Science.gov

Sample records for measurement system applied

  1. Volatility Measurements Applied to Information Systems

    DTIC Science & Technology

    2013-09-01

    differences in metrics ( Sahin , 2006). Risk diversification is optimization across several systems and finally, risk management deals with the tracking and...from http://search.proquest.com/docview/232571921?accountid=12702 Sahin , I. (2006). Detailed review of Rogers’ diffusion of innovations theory and

  2. a New Method for Measuring Macroparticulate Systems Applied to Measuring Syneresis of Renneted Milk Gels.

    NASA Astrophysics Data System (ADS)

    Maynes, Jonathan R.

    Syneresis is an integral part of cheese manufacture. The rate and extent of syneresis affect the properties of cheese. There are many factors that affect syneresis, but measured results vary because of inaccuracies in measuring techniques. To better control syneresis, an accurate mathematical description must be developed. Current mathematical models describing syneresis are limited because of inherent error in measuring techniques used to develop them. Developing an accurate model requires an accurate way to measure syneresis. The curd becomes a particle in a whey suspension when the coagulum is cut. The most effective technique to measure particle size, without interference, is with light. Approximations to rigorous Maxwellian theory render useable results for a variety of particle sizes. Assumptions of Fraunhofer diffraction theory relate absorption to the cross sectional area of a particle that is much larger than the wavelength of light being used. By applying diffraction theory to the curd-whey system, this researcher designed a new apparatus to permit measurement of large particle systems. The apparatus was tested, and calibrated, with polyacrylic beads. Then the syneresis of curd was measured with this apparatus. The apparatus was designed to measure particles in suspension. Until some syneresis takes place, curd does not satisfy this condition. Theoretical assumptions require a monolayer of scattering centers. The sample container must be thin enough to preclude stacking of the particles. This presents a unique problem with curd. If the coagulum is cut in the sample cell, it adheres to the front and back surfaces and does not synerese. The curd must be coagulated and cut externally and transferred to the sample cell with a large amount of whey. This measurement technique has other limitations that may be overcome with commercially available accessories.

  3. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    NASA Astrophysics Data System (ADS)

    Lee, Hau-Wei; Chen, Chieh-Li

    2009-12-01

    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system.

  4. Optical measurement system applied to continuous displacement monitoring of long-span suspension bridges

    NASA Astrophysics Data System (ADS)

    Lages Martins, L.; Rebordão, J. M.; Ribeiro, A. S.

    2013-04-01

    This paper provides a general description of main issues related to the design of an optical measurement system applied to continuous displacement monitoring of long-span suspension bridges. The proposed system's architecture is presented and its main components - camera and active targets - are described in terms of geometrical and radiometric characteristics required for long distance measurement of the tridimensional displacement of the stiffness girder in the middle section of the bridge's central span. The intrinsic and extrinsic camera parameterization processes, which support the adopted measurement approach, are explained in a specific section. Since the designed measurement system is intended to perform continuous displacement monitoring in long distance observation framework, particular attention is given to environmental effects, namely, refraction, turbulence and sensor saturation phenomena, which can influence the displacement measurement accuracy. Finally, a measurement uncertainty method is discussed in order to provide a suitable solution for the determination of the accuracy related to the proposed measurement approach.

  5. Single CMOS sensor system for high resolution double volume measurement applied to membrane distillation system

    NASA Astrophysics Data System (ADS)

    Lorenz, M. G.; Izquierdo-Gil, M. A.; Sanchez-Reillo, R.; Fernandez-Pineda, C.

    2007-01-01

    Membrane distillation (MD) [1] is a relatively new process that is being investigated world-wide as a low cost, energy saving alternative to conventional separation processes such as distillation and reverse osmosis (RO). This process offers some advantages compared to other more popular separation processes, such as working at room conditions (pressure and temperature); low-grade, waste and/or alternative energy sources such as solar and geothermal energy may be used; a very high level of rejection with inorganic solutions; small equipment can be employed, etc. The driving force in MD processes is the vapor pressure difference across the membrane. A temperature difference is imposed across the membrane, which results in a vapor pressure difference. The principal problem in this kind of system is the accurate measurement of the recipient volume change, especially at very low flows. A cathetometer, with up to 0,05 mm resolution, is the instrument used to take these measurements, but the necessary human intervention makes this instrument not suitable for automated systems. In order to overcome this lack, a high resolution system is proposed, that makes automatic measurements of the volume of both recipients, cold and hot, at a rate of up to 10 times per second.

  6. Applying infrared measurements in a measuring system for determining thermal parameters of thermal insulation materials

    NASA Astrophysics Data System (ADS)

    Chudzik, S.

    2017-03-01

    The paper presents results of research on an innovative method for determining thermal parameters of thermal insulating materials. The method is based on harmonic thermal excitations. Temperature measurements at selected points of a specimen under test are performed by means of semiconductor infrared sensors. The study also employs a 3D model of thermal diffusion. To obtain a solution of the coefficient inverse problem a method based on an artificial neural network is presented. The heat transfer coefficient on the specimen surface is estimated on the basis of a reference specimen. The validity of the adopted model of heat diffusion and the usefulness of the method proposed are verified experimentally.

  7. Implementation of the remote measuring system for addiction patients in rehabilitation applying vital sensor

    PubMed Central

    Lim, Myung-Jae; Lee, Ki-Young; Kwon, Young-Man

    2014-01-01

    Recently, with the rapid development of related ubiquitous industries, ubiquitous-Zone (u-Zone) development is being promoted to build a ubiquitous environment within a specific area. From a health care system perspective, in particular, u-Zone is expected to contribute to reducing cost and effort to manage patients’ condition such as in-patients, addiction patients and mental patients. In contrast, the current health care system only targets specific persons or continues to expand the internal system of hospitals. As addiction patients are on the rise in terms of drug addiction, including alcohol and narcotics, behavioural addiction attributable to the exposure to games, gambling, Internet and mobile communications and shopping is also becoming a problem. That is why it is difficult to collect data for the daily addiction status, which causes difficulties in systematic management and accurate diagnosis. Therefore, this paper suggests a remote measuring system to collect continuous condition data, which monitors the addiction patients via the vital sign measuring sensor within u-Zone. That is, the system collects their condition information from the sensors measuring heart rate, body temperature and acceleration, based on which the specialists determine the patient's emotional state. These data are expected to become the basis of diagnosing and managing addiction patients. PMID:26019608

  8. Implementation of the remote measuring system for addiction patients in rehabilitation applying vital sensor.

    PubMed

    Lim, Myung-Jae; Lee, Ki-Young; Kwon, Young-Man

    2014-11-14

    Recently, with the rapid development of related ubiquitous industries, ubiquitous-Zone (u-Zone) development is being promoted to build a ubiquitous environment within a specific area. From a health care system perspective, in particular, u-Zone is expected to contribute to reducing cost and effort to manage patients' condition such as in-patients, addiction patients and mental patients. In contrast, the current health care system only targets specific persons or continues to expand the internal system of hospitals. As addiction patients are on the rise in terms of drug addiction, including alcohol and narcotics, behavioural addiction attributable to the exposure to games, gambling, Internet and mobile communications and shopping is also becoming a problem. That is why it is difficult to collect data for the daily addiction status, which causes difficulties in systematic management and accurate diagnosis. Therefore, this paper suggests a remote measuring system to collect continuous condition data, which monitors the addiction patients via the vital sign measuring sensor within u-Zone. That is, the system collects their condition information from the sensors measuring heart rate, body temperature and acceleration, based on which the specialists determine the patient's emotional state. These data are expected to become the basis of diagnosing and managing addiction patients.

  9. A novel digital image processing system for the transient liquid crystal technique applied for heat transfer and film cooling measurements.

    PubMed

    Vogel, G; Boelcs, A

    2001-05-01

    This paper is dedicated to the transient liquid crystal technique measurements for multiple view access by using a novel digital recording and image processing system. The transient liquid crystal technique is widely used for heat transfer investigations in turbomachinery. It has been applied in our laboratory in several test facilities such as a linear cascade for external film cooling measurements or on a ribbed squared duct for internal cooling measurements. The data analysis as well as the measurement equipment is described, with a special focus on the newly developed computerized image processing system suitable to capture the liquid crystal signal.

  10. Geographic information system applied to measuring benthic environmental impact with chemical measures on mariculture at Penghu Islet in Taiwan.

    PubMed

    Shih, Yi-Che; Chou, Chiu L; Chiau, Wen-Yan

    2009-03-01

    Cobia, Rachycentron canadum, is currently grown by marine aquaculture in Taiwan, particularly on Penghu Islet. Although the effect of marine aquaculture on the environment has been the subject of many studies, an understanding of its environmental impact has yet to be attained, and the continuing expansion of cage farming has caused noticeable ecological declines. Nevertheless, useful tools to measure this environmental degradation are scant. The results of this study suggest that the combination of a geographic information system (GIS) with redox potential and sulfide measurements can be used to definitively assess the condition of the benthic environment near cobia aquaculture sites and to help develop environmental monitoring programs. These applications could easily be adopted to assess multiple marine environmental conditions.

  11. A novel image processing and measurement system applied to quantitative analysis of simulated tooth root canal shape

    NASA Astrophysics Data System (ADS)

    Yong, Tao; Yong, Wei; Jin, Guofan; Gao, Xuejun

    2005-02-01

    Dental pulp is located in root canal of tooth. To modern root canal therapy, "Root canal preparation" is the main means to debride dental pulp infection. The shape of root canal will be changed after preparation, so, when assessing the preparation instruments and techniques, the root canal shaping ability especially the apical offset is very important factor. In this paper, a novel digital image processing and measurement system is designed and applied to quantitative analysis of simulated canal shape. By image pretreatment, feature extraction, registration and fusion, the variation of the root canals' characteristics (before and after preparation) can be accurately compared and measured, so as to assess the shaping ability of instruments. When the scanning resolution is 1200dpi or higher, the registration and measurement precision of the system can achieve 0.021mm or higher. The performance of the system is tested by a series of simulated root canals and stainless steel K-files.

  12. Three-dimensional shape measurement system applied to superficial inspection of non-metallic pipes for the hydrocarbons transport

    NASA Astrophysics Data System (ADS)

    Arciniegas, Javier R.; González, Andrés. L.; Quintero, L. A.; Contreras, Carlos R.; Meneses, Jaime E.

    2014-05-01

    Three-dimensional shape measurement is a subject that consistently produces high scientific interest and provides information for medical, industrial and investigative applications, among others. In this paper, it is proposed to implement a three-dimensional (3D) reconstruction system for applications in superficial inspection of non-metallic pipes for the hydrocarbons transport. The system is formed by a CCD camera, a video-projector and a laptop and it is based on fringe projection technique. System functionality is evidenced by evaluating the quality of three-dimensional reconstructions obtained, which allow observing the failures and defects on the study object surface.

  13. System for the measurement of blood flow and oxygenation in tissue applied to neurovascular coupling in brain

    NASA Astrophysics Data System (ADS)

    Kohl-Bareis, Matthias; Leithner, Christoph; Sellien, Heike; Guertler, Roland; Geraskin, Dmitri; Rohrer, Benjamin; Royl, Georg; Dirnagl, Ulrich; Lindauer, Ute

    2005-08-01

    We designed a system incorporating the independent measurement of blood flow and oxygenation of haemoglobin. This is based on laser-Doppler spectroscopy with NIR wavelengths which gives a measure for changes in blood flow or tissue perfusion as well as reflectance spectroscopy in the VIS wavelength range for the calculation of the oxygenated and deoxygenated haemoglobin components. The co-registration of these parameters allows the neurovascular coupling of brain to be investigated. This is demonstrated by recording functional activity of the rat brain during electrical forepaw stimulation.

  14. Applying an intelligent and automated emissions measurement system to characterize the RF environment for supporting wireless technologies

    SciTech Connect

    Keebler, P. F.; Phipps, K. O.

    2006-07-01

    The use of wireless technologies in commercial and industrial facilities has grown significantly in the past several years. New applications of wireless technologies with increasing frequency and varying radiated power are being developed everyday. Wireless application specialists and end users have already identified several sources of electromagnetic interference (EMI) in these facilities. Interference has been reported between wireless devices and between these devices and other types of electronic equipment either using frequencies in the unlicensed wireless spectrum or equipment that may generate undesired man-made noise in this spectrum. Facilities that are not using the wireless band should verify the spectral quality of that band and the electromagnetic compatibility (EMC) integrity of safety-related power and signal cables before installing wireless technologies. With the introduction of new wireless devices in the same electromagnetic space where analog and digital I and C systems and cables must co-exist, the ability of facility managers to manage their spectra will dictate the degree of interference between wireless devices and other electronic equipment. Because of the unknowns associated with interference with analog and digital I and C systems in the wireless band, nuclear power plants have been slow to introduce wireless technologies in plant areas. With the application of newly developed advanced radiated emissions measurement systems that can record, process, and analyze radiated and conducted emissions in a cost-effective manner, facility managers can more reliably characterize potential locations for wireless technologies, including potential coupling effects with safety-related power and signal cables, with increased confidence that the risks associated with creating an interference can be significantly reduced. This paper will present an effective philosophy already being used in other mission-critical applications for managing EMC, an

  15. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  16. Systemic risk measures

    NASA Astrophysics Data System (ADS)

    Guerra, Solange Maria; Silva, Thiago Christiano; Tabak, Benjamin Miranda; de Souza Penaloza, Rodrigo Andrés; de Castro Miranda, Rodrigo César

    2016-01-01

    In this paper we present systemic risk measures based on contingent claims approach and banking sector multivariate density. We also apply network measures to analyze bank common risk exposure. The proposed measures aim to capture credit risk stress and its potential to become systemic. These indicators capture not only individual bank vulnerability, but also the stress dependency structure between them. Furthermore, these measures can be quite useful for identifying systemically important banks. The empirical results show that these indicators capture with considerable fidelity the moments of increasing systemic risk in the Brazilian banking sector in recent years.

  17. A multi-layer, closed-loop system for continuous measurement of soil CO2 concentrations and its isotopic signature applied in a beech and a pine forest

    NASA Astrophysics Data System (ADS)

    Jochheim, Hubert; Wirth, Stephan

    2016-04-01

    We present a setup of measurement devices that allows the application of the soil CO2 gradient approach for CO2 efflux calculation in combination with the analysis of isotopic signature (δ13C). Vertical profiles of CO2 concentrations in air-filled pores of soil were measured using miniature NDIR sensors within a 16-channel closed-loop system where equilibrium with soil air can be achieved using hydrophobic, gas-permeable porous polypropylene tubes circulating gas using peristaltic pumps. A 16-position multiplexer allows the connection to an isotopic CO2 analyser. This setup was applied at two ICP Forest intensive monitoring sites, a beech and a pine forest on sandy soils located in Brandenburg, Germany. CO2 concentrations in air-filled pores of soils were measured on top of soil surface, below the humus layer, and in 10cm, 20cm, 30cm and 100 cm depths every 30 min. At both sites, soil moisture and temperature were measured continuously in the respective soil depths in identical time intervals. Isotopic signatures of soil CO2 was detected by measurement campaigns. After three years of measurements, our results provided evidence for distinct seasonal dynamics and vertical gradients of soil CO2 concentration and δ13C values. Varying impacts of soil temperature and moisture on CO2 concentration were revealed, highlighting its impact on soil physical and soil biological controls. Higher levels of CO2 concentration and a more distinct seasonal dynamics were detected at the beech site compared to the pine site. The collected data provide a suitable database for calculation of CO2 efflux and modelling of soil respiration.

  18. Operational neuroscience: neurophysiological measures in applied environments.

    PubMed

    Kruse, Amy A

    2007-05-01

    There is, without question, an interest within the military services to understand, account for, and adapt to the cognitive state of the individual warfighter. As the field of neuroscience has matured through investments from numerous government agencies, we are on the cusp of being able to move confidently from the lab into the field--and deepen our understanding of the cognitive issues embedded in the warfighting environment. However, as we edge closer to this integration--it is critical for researchers in this arena to understand the landscape they are entering-reflected not only in the challenges of each task or operational environment but also in the individual differences intrinsic to each warfighter. The research papers in this section cover this spectrum, including individual differences and their prediction of adaptability to high-stress environments, the influence of sleep-deprivation on neurophysiological measures of stimulus categorization, neurophysiological measures of stress in the training environment and, finally, real-time neural measures of task engagement, mental workload and vigilance. It is clear from this research, and other work detailed in this supplement, that the judicious use of neuroscience, cognitive psychology, and physiology in the applied environment is desirable for both researchers and operators. In fact, we suggest that these investigations merit a field designation unto their own: Operational Neuroscience. It is our hope that the discussion of this new field of study will galvanize others to increase the confidence and utility of this research through their own investigations.

  19. Thermodynamic Measurements of Applied Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Cooke, David William

    The specific heat of a material offers a host of information about the energetics of the system, from the phonons and electrons to phase changes in the material and two-state systems. In order to measure the specific heat of small samples such as quenched high pressure materials or thin films, one must turn to microcalorimetry. This thesis discusses the application of microcalorimetry to small magnetic samples and the underlying physics illuminated by the technique. The thesis first describes the measurement of the spinel and olivine phases of Fe2SiO4 and the technical development necessary to measure a metastable small (10-100mug) sample, obtaining the first direct measurement of the entropy difference between the two phases. Focusing next on the canonical giant magneto-resistive system of Fe/Cr multilayers, first is discussed the contributions of disorder to the electrons and phonons in the system where it is determined that disorder and strain plays a dominant role in the electronic density of states for thin films of chromium and not the antiferromagnetic state of the film. Next it is determined that while sputtered Fe/Cr multilayers do exhibit an interfacial enhancement in the density of states due to interfacial alloying, the spin-dependent scattering is more dependent upon a well-defined quantum well structure. Finally, described herein is the development of a new calorimeter based on the ion beam-assisted deposition (IBAD) of MgO in order to measure the specific heat of epitaxial thin films. After measuring the lattice parameters of the IBAD MgO through synchrotron X-ray diffraction (XRD) and proving through XRD that thin films could successfully be grown epitaxially on the device, it was used to measure the specific heat of Fe-Rh alloys with ferromagnetic and antiferromagnetic ground states. Fe-Rh alloys have been suggested for application to thermally assisted magnetic recording, but there is much debate in the literature about the theoretical origin of

  20. Applying WebMining on KM system

    NASA Astrophysics Data System (ADS)

    Shimazu, Keiko; Ozaki, Tomonobu; Furukawa, Koichi

    KM (Knowledge Management) systems have recently been adopted within the realm of enterprise management. On the other hand, data mining technology is widely acknowledged within Information systems' R&D Divisions. Specially, acquisition of meaningful information from Web usage data has become one of the most exciting eras. In this paper, we employ a Web based KM system and propose a framework for applying Web Usage Mining technology to KM data. As it turns out, task duration varies according to different user operations such as referencing a table-of-contents page, down-loading a target file, and writing to a bulletin board. This in turn makes it possible to easily predict the purpose of the user's task. By taking these observations into account, we segmented access log data manually. These results were compared with results abstained by applying the constant interval method. Next, we obtained a segmentation rule of Web access logs by applying a machine-learning algorithm to manually segmented access logs as training data. Then, the newly obtained segmentation rule was compared with other known methods including the time interval method by evaluating their segmentation results in terms of recall and precision rates and it was shown that our rule attained the best results in both measures. Furthermore, the segmented data were fed to an association rule miner and the obtained association rules were utilized to modify the Web structure.

  1. Applied mathematics of chaotic systems

    SciTech Connect

    Jen, E.; Alber, M.; Camassa, R.; Choi, W.; Crutchfield, J.; Holm, D.; Kovacic, G.; Marsden, J.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objectives of the project were to develop new mathematical techniques for describing chaotic systems and for reexpressing them in forms that can be solved analytically and computationally. The authors focused on global bifurcation analysis of rigid body motion in an ideal incompressible fluid and on an analytical technique for the exact solution of nonlinear cellular automata. For rigid-body motion, they investigated a new completely integrable partial differential equation (PDE) representing model motion of fronts in nematic crystals and studied perturbations of the integrable PDE. For cellular automata with multiple domain structures, the work has included: (1) identification of the associated set of conserved quantities for each type of domain; (2) use of the conserved quantities to construct isomorphism between the nonlinear system and a linear template; and (3) use of exact solvability methods to characterize detailed structure of equilibrium states and to derive bounds for maximal transience times.

  2. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    SciTech Connect

    Shimizu, A. Ido, T.; Kato, S.; Hamada, Y.; Kurachi, M.; Makino, R.; Nishiura, M.; Nishizawa, A.

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.

  3. How Does Measurement Apply to Pigeons?

    ERIC Educational Resources Information Center

    Skalicky, Jane

    2007-01-01

    This article tells the story of one student who chooses her personal interest in pigeons and their lifestyle to demonstrate her understanding of measurement concepts. The student's work is used to consider the possibilities for assessment afforded by tasks designed within reform-based curricula. Anita (pseudonym) was a Grade 6 student who was part…

  4. Forces applied by cilia measured on explants from mucociliary tissue.

    PubMed

    Teff, Zvi; Priel, Zvi; Gheber, Levi A

    2007-03-01

    Forces applied by intact mucus-propelling cilia were measured for the first time that we know of using a combined atomic force microscopy (AFM) and electrooptic system. The AFM probe was dipped into a field of beating cilia and its time-dependent deflection was recorded as it was struck by the cilia while the electrooptic system simultaneously and colocally measured the frequency to ensure that no perturbation was induced by the AFM probe. Using cilia from frog esophagus, we measured forces of approximately 0.21 nN per cilium during the effective stroke. This value, together with the known internal structure of these cilia, leads to the conclusion that most dynein arms along the length of the axoneme contribute to the effective stroke of these cilia.

  5. Thermodynamic Laws Applied to Economic Systems

    ERIC Educational Resources Information Center

    González, José Villacís

    2009-01-01

    Economic activity in its different manifestations--production, exchange, consumption and, particularly, information on quantities and prices--generates and transfers energy. As a result, we can apply to it the basic laws of thermodynamics. These laws are applicable within a system, i.e., in a country or between systems and countries. To these…

  6. System Applies Polymer Powder To Filament Tow

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  7. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C.

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  8. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect

    Wells, C

    1992-10-01

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  9. Close Range Digital Photogrammetry Applied to Topography and Landslide Measurements

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Cheng; Huang, Wei-Che

    2016-06-01

    Landslide monitoring is a crucial tool for the prevention of hazards. It is often the only solution for the survey and the early-warning of large landslides cannot be stabilized. The objective of present study is to use a low-cost image system to monitor the active landslides. We adopted the direct linear transformation (DLT) method in close range digital photogrammetry to measure terrain of landslide at the Huoyen Shan, Miaoli of central Taiwan and to compare measured results with e-GPS. The results revealed that the relative error in surface area was approximately 1.7% as comparing the photogrammetry with DLT method and e-GPS measurement. It showed that the close range digital photogrammetry with DLT method had the availability and capability to measure the landslides. The same methodology was then applied to measure the terrain before landslide and after landslide in the study area. The digital terrain model (DTM) was established and then was used to calculate the volume of the terrain before landslide and after landslide. The volume difference before and after landslides was 994.16 m3.

  10. A gaseous measurement system for carbon-14 dioxide and carbon-14 methane: An analytical methodology to be applied in the evaluation of the carbon-14 dioxide and carbon-14 methane produced via microbial activity in volcanic tuff

    SciTech Connect

    Dolan, M.M.

    1987-05-06

    The objectives of this study were to develop a gaseous measurement system for the carbon-14 dioxide and carbon-14 methane produced via microbial activity or geochemical action on leachate in tuff; to determine the trapping efficiency of the system for carbon-14 dioxide; to determine the trapping efficiency of the system for carbon-14 methane; to apply the experimentally determined factors regarding the system's trapping efficiency for carbon-14 dioxide and carbon-14 methane to a trapping algorithm to determine the activity of the carbon-14 dioxide and carbon-14 methane in a mixed sample; to determine the minimum detectable activity of the measurement process in picocuries per liter; and to determine the lower limit or detection of the measurement process in counts per minute.

  11. Systems Engineering Measurement Primer

    DTIC Science & Technology

    1998-03-01

    Systems Engineering Measurement Primer A Basic Introduction to Systems Engineering Measurement Concepts and Use Version 1.0 March 1998 This document...Federal Systems Garry Roedler Lockheed Martin Management & Data Systems Cathy Tilton The National Registry, Inc. E. Richard Widmann Raytheon Systems...IV 1. INTRODUCTION

  12. Applied Information Systems Research Program Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The first Applied Information Systems Research Program (AISRP) Workshop provided the impetus for several groups involved in information systems to review current activities. The objectives of the workshop included: (1) to provide an open forum for interaction and discussion of information systems; (2) to promote understanding by initiating a dialogue with the intended benefactors of the program, the scientific user community, and discuss options for improving their support; (3) create an advocacy in having science users and investigators of the program meet together and establish the basis for direction and growth; and (4) support the future of the program by building collaborations and interaction to encourage an investigator working group approach for conducting the program.

  13. The Applied Mathematics for Power Systems (AMPS)

    SciTech Connect

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxes for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.

  14. High Efficiency Micromachining System Applied in Nanolithography

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Lee, Dong Weon; Choi, Young Soo

    Scanning probe lithography such as direct-writing lithographic processes and nanoscratching techniques based on scanning probe microscopy have presented new micromachining methods for microelectromechanical system (MEMS). In this paper, a micromachining system for thermal scanning probe lithography is introduced, which consists of the cantilever arrays and a big stroke micro XY-stage. A large machining area and high machining speed can be realized by combining arrays of cantilevers possessing sharp tips at their top with the novel micro XY-stage which can obtain big displacements under relatively low driving voltage and in a small size. According to the above configuration, this micromachining system is provided with high throughputs and suitable for industrialization due to its MEMS-based simple fabrication process. The novel micro XY-stage applied in this system is presented in detail including the unique structure and principles, which shows an obvious improvement and distinct advantages in comparison with traditional structures. It is analyzed by mathematical model and then simulated using finite element method (FEM), it is proved to be able to practically serve the micromachining system with high capability.

  15. Tribological systems as applied to aircraft engines

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1985-01-01

    Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.

  16. [Systemic reactions to orally applied metal alloys].

    PubMed

    Feilzer, A J; Kleverlaan, C J; Prahl, C; Muris, J

    2013-06-01

    Orally applied metal alloys can cause undesirable physical effects. A distinction needs to be made in this respect between local and systemic reactions and toxic and immunological reactions. A case is presented which illustrates this problem. In this case, the application of orthodontic appliances was probably the trigger for an exacerbation of nickel allergy. The oral exposure to nickel resulted in hand eczema. The patient was also exposed to nickel by single-unit fixed dental prostheses, a removable dental prosthesis, and food, as a result of which removal of the orthodontic appliances did not result in complete healing. Therefore, the single-unit fixed dental prostheses also had to be removed and food had to be prepared henceforward in nickel free pans.

  17. Fluorescent protein biosensors applied to microphysiological systems

    PubMed Central

    Senutovitch, Nina; Boltz, Robert; DeBiasio, Richard; Gough, Albert; Taylor, D Lansing

    2015-01-01

    This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPSs). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and MPSs in real time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high-content screening. FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations, and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein, dramatically accelerated the adoption of studying living cells, since the genetic “labeling” of proteins became a relatively simple method that permitted the analysis of temporal–spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental sensitivity that, when combined with

  18. Precision volume measurement system.

    SciTech Connect

    Fischer, Erin E.; Shugard, Andrew D.

    2004-11-01

    A new precision volume measurement system based on a Kansas City Plant (KCP) design was built to support the volume measurement needs of the Gas Transfer Systems (GTS) department at Sandia National Labs (SNL) in California. An engineering study was undertaken to verify or refute KCP's claims of 0.5% accuracy. The study assesses the accuracy and precision of the system. The system uses the ideal gas law and precise pressure measurements (of low-pressure helium) in a temperature and computer controlled environment to ratio a known volume to an unknown volume.

  19. Ultrasonic linear measurement system

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1991-01-01

    An ultrasonic linear measurement system uses the travel time of surface waves along the perimeter of a three-dimensional curvilinear body to determine the perimeter of the curvilinear body. The system can also be used piece-wise to measure distances along plane surfaces. The system can be used to measure perimeters where use of laser light, optical means or steel tape would be extremely difficult, time consuming or impossible. It can also be used to determine discontinuities in surfaces of known perimeter or dimension.

  20. 600-GHz Electronically Tunable Vector Measurement System

    NASA Technical Reports Server (NTRS)

    Dengler, Robert; Maiwald, Frank; Siegel, Peter

    2007-01-01

    A compact, high-dynamic-range, electronically tunable vector measurement system that operates in the frequency range from approximately 560 to approximately 635 GHz has been developed as a prototype of vector measurement systems that would be suitable for use in nearly-real-time active submillimeter-wave imaging. As used here, 'vector measurement system" signifies an instrumentation system that applies a radio-frequency (RF) excitation to an object of interest and measures the resulting amplitude and phase response, relative to either the applied excitatory signal or another reference signal related in a known way to applied excitatory signal.

  1. System to measure heart performance

    NASA Astrophysics Data System (ADS)

    Andrade, Armando; Rios, Heriberto; Lizana, Pablo R.; Puente, Ernestina; Mendoza, Diego

    2002-11-01

    Systems to measure heart condition are applied to patients with early or chronic cardiac problems with the aim of diagnosing and exactly locat- ing the problem. Two very important factors exist that are taken into account in order to obtain a reliable diagnosis and to be able to give suitable medical treatment. One of them is the volume of blood that the heart pumps, the other is the temperature gradient. In our system we measure both parameters at the same time with the purpose of determining how the heart is working from the amount of blood pumped per unit time. (To be presented in Spanish.)

  2. Electrochemical thermodynamic measurement system

    DOEpatents

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  3. Metabolic rate measurement system

    NASA Technical Reports Server (NTRS)

    Koester, K.; Crosier, W.

    1980-01-01

    The Metabolic Rate Measurement System (MRMS) is an uncomplicated and accurate apparatus for measuring oxygen consumption and carbon dioxide production of a test subject. From this one can determine the subject's metabolic rate for a variety of conditions, such as resting or light exercise. MRMS utilizes an LSI/11-03 microcomputer to monitor and control the experimental apparatus.

  4. Current measuring system

    DOEpatents

    Dahl, David A.; Appelhans, Anthony D.; Olson, John E.

    1997-01-01

    A current measuring system comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device.

  5. Current measuring system

    DOEpatents

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  6. Geostatistic applied to seismic noise measurements for hydrothermal basin characterization

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Trevisani, Sebastiano; Agostini, Laura; Galgaro, Antonio

    2016-04-01

    We present a geo-statistical analysis applied to seismic noise measurements in the framework of a thermal basin characterization. The site test is located in the N-E part of Italy (Caldiero, Verona Province) where more than 100 passive single station seismic noise measurements were conducted. The final aim was the characterization of an important hydrothermal basin, which is exploited since the Roman Period. The huge amount of measurements offers high density cover, since the measurements point has average spacing of 100 m for a total area investigated of ca 100ha. The HVSR (Horizontal to Vertical Spectral Ratio) is a geophysical passive technique used to retrieve fundamental resonance frequency of the subsoil. The measurement consists in passive recording of seismic noise with 3 components broadband receivers. From the spectral analysis of the recorded data, we can retrieve the resonance frequency of soil and hence information about depth and mechanical properties of soil covers. Since HVSR is a punctual measurement, 2d map of the results are usually extracted with interpolation procedure, as common kriging or natural neighbor techniques. Despite this accurate statistical procedure are rarely adopted for HVSR analysis, limiting the real significance of the dataset. As a matter of fact, rigorous statistical approach of the spatial distribution is neglected in common HVSR geophysical prospecting. Here we present the use of advanced spatial-statistic technique (e.g. cross-validation, residual distribution etc.) applied to HVSR data. Our results show as critic data scrubbing, joined to rigorous statistical approach for data interpolation, are mandatory to assure meaningful structural interpretation of microtremor HVSR survey. The maps obtained are compared with boreholes data, reflection seismic prospecting, and geological information. The proposed procedure highlighted the potential of these quick passive measurements, if correctly treated from the statistical point

  7. Digital capacitance measuring system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The hardware phase of a digital capacitance measuring system is presented with the major emphasis placed on the electrical design and operation. Test results are included of the three units fabricated. The system's interface is applicable to existing requirements for the space shuttle vehicle.

  8. Advantages of High Tolerance Measurements in Fusion Environments Applying Photogrammetry

    SciTech Connect

    T. Dodson, R. Ellis, C. Priniski, S. Raftopoulos, D. Stevens, M. Viola

    2009-02-04

    Photogrammetry, a state-of-the-art technique of metrology employing digital photographs as the vehicle for measurement, has been investigated in the fusion environment. Benefits of this high tolerance methodology include relatively easy deployment for multiple point measurements and deformation/distortion studies. Depending on the equipment used, photogrammetric systems can reach tolerances of 25 microns (0.001 in) to 100 microns (0.004 in) on a 3-meter object. During the fabrication and assembly of the National Compact Stellarator Experiment (NCSX) the primary measurement systems deployed were CAD coordinate-based computer metrology equipment and supporting algorithms such as both interferometer-aided (IFM) and absolute distance measurementbased (ADM) laser trackers, as well as portable Coordinate Measurement Machine (CMM) arms. Photogrammetry was employed at NCSX as a quick and easy tool to monitor coil distortions incurred during welding operations of the machine assembly process and as a way to reduce assembly downtime for metrology processes.

  9. PIXE measurement applied to trace elemental analysis of human tissues

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Matsugi, E.; Miyasaki, K.; Yamagata, T.; Inoue, M.; Ogata, H.; Shimoura, S.

    1987-03-01

    PIXE measurement was applied for trace elemental analyses of 40 autoptic human kidneys. To investigate the reproducibility of the PIXE data, 9 targets obtained from one human liver were examined. The targets were prepared by wet-digestion using nitric and sulfuric acid. Yttrium was used as an internal standard. The extracted elemental concentrations for K, Fe, Cu, Zn, and Cd were in reasonable agreement with those obtained by atomic absorption spectrometry (AAS) and flame photometry (FP). Various correlations among the elements K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Rb, and Cd were examined individually for the renal cortex and renal medulla.

  10. Video integrated measurement system.

    PubMed

    Spector, B; Eilbert, L; Finando, S; Fukuda, F

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  11. Percolation theory applied to measures of fragmentation in social networks

    NASA Astrophysics Data System (ADS)

    Chen, Yiping; Paul, Gerald; Cohen, Reuven; Havlin, Shlomo; Borgatti, Stephen P.; Liljeros, Fredrik; Stanley, H. Eugene

    2007-04-01

    We apply percolation theory to a recently proposed measure of fragmentation F for social networks. The measure F is defined as the ratio between the number of pairs of nodes that are not connected in the fragmented network after removing a fraction q of nodes and the total number of pairs in the original fully connected network. We compare F with the traditional measure used in percolation theory, P∞ , the fraction of nodes in the largest cluster relative to the total number of nodes. Using both analytical and numerical methods from percolation, we study Erdős-Rényi and scale-free networks under various types of node removal strategies. The removal strategies are random removal, high degree removal, and high betweenness centrality removal. We find that for a network obtained after removal (all strategies) of a fraction q of nodes above percolation threshold, P∞≈(1-F)1/2 . For fixed P∞ and close to percolation threshold (q=qc) , we show that 1-F better reflects the actual fragmentation. Close to qc , for a given P∞ , 1-F has a broad distribution and it is thus possible to improve the fragmentation of the network. We also study and compare the fragmentation measure F and the percolation measure P∞ for a real social network of workplaces linked by the households of the employees and find similar results.

  12. Oceanic wave measurement system

    NASA Technical Reports Server (NTRS)

    Holmes, J. F.; Miles, R. T. (Inventor)

    1980-01-01

    An oceanic wave measured system is disclosed wherein wave height is sensed by a barometer mounted on a buoy. The distance between the trough and crest of a wave is monitored by sequentially detecting positive and negative peaks of the output of the barometer and by combining (adding) each set of two successive half cycle peaks. The timing of this measurement is achieved by detecting the period of a half cycle of wave motion.

  13. Sensorimotor System Measurement Techniques

    PubMed Central

    Riemann, Bryan L.; Myers, Joseph B.; Lephart, Scott M.

    2002-01-01

    Objective: To provide an overview of currently available sensorimotor assessment techniques. Data Sources: We drew information from an extensive review of the scientific literature conducted in the areas of proprioception, neuromuscular control, and motor control measurement. Literature searches were conducted using MEDLINE for the years 1965 to 1999 with the key words proprioception, somatosensory evoked potentials, nerve conduction testing, electromyography, muscle dynamometry, isometric, isokinetic, kinetic, kinematic, posture, equilibrium, balance, stiffness, neuromuscular, sensorimotor, and measurement. Additional sources were collected using the reference lists of identified articles. Data Synthesis: Sensorimotor measurement techniques are discussed with reference to the underlying physiologic mechanisms, influential factors and locations of the variable within the system, clinical research questions, limitations of the measurement technique, and directions for future research. Conclusions/Recommendations: The complex interactions and relationships among the individual components of the sensorimotor system make measuring and analyzing specific characteristics and functions difficult. Additionally, the specific assessment techniques used to measure a variable can influence attained results. Optimizing the application of sensorimotor research to clinical settings can, therefore, be best accomplished through the use of common nomenclature to describe underlying physiologic mechanisms and specific measurement techniques. PMID:16558672

  14. Expert systems applied to spacecraft fire safety

    NASA Technical Reports Server (NTRS)

    Smith, Richard L.; Kashiwagi, Takashi

    1989-01-01

    Expert systems are problem-solving programs that combine a knowledge base and a reasoning mechanism to simulate a human expert. The development of an expert system to manage fire safety in spacecraft, in particular the NASA Space Station Freedom, is difficult but clearly advantageous in the long-term. Some needs in low-gravity flammability characteristics, ventilating-flow effects, fire detection, fire extinguishment, and decision models, all necessary to establish the knowledge base for an expert system, are discussed.

  15. Applying Modeling Tools to Ground System Procedures

    NASA Technical Reports Server (NTRS)

    Di Pasquale, Peter

    2012-01-01

    As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.

  16. In situ measurement system

    DOEpatents

    Lord, D.E.

    1980-11-24

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop hairpin configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. Measurement means are provided for obtaining for each pair the electrical resistance of each element and the difference in electrical resistance of the paired elements, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner means sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  17. EG G Mound Applied Technologies payroll system

    SciTech Connect

    Not Available

    1992-02-07

    EG G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy's Albuquerque Field Office. The contractor's Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, Pay, Leave, and Allowances.'' Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

  18. Does terrestrial epidemiology apply to marine systems?

    USGS Publications Warehouse

    McCallum, Hamish I.; Kuris, Armand M.; Harvell, C. Drew; Lafferty, Kevin D.; Smith, Garriet W.; Porter, James

    2004-01-01

    Most of epidemiological theory has been developed for terrestrial systems, but the significance of disease in the ocean is now being recognized. However, the extent to which terrestrial epidemiology can be directly transferred to marine systems is uncertain. Many broad types of disease-causing organism occur both on land and in the sea, and it is clear that some emergent disease problems in marine environments are caused by pathogens moving from terrestrial to marine systems. However, marine systems are qualitatively different from terrestrial environments, and these differences affect the application of modelling and management approaches that have been developed for terrestrial systems. Phyla and body plans are more diverse in marine environments and marine organisms have different life histories and probably different disease transmission modes than many of their terrestrial counterparts. Marine populations are typically more open than terrestrial ones, with the potential for long-distance dispersal of larvae. Potentially, this might enable unusually rapid propagation of epidemics in marine systems, and there are several examples of this. Taken together, these differences will require the development of new approaches to modelling and control of infectious disease in the ocean.

  19. Measures Of Diffusion Regions Applied To PIC Reconnection Simulations

    NASA Astrophysics Data System (ADS)

    Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2015-12-01

    The primary goal of the current NASA-MMS mission is to "identify and study diffusion regions during magnetic reconnection in Earth's magnetopause and magnetotail. Yet the term diffusion region is often misunderstood and can be ambiguous. Different conditions for a region to be a "diffusion region" are interpreted theoretically, related to each other and applied to PIC simulations of tail reconnection(a) (and to MMS measurements, if possible, at time of AGU). None of the conditions is both necessary and sufficient for topological reconnection to occur. During magnetic reconnection in a kinetic plasma key differences exist between the locations of diffusion regions in the electron fluid, the ion fluid and a single (MHD) fluid. (a)M.V. Goldman, D.L. Newman and G. Lapenta, Space Science Reviews, 2015

  20. Laser angle measurement system

    NASA Technical Reports Server (NTRS)

    Pond, C. R.; Texeira, P. D.; Wilbert, R. E.

    1980-01-01

    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given.

  1. Wear Measurement System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Lewis Research Center developed a tribometer for in-house wear tests. Implant Sciences Corporation (ISC), working on a NASA contract to develop coatings to enhance the wear capabilities of materials, adapted the tribometer for its own use and developed a commercial line of user-friendly systems. The ISC-200 is a pin-on-disk type of tribometer, functioning like a record player and creating a wear groove on the disk, with variables of speed and load. The system can measure the coefficient of friction, the wear behavior between materials, and the integrity of thin films or coatings. Applications include measuring wear on contact lenses and engine parts and testing disk drives.

  2. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  3. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  4. Sociotechnical Systems as Applied to Knowledge Work

    DTIC Science & Technology

    1998-06-01

    technology forums. The research will compare earlier studies of variations and forums to new studies involving intellectual capital , knowledge bases...knowledge development, intellectual capital and collaborative software. Chapter III details the development of the sociotechnical systems...development and intellectual capital to determine consistency among the variances and forums that contribute to barriers in the deliberation process. It

  5. Microgravity Acceleration Measurement System

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Microgravity Acceleration Measurement System (MAMS) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  6. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  7. Systems biology: the reincarnation of systems theory applied in biology?

    PubMed

    Wolkenhauer, O

    2001-09-01

    With the availability of quantitative data on the transcriptome and proteome level, there is an increasing interest in formal mathematical models of gene expression and regulation. International conferences, research institutes and research groups concerned with systems biology have appeared in recent years and systems theory, the study of organisation and behaviour per se, is indeed a natural conceptual framework for such a task. This is, however, not the first time that systems theory has been applied in modelling cellular processes. Notably in the 1960s systems theory and biology enjoyed considerable interest among eminent scientists, mathematicians and engineers. Why did these early attempts vanish from research agendas? Here we shall review the domain of systems theory, its application to biology and the lessons that can be learned from the work of Robert Rosen. Rosen emerged from the early developments in the 1960s as a main critic but also developed a new alternative perspective to living systems, a concept that deserves a fresh look in the post-genome era of bioinformatics.

  8. Contour measurement system

    NASA Technical Reports Server (NTRS)

    Currie, J. R.; Kissel, R. R.; Deaton, E. T., Jr.; Campbell, R. A. (Inventor)

    1979-01-01

    A measurement system for measuring the departures from a straight line of discrete track sections of a track along a coal face in a mine employing a vehicle having a pair of spaced wheel assemblies which align with the track is presented. A reference arm pivotally connects between the wheel assemblies, and there is indicating means for measuring the angle of pivot between the arm and each of the wheel assemblies. The length of the device is less than the length of a track section, and thus when one of the wheel assemblies is on one track section and one is on an adjoining track section, the sum of the indicated angles will be indicative of the angle between track sections. Thus, from the length of a track section and angle, the departure of each track section from the line may be calculated.

  9. Sneak analysis applied to process systems

    NASA Astrophysics Data System (ADS)

    Whetton, Cris

    Traditional safety analyses, such as HAZOP, FMEA, FTA, and MORT, are less than effective at identifying hazards resulting from incorrect 'flow' - whether this be flow of information, actions, electric current, or even the literal flow of process fluids. Sneak Analysis (SA) has existed since the mid nineteen-seventies as a means of identifying such conditions in electric circuits; in which area, it is usually known as Sneak Circuit Analysis (SCA). This paper extends the ideas of Sneak Circuit Analysis to a general method of Sneak Analysis applied to process plant. The methods of SA attempt to capitalize on previous work in the electrical field by first producing a pseudo-electrical analog of the process and then analyzing the analog by the existing techniques of SCA, supplemented by some additional rules and clues specific to processes. The SA method is not intended to replace any existing method of safety analysis; instead, it is intended to supplement such techniques as HAZOP and FMEA by providing systematic procedures for the identification of a class of potential problems which are not well covered by any other method.

  10. Applying Bifactor Statistical Indices in the Evaluation of Psychological Measures.

    PubMed

    Rodriguez, Anthony; Reise, Steven P; Haviland, Mark G

    2016-01-01

    The purpose of this study was to apply a set of rarely reported psychometric indices that, nevertheless, are important to consider when evaluating psychological measures. All can be derived from a standardized loading matrix in a confirmatory bifactor model: omega reliability coefficients, factor determinacy, construct replicability, explained common variance, and percentage of uncontaminated correlations. We calculated these indices and extended the findings of 50 recent bifactor model estimation studies published in psychopathology, personality, and assessment journals. These bifactor derived indices (most not presented in the articles) provided a clearer and more complete picture of the psychometric properties of the assessment instruments. We reached 2 firm conclusions. First, although all measures had been tagged "multidimensional," unit-weighted total scores overwhelmingly reflected variance due to a single latent variable. Second, unit-weighted subscale scores often have ambiguous interpretations because their variance mostly reflects the general, not the specific, trait. Finally, we review the implications of our evaluations and consider the limits of inferences drawn from a bifactor modeling approach.

  11. System safety as applied to Skylab

    NASA Technical Reports Server (NTRS)

    Kleinknecht, K. S.; Miller, B. J.

    1974-01-01

    Procedural and organizational guidelines used in accordance with NASA safety policy for the Skylab missions are outlined. The basic areas examined in the safety program for Skylab were the crew interface, extra-vehicular activity (EVA), energy sources, spacecraft interface, and hardware complexity. Fire prevention was a primary goal, with firefighting as backup. Studies of the vectorcardiogram and sleep monitoring experiments exemplify special efforts to prevent fire and shock. The final fire control study included material review, fire detection capability, and fire extinguishing capability. Contractors had major responsibility for system safety. Failure mode and effects analysis (FMEA) and equipment criticality categories are outlined. Redundancy was provided on systems that were critical to crew survival (category I). The five key checkpoints in Skylab hardware development are explained. Skylab rescue capability was demonstrated by preparations to rescue the Skylab 3 crew after their spacecraft developed attitude control problems.

  12. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  13. Applying the Implicit Association Test to Measure Intolerance of Uncertainty.

    PubMed

    Mosca, Oriana; Dentale, Francesco; Lauriola, Marco; Leone, Luigi

    2016-08-01

    Intolerance of Uncertainty (IU) is a key trans-diagnostic personality construct strongly associated with anxiety symptoms. Traditionally, IU is measured through self-report measures that are prone to bias effects due to impression management concerns and introspective difficulties. Moreover, self-report scales are not able to intercept the automatic associations that are assumed to be main determinants of several spontaneous responses (e.g., emotional reactions). In order to overcome these limitations, the Implicit Association Test (IAT) was applied to measure IU, with a particular focus on reliability and criterion validity issues. The IU-IAT and the Intolerance of Uncertainty Inventory (IUI) were administered to an undergraduate student sample (54 females and 10 males) with a mean age of 23 years (SD = 1.7). Successively, participants were asked to provide an individually chosen uncertain event from their own lives that may occur in the future and were requested to identify a number of potential negative consequences of it. Participants' responses in terms of cognitive thoughts (i.e., cognitive appraisal) and worry reactions toward these events were assessed using the two subscales of the Worry and Intolerance of Uncertainty Beliefs Questionnaire. The IU-IAT showed an adequate level of internal consistency and a not significant correlation with the IUI. A path analysis model, accounting for 35% of event-related worry, revealed that IUI had a significant indirect effect on the dependent variable through event-related IU thoughts. By contrast, as expected, IU-IAT predicted event-related worry independently from IU thoughts. In accordance with dual models of social cognition, these findings suggest that IU can influence event-related worry through two different processing pathways (automatic vs. deliberative), supporting the criterion and construct validity of the IU-IAT. The potential role of the IU-IAT for clinical applications was discussed.

  14. Hypercube Expert System Shell - Applying Production Parallelism.

    DTIC Science & Technology

    1989-12-01

    3 I~~i rst and foreino l AFA L un covered t h ough literatutre reviews that efforts to ap- plY traditional soft ware inienentation methods to...ogete via )ase o ie Aprac set o tAiN) fihe l ts. Tche k nownelg a.,; l Post Oce pfacitess foloe aei es o ilal fa on t ria hi i I sessions angnde...Systems." In Proceedings of the National Conftrcnc on Artificial lntdlligenc (To Appear), August 1988. 17. Gupta, Anoop, Milind Tambe, Dirk Kalp

  15. SUMP MEASURING SYSTEM

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Casandra Robinson, C; James Fiscus, J; Daniel Krementz, D; Thomas Nance, T

    2007-11-26

    The process sumps in H-Canyon at the Savannah River Site (SRS) collect leaks from process tanks and jumpers. To prevent build-up of fissile material the sumps are frequently flushed which generates liquid waste and is prone to human error. The development of inserts filled with a neutron poison will allow a reduction in the frequency of flushing. Due to concrete deterioration and deformation of the sump liners the current dimensions of the sumps are unknown. Knowledge of these dimensions is necessary for development of the inserts. To solve this problem a remote Sump Measurement System was designed, fabricated, and tested to aid development of the sump inserts.

  16. Liquid Chromatography Applied to Space System

    NASA Astrophysics Data System (ADS)

    Poinot, Pauline; Chazalnoel, Pascale; Geffroy, Claude; Sternberg, Robert; Carbonnier, Benjamin

    Searching for signs of past or present life in our Solar System is a real challenge that stirs up the curiosity of scientists. Until now, in situ instrumentation was designed to detect and determine concentrations of a wide number of organic biomarkers. The relevant method which was and still is employed in missions dedicated to the quest of life (from Viking to ExoMars) corresponds to the pyrolysis-GC-MS. Along the missions, this approach has been significantly improved in terms of extraction efficiency and detection with the use of chemical derivative agents (e.g. MTBSTFA, DMF-DMA, TMAH…), and in terms of analysis sensitivity and resolution with the development of in situ high-resolution mass spectrometer (e.g. TOF-MS). Thanks to such an approach, organic compounds such as amino acids, sugars, tholins or polycyclic aromatic hydrocarbons (PAHs) were expected to be found. However, while there’s a consensus that the GC-MS of Viking, Huygens, MSL and MOMA space missions worked the way they had been designed to, pyrolysis is much more in debate (Glavin et al. 2001; Navarro-González et al. 2006). Indeed, (1) it is thought to remove low levels of organics, (2) water and CO2 could interfere with the detection of likely organic pyrolysis products, and (3) only low to mid-molecular weight organic molecules can be detected by this technique. As a result, researchers are now focusing on other in situ techniques which are no longer based on the volatility of the organic matter, but on the liquid phase extraction and analysis. In this line, micro-fluidic systems involving sandwich and/or competitive immunoassays (e.g. LMC, SOLID; Parro et al. 2005; Sims et al. 2012), micro-chip capillary electrophoreses (e.g. MOA; Bada et al. 2008), or nanopore-based analysis (e.g. BOLD; Schulze-Makuch et al. 2012) have been conceived for in situ analysis. Thanks to such approaches, molecular biological polymers (polysaccharides, polypeptides, polynucleotides, phospholipids, glycolipids

  17. "Influence Method" applied to measure a moderated neutron flux

    NASA Astrophysics Data System (ADS)

    Rios, I. J.; Mayer, R. E.

    2016-01-01

    The "Influence Method" is conceived for the absolute determination of a nuclear particle flux in the absence of known detector efficiency. This method exploits the influence of the presence of one detector, in the count rate of another detector when they are placed one behind the other and define statistical estimators for the absolute number of incident particles and for the efficiency. The method and its detailed mathematical description were recently published (Rios and Mayer, 2015 [1]). In this article we apply it to the measurement of the moderated neutron flux produced by an 241AmBe neutron source surrounded by a light water sphere, employing a pair of 3He detectors. For this purpose, the method is extended for its application where particles arriving at the detector obey a Poisson distribution and also, for the case when efficiency is not constant over the energy spectrum of interest. Experimental distributions and derived parameters are compared with theoretical predictions of the method and implications concerning the potential application to the absolute calibration of neutron sources are considered.

  18. Thermal microstructure measurement system

    NASA Technical Reports Server (NTRS)

    Carver, Michael J. (Inventor)

    1985-01-01

    A thermal microstructure measurement system (TMMS) operates autonomously h its own internal power supply and telemeters data to a platform. A thermal array is mounted on a cross-braced frame designed to orient itself normal to existing currents with fixed sensor positioning bars protruding from the cross bars. A plurality of matched thermistors, conductivity probes and inclinometers are mounted on the frame. A compass and pressure transducer are contained in an electronics package suspended below the array. The array is deployed on a taut mooring below a subsurface float. Data are digitized, transmitted via cable to a surface buoy and then telemetered to the platform where the data is processed via a computer, recorded and/or displayed. The platform computer also sends commands to the array via telemetry.

  19. Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor); Carl, James R. (Inventor); Byerly, Kent A. (Inventor)

    2003-01-01

    System and methods are disclosed for fluid measurements which may be utilized to determine mass flow rates such as instantaneous mass flow of a fluid stream. In a preferred embodiment, the present invention may be utilized to compare an input mass flow to an output mass flow of a drilling fluid circulation stream. In one embodiment, a fluid flow rate is determined by utilizing a microwave detector in combination with an acoustic sensor. The acoustic signal is utilized to eliminate 2pi phase ambiguities in a reflected microwave signal. In another embodiment, a fluid flow rate may be determined by detecting a phase shift of an acoustic signal across two different predetermined transmission paths. A fluid density may be determined by detecting a calibrated phase shift of an acoustic signal through the fluid. In another embodiment, a second acoustic signal may be transmitted through the fluid to define a particular 2pi phase range which defines the phase shift. The present invention may comprise multiple transmitters/receivers operating at different frequencies to measure instantaneous fuel levels of cryogenic fuels within containers positioned in zero or near zero gravity environments. In one embodiment, a moveable flexible collar of transmitter/receivers may be utilized to determine inhomogenuities within solid rocket fuel tubes.

  20. Population Health Measurement: Applying Performance Measurement Concepts in Population Health Settings

    PubMed Central

    Stoto, Michael A.

    2014-01-01

    Introduction: Whether the focus of population-health improvement efforts, the measurement of health outcomes, risk factors, and interventions to improve them are central to achieving collective impact in the population health perspective. And because of the importance of a shared measurement system, appropriate measures can help to ensure the accountability of and ultimately integrate the efforts of public health, the health care delivery sector, and other public and private entities in the community to improve population health. Yet despite its importance, population health measurement efforts in the United States are poorly developed and uncoordinated. Collaborative Measurement Development: To achieve the potential of the population health perspective, public health officials, health system leaders, and others must work together to develop sets of population health measures that are suitable for different purposes yet are harmonized so that together they can help to improve a community’s health. This begins with clearly defining the purpose of a set of measures, distinguishing between outcomes for which all share responsibility and actions to improve health for which the health care sector, public health agencies, and others should be held accountable. Framework for Population Health Measurement: Depending on the purpose of the analysis, then, measurement systems should clearly specify what to measure—in particular the population served (the denominator), what the critical health dimensions are in a measurement framework, and how the measures can be used to ensure accountability. Building on a clear understanding of the purpose and dimensions of population health that must be measured, developers can then choose specific measures using existing data or developing new data sources if necessary, with established validity, reliability, and other scientific characteristics. Rather than indiscriminately choosing among the proliferating data streams, this

  1. A Vision for Systems Engineering Applied to Wind Energy (Presentation)

    SciTech Connect

    Felker, F.; Dykes, K.

    2015-01-01

    This presentation was given at the Third Wind Energy Systems Engineering Workshop on January 14, 2015. Topics covered include the importance of systems engineering, a vision for systems engineering as applied to wind energy, and application of systems engineering approaches to wind energy research and development.

  2. Applying expertise to data in the Geologist's Assistant expert system

    SciTech Connect

    Berkbigler, K.P.; Papcun, G.J.; Marusak, N.L.; Hutson, J.E.

    1988-01-01

    The Geologist's Assistant combines expert system technology with numerical pattern-matching and online communication to a large database. This paper discusses the types of rules used for the expert system, the pattern-matching technique applied, and the implementation of the system using a commercial expert system development environment. 13 refs., 8 figs.

  3. Improving the Validity of Quantitative Measures in Applied Linguistics Research

    ERIC Educational Resources Information Center

    Purpura, James E.; Brown, James Dean; Schoonen, Rob

    2015-01-01

    In empirical applied linguistics research it is essential that the key variables are operationalized in a valid and reliable way, and that the scores are treated appropriately, allowing for a proper testing of the hypotheses under investigation. The current article addresses several theoretical and practical issues regarding the use of measurement…

  4. Differential correction method applied to measurement of the FAST reflector

    NASA Astrophysics Data System (ADS)

    Li, Xin-Yi; Zhu, Li-Chun; Hu, Jin-Wen; Li, Zhi-Heng

    2016-08-01

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST) adopts an active deformable main reflector which is composed of 4450 triangular panels. During an observation, the illuminated area of the reflector is deformed into a 300-m diameter paraboloid and directed toward a source. To achieve accurate control of the reflector shape, positions of 2226 nodes distributed around the entire reflector must be measured with sufficient precision within a limited time, which is a challenging task because of the large scale. Measurement of the FAST reflector makes use of stations and node targets. However, in this case the effect of the atmosphere on measurement accuracy is a significant issue. This paper investigates a differential correction method for total stations measurement of the FAST reflector. A multi-benchmark differential correction method, including a scheme for benchmark selection and weight assignment, is proposed. On-site evaluation experiments show there is an improvement of 70%-80% in measurement accuracy compared with the uncorrected measurement, verifying the effectiveness of the proposed method.

  5. Full-field optical coherence tomography apply in sphere measurements

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Li, Weiwei; li, Juncheng; Wang, Jingyu; Wang, Jianguo

    2016-10-01

    The geometry of a spherical surface, for example that of a precision optic, is completely determined by the radius -of-curvature at one point and the deviation from the perfect spherical form at all other points of the sphere. Full-field Optical Coherence Tomography (FF-OCT) is a parallel detection OCT technique that utilizes a 2D detector array. This technique avoids mechanical scanning in imaging optics, thereby speeding up the imaging process and enhancing the quality of images. The current paper presents an FF-OCT instrument that is designed to be used in sphere measurement with the principle of multiple delays (MD) OCT to evaluate the curvature and radius of curved objects in single-shot imaging. The optimum combination of the MD principle with the FF-OCT method was evaluated, and the radius of a metal ball was measured with this method. The generated 2n-1 contour lines were obtained by using an MDE with n delays in a single en-face OCT image. This method of measurement, it engaged in the measurement accuracy of spherical and enriches the means of measurement, to make a spherical scan techniques flexible application.

  6. Mining volume measurement system

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph Saul (Inventor)

    1988-01-01

    In a shaft with a curved or straight primary segment and smaller off-shooting segments, at least one standing wave is generated in the primary segment. The shaft has either an open end or a closed end and approximates a cylindrical waveguide. A frequency of a standing wave that represents the fundamental mode characteristic of the primary segment can be measured. Alternatively, a frequency differential between two successive harmonic modes that are characteristic of the primary segment can be measured. In either event, the measured frequency or frequency differential is characteristic of the length and thus the volume of the shaft based on length times the bore area.

  7. Lidar and Occultation Remote Sensing Applied to Atmospheric Measurements

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.

    2008-05-01

    The use of lidar began in the early 1960s soon after a laboratory laser was shown to Q-switch and emit short pulses of light. The lidar technique makes measurements typically through backscattering, fluorescence, attenuation and absorption, and has become more and more sophisticated over the years, being used at ground stations and aboard airplanes and spacecraft. Routine measurements of aerosols, clouds, ozone, and atmospheric constituents like wind speeds and direction are being made. The passive technique of solar, lunar and stellar occultation has been used aboard balloons, aircraft and spacecraft also beginning in the 1960s, and since 1975, aboard spacecraft. It is a technique that, like lidar, is capable of vertical profiling, and has produced global measurements of stratospheric aerosols and ozone on a routine basis since about 1978. This talk will present a walk through the history of the author's involvement in the development of and measurements using these two techniques. Record-setting data sets on stratospheric aerosols from a ground-based lidar and satellite measurements of global aerosols and ozone (SAM~II and SAGE series) will be presented. The naming and characterization of Polar Stratospheric Clouds will be described in the context of the ozone hole. Aircraft lidar campaigns to study the impact of volcanic aerosols will be described, as well as the use of airborne lidar to validate satellite occultation measurements. Finally, the proof-of-principle LITE Space Shuttle lidar experiment and the long duration unmanned CALIPSO lidar mission presently in orbit will be discussed along with example results. A look-back at these contributions will be followed by a look into the future.

  8. Process tomography applied to multi-phase flow measurement

    NASA Astrophysics Data System (ADS)

    Dyakowski, T.

    1996-03-01

    This paper presents the state of the art in measuring multi-phase flows by using tomographic techniques. The results presented show a wide range of industrial applications of process tomography from the nuclear and chemical to the food industry. This is illustrated by examples of the application of various tomographic sensors to the measurement of geometric or kinematic parameters of multi-phase flows. An application of process tomography for the validation of computational fluid dynamic models and the possibility of constructing a flowmeter for multi-phase flow are addressed.

  9. Factorial switching linear dynamical systems applied to physiological condition monitoring.

    PubMed

    Quinn, John A; Williams, Christopher K I; McIntosh, Neil

    2009-09-01

    Condition monitoring often involves the analysis of systems with hidden factors that switch between different modes of operation in some way. Given a sequence of observations, the task is to infer the filtering distribution of the switch setting at each time step. In this paper, we present factorial switching linear dynamical systems as a general framework for handling such problems. We show how domain knowledge and learning can be successfully combined in this framework, and introduce a new factor (the "X-factor") for dealing with unmodeled variation. We demonstrate the flexibility of this type of model by applying it to the problem of monitoring the condition of a premature baby receiving intensive care. The state of health of a baby cannot be observed directly, but different underlying factors are associated with particular patterns of physiological measurements and artifacts. We have explicit knowledge of common factors and use the X-factor to model novel patterns which are clinically significant but have unknown cause. Experimental results are given which show the developed methods to be effective on typical intensive care unit monitoring data.

  10. Development of adaptive control applied to chaotic systems

    NASA Astrophysics Data System (ADS)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  11. System theory as applied differential geometry. [linear system

    NASA Technical Reports Server (NTRS)

    Hermann, R.

    1979-01-01

    The invariants of input-output systems under the action of the feedback group was examined. The approach used the theory of Lie groups and concepts of modern differential geometry, and illustrated how the latter provides a basis for the discussion of the analytic structure of systems. Finite dimensional linear systems in a single independent variable are considered. Lessons of more general situations (e.g., distributed parameter and multidimensional systems) which are increasingly encountered as technology advances are presented.

  12. Complex, Dynamic Systems: A New Transdisciplinary Theme for Applied Linguistics?

    ERIC Educational Resources Information Center

    Larsen-Freeman, Diane

    2012-01-01

    In this plenary address, I suggest that Complexity Theory has the potential to contribute a transdisciplinary theme to applied linguistics. Transdisciplinary themes supersede disciplines and spur new kinds of creative activity (Halliday 2001 [1990]). Investigating complex systems requires researchers to pay attention to system dynamics. Since…

  13. Digital imaging technology applied to crewstation display measurements

    NASA Astrophysics Data System (ADS)

    Nelson, Leonard Y.; Green, John R.

    1993-12-01

    A `slow scan' CCD camera has been adapted for luminance and radiance measurement of displays used in night vision goggle (NVG) compatible aircraft. A video lightmeter offers several advantages compared to conventional test methods including high speed image capture and color coding of the digital image data. The color coding feature facilitates evaluation of the test display uniformity. Numerical values for luminance and infrared radiance are also extracted from the image data.

  14. Systems Measures of Water Distribution System Resilience

    SciTech Connect

    Klise, Katherine A.; Murray, Regan; Walker, La Tonya Nicole

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  15. Automated ac galvanomagnetic measurement system

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Espy, P. N.

    1985-01-01

    An automated, ac galvanomagnetic measurement system is described. Hall or van der Pauw measurements in the temperature range 10-300 K can be made at a preselected magnetic field without operator attendance. Procedures to validate sample installation and correct operation of other system functions, such as magnetic field and thermometry, are included. Advantages of ac measurements are discussed.

  16. Managing Marginal School Employees: Applying Standards-Based Performance Measures

    ERIC Educational Resources Information Center

    Fields, Lynette; Reck, Brianne; Egley, Robert

    2006-01-01

    This book contains a collection of case studies that provide a variety of situations in managing or working with marginal employees in a school system. Managing Marginal School Employees will serve as a primary or companion text for administrator candidates or current administrators that include dilemmas for the student to think about, discuss,…

  17. Mutual information measures applied to EEG signals for sleepiness characterization.

    PubMed

    Melia, Umberto; Guaita, Marc; Vallverdú, Montserrat; Embid, Cristina; Vilaseca, Isabel; Salamero, Manel; Santamaria, Joan

    2015-03-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in β band during MSLT events (p-value < 0.0001). WDS group presented more complexity than EDS in the occipital zone, while a stronger nonlinear coupling between occipital and frontal zones was detected in EDS patients than in WDS. The AMIF and CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients.

  18. Measurement Systems Advisory Group

    DTIC Science & Technology

    1974-04-01

    noted with the aluminum wire used in the lacing. For these reasons the tests were concluded and deemed unsatisfactory. The second system tested was an...vehicle for "bringing many particulate pollutants into contact with the tape or magnetic heads, e.g., from deodorant spray powders, face powder and

  19. Applying modern measurements of Pleistocene loads to model lithospheric rheology

    NASA Astrophysics Data System (ADS)

    Beard, E. P.; Hoggan, J. R.; Lowry, A. R.

    2011-12-01

    The remnant shorelines of Pleistocene Lake Bonneville provide a unique opportunity for building a dataset from which to infer rheological properties of the lower crust and upper mantle. Multiple lakeshores developed over a period of around 30 kyr which record the lithosphere's isostatic response to a well-constrained load history. Bills et al. (1994) utilized a shoreline elevation dataset compiled by Currey (1982) in an attempt to model linear (Maxwell) viscosity as a function of depth beneath the basin. They estimated an effective elastic thickness (Te) for the basin of 20-25 km which differs significantly from the 5-15 km estimates derived from models of loading on geologic timescales (e.g., Lowry and Pérez-Gussinyé, 2011). We propose that the discrepancy in Te modeled by these two approaches may be resolved with dynamical modeling of a common rheology, using a more complete shoreline elevation dataset applied to a spherical Earth model. Where Currey's (1982) dataset was compiled largely from observations of depositional shoreline features, we are developing an algorithm for estimating elevation variations in erosional shorelines based on cross-correlation and stacking techniques similar to those used to automate picking of seismic phase arrival times. Application of this method to digital elevation models (DEMs) will increase the size and accuracy of the shoreline elevation dataset, enabling more robust modeling of the rheological properties driving isostatic response to unloading of Lake Bonneville. Our plan is to model these data and invert for a relatively small number of parameters describing depth- and temperature-dependent power-law rheology of the lower crust and upper mantle. These same parameters also will be used to model topographic and Moho response to estimates of regional mass variation on the longer loading timescales to test for inconsistencies. Bills, B.G., D.R. Currey, and G.A. Marshall, 1994, Viscosity estimates for the crust and upper

  20. Ozone measurement systems improvements studies

    NASA Technical Reports Server (NTRS)

    Thomas, R. W.; Guard, K.; Holland, A. C.; Spurling, J. F.

    1974-01-01

    Results are summarized of an initial study of techniques for measuring atmospheric ozone, carried out as the first phase of a program to improve ozone measurement techniques. The study concentrated on two measurement systems, the electro chemical cell (ECC) ozonesonde and the Dobson ozone spectrophotometer, and consisted of two tasks. The first task consisted of error modeling and system error analysis of the two measurement systems. Under the second task a Monte-Carlo model of the Dobson ozone measurement technique was developed and programmed for computer operation.

  1. Microbial ecology measurement system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sensitivity and potential rapidity of the PIA test that was demonstrated during the feasibility study warranted continuing the effort to examine the possibility of adapting this test to an automated procedure that could be used during manned missions. The effort during this program has optimized the test conditions for two important respiratory pathogens, influenza virus and Mycoplasma pneumoniae, developed a laboratory model automated detection system, and investigated a group antigen concept for virus detection. Preliminary tests on the handling of oropharygeal clinical samples for PIA testing were performed using the adenovirus system. The results obtained indicated that the PIA signal is reduced in positive samples and is increased in negative samples. Treatment with cysteine appeared to reduce nonspecific agglutination in negative samples but did not maintain the signal in positive samples.

  2. Purchasing Productivity Measurement Systems.

    DTIC Science & Technology

    1980-09-01

    Defense More Productive", Perspectives in Defense Management, Winter 1974-1975. 4. Encyclopaedia Britannica, Macropaedia, " Taylor , Frederick Winslow ", v...Some of the earliest successes in Productivity Systems and studies are attributed to Frederick W. Taylor and his concept of Scientific Management...sociological interactions. Taylorism , as it became known, provoked resentment and opposition from labor when it was carried to extremes. It was, however

  3. Applying systems engineering methodologies to the micro- and nanoscale realm

    NASA Astrophysics Data System (ADS)

    Garrison Darrin, M. Ann

    2012-06-01

    Micro scale and nano scale technology developments have the potential to revolutionize smart and small systems. The application of systems engineering methodologies that integrate standalone, small-scale technologies and interface them with macro technologies to build useful systems is critical to realizing the potential of these technologies. This paper covers the expanding knowledge base on systems engineering principles for micro and nano technology integration starting with a discussion of the drivers for applying a systems approach. Technology development on the micro and nano scale has transition from laboratory curiosity to the realization of products in the health, automotive, aerospace, communication, and numerous other arenas. This paper focuses on the maturity (or lack thereof) of the field of nanosystems which is emerging in a third generation having transitioned from completing active structures to creating systems. The emphasis of applying a systems approach focuses on successful technology development based on the lack of maturity of current nano scale systems. Therefore the discussion includes details relating to enabling roles such as product systems engineering and technology development. Classical roles such as acquisition systems engineering are not covered. The results are also targeted towards small-scale technology developers who need to take into account systems engineering processes such as requirements definition, verification, and validation interface management and risk management in the concept phase of technology development to maximize the likelihood of success, cost effective micro and nano technology to increase the capability of emerging deployed systems and long-term growth and profits.

  4. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  5. Infrared image denoising applied in infrared sound field measurement

    NASA Astrophysics Data System (ADS)

    Su, Zhiqiang; Shen, Guofeng

    2017-03-01

    The research made use of the heat property and explored the distribution of focused ultrasound field. In our experiments, we measured the distribution of heat sources, and then, calculated the distribution of focused ultrasound field via a liner relation. In the experiments, we got a series of infrared images with noise. It's such an important thing to find out a solution to get rid of the noise in those images in order to get an accurate focused ultrasound field distribution. So the investigation following is focused in finding out a filter which can remove most noise in the infrared charts and the distribution of ultrasound filed is not impacted. Experiments compared the effects of different filters by the index of - 6dB width of the temperature rise images. By this index, we can find out a filter which is the most suitable filter for keeping the distribution of focused ultrasound field in steady. All experiments, including simulations, semi-simulations and actual verification experiments used six filters to deal with the raw data to get -6dB width and signal to noise ratio. From the results of experiments, we drew a conclusion that gauss filter is the best to keep the distribution of focused ultrasound field in steady.

  6. Tissue oxygen measurement system

    NASA Technical Reports Server (NTRS)

    Soller, Babs R. (Inventor)

    2004-01-01

    A device and method in accordance with the invention for determining the oxygen partial pressure (PO.sub.2) of a tissue by irradiating the tissue with optical radiation such that the light is emitted from the tissue, and by collecting the reflected or transmitted light from the tissue to form an optical spectrum. A spectral processor determines the PO.sub.2 level in tissue by processing this spectrum with a previously-constructed spectral calibration model. The tissue may, for example, be disposed underneath a covering tissue, such as skin, of a patient, and the tissue illuminated and light collected through the skin. Alternatively, direct tissue illumination and collection may be effected with a hand-held or endoscopic probe. A preferred system also determines pH from the same spectrum, and the processor may determine critical conditions and issue warnings based on parameter values.

  7. Applying Sustainable Systems Development Approach to Educational Technology Systems

    ERIC Educational Resources Information Center

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  8. Computing and Systems Applied in Support of Coordinated ...

    EPA Pesticide Factsheets

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: applying sensitivity analysis to assess the impacts of clean energy technologies, conducting scenario analysis to explore the efficacy of environmental regulations under deep uncertainty, and developing decision support systems that allow analysts and decision-makers to examine state-level climate actions. Dr. Loughlin will conclude with a brief discussion of the lessons learned over the first half of his career. Dr. Loughlin has been invited to give the keynote talk at the 1st Annual Computing and Systems Graduate Research Symposium, sponsored by the Department of Civil, Construction and Environmental Engineering at North Carolina State University.

  9. A survey on fuzzy theory applied in geographic information system

    NASA Astrophysics Data System (ADS)

    Wu, Feiquan; Cui, Weihong; Chen, Houwu

    2009-10-01

    The real world is an infinite complex and very huge systems, the phenomenon and processes in this world have many complex relations among them. It is consecutive and cannot be treated as a determined one as the traditional geographic information system does; What's more, the uncertainty and fuzziness exist in every stage of data processing of GIS, from data collection, data storage to data analysis etc, so it is very meaningful to apply fuzzy theory in GIS for its ability to handle fuzziness and uncertainty of spatial data. The paper talks about the current situation of fuzzy theory applied in GIS, including the classification of application fields, its main methods, principles etc. The detailed fields we concerned include spatial object modeling, spatial reasoning, spatial analysis, spatial data mining, and reliability analysis of GIS data and so on. Furthermore, we put forward some development foregrounds and research orientations of fuzzy theory applied in GIS.

  10. Applied Information Systems Research Program (AISRP) Workshop 3 meeting proceedings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The third Workshop of the Applied Laboratory Systems Research Program (AISRP) met at the Univeristy of Colorado's Laboratory for Atmospheric and Space Physics in August of 1993. The presentations were organized into four sessions: Artificial Intelligence Techniques; Scientific Visualization; Data Management and Archiving; and Research and Technology.

  11. Associate of Applied Science Degree in Office Systems. Proposal.

    ERIC Educational Resources Information Center

    Gallaudet Coll., Washington, DC. School of Preparatory Studies.

    This proposal culminates a 5-year study of the possibility of awarding associate degrees at Gallaudet College, a private, liberal arts college for hearing impaired adults. The proposal outlines an Associate of Applied Science degree (AAS) in Office Systems at the School of Preparatory Studies. First, introductory material provides a brief history…

  12. We Are Family: Applying Family Systems Theory to Classrooms.

    ERIC Educational Resources Information Center

    Braun, Joseph A., Jr.; Garrett, Joyce Lynn

    1988-01-01

    Describes how counselors can apply the family systems model to classrooms in helping teachers create a more open and effective climate. Discusses these strategies for implementation: basic communication and interpersonal skills, fairness conferences, classroom meetings, magic circle and circle of warmth, and role playing. (Author/ABL)

  13. Applying Systems Analysis to Program Failure in Organizations.

    ERIC Educational Resources Information Center

    Holt, Margaret E.; And Others

    1986-01-01

    Certain systems analysis techniques can be applied to examinations of program failure in continuing education to locate weaknesses in planning and implementing stages. Questions to guide an analysis and various procedures are recommended. Twelve issues that contribute to failures or discontinuations are identified. (Author/MLW)

  14. Measures of Autonomic Nervous System

    DTIC Science & Technology

    2011-04-01

    Gastro- intestinal Pupillary Response Respiratory Salivary Amylase Vascular Manipulative Body-Based/ Tension-Release Practices Trauma...Physiological Activities ANS Physiological Activities Cardiac Pupillary Response Catecholamines Respiration Cortisol Salivary Amylase Galvanic Skin...Measures of Autonomic Nervous System Regulation Salivary Amylase Measurement Most measures of salivary amylase

  15. 20 CFR 641.700 - What performance measures/indicators apply to SCSEP grantees?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What performance measures/indicators apply to... Accountability § 641.700 What performance measures/indicators apply to SCSEP grantees? (a) Indicators of performance. There are currently eight performance measures, of which six are core indicators and two...

  16. Fundamental and applied studies of organic photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hill, Caleb M.

    Presented here are applied and fundamental studies of model organic photovoltaic (OPV) systems. Graphene oxide (GO) nanosheets were investigated as a potential electron acceptor in bulk heterojunction organic solar cells which employed poly[3-hexylthiophene] (P3HT) as an electron donor. GO nanosheets were transferred into organic solution through a surfactant-assisted phase transfer method. Electron transfer from P3HT to GO in solutions and thin films was established through fluorescence spectroscopy. Bulk heterojunction solar cells containing P3HT, P3HT-GO, and P3HT-phenyl-C61-butyric acid methyl ester (PCBM, a prototypical elector acceptor employed in polymer solar cells) were constructed and evaluated. Single molecule fluorescence spectroscopy was employed to study charge transfer between conjugated polymers and TiO2 at the single molecule level. The fluorescence of individual chains of the conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) at TiO2 surfaces was shown to exhibit increased intermittent (on/off "blinking") behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and TiO 2 substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between MEH-PPV and TiO2, which provides additional pathways between states of high and low fluorescence quantum efficiency. The electrodeposition of individual Ag nanoparticles (NPs), which can be used to enhance light harvesting in organic photovoltaic systems, was studied in situ via dark field scattering (DFS) microscopy. The scattering at the surface of an indium tin oxide (ITO) working electrode was measured during a potential sweep. Utilizing Mie scattering theory and high resolution scanning electron microscopy (SEM), the scattering data were used to

  17. Calibration methodology for proportional counters applied to yield measurements of a neutron burst.

    PubMed

    Tarifeño-Saldivia, Ariel; Mayer, Roberto E; Pavez, Cristian; Soto, Leopoldo

    2014-01-01

    This paper introduces a methodology for the yield measurement of a neutron burst using neutron proportional counters. This methodology is to be applied when single neutron events cannot be resolved in time by nuclear standard electronics, or when a continuous current cannot be measured at the output of the counter. The methodology is based on the calibration of the counter in pulse mode, and the use of a statistical model to estimate the number of detected events from the accumulated charge resulting from the detection of the burst of neutrons. The model is developed and presented in full detail. For the measurement of fast neutron yields generated from plasma focus experiments using a moderated proportional counter, the implementation of the methodology is herein discussed. An experimental verification of the accuracy of the methodology is presented. An improvement of more than one order of magnitude in the accuracy of the detection system is obtained by using this methodology with respect to previous calibration methods.

  18. Distance and Cable Length Measurement System

    PubMed Central

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  19. Recent results of nonlinear estimators applied to hereditary systems.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    An application of the extended Kalman filter to delayed systems to estimate the state and time delay is presented. Two nonlinear estimators are discussed and the results compared with those of the Kalman filter. For all the filters considered, the hereditary system was treated with the delay in the pure form and by using Pade approximations of the delay. A summary of the convergence properties of the filters studied is given. The results indicate that the linear filter applied to the delayed system performs inadequately while the nonlinear filters provide reasonable estimates of both the state and the parameters.

  20. Economical wind powered bioventing systems successfully applied at remote locations

    SciTech Connect

    Graves, D.; Klein, J.; Dillon, T. Jr.; Wilson, B.; Walker, K.

    1996-12-31

    Wind-powered bioventing systems were designed to operate at remote locations in the absence of electrical power. Laboratory measurements of soil respiration under bioventing conditions indicated the biodegradation of up to 25 mg of weathered diesel per kg of site soil per day. Further testing demonstrated the potential for harnessing wind-power to stimulate air movement through vadose zone soil. Several wind-powered bioventing systems were installed near Nome, Alaska. In situ respiration tests, soil gas composition measurements and measurable pressure changes in the soil indicated that the systems were capable of aerating the soil. Diesel range oil measurements indicated contaminant reductions up to 90% after only two treatments seasons. The results demonstrate the effectiveness of wind-powered biovents. The low cost, low maintenance, and simplicity of the biovents make them a very attractive treatment option for windy, remote sites with unsaturated soil impacted by biodegradable contaminants.

  1. Measurement of insulation layers using DTS system

    NASA Astrophysics Data System (ADS)

    Hruby, David; Kajnar, Tomas; Koudelka, Petr; Latal, Jan; Hurta, Jan; Kepak, Stanislav; Jaros, Jakub; Vasinek, Vladimir

    2015-01-01

    Fiber optic distributed temperature sensing systems (DTS) are based on the principle of reflectometer and allow us to measure the temperature along the optical fiber. Optical fiber in these systems is used as a temperature sensor which can measure up to thousands of points simultaneously. DTS sensors use nonlinear phenomenon known as Raman scattering for temperature measurement. The advantages of this system include immunity to electromagnetic radiation, low cost of optical fiber, the possibility of measurement to a distance of 10 km and safe use in flammable or corrosive environments. The small size of optical fiber allows using in applications where the dimensions of the other sensors were problematic. A typical example of the DTS application is the fire detection in tunnels and buildings at risk, detection of water leaks on dikes and dams or monitoring of temperature in mine shafts. This article deals with the measurement of temperature transmission over various insulation layers using the DTS system. One of the problems of temperature transmission is that most of the sensors cannot measure the entire temperature profile but only allows a point measurement. This problem is solved by DTS systems with optical fibers. Optical fiber, due to its small size, can be applied among various insulation layers that were formed by rock wool. Three sensory layers formed by rings of multimode optical tightbuffered fiber with 50/125 micron core/cladding dimension were applied. The layers were linked together allowing a direct comparison of measured temperature. Rows of rings were placed on the margins and one was in the middle. Individual rings were linked together into the horizontal lines. Thus we were able to cover the whole surface of the insulation layers. Measurement was carried out in a closed air-conditioned room for 37 hours. Graphs with the progress of temperature at time and place were compiled from the measured data.

  2. Circulation control technology applied to propulsive high lift systems

    NASA Technical Reports Server (NTRS)

    Englar, R. J.; Nichols, J. H., Jr.; Harris, M. J.; Eppel, J. C.; Shovlin, M. D.

    1984-01-01

    Technology developed for the Circulation Control Wing high-lift system has been extended to augment lift by entraining and redirecting engine thrust. Ejecting a thin jet sheet tangentially over a small curved deflecting surface adjacent to the slipstream of a turbofan engine causes the slipstream to flow around that deflecting surface. The angle of deflection is controlled pneumatically by varying the momentum of the thin jet sheet. The downward momentum of the slipstream enhances wing lift. This concept of pneumatically deflecting the slipstream has been applied to an upper surface blowing high-lift system and to a thrust deflecting system. The capability of the pneumatic upper surface blowing system was demonstrated in a series of investigations using a wind tunnel model and the NASA Quiet Short-haul Research Aircraft (QSRA). Full-scale thrust deflections greater than 90 deg were achieved. This mechanically simple system can provide increased maneuverability, heavy lift or overload capability, or short takeoff and landing performance.

  3. Systems and methods for measuring component matching

    NASA Technical Reports Server (NTRS)

    Courter, Kelly J. (Inventor); Slenk, Joel E. (Inventor)

    2006-01-01

    Systems and methods for measuring a contour match between adjacent components are disclosed. In one embodiment, at least two pressure sensors are located between adjacent components. Each pressure sensor is adapted to obtain a pressure measurement at a location a predetermined distance away from the other pressure sensors, and to output a pressure measurement for each sensor location. An output device is adapted to receive the pressure measurements from at least two pressure sensors and display the pressure measurements. In one aspect, the pressure sensors include flexible thin film pressure sensors. In accordance with other aspects of the invention, a method is provided for measuring a contour match between two interfacing components including measuring at least one pressure applied to at least one sensor between the interfacing components.

  4. Achilles tendon reflex measuring system

    NASA Astrophysics Data System (ADS)

    Szebeszczyk, Janina; Straszecka, Joanna

    1995-06-01

    The examination of Achilles tendon reflex is widely used as a simple, noninvasive clinical test in diagnosis and pharmacological therapy monitoring in such diseases as: hypothyroidism, hyperthyroidism, diabetic neuropathy, the lower limbs obstructive angiopathies and intermittent claudication. Presented Achilles tendon reflect measuring system is based on the piezoresistive sensor connected with the cylinder-piston system. To determinate the moment of Achilles tendon stimulation a detecting circuit was used. The outputs of the measuring system are connected to the PC-based data acquisition board. Experimental results showed that the measurement accuracy and repeatability is good enough for diagnostics and therapy monitoring purposes. A user friendly, easy-to-operate measurement system fulfills all the requirements related to recording, presentation and storing of the patients' reflexograms.

  5. Endovascular blood flow measurement system

    NASA Astrophysics Data System (ADS)

    Khe, A. K.; Cherevko, A. A.; Chupakhin, A. P.; Krivoshapkin, A. L.; Orlov, K. Yu

    2016-06-01

    In this paper an endovascular measurement system used for intraoperative cerebral blood flow monitoring is described. The system is based on a Volcano ComboMap Pressure and Flow System extended with analogue-to-digital converter and PC laptop. A series of measurements performed in patients with cerebrovascular pathologies allows us to introduce “velocity-pressure” and “flow rate-energy flow rate” diagrams as important characteristics of the blood flow. The measurement system presented here can be used as an additional instrument in neurosurgery for assessment and monitoring of the operation procedure. Clinical data obtained with the system are used for construction of mathematical models and patient-specific simulations. The monitoring of the blood flow parameters during endovascular interventions was approved by the Ethics Committee at the Meshalkin Novosibirsk Research Institute of Circulation Pathology and included in certain surgical protocols for pre-, intra- and postoperative examinations.

  6. Mass properties measurement system dynamics

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    The MPMS mechanism possess two revolute degrees-of-freedom and allows the user to measure the mass, center of gravity, and the inertia tensor of an unknown mass. The dynamics of the Mass Properties Measurement System (MPMS) from the Lagrangian approach to illustrate the dependency of the motion on the unknown parameters.

  7. Foot Plantar Pressure Measurement System: A Review

    PubMed Central

    Razak, Abdul Hadi Abdul; Zayegh, Aladin; Begg, Rezaul K.; Wahab, Yufridin

    2012-01-01

    Foot plantar pressure is the pressure field that acts between the foot and the support surface during everyday locomotor activities. Information derived from such pressure measures is important in gait and posture research for diagnosing lower limb problems, footwear design, sport biomechanics, injury prevention and other applications. This paper reviews foot plantar sensors characteristics as reported in the literature in addition to foot plantar pressure measurement systems applied to a variety of research problems. Strengths and limitations of current systems are discussed and a wireless foot plantar pressure system is proposed suitable for measuring high pressure distributions under the foot with high accuracy and reliability. The novel system is based on highly linear pressure sensors with no hysteresis. PMID:23012576

  8. Nuclear safety as applied to space power reactor systems

    SciTech Connect

    Cummings, G.E.

    1987-01-01

    To develop a strategy for incorporating and demonstrating safety, it is necessary to enumerate the unique aspects of space power reactor systems from a safety standpoint. These features must be differentiated from terrestrial nuclear power plants so that our experience can be applied properly. Some ideas can then be developed on how safe designs can be achieved so that they are safe and perceived to be safe by the public. These ideas include operating only after achieving a stable orbit, developing an inherently safe design, ''designing'' in safety from the start and managing the system development (design) so that it is perceived safe. These and other ideas are explored further in this paper.

  9. Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Pabisek, Ewa; Waszczyszyn, Zenon

    2015-12-01

    A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DCexp is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DCexp and dispersion curves DCnum obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.

  10. Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling

    NASA Technical Reports Server (NTRS)

    Hojnicki, Jeffrey S.; Rusick, Jeffrey J.

    2005-01-01

    Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).

  11. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  12. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2016-07-12

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  13. Improved Methods for Identifying, Applying, and Verifying Industrial Energy Efficiency Measures

    NASA Astrophysics Data System (ADS)

    Harding, Andrew Chase

    Energy efficiency is the least expensive source of additional energy capacity for today's global energy expansion. Energy efficiency offers additional benefits of cost savings for consumers, reduced environmental impacts, and enhanced energy security. The challenges of energy efficiency include identifying potential efficiency measures, quantifying savings, determining cost effectiveness, and verifying savings of installed measures. This thesis presents three separate chapters which address these challenges. The first is a paper presented at the 2014 industrial energy technology conference (IETC) that details a compressed air system project using the systems approach to identify cost effective measures, energy intensity to project savings, and proper measurement and verification (M&V) practices to prove that the savings were achieved. The second is a discussion of proper M&V techniques, how these apply to international M&V protocols, and how M&V professionals can improve the accuracy and efficacy of their M&V activities. The third is an energy intensity analysis of a poultry processing facility at a unit operations level, which details the M&V practices used to determine the intensities at each unit operation and compares these to previous works.

  14. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  15. Rotor component displacement measurement system

    DOEpatents

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  16. Portable plant health measurement system

    NASA Astrophysics Data System (ADS)

    Aksoy, Nejat

    1999-01-01

    This system is designed to assist diagnosis of the plant health globally. The system is formed by portable plant health measurement devices connected to a diagnosis and analysis center through a flexible information network. A flexible network is formed so that users from the remote areas as well as internet are able to use the system. The hardware and software is designed in an open technology for easier upgrades. Portable plant health measurement instrument is a networkable leaf flash spectrophotometer capable of measuring Qa, Electrochromy, P700, Fluorescence, S Fluorescence, reflectance spectra, temperature, humidity and image of the leaf with GPS information. The network and intelligent user interface options of the system can be used by any commercially or user designed instrument.

  17. Photoeletrolytic system applied to remazol red brilliant degradation.

    PubMed

    Sousa, Mariana Lopes; Moraes, Peterson Bueno; Bidoia, Ederio Dino

    2011-01-01

    Toxicity tests using Sacharomycces cerevisiae were made with simulated textile effluents containing reactive dye (remazol red brilliant) treated by photoeletrolytic process, varying treatment time and applied current. The treatment incorporated an electrolytic reactor with rectangular titanium anode coated with 70% TiO(2)/30% RuO(2) cathode and a rectangular stainless steel coupled with another photolytic reactor containing a high power UV lamp. The treatment system was used in batch recirculation, in other words, the simulated effluent was driven by the system through a helical pump. It was observed that the higher the value of current applied, the longer the treatment has greater color removal of textile effluent and higher mortality of S. cerevisiae, killing up to 100% of the cells at the end of the treatment. With a lower current applied and having the treatment time of 5 minutes, the effluent showed a color removal of 97% and a lower mortality of S. cerevisiae than the effluent simulated without any treatment.

  18. Inflight lightning characteristics measurement system

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Thomas, M. E.; Campbell, R. E.; Thomas, R. M.; Zaepfel, K. P.

    1979-01-01

    A research data-gathering system being developed for inflight measurement of direct and nearby lightning strike characteristics is described. Wideband analog recorders used to record the lightning scenario are supplemented with high-sample-rate digital transient recorders with augmented memory capacity for increased time resolution of specific times of interest. The endless-loop data storage technique employed by the transient recorders circumvents problems associated with oscilloscopic techniques and allows unattended operation. System integrity and immunity from induced effects is accomplished by fiber-optics signal-transmission links, shielded system enclosures, and the use of a dynamotor for power system isolation.

  19. Impurity Correction Techniques Applied to Existing Doping Measurements of Impurities in Zinc

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.; Sun, J. P.; Zhang, J. T.; Deng, X. L.

    2017-01-01

    Impurities represent the most significant source of uncertainty in most metal fixed points used for the realization of the International Temperature Scale of 1990 (ITS-90). There are a number of different methods for quantifying the effect of impurities on the freezing temperature of ITS-90 fixed points, many of which rely on an accurate knowledge of the liquidus slope in the limit of low concentration. A key method of determining the liquidus slope is to measure the freezing temperature of a fixed-point material as it is progressively doped with a known amount of impurity. Recently, a series of measurements of the freezing and melting temperature of `slim' Zn fixed-point cells doped with Ag, Fe, Ni, and Pb were presented. Here, additional measurements of the Zn-X system are presented using Ga as a dopant, and the data (Zn-Ag, Zn-Fe, Zn-Ni, Zn-Pb, and Zn-Ga) have been re-analyzed to demonstrate the use of a fitting method based on Scheil solidification which is applied to both melting and freezing curves. In addition, the utility of the Sum of Individual Estimates method is explored with these systems in the context of a recently enhanced database of liquidus slopes of impurities in Zn in the limit of low concentration.

  20. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  1. An overview of statistical decomposition techniques applied to complex systems

    PubMed Central

    Tuncer, Yalcin; Tanik, Murat M.; Allison, David B.

    2009-01-01

    The current state of the art in applied decomposition techniques is summarized within a comparative uniform framework. These techniques are classified by the parametric or information theoretic approaches they adopt. An underlying structural model common to all parametric approaches is outlined. The nature and premises of a typical information theoretic approach are stressed. Some possible application patterns for an information theoretic approach are illustrated. Composition is distinguished from decomposition by pointing out that the former is not a simple reversal of the latter. From the standpoint of application to complex systems, a general evaluation is provided. PMID:19724659

  2. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement.

    PubMed

    Le Floch, Sébastien; Salvadé, Yves; Droz, Nathalie; Mitouassiwou, Rostand; Favre, Patrick

    2010-02-01

    We present a new superheterodyne technique for long-distance measurements by two-wavelength interferometry (TWI). While conventional systems use two acousto-optic modulators to generate two different heterodyne frequencies, here the two frequencies result from synchronized sweeps of optical and radio frequencies. A distributed feedback laser source is injected in an intensity modulator that is driven at the half-wave voltage mode. A radio-frequency signal is applied to this intensity modulator to generate two optical sidebands around the optical carrier. This applied radio frequency consists of a digital ramp between 13 and 15 GHz, with 1 ms duration and with an accuracy of better than 1 ppm. Simultaneously, the laser source is frequency modulated by a current modulation that is synchronized on the radio-frequency ramp as well as on a triangle waveform. These two frequency-swept optical signals at the output of the modulator illuminate a Michelson interferometer and create two distinct distance-dependent heterodyne frequencies on the photodetector. The superheterodyne signal is then detected and bandpass filtered to retrieve the absolute distance measurement. Experiments between 1 and 15 m confirm the validity of this new concept, leading to a distance accuracy of +/- 50 microm for a 1 ms acquisition time.

  3. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement

    SciTech Connect

    Le Floch, Sebastien; Salvade, Yves; Droz, Nathalie; Mitouassiwou, Rostand; Favre, Patrick

    2010-02-01

    We present a new superheterodyne technique for long-distance measurements by two-wavelength interferometry (TWI). While conventional systems use two acousto-optic modulators to generate two different heterodyne frequencies, here the two frequencies result from synchronized sweeps of optical and radio frequencies. A distributed feedback laser source is injected in an intensity modulator that is driven at the half-wave voltage mode. A radio-frequency signal is applied to this intensity modulator to generate two optical sidebands around the optical carrier. This applied radio frequency consists of a digital ramp between 13 and 15 GHz, with 1 ms duration and with an accuracy of better than 1 ppm. Simultaneously, the laser source is frequency modulated by a current modulation that is synchronized on the radio-frequency ramp as well as on a triangle waveform. These two frequency-swept optical signals at the output of the modulator illuminate a Michelson interferometer and create two distinct distance-dependent heterodyne frequencies on the photodetector. The superheterodyne signal is then detected and bandpass filtered to retrieve the absolute distance measurement. Experiments between 1 and 15 m confirm the validity of this new concept, leading to a distance accuracy of {+-} 50 {mu}m for a 1 ms acquisition time.

  4. Near Field Antenna Measurement System.

    DTIC Science & Technology

    1982-03-01

    beam pointing accuracy and .6 dB gain accuracy. These antennas are both planar arrays with the X-band antenna scanning with ferrite phase shifters in...AD-A114 125 M[ES AIRCRAFT CO FULLERTON CA F/ 17/9 NEAR FIELD ANTENNA MEASUREMENT SYSTEM. (U) MAR 82 A E HOLLEY DAABO7-7?-C-1 87 UNCLASSIFIED NL...IllIHE El. onhEnoh IIIIhh --h h I~m I I Research and Development Technical Report I DAABO7-77-C-0587-F1 NEAR FIELD ANTENNA I MEASUREMENT SYSTEM I A.E

  5. Tracer airflow measurement system (TRAMS)

    DOEpatents

    Wang, Duo

    2007-04-24

    A method and apparatus for measuring fluid flow in a duct is disclosed. The invention uses a novel high velocity tracer injector system, an optional insertable folding mixing fan for homogenizing the tracer within the duct bulk fluid flow, and a perforated hose sampling system. A preferred embodiment uses CO.sub.2 as a tracer gas for measuring air flow in commercial and/or residential ducts. In extant commercial buildings, ducts not readily accessible by hanging ceilings may be drilled with readily plugged small diameter holes to allow for injection, optional mixing where desired using a novel insertable foldable mixing fan, and sampling hose.

  6. Ground-truth measurement systems

    NASA Technical Reports Server (NTRS)

    Serafin, R.; Seliga, T. A.; Lhermitte, R. M.; Nystuen, J. A.; Cherry, S.; Bringi, V. N.; Blackmer, R.; Heymsfield, G. M.

    1981-01-01

    Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.

  7. A urine volume measurement system

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.

    1972-01-01

    An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.

  8. Research of the grid computing system applied in optical simulation

    NASA Astrophysics Data System (ADS)

    Jin, Wei-wei; Wang, Yu-dong; Liu, Qiangsheng; Cen, Zhao-feng; Li, Xiao-tong; Lin, Yi-qun

    2008-03-01

    A grid computing in the field of optics is presented in this paper. Firstly, the basic principles and research background of grid computing are outlined in this paper, along with the overview of its applications and the development status quo. The paper also discusses several typical tasks scheduling algorithms. Secondly, it focuses on describing a task scheduling of grid computing applied in optical computation. The paper gives details about the task scheduling system, including the task partition, granularity selection and tasks allocation, especially the structure of the system. In addition, some details of communication on grid computing are also illustrated. In this system, the "makespan" and "load balancing" are comprehensively considered. Finally, we build a grid model to test the task scheduling strategy, and the results are analyzed in detail. Compared to one isolated computer, a grid comprised of one server and four processors can shorten the "makespan" to 1/4. At the same time, the experimental results of the simulation also illustrate that the proposed scheduling system is able to balance loads of all processors. In short, the system performs scheduling well in the grid environment.

  9. An improved AVC strategy applied in distributed wind power system

    NASA Astrophysics Data System (ADS)

    Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.

    2016-08-01

    Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.

  10. Resonant-state expansion applied to planar open optical systems

    NASA Astrophysics Data System (ADS)

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2012-02-01

    The resonant-state expansion (RSE), a rigorous perturbation theory of the Brillouin-Wigner type recently developed in electrodynamics[E. A. Muljarov, W. Langbein, and R. Zimmermann, Europhys. Lett.EULEEJ0295-507510.1209/0295-5075/92/50010 92, 50010 (2010)], is applied to planar, effectively one-dimensional optical systems, such as layered dielectric slabs and Bragg reflector microcavities. It is demonstrated that the RSE converges with a power law in the basis size. Algorithms for error estimation and their reduction by extrapolation are presented and evaluated. Complex eigenfrequencies, electromagnetic fields, and the Green's function of a selection of optical systems are calculated, as well as the observable transmission spectra. In particular, we find that for a Bragg-mirror microcavity, which has sharp resonances in the spectrum, the transmission calculated using the RSE reproduces the result of the transfer- or scattering-matrix method.

  11. Systems Vaccinology Applied to DNA Vaccines: Perspective and Challenges.

    PubMed

    Lever, Melissa; Silveira, Eduardo L; Nakaya, Helder I

    2017-01-01

    DNA vaccination represents a new milestone in our technological efforts to avoid infectious diseases. Although this method of vaccination has had success in providing protection in animals, these vaccines suffer from low immunogenicity in humans. Questions remain over the molecular mechanism of DNA vaccination, the best ways in which to safely increase vaccine reactogenecity, and what biomarkers can be used as correlates of protection. Systems vaccinology, which utilizes modern experimental and computational approaches to provide an integrated view of the vaccination process, offers the potential to answer these questions. In this review we discuss the current tools utilized in systems vaccinology, the ways in which they have and can be applied to DNA vaccinology, and challenges faced in the field.

  12. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  13. Optical Strain Measurement System Development

    NASA Technical Reports Server (NTRS)

    Lant, C. T.

    1985-01-01

    Investigations of physical phenomena affecting the durability of SSME components require measurement systems operational in hostile environments. The need for such instrumentation caused the definition and operation of an optical strain measurement system. This optical strain measurement system based on the speckle shift method is being developed. This is a noncontact, automatic method of measuring surface strain in one dimension that corrects for error due to rigid body motion. It provides a gauge length of 1 to 2 mm and allows the region of interest on the test specimen to be mapped point by point. The output is a graphics map of the points inspected on the specimen; data points is stored in quasi-real time. This is the first phase of a multiphase effort in optical strain measurement. The speckle pattern created by the test specimen is interpreted as high order interference fringes resulting from a random diffraction grating, being the natural surface roughness of the specimen. Strain induced on the specimen causes a change in spacing of the surface roughness, which in turn shifts the position of the interference pattern (speckles).

  14. Measuring and Maximising Research Impact in Applied Social Science Research Settings. Good Practice Guide

    ERIC Educational Resources Information Center

    Stanwick, John; Hargreaves, Jo

    2012-01-01

    This guide describes the National Centre for Vocational Education Research (NCVER) approach to measuring impact using examples from its own case studies, as well as showing how to maximise the impact of applied social science research. Applied social science research needs to demonstrate that it is relevant and useful both to public policy and…

  15. 20 CFR 669.500 - What performance measures and standards apply to the NFJP?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... standards apply to the NFJP? (a) The NFJP will use the core indicators of performance common to the adult... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false What performance measures and standards apply... reflect the State service area economy and local demographics of eligible MSFW's. The levels...

  16. 20 CFR 669.500 - What performance measures and standards apply to the NFJP?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... standards apply to the NFJP? (a) The NFJP will use the core indicators of performance common to the adult... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false What performance measures and standards apply... reflect the State service area economy and local demographics of eligible MSFW's. The levels...

  17. 20 CFR 669.500 - What performance measures and standards apply to the NFJP?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... standards apply to the NFJP? (a) The NFJP will use the core indicators of performance common to the adult... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false What performance measures and standards apply... reflect the State service area economy and local demographics of eligible MSFW's. The levels...

  18. Tailored Excitation for Multivariable Stability-Margin Measurement Applied to the X-31A Nonlinear Simulation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.; Burken, John J.

    1997-01-01

    Safety and productivity of the initial flight test phase of a new vehicle have been enhanced by developing the ability to measure the stability margins of the combined control system and vehicle in flight. One shortcoming of performing this analysis is the long duration of the excitation signal required to provide results over a wide frequency range. For flight regimes such as high angle of attack or hypersonic flight, the ability to maintain flight condition for this time duration is difficult. Significantly reducing the required duration of the excitation input is possible by tailoring the input to excite only the frequency range where the lowest stability margin is expected. For a multiple-input/multiple-output system, the inputs can be simultaneously applied to the control effectors by creating each excitation input with a unique set of frequency components. Chirp-Z transformation algorithms can be used to match the analysis of the results to the specific frequencies used in the excitation input. This report discusses the application of a tailored excitation input to a high-fidelity X-31A linear model and nonlinear simulation. Depending on the frequency range, the results indicate the potential to significantly reduce the time required for stability measurement.

  19. Calibration and investigation of infrared camera systems applying blackbody radiation

    NASA Astrophysics Data System (ADS)

    Hartmann, Juergen; Fischer, Joachim

    2001-03-01

    An experimental facility is presented, which allows calibration and detailed investigation of infrared camera systems. Various blackbodies operating in the temperature range from -60 degree(s)C up to 3000 degree(s)C serve as standard radiation sources, enabling calibration of camera systems in a wide temperature and spectral range with highest accuracy. Quantitative results and precise long-term investigations, especially in detecting climatic trends, require accurate traceability to the International Temperature Scale of 1990 (ITS-90). For the used blackbodies the traceability to ITS- 90 is either realized by standard platinum resistance thermometers (in the temperature range below 962 degree(s)C) or by absolute and relative radiometry (in the temperature range above 962 degree(s)C). This traceability is fundamental for implementation of quality assurance systems and realization of different standardizations, for example according ISO 9000. For investigation of the angular and the temperature resolution our set-up enables minimum resolvable (MRTD) and minimum detectable temperature difference (MDTD) measurements in the various temperature ranges. A collimator system may be used to image the MRTD and MDTD targets to infinity. As internal calibration of infrared camera systems critically depends on the temperature of the surrounding, the calibration and investigation of the cameras is performed in a climate box, which allows a detailed controlling of the environmental parameters like humidity and temperature. Experimental results obtained for different camera systems are presented and discussed.

  20. Hyperspectral imaging applied to complex particulate solids systems

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Serranti, Silvia

    2008-04-01

    HyperSpectral Imaging (HSI) is based on the utilization of an integrated hardware and software (HW&SW) platform embedding conventional imaging and spectroscopy to attain both spatial and spectral information from an object. Although HSI was originally developed for remote sensing, it has recently emerged as a powerful process analytical tool, for non-destructive analysis, in many research and industrial sectors. The possibility to apply on-line HSI based techniques in order to identify and quantify specific particulate solid systems characteristics is presented and critically evaluated. The originally developed HSI based logics can be profitably applied in order to develop fast, reliable and lowcost strategies for: i) quality control of particulate products that must comply with specific chemical, physical and biological constraints, ii) performance evaluation of manufacturing strategies related to processing chains and/or realtime tuning of operative variables and iii) classification-sorting actions addressed to recognize and separate different particulate solid products. Case studies, related to recent advances in the application of HSI to different industrial sectors, as agriculture, food, pharmaceuticals, solid waste handling and recycling, etc. and addressed to specific goals as contaminant detection, defect identification, constituent analysis and quality evaluation are described, according to authors' originally developed application.

  1. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  2. Applying of digital signal processing to optical equisignal zone system

    NASA Astrophysics Data System (ADS)

    Maraev, Anton A.; Timofeev, Aleksandr N.; Gusarov, Vadim F.

    2015-05-01

    In this work we are trying to assess the application of array detectors and digital information processing to the system with the optical equisignal zone as a new method of evaluating of optical equisignal zone position. Peculiarities of optical equisignal zone formation are described. The algorithm of evaluation of optical equisignal zone position is applied to processing on the array detector. This algorithm enables to evaluate as lateral displacement as turning angles of the receiver relative to the projector. Interrelation of parameters of the projector and the receiver is considered. According to described principles an experimental set was made and then characterized. The accuracy of position evaluation of the equisignal zone is shown dependent of the size of the equivalent entrance pupil at processing.

  3. Design of the optocoupler applied to medical lighting systems.

    PubMed

    Yang, Xibin; Lit, Rui; Zhu, Jianfeng; Xiong, Daxi

    2012-12-01

    A new type of optocoupler applied to medical lighting system is proposed, and the principle, Etendue and design process is introduced. With the help of Tracrpro, modeling and simulation of the optocoupler is conducted and the parameters are optimized. Analysis of factors affecting the energy coupling efficiency is done. With a view towards the development of Ultra High Brightness Light Emitting Diodes (UHB-LEDs), which play an important role a new sources of lighting in various biomedical devices, including those used in diagnosis and treatment, a series of simulations are executed and a variety of solutions are achieved. According to simulation results, the design target of coupling efficiency is achieved and the optical uniformity is also significantly improved. According to the result of theoretical analysis, verification experiments are designed and simulation results are verified. The optocoupler, which has simple structure, compact size and low cost, is suitable for applications in the field of low-cost medical domain.

  4. An interferometric strain-displacement measurement system

    NASA Technical Reports Server (NTRS)

    Sharpe, William N., Jr.

    1989-01-01

    A system for measuring the relative in-plane displacement over a gage length as short as 100 micrometers is described. Two closely spaced indentations are placed in a reflective specimen surface with a Vickers microhardness tester. Interference fringes are generated when they are illuminated with a He-Ne laser. As the distance between the indentations expands or contracts with applied load, the fringes move. This motion is monitored with a minicomputer-controlled system using linear diode arrays as sensors. Characteristics of the system are: (1) gage length ranging from 50 to 500 micrometers, but 100 micrometers is typical; (2) least-count resolution of approximately 0.0025 micrometer; and (3) sampling rate of 13 points per second. In addition, the measurement technique is non-contacting and non-reinforcing. It is useful for strain measurements over small gage lengths and for crack opening displacement measurements near crack tips. This report is a detailed description of a new system recently installed in the Mechanisms of Materials Branch at the NASA Langley Research Center. The intent is to enable a prospective user to evaluate the applicability of the system to a particular problem and assemble one if needed.

  5. Applying simulation model to uniform field space charge distribution measurements by the PEA method

    SciTech Connect

    Liu, Y.; Salama, M.M.A.

    1996-12-31

    Signals measured under uniform fields by the Pulsed Electroacoustic (PEA) method have been processed by the deconvolution procedure to obtain space charge distributions since 1988. To simplify data processing, a direct method has been proposed recently in which the deconvolution is eliminated. However, the surface charge cannot be represented well by the method because the surface charge has a bandwidth being from zero to infinity. The bandwidth of the charge distribution must be much narrower than the bandwidths of the PEA system transfer function in order to apply the direct method properly. When surface charges can not be distinguished from space charge distributions, the accuracy and the resolution of the obtained space charge distributions decrease. To overcome this difficulty a simulation model is therefore proposed. This paper shows their attempts to apply the simulation model to obtain space charge distributions under plane-plane electrode configurations. Due to the page limitation for the paper, the charge distribution originated by the simulation model is compared to that obtained by the direct method with a set of simulated signals.

  6. DC Magnetics Measurement System Design

    NASA Technical Reports Server (NTRS)

    Mastny, Timothy

    2012-01-01

    This report will detail the updates to the magnetics measurement system design and testing procedures that are required for performing static (DC) magnetics testing of future flight hardware. An older magnetics testing system had to be integrated with new procedures and hardware to meet the demands of future testing programs and accommodate an upcoming magnetics tests. The next test will be for the Geostationary Operational Environmental Satellite R-Series (GOES-R), which will verify that the SAFT Battery component meets its specifications for magnetic cleanliness. The satellite is scheduled to launch in 2015 with magnetics testing to be completed on the battery in November 2012.

  7. Steam System Energy Conservation Measures

    SciTech Connect

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple system inventory information and calculates the energy and cost benefits of various retrofit opportunities. This tool includes energy conservation measures for: fixing steam leaks. This tool calculates energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  8. Tunable models in measuring systems

    NASA Astrophysics Data System (ADS)

    Avdeev, V. P. L.; Parparov, Y. G.; Sulman, L. A.; Myshlyaev, L. P.; Polyak, A. V.

    The inclusion of tunable models in technological measuring systems, including those used in the iron and steel industry is considered. A method is proposed for the stable estimation of process parameters that consists of the anti-interference tuning of partial models of signal sources by means of robust isolation and smoothing of the informative regions of data with explicit allowance for the criteria of variability of residues and the estimates themselves.

  9. In-situ measurement system

    DOEpatents

    Lord, David E.

    1983-01-01

    A multipurpose in situ underground measurement system comprising a plurality of long electrical resistance elements in the form of rigid reinforcing bars, each having an open loop "hairpin" configuration of shorter length than the other resistance elements. The resistance elements are arranged in pairs in a unitized structure, and grouted in place in the underground volume. The electrical resistance of each element and the difference in electrical resistance of the paired elements are obtained, which difference values may be used in analytical methods involving resistance as a function of temperature. A scanner sequentially connects the resistance-measuring apparatus to each individual pair of elements. A source of heating current is also selectively connectable for heating the elements to an initial predetermined temperature prior to electrical resistance measurements when used as an anemometer.

  10. Wireless sap flow measurement system

    NASA Astrophysics Data System (ADS)

    Kuo, C.; Davis, T. W.; Tseng, C.; Cheng, C.; Liang, X.; Yu, P.

    2010-12-01

    This study exhibits a measurement system for wireless sensor networks to measure sap flow in multiple locations simultaneously. Transpiration is a major component of the land-surface system because it is indicative of the water movement between the soil and the air. Sap flow can be used to approximate transpiration. In forests, transpiration cannot be represented by the sap flow from a single tree. Multi-location sap flow measurements are required to show the heterogeneity caused by different trees or soil conditions. Traditional multi-location measurements require manpower and capital for data collection and instrument maintenance. Fortunately, multi-location measurements can be achieved by using the new technology of wireless sensor networks. With multi-hop communication protocol, data can be forwarded to the base station via multiple sensor nodes. This communication protocol can provide reliable data collection with the least power consumption. This study encountered two major problems. The first problem was signal amplification. The Crossbow IRIS mote was selected as the sensor node that receives the temperature data of the sap flow probe (thermocouple) through a MDA300 data acquisition board. However, the wireless sensor node could not directly receive any data from the thermocouples since the least significant bit value of the MDA300, 0.6 mV, is much higher than the voltage signal generated. Thus, the signal from the thermocouple must be amplified to exceed this threshold. The second problem is power management. A specific heat differential is required for the thermal dissipation method of measuring sap flow. Thus, an adjustable DC power supply is necessary for calibrating the heater's temperature settings. A circuit was designed to combine the signal amplifier and power regulator. The regulator has been designed to also provide power to the IRIS mote to extend battery life. This design enables wireless sap flow measurements in the forest. With the

  11. 20 CFR 669.500 - What performance measures and standards apply to the NFJP?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Performance Accountability, Planning and Waiver Provision § 669.500 What performance measures and standards apply to the NFJP? (a) The NFJP will use the core indicators of performance common to the adult and... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What performance measures and standards...

  12. 20 CFR 669.500 - What performance measures and standards apply to the NFJP?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Performance Accountability, Planning and Waiver Provision § 669.500 What performance measures and standards apply to the NFJP? (a) The NFJP will use the core indicators of performance common to the adult and... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false What performance measures and standards...

  13. Advanced imaging systems for diagnostic investigations applied to Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Peccenini, E.; Albertin, F.; Bettuzzi, M.; Brancaccio, R.; Casali, F.; Morigi, M. P.; Petrucci, F.

    2014-12-01

    The diagnostic investigations are an important resource in the studies on Cultural Heritage to enhance the knowledge on execution techniques, materials and conservation status of a work of art. In this field, due to the great historical and artistic value of the objects, preservation is the main concern; for this reason, new technological equipment has been designed and developed in the Physics Departments of the Universities of Ferrara and Bologna to enhance the non-invasive approach to the study of pictorial artworks and other objects of cultural interest. Infrared (IR) reflectography, X-ray radiography and computed tomography (CT), applied to works of art, are joined by the same goal: to get hidden information on execution techniques and inner structure pursuing the non-invasiveness of the methods, although using different setup and physical principles. In this work transportable imaging systems to investigate large objects in museums and galleries are presented. In particular, 2D scanning devices for IR reflectography and X-ray radiography, CT systems and some applications to the Cultural Heritage are described.

  14. Simulation program of nonlinearities applied to telecommunication systems

    NASA Technical Reports Server (NTRS)

    Thomas, C.

    1979-01-01

    In any satellite communication system, the problems of distorsion created by nonlinear devices or systems must be considered. The subject of this paper is the use of the Fast Fourier Transform (F.F.T.) in the prediction of the intermodulation performance of amplifiers, mixers, filters. A nonlinear memory-less model is chosen to simulate amplitude and phase nonlinearities of the device in the simulation program written in FORTRAN 4. The experimentally observed nonlinearity parameters of a low noise 3.7-4.2 GHz amplifier are related to the gain and phase coefficients of Fourier Service Series. The measured results are compared with those calculated from the simulation in the cases where the input signal is composed of two, three carriers and noise power density.

  15. Stochastic measurements and systems implications

    NASA Astrophysics Data System (ADS)

    Collins, J. L.; Greene, R. R.

    1985-06-01

    The U.S. Navy is defining the baseline performance of the current SSN ASW suite in the Arctic operating environment. This suite includes the AN/BQQ-5 sonar suit (including the Towed Array, the sphere and other sensor and processor sub-systems), communications subsystems and weapon systems (Mk 48 and ADCAP). An effective acoustic measurement program in the Arctic must support the evaluation of how well the different subsystems are able to carry out their assigned functions. Unique aspects of the operating environment in the Arctic include unusual noise properties, unusual transmission effects and an unusual sea surface. This report addresses those acoustic transmission effects which affect system performance due to fluctuations or spreads in the acoustic field space, angle time and frequency.

  16. Applying Outcome Measurements: A Guide to Educational Outcome Measurements and Their Uses. Seminar No. 5.

    ERIC Educational Resources Information Center

    Glaser, Ezra

    This guide is essentially designed as a teaching aid for those who would inform planners, officials of educational ministries, school administrators, principals, and teachers about educational outcome measurements. In outline and graphic form, the guide presents topics for discussion in a seminar dealing with the application of outcome…

  17. Biosecurity Measures Applied in the United Arab Emirates - a Comparative Study Between Livestock and Wildlife Sectors.

    PubMed

    Chaber, A L; Saegerman, C

    2016-03-09

    In 2013, the livestock population in the UAE exceeded 4.3 million heads with sheep and goats accounting for 90% of this. The overall number of captive wild ungulates (gazelle types) is difficult to assess as there is no registration system in place or enforced in the UAE with regard to the possession of wildlife. Those animal collections, mainly owned by high-ranking families, are therefore not registered and kept far from public viewing. Nonetheless, some collections are housing more than 30 000 ungulates in one location. The primary objective of this study was to describe the biosecurity measures currently applied in UAE ungulate facilities for different wildlife and livestock sectors. A secondary objective was to use the output from this biosecurity survey to investigate which sector could be categorized into risk groups for disease introduction and spread. Between October 2014 and May 2015, biosecurity questionnaire data were collected in the Emirates of Abu Dhabi, Dubai, Ras Al Khaimah, Fujeirah, Ajman, Umm al Quwain and Sharjah from 14 wildlife collections, 30 livestock farms and 15 mixed (wildlife and livestock farms). These investigations through questionnaires allowed us to quantify and assess statistically biosecurity practices and levels for both livestock and wildlife sectors. In both sectors, biosecurity measures could be improved and only a few facilities had high biosecurity scores. The group of small unregistered farms (Ezba) represented the highest risk of disease transmission to other animals due to their lack of biosecurity awareness.

  18. Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation

    NASA Astrophysics Data System (ADS)

    Cauty, F.

    2004-10-01

    The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.

  19. Applying Lean: Implementation of a Rapid Triage and Treatment System

    PubMed Central

    Murrell, Karen L.; Offerman, Steven R.; Kauffman, Mark B.

    2011-01-01

    Objective: Emergency department (ED) crowding creates issues with patient satisfaction, long wait times and leaving the ED without being seen by a doctor (LWBS). Our objective was to evaluate how applying Lean principles to develop a Rapid Triage and Treatment (RTT) system affected ED metrics in our community hospital. Methods: Using Lean principles, we made ED process improvements that led to the RTT system. Using this system, patients undergo a rapid triage with low-acuity patients seen and treated by a physician in the triage area. No changes in staffing, physical space or hospital resources occurred during the study period. We then performed a retrospective, observational study comparing hospital electronic medical record data six months before and six months after implementation of the RTT system. Results: ED census was 30,981 in the six months prior to RTT and 33,926 after. Ambulance arrivals, ED patient acuity and hospital admission rates were unchanged throughout the study periods. Mean ED length of stay was longer in the period before RTT (4.2 hours, 95% confidence interval [CI] = 4.2–4.3; standard deviation [SD] = 3.9) than after (3.6 hours, 95% CI = 3.6–3.7; SD = 3.7). Mean ED arrival to physician start time was 62.2 minutes (95% CI = 61.5–63.0; SD = 58.9) prior to RTT and 41.9 minutes (95% CI = 41.5–42.4; SD = 30.9) after. The LWBS rate for the six months prior to RTT was 4.5% (95% CI = 3.1–5.5) and 1.5% (95% CI = 0.6–1.8) after RTT initiation. Conclusion: Our experience shows that changes in ED processes using Lean thinking and available resources can improve efficiency. In this community hospital ED, use of an RTT system decreased patient wait times and LWBS rates. PMID:21691524

  20. Selected KSC Applied Physics Lab Responses to Shuttle Processing Measurement Requests

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2010-01-01

    The KSC Applied Physics Lab has been supporting Shuttle Ground Processing for over 20 years by solving problems brought to us by Shuttle personnel. Roughly half of the requests to our lab have been to find ways to make measurements, or to improve on an existing measurement process. This talk will briefly cover: 1) Centering the aft end of the External Tank between the Solid Rocket Boosters; 2) Positioning the GOX Vent Hood over the External Tank; 3) Remote Measurements of External Tank Damage; 4) Strain Measurement in the Orbiter Sling; and 5) Over-center Distance Measurement in an Over-center Mechanism.

  1. Lightweight, Miniature Inertial Measurement System

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  2. Issues to Consider When Measuring and Applying Socioeconomic Position Quantitatively in Immigrant Health Research

    PubMed Central

    Nielsen, Signe Smith; Hempler, Nana Folmann; Krasnik, Allan

    2013-01-01

    The relationship between migration and health is complex, yet, immigrant-related inequalities in health are largely influenced by socioeconomic position. Drawing upon previous findings, this paper discusses issues to consider when measuring and applying socioeconomic position in quantitative immigrant health research. When measuring socioeconomic position, it is important to be aware of four aspects: (1) there is a lack of clarity about how socioeconomic position should be measured; (2) different types of socioeconomic position may be relevant to immigrants compared with the native-born population; (3) choices of measures of socioeconomic position in quantitative analyses often rely on data availability; and (4) different measures of socioeconomic position have different effects in population groups. Therefore, caution should be used in the collection, presentation, analyses, and interpretation of data and researchers need to display their proposed conceptual models and data limitations as well as apply different approaches for analyses. PMID:24287857

  3. Optothermal skin hydration measurement in the presence of topically applied substances

    NASA Astrophysics Data System (ADS)

    Bindra, Ravindar M.; Imhof, Robert E.; Xiao, P.; Andrews, Jeremy J.

    1995-05-01

    Although the direct measurement of in-vivo stratum corneum hydration is relatively straightforward using the technique of opto-thermal transient emission radiometry, assessing the effect of a topically applied substance can be complex. The substance itself may change over time and may also contribute to the measured opto-thermal signal. The method developed to account for these changes uses concurrent in-vivo and in-vitro measurements. It is illustrated with topically applied petroleum jelly, dimethyl sulphoxide (DMSO) and an anti- perspirant. The petroleum jelly caused an increase in stratum corneum hydration, whilst DMSO caused a decrease, which recovers over 90 minutes. The anti-perspirant was applied before exercising and, whilst an untreated site became more hydrated, the treated site was found to become drier.

  4. Gastritis staging: interobserver agreement by applying OLGA and OLGIM systems.

    PubMed

    Isajevs, Sergejs; Liepniece-Karele, Inta; Janciauskas, Dainius; Moisejevs, Georgijs; Putnins, Viesturs; Funka, Konrads; Kikuste, Ilze; Vanags, Aigars; Tolmanis, Ivars; Leja, Marcis

    2014-04-01

    Atrophic gastritis remains a difficult histopathological diagnosis with low interobserver agreement. The aim of our study was to compare gastritis staging and interobserver agreement between general and expert gastrointestinal (GI) pathologists using Operative Link for Gastritis Assessment (OLGA) and Operative Link on Gastric Intestinal Metaplasia (OLGIM). We enrolled 835 patients undergoing upper endoscopy in the study. Two general and two expert gastrointestinal pathologists graded biopsy specimens according to the Sydney classification, and the stage of gastritis was assessed by OLGA and OLGIM system. Using OLGA, 280 (33.4 %) patients had gastritis (stage I-IV), whereas with OLGIM this was 167 (19.9 %). OLGA stage III- IV gastritis was observed in 25 patients, whereas by OLGIM stage III-IV was found in 23 patients. Interobserver agreement between expert GI pathologists for atrophy in the antrum, incisura angularis, and corpus was moderate (kappa = 0.53, 0.57 and 0.41, respectively, p < 0.0001), but almost perfect for intestinal metaplasia (kappa = 0.82, 0.80 and 0.81, respectively, p < 0.0001). However, interobserver agreement between general pathologists was poor for atrophy, but moderate for intestinal metaplasia. OLGIM staging provided the highest interobserver agreement, but a substantial proportion of potentially high-risk individuals would be missed if only OLGIM staging is applied. Therefore, we recommend to use a combination of OLGA and OLGIM for staging of chronic gastritis.

  5. Toward a Blended Ontology: Applying Knowledge Systems to ...

    EPA Pesticide Factsheets

    Bionanomedicine and environmental research share need common terms and ontologies. This study applied knowledge systems, data mining, and bibliometrics used in nano-scale ADME research from 1991 to 2011. The prominence of nano-ADME in environmental research began to exceed the publication rate in medical research in 2006. That trend appears to continue as a result of the growing products in commerce using nanotechnology, that is, 5-fold growth in number of countries with nanomaterials research centers. Funding for this research virtually did not exist prior to 2002, whereas today both medical and environmental research is funded globally. Key nanoparticle research began with pharmacology and therapeutic drug-delivery and contrasting agents, but the advances have found utility in the environmental research community. As evidence ultrafine aerosols and aquatic colloids research increased 6-fold, indicating a new emphasis on environmental nanotoxicology. User-directed expert elicitation from the engineering and chemical/ADME domains can be combined with appropriate Boolean logic and queries to define the corpus of nanoparticle interest. The study combined pharmacological expertise and informatics to identify the corpus by building logical conclusions and observations. Publication records informatics can lead to an enhanced understanding the connectivity between fields, as well as overcoming the differences in ontology between the fields. The National Exposure Resea

  6. Effect of applied load on the nondestructive measurement of concrete strength

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, E.; Amjad, U.; Kundu, T.; Saadatmanesh, H.

    2014-03-01

    Nondestructive measurement of the concrete strength is an important topic of research. Among different nondestructive testing (NDT) methods the ultrasonic pulse velocity (UPV) technique is the most popular method for concrete strength estimation. While measuring concrete strength by this method almost all researchers have neglected the effect of applied stress or load on the concrete member. In this investigation attempts were made to properly incorporate the effect of the applied load on the strength prediction of concrete specimens from UPV value. To achieve this goal, 4 groups of concrete specimens with different values of final strength were made. Materials used for making cylindrical specimens of 3 inch diameter and 6 inch height included regular Portland cement, water and two types of aggregate - fine and coarse. After applying the load on the specimen in multiple steps - up to 70% of its failure strength fc'- the time of flight (TOF) value was measured for every loading step. The recorded results showed that applied load on the member has significant effect on the measured UPV value on concrete specimens. Therefore, to find the strength of the concrete from the UPV value, the applied load on the sample should be considered as an important factor that cannot be neglected.

  7. The sequence measurement system of the IR camera

    NASA Astrophysics Data System (ADS)

    Geng, Ai-hui; Han, Hong-xia; Zhang, Hai-bo

    2011-08-01

    Currently, the IR cameras are broadly used in the optic-electronic tracking, optic-electronic measuring, fire control and optic-electronic countermeasure field, but the output sequence of the most presently applied IR cameras in the project is complex and the giving sequence documents from the leave factory are not detailed. Aiming at the requirement that the continuous image transmission and image procession system need the detailed sequence of the IR cameras, the sequence measurement system of the IR camera is designed, and the detailed sequence measurement way of the applied IR camera is carried out. The FPGA programming combined with the SignalTap online observation way has been applied in the sequence measurement system, and the precise sequence of the IR camera's output signal has been achieved, the detailed document of the IR camera has been supplied to the continuous image transmission system, image processing system and etc. The sequence measurement system of the IR camera includes CameraLink input interface part, LVDS input interface part, FPGA part, CameraLink output interface part and etc, thereinto the FPGA part is the key composed part in the sequence measurement system. Both the video signal of the CmaeraLink style and the video signal of LVDS style can be accepted by the sequence measurement system, and because the image processing card and image memory card always use the CameraLink interface as its input interface style, the output signal style of the sequence measurement system has been designed into CameraLink interface. The sequence measurement system does the IR camera's sequence measurement work and meanwhile does the interface transmission work to some cameras. Inside the FPGA of the sequence measurement system, the sequence measurement program, the pixel clock modification, the SignalTap file configuration and the SignalTap online observation has been integrated to realize the precise measurement to the IR camera. Te sequence measurement

  8. Colored polydimethylsiloxane micropillar arrays for high throughput measurements of forces applied by genetic model organisms

    PubMed Central

    Khare, Siddharth M.; Awasthi, Anjali; Venkataraman, V.; Koushika, Sandhya P.

    2015-01-01

    Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semi-automated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of ∼1 μN on an individual pillar and a total average force of ∼7.68 μN. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4 Hz applying an average force of ∼1.58 μN on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces

  9. A Method of Measuring the Costs and Benefits of Applied Research.

    ERIC Educational Resources Information Center

    Sprague, John W.

    The Bureau of Mines studied the application of the concepts and methods of cost-benefit analysis to the problem of ranking alternative applied research projects. Procedures for measuring the different classes of project costs and benefits, both private and public, are outlined, and cost-benefit calculations are presented, based on the criteria of…

  10. 20 CFR 641.700 - What performance measures/indicators apply to SCSEP grantees?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF LABOR PROVISIONS GOVERNING THE SENIOR COMMUNITY SERVICE EMPLOYMENT PROGRAM Performance... establishes the following core indicators of performance: (1) Hours (in the aggregate) of community service... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false What performance measures/indicators apply...

  11. 20 CFR 641.700 - What performance measures/indicators apply to SCSEP grantees?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF LABOR PROVISIONS GOVERNING THE SENIOR COMMUNITY SERVICE EMPLOYMENT PROGRAM Performance... establishes the following core indicators of performance: (1) Hours (in the aggregate) of community service... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false What performance measures/indicators apply...

  12. Applied potential tomography. A new noninvasive technique for measuring gastric emptying.

    PubMed

    Avill, R; Mangnall, Y F; Bird, N C; Brown, B H; Barber, D C; Seagar, A D; Johnson, A G; Read, N W

    1987-04-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.

  13. An Evaluative Measure for Outputs in Student-Run Public Relations Firms and Applied Courses

    ERIC Educational Resources Information Center

    Deemer, Rebecca A.

    2012-01-01

    A valid, reliable survey instrument was created to be used by public relations student-run firms and other applied public relations courses to gauge client satisfaction. A series of focus groups and pilot tests were conducted to ascertain themes, refine questions, and then to refine the entire instrument. Six constructs to be measured, including…

  14. Information Management Principles Applied to the Ballistic Missile Defense System

    DTIC Science & Technology

    2007-03-01

    if they are being applied. iv Acknowledgments I would like to thank the members who participated in the Delphi Group. Their...52 Initial Delphi Results...55 Second Round Delphi Results .............................................................................57

  15. System for measuring film thickness

    DOEpatents

    Batishko, Charles R.; Kirihara, Leslie J.; Peters, Timothy J.; Rasmussen, Donald E.

    1990-01-01

    A system for determining the thicknesses of thin films of materials exhibiting fluorescence in response to exposure to excitation energy from a suitable source of such energy. A section of film is illuminated with a fixed level of excitation energy from a source such as an argon ion laser emitting blue-green light. The amount of fluorescent light produced by the film over a limited area within the section so illuminated is then measured using a detector such as a photomultiplier tube. Since the amount of fluorescent light produced is a function of the thicknesses of thin films, the thickness of a specific film can be determined by comparing the intensity of fluorescent light produced by this film with the intensity of light produced by similar films of known thicknesses in response to the same amount of excitation energy. The preferred embodiment of the invention uses fiber optic probes in measuring the thicknesses of oil films on the operational components of machinery which are ordinarily obscured from view.

  16. Speckle interferometry applied to asteroids and other solar system objects

    NASA Technical Reports Server (NTRS)

    Drummond, J. D.; Hege, E. K.

    1986-01-01

    Speckle interferometry is a high angular resolution technique that allows study of resolved asteroids. By following the changing size, shape, and orientation of minor planets, and with a few general assumptions (e.g., geometric scattering, triaxial ellipsoid figures, no albedo features), it is possible to directly measure an asteroid's true dimensions and the direction of its spin axis in one or two nights. A particular subset of triaxial ellipsoid figures are equilibrium shapes, and would imply that some asteroids are thoroughly fractured. Such shapes if they exist among the asteroids would allow a determination of bulk density since there is a unique relation among spin period, size, shape, and density. The discovery of even a single rubble pile, (just as the finding of even one binary asteroid by speckle interferometric techniques) would drastically alter the notion of asteroids as small solid planets. The Pluto/Charon system was studied to aid in improving the orbital elements necessary to predict the eclipse/occultation season currently in progress. Four asteroids were reduced to their size, shape, and pole direction: 433 Eros, 532 Herculina, 511 Davida, and 2 Pallas.

  17. Measurement and characterization of cylindrical surfaces by deflectometry applied to ballistic identification

    NASA Astrophysics Data System (ADS)

    Fantin, A. V.; Veiga, C.; Albertazzi, A.

    2011-05-01

    This paper describes an optical device that uses a new configuration of a technique known as deflectometry applied to ballistic identification. The main novelty is characterized by the use of a 45° conical mirror to measure the near cylindrical surface of the bullet. deflectometry is an optical technique sensitive to variations in topography and unevenness of a surface. This technique allows to identify and to measure the geometry of objects based on the distortions observed in a sequence of image patterns reflected on the surface of interest. The measurement by deflectometry is very sensitive to the surface local gradients and curvatures. In this paper it is applied to forensic ballistic in order to verify if a given bullet could be fired by a suspect weapon. Comparisons between images of bullets fired by the same weapon were made.

  18. Microstrain-level measurement of third-order elastic constants applying dynamic acousto-elastic testing

    NASA Astrophysics Data System (ADS)

    Renaud, Guillaume; Talmant, Maryline; Marrelec, Guillaume

    2016-10-01

    The nonlinear elasticity of solids at the microstrain level has been recently studied by applying dynamic acousto-elastic testing. It is the analog of conventional quasi-static acousto-elastic experiments but the strain-dependence (or stress-dependence) of ultrasonic wave-speed is measured with an applied strain ranging from 10-7 to 10-5 and produced by a stationary elastic wave. In conventional quasi-static acousto-elastic experiments, the strain is applied in a quasi-static manner; it exceeds 10-4 and can reach 10-2. In this work, we apply dynamic acousto-elastic testing to measure the third-order elastic constants of two isotropic materials: polymethyl methacrylate and dry Berea sandstone. The peak amplitude of the dynamic applied strain is 8 × 10-6. The method is shown to be particularly suitable for materials exhibiting large elastic nonlinearity like sandstones, since the measurement is performed in the domain of validity of the third-order hyperelastic model. In contrast, conventional quasi-static acousto-elastic experiments in such materials are often performed outside the domain of validity of the third-order hyperelastic model and the stress-dependence of the ultrasonic wave-speed must be extrapolated at zero stress, leading to approximate values of the third-order elastic constants. The uncertainty of the evaluation of the third-order elastic constants is assessed by repeating multiple times the measurements and with Monte-Carlo simulations. The obtained values of the Murnaghan third-order elastic constants are l = -73 GPa ± 9%, m = -34 GPa ± 9%, and n = -61 GPa ± 10% for polymethyl methacrylate, and l = -17 000 GPa ± 20%, m = -11 000 GPa ± 10%, and n = -30 000 GPa ± 20% for dry Berea sandstone.

  19. Development of a surgical instrument for measuring forces applied to the ossicles of the middle ear.

    PubMed

    Sheedy, Michael; Bergin, Mike; Wylie, Grant; Ross, Peter; Dove, Richard; Bird, Phil

    2012-12-01

    Surgery of the middle ear is a delicate process that requires the surgeon to manipulate the ossicles, the smallest bones in the body. Excessive force applied to the ossicles can easily be transmitted through to the inner ear which may cause a permanent sensorineural hearing loss. An instrument was required to measure the forces applied to cadaveric temporal bone ossicles with the vision of measuring forces in vivo at a later stage. A feasibility study was conducted to investigate a method of measuring force and torque applied to the ossicles of the middle ear. Information from research papers was gathered to determine the expected amplitudes. The study looked at commercially available transducers as well as constructing an instrument using individual axis transducers coupled together. A prototype surgical instrument was constructed using the ATI industrial automation Nano17 six axis transducer. The Nano17 allows for the measurement of force and torque in the X, Y and Z axis to a resolution of 1/320 N. The use of the Nano17 enabled rapid development of the surgical instrument. It meets the requirements for its use on cadaveric models and has the potential to be a useful data collection tool in vivo.

  20. Systems design analysis applied to launch vehicle configuration

    NASA Technical Reports Server (NTRS)

    Ryan, R.; Verderaime, V.

    1993-01-01

    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system.

  1. Research in Applied Mathematics Related to Nonlinear System Theory.

    DTIC Science & Technology

    1981-09-01

    control systems", Journal of Mathematical Analysis and Applications , 58: 98-112. R. E. KALMAN [1976] "Realization theory of linear dynamical systems...Theory. [19801 "Some remarks on the reachability of infinite- dimensional linear systems", Journal of Mathematical Analysis and Applications , 74: 568-577

  2. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  3. Applying Technology Ranking and Systems Engineering in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Luna, Bernadette (Technical Monitor)

    2000-01-01

    According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.

  4. Object-oriented fault tree models applied to system diagnosis

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Patterson-Hine, F. A.

    1990-01-01

    When a diagnosis system is used in a dynamic environment, such as the distributed computer system planned for use on Space Station Freedom, it must execute quickly and its knowledge base must be easily updated. Representing system knowledge as object-oriented augmented fault trees provides both features. The diagnosis system described here is based on the failure cause identification process of the diagnostic system described by Narayanan and Viswanadham. Their system has been enhanced in this implementation by replacing the knowledge base of if-then rules with an object-oriented fault tree representation. This allows the system to perform its task much faster and facilitates dynamic updating of the knowledge base in a changing diagnosis environment. Accessing the information contained in the objects is more efficient than performing a lookup operation on an indexed rule base. Additionally, the object-oriented fault trees can be easily updated to represent current system status. This paper describes the fault tree representation, the diagnosis algorithm extensions, and an example application of this system. Comparisons are made between the object-oriented fault tree knowledge structure solution and one implementation of a rule-based solution. Plans for future work on this system are also discussed.

  5. An industrial light-field camera applied for 3D velocity measurements in a slot jet

    NASA Astrophysics Data System (ADS)

    Seredkin, A. V.; Shestakov, M. V.; Tokarev, M. P.

    2016-10-01

    Modern light-field cameras have found their application in different areas like photography, surveillance and quality control in industry. A number of studies have been reported relatively low spatial resolution of 3D profiles of registered objects along the optical axis of the camera. This article describes a method for 3D velocity measurements in fluid flows using an industrial light-field camera and an alternative reconstruction algorithm based on a statistical approach. This method is more accurate than triangulation when applied for tracking small registered objects like tracer particles in images. The technique was used to measure 3D velocity fields in a turbulent slot jet.

  6. Phase measurement system using a dithered clock

    DOEpatents

    Fairley, C.R.; Patterson, S.R.

    1991-05-28

    A phase measurement system is disclosed which measures the phase shift between two signals by dithering a clock signal and averaging a plurality of measurements of the phase differences between the two signals. 8 figures.

  7. Applying an Activity System to Online Collaborative Group Work Analysis

    ERIC Educational Resources Information Center

    Choi, Hyungshin; Kang, Myunghee

    2010-01-01

    This study determines whether an activity system provides a systematic framework to analyse collaborative group work. Using an activity system as a unit of analysis, the research examined learner behaviours, conflicting factors and facilitating factors while students engaged in collaborative work via asynchronous computer-mediated communication.…

  8. Applying Language Systems to the Teaching of Writing.

    ERIC Educational Resources Information Center

    Jordan, Michael P.

    1986-01-01

    Uses a single language system--technical description--to illustrate how language systems can now be used as the basis for instruction in technical writing. Provides sample exercises in progressive teaching from simple description to complex continuity devices, showing how they can be used at all stages of the writing process. (HTH)

  9. Systems Biology Applied to Heart Failure With Normal Ejection Fraction

    PubMed Central

    Mesquita, Evandro Tinoco; Jorge, Antonio Jose Lagoeiro; de Souza, Celso Vale; Cassino, João Paulo Pedroza

    2014-01-01

    Heart failure with normal ejection fraction (HFNEF) is currently the most prevalent clinical phenotype of heart failure. However, the treatments available have shown no reduction in mortality so far. Advances in the omics sciences and techniques of high data processing used in molecular biology have enabled the development of an integrating approach to HFNEF based on systems biology. This study aimed at presenting a systems-biology-based HFNEF model using the bottom-up and top-down approaches. A literature search was conducted for studies published between 1991 and 2013 regarding HFNEF pathophysiology, its biomarkers and systems biology. A conceptual model was developed using bottom-up and top-down approaches of systems biology. The use of systems-biology approaches for HFNEF, a complex clinical syndrome, can be useful to better understand its pathophysiology and to discover new therapeutic targets. PMID:24918915

  10. Applying innovative stripes adaptive detection to three-dimensional measurement of color fringe profilometry

    NASA Astrophysics Data System (ADS)

    Jeffrey Kuo, Chung-Feng; Chang, Alvin; Joseph Kuo, Ping-Chen; Lee, Chi-Lung; Wu, Han-Cheng

    2016-12-01

    This study developed a 3D software and hardware measurement system, and proposes an innovative stripes adaptive detection algorithm. The fringe intensity is regulated automatically according to the reflection coefficient of different analytes, in order to avoid overexposure. For the measurement of the object in discontinuously changing height, a novel intensity difference coding unwrapping phase technology is used, thus overcoming the technological bottleneck of traditional phase unwrapping. In order to increase the measurement efficiency, the stripe pattern is combined with intensity coding pattern by three-channel color information, in order to generate an adaptive compound color stripe pattern. The measurement efficiency is increased by approximately two times compared with traditional gray stripe pattern. In order to increase the measurement accuracy, the uneven brightness is corrected by using brightness gain function. The three-channel intensity nonlinear response is corrected by cubic spline interpolation system response inverse function. The three-channel image is corrected by color cross-talk correction technology. The experiment proved that the system repeatability is 20 μm. The traditional phase-shifting profilometry is improved successfully, overcoming the technical measurement bottleneck of discontinuous change in the analyte height, so as to attain low cost, high measurement accuracy, efficiency and measurement reliability.

  11. Distribution patterns of entomopathogenic nematodes applied through drip irrigation systems.

    PubMed

    Wennemann, L; Cone, W W; Wright, L C; Perez, J; Conant, M M

    2003-04-01

    The distribution of entomopathogenic nematodes applied by drip irrigation was evaluated by injecting small volumes of Steinernema carpocapsae (Weiser) All strain, Steinernema feltiae (Filipjev) SN strain, Steinernema glaseri Steiner, and Heterorhabditis bacteriophora HP 88 strain Poinar suspensions into drip irrigation lines. Additionally, Steinernema riobrave Cabanillas, Poinar, & Raulston, and S. carpocapsae were injected in a 10-liter volume of water with an injection pump. Overall, the nematodes were evenly distributed along the drip lines. The total number of nematodes recovered from drip emitters was variable ranging from 42 to 92%. However, drip irrigation lines have potential to deliver entomopathogenic nematodes efficiently into pest habitats.

  12. Applying New Network Security Technologies to SCADA Systems.

    SciTech Connect

    Hurd, Steven A; Stamp, Jason Edwin; Duggan, David P; Chavez, Adrian R.

    2006-11-01

    Supervisory Control and Data Acquisition (SCADA) systems for automation are very important for critical infrastructure and manufacturing operations. They have been implemented to work in a number of physical environments using a variety of hardware, software, networking protocols, and communications technologies, often before security issues became of paramount concern. To offer solutions to security shortcomings in the short/medium term, this project was to identify technologies used to secure "traditional" IT networks and systems, and then assess their efficacy with respect to SCADA systems. These proposed solutions must be relatively simple to implement, reliable, and acceptable to SCADA owners and operators. 4This page intentionally left blank.

  13. [Dichotomizing method applied to calculating equilibrium constant of dimerization system].

    PubMed

    Cheng, Guo-zhong; Ye, Zhi-xiang

    2002-06-01

    The arbitrary trivariate algebraic equations are formed based on the combination principle. The univariata algebraic equation of equilibrium constant kappa for dimerization system is obtained through a series of algebraic transformation, and it depends on the properties of monotonic functions whether the equation is solvable or not. If the equation is solvable, equilibrium constant of dimerization system is obtained by dichotomy and its final equilibrium constant of dimerization system is determined according to the principle of error of fitting. The equilibrium constants of trisulfophthalocyanine and biosulfophthalocyanine obtained with this method are 47,973.4 and 30,271.8 respectively. The results are much better than those reported previously.

  14. Grounding system analysis in transients programs applying electromagnetic field approach

    SciTech Connect

    Heimbach, M.; Grcev, L.D.

    1997-01-01

    Lightning protection studies of substations and power systems require knowledge of the dynamic behavior of large grounding grids during electromagnetic transients. This paper presents strategies which allow to incorporate complex grounding structures computed using a rigorous electromagnetic model in transients programs. A novel technique for rational function representation of frequency-dependent grounding system impedances in the EMTP is described. An arbitrary number of feeding points can be modeled as mutual coupling is taken into account. Overvoltages throughout electrical power systems and the transient ground potential rise in the surroundings of grounding structures can be computed.

  15. Aircraft Electric Propulsion Systems Applied Research at NASA

    NASA Technical Reports Server (NTRS)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  16. EG&G Mound Applied Technologies payroll system

    SciTech Connect

    Not Available

    1992-02-07

    EG&G Mound Applied Technologies, Inc., manages and operates the Mound Facility, Miamisburg, Ohio, under a cost-plus-award-fee contract administered by the Department of Energy`s Albuquerque Field Office. The contractor`s Payroll Department is responsible for prompt payment in the proper amount to all persons entitled to be paid, in compliance with applicable laws, regulations, and legal decisions. The objective was to determine whether controls were in place to avoid erroneous payroll payments. EG&G Mound Applied Technologies, Inc., did not have all the internal controls required by General Accounting Office Title 6, ``Pay, Leave, and Allowances.`` Specifically, they did not have computerized edits, separation of duties and responsibilities, and restricted access to payroll data files. This condition occurred because its managers were not aware of Title 6 requirements. As a result, the contractor could not assure the Department of Energy that payroll costs were processes accurately; and fraud, waste, or abuse of Department of Energy funds could go undetected. Our sample of 212 payroll transactions from a population of 66,000 in FY 1991 disclosed only two minor processing errors and no instances of fraud, waste or abuse.

  17. Mass properties measurement system: Dynamics and statics measurements

    NASA Technical Reports Server (NTRS)

    Doty, Keith L.

    1993-01-01

    This report presents and interprets experimental data obtained from the Mass Properties Measurement System (MPMS). Statics measurements yield the center-of-gravity of an unknown mass and dynamics measurements yield its inertia matrix. Observations of the MPMS performance has lead us to specific design criteria and an understanding of MPMS limitations.

  18. The Applied Mindfulness Process Scale (AMPS): A process measure for evaluating mindfulness-based interventions

    PubMed Central

    Li, Michael J.; Black, David S.; Garland, Eric L.

    2015-01-01

    Objective Mindfulness-based interventions (MBIs) include the application of meditation and mind-body practices used to promote mindful awareness in daily life. Operationalizing the construct of mindfulness is important in order to determine mechanisms of therapeutic change elicited by mindfulness practice. In addition to existing state and trait measures of mindfulness, process measures are needed to assess the ways in which individuals apply mindfulness in the context of their practice. Method This report details three independent studies (qualitative interview, N = 8; scale validation, N = 134; and replication study, N = 180) and the mixed qualitative-quantitative methodology used to develop and validate the Applied Mindfulness Process Scale (AMPS), a 15-item process measure designed to quantify how mindfulness practitioners actively use mindfulness to remediate psychological suffering in their daily lives. Results In Study 1, cognitive interviewing yielded a readily comprehensible and accessible scale of 15 items. In Study 2, exploratory factor analysis derived a potential three-factor solution: decentering, positive emotion regulation, and negative emotion regulation. In Study 3, confirmatory factor analysis verified better model fit with the three-factor structure over the one-factor structure. Conclusions AMPS functions as a measure to quantify the application of mindfulness and processes of change in the context of MBIs and general mindfulness practice. PMID:26858469

  19. Applied estimation for hybrid dynamical systems using perceptional information

    NASA Astrophysics Data System (ADS)

    Plotnik, Aaron M.

    This dissertation uses the motivating example of robotic tracking of mobile deep ocean animals to present innovations in robotic perception and estimation for hybrid dynamical systems. An approach to estimation for hybrid systems is presented that utilizes uncertain perceptional information about the system's mode to improve tracking of its mode and continuous states. This results in significant improvements in situations where previously reported methods of estimation for hybrid systems perform poorly due to poor distinguishability of the modes. The specific application that motivates this research is an automatic underwater robotic observation system that follows and films individual deep ocean animals. A first version of such a system has been developed jointly by the Stanford Aerospace Robotics Laboratory and Monterey Bay Aquarium Research Institute (MBARI). This robotic observation system is successfully fielded on MBARI's ROVs, but agile specimens often evade the system. When a human ROV pilot performs this task, one advantage that he has over the robotic observation system in these situations is the ability to use visual perceptional information about the target, immediately recognizing any changes in the specimen's behavior mode. With the approach of the human pilot in mind, a new version of the robotic observation system is proposed which is extended to (a) derive perceptional information (visual cues) about the behavior mode of the tracked specimen, and (b) merge this dissimilar, discrete and uncertain information with more traditional continuous noisy sensor data by extending existing algorithms for hybrid estimation. These performance enhancements are enabled by integrating techniques in hybrid estimation, computer vision and machine learning. First, real-time computer vision and classification algorithms extract a visual observation of the target's behavior mode. Existing hybrid estimation algorithms are extended to admit this uncertain but discrete

  20. System configured for applying multiple modifying agents to a substrate

    DOEpatents

    Propp, W. Alan; Argyle, Mark D.; Janikowski, Stuart K.; Fox, Robert V.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Miller, David L.

    2003-11-25

    The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.

  1. System Configured For Applying Multiple Modifying Agents To A Substrate.

    DOEpatents

    Propp, W. Alan; Argyle, Mark D.; Janikowski, Stuart K.; Fox, Robert V.; Toth, William J.; Ginosar, Daniel M.; Allen, Charles A.; Miller, David L.

    2005-11-08

    The present invention is related to the modifying of substrates with multiple modifying agents in a single continuous system. At least two processing chambers are configured for modifying the substrate in a continuous feed system. The processing chambers can be substantially isolated from one another by interstitial seals. Additionally, the two processing chambers can be substantially isolated from the surrounding atmosphere by end seals. Optionally, expansion chambers can be used to separate the seals from the processing chambers.

  2. Applying quality status criteria to a temperate estuary before and after the mitigation measures to reduce eutrophication symptoms

    NASA Astrophysics Data System (ADS)

    Lillebø, A. I.; Teixeira, H.; Pardal, M. A.; Marques, J. C.

    2007-03-01

    The Mondego estuary is a well-described polyhaline type of transitional water located at the North Atlantic Ocean Ecoregion, where cultural eutrophication progressed over the last decades of the 20th century. Consequently, and due to huge productivity of Ulva spp. Zostera noltii meadows were severely reduced causing the whole ecosystem to become impoverished in terms of macrofaunal abundance, biomass and species richness with a concomitant lowering of secondary production. In 1998, experimental mitigation measures were implemented, via changes in hydrology to increase circulation and diversion of nutrient rich freshwater inflow, to reverse the process in the most affected area of the estuary - its south arm. Thus, the system quality status was assessed before and after 1998, over a ten year period. The OSPAR comprehensive procedure, the first phase of the US-NEEA procedure and the proposed EU-WFD physicochemical status criteria were applied to the data before and after the modifications and all show that the system health has improved. Nonetheless, the annual means of the oxidised forms of nitrogen and of phosphate were not reduced. In fact, applying criteria used in classifying the nutrient levels in transitional waters and the Baltic sea trophic condition, the system has not improved. Meaning that, to look forward to a "higher" quality status, future measures should also consider longer term solutions such as improved agriculture practices in the Mondego River valley through environmental friendly technological solutions that will reduce the nutrient loads to this system.

  3. 40 CFR 63.8030 - What requirements apply to my heat exchange systems?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false What requirements apply to my heat... apply to my heat exchange systems? (a) You must comply with the requirements specified in Table 6 to this subpart that apply to your heat exchange systems, except as specified in paragraphs (b) through...

  4. 40 CFR 63.8030 - What requirements apply to my heat exchange systems?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 13 2011-07-01 2011-07-01 false What requirements apply to my heat... apply to my heat exchange systems? (a) You must comply with the requirements specified in Table 6 to this subpart that apply to your heat exchange systems, except as specified in paragraphs (b) through...

  5. Cold-Applied Roofing Systems and Waterproofing and Dampproofing. Roofing Workbook and Tests.

    ERIC Educational Resources Information Center

    Brown, Arthur

    This workbook for students in California roofing apprenticeship programs provides information for classroom work in the area of cold-applied roofing systems and waterproofing and dampproofing. Eight topics are covered: introduction to cold-applied roofing systems and waterproofing and dampproofing, tools and equipment used in cold-applied roofing,…

  6. Applied Space Systems Engineering. Chapter 17; Manage Technical Data

    NASA Technical Reports Server (NTRS)

    Kent, Peter

    2008-01-01

    Effective space systems engineering (SSE) is conducted in a fully electronic manner. Competitive hardware, software, and system designs are created in a totally digital environment that enables rapid product design and manufacturing cycles, as well as a multitude of techniques such as modeling, simulation, and lean manufacturing that significantly reduce the lifecycle cost of systems. Because the SSE lifecycle depends on the digital environment, managing the enormous volumes of technical data needed to describe, build, deploy, and operate systems is a critical factor in the success of a project. This chapter presents the key aspects of Technical Data Management (TDM) within the SSE process. It is written from the perspective of the System Engineer tasked with establishing the TDM process and infrastructure for a major project. Additional perspectives are reflected from the point of view of the engineers on the project who work within the digital engineering environment established by the TDM toolset and infrastructure, and from the point of view of the contactors who interface via the TDM infrastructure. Table 17.1 lists the TDM process as it relates to SSE.

  7. Integrated hydrogen/oxygen technology applied to auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Gerhardt, David L.

    1990-01-01

    The purpose of the Integrated Hydrogen/Oxygen Technology (IHOT) study was to determine if the vehicle/mission needs and technology of the 1990's support development of an all cryogenic H2/O2 system. In order to accomplish this, IHOT adopted the approach of designing Integrated Auxiliary Propulsion Systems (IAPS) for a representative manned vehicle; the advanced manned launch system. The primary objectives were to develop IAPS concepts which appeared to offer viable alternatives to state-of-the-art (i.e., hypergolic, or earth-storable) APS approaches. The IHOT study resulted in the definition of three APS concepts; two cryogenic IAPS, and a third concept utilizing hypergolic propellants.

  8. Multi-agent cooperative systems applied to precision applications

    SciTech Connect

    McKay, M.D.; Anderson, M.O.; Gunderson, R.W.; Flann, N.; Abbott, B.

    1998-03-01

    Regulatory agencies are imposing limits and constraints to protect the operator and/or the environment. While generally necessary, these controls also tend to increase cost and decrease efficiency and productivity. Intelligent computer systems can be made to perform these hazardous tasks with greater efficiency and precision without danger to the operators. The Idaho national Engineering and Environmental Laboratory and the Center for Self-Organizing and Intelligent Systems at Utah State University have developed a series of autonomous all-terrain multi-agent systems capable of performing automated tasks within hazardous environments. This paper discusses the development and application of cooperative small-scale and large-scale robots for use in various activities associated with radiologically contaminated areas, prescription farming, and unexploded ordinances.

  9. Advanced optical blade tip clearance measurement system

    NASA Technical Reports Server (NTRS)

    Ford, M. J.; Honeycutt, R. E.; Nordlund, R. E.; Robinson, W. W.

    1978-01-01

    An advanced electro-optical system was developed to measure single blade tip clearances and average blade tip clearances between a rotor and its gas path seal in an operating gas turbine engine. This system is applicable to fan, compressor, and turbine blade tip clearance measurement requirements, and the system probe is particularly suitable for operation in the extreme turbine environment. A study of optical properties of blade tips was conducted to establish measurement system application limitations. A series of laboratory tests was conducted to determine the measurement system's operational performance characteristics and to demonstrate system capability under simulated operating gas turbine environmental conditions. Operational and environmental performance test data are presented.

  10. Robust sliding mode control applied to double Inverted pendulum system

    SciTech Connect

    Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical

    2009-03-05

    A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.

  11. AIRS FPA applied to the MIRIADS: powerful infrared systems applications

    NASA Astrophysics Data System (ADS)

    Caulfield, John T.; McCarley, Paul L.; Baxter, Christopher R.; Massie, Mark A.

    2001-10-01

    Raytheon's Infrared Operations (RIO) has invented and developed a new type of focal plane array with 'Image Processing on-the-chip' named the Adaptive IR Sensor (AIRS). The AIRS FPA is based upon the human retina in that it performs signal processing near the photoreceptors. The AIRS FPA has been reduced to practice and adaptively removes detector and optic temperature drift and 1/f induced fixed pattern noise. This 3rd-generation multi-mode IRFPA, also called a Smart FPA, is a 256 X 256-array format capable of operation in four modes: (1) Direct Injection (DI), (2) Adaptive Non-uniformity Correction (NUC), (3) Motion/Edge Detection, and (4) Subframe Averaging. Nova Research has developed a Modular IR Application Development System (MIRIADS) which is a compact single board camera system that is highly integrated with the dewar assembly. The MIRIADS system coupled with the AIRS Smart FPA results in a very high performance wide field of view IR Sensor and processing system with integrated in one of the smallest packages to date.

  12. System Identification and POD Method Applied to Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.

    2001-01-01

    The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.

  13. The evaluation of four different diffuse radiation correction models applied to shadow ring measurements for Beer Sheva, Israel

    NASA Astrophysics Data System (ADS)

    Kudish, Avraham I.; Evseev, Efim G.

    2007-09-01

    The measurement of the horizontal diffuse radiation, a priori a straightforward task, is fraught with difficulties. It is possible to measure the diffuse radiation by both direct and indirect methods. The most accurate method is probably the indirect one, which utilizes concurrent measurements of the horizontal global and the normal incidence beam radiation. The disadvantage of this method is the relatively expensive tracking system required for measuring the latter. The diffuse radiation can be measured directly with a pyranometer outfitted with either an occulting disk or shadow ring, which prevent the beam radiation from impinging on the pyranometer sensor. The former method can provide accurate measurements of the diffuse radiation but requires a relatively expensive sun tracking system in the east-west axis. The shadow ring is a stationary device with regard to the east-west axis and blocks the beam radiation component by creating a permanent shadow on the pyranometer sensor. The disadvantage of the shadow ring is that it also blocks a portion of the sky, which necessitates a geometrical correction factor. There is also a need to correct for anisotropic sky conditions. Four correction models have been applied to the data and the results evaluated and ranked.

  14. An Analysis of Electrical Impedance Measurements Applied for Plant N Status Estimation in Lettuce (Lactuca sativa)

    PubMed Central

    Muñoz-Huerta, Rafael F.; de J. Ortiz-Melendez, Antonio; Guevara-Gonzalez, Ramon G.; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M.; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V.

    2014-01-01

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status. PMID:25057134

  15. An analysis of electrical impedance measurements applied for plant N status estimation in lettuce (Lactuca sativa).

    PubMed

    Muñoz-Huerta, Rafael F; Ortiz-Melendez, Antonio de J; Guevara-Gonzalez, Ramon G; Torres-Pacheco, Irineo; Herrera-Ruiz, Gilberto; Contreras-Medina, Luis M; Prado-Olivarez, Juan; Ocampo-Velazquez, Rosalia V

    2014-06-27

    Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements. However, sensitivity to environmental interference remains an important drawback. Electrical impedance has been applied to determine the physiological and nutritional status of plant tissue, but no studies related to plant-N contents are reported. The objective of this article is to analyze how the electrical impedance response of plants is affected by their N status. Four sets of lettuce (Lactuca sativa L.) with a different N-source concentrations per set were used. Total nitrogen and electrical impedance spectra (in a 1 to 100 kHz frequency range) were measured five times per set, three times every other day. Minimum phase angles of impedance spectra were detected and analyzed, together with the frequency value in which they occurred, and their magnitude at that frequency. High and positive correlation was observed between plant N content and frequency values at minimum phase angle with no significant variations detected between days of measurement. These results suggest that electrical impedance can be sensitive to plant N status.

  16. Applied potential tomography in the measurement of gastric emptying in infants.

    PubMed

    Nour, S; Mangnall, Y F; Dickson, J A; Johnson, A G; Pearse, R G

    1995-01-01

    The aim of this study was to investigate the feasibility of using applied potential tomography (APT), a noninvasive and nonradioactive method, to measure the rate of gastric emptying in preterm babies and infants < 3 months old. APT, a form of electrical impedance tomography, creates tomographic images of tissue resistivity to a small electrical current and has been used to study gastric emptying in adults. The rate of gastric emptying of 53 preterm infants and 29 term infants was measured. The test feed was either milk (formula milk or expressed breast milk) or Dioralyte (a commercial rehydration solution). When a nasogastric tube was present, the results obtained by APT were validated by comparing the volume of feed estimated to be present with the volume that could be aspirated. All infants completed the investigation without any problems. APT demonstrated a slower rate of emptying of milk feeds than Dioralyte and showed that milk and Dioralyte feeds in preterm babies emptied at a similar rate to feeds in term infants. In validation studies, gastric emptying has been observed in 44 of 47 studies, and this finding was confirmed by aspiration of the nasogastric tube. Applied potential tomography is a safe, noninvasive method for measuring gastric emptying in small infants.

  17. Electromagnetic compatibility fundamentals applied to spacecraft radio communication systems

    NASA Technical Reports Server (NTRS)

    Haber, F.; Celebiler, M.; Weil-Malherbe, C.

    1971-01-01

    A design guide for minimizing electromagnetic interference in aerospace communication equipment for ground stations is presented. Specifically treated are the mechanisms of generating unwanted radio emissions that may affect station operations as well as other communications services, the mechanisms by which sensitive receivers become susceptible to interference, means for reducing interference, standard methods of measurement, and the problems of site selection. The sources of interference are viewed primarily as originating from communications transmitters aboard spacecraft and aircraft, ground transmitters within and outside the ground stations, and other electrical sources on the ground that are not intended to radiate.

  18. Applying twisted boundary conditions for few-body nuclear systems

    NASA Astrophysics Data System (ADS)

    Körber, Christopher; Luu, Thomas

    2016-05-01

    We describe and implement twisted boundary conditions for the deuteron and triton systems within finite volumes using the nuclear lattice EFT formalism. We investigate the finite-volume dependence of these systems with different twist angles. We demonstrate how various finite-volume information can be used to improve calculations of binding energies in such a framework. Our results suggests that with appropriate twisting of boundaries, infinite-volume binding energies can be reliably extracted from calculations using modest volume sizes with cubic length L ≈8 -14 fm. Of particular importance is our derivation and numerical verification of three-body analogs of "i-periodic" twist angles that eliminate the leading-order finite-volume effects to the three-body binding energy.

  19. Parabolic dish systems at work - Applying the concepts

    NASA Technical Reports Server (NTRS)

    Marriott, A. T.

    1981-01-01

    An overview is given of parabolic dish solar concentrator application experiments being conducted by the U.S. Department of Energy. The 'engineering experiments' comprise the testing of (1) a small-community powerplant system, in conjunction with a grid-connected utility; (2) stand-alone applications at remote sites such as military installations, radar stations and villages; and (3) dish modules that can deliver heat for direct use in industrial processes. Applicability projections are based on a dish and receiver that use a Brayton engine with an engine/generator efficiency of 25% and a production level of up to 25,000 units per year. Analyses indicate that parabolic-dish power systems can potentially replace small, oil-fired power plants in all regions of the U.S. between 1985 and 1991.

  20. Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations

    NASA Technical Reports Server (NTRS)

    Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.

    2000-01-01

    Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.

  1. Experiences with Probabilistic Analysis Applied to Controlled Systems

    NASA Technical Reports Server (NTRS)

    Kenny, Sean P.; Giesy, Daniel P.

    2004-01-01

    This paper presents a semi-analytic method for computing frequency dependent means, variances, and failure probabilities for arbitrarily large-order closed-loop dynamical systems possessing a single uncertain parameter or with multiple highly correlated uncertain parameters. The approach will be shown to not suffer from the same computational challenges associated with computing failure probabilities using conventional FORM/SORM techniques. The approach is demonstrated by computing the probabilistic frequency domain performance of an optimal feed-forward disturbance rejection scheme.

  2. Nonlinear Waves, Dynamical Systems and Other Applied Mathematics Programs

    DTIC Science & Technology

    1991-10-04

    present a general scheme of perturbation method for perturbed soliton systems, based on the normal form theory and the method of multiple scales. By this...dimension, and discuss possible consequences of the interplay between wavefront- interactions and curvature in two dimensions. Thursday, October 19 All ... normal speed D parametrized by the local mean surface curvature x. Its solution provides a relation D = D(x) which determines the evolution of the front

  3. Near-infrared radiation curable multilayer coating systems and methods for applying same

    DOEpatents

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  4. Wireless Fluid Level Measuring System

    NASA Technical Reports Server (NTRS)

    Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)

    2007-01-01

    A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.

  5. Hydrostatic levelling systems: Measuring at the system limits

    NASA Astrophysics Data System (ADS)

    Meier, Edi; Geiger, Alain; Ingensand, Hilmar; Licht, Hans; Limpach, Philippe; Steiger, Andreas; Zwyssig, Roger

    2010-09-01

    Three hydrostatic displacement monitoring system applications in Switzerland are discussed; the first concerns experience gained monitoring the foundation of the Albigna dam, the second relating to the underground stability of the Swiss Light Source synchrotron and the third concerning the deformation of a bridge near the city of Lucerne. Two different principles were applied, the Hydrostatic Levelling System (HLS) using the “half-filled pipe principle” developed by the Paul Scherrer Institute and the Large Area Settlement System (LAS) using the “differential pressure principle”. With both systems ground deformations induced by tidal forces can be seen. However, high accuracy of single sensors is not sufficient. A well-designed configuration of the complete system is equally important. On the other hand there are also limits imposed by installation logistics and by the environmental conditions. An example is the bridge monitoring application, where the acceleration along the bridge due to the passage of heavy trucks limits the feasibility of using hydrostatic levelling measurements.

  6. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.; ,

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  7. An applied study using systems engineering methods to prioritize green systems options

    SciTech Connect

    Lee, Sonya M; Macdonald, John M

    2009-01-01

    For many years, there have been questions about the effectiveness of applying different green solutions. If you're building a home and wish to use green technologies, where do you start? While all technologies sound promising, which will perform the best over time? All this has to be considered within the cost and schedule of the project. The amount of information available on the topic can be overwhelming. We seek to examine if Systems Engineering methods can be used to help people choose and prioritize technologies that fit within their project and budget. Several methods are used to gain perspective into how to select the green technologies, such as the Analytic Hierarchy Process (AHP) and Kepner-Tregoe. In our study, subjects applied these methods to analyze cost, schedule, and trade-offs. Results will document whether the experimental approach is applicable to defining system priorities for green technologies.

  8. System And Method Of Applying Energetic Ions For Sterlization

    DOEpatents

    Schmidt, John A.

    2002-06-11

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.

  9. System and method of applying energetic ions for sterilization

    DOEpatents

    Schmidt, John A.

    2003-12-23

    A method of sterilization of a container is provided whereby a cold plasma is caused to be disposed near a surface to be sterilized, and the cold plasma is then subjected to a pulsed voltage differential for producing energized ions in the plasma. Those energized ions then operate to achieve spore destruction on the surface to be sterilized. Further, a system for sterilization of a container which includes a conductive or non-conductive container, a cold plasma in proximity to the container, and a high voltage source for delivering a pulsed voltage differential between an electrode and the container and across the cold plasma, is provided.

  10. Application of acousto-optic actuator applied in holographic system

    NASA Astrophysics Data System (ADS)

    Ling, FuRi; Wang, Biao

    2002-09-01

    In this paper, we discuss acousto-optical scanning and deflection, and design an acousto-optical actuator for steering the laser beam in the direction of vertical and horizon. In this system a laser whose wavelength is 532 nm is used and is expanded by a cylindrical lens. This horizontal actuator produces the horizontal deflection and the spherical lens following the horizontal actuator rotates the beam to match the aperture of the vertical actuator. The cylindrical lens restores the beam to its original circular cross-section, after which the microscope optics brings it to a focus in the lithium niobate crystal in which we store information.

  11. Acton mass flow system applied to PFBC feed

    NASA Technical Reports Server (NTRS)

    Homburg, E.

    1977-01-01

    Dense phase pneumatic conveying and the Acton Mass Flow concept are defined with emphasis on the specific advantages to the coal and dolomite feed to the Pressurized Fluidized Bed Combustor. The transport and feed functions are explored with a comparison of designing the process for a combined function or for individual functions. The equipment required to accomplish these functions is described together with a typical example of sizing and air or gas requirements. A general outline of the control system required to obtain a uniform feed rate is provided. The condition of the coal and dolomite and conveying gas as required to obtain reliable transport and feed will be discussed.

  12. Information Measures for Multisensor Systems

    DTIC Science & Technology

    2013-12-11

    permuted to generate spectra that were non- physical but preserved the entropy of the source spectra. Another 1000 spectra were constructed to mimic co...Research Laboratory (NRL) has yielded probabilistic models for spectral data that enable the computation of information measures such as entropy and...22308 Chemical sensing Information theory Spectral data Information entropy Information divergence Mass spectrometry Infrared spectroscopy Multisensor

  13. Interferometric Rayleigh Scattering Measurement System

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel (Inventor); Danehy, Paul M. (Inventor); Lee, Joseph W. (Inventor)

    2008-01-01

    A method and apparatus for performing simultaneous multi-point measurements of multiple velocity components in a gas flow is described. Pulses of laser light are directed to a measurement region of unseeded gas to produce Rayleigh or Mie scattered light in a plurality of directions. The Rayleigh or Mie scattered light is collected from multiple directions and combined in a single collimated light beam. The Rayleigh or Mie scattered light is then mixed together with a reference laser light before it is passed through a single planar Fabry-Perot interferometer for spectral analysis. At the output of the interferometer, a high-sensitivity CCD camera images the interference fringe pattern. This pattern contains the spectral and spatial information from both the Rayleigh scattered light and the reference laser light. Interferogram processing software extracts and analyzes spectral profiles to determine the velocity components of the gas flow at multiple points in the measurement region. The Rayleigh light rejected by the interferometer is recirculated to increase the accuracy and the applicability of the method for measurements at high temperatures without requiring an increase in the laser energy.

  14. Applying Real Options for Evaluating Investments in ERP Systems

    NASA Astrophysics Data System (ADS)

    Nakagane, Jun; Sekozawa, Teruji

    This paper intends to verify effectiveness of real options approach for evaluating investments in Enterprise Resource Planning systems (ERP) and proves how important it is to disclose shadow options potentially embedded in ERP investment. The net present value (NPV) method is principally adopted to evaluate the value of ERP. However, the NPV method assumes no uncertainties exist in the object. It doesn't satisfy the current business circumstances which are filled with dynamic issues. Since the 1990s the effectiveness of option pricing models for Information System (IS) investment to solve issues in the NPV method has been discussed in the IS literature. This paper presents 3 business cases to review the practical advantages of such techniques for IS investments, especially ERP investments. The first case is EDI development. We evaluate the project by a new approach with lighting one of shadow options, EDI implementation. In the second case we reveal an ERP investment has an “expanding option” in a case of eliminating redundancy. The third case describes an option to contract which is deliberately slotted in ERP development to prepare transferring a manufacturing facility.

  15. Basic and Applied Aspects of Color Tuning of Bioluminescence Systems

    NASA Astrophysics Data System (ADS)

    Ohmiya, Yoshihiro

    2005-09-01

    V. Viviani et al. [Biochemistry 38 (1999) 8271] were the first to succeed in cloning the red-emitting enzyme from the South American railroad worm, which is the only bioluminescent organism known to emit a red-colored light. The application of red bioluminescence has been our goal because the transmittance of longer-wavelength light is superior to that of the other colors for visualization of biological functions in living cells. Now, different color luciferases, which emit with wavelength maxima ranging from 400 to 630 nm, are available and are being used. For example, based on different color luciferases, Nakajima et al. developed a tricolor reporter in vitro assay system based on these different color luciferases in which the expression of three genes can be monitored simultaneously. On the other hand, bioluminescence resonance energy transfer (BRET) is a natural phenomenon caused by the intermolecular interaction between a bioluminescent protein and a fluorophore on a second protein, resulting in the light from the bioluminescence reaction having the spectrum of the fluorophore. Otsuji et al. [Anal. Biochem. 329 (2004) 230] showed that the change in the efficiency of energy transfer in intramolecular BRET can quantify cellular functions in living cells. In this review, I introduce the basic mechanisms of color tuning in bioluminescent systems and new applications based on color tuning in the life sciences.

  16. The Significant Structure Theory Applied to a Mesophase System

    PubMed Central

    Ma, Shao-mu; Eyring, H.

    1975-01-01

    The significant structure theory of liquids is extended to the mesophase system with p-azoxyanisole as an example. This compound has two different structures, a nematic phase and an isotropic phase, in its liquid state. In this study the nematic phase is treated as subject to a second volume and temperature-dependent degeneracy formally like that due to melting. The isotropic phase is treated as a normal liquid. The specific heat, thermal expansion coefficient, compressibility, volume, entropy of transitions, and heat of transitions are calculated and compared to the observed values. This analysis differs from previous ones in including the volume dependence as well as the temperature dependence in one explicit expression for the Helmholtz free energy. PMID:16592217

  17. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  18. Tree canopy radiance measurement system

    NASA Technical Reports Server (NTRS)

    Caldwell, William; Vanderbilt, V. C.

    1989-01-01

    A system is described for obtaining both an estimate of the spatial mean bidirectional reflectance factor (BRF) for a tree canopy (displaying a horizontally heterogeneous foliage distribution) and the statistical significance of that estimate. The system includes a manlift supporting a horizontal beam 7 m long on which are mounted four radiometers. These radiometers may be pointed, and radiance data acquired, in any of 11 view directions in the principal plane of the sun. A total of 80 data points, acquired in 3 min, were used to estimate the BRF of a walnut orchard 5 m tall and detect true differences of 12 percent of the mean approximately 90 percent of the time.

  19. Tree canopy radiance measurement system

    NASA Astrophysics Data System (ADS)

    Caldwell, William; Vanderbilt, V. C.

    1989-11-01

    A system is described for obtaining both an estimate of the spatial mean bidirectional reflectance factor (BRF) for a tree canopy (displaying a horizontally heterogeneous foliage distribution) and the statistical significance of that estimate. The system includes a manlift supporting a horizontal beam 7 m long on which are mounted four radiometers. These radiometers may be pointed, and radiance data acquired, in any of 11 view directions in the principal plane of the sun. A total of 80 data points, acquired in 3 min, were used to estimate the BRF of a walnut orchard 5 m tall and detect true differences of 12 percent of the mean approximately 90 percent of the time.

  20. Small satellite radiometric measurement system

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for the earth`s radiation budget. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted aircraft (RPAs). An example of the implementation of this radiometer on a small satellite is given. Significant benefits derive from simultaneous measurements of specific narrow (in wavelength) spectral features; such data may be obtained by combining LARI with a compact spectrometer on the same platform. Well-chosen satellite orbits allow one to use data from other satellites (e.g. DMSP) to enhance the data product, or to provide superior coverage of specific locations. 23 refs.

  1. Small satellite radiometric measurement system

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for the earth's radiation budget. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted aircraft (RPAs). An example of the implementation of this radiometer on a small satellite is given. Significant benefits derive from simultaneous measurements of specific narrow (in wavelength) spectral features; such data may be obtained by combining LARI with a compact spectrometer on the same platform. Well-chosen satellite orbits allow one to use data from other satellites (e.g. DMSP) to enhance the data product, or to provide superior coverage of specific locations. 23 refs.

  2. Bluetooth-based distributed measurement system

    NASA Astrophysics Data System (ADS)

    Tang, Baoping; Chen, Zhuo; Wei, Yuguo; Qin, Xiaofeng

    2007-07-01

    A novel distributed wireless measurement system, which is consisted of a base station, wireless intelligent sensors and relay nodes etc, is established by combining of Bluetooth-based wireless transmission, virtual instrument, intelligent sensor, and network. The intelligent sensors mounted on the equipments to be measured acquire various parameters and the Bluetooth relay nodes get the acquired data modulated and sent to the base station, where data analysis and processing are done so that the operational condition of the equipment can be evaluated. The establishment of the distributed measurement system is discussed with a measurement flow chart for the distributed measurement system based on Bluetooth technology, and the advantages and disadvantages of the system are analyzed at the end of the paper and the measurement system has successfully been used in Daqing oilfield, China for measurement of parameters, such as temperature, flow rate and oil pressure at an electromotor-pump unit.

  3. Automatic blood pressure measuring system (M092)

    NASA Technical Reports Server (NTRS)

    Nolte, R. W.

    1977-01-01

    The Blood Pressure Measuring System is described. It measures blood pressure by the noninvasive Korotkoff sound technique on a continual basis as physical stress is imposed during experiment M092, Lower Body Negative Pressure, and experiment M171, Metabolic Activity.

  4. Automatic blood pressure measuring system (M091)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Leg Volume Measuring System is used to measure leg calf girth changes that occur during exposure to lower body negative pressure as a result of pooling of blood and other fluids in the lower extremities.

  5. [Ultima ratio of the applied security measures in placing perpetrators in a psychiatric hospital].

    PubMed

    Hajdukiewicz, Danuta

    2006-01-01

    The meaning of articles on the main security measures concerned with placing the convict in a closed psychiatric unit is studied. Articles 93 & 94 section 1 of the penal code limit their application only as final measures--the ultima ratio. Art. 93 of the penal code pertains to the perpetrator of illegal actions in connection to their psychiatric illness, mental retardation, alcohol or other related substance addiction, along with a risk of the crime being committed once again, only when it will prevent the person from repeating the crime. The issues that need be considered are the following: psychic state of the perpetrator along with prediction of the risk of him repeating the act, but the liability evaluation and the degree of probability do not play any vital role. This is probably due to the fact that the measure described in art. 96 of the penal code has a limited time span (it cannot be any shorter than 3 months and longer than 2 years) and what is more; it can be applied instead of the punishment. Art. 94 section 1 of the penal code requires very precise evaluation of the risk of repetition in each case of a non-liable perpetrator guilty of conducting crime of serious social damage. This measure is not limited in time span, because it depends on the psychic state of the person under its influence. Henceforth it is considered as more restrictive.

  6. Statistical measures of complexity for quantum systems with continuous variables

    NASA Astrophysics Data System (ADS)

    Manzano, D.

    2012-12-01

    The Fisher-Shannon statistical measure of complexity is analyzed for a continuous manifold of quantum observables. It is shown that evaluating this measure only in the configuration or in the momentum spaces does not provide an adequate characterization of the complexity of some quantum systems. In order to obtain a more complete description of complexity two new measures, respectively based on the minimization and the integration of the usual Fisher-Shannon measure over all the parameter space, are proposed and compared. Finally, these measures are applied to the concrete case of a free particle in a box.

  7. Dynamical systems analysis applied to working memory data.

    PubMed

    Gasimova, Fidan; Robitzsch, Alexander; Wilhelm, Oliver; Boker, Steven M; Hu, Yueqin; Hülür, Gizem

    2014-01-01

    In the present paper we investigate weekly fluctuations in the working memory capacity (WMC) assessed over a period of 2 years. We use dynamical system analysis, specifically a second order linear differential equation, to model weekly variability in WMC in a sample of 112 9th graders. In our longitudinal data we use a B-spline imputation method to deal with missing data. The results show a significant negative frequency parameter in the data, indicating a cyclical pattern in weekly memory updating performance across time. We use a multilevel modeling approach to capture individual differences in model parameters and find that a higher initial performance level and a slower improvement at the MU task is associated with a slower frequency of oscillation. Additionally, we conduct a simulation study examining the analysis procedure's performance using different numbers of B-spline knots and values of time delay embedding dimensions. Results show that the number of knots in the B-spline imputation influence accuracy more than the number of embedding dimensions.

  8. Precision Antenna Measurement System (PAMS) Engineering Services

    DTIC Science & Technology

    1978-04-01

    Any variation of these variables are classified as errors. The first step is to divide the sources of error into two groups , namely system and...collecting the data fall into two groups . First, the system and bias errors are measured. These measurements are made with stationary signal sources...becomes available. The s.econd group of measurements will concern themselves with the dynamic errors. This group of measurements can be accomplished

  9. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  10. Applying axiomatic design to a medication distribution system

    NASA Astrophysics Data System (ADS)

    Raguini, Pepito B.

    As the need to minimize medication errors drives many medical facilities to come up with robust solutions to the most common error that affects patient's safety, these hospitals would be wise to put a concerted effort into finding methodologies that can facilitate an optimized medical distribution system. If the hospitals' upper management is looking for an optimization method that is an ideal fit, it is just as important that the right tool be selected for the application at hand. In the present work, we propose the application of Axiomatic Design (AD), which is a process that focuses on the generation and selection of functional requirements to meet the customer needs for product and/or process design. The appeal of the axiomatic approach is to provide both a formal design process and a set of technical coefficients for meeting the customer's needs. Thus, AD offers a strategy for the effective integration of people, design methods, design tools and design data. Therefore, we propose the AD methodology to medical applications with the main objective of allowing nurses the opportunity to provide cost effective delivery of medications to inpatients, thereby improving quality patient care. The AD methodology will be implemented through the use of focused stores, where medications can be readily stored and can be conveniently located near patients, as well as a mobile apparatus that can also store medications and is commonly used by hospitals, the medication cart. Moreover, a robust methodology called the focused store methodology will be introduced and developed for both the uncapacitated and capacitated case studies, which will set up an appropriate AD framework and design problem for a medication distribution case study.

  11. Evaluation of atrazine degradation applied to different energy systems.

    PubMed

    Moreira, Ailton J; Pinheiro, Bianca S; Araújo, André F; Freschi, Gian P G

    2016-09-01

    Atrazine is an herbicide widely used in crops and has drawn attention due to potential pollution present in soil, sediment, water, and food. Since conventional methods are not potentially efficient to persistent degradation of organic compounds, new technology has been developed to remove them, especially practices utilizing advanced oxidation processes (AOPs). This work aims to evaluate the use of different energies (ultraviolet (UV), microwaves (MW), and radiations (MW-UV)) to the herbicide atrazine through the process of photo-oxidation. These systems found degradation rates of around 12 % (UV), 28 % (MW), and 83 % (MW-UV), respectively, with time intervals of 120 s. After the photolytic processes, the samples were analyzed at a wavelength scanning the range of 190 to 300 nm, where the spectral analysis of the signal was used to evaluate the degradation of atrazine and the appearance of some other peaks (degradation products). The spectrum evaluation resulting from photolytic processes gave rise to a new signal which was confirmed by chromatography. This spectrum indicated the possible pathway of atrazine degradation by the process of photolytic MW-UV, generating atrazine-2-hydroxy, atrazine-desethyl-2-hidroxy, and atrazine-desisopropyl-2-hydroxy. The process indicated that in all situations, chloride was present in the analytic structure and was substituted by a hydroxyl group, which lowered the toxicity of the compound through the photolytic process MW-UV. Chromatographic analysis ascertained these preliminary assessments using spectrophotometry. It was also significantly observed that the process can be optimized by adjusting the pH of the solution, which was evident by an improvement of 10 % in the rate of degradation when subjected to a pH solution equal to 8.37.

  12. High resolution frequency to time domain transformations applied to the stepped carrier MRIS measurements

    NASA Technical Reports Server (NTRS)

    Ardalan, Sasan H.

    1992-01-01

    Two narrow-band radar systems are developed for high resolution target range estimation in inhomogeneous media. They are reformulations of two presently existing systems such that high resolution target range estimates may be achieved despite the use of narrow bandwidth radar pulses. A double sideband suppressed carrier radar technique originally derived in 1962, and later abandoned due to its inability to accurately measure target range in the presence of an interfering reflection, is rederived to incorporate the presence of an interfering reflection. The new derivation shows that the interfering reflection causes a period perturbation in the measured phase response. A high resolution spectral estimation technique is used to extract the period of this perturbation leading to accurate target range estimates independent of the signal-to-interference ratio. A non-linear optimal signal processing algorithm is derived for a frequency-stepped continuous wave radar system. The resolution enhancement offered by optimal signal processing of the data over the conventional Fourier Transform technique is clearly demonstrated using measured radar data. A method for modeling plane wave propagation in inhomogeneous media based on transmission line theory is derived and studied. Several simulation results including measurement of non-uniform electron plasma densities that develop near the heat tiles of a space re-entry vehicle are presented which verify the validity of the model.

  13. Development of a surface panel measurement system

    NASA Technical Reports Server (NTRS)

    Jones, D. L.

    1981-01-01

    Reflector measurement systems are studied in support of the reshaping of the 34 meter antenna at Goldstone. The requirements for measurement systems are presented. A survey is made of the surface errors of existing antennas. Reflector measurement systems are divided into three categories and representative examples of each category are illustrated and discussed. Parametric error analyses are made of selected optical systems. The existing measurement method using a theodolite at the vertex is retained. A method using a theodolite on the RF cone is a possible variant.

  14. Optimetric system facilitates colorimetric and fluorometric measurements

    NASA Technical Reports Server (NTRS)

    Haley, F. C.

    1968-01-01

    Compact, unitary optimetric systems uses a single device for colorimetric, fluorometric and spectral absorption measurements. The basic element of the unitary systems is a test cell containing filter elements with uniquely fabricated lenses.

  15. CW Measurement System. Software System Maintenance Manual.

    DTIC Science & Technology

    1982-04-02

    021 U) 0 N 39 LU~~U Z.>Zu LLI- > >) C) I.- 3 (A 4 4 Z==!)9a U5 LL L-T- U)9 -C6 - 0 Threat waveform task. This task generates threat waveform files...from the imaginary part is S 2 r+ - Ll si w t + (b2 b) sinl ~t + * + b sin nt] (33) t 30 Scaling the integrals by then yields the inverse transform in...the Digital Equipment Corporation trans- operating system editor. It allows creation and modification of Flecs, Fortran, or Macro- ll source files

  16. GPS synchronized power system phase angle measurements

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  17. Distinguishing Pattern Formation Phenotypes: Applying Minkowski Functionals to Cell Biology Systems

    NASA Astrophysics Data System (ADS)

    Rericha, Erin; Guven, Can; Parent, Carole; Losert, Wolfgang

    2011-03-01

    Spatial Clustering of proteins within cells or cells themselves frequently occur in cell biology systems. However quantifying the underlying order and determining the regulators of these cluster patterns have proved difficult due to the inherent high noise levels in the systems. For instance the patterns formed by wild type and cyclic-AMP regulatory mutant Dictyostelium cells are visually distinctive, yet the large error bars in measurements of the fractal number, area, Euler number, eccentricity, and wavelength making it difficult to quantitatively distinguish between the patterns. We apply a spatial analysis technique based on Minkowski functionals and develop metrics which clearly separate wild type and mutant cell lines into distinct categories. Having such a metric facilitated the development of a computational model for cellular aggregation and its regulators. Supported by NIH-NGHS Nanotechnology (R01GM085574) and the Burroughs Wellcome Fund.

  18. Blade Displacement Measurement Technique Applied to a Full-Scale Rotor Test

    NASA Technical Reports Server (NTRS)

    Abrego, Anita I.; Olson, Lawrence E.; Romander, Ethan A.; Barrows, Danny A.; Burner, Alpheus W.

    2012-01-01

    Blade displacement measurements using multi-camera photogrammetry were acquired during the full-scale wind tunnel test of the UH-60A Airloads rotor, conducted in the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel. The objectives were to measure the blade displacement and deformation of the four rotor blades as they rotated through the entire rotor azimuth. These measurements are expected to provide a unique dataset to aid in the development and validation of rotorcraft prediction techniques. They are used to resolve the blade shape and position, including pitch, flap, lag and elastic deformation. Photogrammetric data encompass advance ratios from 0.15 to slowed rotor simulations of 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. An overview of the blade displacement measurement methodology and system development, descriptions of image processing, uncertainty considerations, preliminary results covering static and moderate advance ratio test conditions and future considerations are presented. Comparisons of experimental and computational results for a moderate advance ratio forward flight condition show good trend agreements, but also indicate significant mean discrepancies in lag and elastic twist. Blade displacement pitch measurements agree well with both the wind tunnel commanded and measured values.

  19. Testing of evaluation methods applied to raw infiltration data measured at very heterogeneous mountain forest soils

    NASA Astrophysics Data System (ADS)

    Jacka, Lukas; Pavlasek, Jirka; Pech, Pavel

    2016-04-01

    In order to obtain infiltration parameters and analytical expressions of the cumulative infiltration and infiltration rate, raw infiltration data are often evaluated using various infiltration equations. Knowledge about the evaluation variability of these equations in the specific case of extremely heterogeneous soils provides important information for many hydrological and engineering applications. This contribution presents an evaluation of measured data using five well-established physically-based equations and empirical equations, and makes a comparison of these procedures. Evaluation procedures were applied to datasets measured on three different sites of hydrologically important mountain podzols. A total of 47 single ring infiltration experiments were evaluated using these procedures. From the quality-of-fit perspective, all of the tested equations characterized most of the raw datasets properly. In a few cases, some of the physically-based equations led to poor fits of the datasets measured on the most heterogeneous site (characterized by the lowest depth of the organic horizon, and more bleached eluvial horizon than on the other tested sites). For the parameters evaluated on this site, the sorptivity estimates and the saturated hydraulic conductivity (Ks) estimates were distinctly different between the tested procedures.

  20. Measurement of pressures up to 7 MPa applying pressure balances for dielectric-constant gas thermometry

    NASA Astrophysics Data System (ADS)

    Zandt, Thorsten; Sabuga, Wladimir; Gaiser, Christof; Fellmuth, Bernd

    2015-10-01

    For the determination of the Boltzmann constant by dielectric-constant gas thermometry, the uncertainty of pressure measurements in helium up to 7 MPa has been decreased compared with previous achievements (Sabuga 2011 PTB-Mitt. 121 247-55). This was possible by performing comprehensive cross-float experiments with a system of six special pressure balances and the synchronization of their effective areas. It is now possible to measure a helium pressure of 7 MPa with a relative standard uncertainty of 1.0 ppm applying a 2 cm2 piston-cylinder unit, the calibration of which is traceable to the SI base units.

  1. Multi-interferometric displacement measurement system with variable measurement mirrors.

    PubMed

    Chang, Chung-Ping; Tung, Pi-Cheng; Shyu, Lih-Horng; Wang, Yung-Cheng; Manske, Eberhard

    2013-06-10

    Laser interferometers have been widely implemented for the displacement sensing and positioning calibration of the precision mechanical industry, due to their excellent measuring features and direct traceability to the dimensional definition. Currently some kinds of modified Fabry-Perot interferometers with a planar mirror or a corner cube prism as the measurement mirror have been proposed. Each optical structure of both models has the individual particularity and performance for measuring applications. In this investigation, a multi-interferometric displacement system has been proposed whose measurement mirror can be quickly and conveniently altered with a planar mirror or a corner cube reflector depending on the measuring demand. Some experimental results and analyses about the interpolation error and displacement measurements with both reflectors have been demonstrated. According to the results, suggestions about the choice of a measuring reflector and interpolation model have been presented. With the measuring verifications, the developed system with a maximum standard deviation less than 0.2081 μm in measuring range of 300 mm would be a compact and robust tool for sensing or calibrating the linear displacement of mechanical equipment.

  2. First Airborne Lidar Measurements of Methane and Carbon Dioxide Applying the MERLIN Demonstrator CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, Axel; Büdenbender, Christian; Ehret, Gerhard; Fix, Andreas; Gerbig, Christoph; Kiemle, Chritstoph; Quatrevalet, Mathieu; Wirth, Martin

    2016-04-01

    CHARM-F is the new airborne four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4. Due to its high technological conformity it is also a demonstrator for MERLIN, the French-German satellite mission providing a methane lidar. MERLIN's Preliminary Design Review was successfully passed recently. The launch is planned for 2020. First CHARM-F measurements were performed in Spring 2015 onboard the German research aircraft HALO. The aircraft's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, result in data similar to those obtained by a spaceborne system. The CHARM-F and MERLIN lidars are designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between the system and ground. The successfully completed CHARM-F flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. Furthermore, the dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on system design questions. These activities are supported by another instrument onboard the aircraft during the flight campaign: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the aircraft lidar. For the near future, detailed characterizations of CHARM-F are planned, further support of the MERLIN design, as well as the scientific aircraft campaign CoMet.

  3. The iterative complex demodulation applied on short and long Schumann resonance measured sequences

    NASA Astrophysics Data System (ADS)

    Ondrášková, Adriena; Ševčík, Sebastián

    2014-12-01

    The precise determination of instantaneous frequency of Schumann resonance (SR) modes, with the possibility of application to relatively short signal sequences, seems to be important for detailed analysis of SR modal frequency variations. Contrary to commonly used method of obtaining modal frequencies by the Lorentz function fitting of DFT spectra, we employ the complex demodulation (CD) method in iterated form. Results of iterated CD method applied on short and long measured sequences are compared. Results for SR signals as well as the comparison with Lorentz function fitting are presented. Decrease of frequencies of all first four SR modes from the solar cycle maximum to solar cycle minimum has been found using also the CD method.

  4. Computing and Systems Applied in Support of Coordinated Energy, Environmental, and Climate Planning

    EPA Science Inventory

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: ...

  5. Designing Digital Control Systems With Averaged Measurements

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Beale, Guy O.

    1990-01-01

    Rational criteria represent improvement over "cut-and-try" approach. Recent development in theory of control systems yields improvements in mathematical modeling and design of digital feedback controllers using time-averaged measurements. By using one of new formulations for systems with time-averaged measurements, designer takes averaging effect into account when modeling plant, eliminating need to iterate design and simulation phases.

  6. Performance measurement for information systems: Industry perspectives

    NASA Technical Reports Server (NTRS)

    Bishop, Peter C.; Yoes, Cissy; Hamilton, Kay

    1992-01-01

    Performance measurement has become a focal topic for information systems (IS) organizations. Historically, IS performance measures have dealt with the efficiency of the data processing function. Today, the function of most IS organizations goes beyond simple data processing. To understand how IS organizations have developed meaningful performance measures that reflect their objectives and activities, industry perspectives on IS performance measurement was studied. The objectives of the study were to understand the state of the practice in IS performance techniques for IS performance measurement; to gather approaches and measures of actual performance measures used in industry; and to report patterns, trends, and lessons learned about performance measurement to NASA/JSC. Examples of how some of the most forward looking companies are shaping their IS processes through measurement is provided. Thoughts on the presence of a life-cycle to performance measures development and a suggested taxonomy for performance measurements are included in the appendices.

  7. A measuring system for surface roughness parameters

    NASA Astrophysics Data System (ADS)

    Han, Jinhong; Wang, Yunkai; Zhang, Xianfeng

    2006-11-01

    We designed a measurement and control system which can measure the surface roughness parameters with a Single Chip Micyoco (SCM) as its kernel. It uses an inductive transducer to pick up the data. The instrumental structure and the working principle are also introduced in this paper. The integrated hardware and software systems have been designed and improved. The prototype model was calibrated and the instrumental precision was analysed according to the measured data. In this system the surface roughness parameters can automatically be measured and controlled, such as data processing, determination of the reference line, disposal of the surface profile informations, display and print of the results etc.

  8. Measures of Autonomic Nervous System Regulation

    DTIC Science & Technology

    2011-04-01

    Cortisol Galvanic Skin Response (GSR) Gastro- intestinal Pupillary Response Respiratory Salivary Amylase Vascular Manipulative Body-Based...Salivary Amylase Galvanic Skin Response Vascular Gastrointestinal The ANS Measures Table in Appendix A provides a summary of over fifty tools...Measures of Autonomic Nervous System Regulation Salivary Amylase Measurement

  9. Direct strike lightning measurement system. [for aircraft

    NASA Technical Reports Server (NTRS)

    Thomas, M. E.

    1981-01-01

    A research data system developed for in-flight measurement of direct and nearby lightning-strike characteristics is described. The measurement system consists of a wide-band analog recorder which records the continuous lightning scenario and fast sample-rate digital transient recorders with augmented memory capacity for increased time resolution of specific times of interest. Electromagnetic sensors with bandwidths exceeding 100 MHz are used which respond to rates of change of the quantities being measured. Data system immunity from electromagnetic interference is accomplished by the use of a dynamotor for power isolation, shielded system enclosure and fiber-optic data links.

  10. Improving and Applying the Measurement of Erodibility: Examining and Calibrating Rock Mass Indices

    NASA Astrophysics Data System (ADS)

    Rodriguez, R. S.; Spotila, J. A.

    2011-12-01

    The Rock Mass Strength index (Selby, 1980) has become a standard test in geomorphology to quantify rock erodibility. Yet, the index combines a mixture of quantitative and qualitative parameters, yielding classification disparities arising from subjective user interpretations and producing final ratings that are effectively only comparable within a single researcher's dataset. Other methods, such as the Rock Quality Designation (Deere and Deere, 1988) and the Slope Mass Rating system (Bieniawski, 1989; Romana, 1995) employ some additional quantitative methods, but do not eliminate variability in user interpretation. Still, the idea of quantifying erodibility in an easily-applied field method holds great potential for furthering the understanding of large-scale landscape evolution. Therefore, we are applying several published and unpublished erodibility indices across a suite of rock types, varying the relative weights of index parameters and calculating ratings based on various potential interpretations of the index guidelines. To evaluate these results, we regress the iterations against the mean topographic slopes, allowing us to determine which index and weighting scheme is ideal overall. Results thus far have shown discrepancies between rating and slope in rocks that are more susceptible to chemical weathering (a parameter not typically included in erodibility indices). We are therefore examining the addition of chemical composition as an index parameter, or the possibility of creating weighting schema tailored to specific rock types and erosional environments. Preliminary results also suggest that beyond a threshold fracture density, high compressive rock strength is rendered moot, requiring further modification to existing indices.

  11. Measuring the ROI on Knowledge Management Systems.

    ERIC Educational Resources Information Center

    Wickhorst, Vickie

    2002-01-01

    Defines knowledge management and corporate portals and provides a model that can be applied to assessing return on investment (ROI) for a knowledge management solution. Highlights include leveraging knowledge in an organization; assessing the value of human capital; and the Intellectual Capital Performance Measurement Model. (LRW)

  12. Non-Linear Optimization Applied to Angle-of-Arrival Satellite-Based Geolocation with Correlated Measurements

    DTIC Science & Technology

    2015-03-01

    NON-LINEAR OPTIMIZATION APPLIED TO ANGLE-OF-ARRIVAL SATELLITE -BASED GEOLOCATION WITH CORRELATED MEASUREMENTS THESIS Joshua S. Sprang, 2d Lt, USAF...APPLIED TO ANGLE-OF-ARRIVAL SATELLITE -BASED GEOLOCATION WITH CORRELATED MEASUREMENTS THESIS Presented to the Faculty Department of Electrical and Computer...ARRIVAL SATELLITE -BASED GEOLOCATION WITH CORRELATED MEASUREMENTS THESIS Joshua S. Sprang, B.S.E.E., B.S.Cp.E 2d Lt, USAF Committee Membership: Dr. A

  13. Screw thread parameter measurement system based on image processing method

    NASA Astrophysics Data System (ADS)

    Rao, Zhimin; Huang, Kanggao; Mao, Jiandong; Zhang, Yaya; Zhang, Fan

    2013-08-01

    In the industrial production, as an important transmission part, the screw thread is applied extensively in many automation equipments. The traditional measurement methods of screw thread parameter, including integrated test methods of multiparameters and the single parameter measurement method, belong to contact measurement method. In practical the contact measurement exists some disadvantages, such as relatively high time cost, introducing easily human error and causing thread damage. In this paper, as a new kind of real-time and non-contact measurement method, a screw thread parameter measurement system based on image processing method is developed to accurately measure the outside diameter, inside diameter, pitch diameter, pitch, thread height and other parameters of screw thread. In the system the industrial camera is employed to acquire the image of screw thread, some image processing methods are used to obtain the image profile of screw thread and a mathematics model is established to compute the parameters. The C++Builder 6.0 is employed as the software development platform to realize the image process and computation of screw thread parameters. For verifying the feasibility of the measurement system, some experiments were carried out and the measurement errors were analyzed. The experiment results show the image measurement system satisfies the measurement requirements and suitable for real-time detection of screw thread parameters mentioned above. Comparing with the traditional methods the system based on image processing method has some advantages, such as, non-contact, easy operation, high measuring accuracy, no work piece damage, fast error analysis and so on. In the industrial production, this measurement system can provide an important reference value for development of similar parameter measurement system.

  14. Applying Toyota production system techniques for medication delivery: improving hospital safety and efficiency.

    PubMed

    Newell, Terry L; Steinmetz-Malato, Laura L; Van Dyke, Deborah L

    2011-01-01

    The inpatient medication delivery system used at a large regional acute care hospital in the Midwest had become antiquated and inefficient. The existing 24-hr medication cart-fill exchange process with delivery to the patients' bedside did not always provide ordered medications to the nursing units when they were needed. In 2007 the principles of the Toyota Production System (TPS) were applied to the system. Project objectives were to improve medication safety and reduce the time needed for nurses to retrieve patient medications. A multidisciplinary team was formed that included representatives from nursing, pharmacy, informatics, quality, and various operational support departments. Team members were educated and trained in the tools and techniques of TPS, and then designed and implemented a new pull system benchmarking the TPS Ideal State model. The newly installed process, providing just-in-time medication availability, has measurably improved delivery processes as well as patient safety and satisfaction. Other positive outcomes have included improved nursing satisfaction, reduced nursing wait time for delivered medications, and improved efficiency in the pharmacy. After a successful pilot on two nursing units, the system is being extended to the rest of the hospital.

  15. KRON's Method Applied to the Study of Electromagnetic Interference Occurring in Aerospace Systems

    NASA Astrophysics Data System (ADS)

    Leman, S.; Reineix, A.; Hoeppe, F.; Poiré, Y.; Mahoudi, M.; Démoulin, B.; Üstüner, F.; Rodriquez, V. P.

    2012-05-01

    In this paper, spacecraft and aircraft mock-ups are used to simulate the performance of KRON based tools applied to the simulation of large EMC systems. These tools aim to assist engineers in the design phase of complex systems. This is done by effectively evaluating the EM disturbances between antennas, electronic equipment, and Portable Electronic Devices found in large systems. We use a topological analysis of the system to model independent sub-volumes such as antennas, cables, equipments, PED and cavity walls. Each of these sub- volumes is modelled by an appropriate method which can be based on, for example, analytical expressions, transmission line theory or other numerical tools such as the full wave FDFD method. This representation associated with the electrical tensorial method of G.KRON leads to reasonable simulation times (typically a few minutes) and accurate results. Because equivalent sub-models are built separately, the main originality of this method is that each sub- volume can be easily replaced by another one without rebuilding the entire system. Comparisons between measurements and simulations will be also presented.

  16. The Fork+ burnup measurement system: Design and first measurement campaign

    SciTech Connect

    Olson, C.E.; Bronowski, D.R.; McMurtry, W.; Ewing, R.; Jordan, R.; Rivard, D.

    1998-12-31

    Previous work with the original Fork detector showed that burnup as determined by reactor records could be accurately allocated to spent nuclear fuel assemblies. The original Fork detector, designed by Los Alamos National Laboratory, used an ion chamber to measure gross gamma count and a fission chamber to measure neutrons from an activation source, {sup 244}Cm. In its review of the draft Topical Report on Burnup Credit, the US Nuclear Regulatory Commission indicated it felt uncomfortable with a measurement system that depended on reactor records for calibration. The Fork+ system was developed at Sandia National Laboratories under the sponsorship of the Electric Power Research Institute with the aim of providing this independent measurement capability. The initial Fork+ prototype was used in a measurement campaign at the Maine Yankee reactor. The campaign confirmed the applicability of the sensor approach in the Fork+ system and the efficiency of the hand-portable Fork+ prototype in making fuel assembly measurements. It also indicated potential design modifications that will be necessary before the Fork+ can be used effectively on high-burnup spent fuel.

  17. Noise levels from a model turbofan engine with simulated noise control measures applied

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Woodward, Richard P.

    1993-01-01

    A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.

  18. Measurement of forces applied during Macintosh direct laryngoscopy compared with GlideScope® videolaryngoscopy.

    PubMed

    Russell, T; Khan, S; Elman, J; Katznelson, R; Cooper, R M

    2012-06-01

    Laryngoscopy can induce stress responses that may be harmful in susceptible patients. We directly measured the force applied to the base of the tongue as a surrogate for the stress response. Force measurements were obtained using three FlexiForce Sensors(®) (Tekscan Inc, Boston, MA, USA) attached along the concave surface of each laryngoscope blade. Twenty-four 24 adult patients of ASA physical status 1-2 were studied. After induction of anaesthesia and neuromuscular blockade, laryngoscopy and tracheal intubation was performed using either a Macintosh or a GlideScope(®) (Verathon, Bothell, WA, USA) laryngoscope. Complete data were available for 23 patients. Compared with the Macintosh, we observed lower median (IQR [range]) peak force (9 (5-13 [3-25]) N vs 20 (14-28 [4-41]) N; p = 0.0001), average force (5 (3-7 [2-19]) N vs 11 (6-16 [1-24]) N; p = 0.0003) and impulse force (98 (42-151 [26-444]) Ns vs 150 (93-207 [17-509]) Ns; p = 0.017) with the GlideScope. Our study shows that the peak lifting force on the base of the tongue during laryngoscopy is less with the GlideScope videolaryngoscope compared with the Macintosh laryngoscope.

  19. Applying the Many-Facet Rasch Measurement Model to Explore Reviewer Ratings of Conference Proposals.

    PubMed

    Bradley, Kelly D; Peabody, Michael R; Mensah, Richard K

    For academic conferences, when proposals are submit they are often judged using a rating scale on identified criterion by reviewers who have a shared interest and expertise in the area under consideration. Given the multiple and varied reviewers, an analysis of psychometric properties like rater severity and consistency are important. However, many of the problems that plague the conference proposal selection process are the same issues that plague survey research: rater bias/severity, misuse of rating scale, and the use of raw scores as measures. We propose the use of the many-facet Rasch measurement model (MFRM) to combat these shortcomings and improve the quality of the conference proposal selection process. A set of American Educational Research Association (AERA) Special Interest Group (SIG) proposals is used as an example. The results identify proposals that were accepted based on calculating the mean of summed raw scores, but when MFRM is applied to adjust for judge severity the rank order of the proposals is substantially altered.

  20. Assessing the capabilities of patternshop measurement systems

    SciTech Connect

    Peters, F.E.; Voigt, R.C.

    1995-12-01

    Casting customers continue to demand tighter dimensional tolerances for casting features. The foundry then places demands on the patternshop to produce more accurate patterns. Control of all sources of dimensional variability, including measurement system variability in the foundry and patternshop, is important to insure casting accuracy. Sources of dimensional casting errors will be reviewed, focusing on the importance of accurate patterns. The foundry and patternshop together must work within the tolerance limits established by the customer. In light of contemporary pattern tolerances, the patternshop must review its current measurement methods. The measurement instrument must have sufficient resolution to detect part variability. In addition, the measurement equipment must be used consistently by all patternmakers to insure adequacy of the measurement system. Without these precautions, measurement error can significantly contribute to overall pattern variability. Simple robust methods to check the adequacy of pattern measurement systems are presented. These tests will determine the variability that is contributed by the measurement equipment and by the operators. Steps to control measurement variability once it has been identified are also provided. Measurement system errors for various types of measurement equipment are compared to the allowable pattern tolerances, that are established together by the foundry and patternshop.

  1. Advanced Active-Magnetic-Bearing Thrust-Measurement System

    NASA Technical Reports Server (NTRS)

    Imlach, Joseph; Kasarda, Mary; Blumber, Eric

    2008-01-01

    -magnetic-bearing force-measurement systems is to calculate levitation forces on the basis of simple proportionalities between changes in those forces and changes in feedback-controlled currents applied to levitating electromagnetic coils. In the prior systems, the effects of gap lengths on fringing magnetic fields and the concomitant effects on magnetic forces were neglected. In the present system, the control subsystems of the active magnetic bearings are coupled with a computer-based automatic calibration system running special-purpose software wherein gap-length-dependent fringing factors are applied to current and magnetic-flux-based force equations and combined with a multipoint calibration method to obtain greater accuracy.

  2. A miniature all-solid-state calcium electrode applied to in situ seawater measurement

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Wang, You; Luo, Zhiyuan; Pan, Yiwen

    2013-12-01

    An all-solid-state miniature calcium ion selective electrode (ISE) based on poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT(PSS)) for continuous in situ measurement in seawater was studied. The electrode substrate was a platinum (Pt) wire of 0.5 mm diameter and PEDOT(PSS) was electropolymerized on one end of the Pt wire to act as the solid contact of this calcium ISE. The PEDOT(PSS) layer was covered with a calcium-selective poly(vinyl chloride) membrane, which contained ETH129 as calcium ionophore, potassium tetrakis-(p-chlorophenyl)borate as lipophilic anion and bis(2-ethylhexyl) sebacate as the plasticizer. Experiments using electrochemical impedance spectroscopy and reversed chronopotentiometry illustrated that electropolymerized PEDOT(PSS) decreased the resistance and improved the stability of the electrode. The sensors can work stably in the calcium ion concentration range of 10-6-10-1 mol L-1 with the slope of 27.7 mV/decade. Also Na+, K+ and Mg2+ can hardly interfere with the performance of the electrode. This electrode was applied to measure the calcium ion concentration of seawater samples. The experimental data showed that the electrode can resist the corrosion of seawater and its reproducibility was good (SD < 0.1 mM kg-1). The lifetime of such an electrode was at least six months. Because of the wire-shape and the small size of such a liquid junction free calcium electrode, it is pressure-resistant and easy to package and seal, therefore it is suitable for use in underwater equipment for in situ seawater measurement.

  3. Methodical aspects of blood coagulation measurements in birds applying commercial reagents--a pilot study.

    PubMed

    Guddorf, Vanessa; Kummerfeld, Norbert; Mischke, Reinhard

    2014-01-01

    The aim of this study was to examine the suitability of commercially available reagents for measurements of coagulation parameters in citrated plasma from birds. Therefore, plasma samples of 17 healthy donor birds of different species were used to determine prothrombin time (PT), activated partial thromboplastin time (aPTT) and thrombin time (TT) applying various commercial reagents which are routinely used in coagulation diagnostics in humans and mammals. A PT reagent based on human placental thromboplastin yielded not only shorter clotting times than a reagent containing recombinant human tissue factor (median 49 vs. 84 s), but also showed a minor range of distribution of values (43-55 s vs. 30-147 s, minimum-maximum, n = 5 turkeys). An aPTT reagent containing kaolin and phospholipids of animal origin delivered the shortest clotting times and the lowest range of variation in comparison to three other reagents of different composition. However, even when this reagent was used, aPTTs were partially extremely long (> 200 s). Thrombin time was 38 s (28-57 s, n = 5 chicken) when measured with bovine thrombin at a final concentration of 2 IU thrombin/ ml. Coefficients of variation for within-run precision analysis (20 repetitions) of PT was 8.0% and 4.7% for aPTT measurements using selected reagents of mammalian origin. In conclusion, of the commercially available reagents tested, a PT reagent based on human placental thromboplastin and an aPTT reagent including rabbit brain phospholipid and kaolin, show some promise for potential use in birds.

  4. Turbine gas temperature measurement and control system

    NASA Technical Reports Server (NTRS)

    Webb, W. L.

    1973-01-01

    A fluidic Turbine Inlet Gas Temperature (TIGIT) Measurement and Control System was developed for use on a Pratt and Whitney Aircraft J58 engine. Based on engine operating requirements, criteria for high temperature materials selection, system design, and system performance were established. To minimize development and operational risk, the TIGT control system was designed to interface with an existing Exhaust Gas Temperature (EGT) Trim System and thereby modulate steady-state fuel flow to maintain a desired TIGT level. Extensive component and system testing was conducted including heated (2300F) vibration tests for the fluidic sensor and gas sampling probe, temperature and vibration tests on the system electronics, burner rig testing of the TIGT measurement system, and in excess of 100 hours of system testing on a J58 engine. (Modified author abstract)

  5. Measuring Fiscal Capacity of School Systems.

    ERIC Educational Resources Information Center

    Green, Harry A.

    Ways of measuring the fiscal capacity of school systems are examined in this paper, which presents a representative tax system model. Fiscal capacity is influenced by factors other than tax base size; the "ideal" model should address adjustments for variations in cost across communities and school systems. The first section examines the…

  6. Iterative precision measurement of branching ratios applied to 5P states in 88Sr+

    NASA Astrophysics Data System (ADS)

    Zhang, Helena; Gutierrez, Michael; Hao Low, Guang; Rines, Richard; Stuart, Jules; Wu, Tailin; Chuang, Isaac

    2016-12-01

    We report and demonstrate a method for measuring the branching ratios of dipole transitions of trapped atomic ions by performing nested sequences of population inversions. This scheme is broadly applicable to species with metastable lambda systems and can be generalized to find the branching of any state to lowest states. It does not use ultrafast pulsed or narrow linewidth lasers and is insensitive to experimental variables such as laser and magnetic field noise as well as ion heating. To demonstrate its effectiveness, we make the most accurate measurements thus far of the branching ratios of both 5{P}1/2 and 5{P}3/2 states in 88Sr+ with sub-1% uncertainties. We measure 17.175(27) for the 5{P}1/2-5{S}1/2 branching ratio, 15.845(71) for 5{P}3/2-5{S}1/2, and 0.056 09(21) for 5{P}3/2-4{D}5/2. These values represent the first precision measurement for 5{P}3/2-4{D}5/2, as well as ten- and thirty-fold improvements in precision respectively for 5{P}1/2-5{S}1/2 and 5{P}3/2-5{S}1/2 over the best previous experimental values.

  7. Radiation beam calorimetric power measurement system

    DOEpatents

    Baker, John; Collins, Leland F.; Kuklo, Thomas C.; Micali, James V.

    1992-01-01

    A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

  8. Detection system for ocular refractive error measurement.

    PubMed

    Ventura, L; de Faria e Sousa, S J; de Castro, J C

    1998-05-01

    An automatic and objective system for measuring ocular refractive errors (myopia, hyperopia and astigmatism) was developed. The system consists of projecting a light target (a ring), using a diode laser (lambda = 850 nm), at the fundus of the patient's eye. The light beams scattered from the retina are submitted to an optical system and are analysed with regard to their vergence by a CCD detector (matrix). This system uses the same basic principle for the projection of beams into the tested eye as some commercial refractors, but it is innovative regarding the ring-shaped measuring target for the projection system and the detection system where a matrix detector provides a wider range of measurement and a less complex system for the optical alignment. Also a dedicated electronic circuit was not necessary for treating the electronic signals from the detector (as the usual refractors do); instead a commercial frame grabber was used and software based on the heuristic search technique was developed. All the guiding equations that describe the system as well as the image processing procedure are presented in detail. Measurements in model eyes and in human eyes are in good agreement with retinoscopic measurements and they are also as precise as these kinds of measurements require (0.125D and 5 degrees).

  9. Applying a Bayesian Approach to Identification of Orthotropic Elastic Constants from Full Field Displacement Measurements

    NASA Astrophysics Data System (ADS)

    Gogu, C.; Yin, W.; Haftka, R.; Ifju, P.; Molimard, J.; Le Riche, R.; Vautrin, A.

    2010-06-01

    A major challenge in the identification of material properties is handling different sources of uncertainty in the experiment and the modelling of the experiment for estimating the resulting uncertainty in the identified properties. Numerous improvements in identification methods have provided increasingly accurate estimates of various material properties. However, characterizing the uncertainty in the identified properties is still relatively crude. Different material properties obtained from a single test are not obtained with the same confidence. Typically the highest uncertainty is associated with respect to properties to which the experiment is the most insensitive. In addition, the uncertainty in different properties can be strongly correlated, so that obtaining only variance estimates may be misleading. A possible approach for handling the different sources of uncertainty and estimating the uncertainty in the identified properties is the Bayesian method. This method was introduced in the late 1970s in the context of identification [1] and has been applied since to different problems, notably identification of elastic constants from plate vibration experiments [2]-[4]. The applications of the method to these classical pointwise tests involved only a small number of measurements (typically ten natural frequencies in the previously cited vibration test) which facilitated the application of the Bayesian approach. For identifying elastic constants, full field strain or displacement measurements provide a high number of measured quantities (one measurement per image pixel) and hence a promise of smaller uncertainties in the properties. However, the high number of measurements represents also a major computational challenge in applying the Bayesian approach to full field measurements. To address this challenge we propose an approach based on the proper orthogonal decomposition (POD) of the full fields in order to drastically reduce their dimensionality. POD is

  10. Schlieren technique applied to the arc temperature measurement in a high energy density cutting torch

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2010-01-15

    Plasma temperature and radial density profiles of the plasma species in a high energy density cutting arc have been obtained by using a quantitative schlieren technique. A Z-type two-mirror schlieren system was used in this research. Due to its great sensibility such technique allows measuring plasma composition and temperature from the arc axis to the surrounding medium by processing the gray-level contrast values of digital schlieren images recorded at the observation plane for a given position of a transverse knife located at the exit focal plane of the system. The technique has provided a good visualization of the plasma flow emerging from the nozzle and its interactions with the surrounding medium and the anode. The obtained temperature values are in good agreement with those values previously obtained by the authors on the same torch using Langmuir probes.

  11. Temperature measurement systems in wearable electronics

    NASA Astrophysics Data System (ADS)

    Walczak, S.; Gołebiowski, J.

    2014-08-01

    The aim of this paper is to present the concept of temperature measurement system, adapted to wearable electronics applications. Temperature is one of the most commonly monitored factor in smart textiles, especially in sportswear, medical and rescue products. Depending on the application, measured temperature could be used as an initial value of alert, heating, lifesaving or analysis system. The concept of the temperature measurement multi-point system, which consists of flexible screen-printed resistive sensors, placed on the T-shirt connected with the central unit and the power supply is elaborated in the paper.

  12. 40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... into mass units of pounds. (2) Volume measurements of each applied finish can be obtained with a flow measurement device. For each flow measurement device, you must perform the items listed in paragraphs (c)(2)(i... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS...

  13. 40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pounds. (2) Volume measurements of each applied finish can be obtained with a flow measurement device. For each flow measurement device, you must perform the items listed in paragraphs (c)(2)(i) through (v... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  14. 40 CFR 63.5385 - How do I measure the quantity of finish applied to the leather?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pounds. (2) Volume measurements of each applied finish can be obtained with a flow measurement device. For each flow measurement device, you must perform the items listed in paragraphs (c)(2)(i) through (v... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  15. Active transmission isolation/rotor loads measurement system

    NASA Technical Reports Server (NTRS)

    Kenigsberg, I. J.; Defelice, J. J.

    1973-01-01

    Modifications were incorporated into a helicopter active transmission isolation system to provide the capability of utilizing the system as a rotor force measuring device. These included; (1) isolator redesign to improve operation and minimize friction, (2) installation of pressure transducers in each isolator, and (3) load cells in series with each torque restraint link. Full scale vibration tests performed during this study on a CH-53A helicopter airframe verified that these modifications do not degrade the systems wide band isolation characteristics. Bench tests performed on each isolator unit indicated that steady and transient loads can be measured to within 1 percent of applied load. Individual isolator vibratory load measurement accuracy was determined to be 4 percent. Load measurement accuracy was found to be independent of variations in all basic isolator operating characteristics. Full scale system load calibration tests on the CH-53A airframe established the feasibility of simultaneously providing wide band vibration isolation and accurate measurement of rotor loads. Principal rotor loads (lift, propulsive force, and torque) were measured to within 2 percent of applied load.

  16. Laser Induced Breakdown Spectroscopy (LIBS) Applied to Reacting Gases for Mixture Ratio Measurement and Detection of Metallic Species

    DTIC Science & Technology

    2007-03-29

    et al, Laser Diagnostics of Painted Artworks: Laser Induced Breakdown Spectroscopy in Pigment Identification, Applied Spectroscopy , Vol. 51, No. 7...Laser-Induced Breakdown Spectroscopy for Online Engine Equivalence Ratio Measurements, Applied Spectroscopy , Vol. 57, No. 9, pp. 1183-1189, 2003. Fisher...A. K., at al. Flame Emission Spectroscopy for Equivalence Ratio Monitoring, Applied Spectroscopy , Vol. 52, No. 5, pp. 658-662, 1998. Laser Induced

  17. Three-component laser anemometer measurement systems

    NASA Technical Reports Server (NTRS)

    Goldman, Louis J.

    1991-01-01

    A brief overview of the different laser anemometer (LA) optical designs available is presented. Then, the LA techniques that can be used to design a three-component measurement system for annular geometries are described. Some of the facility design considerations unique to these LA systems are also addressed. Following this, the facilities and the LA systems that were used to successfully measure the three components of velocity in the blading of annular-flow machines are reviewed. Finally, possible LA system enhancements and future research directions are presented.

  18. THz wiggler applied for measurements of electron bunch longitudinal structure in FEL

    NASA Astrophysics Data System (ADS)

    Syresin, E.; Kostromin, S.; Krasilnikov, M.; Makarov, R.; Morozov, N.; Petrov, D.

    2015-01-01

    The infrared undulator manufactured at JINR and installed at FLASH in 2007 is used for longitudinal bunch shape measurements in the range of several tenths of a micrometer. The presented electromagnetic wiggler is intended for generating a narrow-band THz radiation to measure the longitudinal electron bunch structure in FELs with an electron energy of several tens of MeV. This is a planar electromagnetic device with six regular periods, each 30 cm long. The K parameter is varied in the range 0.5-7.12 corresponding to the range B = 0.025-0.356 T of the peak field on the axis. The wiggler is simulated for 19.8 MeV/ c corresponding to the possible FEL option at PITZ. The wavelength range is 126 μm - 5.1 mm for this electron beam momentum. The 3D Opera simulations of the THz wiggler are discussed. A new PITZ photocathode laser system is proposed for the optimized performance of the high-brightness electron beam. The main goal is a production of 3D ellipsoidal electron bunches with homogeneous charge density. The electromagnetic wiggler is supposed to be used for measuring the longitudinal shape of these electron bunches.

  19. Wide field of view laser beacon system for three dimensional aircraft range measurements

    NASA Technical Reports Server (NTRS)

    Wong, E. Y.

    1982-01-01

    A system that measures accurately the distance from an aircraft to a helicoper for rotor noise flight testing was developed. The system measures the range and angles between two aircraft using laser optics. This system can be applied in collision avoidance, robotics and other measurement critical tasks.

  20. Convective Effects During Diffusivity Measurements in Liquids with An Applied Magnetic Field

    NASA Technical Reports Server (NTRS)

    Khine, Yu Yu; Banish, R. Michael; Alexander, J. Iwan D.

    2003-01-01

    Convective contamination of self-diffusion experiments with an applied magnetic field is considered using a two-dimensional axisymmetric model. Constant, uniform, and an additional non-uniform heat fluxes are imposed along the sidewall of the cylinder while constant heat loss occurs through the top and bottom. In this model, due to a very small thermal Peclet number, convective heat transfer is neglected, and the flow is steady and inertialess. Time-dependent concentration is solved for various values of the mass Peclet number, Pe(sub m), (the ratio between the convective transport rate and the diffusive transport rate) and different magnetic field strengths represented by the Hartmann number Ha. Normalized values of these diffusivities vs. effective Pe(sub m) are presented for different imposed temperature profiles. In all cases, the diffusivity value obtained through the simulated measurement increases as the effective Pe(sub m) increases. The numerical results suggest that an additional periodic flux, or hot and cold spots, can significantly decrease the convective contamination in our geometry.

  1. Restricted Acoustic Modal Analysis Applied to Internal Combustor Spectra and Cross-Spectra Measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two Kulite pressure measurements is developed herein. It is applied to a Pratt & Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the new part of the treatment is the assumption that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present than circumferential mode m 2 is not. Consequently, in the analysis used herein at frequencies above the first cut-off mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. A new result is that the successful use of the same modal span frequencies over a range of operating conditions for this particular engine suggests that the temperature, T, and the velocity, v, of the flow at each operating condition are related by c(sup 2)-v(sup 2) = a constant where c is the speed of sound.

  2. Measurements @ Sub-Mm Spectroscopy Laboratory of Bologna: Rotational Spectroscopy Applied to Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Puzzarini, Cristina

    2016-06-01

    The physico-chemistry of the Earth's atmosphere has been one of the main subjects of studies over last years. In particular, the composition of the atmosphere is indeed very important to understand chemical processes linked to depletion of stratospheric ozone and greenhouse effect. The vertical concentration profiles of atmospheric gases can be provided by remote sensing measurements, but they require the accurate knowledge of the parameters involved: line positions, transition intensities, pressure-broadened half-widths, pressure-induced frequency shifts and their temperature dependence. In particular, the collisional broadening parameters have a crucial influence on the accuracy of spectra calculations and on reduction of remote sensing data. Rotational spectroscopy, thanks to its intrinsic high resolution, is a powerful tool for providing most of the information mentioned above: accurate or even very accurate rotational transition frequencies, accurate spectroscopic as well as hyperfine parameters, accurate pressure-broadening coefficients and their temperature dependence. With respect to collisional phenomena and line shape analysis studies, by applying the source frequency modulation technique it has been found that rotational spectroscopy may provide very good results: not only this technique does not produce uncontrollable instrumental distortions or broadenings, but also, having an high sensitivity, it is particularly suitable for this kind of investigations. A number of examples will be presented to illustrate the work carried out at the Laboratory of Millimeter/submillimeter-wave Spectroscopy of Bologna in the field of atmospheric studies.

  3. Restricted Modal Analysis Applied to Internal Annular Combustor Autospectra and Cross-Spectra Measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2007-01-01

    A treatment of the modal decomposition of the pressure field in a combustor as determined by two pressure time history measurements is developed herein. It is applied to a Pratt and Whitney PW4098 engine combustor over a range of operating conditions. For modes other than the plane wave the assumption is made that there are distinct frequency bands in which the individual modes, including the plane wave mode, overlap such that if circumferential mode m and circumferential mode m-1 are present then circumferential mode m-2 is not. In the analysis used herein at frequencies above the first cutoff mode frequency, only pairs of circumferential modes are individually present at each frequency. Consequently, this is a restricted modal analysis. As part of the analysis one specifies mode cut-on frequencies. This creates a set of frequencies that each mode spans. One finding was the successful use of the same modal span frequencies over a range of operating conditions for this particular engine. This suggests that for this case the cut-on frequencies are in proximity at each operating condition. Consequently, the combustion noise spectrum related to the circumferential modes might not change much with operating condition.

  4. Measurement System Characterization in the Presence of Measurement Errors

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.

    2012-01-01

    In the calibration of a measurement system, data are collected in order to estimate a mathematical model between one or more factors of interest and a response. Ordinary least squares is a method employed to estimate the regression coefficients in the model. The method assumes that the factors are known without error; yet, it is implicitly known that the factors contain some uncertainty. In the literature, this uncertainty is known as measurement error. The measurement error affects both the estimates of the model coefficients and the prediction, or residual, errors. There are some methods, such as orthogonal least squares, that are employed in situations where measurement errors exist, but these methods do not directly incorporate the magnitude of the measurement errors. This research proposes a new method, known as modified least squares, that combines the principles of least squares with knowledge about the measurement errors. This knowledge is expressed in terms of the variance ratio - the ratio of response error variance to measurement error variance.

  5. Performance and accuracy investigations of two Doppler global velocimetry systems applied in parallel

    NASA Astrophysics Data System (ADS)

    Willert, Christian; Stockhausen, Guido; Klinner, Joachim; Lempereur, Christine; Barricau, Philippe; Loiret, Philippe; Raynal, Jean Claude

    2007-08-01

    Two Doppler global velocimetry systems were applied in parallel to assess their performance in wind tunnel environments. Both DGV systems were mounted on a common traverse surrounding the glass-walled 1.4 × 1.8 m2 test section of the wind tunnel. The traverse normally supports a three-component forward-scatter laser Doppler velocimetry system. The reproducible tip-vortex flow field generated by the blunt tip of an airfoil was chosen for this investigation and was precisely surveyed by LDA just prior to the DGV measurements. Both DGV systems shared the same continuous wave laser light source, laser frequency monitoring and fibre optic light sheet delivery system. The principal differences between the DGV implementations are with regard to the imaging configuration. One configuration relied on a single camera view that observed three successively operated light sheets. In the second configuration, three camera views simultaneously observed a single light sheet using a four-branch fibre imaging bundle. The imaging bundle system had all three viewpoints in a forward scattering arrangement which increased the scattering efficiency but reduced the frequency shift sensitivity. Since all three light sheet observation components were acquired onto the same image frame, acquisition times could be reduced to a minimum. On the other hand, the triple light sheet-single camera system observed two light sheets in forward scatter and one light sheet in backscatter. Although three separate images had to be recorded in succession, the image quality, spatial resolution and signal-to-noise ratio were superior to the imaging bundle system. Comparison of the DGV data with LDV measurements shows very good agreement to within 1-2 m s-1. The remaining discrepancy has a variety of causes, some are related to the reduced resolving power of the fibre imaging bundle system (graininess, smoothing), exact localization of the receiver head with respect to the scene, laser frequency drift or

  6. Automatic system for ionization chamber current measurements.

    PubMed

    Brancaccio, Franco; Dias, Mauro S; Koskinas, Marina F

    2004-12-01

    The present work describes an automatic system developed for current integration measurements at the Laboratório de Metrologia Nuclear of Instituto de Pesquisas Energéticas e Nucleares. This system includes software (graphic user interface and control) and a module connected to a microcomputer, by means of a commercial data acquisition card. Measurements were performed in order to check the performance and for validating the proposed design.

  7. Navigational and Environmental Measurement System (NEMS)

    NASA Technical Reports Server (NTRS)

    Clem, T. D.

    1988-01-01

    The NEMS concept and design were initiated from the need to measure and record positional and environmental information during aircraft flights of developmental science research instrumentation. The unit was designed as a stand-alone system which could serve the needs of instruments whose developmental nature did not justify the cost and complexity of including these measurements within the instrument data system. Initially, the system was comprised of a Loran-C receiver and a portable IBM compatible computer recording position and time. Later, the system was interfaced with the Wallops aircraft inertial navigation system (INS), and various other sensors were supplied and shared by the Goddard science users. Real-time position mapping on video monitors was added for investigator's use and information. In 1987, the use of a Global Positioning System (GPS) receiver was included in some missions. A total configuration of the system and the various sensors which can be incorporated are shown.

  8. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  9. Rotor/bearing system dynamic stiffness measurements

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    Sweep perturbation testing as used in Modal Analysis when applied to a rotating machine has to take into consideration the machine dynamic state of equilibrium at its operational rotative speed. This stands in contrasts to a static equilibrium of nonrotating structures. The rotational energy has a significant influence on rotor dynamic characteristics. The best perturbing input for rotating machines is a forward or reverse rotating, circular force applied directly to the shaft. Determination of Dynamic Stiffness Characteristics of the rotor bearing system by nonsynchronous perturbation of a symmetric rotating shaft supported in one relatively rigid and one oil lubricated bearing.

  10. Ultrasonic System Measures Elastic Properties Of Composites

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mal, Ajit K.

    1993-01-01

    Measurements with leaky Lamb waves yield data on properties and defects of panels. System nondestructively measures elastic properties of, and defects in, panel of laminated fiber/matrix material. Ultrasonic transducers operating in pitch/catch mode excite and detect leaky Lamb waves in specimen. Elastic properties of specimen and defects within it characterized from dispersion curves of Lamb waves.

  11. Measuring fractal dimension of metro systems

    NASA Astrophysics Data System (ADS)

    Deng, S.; Li, W.; Gu, J.; Zhu, Y.; Zhao, L.; Han, J.

    2015-04-01

    We discuss cluster growing method and box-covering method as well as their connection to fractal geometry. Our measurements show that for small network systems, box-covering method gives a better scaling relation. We then measure both unweighted and weighted metro networks with optimal box-covering method.

  12. Characterization of Multicrystalline Silicon Modules with System Bias Voltage Applied in Damp Heat

    SciTech Connect

    Hacke, P.; Kempe, M.; Terwilliger, K.; Glick, S.; Call, N.; Johnston, S.; Kurtz, S.

    2011-07-01

    As it is considered economically favorable to serially connect modules to build arrays with high system voltage, it is necessary to explore potential long-term degradation mechanisms the modules may incur under such electrical potential. We performed accelerated lifetime testing of multicrystalline silicon PV modules in 85 degrees C/ 85% relative humidity and 45 degrees C/ 30% relative humidity while placing the active layer in either positive or negative 600 V bias with respect to the grounded module frame. Negative bias applied to the active layer in some cases leads to more rapid and catastrophic module power degradation. This is associated with significant shunting of individual cells as indicated by electroluminescence, thermal imaging, and I-V curves. Mass spectroscopy results support ion migration as one of the causes. Electrolytic corrosion is seen occurring with the silicon nitride antireflective coating and silver gridlines, and there is ionic transport of metallization at the encapsulant interface observed with damp heat and applied bias. Leakage current and module degradation is found to be highly dependent upon the module construction, with factors such as encapsulant and front glass resistivity affecting performance. Measured leakage currents range from about the same seen in published reports of modules deployed in Florida (USA) and is accelerated to up to 100 times higher in the environmental chamber testing.

  13. First Airborne IPDA Lidar Measurements of Methane and Carbon Dioxide Applying the DLR Greenhouse Gas Sounder CHARM-F

    NASA Astrophysics Data System (ADS)

    Amediek, A.; Ehret, G.; Fix, A.; Wirth, M.; Quatrevalet, M.; Büdenbender, C.; Kiemle, C.; Loehring, J.; Gerbig, C.

    2015-12-01

    First airborne measurement using CHARM-F, the four-wavelengths lidar for simultaneous soundings of atmospheric CO2 and CH4, were performed in Spring 2015 onboard the German research aircraft HALO. The lidar is designed in the IPDA (integrated path differential absorption) configuration using short double pulses, which gives column averaged gas mixing ratios between aircraft and ground. HALO's maximum flight altitude of 15 km and special features of the lidar, such as a relatively large laser ground spot, enable the CHARM-F system to be an airborne demonstrator for future spaceborne greenhouse gas lidars. Due to a high technological conformity this applies in particular to the French-German satellite mission MERLIN, the spaceborne methane IPDA lidar. The successfully completed flight measurements provide a valuable dataset, which supports the retrieval algorithm development for MERLIN notably. The flights covered different ground cover types, different orography types as well as the sea. Additionally, we captured different cloud conditions, at which the broken cloud case is a matter of particular interest. This dataset allows detailed analyses of measurement sensitivities, general studies on the IPDA principle and on technical details of the system. These activities are supported by another instrument onboard: a cavity ring down spectrometer, providing in-situ data of carbon dioxide, methane and water vapor with high accuracy and precision, which is ideal for validation purposes of the lidar. Additionally the onboard instrumentation of HALO gives information about pressure and temperature for cross-checking the ECMWF data, which are intended to be used for calculating the weighting function, the key quantity for the retrieval of gas column mixing ratios from the measured gas optical depths. In combination with dedicated descents into the boundary layer and subsequent ascents, a self-contained dataset for characterizations of CHARM-F is available.

  14. Differentiating between spatial and temporal effects by applying modern data analyzing techniques to measured soil moisture data

    NASA Astrophysics Data System (ADS)

    Hohenbrink, Tobias L.; Lischeid, Gunnar; Schindler, Uwe

    2013-04-01

    Large data sets containing time series of soil hydrological variables exist due to extensive monitoring work in the last decades. The interplay of different processes and influencing factors cause spatial and temporal patterns which contribute to the total variance. That implies that monitoring data sets contain information about the most relevant processes. That information can be extracted using modern data analysis techniques. Our objectives were (i) to decompose the total variance of an example data set of measured soil moisture time series in independent components and (ii) relate them to specific influencing factors. Soil moisture had been measured at 12 plots in an Albeluvisol located in Müncheberg, northeastern Germany, between May 1st, 2008 and July 1st, 2011. Each plot was equipped with FDR probes in 7 depths between 30 cm and 300 cm. Six plots were cultivated with winter rye and silage maize (Crop Rotation System I) and the other six with silage maize, winter rye/millet, triticale/lucerne and lucerne (Crop Rotation System II). We applied a principal component analysis to the soil moisture data set. The first component described the mean behavior in time of all soil moisture time series. The second component reflected the impact of soil depth. Together they explained 80 % of the data set's total variance. An analysis of the first two components confirmed that measured plots showed similar signal damping extend in each depth. The fourth component revealed the impact of the two different crop rotation systems which explained about 4 % of the total variance and 13 % of the spatial variance of soil moisture data. That is only a minor fraction compared to small scale soil texture heterogeneity effects. Principal component analysis has proven to be a useful tool to extract less apparent signals.

  15. Applied Systemic Theory and Educational Psychology: Can the Twain Ever Meet?

    ERIC Educational Resources Information Center

    Pellegrini, Dario W.

    2009-01-01

    This article reflects on the potential benefits of applying systemic theory to the work of educational psychologists (EPs). It reviews developments in systemic thinking over time, and discusses the differences between more directive "first order" versus collaborative "second order" approaches. It considers systemic theories and…

  16. Applying Systems Engineering to Implement an Evidence-based Intervention at a Community Health Center

    PubMed Central

    Tu, Shin-Ping; Feng, Sherry; Storch, Richard; Yip, Mei-Po; Sohng, HeeYon; Fu, Mingang; Chun, Alan

    2013-01-01

    Summary Impressive results in patient care and cost reduction have increased the demand for systems-engineering methodologies in large health care systems. This Report from the Field describes the feasibility of applying systems-engineering techniques at a community health center currently lacking the dedicated expertise and resources to perform these activities. PMID:23698657

  17. Biodiversity in the context of ecosystem services: the applied need for systems approaches.

    PubMed

    Norris, Ken

    2012-01-19

    Recent evidence strongly suggests that biodiversity loss and ecosystem degradation continue. How might a systems approach to ecology help us better understand and address these issues? Systems approaches play a very limited role in the science that underpins traditional biodiversity conservation, but could provide important insights into mechanisms that affect population growth. This potential is illustrated using data from a critically endangered bird population. Although species-specific insights have practical value, the main applied challenge for a systems approach is to help improve our understanding of the role of biodiversity in the context of ecosystem services (ES) and the associated values and benefits people derive from these services. This has profound implications for the way we conceptualize and address ecological problems. Instead of focusing directly on biodiversity, the important response variables become measures of values and benefits, ES or ecosystem processes. We then need to understand the sensitivity of these variables to biodiversity change relative to other abiotic or anthropogenic factors, which includes exploring the role of variability at different levels of biological organization. These issues are discussed using the recent UK National Ecosystems Assessment as a framework.

  18. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1983-01-01

    The acoustic velocity meter (AVM), also referred to as an ultrasonic flowmeter, has been an operational tool for the measurement of streamflow since 1965. Very little information is available concerning AVM operation, performance, and limitations. The purpose of this report is to consolidate information in such a manner as to provide a better understanding about the application of this instrumentation to streamflow measurement. AVM instrumentation is highly accurate and nonmechanical. Most commercial AVM systems that measure streamflow use the time-of-travel method to determine a velocity between two points. The systems operate on the principle that point-to-point upstream travel-time of sound is longer than the downstream travel-time, and this difference can be monitored and measured accurately by electronics. AVM equipment has no practical upper limit of measurable velocity if sonic transducers are securely placed and adequately protected. AVM systems used in streamflow measurement generally operate with a resolution of ?0.01 meter per second but this is dependent on system frequency, path length, and signal attenuation. In some applications the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Presently used minicomputer systems, although expensive to purchase and maintain, perform well. Increased use of AVM systems probably will be realized as smaller, less expensive, and more conveniently operable microprocessor-based systems become readily available. Available AVM equipment should be capable of flow measurement in a wide variety of situations heretofore untried. New signal-detection techniques and communication linkages can provide additional flexibility to the systems so that operation is possible in more river and estuary situations.

  19. Measuring Performance with Library Automated Systems.

    ERIC Educational Resources Information Center

    OFarrell, John P.

    2000-01-01

    Investigates the capability of three library automated systems to generate some of the datasets necessary to form the ISO (International Standards Organization) standard on performance measurement within libraries, based on research in Liverpool John Moores University (United Kingdom). Concludes that the systems are weak in generating the…

  20. Time measurment system at the SSC

    SciTech Connect

    Arai, Yasuo

    1989-04-01

    A proposal of time measurement system at the SSC experiment is described. An example of a possible scheme for central tracking chambers is shown. Designs of a preamp/shaper/discri chip and a time digitizer chip are described. A method to distribute system clock and power/cooling problems are also discussed.

  1. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1990-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of the frequency during the pulse.

  2. Heterodyne laser instantaneous frequency measurement system

    DOEpatents

    Wyeth, Richard W.; Johnson, Michael A.; Globig, Michael A.

    1989-01-01

    A heterodyne laser instantaneous frequency measurement system is disclosed. The system utilizes heterodyning of a pulsed laser beam with a continuous wave laser beam to form a beat signal. The beat signal is processed by a controller or computer which determines both the average frequency of the laser pulse and any changes or chirp of th frequency during the pulse.

  3. Electrostatic sensors applied to the measurement of electric charge transfer in gas solids pipelines

    NASA Astrophysics Data System (ADS)

    Woodhead, S. R.; Denham, J. C.; Armour-Chelu, D. I.

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results.

  4. Measurements, modeling, control and simulation - as applied to the human left ventricle for purposeful physiological monitoring.

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Rasmussen, D. N.; Linebarger, R. N.; Sandler, H.

    1971-01-01

    Interdisciplinary engineering research effort in studying the intact human left ventricle has been employed to physiologically monitor the heart and to obtain its 'state-of-health' characteristics. The left ventricle was selected for this purpose because it plays a key role in supplying energy to the body cells. The techniques for measurement of the left ventricular geometry are described; the geometry is effectively displayed to bring out the abnormalities in cardiac function. Methods of mathematical modeling, which make it possible to determine the performance of the intact left ventricular muscle, are also described. Finally, features of a control system for the left ventricle for predicting the effect of certain physiological stress situations on the ventricle performance are discussed.

  5. PRN 87-1: Label Improvement Program for Pesticides Applied through Irrigation Systems (Chemigation)

    EPA Pesticide Factsheets

    This Notice requires registrants of pesticide products registered under FIFRA and applied through irrigation systems to revise the labeling for such products to include additional use directions and other statements described in this Notice.

  6. Telerobotic system performance measurement - Motivation and methods

    NASA Technical Reports Server (NTRS)

    Kondraske, George V.; Khoury, George J.

    1992-01-01

    A systems performance-based strategy for modeling and conducting experiments relevant to the design and performance characterization of telerobotic systems is described. A developmental testbed consisting of a distributed telerobotics network and initial efforts to implement the strategy described is presented. Consideration is given to the general systems performance theory (GSPT) to tackle human performance problems as a basis for: measurement of overall telerobotic system (TRS) performance; task decomposition; development of a generic TRS model; and the characterization of performance of subsystems comprising the generic model. GSPT employs a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented within the framework of a distributed telerobotics network as a testbed. Insight into the design of test protocols which elicit application-independent data is described.

  7. Space camera optical axis pointing precision measurement system

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Meng, Fanbo; Yang, Zijun; Guo, Yubo; Ye, Dong

    2016-01-01

    In order to realize the space camera which on satellite optical axis pointing precision measurement, a monocular vision measurement system based on object-image conjugate is established. In this system the algorithms such as object-image conjugate vision models and point by point calibration method are applied and have been verified. First, the space camera axis controller projects a laser beam to the standard screen for simulating the space camera's optical axis. The laser beam form a target point and has been captured by monocular vision camera. Then the two-dimensional coordinates of the target points on the screen are calculated by a new vision measurement model which based on a looking-up and matching table, the table has been generated by object-image conjugate algorithm through point by point calibration. Finally, compare the calculation of coordinates offered by measurement system with the theory of coordinate offered by optical axis controller, the optical axis pointing precision can be evaluated. Experimental results indicate that the absolute precision of measurement system up to 0.15mm in 2m×2m FOV. This measurement system overcome the nonlinear distortion near the edge of the FOV and can meet the requirement of space camera's optical axis high precision measurement and evaluation.

  8. Coal face measurement system for underground use

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A measurement system was developed for the Eickhoff longwall shearer to determine the contour of the coal face as it mines coal. Contour data are obtained by an indirect measurement technique based on evaluating the motion of the shearer during mining. Starting from a known location, points along the coal face are established through a knowledge of the machines' positions and yaw movements as it moves past the coal face. The hardware and system operation procedures are described. The tests of system performance and their results are reported.

  9. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    SciTech Connect

    Therkelesen, Peter; McKane, Aimee

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  10. Electric System-wide Measurements: North American Directions

    SciTech Connect

    Widergren, Steven E.; Huang, Zhenyu; Dagle, Jeffery E.

    2007-01-03

    The western interconnected electric system of North America pioneered the concept of system-wide measurements, particularly applied to system dynamic issues. This involved the development and deployment of synchronized, sub-second measurement units and their associated data collection networks. More recently, the United States Department of Energy has collaborated with the North American Electric Reliability Council, electric utilities, reliability coordinators, equipment and software suppliers, and researchers to advance the use phasors in the eastern interconnection of North America. This paper provides an overview of the status of system-wide monitoring in North America, the directions emerging for application of this data to situational awareness and system operations, as well as the institutional changes underway to organize the relevant parties and establish a viable infrastructure to support the information exchange required to fulfill each party’s role.

  11. A Critique of Health System Performance Measurement.

    PubMed

    Lynch, Thomas

    2015-01-01

    Health system performance measurement is a ubiquitous phenomenon. Many authors have identified multiple methodological and substantive problems with performance measurement practices. Despite the validity of these criticisms and their cross-national character, the practice of health system performance measurement persists. Theodore Marmor suggests that performance measurement invokes an "incantatory response" wrapped within "linguistic muddle." In this article, I expand upon Marmor's insights using Pierre Bourdieu's theoretical framework to suggest that, far from an aberration, the "linguistic muddle" identified by Marmor is an indicator of a broad struggle about the representation and classification of public health services as a public good. I present a case study of performance measurement from Alberta, Canada, examining how this representational struggle occurs and what the stakes are.

  12. Thermoelectric property measurements with computer controlled systems

    NASA Technical Reports Server (NTRS)

    Chmielewski, A. B.; Wood, C.

    1984-01-01

    A joint JPL-NASA program to develop an automated system to measure the thermoelectric properties of newly developed materials is described. Consideration is given to the difficulties created by signal drift in measurements of Hall voltage and the Large Delta T Seebeck coefficient. The benefits of a computerized system were examined with respect to error reduction and time savings for human operators. It is shown that the time required to measure Hall voltage can be reduced by a factor of 10 when a computer is used to fit a curve to the ratio of the measured signal and its standard deviation. The accuracy of measurements of the Large Delta T Seebeck coefficient and thermal diffusivity was also enhanced by the use of computers.

  13. Measurement science in the circulatory system

    PubMed Central

    Jones, Casey M.; Baker-Groberg, Sandra M.; Cianchetti, Flor A.; Glynn, Jeremy J.; Healy, Laura D.; Lam, Wai Yan; Nelson, Jonathan W.; Parrish, Diana C.; Phillips, Kevin G.; Scott-Drechsel, Devon E.; Tagge, Ian J.; Zelaya, Jaime E.; Hinds, Monica T.; McCarty, Owen J.T.

    2014-01-01

    The dynamics of the cellular and molecular constituents of the circulatory system are regulated by the biophysical properties of the heart, vasculature and blood cells and proteins. In this review, we discuss measurement techniques that have been developed to characterize the physical and mechanical parameters of the circulatory system across length scales ranging from the tissue scale (centimeter) to the molecular scale (nanometer) and time scales of years to milliseconds. We compare the utility of measurement techniques as a function of spatial resolution and penetration depth from both a diagnostic and research perspective. Together, this review provides an overview of the utility of measurement science techniques to study the spatial systems of the circulatory system in health and disease. PMID:24563678

  14. Passive Accelerometer System Measurements on MIR

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1997-01-01

    The Passive Accelerometer System (PAS) is a simple moving ball accelerometer capable of measuring the small magnitude steady relative acceleration that occurs in a low earth orbit spacecraft due to atmospheric drag and the earth's gravity gradient. The acceleration is measured by recording the average velocity of the spherical ball over a suitable time increment. A modified form of Stokes law is used to convert the average velocity into an acceleration. PAS was used to measure acceleration on the MIR space station and on the first United States Microgravity Laboratory (USML-1). The PAS measurement on MIR revealed remarkably low acceleration levels in the SPEKTR module.

  15. Telerobotic system performance measurement: motivation and methods

    NASA Astrophysics Data System (ADS)

    Kondraske, George V.; Khoury, George J.

    1992-11-01

    Telerobotic systems (TRSs) and shared teleautonomous systems result from the integration of multiple sophisticated modules. Procedures used in systems integration design decision-making of such systems are frequently ad hoc compared to more quantitative and systematic methods employed elsewhere in engineering. Experimental findings associated with verification and validation (V&V) are often application-specific. Furthermore, models and measurement strategies do not exist which allow prediction of overall TRS performance in a given task based on knowledge of the performance characteristics of individual subsystems. This paper introduces the use of general systems performance theory (GSPT), developed by the senior author to help resolve similar problems in human performance, as a basis for: (1) measurement of overall TRS performance (viewing all system components, including the operator, as a single entity); (2) task decomposition; (3) development of a generic TRS model; and (4) the characterization of performance of subsystems comprising the generic model. GSPT uses a resource construct to model performance and resource economic principles to govern the interface of systems to tasks. It provides a comprehensive modeling/measurement strategy applicable to complex systems including both human and artificial components. Application is presented in the context of a distributed telerobotics network (Universities Space Automation and Robotics Consortium) as a testbed. Insight into the design of test protocols which elicit application-independent data (i.e., multi-purpose or reusable) is described. Although the work is motivated by space automation and robotics challenges, it is considered to be applicable to telerobotic systems in general.

  16. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  17. Measure of the Quantum Speedup in Closed and Open systems

    NASA Astrophysics Data System (ADS)

    Xu, Zhen-Yu

    We construct a general measure for detecting the quantum speedup in both closed and open systems. This speed measure is based on the changing rate of the position of quantum states on a manifold with appropriate monotone Riemannian metrics. Any increase in speed is a clear signature of real dynamical speedup. To clarify the mechanisms of quantum speedup, we first introduce the concept of longitudinal and transverse types of speedup, and then apply the proposed measure to several typical closed and open quantum systems, illustrating that entanglement and the memory effect of the environment together can become resources for longitudinally or transversely accelerating dynamical evolution under certain conditions. Remarkably, a direct measurement of such speedup is feasible without the need for a tomographic reconstruction of the density matrix, which greatly enhances the feasibility of practical experimental tests. This work was supported by the National Natural Science Foundation of China (Grant No. 11204196).

  18. System for measuring optical admittance of a thin film stack

    NASA Astrophysics Data System (ADS)

    Chen, Sheng-Hui; Wu, Kai; Kuo, Chien-Cheng; Ma, Sheng-Ju; Lee, Cheng-Chung

    2009-07-01

    A new method based on the polarization interferometer structure has been applied to measure the optical admittance, the refractive index and thickness of a thin film. The structure is a vibration insensitive optical system. There is one Twyman-Green interferometer part to induce a phase difference and one Fizeau interferometer part to induce the interference in the system. The intensities coming from four different polarizers were measured at the same time to prevent mechanical vibration influence. Using the polarization interferometer, the optical admittance, the refractive index and thickness of a single layer of Ta2O5 thin film has been measured. The measurement results were compared with the results obtained by ellipsometer. The results meet reasonable values in both refractive index and thickness.

  19. In-vitro corneal transparency measuring system

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; da Costa Vieira, Marcelo A.; Isaac, Flavio; Chiaradia, Caio; Faria de Sousa, Sidney J.

    2001-06-01

    A system for measuring the average corneal transparency of preserved corneas has been developed in order to provide a more accurate and standard report of the corneal tissue. The donated cornea transparency is one of the features to be analyzed previously to its indication for the transplant. The small portable system consists of two main parts: the optical and the electronic parts. The optical system consists of a white light, lenses and pin-holes that collimate white light beams that illuminates the cornea in its preservative medium. The light that passes through the cornea is detected by a resistive detector and the average corneal transparency is shown in a display. In order to obtain just the tissue transparency, the electronic circuit was built in a way that there is a baseline input of the preservative medium, previous to the measurement of the corneal transparency. Manipulating the system consists of three steps: (1) Adjusting the zero percentage in the absence of light (at this time the detectors in the dark); (2) Placing the preservative medium in the system and adjusting the 100% value (this is the baseline input); (3) Preserving the cornea and placing it in the system. The system provides the tissue transparency. The system is connected to an endothelium evaluation system for Slit Lamp, that we have developed, and statistics about the relationship of the corneal transparency and density of the endothelial cells will be provided in the next years. The system is being used in a public Eye Bank in Brasil.

  20. A unique, accurate LWIR optics measurement system

    NASA Astrophysics Data System (ADS)

    Fantone, Stephen D.; Orband, Daniel G.

    2011-05-01

    A compact low-cost LWIR test station has been developed that provides real time MTF testing of IR optical systems and EO imaging systems. The test station is intended to be operated by a technician and can be used to measure the focal length, blur spot size, distortion, and other metrics of system performance. The challenges and tradeoffs incorporated into this instrumentation will be presented. The test station performs the measurement of an IR lens or optical system's first order quantities (focal length, back focal length) including on and off-axis imaging performance (e.g., MTF, resolution, spot size) under actual test conditions to enable the simulation of their actual use. Also described is the method of attaining the needed accuracies so that derived calculations like focal length (EFL = image shift/tan(theta)) can be performed to the requisite accuracy. The station incorporates a patented video capture technology and measures MTF and blur characteristics using newly available lowcost LWIR cameras. This allows real time determination of the optical system performance enabling faster measurements, higher throughput and lower cost results than scanning systems. Multiple spectral filters are also accommodated within the test stations which facilitate performance evaluation under various spectral conditions.

  1. Critical analysis of economic tools and economic measurement applied to rheumatoid arthritis.

    PubMed

    Her, Minyoung; Kavanaugh, Arthur

    2012-01-01

    Rheumatoid arthritis (RA) is chronic, progressive systemic inflammatory disease that if uncontrolled may lead to significant joint damage, dysfunction, work disability and other sequelae that result in large economic losses. A rich literature estimating the economic burden of RA, has been intensified recently, driven by costly biologic agents that have had a notable effect improving the outcomes of patients with RA. In order to optimally assess the value of therapies, it is best to take a comprehensive approach, considering all related costs of illness. This includes direct costs (e.g. the costs of the medications themselves and the monitoring required), indirect costs (e.g. loss of productivity, such as employment due to uncontrolled disease) and intangible cost (e.g. effects on pain and quality of life). Indirect costs constitute a substantial part of total cost in the patient with RA. In order to help assess the impact of RA on productivity, various tools for measuring productive loss like absenteeism and presenteeism have been introduced. No single tool reflects the entire spectrum of the productive loss clearly, as other factors such as use of a human capital approach or friction cost approach affect the valuation of productive loss monetarily. Although favourable outcomes are achieved with the use of biologic agents, their higher acquisition costs, as compared to traditional disease-modifying anti-rheumatic drugs (DMARDs) remain a barrier to their use. Assessments of the cost effectiveness of novel therapies are critically important, but published results have been contradictory, in some measure due to the heterogeneity of instruments utilised. While the various instruments appear to be valid and reliable, correlations between instruments has been modest, driven by factors such as differences in recall times, attribution and other confounders.

  2. Fluid-filled blood pressure measurement systems.

    PubMed

    Li, J K; van Brummelen, A G; Noordergraaf, A

    1976-05-01

    The performance of catheter-manometer systems for the measurement of pulsatile pressure has been evaluated by both experimental techniques and theoretical considerations. The former approach has shown, on occasion, multiple maxima in the amplitude response. The latter has been approached in a variety of ways, ranging from extreme lumping to application of transmission line theory while employing different configurations in the system's representation. Multiple maxima have also been seen, The present paper identifies the sources of the differences found and compares the relative merits of various theoretical approaches. It introduces the compliance of the system as a figure of merit and provides a simple first-order approximation formula for evaluation of the quality of a system. Damping and impedance matching to improve the system's frequency response were studied. It was found that they were not needed in a very stiff or a very compliant system, nor should one worry about the representation of such a system.

  3. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives.

    PubMed

    Maranhão, Geraldo Neves De A; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-09-22

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance.

  4. Using LDR as Sensing Element for an External Fuzzy Controller Applied in Photovoltaic Pumping Systems with Variable-Speed Drives

    PubMed Central

    Maranhão, Geraldo Neves De A.; Brito, Alaan Ubaiara; Leal, Anderson Marques; Fonseca, Jéssica Kelly Silva; Macêdo, Wilson Negrão

    2015-01-01

    In the present paper, a fuzzy controller applied to a Variable-Speed Drive (VSD) for use in Photovoltaic Pumping Systems (PVPS) is proposed. The fuzzy logic system (FLS) used is embedded in a microcontroller and corresponds to a proportional-derivative controller. A Light-Dependent Resistor (LDR) is used to measure, approximately, the irradiance incident on the PV array. Experimental tests are executed using an Arduino board. The experimental results show that the fuzzy controller is capable of operating the system continuously throughout the day and controlling the direct current (DC) voltage level in the VSD with a good performance. PMID:26402688

  5. The Holdup Measurement System II (HMSII)

    SciTech Connect

    Smith, S.E.; Gibson, J.S.; Halbig, J.K.; Klosterbuer, S.F.; Russo, P.A.; Sprinkle, J.K. Jr.

    1993-07-12

    A project is in progress that addresses two of the problems with existing holdup measurement technology: the need for compact instrumentation and a more efficient means of reducing the massive amounts of data to quantities of Special Nuclear Materials (SNM). The approach taken by the project utilizes the Miniature Modular MultiChannel Analyzer (M{sup 3}CA), a complete and truly portable gamma-ray spectroscopy system, under development at Los Alamos National Laboratory. The hardware is then integrated and automated by the Holdup Measurement System II (HMSII) software being developed by the Oak Ridge Y-12 Plant. Together they provide the hardware components, measurement control in the field, automated data acquisition, data storage and manipulation which simplify holdup measurements.

  6. Differential Measurement Periodontal Structures Mapping System

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1998-01-01

    This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.

  7. Development of limb volume measuring system

    NASA Technical Reports Server (NTRS)

    Bhagat, P. K.; Kadaba, P. K.

    1983-01-01

    The mechanisms underlying the reductions in orthostatic tolerance associated with weightlessness are not well established. Contradictory results from measurements of leg volume changes suggest that altered venomotor tone and reduced blood flow may not be the only contributors to orthostatic intolerance. It is felt that a more accurate limb volume system which is insensitive to environmental factors will aid in better quantification of the hemodynamics of the leg. Of the varous limb volume techniques presently available, the ultrasonic limb volume system has proven to be the best choice. The system as described herein is free from environmental effects, safe, simple to operate and causes negligible radio frequency interference problems. The segmental ultrasonic ultrasonic plethysmograph is expected to provide a better measurement of limb volume change since it is based on cross-sectional area measurements.

  8. Video integrated measurement system. [Diagnostic display devices

    SciTech Connect

    Spector, B.; Eilbert, L.; Finando, S.; Fukuda, F.

    1982-06-01

    A Video Integrated Measurement (VIM) System is described which incorporates the use of various noninvasive diagnostic procedures (moire contourography, electromyography, posturometry, infrared thermography, etc.), used individually or in combination, for the evaluation of neuromusculoskeletal and other disorders and their management with biofeedback and other therapeutic procedures. The system provides for measuring individual diagnostic and therapeutic modes, or multiple modes by split screen superimposition, of real time (actual) images of the patient and idealized (ideal-normal) models on a video monitor, along with analog and digital data, graphics, color, and other transduced symbolic information. It is concluded that this system provides an innovative and efficient method by which the therapist and patient can interact in biofeedback training/learning processes and holds considerable promise for more effective measurement and treatment of a wide variety of physical and behavioral disorders.

  9. Laser measuring system for large machine tools

    NASA Astrophysics Data System (ADS)

    Wessel, L. E.; Brazys, D.

    1982-08-01

    With development of the Laser Interferometer, it was envisioned that older existing machine tools could be up-graded by retrofitting them with laser Interferometer Measuring Systems. The Laser Interferometer provides the machine tool industry with a high accuracy length standard. The accuracy of the Interferometer is determined by the laser wave length which is known within 0.5 parts per million. This degree of accuracy is more than adequate for most machine tool measuring, calibration and inspection requirements. In conclusion, the Laser Measuring System presently available is not recommended for general implementation at this time. Results of this work indicate that the equipment and installation cost are very high and pay back would be very slow. Also, the reliability of the electronic components is in need of improvement. The system requires frequent realignment and maintenance due to it's lack of toleration to "Shop Floor' conditions.

  10. Radiated microwave power transmission system efficiency measurements

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Brown, W. C.

    1975-01-01

    The measured and calculated results from determining the operating efficiencies of a laboratory version of a system for transporting electric power from one point to another via a wireless free space radiated microwave beam are reported. The system's overall end-to-end efficiency as well as intermediated conversion efficiencies were measured. The maximum achieved end-to-end dc-to-ac system efficiency was 54.18% with a probable error of + or - 0.94%. The dc-to-RF conversion efficiency was measured to be 68.87% + or - 1.0% and the RF-to-dc conversion efficiency was 78.67 + or - 1.1%. Under these conditions a dc power of 495.62 + or - 3.57 W was received with a free space transmitter antenna receiver antenna separation of 170.2 cm (67 in).

  11. Arterial compliance measurement using a noninvasive laser Doppler measurement system

    NASA Astrophysics Data System (ADS)

    Hast, Jukka T.; Myllylae, Risto A.; Sorvoja, Hannu; Nissilae, Seppo M.

    2000-11-01

    The aim of this study was to study the elasticity of the arterial wall using a non-invasive laser Doppler measurement system. The elasticity of the arterial wall is described by its compliance factor, which can be determined when both blood pressure and the radial velocity of the arterial wall are known. To measure radical velocity we used a self- mixing interferometer. The compliance factors were measured from six healthy volunteers, whose ages were varied from 21 to 32. Although a single volunteer's compliance factor is presented as an example, this paper treated the volunteers as a group. First, the elastic modulus, which is inversely proportional to the compliance factor, was determined. Then, an exponential curve was fitted into the measured data and a characteristic equation for the elastic modulus of the arterial wall was determined. The elastic modulus was calculated at different pressures and the results were compared to the static incremental modulus of a dog's femoral artery. The results indicate that there is a correlation between human elastic and canine static incremental modulus for blood pressures varying from 60 to 110 mmHg.

  12. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    NASA Astrophysics Data System (ADS)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and

  13. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  14. High temperature hall effect measurement system design, measurement and analysis

    NASA Astrophysics Data System (ADS)

    Berkun, Isil

    A reliable knowledge of the transport properties of semiconductor materials is essential for the development and understanding of a number of electronic devices. In this thesis, the work on developing a Hall Effect measurement system with software based data acqui- sition and control for a temperature range of 300K-700K will be described. A system was developed for high temperature measurements of materials including single crystal diamond, poly-crystalline diamond, and thermoelectric compounds. An added capability for monitor- ing the current versus voltage behavior of the contacts was used for studying the influence of ohmic and non-ohmic contacts on Hall Effect measurements. The system has been primar- ily used for testing the transport properties of boron-doped single crystal diamond (SCD) deposited in a microwave plasma-assisted chemical vapor deposition (MPCVD) reactor [1]. Diamond has several outstanding properties that are of high interest for its development as an electronic material. These include a relatively wide band gap of 5.5 (eV), high thermal conductivity, high mobility, high saturation velocity, and a high breakdown voltage. For a temperature range of 300K-700K, IV curves, Hall mobilities and carrier concentrations are shown. Temperature dependent Hall effect measurements have shown carrier concentrations from below 1017cm --3 to approximately 1021 cm--3 with mobilities ranging from 763( cm2/V s) to 0.15(cm 2/V s) respectively. Simulation results have shown the effects of single and mixed carrier models, activation energies, effective mass and doping concentrations. These studies have been helpful in the development of single crystal diamond for diode applications. Reference materials of Ge and GaAs were used to test the Hall Effect system. The system was also used to characterize polycrystalline diamond deposited on glass for electrochemical applications, and Mg2(Si,Sn) compounds which are promising candidates of low-cost, light weight and non

  15. Selected bibliography of OMEGA, VLF and LF techniques applied to aircraft navigation systems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A bibliography is presented which includes references to the OMEGA navigation system, very low frequencies, time-frequency measurements, air traffic control, radio navigation, and applications of OMEGA.

  16. Phase Measurement System for Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Klipstein, William

    We propose to advance the maturity of the LISA Phasemeter based on our recent experience developing a flight Phasemeter for the Laser Ranging Interferometer (LRI) on NASA's GRACE Follow-On mission. Our three main objectives are to: 1) incorporate the flight GRACE Follow-on LRI phasemeter developments into the TRL4 LISA design used extensively in our interferometer testbed; 2) evaluate the LRI Phasemeter against LISA's more stringent requirements in order to identify required design changes; 3) advance the design maturity of the LISA phasemeter through an architecture study to maintain the viability of the Phasemeter as a contribution to ESA's L3 gravitational wave mission. NASA intends to partner in the European Space Agency's (ESA) Gravitational-Wave detection mission, selected for the L3 mission to launch in 2034. This is expected to be a LISA-like mission with the two enabling LISA technologies: 1. a drag-free system to mitigate or measure non-gravitational forces on the spacecraft, 2. an interferometric measure¬ment system with precision phasemeters to measure picometer variations over the million kilometer separation between the spacecraft. To validate the key technologies of the drag-free system, the ESA LISA Pathfinder (LPF) mission is currently demonstrating a gravitational reference sensor (GRS) and microNewton thrusters in space. While LPF has an on-board interferometer to measure proof- mass motion with respect to the spacecraft, the LPF interferometer does not test the interspacecraft laser interferometry needed for a LISA-like mission. To validate the key technologies of the LISA interferometric measurement, the JPL LISA Phase Measurement Team has studied and developed a prototype LISA phase measurement system. This phase measurement system has also been adapted for a demonstration mission, albeit in a different arena. GRACE Follow-Ons Laser Ranging Interferometer (LRI), due to launch in late 2017, will make LISA-like inter-spacecraft interferometric

  17. WSN-Based Space Charge Density Measurement System.

    PubMed

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  18. Strain tensors in layer systems by precision ion channeling measurements

    SciTech Connect

    Trinkaus, H.; Buca, D.; Hollaender, B.; Minamisawa, R. A.; Mantl, S.; Hartmann, J. M.

    2010-06-15

    A powerful method for analyzing general strain states in layer systems is the measurement of changes in the ion channeling directions. We present a systematic derivation and compilation of the required relations between the strain induced angle changes and the components of the strain tensor for general crystalline layer systems of reduced symmetry compared to the basic (cubic) crystal. It is shown that, for the evaluation of channeling measurements, virtually all layers of interest may be described as being 'pseudo-orthorhombic'. The commonly assumed boundary conditions and the effects of surface misorientations on them are discussed. Asymmetric strain relaxation in layers of reduced symmetry is attributed to a restriction in the slip system of the dislocations inducing it. The results are applied to {l_brace}110{r_brace}SiGe/Si layer systems.

  19. WSN-Based Space Charge Density Measurement System

    PubMed Central

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density. PMID:28052105

  20. Optoelectronic System for Measuring Warhead Fragments Velocity

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Zhao, Donge; Li, Yangjun; Zhou, Hanchang

    2011-02-01

    High-speed warhead fragments velocity measurement is one of the key technologies in investigating damage efficiency of warhead. We have designed and constructed a system to accurately determine the velocity of warhead fragments by measuring the time of flight between two parallel laser screens is presented. Each screen is formed by a laser source, a large photodetector and a retro-reflector. Optical output of the laser source is a collimated beam. The beam passes through cylindrical lens and the slit of photodetector reach to retro-reflector .The energy, reflected by retro-reflector; focus on the active area of photodetector. The system utilizes reflected ray by scotchlite retro-reflector as the start and end signal. And utilizes wideband circuit and data acquiring system to condition and sample signals. Experimental results show the system can measurement velocity are within the range from 20m/s to 2000m/s on target area of 1m2 and can perform satisfactorily with a wide range from 2000 lx to100,000lx. The measurement system also can be used to test velocity of projectile.

  1. Dual strain gage balance system for measuring light loads

    NASA Technical Reports Server (NTRS)

    Roberts, Paul W. (Inventor)

    1991-01-01

    A dual strain gage balance system for measuring normal and axial forces and pitching moment of a metric airfoil model imparted by aerodynamic loads applied to the airfoil model during wind tunnel testing includes a pair of non-metric panels being rigidly connected to and extending towards each other from opposite sides of the wind tunnel, and a pair of strain gage balances, each connected to one of the non-metric panels and to one of the opposite ends of the metric airfoil model for mounting the metric airfoil model between the pair of non-metric panels. Each strain gage balance has a first measuring section for mounting a first strain gage bridge for measuring normal force and pitching moment and a second measuring section for mounting a second strain gage bridge for measuring axial force.

  2. Videogrammetric Model Deformation Measurement System User's Manual

    NASA Technical Reports Server (NTRS)

    Dismond, Harriett R.

    2002-01-01

    The purpose of this manual is to provide the user of the NASA VMD system, running the MDef software, Version 1.10, all information required to operate the system. The NASA Videogrammetric Model Deformation system consists of an automated videogrammetric technique used to measure the change in wing twist and bending under aerodynamic load in a wind tunnel. The basic instrumentation consists of a single CCD video camera and a frame grabber interfaced to a computer. The technique is based upon a single view photogrammetric determination of two-dimensional coordinates of wing targets with fixed (and known) third dimensional coordinate, namely the span-wise location. The major consideration in the development of the measurement system was that productivity must not be appreciably reduced.

  3. Preliminary evaluation of an ATR system applied to robotic tank inspection

    SciTech Connect

    Conner, C.; Lassahn, G.; Nash, T.; Briebenow, B.

    1994-12-31

    A brief evaluation of the capabilities of an automatic target recognition system as applied to processing digitized data from robotic inspection of radioactive liquid waste storage tanks has been performed. The intent of this application is to use the target recognition system as a fast data screening tool to flag scenes that might indicate tank defects.

  4. CARS system for turbulent flame measurements

    NASA Technical Reports Server (NTRS)

    Antcliff, R. R.; Jarrett, O., Jr.; Rogers, R. C.

    1984-01-01

    Simultaneous nitrogen number density and rotational-vibrational temperatures were measured in a turbulent diffusion flame with a Coherent Anti-Stokes Raman Scattering (CARS) instrument. The fuel jet was diluted with nitrogen (20 percent by volume) to allow temperature measurements across the entire jet mixing region. These measurements were compared with fluid dynamics computations. The CARS system incorporated a neodymium YAG laser, an intensified silicon photodiode array detector, and unique dynamic range enhancement methods. Theoretical calculations were based on a parabolic Navier-Stokes computer code. The comparison of these techniques will aid their development in the study of complex flowfields.

  5. Tutorial: Clock and Clock Systems Performance Measures

    DTIC Science & Technology

    1995-12-01

    TUTORIAL: CLOCK AND CLOCK SYSTEMS PERFORMANCE MEASURES David W. Allan Allan’s TIME Introduction This tutorial contains basic material...very important ITU Handbook being prepared at this tim; which goes much further than this tutorial has time to do. I highly recommend it as an...the world who have written the ten chapters in this handbook. The title of the Handbook is, "Selection and use of Precise Frequency and Time Systems

  6. Team Performance Assessment and Measurement: Theory, Methods, and Applications. Series in Applied Psychology.

    ERIC Educational Resources Information Center

    Brannick, Michael T., Ed.; Salas, Eduardo, Ed.; Prince, Carolyn, Ed.

    This volume presents thoughts on measuring team performance written by experts currently working with teams in fields such as training, evaluation, and process consultation. The chapters are: (1) "An Overview of Team Performance Measurement" (Michael T. Brannick and Carolyn Prince); (2) "A Conceptual Framework for Teamwork Measurement" (Terry L.…

  7. Multidirectional four-dimensional shape measurement system

    NASA Astrophysics Data System (ADS)

    Lenar, Janusz; Sitnik, Robert; Witkowski, Marcin

    2012-03-01

    Currently, a lot of different scanning techniques are used for 3D imaging of human body. Most of existing systems are based on static registration of internal structures using MRI or CT techniques as well as 3D scanning of outer surface of human body by laser triangulation or structured light methods. On the other hand there is an existing mature 4D method based on tracking in time the position of retro-reflective markers attached to human body. There are two main drawbacks of this solution: markers are attached to skin (no real skeleton movement is registered) and it gives (x, y, z, t) coordinates only in those points (not for the whole surface). In this paper we present a novel multidirectional structured light measurement system that is capable of measuring 3D shape of human body surface with frequency reaching 60Hz. The developed system consists of two spectrally separated and hardware-synchronized 4D measurement heads. The principle of the measurement is based on single frame analysis. Projected frame is composed from sine-modulated intensity pattern and a special stripe allowing absolute phase measurement. Several different geometrical set-ups will be proposed depending on type of movements that are to be registered.

  8. Vapor Pressure Measurements in a Closed System

    ERIC Educational Resources Information Center

    Iannone, Mark

    2006-01-01

    An alternative method that uses a simple apparatus to measure vapor pressure versus temperature in a closed system, in which the total pressure is the vapor pressure of the liquid sample, is described. The use of this apparatus gives students a more direct picture of vapor pressure than the isoteniscope method and results have generally been quite…

  9. Improving health, safety and energy efficiency in New Zealand through measuring and applying basic housing standards.

    PubMed

    Gillespie-Bennett, Julie; Keall, Michael; Howden-Chapman, Philippa; Baker, Michael G

    2013-08-02

    Substandard housing is a problem in New Zealand. Historically there has been little recognition of the important aspects of housing quality that affect people's health and safety. In this viewpoint article we outline the importance of assessing these factors as an essential step to improving the health and safety of New Zealanders and household energy efficiency. A practical risk assessment tool adapted to New Zealand conditions, the Healthy Housing Index (HHI), measures the physical characteristics of houses that affect the health and safety of the occupants. This instrument is also the only tool that has been validated against health and safety outcomes and reported in the international peer-reviewed literature. The HHI provides a framework on which a housing warrant of fitness (WOF) can be based. The HHI inspection takes about one hour to conduct and is performed by a trained building inspector. To maximise the effectiveness of this housing quality assessment we envisage the output having two parts. The first would be a pass/fail WOF assessment showing whether or not the house meets basic health, safety and energy efficiency standards. The second component would rate each main assessment area (health, safety and energy efficiency), potentially on a five-point scale. This WOF system would establish a good minimum standard for rental accommodation as well encouraging improved housing performance over time. In this article we argue that the HHI is an important, validated, housing assessment tool that will improve housing quality, leading to better health of the occupants, reduced home injuries, and greater energy efficiency. If required, this tool could be extended to also cover resilience to natural hazards, broader aspects of sustainability, and the suitability of the dwelling for occupants with particular needs.

  10. System Analysis Applied to Autonomy: Application to High-Altitude Long-Endurance Remotely Operated Aircraft

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Yetter, Jeffrey A.; Guynn, Mark D.

    2006-01-01

    Maturation of intelligent systems technologies and their incorporation into aerial platforms are dictating the development of new analysis tools and incorporation of such tools into existing system analysis methodologies in order to fully capture the trade-offs of autonomy on vehicle and mission success. A first-order "system analysis of autonomy" methodology is outlined in this paper. Further, this analysis methodology is subsequently applied to notional high-altitude long-endurance (HALE) aerial vehicle missions.

  11. Improving competitiveness through performance-measurement systems.

    PubMed

    Stewart, L J; Lockamy, A

    2001-12-01

    Parallels exist between the competitive pressures felt by U.S. manufacturers over the past 30 years and those experienced by healthcare providers today. Increasing market deregulation, changing government policies, and growing consumerism have altered the healthcare arena. Responding to similar pressures, manufacturers adopted a strategic orientation driven by customer needs and expectations that led them to achieve high performance levels and surpass their competition. The adoption of integrated performance-measurement systems was instrumental in these firms' success. An integrated performance-measurement model for healthcare organizations can help to blend the organization's strategy with the demands of the contemporary healthcare environment. Performance-measurement systems encourage healthcare organizations to focus on their mission and vision by aligning their strategic objectives and resource-allocation decisions with customer requirements.

  12. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1982-01-01

    Very little information is available concerning acoustic velocity meter (AVM) operation, performance, and limitations. This report provides a better understanding about the application of AVM instrumentation to streamflow measurment. Operational U.S. Geological Survey systems have proven that AVM equipment is accurate and dependable. AVM equipment has no practical upper limit of measureable velocity if sonic transducers are securely placed and adequately protected, and will measure velocitites as low as 0.1 meter per second which is normally less than the threshold level for mechanical or head-loss meters. In some situations the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Smaller, less-expensive, more conveniently operable microprocessor equipment is now available which should increase use of AVM systems in streamflow applications. (USGS)

  13. Blade Vibration Measurement System for Unducted Fans

    NASA Technical Reports Server (NTRS)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  14. Multi-scale biomedical systems: measurement challenges

    NASA Astrophysics Data System (ADS)

    Summers, R.

    2016-11-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper.

  15. Development of a Wireless Displacement Measurement System Using Acceleration Responses

    PubMed Central

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F.

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  16. System for measuring radioactivity of labelled biopolymers

    SciTech Connect

    Gross, V.

    1980-07-08

    A system is described for measuring radioactivity of labelled biopolymers, comprising: a set of containers adapted for receiving aqueous solutions of biological samples containing biopolymers which are subsequently precipitated in said containers on particles of diatomite in the presence of a coprecipitator, then filtered, dissolved, and mixed with a scintillator; radioactivity measuring means including a detection chamber to which is fed the mixture produced in said set of containers; an electric drive for moving said set of containers in a stepwise manner; means for proportional feeding of said coprecipitator and a suspension of diatomite in an acid solution to said containers which contain the biological sample for forming an acid precipitation of biopolymers; means for the removal of precipitated samples from said containers; precipitated biopolymer filtering means for successively filtering the precipitate, suspending the precipitate, dissolving the biopolymers mixed with said scintillator for feeding of the mixture to said detection chamber; a system of pipelines interconnecting said above-recited means; and said means for measuring radioactivity of labelled biopolymers including, a measuring cell arranged in a detection chamber and communicating with said means for filtering precipitated biopolymers through one pipeline of said system of pipelines; a program unit electrically connected to said electric drive, said means for acid precipatation of biopolymers, said means for the removal of precipitated samples from said containers, said filtering means, and said radioactivity measuring device; said program unit adapted to periodically switch on and off the above-recited means and check the sequence of the radioactivity measuring operations; and a control unit for controlling the initiation of the system and for selecting programs.

  17. Interference detection and correction applied to incoherent-scatter radar power spectrum measurement

    NASA Technical Reports Server (NTRS)

    Ying, W. P.; Mathews, J. D.; Rastogi, P. K.

    1986-01-01

    A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid.

  18. Ground-based spectral reflectance measurements for efficacy evaluation of aerially applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set u...

  19. Ground-based spectral reflectance measurements for evaluating the efficacy of aerially-applied glyphosate treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial application of herbicides is a common tool in agricultural field management. The objective of this study was to evaluate the efficacy of glyphosate herbicide applied aerially with both conventional and emerging aerial nozzle technologies. A Texas A&M University Plantation weed field was set...

  20. Using Action Verbs as Learning Outcomes: Applying Bloom's Taxonomy in Measuring Instructional Objectives in Introductory Psychology

    ERIC Educational Resources Information Center

    Nevid, Jeffrey S.; McClelland, Nate

    2013-01-01

    We used a set of action verbs based on Bloom's taxonomy to assess learning outcomes in two college-level introductory psychology courses. The action verbs represented an acronym, IDEA, comprising skills relating to identifying, defining or describing, evaluating or explaining, and applying psychological knowledge. Exam performance demonstrated…

  1. Towards Sustainable Performance Measurement Frameworks for Applied Research in Canadian Community Colleges and Institutes

    ERIC Educational Resources Information Center

    Williams, Keith

    2014-01-01

    Applied Research (AR) in Canadian community colleges is driven by a mandate, via the collective voice of Colleges and Institutes Canada--a national voluntary membership association of publicly supported colleges and related institutions--to address issues of interest to industry, government, and/or community. AR is supported through significant…

  2. Low cost automated precise time measurement system

    NASA Technical Reports Server (NTRS)

    Alpert, A.; Liposchak, P.

    1973-01-01

    The Aerospace Guidance and Metrology Center (AGMC) has the responsibility for the dissemination of Precise Time and Time Interval (PTTI) to Air Force timing systems requiring microsecond time. In order to maintain traceability to the USNO Master Clock in Washington D.C., and accomplish efficient logging of time and frequency data on individual precision clocks, a simple automatic means of acquiring precise time has been devised. The Automatic Time Interval Measurement System (ATIMS) consists of a minicomputer (8K Memory), teletype terminal, electronic counter, Loran C receiver, time base generator and locally-manufactured relay matrix panel. During the measurement process, the computer controls the relay matrix which selects for comparison 13 atomic clocks against a reference clock and the reference versus Loran C. Through use of the system teletype, the operator is able to set the system clock (hours, minutes and seconds), examine and/or modify all clock data and constants, and set measurement intervals. This is done in a conversational manner. A logic flow diagram, system schematic, source listing and software components are included in the presentation.

  3. Linescan Camera System for 100% Moisture Measurement

    SciTech Connect

    Hernandez, J E; Koo, J; Romero, C; Vigars, M; Newman, M; Dallum, G

    2006-10-11

    Lawrence Livermore National Laboratory (LLNL), in collaboration with ABB Industrial Systems, and under the sponsorship of the Department of Energy's (DOE) Office of Industrial Technologies (OIT), has developed a new method for measuring the moisture content of a paper web process on-line with 100% coverage of the sheet. The method uses InGaAs linear arrays with associated optics and electronics to continuously image the full width of the web and measure transmitted light at 1.45{micro} and another suitable reference wavelength between 1{micro} and 1.6{micro}. The method could also be used to measure paper basis weight, in addition to moisture, by adding additional hardware and optics to measure a third wavelength at 1.57{micro}. A patent (USP: 6355931), entitled ''System and method for 100% moisture and basis weight measurement of moving paper'', was granted by the US Patent Office on March 12, 2002 for this invention. A proof-of-concept prototype system was also developed and tested on several occasions at ABB's sensors development facility in Columbus, Ohio. Based on current experimental results, the system seems particularly suitable for detecting moisture variation on a paper web for medium and heavy weight products at the dry end as well as the press section of the machine. The prototype system was scheduled to be tested at a paper mill in the fall of 2001. The test had to be canceled as ABB was unable to provide the required field support for the test due to restructuring and down-sizing of their R&D organization.

  4. Torsional ultrasonic wave based level measurement system

    DOEpatents

    Holcomb, David E [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN

    2012-07-10

    A level measurement system suitable for use in a high temperature and pressure environment to measure the level of coolant fluid within the environment, the system including a volume of coolant fluid located in a coolant region of the high temperature and pressure environment and having a level therein; an ultrasonic waveguide blade that is positioned within the desired coolant region of the high temperature and pressure environment; a magnetostrictive electrical assembly located within the high temperature and pressure environment and configured to operate in the environment and cooperate with the waveguide blade to launch and receive ultrasonic waves; and an external signal processing system located outside of the high temperature and pressure environment and configured for communicating with the electrical assembly located within the high temperature and pressure environment.

  5. Measuring Entanglement in Condensed Matter Systems

    SciTech Connect

    Cramer, M.; Wunderlich, H.; Plenio, M. B.

    2011-01-14

    We show how entanglement may be quantified in spin and cold atom many-body systems using standard experimental techniques only. The scheme requires no assumptions on the state in the laboratory, and a lower bound to the entanglement can be read off directly from the scattering cross section of neutrons deflected from solid state samples or the time-of-flight distribution of cold atoms in optical lattices, respectively. This removes a major obstacle which so far has prevented the direct and quantitative experimental study of genuine quantum correlations in many-body systems: The need for a full characterization of the state to quantify the entanglement contained in it. Instead, the scheme presented here relies solely on global measurements that are routinely performed and is versatile enough to accommodate systems and measurements different from the ones we exemplify in this work.

  6. Machine vision for high-precision volume measurement applied to levitated containerless material processing

    SciTech Connect

    Bradshaw, R.C.; Schmidt, D.P.; Rogers, J.R.; Kelton, K.F.; Hyers, R.W.

    2005-12-15

    By combining the best practices in optical dilatometry with numerical methods, a high-speed and high-precision technique has been developed to measure the volume of levitated, containerlessly processed samples with subpixel resolution. Containerless processing provides the ability to study highly reactive materials without the possibility of contamination affecting thermophysical properties. Levitation is a common technique used to isolate a sample as it is being processed. Noncontact optical measurement of thermophysical properties is very important as traditional measuring methods cannot be used. Modern, digitally recorded images require advanced numerical routines to recover the subpixel locations of sample edges and, in turn, produce high-precision measurements.

  7. The Art World's Concept of Negative Space Applied to System Safety Management

    NASA Technical Reports Server (NTRS)

    Goodin, James Ronald (Ronnie)

    2005-01-01

    Tools from several different disciplines can improve system safety management. This paper relates the Art World with our system safety world, showing useful art schools of thought applied to system safety management, developing an art theory-system safety bridge. This bridge is then used to demonstrate relations with risk management, the legal system, personnel management and basic management (establishing priorities). One goal of this presentation/paper is simply to be a fun diversion from the many technical topics presented during the conference.

  8. The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System

    NASA Astrophysics Data System (ADS)

    Alomari, M. M.; Rodanski, B. S.

    The second system of the IEEE second benchmark model of Subsynchronous Resonance (SSR) is considered. The system can be mathematically modeled as a set of first order nonlinear ordinary differential equations with the compensation factor (µ = Xc/XL) as a bifurcation (control) parameter. So, bifurcation theory can be applied to nonlinear dynamical systems, which can be written as dx/dt = F(x; µ). The effects of machine components, i.e. damper winding, automatic voltage regulator (AVR), and power system stabilizer (PSS) on SSR in power system are studied. The results show that these components affect the locations, number and type of the Hopf bifurcations.

  9. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG)

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Williams, Brent J.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-11-01

    We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography-mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG) system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes) (Zhang et al., 2014). Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF), where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins) are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS), TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level resolution on

  10. Applying Systems Theory to Systemic Change: A Generic Model for Educational Reform.

    ERIC Educational Resources Information Center

    Hansen, Joe B.

    Although educational reformers frequently use the words "system,""systemic change," and "systemic approach," many lack a fundamental understanding of the systems concept. This paper describes the application of systems theory to the problems of educational reform and educational assessment. It introduces basic concepts and principles and describes…

  11. Muscle stiffness estimation using a system identification technique applied to evoked mechanomyogram during cycling exercise.

    PubMed

    Uchiyama, Takanori; Saito, Kaito; Shinjo, Katsuya

    2015-12-01

    The aims of this study were to develop a method to extract the evoked mechanomyogram (MMG) during cycling exercise and to clarify muscle stiffness at various cadences, workloads, and power. Ten young healthy male participants were instructed to pedal a cycle ergometer at cadences of 40 and 60 rpm. The loads were 4.9, 9.8, 14.7, and 19.6 N, respectively. One electrical stimulus per two pedal rotations was applied to the vastus lateralis muscle at a knee angle of 80° in the down phase. MMGs were measured using a capacitor microphone, and the MMGs were divided into stimulated and non-stimulated sequences. Each sequence was synchronously averaged. The synchronously averaged non-stimulated MMG was subtracted from the synchronously averaged stimulated MMG to extract an evoked MMG. The evoked MMG system was identified and the poles of the transfer function were calculated. The poles and mass of the vastus lateralis muscle were used to estimate muscle stiffness. Results showed that muscle stiffness was 186-626 N /m and proportional to the workloads and power. In conclusion, our method can be used to assess muscle stiffness proportional to the workload and power.

  12. Design of Astrometric Mission (JASMINE) by Applying Model Driven System Engineering

    NASA Astrophysics Data System (ADS)

    Yamada, Y.; Miyashita, H.; Nakamura, H.; Suenaga, K.; Kamiyoshi, S.; Tsuiki, A.

    2010-12-01

    We are planning space astrometric satellite mission named JASMINE. The target accuracy of parallaxes in JASMINE observation is 10 micro arc second, which corresponds to 1 nm scale on the focal plane. It is very hard to measure the 1 nm scale deformation of focal plane. Eventually, we need to add the deformation to the observation equations when estimating stellar astrometric parameters, which requires considering many factors such as instrument models and observation data analysis. In this situation, because the observation equations become more complex, we may reduce the stability of the hardware, nevertheless, we require more samplings due to the lack of rigidity of each estimation. This mission imposes a number of trades-offs in the engineering choices and then decide the optimal design from a number of candidates. In order to efficiently support such decisions, we apply Model Driven Systems Engineering (MDSE), which improves the efficiency of the engineering by revealing and formalizing requirements, specifications, and designs to find a good balance among various trade-offs.

  13. The Development of Vibration System for Applying Magnetic Resonance Elastography (MRE) to the Supraspinatus Muscle.

    PubMed

    Ito, Daiki; Numano, Tomokazu; Mizuhara, Kazuyuki; Takamoto, Kouichi; Onishi, Takaaki; Nishijo, Hisao

    Palpation is a standard clinical tool to diagnose abnormal stiffness changes in soft tissues. However, it is difficult to palpate the supraspinatus muscle because it locates under the trapezius muscle. The magnetic resonance elastography (MRE) uses harmonic mechanical excitation to quantitatively measure the stiffness (shear modulus) of both the superficial and deep tissues. The purpose of this study was to build a vibration system for applying the MRE to the supraspinatus muscle. In this study, a power amplifier and a pneumatic pressure generator were used to supply vibrations to a vibration pad. Six healthy volunteers underwent MRE. We investigated the effects of position (the head of the humerus and the trapezius muscle) of the vibration pad on the patterns of wave propagation (wave image). When the vibration pad was placed in the trapezius muscle, the wave images represented clear wave propagation. On the other hand, when the vibration pad was placed in the head of the humerus, the wave images represented unclear wave propagation. This result might be caused by wave interferences resulting from the vibrations from bones and an intramuscular tendon of the supraspinatus muscle. The mean shear modulus also was 8.12 ± 1.83 (mean ± SD) kPa, when the vibration pad was placed in the trapezius muscle. Our results demonstrated that the vibration pad should be placed in the trapezius muscle in the MRE of the supraspinatus muscle.

  14. Neuro-fuzzy identification applied to fault detection in nonlinear systems

    NASA Astrophysics Data System (ADS)

    Blázquez, L. Felipe; de Miguel, Luis J.; Aller, Fernando; Perán, José R.

    2011-10-01

    This article describes a fault detection method, based on the parity equations approach, to be applied to nonlinear systems. The input-output nonlinear model of the plant, used in the method, has been obtained by a neural fuzzy inference architecture and its learning algorithm. The proposed method is able to detect small abrupt faults, even in systems with unknown nonlinearities. This method has been applied to a real industrial pilot plant, and good performance has been obtained for the experimental case of fault detection in the level sensor of a level control process in the said industrial pilot plant.

  15. Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review.

    PubMed

    Compher, Charlene; Frankenfield, David; Keim, Nancy; Roth-Yousey, Lori

    2006-06-01

    Several factors may alter apparent resting metabolic rate (RMR) during measurement with indirect calorimetry. Likewise, numerous indirect calorimetry measurement protocols have been developed over the years, and the methodology employed could influence test results. As part of a larger project to determine the role of indirect calorimetry in clinical practice, a systematic review of the literature was undertaken to determine the ideal subject condition and test methodology for obtaining reliable measurement of RMR with indirect calorimetry. Food, ethanol, caffeine, and nicotine affect RMR for a variable number of hours after consumption; therefore, intake of these items must be controlled before measurement. Activities of daily living increase metabolic rate, but a short rest (< or =20 minutes) before testing is sufficient for the effect to dissipate. Moderate or vigorous physical activity has a longer carryover effect and therefore must be controlled in the hours before a measurement of RMR is attempted. Limited data were found regarding ideal ambient conditions for RMR testing. Measurement duration of 10 minutes with the first 5 minutes deleted and the remaining 5 minutes having a coefficient of variation <10% gave accurate readings of RMR. Individuals preparing for RMR measurement via indirect calorimetry should refrain from eating, consuming ethanol and nicotine, smoking, and engaging in physical activity for varying times before measurement. The test site should be physically comfortable and the individual should have 10 to 20 minutes to rest before measurement commences. A 10-minute test duration with the first 5 minutes discarded and the remaining 5 minutes having a coefficient of variation of <10% will give an accurate measure of RMR.

  16. Measuring the orthogonality error of coil systems

    USGS Publications Warehouse

    Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.

    2012-01-01

    Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.

  17. Applying an Information Processing Model to Measure the Effectiveness of a Mailed Circular Advertisement.

    DTIC Science & Technology

    1982-01-01

    and if the direction of flow of the process is as stated, Aaker & Day (1974) came to some interesting conclusions. They found that adver- 17 tising...the sample. Nevertheless, the study did indicate positive effects of a mailed circular ad. II 2i REFERENCES REFERENCES Aaker , D. A., & Day, G. S. A...dynamic model of relation- ships among advertising, consumer awareness, attitudes, and behavior. Journal of Applied Psychology, 1974, 39, 281-286. Aaker

  18. Gear Transmission Error Measurement System Made Operational

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2002-01-01

    A system directly measuring the transmission error between the meshing spur or helical gears was installed at the NASA Glenn Research Center and made operational in August 2001. This system employs light beams directed by lenses and prisms through gratings mounted on the two gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. The device is capable of resolution better than 0.1 mm (one thousandth the thickness of a human hair). The measured transmission error can be displayed in a "map" that shows how the transmission error varies with the gear rotation or it can be converted to spectra to show the components at the meshing frequencies. Accurate transmission error data will help researchers better understand the mechanisms that cause gear noise and vibration and will lead to The Design Unit at the University of Newcastle in England specifically designed the new system for NASA. It is the only device in the United States that can measure dynamic transmission error at high rotational speeds. The new system will be used to develop new techniques to reduce dynamic transmission error along with the resulting noise and vibration of aeronautical transmissions.

  19. Velocity and turbulence measurements in combustion systems

    NASA Astrophysics Data System (ADS)

    Goldstein, R. J.; Lau, K. Y.; Leung, C. C.

    1983-06-01

    A laser-Doppler velocimeter is used in the measurement of high-temperature gas flows. A two-stage fluidization particle generator provides magnesium oxide particles to serve as optical scattering centers. The one-dimensional dual-beam system is frequency shifted to permit measurements of velocities up to 300 meters per second and turbulence intensities greater than 100 percent. Exiting flows from can-type gas turbine combustors and burners with pre-mixed oxy-acetylene flames are described in terms of the velocity, turbulence intensity, and temperature profiles. The results indicate the influence of the combustion process on turbulence.

  20. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  1. Electric Field Quantitative Measurement System and Method

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  2. Scale effects on information theory-based measures applied to streamflow patterns in two rural watersheds

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Pachepsky, Yakov A.; Guber, Andrey K.; McPherson, Brian J.; Hill, Robert L.

    2012-01-01

    SummaryUnderstanding streamflow patterns in space and time is important for improving flood and drought forecasting, water resources management, and predictions of ecological changes. Objectives of this work include (a) to characterize the spatial and temporal patterns of streamflow using information theory-based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those measures. We selected two USDA experimental watersheds to serve as case study examples, including the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds and more than 30 years of continuous data records of precipitation and streamflow. Information content measures (metric entropy and mean information gain) and complexity measures (effective measure complexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information content measures of streamflow time series are much smaller than those for precipitation data, and the streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of the precipitation information that leads to the observed additional complexity in streamflow measures. Correlation coefficients between the information-theory-based measures and time intervals are close to 0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial scale effects on streamflow patterns are observed with absolute values of correlation coefficients between the measures and sub-watershed area

  3. Simultaneous perimeter measurement for 3D object with a binocular stereo vision measurement system

    NASA Astrophysics Data System (ADS)

    Peng, Zhao; Guo-Qiang, Ni

    2010-04-01

    A simultaneous measurement scheme for multiple three-dimensional (3D) objects' surface boundary perimeters is proposed. This scheme consists of three steps. First, a binocular stereo vision measurement system with two CCD cameras is devised to obtain the two images of the detected objects' 3D surface boundaries. Second, two geodesic active contours are applied to converge to the objects' contour edges simultaneously in the two CCD images to perform the stereo matching. Finally, the multiple spatial contours are reconstructed using the cubic B-spline curve interpolation. The true contour length of every spatial contour is computed as the true boundary perimeter of every 3D object. An experiment on the bent surface's perimeter measurement for the four 3D objects indicates that this scheme's measurement repetition error decreases to 0.7 mm.

  4. Imaging Systems for Size Measurements of Debrisat Fragments

    NASA Technical Reports Server (NTRS)

    Shiotani, B.; Scruggs, T.; Toledo, R.; Fitz-Coy, N.; Liou, J. C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2017-01-01

    The overall objective of the DebriSat project is to provide data to update existing standard spacecraft breakup models. One of the key sets of parameters used in these models is the physical dimensions of the fragments (i.e., length, average-cross sectional area, and volume). For the DebriSat project, only fragments with at least one dimension greater than 2 mm are collected and processed. Additionally, a significant portion of the fragments recovered from the impact test are needle-like and/or flat plate-like fragments where their heights are almost negligible in comparison to their other dimensions. As a result, two fragment size categories were defined: 2D objects and 3D objects. While measurement systems are commercially available, factors such as measurement rates, system adaptability, size characterization limitations and equipment costs presented significant challenges to the project and a decision was made to develop our own size characterization systems. The size characterization systems consist of two automated image systems, one referred to as the 3D imaging system and the other as the 2D imaging system. Which imaging system to use depends on the classification of the fragment being measured. Both imaging systems utilize point-and-shoot cameras for object image acquisition and create representative point clouds of the fragments. The 3D imaging system utilizes a space-carving algorithm to generate a 3D point cloud, while the 2D imaging system utilizes an edge detection algorithm to generate a 2D point cloud. From the point clouds, the three largest orthogonal dimensions are determined using a convex hull algorithm. For 3D objects, in addition to the three largest orthogonal dimensions, the volume is computed via an alpha-shape algorithm applied to the point clouds. The average cross-sectional area is also computed for 3D objects. Both imaging systems have automated size measurements (image acquisition and image processing) driven by the need to quickly

  5. Shielding Effectiveness Measurements Applied to Safety Assessment Predictions at Picatinny Arsenal

    DTIC Science & Technology

    2005-04-01

    defined in MIL- STD 188-125-1. The measured frequency ranges go beyond the MIL- STD 10 MHz to 1 GHz, to include the frequency range of 1 to 10 GHz...Rev. 8/98) Prescribed by ANSI Std . Z39.18 iii Contents List of Figures iv List of Tables iv 1. Introduction 1 2. Measurement Methodology...The measurement methodology is based on guidance described in MIL- STD 188-125-1, “High- altitude Electromagnetic pulse (HEMP) Protection for Ground

  6. Acquisition systems for heat transfer measurement

    SciTech Connect

    De Witt, R.J.

    1983-01-01

    Practical heat transfer data acquisition systems are normally characterized by the need for high-resolution, low-drift, low-speed recording devices. Analog devices such as strip chart or circular recorders and FM analog magnetic tape have excellent resolution and work well when data will be presented in temperature versus time format only and need not be processed further. Digital systems are more complex and require an understanding of the following components: digitizing devices, interface bus types, processor requirements, and software design. This paper discusses all the above components of analog and digital data acquisition, as they are used in current practice. Additional information on thermocouple system analysis will aid the user in developing accurate heat transfer measuring systems.

  7. Applying and Measuring the Value of Utility Modeling in Defense Acquisition Decision Making

    DTIC Science & Technology

    2013-12-01

    intricate systems such as aircraft carriers or submarines. For systems of that nature, upgrades represent an overhaul of the previous system design ...Failure UTA Weight/Capability (C, L, S, & UHF) Remote HF Safety Fan (Display) Seat Design TADS Failure Weapon Inhibit VHF Secure Communications Figure...these upgrades, instead of the possible 948. Finally, the model declined to purchase the UTA Weight/Capability and the Seat Design upgrades. With a

  8. APPLYING TEP MEASUREMENTS TO ASSESS THE AGING STAGE OF MARAGING 250 STEEL

    SciTech Connect

    Snir, Y.; Gelbstein, Y.; Pinkas, M.; Yeheskel, O.; Landau, A.

    2008-02-28

    Thermoelectric power (TEP) measurements had been proved as an effective method for evaluating the metallurgical state of various alloys. The current work was conducted in order to evaluate the influence of the aging state of Maraging 250 steel on TEP values. Commercial Maraging 250 steel was aged at 500 deg. C for 0.5-6 hours (hrs). TEP, hardness (Rc) and ultrasonic (US) measurements, were preformed on the as received and aged specimens. XRD measurements were used to identify the formation of precipitates (mainly Ni{sub 3}(Ti,Mo)), reverted austenite and to evaluate changes in the microstrain caused by the precipitation process. A correlation was found between the TEP and the various measurements as a function of the aging time.

  9. Applying Tep Measurements to Assess the Aging Stage of Maraging 250 Steel

    NASA Astrophysics Data System (ADS)

    Snir, Y.; Pinkas, M.; Gelbstein, Y.; Yeheskel, O.; Landau, A.

    2008-02-01

    Thermoelectric power (TEP) measurements had been proved as an effective method for evaluating the metallurgical state of various alloys. The current work was conducted in order to evaluate the influence of the aging state of Maraging 250 steel on TEP values. Commercial Maraging 250 steel was aged at 500 °C for 0.5-6 hours (hrs). TEP, hardness (Rc) and ultrasonic (US) measurements, were preformed on the as received and aged specimens. XRD measurements were used to identify the formation of precipitates (mainly Ni3(Ti,Mo)), reverted austenite and to evaluate changes in the microstrain caused by the precipitation process. A correlation was found between the TEP and the various measurements as a function of the aging time.

  10. Vapor pressure and freezing point osmolality measurements applied to a volatile screen.

    PubMed

    Draviam, E J; Custer, E M; Schoen, I

    1984-12-01

    This is a report of a rapid and precise screening procedure, developed for the determination of ethanol in serum using osmolality measurements. The osmolality of the patient is determined by freezing point method (freezing point osmometry) and dew point (water vapor pressure osmometry) method. The difference between freezing point osmolality and vapor pressure osmolality (delta osm) is due to the presence of volatiles in the serum, because the volatiles are not measured by vapor pressure osmometry. The amount of ethanol (mg/dL) in serum is estimated by multiplying delta osm by a factor of 4.2. As a comparison method, ethanol also is measured by a spectrophotometric alcohol dehydrogenase method. In addition, a significant difference between an osmometric alcohol assayed value and enzymatic spectrophotometric measurement indicates the presence of volatiles, other than ethanol. In addition to ethanol there is a linear relationship between osmolality and isopropanol or methanol when added in vitro to serum.

  11. Structure and Measurement of Depression in Youth: Applying Item Response Theory to Clinical Data

    PubMed Central

    Cole, David A.; Cai, Li; Martin, Nina C.; Findling, Robert L; Youngstrom, Eric A.; Garber, Judy; Curry, John F.; Hyde, Janet S.; Essex, Marilyn J.; Compas, Bruce E.; Goodyer, Ian M.; Rohde, Paul; Stark, Kevin D.; Slattery, Marcia J.; Forehand, Rex

    2013-01-01

    Goals of the paper were to use item response theory (IRT) to assess the relation of depressive symptoms to the underlying dimension of depression and to demonstrate how IRT-based measurement strategies can yield more reliable data about depression severity than conventional symptom counts. Participants were 3403 clinic and nonclinic children and adolescents from 12 contributing samples, all of whom received the Kiddie Schedule of Affective Disorders and Schizophrenia for school-aged children. Results revealed that some symptoms reflected higher levels of depression and were more discriminating than others. Results further demonstrated that utilization of IRT-based information about symptom severity and discriminability in the measurement of depression severity can reduce measurement error and increase measurement fidelity. PMID:21534696

  12. Applying reliability analysis to design electric power systems for More-electric aircraft

    NASA Astrophysics Data System (ADS)

    Zhang, Baozhu

    The More-Electric Aircraft (MEA) is a type of aircraft that replaces conventional hydraulic and pneumatic systems with electrically powered components. These changes have significantly challenged the aircraft electric power system design. This thesis investigates how reliability analysis can be applied to automatically generate system topologies for the MEA electric power system. We first use a traditional method of reliability block diagrams to analyze the reliability level on different system topologies. We next propose a new methodology in which system topologies, constrained by a set reliability level, are automatically generated. The path-set method is used for analysis. Finally, we interface these sets of system topologies with control synthesis tools to automatically create correct-by-construction control logic for the electric power system.

  13. System Definition-Enabled Acquisition (SDEA) - A Concept for Defining Requirements for Applying Model-Based Systems Engineering (MBSE) to the Acquisition of DoD Complex Systems

    DTIC Science & Technology

    2012-04-30

    Acquisition (SDEA)—A Concept for Defining Requirements for Applying Model-Based Systems Engineering ( MBSE ) to the Acquisition of DoD Complex Systems...Based Systems Engineering ( MBSE ) to the Acquisition of DoD Complex Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...Defining Requirements for Applying Model-Based Systems Engineering ( MBSE ) to the Acquisition of DoD Complex Systems Paul Montgomery, Ron Carlson

  14. Thermodynamics of Weakly Measured Quantum Systems

    NASA Astrophysics Data System (ADS)

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-01

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  15. Kiernan reentry measurements system on Kwajalein atoll

    SciTech Connect

    Roth, K.R.; Austin, M.E.; Frediani, D.J.; Knittel, G.H.; Mrstik, A.V.

    1989-01-01

    The Kiernan Reentry Measurements System (KREMS), located on Kwajalein Atoll in the Pacific, is the United States' most sophisticated and important research and development radar site. Consisting of four one-of-a-kind instrumentation radars, KREMS has played a major role for the past 25 years in the collection of data associated with ICBM testing. Furthermore, it has served as an important space-surveillance facility that provides an early U.S. view of many Soviet and Chinese satellite launches. Finally, the system is slated to play a key role in Strategic Defense Initiative experiments.

  16. Thermodynamics of Weakly Measured Quantum Systems.

    PubMed

    Alonso, Jose Joaquin; Lutz, Eric; Romito, Alessandro

    2016-02-26

    We consider continuously monitored quantum systems and introduce definitions of work and heat along individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain. We illustrate our results with the case of a weakly measured driven two-level system and show how to distinguish between quantum work and heat contributions. We finally employ quantum feedback control to suppress detector backaction and determine the work statistics.

  17. Laser System for Precise, Unambiguous Range Measurements

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, Oliver

    2005-01-01

    The Modulation Sideband Technology for Absolute Range (MSTAR) architecture is the basis of design of a proposed laser-based heterodyne interferometer that could measure a range (distance) as great as 100 km with a precision and resolution of the order of 1 nm. Simple optical interferometers can measure changes in range with nanometer resolution, but cannot measure range itself because interference is subject to the well-known integer-multiple-of-2 -radians phase ambiguity, which amounts to a range ambiguity of the order of 1 m at typical laser wavelengths. Existing rangefinders have a resolution of the order of 10 m and are therefore unable to resolve the ambiguity. The proposed MSTAR architecture bridges the gap, enabling nanometer resolution with an ambiguity range that can be extended to arbitrarily large distances. The MSTAR architecture combines the principle of the heterodyne interferometer with the principle of extending the ambiguity range of an interferometer by using light of two wavelengths. The use of two wavelengths for this purpose is well established in optical metrology, radar, and sonar. However, unlike in traditional two-color laser interferometry, light of two wavelengths would not be generated by two lasers. Instead, multiple wavelengths would be generated as sidebands of phase modulation of the light from a single frequency- stabilized laser. The phase modulation would be effected by applying sinusoidal signals of suitable frequencies (typically tens of gigahertz) to high-speed electro-optical phase modulators. Intensity modulation can also be used

  18. POLRADS: polarization radiance distribution measurement system.

    PubMed

    Voss, Kenneth J; Souaidia, Nordine

    2010-09-13

    While the upwelling radiance distribution in the ocean can be highly polarized, there are few measurements of this parameter in the open ocean. To obtain the polarized in-water upwelling spectral radiance distribution data we have developed the POLRADS instrument. This instrument is based on the NuRADS radiance distribution camera systems in which linear polarizer's have been installed. By combining simultaneous images from three NuRADS instruments, three Stokes parameters (I, Q, U) for the water leaving radiance can be obtained for all upwelling angles simultaneously. This system measures the Stokes parameters Q/I and U/I with a 0.05-0.06 uncertainty and I with a 7-10% uncertainty.

  19. Rotating Rake Turbofan Duct Mode Measurement System

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental measurement system was developed and implemented by the NASA Glenn Research Center in the 1990s to measure turbofan duct acoustic modes. The system is a continuously rotating radial microphone rake that is inserted into the duct. This Rotating Rake provides a complete map of the acoustic duct modes present in a ducted fan and has been used on a variety of test articles: from a low-speed, concept test rig, to a full-scale production turbofan engine. The Rotating Rake has been critical in developing and evaluating a number of noise reduction concepts as well as providing experimental databases for verification of several aero-acoustic codes. More detailed derivation of the unique Rotating Rake equations are presented in the appendix.

  20. Applied Nuclear Accountability Systems: A Case Study in the System Architecture and Development of NuMAC

    SciTech Connect

    Campbell, Andrea Beth

    2004-07-01

    This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)

  1. Measurement System for Energetic Materials Decomposition

    DTIC Science & Technology

    2015-01-05

    Measurement System for Energetic Materials Decomposition This DURIP grant was used to purchase: 1. Q600 SDT Simultaneous DSC-TGA 2... Decomposition Report Title This DURIP grant was used to purchase: 1. Q600 SDT Simultaneous DSC-TGA 2. Pfeiffer Vacuum Benchtop Thermostar Mass...Spectrometer 3. Vision Research Phantom V12.1-8G-M high speed camera These instruments have been used to evaluate and study decomposition and

  2. Space Acceleration Measurement System-II

    NASA Technical Reports Server (NTRS)

    Foster, William

    2009-01-01

    Space Acceleration Measurement System (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the ISS that result from the operation of hardware, crew activities, as well as dockings and maneuvering. Results will be used to generalize the types of vibrations affecting vibration-sensitive experiments. Investigators seek to better understand the vibration environment on the space station to enable future research.

  3. Plume Measurement System (PLUMES) Calibration Experiment

    DTIC Science & Technology

    1994-08-01

    Atle Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, California 92126 and Craig Huhta JIMAR University of Hawaii, Honolulu, Hawaii 96822...Measurement System (PLUMES) Calibration Experiment by Age Lohrmann SonTek, Inc. 7940 Silverton Avenue, No. 105 San Diego, CA 92126 Craig Huhta JIMAR...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) &. PERFORMING ORGANIZATION SonTek, Inc., 7940 Silverton Avenue, No. 105, San Diego, CA 92126 REPORT NUMBER

  4. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, Sheng; Young, Jack P.

    1998-01-01

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  5. A portable magnetic induction measurement system (PIMS).

    PubMed

    Cordes, Axel; Foussier, Jérôme; Pollig, Daniel; Leonhardt, Steffen

    2012-02-22

    For contactless monitoring of ventilation and heart activity, magnetic induction measurements are applicable. As the technique is harmless for the human body, it is well suited for long-term monitoring solutions, e.g., bedside monitoring, monitoring of home care patients, and the monitoring of persons in critical occupations. For such settings, a two-channel portable magnetic induction system has been developed, which is small and light enough to be fitted in a chair or bed. Because demodulation, control, and filtering are implemented on a front-end digital signal processor, a PC is not required (except for visualization/data storage during research and development). The system can be connected to a local area network (LAN) or wireless network (WiFi), allowing to connect several devices to a large monitoring system, e.g., for a residential home for the elderly or a hospital with low-risk patients not requiring standard ECG monitoring. To visualize data streams, a Qt-based (Qt-framework by Nokia, Espoo, Finland) monitoring application has been developed, which runs on Netbook computers, laptops, or standard PCs. To induce and measure the magnetic fields, external coils and amplifiers are required. This article describes the system and presents results for monitoring respiration and heart activity in a (divan) bed and for respiration monitoring in a chair. Planar configurations and orthogonal coil setups were examined during the measurement procedures. The measurement data were streamed over a LAN to a monitoring PC running Matlab (The MathWorks Inc, Natick, MA, USA).

  6. Hot Wall Thickness Variation Measurement System

    DTIC Science & Technology

    1979-06-01

    Subtltia) HOT WALL THICKNESS VARIATION MEASUREMENT SYSTEM 7. AUTHORfa; 3. J. KRUPSKI 9 . PERFORMING ORGANIZATION NAME AND ADDRESS PRODUCT...THE FORGING 3. ULTRASONICS ON A HOT TUBE 4. SYSTEt-l DESCRIPTION 5. TESTING RESULTS 6. CONCLUSIONS 7. HffLEMENTATION PAGE i ii 1 2 4 6 9 ...printed out. The grip procedure was repeated toward the breech end of the forging with good results. The third and 9 breech end prints were at about

  7. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  8. NANONIS TRAMEA - A Quantum Transport Measurement System

    NASA Astrophysics Data System (ADS)

    Kampen, Thorsten; Thissen, Andreas; Schaff, Oliver; Pioda, Alessandro

    Nanonis Tramea is a quantum leap with respect to increased speed for transport measurements taking research onto a new level. Measurements which took several hours in the past can now be done in minutes without compromising signal quality. Tramea uses its fast, high-resolution, high-precision and ultra-low-noise outputs and inputs to generate and acquire up to 20000 data points per second on 24 channels in parallel. This is not only up to 1000 x faster than typical measurement systems but it is also time deterministic with highest precision. Here, the time separation between points is constant so that artefacts caused by unequal point spacings in non-deterministic measurement systems are avoided. The emphasis here is the real-time relation. Tramea comes with a built-in interface which allows for control of the instruments' basic functions from any programming environment. For users requiring more functionality and higher speeds a full-featured LabVIEW-based programming interface or scripting module are available as add-on modules. Due to the modularity and flexibility of the hardware and software architecture of Tramea upgrades with standardized add-on modules are possible. Non-standard requests can still be handled by the various programming options.

  9. Balanced interferometric system for stability measurements

    SciTech Connect

    Ellis, Jonathan D.; Joo, Ki-Nam; Spronck, Jo W.; Munnig Schmidt, Robert H

    2009-03-20

    We describe two different, double-sided interferometer designs for measuring material stability. Both designs are balanced interferometers where the only optical path difference is the sample and the reference beams are located within the interferometer. One interferometer is a double-pass design, whereas the other is a single-pass system. Based on a tolerancing analysis, the single-pass system is less susceptible to initial component misalignment and motions during experiments. This single-pass interferometer was tested with an 86 nm thin-film silver sample for both short-term repeatability and long-term stability. In 66 repeatability tests of 30 min each, the mean measured drift rate was less than 1 pm/h rms. In two long-term tests (>9 h), the mean drift rate was less than 1.1 pm/h, which shows good agreement between the short- and long-term measurements. In these experiments, the mean measured length change was 2 nm rms.

  10. Hybrid system for magnetic and acoustic measurement.

    PubMed

    Bruno, A C; Baffa, O; Carneiro, A O

    2009-01-01

    In order to improve the spatial resolution of Biosusceptometry of Alternate Current (BAC), we are suggesting the coupling of a Doppler ultrasonic transducer with the BAC system. The Doppler transducer obtains information from the vibration of ferromagnetic particles immersed in a visco-elastic medium when it is excited by an alternating magnetic field. In this case, the same magnetic particles used as contrast for susceptometric measurement also will work as contrast for the Doppler measurement. In this work, we present the characterization of the hybrid system for susceptometric and acoustic measurements simultaneously. It was observed that the susceptometric and Doppler ultrasound signal have the same profile and maximum amplitude for frequency of magnetizing field about 200 Hz. When using ferrite particles as magnetic contrast mixed with yogurt as based material, the susceptometric and Doppler measurement have sensitivity for concentration of particles as low as 1%. The sensitivity of the Doppler is dependent of the gradient of magnetic field over the sample. In this work, the magnetic field 5 cm far from the face of the transducer was 70 microT/volts.

  11. Aerodynamic Flow Field Measurements for Automotive Systems

    NASA Technical Reports Server (NTRS)

    Hepner, Timothy E.

    1999-01-01

    The design of a modern automotive air handling system is a complex task. The system is required to bring the interior of the vehicle to a comfortable level in as short a time as possible. A goal of the automotive industry is to predict the interior climate of an automobile using advanced computational fluid dynamic (CFD) methods. The development of these advanced prediction tools will enable better selection of engine and accessory components. The goal of this investigation was to predict methods used by the automotive industry. To accomplish this task three separate experiments were performed. The first was a laboratory setup where laser velocimeter (LV) flow field measurements were made in the heating and air conditioning unit of a Ford Windstar. The second involved flow field measurements in the engine compartment of a Ford Explorer, with the engine running idle. The third mapped the flow field exiting the center dashboard panel vent inside the Explorer, while the circulating fan operated at 14 volts. All three experiments utilized full-coincidence three-component LV systems. This enabled the mean and fluctuating velocities to be measured along with the Reynolds stress terms.

  12. Tritium monitoring system for near ambient measurements

    SciTech Connect

    Falter, K.G.; Bauer, M.L.

    1991-01-01

    This paper describes the current status of research on an improved tritium measurement system at the Oak Ridge National Laboratory (ORNL) for the US Navy. Present tritium-in-air monitoring systems installed by the Navy can reliably measure to less than 10 {mu}Ci/m{sup 3}, but medical and safety issues are pushing measurement needs to below 1 {mu}Ci/m{sup 3}, which is equivalent to 1--10 nCi/ml in liquid samples, using calcium metal converter. A significant effort has been expended over the past 10 years by the Navy RADIAC Development Program at ORNL on various schemes to improve the detection of tritium in both air and liquid at near ambient levels. One such scheme includes a liquid flow-through system based on an NE102 sponge scintillator with dual photomultiplier tubes for the tube noise rejection. (This document also contains copies of the slides used for presentation of this paper to the IEEE 1991 Nuclear Science Symposium). 4 refs., 17 figs.

  13. Applying large datasets to developing a better understanding of air leakage measurement in homes

    SciTech Connect

    Walker, I. S.; Sherman, M. H.; Joh, J.; Chan, W. R.

    2013-03-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result indifferent outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions need to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. Finally, it is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.

  14. Applying large datasets to developing a better understanding of air leakage measurement in homes

    DOE PAGES

    Walker, I. S.; Sherman, M. H.; Joh, J.; ...

    2013-03-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties. The two main approaches trade off bias and precision errors and thus result indifferent outcomes for accuracy and repeatability. To interpret results from the two approaches, various questions needmore » to be addressed, such as the need to measure the flow exponent, the need to make both pressurization and depressurization measurements and the role of wind in determining the accuracy and precision of the results. This article uses two large datasets of blower door measurements to reach the following conclusions. For most tests the pressure exponent should be measured but for wind speeds greater than 6 m/s a fixed pressure exponent reduces experimental error. The variability in reported pressure exponents is mostly due to changes in envelope leakage characteristics. Finally, it is preferable to test in both pressurization and depressurization modes due to significant differences between the results in these two modes.« less

  15. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-03-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria.

  16. 40 CFR 63.8030 - What requirements apply to my heat exchange systems?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... apply to my heat exchange systems? (a) You must comply with the requirements specified in Table 6 to... § 63.10(b)(1). (e) The reference to the periodic report required by § 63.152(c) of subpart G of...

  17. An Investigation of Employees' Use of E-Learning Systems: Applying the Technology Acceptance Model

    ERIC Educational Resources Information Center

    Lee, Yi-Hsuan; Hsieh, Yi-Chuan; Chen, Yen-Hsun

    2013-01-01

    The purpose of this study is to apply the technology acceptance model to examine the employees' attitudes and acceptance of electronic learning (e-learning) systems in organisations. This study examines four factors (organisational support, computer self-efficacy, prior experience and task equivocality) that are believed to influence employees'…

  18. Applying the Systems Approach to Curriculum Development in the Science Classroom.

    ERIC Educational Resources Information Center

    Boblick, John M.

    Described is a method by which a classroom teacher may apply the systems approach to the development of the instructional segments which he uses in his daily teaching activities. The author proposes a three-dimensional curriculum design model and discusses its main features. The basic points which characterize the application of the systems…

  19. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    ERIC Educational Resources Information Center

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  20. Embracing Connectedness and Change: A Complex Dynamic Systems Perspective for Applied Linguistic Research

    ERIC Educational Resources Information Center

    Cameron, Lynne

    2015-01-01

    Complex dynamic systems (CDS) theory offers a powerful metaphorical model of applied linguistic processes, allowing holistic descriptions of situated phenomena, and addressing the connectedness and change that often characterise issues in our field. A recent study of Kenyan conflict transformation illustrates application of a CDS perspective. Key…

  1. Toward a Blended Ontology: Applying Knowledge Systems to Compare Therapeutic and Toxicological Nanoscale Domains

    EPA Science Inventory

    Bionanomedicine and environmental research share need common terms and ontologies. This study applied knowledge systems, data mining, and bibliometrics used in nano-scale ADME research from 1991 to 2011. The prominence of nano-ADME in environmental research began to exceed the pu...

  2. Space Acceleration Measurement System for Free Flyers

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.

    1999-01-01

    Experimenters from the fluids, combustion, materials, and life science disciplines all use the microgravity environment of space to enhance their understanding of fundamental physical phenomena caused by disturbances from events such as spacecraft maneuvers, equipment operations, atmospheric drag, and (for manned flights) crew movement. Space conditions reduce gravity but do not eliminate it. To quantify the level of these disturbances, NASA developed the Space Acceleration Measurement System (SAMS) series to collect data characterizing the acceleration environment on the space shuttles. This information is provided to investigators so that they can evaluate how the microgravity environment affects their experiments. Knowledge of the microgravity environment also helps investigators to plan future experiments. The original SAMS system flew 20 missions on the shuttle as well as on the Russian space station Mir. Presently, Lewis is developing SAMS-II for the International Space Station; it will be a distributed system using digital output sensor heads. The latest operational version of SAMS, SAMS-FF, was originally designed for free flyer spacecraft and unmanned areas. SAMS-FF is a flexible, modular system, housed in a lightweight package, and it uses advances in technology to improve performance. The hardware package consists of a control and data acquisition module, three different types of sensors, data storage devices, and ground support equipment interfaces. Three different types of sensors are incorporated to measure both high- and low-frequency accelerations and the roll rate velocity. Small, low-power triaxial sensor heads (TSH's) offer high resolution and selectable bandwidth, and a special low-frequency accelerometer is available for high-resolution, low-frequency applications. A state-of-the-art, triaxial fiberoptic gyroscope that measures extremely low roll rates is housed in a compact package. The versatility of the SAMS-FF system is shown in the three

  3. Tailored Excitation for Frequency Response Measurement Applied to the X-43A Flight Vehicle

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan

    2007-01-01

    An important aspect of any flight research project is assessing aircraft stability and flight control performance. In some programs this assessment is accomplished through the estimation of the in-flight vehicle frequency response. This estimation has traditionally been a lengthy task requiring separate swept sine inputs for each control axis at a constant flight condition. Hypersonic vehicles spend little time at any specific flight condition while they are decelerating. Accordingly, it is difficult to use traditional methods to calculate the vehicle frequency response and stability margins for this class of vehicle. A technique has been previously developed to significantly reduce the duration of the excitation input by tailoring the input to excite only the frequency range of interest. Reductions in test time were achieved by simultaneously applying tailored excitation signals to multiple control loops, allowing a quick estimate of the frequency response of a particular aircraft. This report discusses the flight results obtained from applying a tailored excitation input to the X-43A longitudinal and lateral-directional control loops during the second and third flights. The frequency responses and stability margins obtained from flight data are compared with preflight predictions.

  4. Atomic oxygen-metal surface studies as applied to mass spectrometer measurements of upper planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Sjolander, G. W.

    1976-01-01

    The problem of atomic oxygen loss in mass spectrometer ion sources can be reduced to an understanding of the possible surface interactions between oxygen atoms and the metal surface of the ion source. Results are presented for an experimental study in which an atomic oxygen beam apparatus and a mass spectrometer were used to measure the oxygen atom reflection, recombination, general surface reaction, and occlusion probabilities on six different engineering surfaces as a function of atomic oxygen exposure. The materials studied are gold, Nichrome V, aluminum, titanium, silver, and platinum. The variation in measured reflection probability seems to occur with metals that form oxides, Nichrome V being stable in terms of reflection stability. Recombination is observed an all surfaces except aluminum and platinum. Variation in the complete set of measurements in a single experiment is the result of varying surface conditions.

  5. Integrated measure and control system for textile machinery

    NASA Astrophysics Data System (ADS)

    Liu, Yuantao; Zhao, Jinzhi; Zhao, Zexiang

    2010-12-01

    In this paper, textile mechanical drive control is researched. Textile machinery integrated measure and control system is established. The system is composed of micro-computer, PLC, transducer, implement device, all kinds of detective components and industrial Ethernet etc. Technology of industrial field bus control and Internet technique are applied. The system is on a background of textile production technique, such as spring, woven, chemical fiber, non-woven, dyeing and finishing. A network based open integrated control system is developed. Various characteristics of production technique flow and textile machinery movement discipline are presented. Configuration software is introduced according to user's control tasks. Final remote automatic controls are finished. This may make development cost reduced, and development periods shortened. Some problems in textile machinery development process are solved, which may make transparency factory and remote development realized.

  6. The Analytic Process Model for System Design and Measurement: A computer-Aided Tool for Analyzing Training Systems and other Human-Machine Systems

    DTIC Science & Technology

    1985-02-01

    performance measurement; effective- ness measurement; system populations; Bradley Infantry . Fighting Vehicle; BIFV; Analytic Process Model; APM...process model (APM) was developed from earlier models, applied in sample fashions to an existing system (the Bradley Infantry Fighting Vehicle) and...liradley Infantry Fighting Vehicle (Carrier Team Subsystem) 11 6. Example of a System Hierarchical Structure 14 7. Guidelines for Identifying

  7. Human eye color difference threshold measurement system

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhou, Taogeng

    2013-12-01

    The human eye has the ability to distinguish millions of colors, with this feature we can identify very subtle color differences, and the measurement of human eye color difference threshold can provide a visual function diagnosis for testee. In recent years, people begin to focus on studies on visual threshold diagnostic equipment. This paper proposes a human eye color difference threshold measurement system which is based on dual integrating sphere. The system includes two pairs of dual integrating sphere and color control module. Dual integrating sphere uses to mix and produce color, and palette unit which produces primary colors (red (R), green (G), blue (B)) is embedded in dual integrating sphere. At the same time, the embedded palette unit which produces cyan (C), magenta (M), and yellow (Y) expands color area that the system can generate. One optical path based on dual integrating sphere generates standard color, the other path produces the matching color which is similar to a standard color. In the high-precision closed-loop color control module, photoelectric switch records stepper motor's origin position and limits move displacement. Precision stepper motor pushes the light-blocking panel of the palette unit to a predetermined position, while real-time monitoring the position of the light-blocking panel and mixing the ideal controllable color. Two colors that the system generates are projected onto the same target area. Subjects make a judgment on color difference threshold by observing the target eventually.

  8. Measuring the Immeasurable: Applying Hierarchical Holographic Modeling to Developing Measures of Effectiveness for Stability, Security, Transition, and Reconstruction Operations

    DTIC Science & Technology

    2006-05-16

    and Internally Displaced Persons (IDPs) Judicial Personnel and Infrastructure Trafficking in Persons Property Food Security Legal System Reform...Shelter and Non- Food Relief Human Rights Humanitarian Demining Corrections Public Health War Crime Courts and Tribunals Education Truth...shift the focus from what is best for his forces to fight and win, to what is best for a safe , secure, stable and self-sustaining, independent State

  9. Sizing Up Earth: A Universal Method for Applying Eratosthenes' Earth Measurement.

    ERIC Educational Resources Information Center

    Makowski, George J.; Strong, William R.

    1996-01-01

    Shows that the experiment of the ancient Greek mathematician and geographer, Eratosthenes, can be replicated and used to teach geographic concepts. Eratosthenes calculated the most accurate ancient measurement of earth based on fundamental mathematics concepts and earth-sun relations. Includes instructions, illustrations, graphs, and historical…

  10. Differential magnetometer method applied to measurement of geomagnetically induced currents in Southern African power networks

    NASA Astrophysics Data System (ADS)

    Matandirotya, Electdom; Cilliers, Pierre. J.; Van Zyl, Robert R.; Oyedokun, David T.; Villiers, Jean

    2016-03-01

    Geomagnetically induced currents (GICs) in conductors connected to the Earth are driven by an electric field produced by a time-varying magnetic field linked to magnetospheric-ionospheric current perturbations during geomagnetic storms. The GIC measurements are traditionally done on the neutral-to-ground connections of power transformers. A method of inferring the characteristics of GIC in power lines using differential magnetic field measurements is presented. Measurements of the GIC in the power lines connected to a particular power transformer are valuable in the verification of the modeling of GIC in the power transmission network. The differential magnetometer method (DMM) is an indirect method used to estimate the GIC in a power line. With the DMM, low-frequency GIC in the power line is estimated from the difference between magnetic field recordings made directly underneath the power line and at some distance away, where the magnetic field of the GIC in the transmission line has negligible effect. Results of the first application of the DMM to two selected sites of the Southern African power transmission network are presented. The results show that good quality GIC measurements are achieved through the DMM using Commercially-Off-The-Shelf magnetometers.

  11. The Undefined Role of the Antecedent: Addressing the Measurement Quagmires in Applied Research

    ERIC Educational Resources Information Center

    Stichter, Janine Peck; Conroy, Maureen A.; Boyd, Brian A.

    2004-01-01

    In recent years, several investigators have examined trends in the antecedent research literature through discussion of key conceptual models considered to guide this research (Conroy & Stichter, 2003; Smith & Iwata, 1997; Smith, Iwata, & Michael, 2000) as well as related trends in measurement (Mahon, Shores, & Buske, 1999). Despite varied points…

  12. Structure and Measurement of Depression in Youths: Applying Item Response Theory to Clinical Data

    ERIC Educational Resources Information Center

    Cole, David A.; Cai, Li; Martin, Nina C.; Findling, Robert L.; Youngstrom, Eric A.; Garber, Judy; Curry, John F.; Hyde, Janet S.; Essex, Marilyn J.; Compas, Bruce E.; Goodyer, Ian M.; Rohde, Paul; Stark, Kevin D.; Slattery, Marcia J.; Forehand, Rex

    2011-01-01

    Our goals in this article were to use item response theory (IRT) to assess the relation of depressive symptoms to the underlying dimension of depression and to demonstrate how IRT-based measurement strategies can yield more reliable data about depression severity than conventional symptom counts. Participants were 3,403 children and adolescents…

  13. Dependence of cathodoluminescence on layer resistance applied for measurement of thin-layer sheet resistance.

    PubMed

    Czerwinski, A; Pluska, M; Ratajczak, J; Szerling, A; Katcki, J

    2010-03-01

    The dependence of spatially and spectrally resolved cathodoluminescence in a scanning electron microscope on resistances in semiconductor structures, especially on the layer resistance, is reported. This previously unstudied dependence is utilized for thin-layer sheet-resistance measurement. The method is illustrated by an assessment of lateral confinements in semiconductor-laser heterostructures.

  14. S-wave velocity measurements applied to the seismic microzonation of Basel, Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Fäh, Donat; Polom, Ulrich; Roullé, Agathe

    2007-07-01

    An extensive S-wave velocity survey had been carried out in the frame of a recent seismic microzonation study of Basel and the border areas between Switzerland, France and Germany. The aim was to better constrain the seismic amplification potential of the surface layers. The survey included single station (H/V spectral ratios) and ambient vibration array measurements carried out by the Swiss team, as well as active S-wave velocity measurements performed by the German and French partners. This paper is focused on the application of the array technique, which consists in recording ambient vibrations with a number of seismological stations. Several practical aspects related to the field measurements are outlined. The signal processing aims to determine the dispersion curves of surface waves contained in the ambient vibrations. The inversion of the dispersion curve provides a 1-D S-wave velocity model for the investigated site down to a depth related to the size of the array. Since the size of arrays is theoretically not limited, arrays are known to be well adapted for investigations in deep sediment basins, such as the Upper Rhine Graben including the area of the city of Basel. In this region, 27 array measurements with varying station configurations have been carried out to determine the S-wave velocity properties of the geological layers down to a depth of 100-250 m. For eight sites, the outputs of the array measurements have been compared with the results of the other investigations using active sources, the spectral analysis of surface waves (SASW) and S-wave reflection seismics. Borehole information available for a few sites could be used to calibrate the geophysical measurements. By this comparison, the advantages and disadvantages of the array method and the other techniques are outlined with regard to the effectiveness of the methods and the required investigation depth. The dispersion curves measured with the arrays and the SASW technique were also combined

  15. Applying spaceborne reflectivity measurements for calculation of the solar ultraviolet radiation at ground level

    NASA Astrophysics Data System (ADS)

    den Outer, P. N.; van Dijk, A.; Slaper, H.; Lindfors, A. V.; De Backer, H.; Bais, A. F.; Feister, U.; Koskela, T.; Josefsson, W.

    2012-12-01

    Long-term analysis of cloud effects on ultraviolet (UV) radiation on the ground using spaceborne observations requires the use of instruments that have operated consecutively. The longest data record can be built from the reflectivity measurements produced by the instruments Total Ozone Mapping Spectrometers (TOMS) flown on Nimbus 7 from 1979 to 1992, TOMS on Earth Probe from 1996 to 2005, and the Ozone Monitoring Instrument (OMI) flown on EOS Aura since 2004. The reflectivity data produced by TOMS on Earth Probe is only included until 2002. A comparison is made with cloud effects inferred from ground-based pyranometer measurements at over 83 World Radiation Data Centre stations. Modelled UV irradiances utilizing the standard reflectivity are compared with measurements of UV irradiances at eight European low-elevation stations. The reflectivity data of the two TOMS instruments shows a consistent agreement, and the required corrections are of low percentage, i.e. 2-3%. In contrast, the reflectivity product of OMI requires correction of 7-10%, and a solar angle dependency therein is more pronounced. These corrections were inferred from a comparison with pyranometer data, and tested using the UV measurements. The average reduction of UV radiation due to clouds for all sites together indicates a small trend: a diminishing cloudiness, in line with ground-based UV observations. Uncorrected implementation of the reflectivity data would have indicated the opposite. An optimal area was established for reflectivity data for the calculation of daily sums of UV radiation. It measures approximately 1.25° in latitudinal direction for square-shaped areas overhead the ground-based UV stations. Such an area can be traversed within 5 to 7 h at the average wind speeds found for the West European continent.

  16. Applying the Ce-in-zircon oxygen geobarometer to diverse silicic magmatic systems

    NASA Astrophysics Data System (ADS)

    Claiborne, L. L.; Miller, C. F.

    2012-12-01

    Zircon provides information on age, temperature, and composition of the magma from which it grew. In systems such as Mount St. Helens, where zircon is not coeval with the rest of the crystal cargo, it provides the only accessible record of the extended history of the magmatic system, including cycles of intrusion, crystallization and rejuvenation beneath an active volcano (Claiborne et al., 2010). The rare earth elements, which are present in measureable quantities in zircon, provide information about the composition of the magma from which zircon grew. Unique among the generally trivalent rare earth elements, cerium can exist as either trivalent or tetravalent, depending on the oxidation state of the magma. The tetravalent ion is highly compatible in zircon, in the site that usually hosts tetravalent zirconium, and so the amount of Cerium in zircon relative (relative to what would be expected of trivalent Ce) depends the oxidation state of the magma from which it grew. Trail et al. (2011) proposed a calibration based on experimental data that uses the Ce anomaly in zircon as a direct proxy for magma oxidation (fugacity), describing the relationship between Ce in zircon and magma oxygen fugacity as ln(Ce/Ce*)D = (0.1156±0.0050)xln(fO2)+(13860±708)/T-(6.125±0.484). For systems like Mount St. Helens, where the major minerals record only events in the hundreds to thousands of years leading to eruption, (including the Fe-Ti oxides traditionally relied upon for records of oxidation state of the magmas), this presents a novel approach for understanding more extended histories of oxidation of magmas in the tens and hundreds of thousands of years of magmatism at a volcanic center. This calibration also promises to help us better constrain conditions of crystallization in intrusive portions of volcanic systems, as well as plutonic bodes. We apply this new oxygen geobarometer to natural volcanic and plutonic zircons from a variety of tectonic settings, and compare to

  17. The Pulsed Flow Algorithm (PFA) Applied to Coupled Respiratory and Circulatory Systems

    NASA Astrophysics Data System (ADS)

    Staples, A.; Oran, E.; Boris, J.; Kaplan, C.; Kailasanath, K.

    2007-11-01

    The Pulsed Flow Equations (PFE) are a set of coupled partial differential equations designed to capture features particularly relevant to internal flows through flexible elastic channels, such as flows in physiological systems in biological organisms, and hydraulics systems. The equations are an extension of the standard one-dimensional fluid flow equations that, in addition, are able to capture two-dimensional diffusion, branching, transport, viscous, and other effects. A limiting case of the equations is the standard one-dimensional fluid flow equations. The equations are discretized and solved partially using an asymptotic solution, after which they reduce to tridiagonal form. The solution formalism can be applied to many types of complex networks of internal flows, and solves these problems, including some important two-dimensional effects, at the cost of a one-dimensional tridiagonal computation. Here we apply the PFA to describe a coupled circulatory and respiratory system calibrated to the average human body.

  18. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling

    NASA Astrophysics Data System (ADS)

    Rebmann, C.; Göckede, M.; Foken, T.; Aubinet, M.; Aurela, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Carrara, A.; Cescatti, A.; Ceulemans, R.; Clement, R.; Elbers, J. A.; Granier, A.; Grünwald, T.; Guyon, D.; Havránková, K.; Heinesch, B.; Knohl, A.; Laurila, T.; Longdoz, B.; Marcolla, B.; Markkanen, T.; Miglietta, F.; Moncrieff, J.; Montagnani, L.; Moors, E.; Nardino, M.; Ourcival, J.-M.; Rambal, S.; Rannik, Ü.; Rotenberg, E.; Sedlak, P.; Unterhuber, G.; Vesala, T.; Yakir, D.

    2005-04-01

    Measuring turbulent fluxes with the eddy covariance method has become a widely accepted and powerful tool for the determination of long term data sets for the exchange of momentum, sensible and latent heat, and trace gases such as CO2 between the atmosphere and the underlying surface. Several flux networks developed continuous measurements above complex terrain, e.g. AmeriFlux and EUROFLUX, with a strong focus on the net exchange of CO2 between the atmosphere and the underlying surface. Under many conditions basic assumptions for the eddy covariance method in its simplified form, such as stationarity of the flow, homogeneity of the surface and fully developed turbulence of the flow field, are not fulfilled. To deal with non-ideal conditions which are common at many FLUXNET sites, quality tests have been developed to check if these basic theoretical assumptions are valid.

  19. 3-D surface profilometry based on modulation measurement by applying wavelet transform method

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Chen, Feng; Xiao, Chao; Wei, Yongchao

    2017-01-01

    A new analysis of 3-D surface profilometry based on modulation measurement technique by the application of Wavelet Transform method is proposed. As a tool excelling for its multi-resolution and localization in the time and frequency domains, Wavelet Transform method with good localized time-frequency analysis ability and effective de-noizing capacity can extract the modulation distribution more accurately than Fourier Transform method. Especially for the analysis of complex object, more details of the measured object can be well remained. In this paper, the theoretical derivation of Wavelet Transform method that obtains the modulation values from a captured fringe pattern is given. Both computer simulation and elementary experiment are used to show the validity of the proposed method by making a comparison with the results of Fourier Transform method. The results show that the Wavelet Transform method has a better performance than the Fourier Transform method in modulation values retrieval.

  20. Energy Distribution among Reaction Products. III: The Method of Measured Relaxation Applied to H + Cl2

    NASA Technical Reports Server (NTRS)

    Pacey, P. D.; Polyani, J. C.

    1971-01-01

    The method of measured relaxation is described for the determination of initial vibrational energy distribution in the products of exothermic reaction. Hydrogen atoms coming from an orifice were diffused into flowing chlorine gas. Measurements were made of the resultant ir chemiluminescence at successive points along the line of flow. The concurrent processes of reaction, diffusion, flow, radiation, and deactivation were analyzed in some detail on a computer. A variety of relaxation models were used in an attempt to place limits on k(nu prime), the rate constant for reaction to form HCl in specified vibrational energy levels: H+Cl2 yields (sup K(nu prime) HCl(sub nu prime) + Cl. The set of k(?) obtained from this work is in satisfactory agreement with those obtained by another experimental method (the method of arrested relaxation described in Parts IV and V of the present series.

  1. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells.

    PubMed

    Hess, Katherine C; Epting, William K; Litster, Shawn

    2011-12-15

    We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.

  2. Energy Distribution Among Reaction Products. III: The Method of Measured Relaxation Applied to H + Cl(2).

    PubMed

    Pacey, P D; Polanyi, J C

    1971-08-01

    The method of measured relaxation is described for the determination of initial vibrational energy distribution in the products of exothermic reaction. Hydrogen atoms coming from an orifice were diffused into flowing chlorine gas. Measurements were made of the resultant ir chemiluminescence at successive points along the line of flow. The concurrent processes of reaction, diffusion, flow, radiation, and deactivation were analyzed in some detail on a computer. A variety of relaxation models were used in an attempt to place limits on k(upsilon), the rate constant for reaction to form HCl in specified vibrational energy levels: [equation]. The set of k(upsilon) obtained from this work is in satisfactory agreement with those obtained by another experimental method (the method of arrested relaxation described in Parts IV and V of the present series).

  3. On the van der Pauw's method applied to the measurement of low thermal conductivity materials.

    PubMed

    Morales, C; Flores, E; Bodega, J; Leardini, F; Ferrer, I J; Ares, J R; Sánchez, C

    2016-08-01

    The electrical van der Pauw's method has recently been extended to measure the thermal conductivity of different elements and compounds. This technique provides an easy way to determine the sample in-plane thermal conductivity by avoiding the influence of the thermal contact resistances. However, the reported calculated error values appear to be underestimated when dealing with the materials with low thermal conductivity (<5 W/Km) at room temperature. The causes of this underestimation are investigated in this communication and it has been found that they are due to the drastic influence of conduction heat losses through the thermo-resistance wires as well as the resulting modification of the sample temperature map. Both phenomena lead to experimental values of the sample thermal conductivity, which are systematically higher than the tabulated ones. The magnitude of this systematic error is ∼100% dealing with the samples of macroscopic dimensions, and low thermal conductivity indicated that the obtained accurate measurements can be quite challenging.

  4. On the van der Pauw's method applied to the measurement of low thermal conductivity materials

    NASA Astrophysics Data System (ADS)

    Morales, C.; Flores, E.; Bodega, J.; Leardini, F.; Ferrer, I. J.; Ares, J. R.; Sánchez, C.

    2016-08-01

    The electrical van der Pauw's method has recently been extended to measure the thermal conductivity of different elements and compounds. This technique provides an easy way to determine the sample in-plane thermal conductivity by avoiding the influence of the thermal contact resistances. However, the reported calculated error values appear to be underestimated when dealing with the materials with low thermal conductivity (<5 W/Km) at room temperature. The causes of this underestimation are investigated in this communication and it has been found that they are due to the drastic influence of conduction heat losses through the thermo-resistance wires as well as the resulting modification of the sample temperature map. Both phenomena lead to experimental values of the sample thermal conductivity, which are systematically higher than the tabulated ones. The magnitude of this systematic error is ˜100% dealing with the samples of macroscopic dimensions, and low thermal conductivity indicated that the obtained accurate measurements can be quite challenging.

  5. Impact of plasma noise on a direct thrust measurement system.

    PubMed

    Pottinger, S J; Lamprou, D; Knoll, A K; Lappas, V J

    2012-03-01

    In order to evaluate the accuracy and sensitivity of a pendulum-type thrust measurement system, a linear variable differential transformer (LVDT) and a laser optical displacement sensor have been used simultaneously to determine the displacement resulting from an applied thrust. The LVDT sensor uses an analog interface, whereas the laser sensor uses a digital interface to communicate the displacement readings to the data acquisition equipment. The data collected by both sensors show good agreement for static mass calibrations and validation with a cold gas thruster. However, the data obtained using the LVDT deviate significantly from that of the laser sensor when operating two varieties of plasma thrusters: a radio frequency (RF) driven plasma thruster, and a DC powered plasma thruster. Results establish that even with appropriate shielding and signal filtering the LVDT sensor is subject to plasma noise and radio frequency interactions which result in anomalous thrust readings. Experimental data show that the thrust determined using the LVDT system in a direct current plasma environment and a RF discharge is approximately a factor of three higher than the thrust values obtained using a laser sensor system for the operating conditions investigated. These findings are of significance to the electric propulsion community as LVDT sensors are often utilized in thrust measurement systems and accurate thrust measurement and the reproducibility of thrust data is key to analyzing thruster performance. Methods are proposed to evaluate system susceptibility to plasma noise and an effective filtering scheme presented for DC discharges.

  6. Leaching of Particulate and Dissolved Organic Carbon from Compost Applied to Bioretention Systems

    NASA Astrophysics Data System (ADS)

    Iqbal, Hamid; Flury, Markus; Mullane, Jessica; Baig, Muhammad

    2015-04-01

    Compost is used in bioretention systems to improve soil quality, to promote plant growth, and to remove metal contaminants from stormwater. However, compost itself, particularly when applied freshly, can be a source of contamination of the stormwater. To test the potential contamination caused by compost when applied to bioretention systems, we continuously leached a compost column with water under unsaturated conditions and characterized dissolved and particulate organic matter in the leachate. Freshly applied, mature compost leached up to 400 mg/L of dissolved organic carbon and 2,000 mg/L of suspended particulate organic carbon. It required a cumulative water flux of 4,000 mm until concentrations of dissolved and particulate organic carbon declined to levels typical for surface waters. Although, dissolved and particulate organic carbon are not contaminants per se, they can facilitate the movement of metals, thereby enhancing the mobility of toxic metals present in stormwater. Therefore, we recommended that compost is washed before it is applied to bioretention systems. Keywords compost; leachate; alkali extract; dissolved organic carbon; flux

  7. Noninvasive measurement of burn wound depth applying infrared thermal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jaspers, Mariëlle E.; Maltha, Ilse M.; Klaessens, John H.; Vet, Henrica C.; Verdaasdonk, Rudolf M.; Zuijlen, Paul P.

    2016-02-01

    In burn wounds early discrimination between the different depths plays an important role in the treatment strategy. The remaining vasculature in the wound determines its healing potential. Non-invasive measurement tools that can identify the vascularization are therefore considered to be of high diagnostic importance. Thermography is a non-invasive technique that can accurately measure the temperature distribution over a large skin or tissue area, the temperature is a measure of the perfusion of that area. The aim of this study was to investigate the clinimetric properties (i.e. reliability and validity) of thermography for measuring burn wound depth. In a cross-sectional study with 50 burn wounds of 35 patients, the inter-observer reliability and the validity between thermography and Laser Doppler Imaging were studied. With ROC curve analyses the ΔT cut-off point for different burn wound depths were determined. The inter-observer reliability, expressed by an intra-class correlation coefficient of 0.99, was found to be excellent. In terms of validity, a ΔT cut-off point of 0.96°C (sensitivity 71%; specificity 79%) differentiates between a superficial partial-thickness and deep partial-thickness burn. A ΔT cut-off point of -0.80°C (sensitivity 70%; specificity 74%) could differentiate between a deep partial-thickness and a full-thickness burn wound. This study demonstrates that thermography is a reliable method in the assessment of burn wound depths. In addition, thermography was reasonably able to discriminate among different burn wound depths, indicating its potential use as a diagnostic tool in clinical burn practice.

  8. On the Number of Mather Measures of Lagrangian Systems

    NASA Astrophysics Data System (ADS)

    Bernard, Patrick

    2010-09-01

    In 1996, Ricardo Ricardo Mañé discovered that Mather measures are in fact the minimizers of a “universal” infinite dimensional linear programming problem. This fundamental result has many applications, of which one of the most important is to the estimates of the generic number of Mather measures. Mañé obtained the first estimation of that sort by using finite dimensional approximations. Recently, we were able, with Gonzalo Contreras, to use this method of finite dimensional approximation in order to solve a conjecture of John Mather concerning the generic number of Mather measures for families of Lagrangian systems. In the present paper we obtain finer results in that direction by applying directly some classical tools of convex analysis to the infinite dimensional problem. We use a notion of countably rectifiable sets of finite codimension in Banach (and Frechet) spaces which may deserve independent interest.

  9. Magnetically applied pressure-shear : a new technique for direct strength measurement at high pressure (final report for LDRD project 117856).

    SciTech Connect

    Lamppa, Derek C.; Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

    2010-09-01

    A new experimental technique to measure material shear strength at high pressures has been developed for use on magneto-hydrodynamic (MHD) drive pulsed power platforms. By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse VISAR system from which the sample strength is determined.

  10. Information and Complexity Measures Applied to Observed and Simulated Soil Moisture Time Series

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Time series of soil moisture-related parameters provides important insights in functioning of soil water systems. Analysis of patterns within these time series has been used in several studies. The objective of this work was to compare patterns in observed and simulated soil moisture contents to u...

  11. New Gear Transmission Error Measurement System Designed

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.

    2001-01-01

    The prime source of vibration and noise in a gear system is the transmission error between the meshing gears. Transmission error is caused by manufacturing inaccuracy, mounting errors, and elastic deflections under load. Gear designers often attempt to compensate for transmission error by modifying gear teeth. This is done traditionally by a rough "rule of thumb" or more recently under the guidance of an analytical code. In order for a designer to have confidence in a code, the code must be validated through experiment. NASA Glenn Research Center contracted with the Design Unit of the University of Newcastle in England for a system to measure the transmission error of spur and helical test gears in the NASA Gear Noise Rig. The new system measures transmission error optically by means of light beams directed by lenses and prisms through gratings mounted on the gear shafts. The amount of light that passes through both gratings is directly proportional to the transmission error of the gears. A photodetector circuit converts the light to an analog electrical signal. To increase accuracy and reduce "noise" due to transverse vibration, there are parallel light paths at the top and bottom of the gears. The two signals are subtracted via differential amplifiers in the electronics package. The output of the system is 40 mV/mm, giving a resolution in the time domain of better than 0.1 mm, and discrimination in the frequency domain of better than 0.01 mm. The new system will be used to validate gear analytical codes and to investigate mechanisms that produce vibration and noise in parallel axis gears.

  12. SNAPSHOT: A MODERN, SUSTAINABLE HOLDUP MEASUREMENT SYSTEM

    SciTech Connect

    Rowe, Nathan C; Younkin, James R; Smith, Steven E; Chapman, Jeffrey Allen; Dunn, Michael E; Stewart, Scott L

    2016-01-01

    SNAPSHOT is a software platform designed to eventually replace Holdup Measurement System 4 (HMS 4), which is the current state-of-the-art for acquisition and analysis of nondestructive assay measurement data for in situ nuclear materials, holdup, in support of criticality safety and material control and accounting. HMS 4 is over 10 years old and is currently unsustainable due to hardware and software incompatibilities that have arisen from advances in detector electronics, primarily updates to multi-channel analyzers (MCAs), and both computer and handheld operating systems. SNAPSHOT is a complete redesign of HMS 4 that addresses the issue of compatibility with modern MCAs and operating systems and that is designed with a flexible architecture to support long-term sustainability. It also provides an updated and more user friendly interface and is being developed under an NQA 1 software quality assurance (SQA) program to facilitate site acceptance for safety-related applications. This paper provides an overview of the SNAPSHOT project including details of the software development process, the SQA program, and the architecture designed to support sustainability.

  13. Retrospective measures on applying endoscopic YAG laser to treat alimentary canal diseases from 1983 to 1995

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Zhong; Wu, Ning-Xiao; Gao, Su-ping; Rong, Zeng-Qin

    1996-05-01

    It was in 1983 when we started to apply YAG laser to do experiments on animal and fresh internal organs off the body to confirm its effectiveness. Then we started to use it in clinical practice. Up to October 1995, in the twelve years, we treated 1075 cases, 2574 person times. Seven-hundred-seventy-nine cases of various esophagostenosis. Four-hundred-fifty-six of them were malignant stenosis, 295 anastomostenosis, 15 stenosis after radiotherapeutics, 7 corrosive anastomostenosis, 6 inflammatory anastomostenosis, plus we cured 5 cardia losses of relax, and 241 polyps in the alimentary canal. Among the 2154 polyps cured, 6 were that of esophagus, 6 that of cardia, 25 that of stomach, 10 that of duodenum, 194 that of large intestine. In addition, we treated 15 alimentary canal bleeding and 35 malignant colon and tectum cancers. Our experience in laser operating on the coelom has become richer and richer. The methods we used are being widened. The range of our laser application is being enlarged. We have gained our own experience in preventing complications and keeping the endoscopy from being damaged. The cure rate of the non-malignant had raised up to 98.7%. Cure rate of the malignant had raised up to 91%. The alimentary canal polyps can be cured perfectly. It is hard to tell whether YAG laser or high frequency electroresection has the advantage over the other. Besides, this paper is going to put forward several questions to discuss.

  14. Optoelectronic System Measures Distances to Multiple Targets

    NASA Technical Reports Server (NTRS)

    Liebe, Carl Christian; Abramovici, Alexander; Bartman, Randall; Chapsky, Jacob; Schmalz, John; Coste, Keith; Litty, Edward; Lam, Raymond; Jerebets, Sergei

    2007-01-01

    length inside the optical fiber is not ordinarily known and can change with temperature, it is also necessary to measure the phase difference associated with this portion and subtract it from the aforementioned overall phase difference to obtain the phase difference proportional to only the free-space path length, which is the distance that one seeks to measure. Therefore, the apparatus includes a photodiode and a circulator that enable measurement of the phase difference associated with propagation from the LRU inside the fiber to the target, reflection from the fiber end, and propagation back inside the fiber to the LRU. Because this phase difference represents twice the optical path length of the fiber, this phase difference is divided in two before subtraction from the aforementioned total-path-length phase difference. Radiation-induced changes in the photodetectors in this apparatus can affect the measurements. To enable calibration for the purpose of compensation for these changes, the apparatus includes an additional target at a known short distance, located inside the camera. If the measured distance to this target changes, then the change is applied to the other targets.

  15. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  16. Optical steam quality measurement system and method

    DOEpatents

    Davidson, James R.; Partin, Judy K.

    2006-04-25

    An optical measurement system is presented that offers precision on-line monitoring of the quality of steam. Multiple wavelengths of radiant energy are passed through the steam from an emitter to a detector. By comparing the amount of radiant energy absorbed by the flow of steam for each wavelength, a highly accurate measurement of the steam quality can be determined on a continuous basis in real-time. In an embodiment of the present invention, the emitter, comprises three separate radiant energy sources for transmitting specific wavelengths of radiant energy through the steam. In a further embodiment, the wavelengths of radiant energy are combined into a single beam of radiant energy for transmission through the steam using time or wavelength division multiplexing. In yet a further embodiment, the single beam of radiant energy is transmitted using specialized optical elements.

  17. Automatic actinometric system for diffuse radiation measurement

    NASA Astrophysics Data System (ADS)

    Litwiniuk, Agnieszka; Zajkowski, Maciej

    2015-09-01

    Actinometric station is using for measuring solar of radiation. The results are helpful in determining the optimal position of solar panels relative to the Sun, especially in today's world, when the energy coming from the Sun and other alternative sources of energy become more and more popular. Polish climate does not provide as much energy as in countries in southern Europe, but it is possible to increase the amount of energy produced by appropriate arrangement of photovoltaic panels. There is the possibility of forecasting the amount of produced energy, the cost-effectiveness and profitability of photovoltaic installations. This implies considerable development opportunities for domestic photovoltaic power plants. This article presents description of actinometric system for diffuse radiation measurement, which is equipped with pyranometer - thermopile temperature sensor, amplifier AD620, AD Converter ADS1110, microcontroller Atmega 16, SD card, GPS module and LCD screen.

  18. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  19. System and method for measuring residual stress

    DOEpatents

    Prime, Michael B.

    2002-01-01

    The present invention is a method and system for determining the residual stress within an elastic object. In the method, an elastic object is cut along a path having a known configuration. The cut creates a portion of the object having a new free surface. The free surface then deforms to a contour which is different from the path. Next, the contour is measured to determine how much deformation has occurred across the new free surface. Points defining the contour are collected in an empirical data set. The portion of the object is then modeled in a computer simulator. The points in the empirical data set are entered into the computer simulator. The computer simulator then calculates the residual stress along the path which caused the points within the object to move to the positions measured in the empirical data set. The calculated residual stress is then presented in a useful format to an analyst.

  20. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.