co-located. To provide some measure of the scope and...Aceh, Indonesia and the more recent earthquakes in central Java and Peru . Edgewood Chemical Biological Center (ECBC) ECBC’s science and technology... diabetes , obesity, cancer, psychiatric disorders, problems of pregnancy, AIDS, hepatitis, malaria, parasitic infections, and a host of other

  12. OCO-2 Post Launch Briefing

    NASA Image and Video Library

    2014-07-02

    Mike Miller, senior vice president, Science and Environmental Satellite Programs, Orbital Sciences Space Systems Group, discusses the successful launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Wednesday, July 2, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  13. 76 FR 7569 - Office of the Assistant Secretary for Planning and Evaluation; Medicare Program; Meeting of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... economics and actuarial science. Panelists are not restricted, however, in the topics that they choose to... actuarial and economic assumptions and methods by which Trustees might more accurately measure health...

  14. A program to prepare minority students for careers in medicine, science, and other high-level professions.

    PubMed

    Slater, M; Iler, E

    1991-04-01

    The Gateway to Higher Education program is a comprehensive four-year high school program with specially designed enrichments and supports. Its principal goal is to increase the number of minority students who will be prepared to enter training for high-level professional careers, especially in medicine and science. The program was established in September 1986 to demonstrate that minority students who perform at least at grade level can begin a rigorous curriculum in the ninth grade and achieve outstanding results, provided that the necessary support systems are in place. For 1990-91, 750 students are enrolled in Gateway programs at five New York City public high schools, and the first 119 students graduated in June 1990. The graduates have demonstrated significant achievement compared with that of their peers, as measured by standardized tests and the graduates' participation in research mentorships and college acceptances. In order to expand on its initial success, the program has increased its scope of activity to include over 400 students at the junior high school level.

  15. Master's Degree Programs for the Preparation of Secondary Earth Science Teachers.

    ERIC Educational Resources Information Center

    Passero, Richard Nicholas

    Investigated were master's degree programs for the preparation of secondary school earth science teachers. Programs studied were classified as: (1) noninstitute college programs, and (2) National Science Foundation (NSF) institute programs. A total of 289 students enrolled in noninstitute programs contributed data by personal visits and…

  16. The 1990 Reference Handbook: Earth Observing System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the Earth Observing System (EOS) including goals and requirements is given. Its role in the U.S. Global Change Research Program and the International--Biosphere Program is addressed. The EOS mission requirements, science, fellowship program, data and information systems architecture, data policy, space measurement, and mission elements are presented along with the management of EOS. Descriptions of the facility instruments, instrument investigations, and interdisciplinary investigations are also present. The role of the National Oceanic and Atmospheric Administration in the mission is mentioned.

  17. Science Enhancements by the MAVEN Participating Scientists

    NASA Technical Reports Server (NTRS)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.

    2014-01-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  18. Science Enhancements by the MAVEN Participating Scientists

    NASA Astrophysics Data System (ADS)

    Grebowsky, J.; Fast, K.; Talaat, E.; Combi, M.; Crary, F.; England, S.; Ma, Y.; Mendillo, M.; Rosenblatt, P.; Seki, K.; Stevens, M.; Withers, P.

    2015-12-01

    NASA implemented a Participating Scientist Program and released a solicitation for the Mars Atmosphere and Volatile EvolutioN mission (MAVEN) proposals on February 14, 2013. After a NASA peer review panel evaluated the proposals, NASA Headquarters selected nine on June 12, 2013. The program's intent is to enhance the science return from the mission by including new investigations that broaden and/or complement the baseline investigations, while still addressing key science goals. The selections cover a broad range of science investigations. Included are: a patching of a 3D exosphere model to an improved global ionosphere-thermosphere model to study the generation of the exosphere and calculate the escape rates; the addition of a focused study of upper atmosphere variability and waves; improvement of a multi-fluid magnetohydrodynamic model that will be adjusted according to MAVEN observations to enhance the understanding of the solar-wind plasma interaction; a global study of the state of the ionosphere; folding MAVEN measurements into the Mars International Reference Ionosphere under development; quantification of atmospheric loss by pick-up using ion cyclotron wave observations; the reconciliation of remote and in situ observations of the upper atmosphere; the application of precise orbit determination of the spacecraft to measure upper atmospheric density and in conjunction with other Mars missions improve the static gravity field model of Mars; and an integrated ion/neutral study of ionospheric flows and resultant heavy ion escape. Descriptions of each of these investigations are given showing how each adds to and fits seamlessly into MAVEN mission science design.

  19. (?) The Air Force Geophysics Laboratory: Aeronomy, aerospace instrumentation, space physics, meteorology, terrestrial sciences and optical physics

    NASA Astrophysics Data System (ADS)

    McGinty, A. B.

    1982-04-01

    Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.

  20. Science CAP: Curriculum Assistance Program. [Multimedia.

    ERIC Educational Resources Information Center

    DEMCO, Inc., Madison, WI.

    Science Curriculum Assistance Program (Science CAP(TM)) is a multimedia package developed to create a model for preserving classroom science activities that can be shared and customized by teachers. This program is designed to assist teachers in preparing classroom science activities for grades five through eight, and to foster an environment of…

  1. Targeted Evolution of Embedded Librarian Services: Providing Mobile Reference and Instruction Services Using iPads

    PubMed Central

    Chiarella, Deborah

    2016-01-01

    The University at Buffalo Health Sciences Library provides reference and instructional services to support research, curricular, and clinical programs of the University at Buffalo. With funding from an NN/LM MAR Technology Improvement Award, the University at Buffalo Health Sciences Library (UBHSL) purchased iPads to develop embedded reference and educational services. Usage statistics were collected over a ten-month period to measure the frequency of iPad use for mobile services. While this experiment demonstrates that the iPad can be used to meet the library user's needs outside of the physical library space, this paper will also offer advice for others who are considering implementing their own program. PMID:26496394

  2. Targeted Evolution of Embedded Librarian Services: Providing Mobile Reference and Instruction Services Using iPads.

    PubMed

    Stellrecht, Elizabeth; Chiarella, Deborah

    2015-01-01

    The University at Buffalo Health Sciences Library provides reference and instructional services to support research, curricular, and clinical programs of the University at Buffalo. With funding from an NN/LM MAR Technology Improvement Award, the University at Buffalo Health Sciences Library (UBHSL) purchased iPads to develop embedded reference and educational services. Usage statistics were collected over a ten-month period to measure the frequency of iPad use for mobile services. While this experiment demonstrates that the iPad can be used to meet the library user's needs outside of the physical library space, this article will also offer advice for others who are considering implementing their own program.

  3. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 3 2014-07-01 2014-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  4. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  5. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 3 2012-07-01 2012-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  6. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  7. 34 CFR 637.1 - What is the Minority Science and Engineering Improvement Program (MSEIP)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 3 2013-07-01 2013-07-01 false What is the Minority Science and Engineering... ENGINEERING IMPROVEMENT PROGRAM General § 637.1 What is the Minority Science and Engineering Improvement Program (MSEIP)? The Minority Science and Engineering Improvement Program (MSEIP) is designed to effect...

  8. Investigating the application of Rasch theory in measuring change in middle school student performance in physical science

    NASA Astrophysics Data System (ADS)

    Cunningham, Jessica D.

    Newton's Universe (NU), an innovative teacher training program, strives to obtain measures from rural, middle school science teachers and their students to determine the impact of its distance learning course on understanding of temperature. No consensus exists on the most appropriate and useful method of analysis to measure change in psychological constructs over time. Several item response theory (IRT) models have been deemed useful in measuring change, which makes the choice of an IRT model not obvious. The appropriateness and utility of each model, including a comparison to a traditional analysis of variance approach, was investigated using middle school science student performance on an assessment over an instructional period. Predetermined criteria were outlined to guide model selection based on several factors including research questions, data properties, and meaningful interpretations to determine the most appropriate model for this study. All methods employed in this study reiterated one common interpretation of the data -- specifically, that the students of teachers with any NU course experience had significantly greater gains in performance over the instructional period. However, clear distinctions were made between an analysis of variance and the racked and stacked analysis using the Rasch model. Although limited research exists examining the usefulness of the Rasch model in measuring change in understanding over time, this study applied these methods and detailed plausible implications for data-driven decisions based upon results for NU and others. Being mindful of the advantages and usefulness of each method of analysis may help others make informed decisions about choosing an appropriate model to depict changes to evaluate other programs. Results may encourage other researchers to consider the meaningfulness of using IRT for this purpose. Results have implications for data-driven decisions for future professional development courses, in science education and other disciplines. KEYWORDS: Item Response Theory, Rasch Model, Racking and Stacking, Measuring Change in Student Performance, Newton's Universe teacher training

  9. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    NASA Astrophysics Data System (ADS)

    Amolins, Michael Wayne

    The development of effective science educators has been a long-standing goal of the American education system. Numerous studies have suggested a breadth of professional development programs that have sought to utilize constructivist principles in order to orchestrate movement toward student-led, inquiry-based instruction. Very few, however, have addressed a missing link between the modern scientific laboratory and the traditional science classroom. While several laboratory-based training programs have begun to emerge in recent years, the skills necessary to translate this information into the classroom are rarely addressed. The result is that participants are often left without an outlet or the confidence to integrate these into their lessons. The purpose of this study was to examine the effectiveness of a laboratory-based professional development program focused on classroom integration and reformed science teaching principles. This was measured by the ability to invigorate its seven participants in order to achieve higher levels of success and fulfillment in the classroom. These participants all taught at public high schools in South Dakota, including both rural and urban locations, and taught a variety of courses. Participants were selected for this study through their participation in the Sanford Research/USD Science Educator Research Fellowship Program. Through the use of previously collected data acquired by Sanford Research, this study attempted to detail the convergence of three assessments in order to demonstrate the growth and development of its participants. First, pre- and post-program surveys were completed in order to display the personal and professional growth of its participants. Second, pre- and post-program classroom observations employing the Reformed Teaching Observation Protocol allowed for the assessment of pedagogical modifications being integrated by each participant, as well as the success of such modifications in constructively administering student-led and inquiry-based instruction. Finally, pre- and post-program focus groups allowed for an intimate view into how each participant utilized their time in the classroom, and how each perceived job satisfaction, challenges, and self-efficacy. The findings of these assessments supported the hypothesis that laboratory-based professional development and focused instruction on the pedagogy and integration of reformed teaching principles were constructive in cultivating the student-led and inquiry-based environment desired in the modern science classroom.

  10. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, S.P.

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less

  11. The Effect of a Literature-Based Program Integrated into Literacy and Science Instruction on Achievement, Use, and Attitudes toward Literacy and Science. Reading Research Report No. 37.

    ERIC Educational Resources Information Center

    Morrow, Lesley Mandel; And Others

    A study determined the impact of integrating literacy and science programs on literacy achievement, use of literature, and attitude toward reading and science. Six third-grade classes (128 students) of ethnically diverse children were assigned to one control and two experimental groups (literature/science program and literature only program).…

  12. The science experience: The relationship between an inquiry-based science program and student outcomes

    NASA Astrophysics Data System (ADS)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  13. Null effects of boot camps and short-format training for PhD students in life sciences

    PubMed Central

    Feldon, David F.; Jeong, Soojeong; Peugh, James; Roksa, Josipa; Maahs-Fladung, Cathy; Shenoy, Alok; Oliva, Michael

    2017-01-01

    Many PhD programs incorporate boot camps and summer bridge programs to accelerate the development of doctoral students’ research skills and acculturation into their respective disciplines. These brief, high-intensity experiences span no more than several weeks and are typically designed to expose graduate students to data analysis techniques, to develop scientific writing skills, and to better embed incoming students into the scholarly community. However, there is no previous study that directly measures the outcomes of PhD students who participate in such programs and compares them to the outcomes of students who did not participate. Likewise, no previous study has used a longitudinal design to assess these outcomes over time. Here we show that participation in such programs is not associated with detectable benefits related to skill development, socialization into the academic community, or scholarly productivity for students in our sample. Analyzing data from 294 PhD students in the life sciences from 53 US institutions, we found no statistically significant differences in outcomes between participants and nonparticipants across 115 variables. These results stand in contrast to prior studies presenting boot camps as effective interventions based on participant satisfaction and perceived value. Many universities and government agencies (e.g., National Institutes of Health and National Science Foundation) invest substantial resources in boot camp and summer bridge activities in the hopes of better supporting scientific workforce development. Our findings do not reveal any measurable benefits to students, indicating that an allocation of limited resources to alternative strategies with stronger empirical foundations warrants consideration. PMID:28847929

  14. Precision measurement of the integrated luminosity of the data taken by BESIII at center-of-mass energies between 3.810 GeV and 4.600 GeV

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Yadi, Wang; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-09-01

    From December 2011 to May 2014, about 5 fb-1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11125525, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201) CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt and WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  15. The role of science in treaty verification.

    PubMed

    Gavron, Avigdor

    2005-01-01

    Technologically advanced nations are currently applying more science to treaty verification than ever before. Satellites gather a multitude of information relating to proliferation concerns using thermal imaging analysis, nuclear radiation measurements, and optical and radio frequency signals detection. Ground stations gather complementary signals such as seismic events and radioactive emissions. Export controls in many countries attempt to intercept materials and technical means that could be used for nuclear proliferation. Nevertheless, we have witnessed a plethora of nuclear proliferation episodes, that were undetected (or were belatedly detected) by these technologies--the Indian nuclear tests in 1998, the Libyan nuclear buildup, the Iranian enrichment program and the North Korea nuclear weapons program are some prime examples. In this talk, we will discuss some of the technologies used for proliferation detection. In particular, we will note some of the issues relating to nuclear materials control agreements that epitomize political difficulties as they impact the implementation of science and technology.

  16. Graduate student theses supported by DOE`s Environmental Sciences Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cushman, Robert M.; Parra, Bobbi M.

    1995-07-01

    This report provides complete bibliographic citations, abstracts, and keywords for 212 doctoral and master`s theses supported fully or partly by the U.S. Department of Energy`s Environmental Sciences Division (and its predecessors) in the following areas: Atmospheric Sciences; Marine Transport; Terrestrial Transport; Ecosystems Function and Response; Carbon, Climate, and Vegetation; Information; Computer Hardware, Advanced Mathematics, and Model Physics (CHAMMP); Atmospheric Radiation Measurement (ARM); Oceans; National Institute for Global Environmental Change (NIGEC); Unmanned Aerial Vehicles (UAV); Integrated Assessment; Graduate Fellowships for Global Change; and Quantitative Links. Information on the major professor, department, principal investigator, and program area is given for each abstract.more » Indexes are provided for major professor, university, principal investigator, program area, and keywords. This bibliography is also available in various machine-readable formats (ASCII text file, WordPerfect{reg_sign} files, and PAPYRUS{trademark} files).« less

  17. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    ERIC Educational Resources Information Center

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  18. An Arduino Based Citizen Science Soil Moisture Sensor in Support of SMAP and GLOBE

    NASA Astrophysics Data System (ADS)

    Podest, E.; Das, N. N.; Rajasekaran, E.; Jeyaram, R.; Lohrli, C.; Hovhannesian, H.; Fairbanks, G.

    2017-12-01

    Citizen science allows individuals anywhere in the world to engage in science by collecting environmental variables. One of the longest running platforms for the collection of in situ variables is the GLOBE program, which is international in scope and encourages students and citizen scientists alike to collect in situ measurements. NASA's Soil Moisture Active Passive (SMAP) satellite mission, which has been acquiring global soil moisture measurements every 3 days of the top 5 cm of the soil since 2015, has partnered with the GLOBE program to engage students from around the world to collect in situ soil moisture and help validate SMAP measurements. The current GLOBE SMAP soil moisture protocol consists in collecting a soil sample, weighing, drying and weighing it again in order to determine the amount of water in the soil. Preparation and soil sample collection can take up to 20 minutes and drying can take up to 3 days. We have hence developed a soil moisture measurement device based on Arduino- microcontrollers along with off-the-shelf and homemade sensors that are accurate, robust, inexpensive and quick and easy to use so that they can be implemented by the GLOBE community and citizen scientists alike. In addition, we have developed a phone app, which interfaces with the Arduino, displays the soil moisture value and send the measurement to the GLOBE database. This talk will discuss building, calibration and validation of the soil moisture measuring device and assessing the quality of the measurements collected. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  19. External Quality Assurance Programs Managed by the U.S. Geological Survey in Support of the National Atmospheric Deposition Program/Mercury Deposition Network

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory A.

    2007-01-01

    The U.S. Geological Survey (USGS) Branch of Quality Systems operates external quality assurance programs for the National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Beginning in 2004, three programs have been implemented: the system blank program, the interlaboratory comparison program, and the blind audit program. Each program was designed to measure error contributed by specific components in the data-collection process. The system blank program assesses contamination that may result from sampling equipment, field exposure, and routine handling and processing of the wet-deposition samples. The interlaboratory comparison program evaluates bias and precision of analytical results produced by the Mercury Analytical Laboratory (HAL) for the NADP/MDN, operated by Frontier GeoSciences, Inc. The HAL's performance is compared with the performance of five other laboratories. The blind audit program assesses bias and variability of MDN data produced by the HAL using solutions disguised as environmental samples to ascertain true laboratory performance. This report documents the implementation of quality assurance procedures for the NADP/MDN and the operating procedures for each of the external quality assurance programs conducted by the USGS. The USGS quality assurance information provides a measure of confidence to NADP/MDN data users that measurement variability is distinguished from environmental signals.

  20. Analysis of the basic science section of the orthopaedic in-training examination.

    PubMed

    Sheibani-Rad, Shahin; Arnoczky, Steven Paul; Walter, Norman E

    2012-08-01

    Since 1963, the Orthopaedic In-Training Examination (OITE) has been administered to orthopedic residents to assess residents' knowledge and measure the quality of teaching within individual programs. The OITE currently consists of 275 questions divided among 12 domains. This study analyzed all OITE basic science questions between 2006 and 2010. The following data were recorded: number of questions, question taxonomy, category of question, type of imaging modality, and recommended journal and book references. Between 2006 and 2010, the basic science section constituted 12.2% of the OITE. The assessment of taxonomy classification showed that recall-type questions were the most common, at 81.4%. Imaging modalities typically involved questions on radiographs and constituted 6.2% of the OITE basic science section. The majority of questions were basic science questions (eg, genetics, cell replication, and bone metabolism), with an average of 26.4 questions per year. The Journal of Bone & Joint Surgery (American Volume) and the American Academy of Orthopaedic Surgeons' Orthopaedic Basic Science were the most commonly and consistently cited journal and review book, respectively. This study provides the first review of the question content and recommended references of the OITE basic science section. This information will provide orthopedic trainees, orthopedic residency programs, and the American Academy of Orthopaedic Surgeons Evaluation Committee valuable information related to improving residents' knowledge and performance and optimizing basic science educational curricula. Copyright 2012, SLACK Incorporated.

  1. Who is looking for an internship and successful in obtaining one? Examining application data from REU programs funded through NSF GEO

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; Kelly, M.

    2017-12-01

    The Directorate for Geosciences (GEO) at the National Science Foundation (NSF) is currently funding 60 Research Experiences for Undergraduate (REU) sites. Each site offers opportunities for 8 to 12 undergraduates to participate in research within solid earth, oceans, atmospheric and cryosphere sciences. Because applicant data is collected at individual REU sites, the exact number of unique applicants to all REU sites, and the demographics of this national applicant pool has not been previously reported. While some sites do provide some of this information to NSF in annual reports, obtaining and combining such data is problematic because the percentage of individuals that apply to multiple programs is unknown and generally believed anecdotally to be high, especially for students traditionally underrepresented in the geosciences. Understanding both the scale and makeup of the national applicant pool is important for several reasons. First, very little is known about how the supply and geographic location of slots in REU programs compares to the demand from undergraduate STEM majors interested in research experiences. Second, research into internship programs and their role in the career development process are limited by a lack of baseline data that includes both successful and unsuccessful internship applicants across the various sub-disciplines of the Earth sciences. Finally, designing and refining efforts to engage underrepresented populations in STEM research, and measuring the impact of such efforts is difficult without baseline data for comparison. We will present aggregate application data from up to 20 GEO REU funded programs. These programs represent Oceans, Atmospheres and Earth Science research areas and includes over a thousand applicants. Preliminary analysis suggests the number of unique applicants in the pool is higher than anecdotally predicted. Similarly, unique applicants from underrepresented communities also appears higher than anticipated.

  2. The effectiveness of an American science camp for Taiwanese high school students

    NASA Astrophysics Data System (ADS)

    Kuo, Pi-Chu

    The purposes of this study were: (1) to evaluate the effectiveness of an American science camp for Taiwanese high school students in terms of student attitudes toward science; (2) to understand the factors that affect student attitudes toward science in the American science camp. Qualitative and quantitative data were collected and analyzed to answer my research questions: (1) How did the influence of the abroad science camp differ from the local one in terms of student attitudes toward science? (2) How did gender, grade level, and personality affect student attitudes toward science in the abroad science camp? An Attitudes toward Science Inventory was used in this study to measure student attitudes. The results of factor analysis suggested that the attitudes measured in this study include five common factors: science as school subjects (SC), science in society (SS), value of science (VS), science in laboratory (SL), and nature of science (NS). Significant improvements were found in SS, VS, and NS after the experiences of the abroad science camp. In the local science camp, only NS was non-significant comparing before and after the camp. The results from the comparisons between the two science camps show that different program designs have different impacts on student attitudes toward science. Furthermore, whether the science camps are designed based on learning theory or not, and regardless of how much time the campers spend in science-related activities during science camps, science camps can motivate students' interests in learning science. The results of mixed-design ANOVA for gender, grade level, and personality suggest that most of these personal factors did not significantly affect student attitudes. However, extraversion/introversion and sensing/intuition had impacts on the persuasibility of the abroad science camp.

  3. Incorporating spectroscopy and measurement technology into the high school chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Harbert, Emily Ann

    Science and technology are becoming increasingly important in maintaining a healthy economy at home and a competitive edge on the world stage, though that is just one facet affected by inadequate science education in the United States. Engaging students in the pursuit of knowledge and giving them the skills to think critically are paramount. One small way to assist in achieving these goals is to increase the quality and variety of technology-rich activities conducted in high school classrooms. Incorporating more laboratory measurement technology into high schools may incite more student interest in the processes and practices of science and may allow students to learn to think more critically about their data and what it represents. The first objective of the work described herein was to determine what measurement technology is being used in schools and to what extent, as well as to determine other teacher needs and preferences. Second, the objective was to develop a new program to provide incoming freshmen (or rising seniors) with measurement technology training they did not receive in high school, and expose them to new research and career opportunities in science. The final objective was to create a technology-rich classroom laboratory activity for use in high schools.

  4. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    NASA Astrophysics Data System (ADS)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  5. Future space experiments on cosmic rays and radiation on Russian segments of ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, Mikhail; Galper, Arkady; Stozhov, Yurii

    1999-01-22

    The report presents a survey of the Russian space program in the field of radiation and cosmic ray studies. The experimental projects were developed by scientists of different Russian Institutes and are intended for implementation on the future ISS. All the projects mentioned in this report have undergone various expertise stages in the Space Council of the Russian Science Academy ('Cosmic Ray Physics' section); the International Science-Technology Center of the Rocket-Space Corporation 'Energia' ('Astrophysics and radiation Measurements' section); Committee on Science-Technical Co-operation of the Russian Space Agency.

  6. Fostering K-12 Inquiry-based Lesson Development on Regional Water Resource Issues in Los Angeles Urban Schools through the NSF UCLA SEE-LA GK-12 program

    NASA Astrophysics Data System (ADS)

    Hogue, T. S.; Burke, M. P.; Thulsirag, V.; Daniel, J.; Moldwin, M.; Nonacs, P.

    2010-12-01

    A National Science Foundation Graduate Teaching Fellows in K- 12 Education program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/ ) partners UCLA faculty and graduate students (fellows) with urban middle and high school science teachers and their students to foster programs of science and engineering exploration that bring the environment of Los Angeles into the classroom. UCLA graduate fellows serve as scientists-in-residence at four partner schools to integrate inquiry-based science lessons, facilitate advancements in science content teaching, and ultimately, to improve their own science communication skills. As part of their fellowship, graduate students are required to develop inquiry-based lessons in their partner classroom. During the first two years of the project, the SEE-LA fellows have developed a range of inquiry-based activities, from invertebrate observations in an urban stream system, to water and home energy consumption surveys, to a school biodiversity investigation, to a school-wide alternative energy fair, to engineering the cleanup of environmental disasters, such as the recent oil spill in the Gulf of Mexico. Several of the current fellows have dissertation research in water resource related fields and are specifically integrating lessons specific to their research into their partner classrooms, including urban stream water quality, post-fire watershed behavior, beach water quality assessment and E. coli source tracking. This presentation will provide an overview of goals of the SEE-LA GK-12 program, development of inquiry-based water resource lessons and resulting engagement in the partner classrooms. University and local pre-college school partnerships provide an excellent opportunity to support the development of graduate student communication and teaching skills while also contributing significantly to the integration of science education into K-12 curriculum.

  7. Life sciences flight experiments program - Overview

    NASA Technical Reports Server (NTRS)

    Berry, W. E.; Dant, C. C.

    1981-01-01

    The considered LSFE program focuses on Spacelab life sciences missions planned for the 1984-1985 time frame. Life Sciences Spacelab payloads, launched at approximately 18-months intervals, will enable scientists to test hypotheses from such disciplines as vestibular physiology, developmental biology, biochemistry, cell biology, plant physiology, and a variety of other life sciences. An overview is presented of the LSFE program that will take advantage of the unique opportunities for biological experimentation possible on Spacelab. Program structure, schedules, and status are considered along with questions of program selection, and the science investigator working groups. A description is presented of the life sciences laboratory equipment program, taking into account the general purpose work station, the research animal holding facility, and the plant growth unit.

  8. Teachers doing science: An authentic geology research experience for teachers

    USGS Publications Warehouse

    Hemler, D.; Repine, T.

    2006-01-01

    Fairmont State University (FSU) and the West Virginia Geological and Economic Survey (WVGES) provided a small pilot group of West Virginia science teachers with a professional development session designed to mimic experiences obtained by geology majors during a typical summer field camp. Called GEOTECH, the program served as a research capstone event complimenting the participants' multi-year association with the RockCamp professional development program. GEOTECH was funded through a Improving Teacher Quality Grant administered by West Virginia Higher Education Policy Commission. Over the course of three weeks, eight GEOTEACH participants learned field measurement and field data collection techniques which they then applied to the construction of a surficial geologic map. The program exposed participants to authentic scientific processes by emphasizing the authentic scientific application of content knowledge. As a secondary product, it also enhanced their appreciation of the true nature of science in general and geology particular. After the session, a new appreciation of the effort involved in making a geologic map emerged as tacit knowledge ready to be transferred to their students. The program was assessed using pre/post instruments, cup interviews, journals, artifacts (including geologic maps, field books, and described sections), performance assessments, and constructed response items. Evaluation of the accumulated data revealed an increase in participants demonstrated use of science content knowledge, an enhanced awareness and understanding of the processes and nature of geologic mapping, positive dispositions toward geologic research and a high satisfaction rating for the program. These findings support the efficacy of the experience and document future programmatic enhancements.

  9. Site scientific mission plan for the Southern Great Plains CART site, January-June 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1995, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Experiment Support Team [EST], Operations Team, Data Management Teammore » [DMT], Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, The ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.« less

  10. Soil Science Education for Primary and Secondary Students

    NASA Astrophysics Data System (ADS)

    Sparrow, Elena; Yoshikawa, Kenji; Kopplin, Martha

    2013-04-01

    Soils is one of the science investigation areas in the Global learning and Observations to Benefit the Environment (GLOBE), an international science and education program (112 countries) that teaches primary and secondary students to learn science by doing science. For each area of investigation GLOBE provides background information, measurement protocols and learning activities compiled as a chapter in the GLOBE Teacher's Guide. Also provided are data sheets and field guides to assist in the accurate collection of data as well as suggestions of scientific instruments and calibration methods. Teachers learn GLOBE scientific measurement protocols at professional development workshops led by scientists and educators, who then engage their students in soil studies that also contribute to ongoing science investigations. Students enter their data on the GLOBE website and can access their data as well as other data contributed by students from other parts of the world. Soil characterization measurements carried out in the field include site description, horizon depths, soil structure, soil color, soil consistence, soil texture, roots, rocks and carbonates. Other field measurements are soil temperature and soil moisture monitoring while the following measurements are carried out in the classroom or laboratory: gravimetric soil moisture, bulk density, particle density, particle size distribution, pH and soil fertility (nitrogen, phosphorus and potassium). Learning activities provide support for preparing students to do the measurements and for better understanding of science concepts. Many countries in GLOBE have adopted standards for education including science education with commonalities among them. For the Teacher's Guide, the National Science Education Standards published by the US National Academy of Sciences, selected additional content standards that GLOBE scientists and educators feel are appropriate and the National Geography Standards prepared by the (US) National Education Standards Project, are being used. Educational objectives for students include gaining scientific inquiry abilities in addition to understanding scientific concepts. The Soils chapter also includes some suggestions for managing students in the field and classroom. A new protocol has also been developed by the Seasons and Biomes project, one of the GLOBE earth system science projects. Active Layer monitoring uses a Frost Tube that measures when and how deeply soil freezes and is currently being used in more than 200 sites in Alaska. Teachers have successfully implemented soil studies in their curriculum and have used it to teach about the science process.

  11. Harvard, Wisconsin Programs Aim to Improve Science Education.

    ERIC Educational Resources Information Center

    Krieger, James

    1983-01-01

    Describes two programs to improve science education. Harvard University will provide a teacher training program for mid- to late-career mathematicians/scientists in industry and will provide inservice programs for current science/mathematics teachers. University of Wisconsin's program involves a national institute to foster research in chemical…

  12. TOmographic Remote Observer of Ionospheric Disturbances

    DTIC Science & Technology

    2007-11-15

    ionosphere . The proposed spacecraft was an evolutionary design from the USUSat, Combat Sentinel, and USUSat II programs whose histories are shown in...Figure 1. The primary science instrument, TOROID for TOmographic Remote Observer of Ionospheric Disturbances, is a photometer for measuring the

  13. Microgravity Science and Applications: Program Tasks and Bibliography for Fiscal Year 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA's Microgravity Science and Applications Division (MSAD) sponsors a program that expands the use of space as a laboratory for the study of important physical, chemical, and biochemical processes. The primary objective of the program is to broaden the value and capabilities of human presence in space by exploiting the unique characteristics of the space environment for research. However, since flight opportunities are rare and flight research development is expensive, a vigorous ground-based research program, from which only the best experiments evolve, is critical to the continuing strength of the program. The microgravity environment affords unique characteristics that allow the investigation of phenomena and processes that are difficult or impossible to study an Earth. The ability to control gravitational effects such as buoyancy driven convection, sedimentation, and hydrostatic pressures make it possible to isolate phenomena and make measurements that have significantly greater accuracy than can be achieved in normal gravity. Space flight gives scientists the opportunity to study the fundamental states of physical matter-solids, liquids and gasses-and the forces that affect those states. Because the orbital environment allows the treatment of gravity as a variable, research in microgravity leads to a greater fundamental understanding of the influence of gravity on the world around us. With appropriate emphasis, the results of space experiments lead to both knowledge and technological advances that have direct applications on Earth. Microgravity research also provides the practical knowledge essential to the development of future space systems. The Office of Life and Microgravity Sciences and Applications (OLMSA) is responsible for planning and executing research stimulated by the Agency's broad scientific goals. OLMSA's Microgravity Science and Applications Division (MSAD) is responsible for guiding and focusing a comprehensive program, and currently manages its research and development tasks through five major scientific areas: biotechnology, combustion science, fluid physics, fundamental physics, and materials science. FY 1996 was an important year for MSAD. NASA continued to build a solid research community for the coming space station era. During FY 1996, the NASA Microgravity Research Program continued investigations selected from the 1994 combustion science, fluid physics, and materials science NRAS. MSAD also released a NASA Research Announcement in microgravity biotechnology, with more than 130 proposals received in response. Selection of research for funding is expected in early 1997. The principal investigators chosen from these NRAs will form the core of the MSAD research program at the beginning of the space station era. The third United States Microgravity Payload (USMP-3) and the Life and Microgravity Spacelab (LMS) missions yielded a wealth of microgravity data in FY 1996. The USMP-3 mission included a fluids facility and three solidification furnaces, each designed to examine a different type of crystal growth.

  14. Beyond the GRE: Using a Composite Score to Predict 
the Success of Puerto Rican Students in a Biomedical 
PhD Program

    PubMed Central

    Pacheco, Wendy I.; Noel, Richard J.; Porter, James T.; Appleyard, Caroline B.

    2015-01-01

    The use and validity of the Graduate Record Examination General Test (GRE) to predict the success of graduate school applicants is heavily debated, especially for its possible impact on the selection of underrepresented minorities into science, technology, engineering, and math fields. To better identify candidates who would succeed in our program with less reliance on the GRE and grade point average (GPA), we developed and tested a composite score (CS) that incorporates additional measurable predictors of success to evaluate incoming applicants. Uniform numerical values were assigned to GPA, GRE, research experience, advanced course work or degrees, presentations, and publications. We compared the CS of our students with their achievement of program goals and graduate school outcomes. The average CS was significantly higher in those students completing the graduate program versus dropouts (p < 0.002) and correlated with success in competing for fellowships and a shorter time to thesis defense. In contrast, these outcomes were not predicted by GPA, science GPA, or GRE. Recent implementation of an impromptu writing assessment during the interview suggests the CS can be improved further. We conclude that the CS provides a broader quantitative measure that better predicts success of students in our program and allows improved evaluation and selection of the most promising candidates. PMID:25828404

  15. Combined pelvic muscle exercise and yoga program for urinary incontinence in middle-aged women.

    PubMed

    Kim, Gwang Suk; Kim, Eun Gyeong; Shin, Ki Young; Choo, Hee Jung; Kim, Mi Ja

    2015-10-01

    Urinary incontinence is a major health problem among middle-aged women. Pelvic muscle exercise is one of the primary interventions, but difficulty performing this exercise has led researchers to seek alternative or conjunctive exercise. This study aimed to examine the effect of a combined pelvic muscle exercise and yoga intervention program on urinary incontinence. A single group pre-/post-test design was used. Subjects were recruited from a community health center in Seoul, Korea, and a questionnaire survey was conducted. Fifty-five women participated in the first day of the program, 34 of whom completed the 8 week, twice weekly intervention program. Urinary incontinence was measured by five domains of urinary tract symptoms: filling factor, voiding factor, incontinence factor, sexual function, and quality of life. Also measured were attitude toward pelvic muscle exercise and pelvic muscle strength. Significant improvements were found in attitude toward pelvic muscle exercise, pelvic muscle strength, and incontinence factor. Daily performance of pelvic muscle exercise was positively correlated with improved incontinence factor and with quality of life related to urinary tract symptoms. A combined pelvic muscle exercise and yoga program was effective for improving overall urinary incontinence in community health center attendees in Korea. Further study is needed with a control group, different populations, and a longer intervention period. © 2015 The Authors. Japan Journal of Nursing Science © 2015 Japan Academy of Nursing Science.

  16. New measures for new roles: defining and measuring the current practices of health sciences librarians

    PubMed Central

    Scherrer, Carol S.; Jacobson, Susan

    2002-01-01

    The roles of academic health sciences librarians are continually evolving as librarians initiate new programs and services in response to developments in computer technology and user demands. However, statistics currently collected by libraries do not accurately reflect or measure these new roles. It is essential for librarians to document, measure, and evaluate these new activities to continue to meet the needs of users and to ensure the viability of their professional role. To determine what new measures should be compiled, the authors examined current statistics, user demands, professional literature, and current activities of librarians as reported in abstracts of poster sessions at Medical Library Association annual meetings. Three new categories of services to be measured are proposed. The first, consultation, groups activities such as quality filtering and individual point-of-need instruction. The second, outreach, includes activities such as working as liaisons, participating in grand rounds or morning report, and providing continuing education. The third area, Web authoring, encompasses activities such as designing Web pages, creating online tutorials, and developing new products. Adding these three measures to those already being collected will provide a more accurate and complete depiction of the services offered by academic health sciences librarians. PMID:11999174

  17. 1984 Program Report on the Army-Navy Initiative in the National Capital Area in Support of the Department of Defense Science and Engineering Apprenticeship Program for High School Students

    DTIC Science & Technology

    1985-03-01

    Mexico . The other method was by the Faraday Rotation Principle calculated by polarimeter here at the lab. To measure the TEC by either method gives a base...shock in chronic rats. Springbrook High School Montgomery County, Md. Sarah Gaffen Investigated the herpes Varicella Mentor: Dr. John Hay Zoster virus

  18. Computer Games Created by Middle School Girls: Can They Be Used to Measure Understanding of Computer Science Concepts?

    ERIC Educational Resources Information Center

    Denner, Jill; Werner, Linda; Ortiz, Eloy

    2012-01-01

    Computer game programming has been touted as a promising strategy for engaging children in the kinds of thinking that will prepare them to be producers, not just users of technology. But little is known about what they learn when programming a game. In this article, we present a strategy for coding student games, and summarize the results of an…

  19. Report of the Organic Contamination Science Steering Group

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Beaty, D. W.; Anderson, M. S.; Aveni, G.; Bada, J. L.; Clemett, S. J.; DesMaris, D. J.; Douglas, S.; Dworkin, J. P.; Kern, R. G.

    2004-01-01

    The exploration of the possible emergence and duration of life on Mars from landed platforms requires attention to the quality of measurements that address these objectives. In particular, the potential impact of terrestrial contamination on the measurement of reduced carbon with sensitive in situ instruments must be addressed in order to reach definitive conclusions regarding the source of organic molecules. Following the recommendation of the Mars Exploration Program Analysis Group (MEPAG) at its September 2003 meeting [MEPAG, 2003], the Mars Program Office at NASA Headquarters chartered the Organic Contamination Science Steering Group (OCSSG) to address this issue. The full report of the six week study of the OCSSG can be found on the MEPAG web site [1]. The study was intended to define the contamination problem and to begin to suggest solutions that could provide direction to the engineering teams that design and produce the Mars landed systems. Requirements set by the Planetary Protection Policy in effect for any specific mission do not directly address this question of the potential interference from terrestrial contaminants during in situ measurements.

  20. Soil moisture needs in earth sciences

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1992-01-01

    The author reviews the development of passive and active microwave techniques for measuring soil moisture with respect to how the data may be used. New science programs such as the EOS, the GEWEX Continental-Scale International Project (GCIP) and STORM, a mesoscale meteorology and hydrology project, will have to account for soil moisture either as a storage in water balance computations or as a state variable in-process modeling. The author discusses future soil moisture needs such as frequency of measurement, accuracy, depth, and spatial resolution, as well as the concomitant model development that must proceed concurrently if the development in microwave technology is to have a major impact in these areas.

  1. The Maps in Medicine program: An evaluation of the development and implementation of life sciences curriculum

    NASA Astrophysics Data System (ADS)

    O'Malley, Jennifer

    There has been a downward trend in both science proficiency and interest in science in the United States, especially among minority students and students of a disadvantaged background. This has led to a downturn in the number of individuals within these groups considering a career in the sciences or a related field. Studies have identified many potential causes for this problem including the current structure of science curriculum, lack of teacher preparedness, and the lack of quality education and support for those students currently underrepresented in the sciences. Among the solutions to this problem include redesigning the science curriculum, offering high-quality professional development opportunities to teachers, and creating programs to give support to individuals currently underrepresented in the sciences, so that they may have a better chance of pursuing and obtaining a science career. The Maps in Medicine program (MiM) has been designed to incorporate all of the aforementioned solutions and apply them to the current science education problem. The Maps in Medicine (MiM) program was established at the University of Missouri -- Columbia, and is funded by the Howard Hughes Medical Institute. Newly developed MiM curricula and student activities are intended to promote positive attitude changes in those students who are currently underrepresented in Science, Technology, Engineering and Mathematics (STEM) fields, with the program also providing professional development to high school science teachers. It was important to determine if the MiM program's solution to the science education problem has been successful, and so the program evaluation piece was integral. A mixed-methods approach was used to evaluate the MiM program. Formative evaluation results indicated a positive response from teachers and students regarding curriculum and professional development, and student activities. These results have also lead to the identification of appropriate improvements for the program, and will assist with the program's overall goal of national dissemination of MiM curriculum.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less

  3. A standards-based formative evaluation of a national professional development program for science teachers

    NASA Astrophysics Data System (ADS)

    Raphael, Carol Greco

    2002-09-01

    The 1996 National Science Education Standards provided educators and policy makers with a major impetus for constructive change in science education. The Standards not only specified what science content should be taught, but also provided organization for future science curricula. A major theme that pervades the Standards is that the classroom teacher is the most important component of classroom change and that reform efforts should be directed at improving the teaching of science through professional development for science teachers. In response to the National Science Education Standards, the Science Teachers Organization (pseudonym) prepared a professional development program for science teachers that was intended to acquaint teachers with the Standards and bring about reform of science teaching by changing teachers' instructional strategies and procedures. This program, named Preparing Schools for Science (PSS), was designed for use in all of the 50 states, but was first introduced in a southwestern state referred to as Utopia in this dissertation. Using the Provus Method of Discrepancy Evaluation, a design and installation audit of the Preparing Schools for Science Program was performed. Suggestions for program improvement, as well as a complete evaluation design for the PSS Program, were presented. Specific program modifications suggested by the research included an improved organization of personnel to monitor and supervise the program, more sustained professional development workshops, a stronger network of support for teachers. Five major implications for future professional development programs emerge from this research. (1) A needs analysis should be conducted before a program is designed in order to ensure that the program meet the needs of those for whom it is intended. (2) The length and type of training are the most important factors in ensuring that teachers have sufficient time to incorporate and learn how to use new ideas. (3) Additional personnel are needed to conduct the training and follow-up with the Points of Contact (POCs) in the Program. (4) Financial support for the Key Leaders who serve as trainers of the points of contact is needed to provide the means for the key leaders to fully implement the program and maintain contact with the POCs. (5) The program should have a thorough and well-planned evaluation design, and data collection should be done in a timely fashion by a skilled evaluator.

  4. The REVEL Project: Long-Term Investment in K-12 Education at a RIDGE 2000 Integrated Study Site

    NASA Astrophysics Data System (ADS)

    Robigou, V.

    2005-12-01

    The REVEL Project has provided dozens of science teachers from throughout the U.S. an opportunity to explore the links between mid-ocean ridge processes and life along the RIDGE 2000 Juan de Fuca Ridge Integrated Study Site. In turn, these educators have facilitated deep-sea, research-based teaching and learning in hundreds of classrooms, contributed to mid-ocean ridge curriculum and programs development ranging from IMAX movies and museum exhibits to the R2K-SEAS (Student Experiment At Sea) program. In addition, the REVEL educators take on the mission to champion the importance of science in education and to bring ocean sciences into their local and regional communities. For the scientific community, research in an environment as large, dynamic and remote as the ocean intrinsically requires long-term investment to advance the understanding of the interactions between the processes shaping our planet. Similarly, research-based education requires long-term investment to incrementally change the way science is taught in schools, informal settings or even at home. It takes even longer to perceptibly measure the result of new teaching methods on students' learning and the impact of these methods on citizens' scientific literacy. Research-based education involving teachers practicing research in the field, and collaborating with scientists to experience and understand the process of science is still in its infancy - despite 20 years of NSF's efforts in teachers' professional development. This poster reports on strategies that the REVEL Project has designed over 9 years to help teachers that adopt research-based education transform their way of teaching in the classroom and bring cutting-edge, exciting science into schools through rigorous science learning. Their teaching approaches encourage students' interest in science, and engage students in the life-long skills of reasoning and decision making through the practice of science. Evaluation results of how the research-based teacher development program REVEL contributes to changing the way teachers view the scientific process once they have 'done' science and how the program supports teachers to change their teaching methods will be presented. The REVEL Project is funded by the National Science Foundation and receives additional support from the University of Washington and private donors. REVEL - Research and Education: Volcanoes-Exploration-Life.

  5. Experimental design to measure the anchoring energy on substrate surface by using the alternating-current bridge

    NASA Astrophysics Data System (ADS)

    Hao, Hui-Ming; Liu, Yao-Yao; Zhang, Ping; Cai, Ming-Lei; Wang, Xiao-Yan; Zhu, Ji-Liang; Ye, Wen-Jiang

    2017-08-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11374087 and 11504080), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2014202123 and A2017202004), the Research Project of the Education Department of Hebei Province, China (Grant No. QN2014130), the Key Subject Construction Project of Hebei Provincial University, and the Undergraduate Innovation and Entrepreneurship Training Program, China (Grant No. 201610080016).

  6. Arctic Observing Experiment (AOX) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigor, Ignatius; Johnson, Jim; Motz, Emily

    Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support formore » research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).« less

  7. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    ERIC Educational Resources Information Center

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  8. Resolving the Milky Way and Nearby Galaxies with WFIRST

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot

    High-resolution studies of nearby stellar populations have served as a foundation for our quest to understand the nature of galaxies. Today, studies of resolved stellar populations constrain fundamental relations -- such as the initial mass function of stars, the time scales of stellar evolution, the timing of mass loss and amount of energetic feedback, the color-magnitude relation and its dependency on age and metallicity, the stellar-dark matter connection in galaxy halos, and the build up of stellar populations over cosmic time -- that represent key ingredients in our prescription to interpret light from the Universe and to measure the physical state of galaxies. More than in any other area of astrophysics, WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way and nearby galaxies. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. Our WFIRST GO Science Investigation Team (F) will develop three WFIRST (notional) GO programs related to resolved stellar populations to fully stress WFIRST's Wide Field Instrument. The programs will include a Survey of the Milky Way, a Survey of Nearby Galaxy Halos, and a Survey of Star-Forming Galaxies. Specific science goals for each program will be validated through a wide range of observational data sets, simulations, and new algorithms. As an output of this study, our team will deliver optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of MW environments and galaxy halos; cosmological simulations of nearby galaxy halos matched to WFIRST observations; strategies and automated algorithms to find substructure and dwarf galaxies in WFIRST IR data sets; and documentation. Our team will work closely with the WFIRST Science Center to translate our notional programs into inputs that can help achieve readiness for WFIRST science operations. This includes building full observing programs with target definitions, observing sequences, scheduling constraints, data processing needs, and calibration requirements. Our team has been chosen carefully. Team members are leading scientists in stellar population work that will be a core science theme for WFIRST and are also involved in all large future astronomy projects that will operate in the WFIRST era. The team is intentionally small, and each member will "own" significant science projects. The team will aggressively advocate for WFIRST through innovative initiatives. The team is also diverse in geographical location, observers and theorists, and gender.

  9. An Assessment of the Impact of a Science Outreach Program, Science In Motion, on Student Achievement, Teacher Efficacy, and Teacher Perception

    ERIC Educational Resources Information Center

    Herring, Phillip Allen

    2009-01-01

    The purpose of the study was to analyze the science outreach program, Science In Motion (SIM), located in Mobile, Alabama. This research investigated what impact the SIM program has on student cognitive functioning and teacher efficacy and also investigated teacher perceptions and attitudes regarding the program. To investigate student…

  10. The Technology in the Programs of Life Sciences in Turkey and Sachunterricht in Germany

    ERIC Educational Resources Information Center

    Keskin, Tuba

    2017-01-01

    The purpose of this study is to compare the gains of the Life Sciences program in Turkey and the Life sciences program (Sachunterricht) used in the state of Niedersachsen in Germany. The study aiming to compare the technology-related acquisitions in Life sciences program in Turkey and Germany is a comparative education research that used…

  11. A Science Odyssey: A Social Studies and Science Resource for Middle- and High-School Educators. Educator's Guide.

    ERIC Educational Resources Information Center

    WGBH-TV, Boston, MA.

    This interdisciplinary guide provides activities, discussion questions, and information to help teachers use the series of five special PBS programs entitled "A Science Odyssey" in the classroom. For each Science Odyssey program, the guide features: (1) an overview of the program; (2) a summary of program contents and story segments; (3) a…

  12. Building Climate Literacy Through Strategic Partnerships

    NASA Astrophysics Data System (ADS)

    Turrin, M.; Creyts, T. T.; Bell, R. E.; Meadows, C. A.

    2012-12-01

    One of the challenges of developing climate science literacy is establishing the relevance of both climate science and climate change at a local community level. By developing partnerships with community-based informal science education providers, we are able to build our climate science and climate change content into existing programs. Employing a systems science approach facilitates these partnerships as our systems science program links with a range of topics, demonstrating the multiple connections between climate, our communities and our daily lives. Merging hands on activities, collaborative projects, and new technology, we encourage learning through doing by engaging participants in active exploration of climate science concepts. Many informal education venues operating locally, from large science museums to small grass-roots community groups, provide ongoing opportunities to connect with students. Through our collaborations we have worked with various types and sizes of non-classroom science providers including: the Intrepid Sea, Air and Space Museum "Greater Opportunities Advancing Leadership and Science" camps for high school girls, Hudson River Park Trust 'Science on the River' events, the annual New York City World Science Festival, and the AAUW's annual STEM Super Scholars Workshops among others. This range of venues has enabled us to reach various ages, backgrounds and interests advancing climate literacy in a number of forums. Major outcomes of these efforts are: (1) Building capacity with community groups: Many local organizations running community programs do not have in-house science expertise. Both science educators and local organization benefit from these collaborations. Science educators and scientists provide up to date climate science information to the community groups while these programs establish strong working relationships between our research and the local community. (2) Developing climate science literacy and lifelong learning: We have delivered climate science in a variety of ways, each designed to connect the participants with a fundamental science concept while building excitement for the topic and facilitating learning in a non-traditional setting. Our approaches range from launching teams of young people into experiments exploring glacial physics through free-choice inquiry opportunities, to enlisting undergraduate science students in working with the participants demonstrating glacial motion and measurement through engaging technology such as Kinect Xbox 360 sensors, to short single concept hands-on activities designed to deliver a specific climate 'take home' message. (3) Generating a local connection to climate science and impacts: Working with local informal education groups we connect climate topics to community-based issues and 'hot topics' such as sustainable planning, waterfront erosion, storm surge impacts, and local sea level rise projections. Partnering with community based informal education providers allows us to expand our offerings to reach a wider audience of young people, and to connect more directly with our local community. We are excited by the potential in these partnerships to connect students with climate science and develop not only a climate literate group of young people, but also lifelong science learners.

  13. Engaging underserved audiences in informal science education through community-based partnerships

    NASA Astrophysics Data System (ADS)

    Bouzo, Suzanne

    This thesis explores the impact of the Science Education and Engagement of Denver (SEED) Partnership on three of its participant families. The partnership, consisting of large informal science organizations, as well as small community-based organizations, created its programming based on prior research identifying barriers to minority participation in informal science education programs. SEED aims to engage youth and families of emerging populations in science and nature. Three families were examined as a case study to have an in depth investigation about their involvement in the programs sponsored by the partnership. Findings suggest a positive impact on participant feelings and engagement in science and nature. Future recommendations are made for furthering programming as well as conducting a larger scale, more comprehensive program evaluation. This research addresses prior studies that have identified several barriers toward participation of underserved audiences in informal science education programs and how the SEED partnership has addressed specific identified barriers.

  14. Introduction: the Interdisciplinary Nursing Quality Research Initiative.

    PubMed

    Naylor, Mary D; Lustig, Adam; Kelley, Heather J; Volpe, Ellen M; Melichar, Lori; Pauly, Mark V

    2013-04-01

    The Robert Wood Johnson Foundation launched the Interdisciplinary Nursing Quality Research Initiative (INQRI) program in 2005 to generate, disseminate, and translate research to understand how nurses contribute to and can improve patient care quality. This special edition of Medical Care provides an overview of the program's strategy, goals, and impact, highlighting cross-cutting issues addressed by the initiative. INQRI's leadership and select grantees discuss the implications of a collection of studies on the following: advances in the science of nursing's contribution to quality, measurement of quality, interdisciplinary collaboration, implementation methodology, dissemination and translation of findings, and the business case for nursing. A comprehensive review of the scholarly literature published in 2004 and 2009 found that the evidence linking nursing to quality of care has grown. The second paper discusses INQRI's work on measurement of quality of care, revealing the need for additional comprehensive measures. The third paper examines INQRI's focus on interdisciplinary collaboration, finding that it can enhance methodological approaches and result in substantive changes in health delivery systems. The fourth paper presents methodological challenges faced in health care implementation, emphasizing the need for standardized terms and research designs. The fifth paper addresses INQRI's commitment to translating research into practice, illustrating dissemination strategies and lessons learned. The final paper discusses how the INQRI program has contributed to the current evidence regarding the business case for nursing. This supplement describes the accomplishments of the INQRI program, discusses current issues in research design and implementation, and places INQRI research within the larger context regarding advances in nursing science.

  15. The Chi-Sci Scholars Program: Developing Community and Challenging Racially Inequitable Measures of Success at a Minority-Serving Institution on Chicago's Southside1

    NASA Astrophysics Data System (ADS)

    Sabella, Mel S.; Mardis, Kristy L.; Sanders, Nicolette; Little, Angela

    2017-09-01

    Ensuring that all students who want to pursue degrees and careers in science can do so is an important goal of a number of undergraduate STEM equity programs throughout the United States. Many of these programs, which promote diversity and the importance of diversity in science, directly address the 2012 PCAST report, which notes that "1 million additional STEM Professionals will be needed within the next decade" and "women and members of minority groups now constitute approximately 70% of college students, but earn only 45 percent of STEM degrees." The PCAST report also indicates that these students "leave STEM majors at higher rates than others and offer an expanding pool of untapped talent." Many of these programs recognize that it is important to provide students with a variety of support: financial, mentoring, research-based instruction, cohort development, and specific activities tailored to target population strengths and needs.

  16. The Intersections of Science and Practice: Examples From FitnessGram® Programming.

    PubMed

    Welk, Gregory J

    2017-12-01

    The FitnessGram® program has provided teachers with practical tools to enhance physical education programming. A key to the success of the program has been the systematic application of science to practice. Strong research methods have been used to develop assessments and standards for use in physical education, but consideration has also been given to ensure that programming meets the needs of teachers, students, parents, and other stakeholders. This essay summarizes some of these complex and nuanced intersections between science and practice with the FitnessGram® program. The commentaries are organized into 5 brief themes: science informing practice; practice informing science; balancing science and practice; promoting evidence-based practice; and the integration of science and practice. The article draws on personal experiences with the FitnessGram® program and is prepared based on comments shared during the 37th Annual C. H. McCloy Research Lecture at the 2017 SHAPE America - Society of Health and Physical Educators Convention.

  17. Innovative Interactive Visitor Experiences Focused on Climate Change

    NASA Astrophysics Data System (ADS)

    Lettvin, E. E.

    2011-12-01

    Pacific Science Center has adopted a multi-pronged approach to introduce visitors to the concepts of climate change and linkages to human behavior in an informal science education setting. We leverage key fixed exhibit assets derived from collaborations with NOAA: Science on a Sphere and an exhibit kiosk showcasing local CO2 measurements that are adjacent on our exhibit floor. NOAA PMEL Scientists deployed a sensor at the top of the Space Needle that measures variability in atmospheric CO2 over Seattle; the kiosk showcases these near-real-time, daily, weekly and monthly measurements as well as similar observations from a NOAA buoy near Aberdeen, Washington. Displays of these data enable visitors to see first-hand varying CO2 levels in urban and remote marine environments as well as seasonal cycling. It also reveals quantifiable increases in CO2 levels over a relatively short time (~5 years). Trained interpreters help visitors understand linkages between personal behavior and corresponding CO2 footprints. Interpreters discuss connections between local and regional CO2 measurements displayed on the kiosk, and global Sphere datasets including NOAA Carbon Tracker, changing arctic sea ice coverage and sea level rise projections. Portable Discovery Carts, consisting of props and interactive, hands-on activities provide a platform for facilitated interpretation on a series of topics. We have developed two climate focused carts: 'Sinks and Sources' that examines materials and activities that produce and absorb carbon, and 'Ocean Acidification' that shows how absorption of atmospheric CO2 is changing ocean composition and its habitability for marine life. These carts can be deployed anywhere on the exhibit floor but are primarily used adjacent to the Sphere and the kiosk, making it possible to have a range of conversations about global and local CO2 levels, linkages to individual and collective behaviour and associated implications. Additional collaborations with members of the regional climate research community are showcased during regularly scheduled 'scientist spotlights' and 'research weekends'. Additional climate programs were developed targeting high school students. During the summer of 2010, 10 participants in a teen development program had summer internships with climate researchers working in horticulture, policy, arctic science and geology. The following fall, the teens hosted 4 'Family Climate Workshops' at community centers around Seattle. For these events, the teens developed hands-on activities and posters showcasing the climate research focus of their internships. These events were held in collaboration with the 'Cool School Challenge', a program that teaches how to conduct a greenhouse gas inventory and develop a corresponding action plan. The program culminated in the convening of the first 'High School Climate Change Symposium', held at Pacific Science Center. Nearly 200 teens attended on-site, and hundreds more live-streamed the event. The Symposium consisted of two panels: one focused on the scientific underpinnings of climate change and one focused on policies and implications. This innovative program provided a rare opportunity for teens to directly ask experts questions about climate change and its implications.

  18. The Integration of English Language Development and Science Instruction in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Zwiep, Susan Gomez; Straits, William J.; Stone, Kristin R.; Beltran, Dolores D.; Furtado, Leena

    2011-12-01

    This paper explores one district's attempt to implement a blended science and English Language Development (ELD) elementary program, designed to provide English language learners opportunities to develop proficiency in English through participation in inquiry-based science. This process resulted in blended program that utilized a combined science/ELD lesson plan format to structure and guide teachers' efforts to use science as the context for language development. Data, collected throughout the first 2 years of the program, include teacher-generated lesson plans, observation notes, and interviews with teachers and principals. The process by which the blended program was developed, the initial implementation of the program, the resulting science/ELD lesson plan format, and teachers' perceptions about the program and its impact on their students are described.

  19. SAMS Acceleration Measurements on Mir from June to November 1995

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin

    1996-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.

  20. STEM after school programming: The effect on student achievement and attitude

    NASA Astrophysics Data System (ADS)

    Ashford, Vanessa Dale

    Science, technology, engineering and math (STEM) curriculum has become a major component in to 21st century teaching and learning. STEM skills and STEM careers are in demand globally. Disadvantaged and minority students continue to have an achievement gap in STEM classes. They do not perform well in elementary and middle school and frequently do not pursue STEM-based studies in high school or careers in the field. One innovation in STEM education is after-school programming to increase student interest, attitudes, and achievement. This mixed-methods study examines the Discovery Place After-School STEM Program to compare the achievement levels of participants to non-participants in the program and provides recommendations for STEM after-school programming across the district. As part of the study, teachers were interviewed to examine attitudes and perceptions about the program. This study was conducted at an elementary school in a large urban school district in the southeastern United States which has a unique STEM-based after-school program. Student performance data indicated a significant difference in achievement between participants and non-participants in the program as measured by fifth grade science End-of-Grade test. Data from the seven units of study in the program showed significant achievement for three of the seven units.

  1. Fertilizing ROSES through the STEM: Interdisciplinary Modules as Pre-service Research Experiences for Secondary STEM Educators (IMPRESS-Ed)

    NASA Astrophysics Data System (ADS)

    Kavic, Michael; Wiita, P. J.; Benoit, M.; Magee, N.

    2013-01-01

    IMPRESS-Ed is a program designed to provide authentic summer research experiences in the space, earth, and atmospheric sciences for pre-service K-12 educators at Long Island University (LIU) and The College of New Jersey (TCNJ). In 2011 and 2012, the program involved five students and took place over eight weeks with recruitment occurring during the preceding academic year. The program was divided into two modules: A common core module and an individual mentored research experience. The common module consisted of three units focusing on data-driven pedagogical approaches in astrophysics, tectonophysics, and atmospheric science, respectively. The common module also featured training sessions in observational astronomy, and use of a 3D geowall and state of the art planetarium. Participants in the program are also offered the opportunity to utilize the available TCNJ facilities with their future students. The individual mentored research module matched student interests with potential projects. All five students demonstrated strong gains in earth and space science literacy compared to a baseline measurement. Each student also reported gaining confidence to incorporate data and research-driven instruction in the space and earth sciences into the K-12 STEM classroom setting. All five research projects were also quite successful: several of the students plan to continue research during the academic year and two students are presenting research findings as first authors here at AAS. Other research results are likely to be presented at this year's American Geophysical Union meeting.

  2. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    NASA Astrophysics Data System (ADS)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition, the B.S. in Integrated Earth Systems will serve those students who find excitement at the boundaries of these disciplines, and prepare them for careers in this emerging field. The ISS program will target high school students of the highest caliber who demonstrate strong aptitude in mathematics and the physical sciences, who will need a minimum amount of remedial work. These select students will be exposed to courses in Earth Systems: Cycles and Interactions, Geophysical Fluid Dynamics, Air-Sea Interaction, Boundary Layers and Turbulence, Climate Variability and Global Change, Atmosphere-Ocean Modeling, Solar-Terrestrial Interactions, Weather Systems Science, Earth Observing Systems, Remote Sensing and more, as part of the ISS curriculum. This paper will highlight the MU-DES programs and learning initiatives and expand and elaborate on the new program in ISS.

  3. Science of Agricultural Plants

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  4. Science of Agricultural Mechanization

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  5. 78 FR 79697 - Statement of Organization, Functions, and Delegations of Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... new initiatives based on emerging issues, science, and policy; (6) supports the harmonization and..., and programmatic efforts; (10) manages evaluation fellowship; (11) guides performance-based strategic... improvement based on effective program evaluation, and performance measurement; (14) supports evidence-driven...

  6. Science of Agricultural Environment

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  7. Science of Agricultural Animals

    ERIC Educational Resources Information Center

    Murdock, Ashleigh Barbee, Ed.

    2010-01-01

    Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…

  8. NVAP-M Data and Information

    Atmospheric Science Data Center

    2016-04-27

    ... Vonder Haar, Science and Technology Corp.   The NASA MEaSUREs program began in 2008 and has the goal of creating stable, ... observations."  Geophys. Res. Lett. ,  39 , L16802,  doi:10.1029/2012GL052094   The heritage NASA Water Vapor Project ...

  9. 76 FR 4137 - Comment Request: Innovative Technology Experiences for Students and Teachers (ITEST) Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... visits, and a student-survey instrument to measure project outcomes. Estimate of Burden Respondents... NATIONAL SCIENCE FOUNDATION Comment Request: Innovative Technology Experiences for Students and... Friday. SUPPLEMENTARY INFORMATION: Title of Collection: Innovative Technology Experiences for Students...

  10. The perspectives and experiences of African American students in an informal science program

    NASA Astrophysics Data System (ADS)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  11. Residual acceleration data on IML-1: Development of a data reduction and dissemination plan

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Alexander, J. Iwan D.; Wolf, Randy

    1992-01-01

    The need to record some measure of the low-gravity environment of an orbiting space vehicle was recognized at an early stage of the U.S. Space Program. Such information was considered important for both the assessment of an astronaut's physical condition during and after space missions and the analysis of the fluid physics, materials processing, and biological sciences experiments run in space. Various measurement systems were developed and flown on space platforms beginning in the early 1970's. Similar in concept to land based seismometers that measure vibrations caused by earthquakes and explosions, accelerometers mounted on orbiting space vehicles measure vibrations in and of the vehicle due to internal and external sources, as well as vibrations in a sensor's relative acceleration with respect to the vehicle to which it is attached. The data collected over the years have helped to alter the perception of gravity on-board a space vehicle from the public's early concept of zero-gravity to the science community's evolution of thought from microgravity to milligravity to g-jitter or vibrational environment. Since the advent of the Shuttle Orbiter Program, especially since the start of Spacelab flights dedicated to scientific investigations, the interest in measuring the low-gravity environment in which experiments are run has increased. This interest led to the development and flight of numerous accelerometer systems dedicated to specific experiments. It also prompted the development of the NASA MSAD-sponsored Space Acceleration Measurement System (SAMS). The first SAMS units flew in the Spacelab on STS-40 in June 1991 in support of the first Spacelab Life Sciences mission (SLS-1). SAMS is currently manifested to fly on all future Spacelab missions.

  12. ICASE Computer Science Program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  13. The NASA Earth Science Program and Small Satellites

    NASA Technical Reports Server (NTRS)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions. Some examples are the aforementioned Orbiting Carbon Observatory-2 (OCO-2), the Gravity Recovery and Climate Experiment Follow On (GRACE FO), and the Cyclone Global Navigation Satellite System (CYGNSS) microsatellite constellation. Small satellites also support ESD in space validation and risk reduction of enabling technologies (components and systems). The status of the ESD Flight Program and the role of small satellites will be discussed.

  14. Antenna Characterization for the Wideband Instrument for Snow Measurements

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  15. Antenna Characterization for the Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.

    2015-01-01

    Experimental characterization of the antenna for the Wideband Instrument for Snow Measurement (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.

  16. Psychology or Psychological Science?: A Survey of Graduate Psychology Faculty Regarding Program Names

    ERIC Educational Resources Information Center

    Collisson, Brian; Rusbasan, David

    2018-01-01

    The question of renaming graduate psychology programs to psychological science is a timely and contentious issue. To better understand why some programs, but not others, are changing names, we surveyed chairpersons (Study 1) and faculty (Study 2) within graduate psychology and psychological science programs. Within psychology programs, a name…

  17. PR^2EPS: Preparation, recruitment, retention and excellence in the physical sciences

    NASA Astrophysics Data System (ADS)

    Gallagher, Hugh; Labroo, Sunil; Schaumloffel, John; Bischoff, Paul; Bachman, Nancy

    2007-04-01

    The PR^2EPS program is a multidisciplinary effort to increase the number of majors attending (and graduating) from SUNY Oneonta with degrees in physics, chemistry, secondary physics or chemistry education and related areas. Components of the program include a walk-in tutoring center, a free, weeklong summer science camp, scholarship opportunities, professional conference experiences, and an equipment loan program for regional secondary science teachers. 2006 was the third year of this NSF-DUE funded program. Evaluation of our progress to date shows that the program is effective at steering students (or at least reinforcing their desire) to studying the sciences in college and retaining them in their science programs. A summary of our goals, challenges and accomplishments, including tutoring center operation and efficacy, activities and operational details for the summer camp, and the overall impact on science programs at a medium sized college will be presented.

  18. Energy and technology review

    NASA Astrophysics Data System (ADS)

    Johnson, K. C.

    1991-04-01

    This issue of Energy and Technology Review discusses the various educational programs in which Lawrence Livermore National Laboratory (LLNL) participates or sponsors. LLNL has a long history of fostering educational programs for students from kindergarten through graduate school. A goal is to enhance the teaching of science, mathematics, and technology and thereby assist educational institutions to increase the pool of scientists, engineers, and technicians. LLNL programs described include: (1) contributions to the improvement of U.S. science education; (2) the LESSON program; (3) collaborations with Bay Area Science and Technology Education; (4) project HOPES; (5) lasers and fusion energy education; (6) a curriculum on global climate change; (7) computer and technology instruction at LLNL's Science Education Center; (8) the National Education Supercomputer Program; (9) project STAR; (10) the American Indian Program; (11) LLNL programs with historically Black colleges and Universities; (12) the Undergraduate Summer Institute on Contemporary Topics in Applied Science; (13) the National Physical Science Consortium: A Fellowship Program for Minorities and Women; (14) LLNL's participation with AWU; (15) the apprenticeship programs at LLNL; and (16) the future of LLNL's educational programs. An appendix lists all of LLNL's educational programs and activities. Contacts and their respective telephone numbers are given for all these programs and activities.

  19. The Los Alamos Neutron Science Center Spallation Neutron Sources

    NASA Astrophysics Data System (ADS)

    Nowicki, Suzanne F.; Wender, Stephen A.; Mocko, Michael

    The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons, which can be used to perform experiments supporting civilian and national security research. These measurements include nuclear physics experiments for the defense program, basic science, and the radiation effect programs. This paper focuses on the radiation effects program, which involves mostly accelerated testing of semiconductor parts. When cosmic rays strike the earth's atmosphere, they cause nuclear reactions with elements in the air and produce a wide range of energetic particles. Because neutrons are uncharged, they can reach aircraft altitudes and sea level. These neutrons are thought to be the most important threat to semiconductor devices and integrated circuits. The best way to determine the failure rate due to these neutrons is to measure the failure rate in a neutron source that has the same spectrum as those produced by cosmic rays. Los Alamos has a high-energy and a low-energy neutron source for semiconductor testing. Both are driven by the 800-MeV proton beam from the LANSCE accelerator. The high-energy neutron source at the Weapons Neutron Research (WNR) facility uses a bare target that is designed to produce fast neutrons with energies from 100 keV to almost 800 MeV. The measured neutron energy distribution from WNR is very similar to that of the cosmic-ray-induced neutrons in the atmosphere. However, the flux provided at the WNR facility is typically 5×107 times more intense than the flux of the cosmic-ray-induced neutrons. This intense neutron flux allows testing at greatly accelerated rates. An irradiation test of less than an hour is equivalent to many years of neutron exposure due to cosmic-ray neutrons. The low-energy neutron source is located at the Lujan Neutron Scattering Center. It is based on a moderated source that provides useful neutrons from subthermal energies to ∼100 keV. The characteristics of these sources, and ongoing industry program are described in this paper.

  20. Determination of the number of J/ψ events with inclusive J/ψ decays

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fedorov, O.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2017-01-01

    A measurement of the number of J/ψ events collected with the BESIII detector in 2009 and 2012 is performed using inclusive decays of the J/ψ. The number of J/ψ events taken in 2009 is recalculated to be (223.7 ± 1.4) × 106, which is in good agreement with the previous measurement, but with significantly improved precision due to improvements in the BESIII software. The number of J/ψ events taken in 2012 is determined to be (1086.9 ± 6.0) × 106. In total, the number of J/ψ events collected with the BESIII detector is measured to be (1310.6 ± 7.0) × 106, where the uncertainty is dominated by systematic effects and the statistical uncertainty is negligible. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (10805053, 11125525, 11175188, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, the CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1232107, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt; WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

Top