Science.gov

Sample records for measurements bone mineral

  1. Bone mineral measurement: Experiment M078

    NASA Technical Reports Server (NTRS)

    Smith, M. C., Jr.; Rambaut, P. C.; Vogel, J. M.; Whittle, M. W.

    1977-01-01

    Gamma ray absorptiometric measurements on bone mineral content, in addition to calcium balance studies, were performed on male volunteers during bed rest periods of 24 to 36 weeks duration and compared to Skylab mission data. Results show that mineral losses occur from the bones of the lower extremities during missions of up to 84 days and that in general they follow the loss patterns of the bed rest situation. The level of loss observed in Spacelab crews are not of clinical concern.

  2. Baseline Bone Mineral Density Measurements Key to Future Testing Intervals

    MedlinePlus

    ... on Research 2012 May 2012 (historical) Baseline Bone Mineral Density Measurements Key to Future Testing Intervals How often a woman should have bone mineral density (BMD) tests to track bone mass is ...

  3. Bone mineral measurement - Skylab experiment M-078

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1975-01-01

    Experimental observations of loss of bone mineral due to prolonged bedrest or weightlessness are reported. A new, precise method was employed that featured an essentially monoergetic photon source (125I) and a scintillation detector operating in a rectilinear scanning mode to measure bone mineral in the radius, ulna, and os calcis by the absorptiometric technique. Variable but small losses were found during 4-6 weeks of bedrest; losses of up to 40% were noted in the os calcis after 9 months. When the technique was used during the Apollo 14, 15, and 16 missions, only one crewmen showed significant losses in the os calcis and none in the radius or ulna. The variability recorded during bedrest was connected with the initial 24-hr urinary hydroxyproline excretion and the initial os calcis mineral content. The relevance of prediction terms based on bedrest data to Skylab and longer missions is discussed.

  4. Bone mineral measurement using dual energy x ray densitometry

    NASA Technical Reports Server (NTRS)

    Smith, Steven W.

    1989-01-01

    Bone mineral measurements before and after space missions have shown that weightlessness greatly accelerates bone demineralization. Bone mineral losses as high as 1 to 3 percent per month were reported. Highly precise instrumentation is required to monitor this loss and thereby test the efficacy of treatment. During the last year, a significant improvement was made in Dual-Photon Absorptiometry by replacing the radioactive source with an x ray tube. Advantages of this system include: better precision, lower patient dose, better spacial resolution, and shorter scan times. The high precision and low radiation dose of this technique will allow detection of bone mineral changes of less than 1 percent with measurements conducted directly at the sites of interest. This will allow the required bone mineral studies to be completed in a shorter time with greater confidence.

  5. Bone mineral measurement from Apollo experiment M-078. [derangement of bone mineral metabolism in spacecrews

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.; Rambaut, P. C.; Smith, M. C., Jr.

    1974-01-01

    Loss of mineral from bone during periods of immobilization, recumbency, or weightlessness is examined. This report describes the instrumentation, technique, and bone mineral changes observed preflight and postflight for the Apollo 14, 15, and 16 missions. The bone mineral changes documented during the Apollo Program are reviewed, and their relevance to future missions is discussed.

  6. Bone mineral measurement, experiment M078. [space flight effects on human bone composition

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Vogel, J. M.; Ullmann, J.; Brown, S.; Kolb, F., III

    1973-01-01

    Measurement tests revealed few deviations from baseline bone mineral measurements after 56 days in a Skylab-type environment. No mineral change was observed in the right radius. One individual, however, showed a possible mineral loss in the left os calcis and another gained mineral in the right ulna. The cause of the gain is unclear but may be attributable to the heavy exercise routines engaged in by the crewmember in question. Equipment problems were identified during the experiment and rectified.

  7. Gemstone spectral imaging for measuring adult bone mineral density

    PubMed Central

    Shao, Wei-Guang; Liu, Dian-Mei

    2016-01-01

    The present study aimed to detect the bone Ca2+ content of L3 vertebrae in adults by gemstone spectral computed tomography. In total, 235 patients were selected and divided into age groups of 10 years each. The scanning data were used to detect the water-based and Ca2+-based substance levels on the L3 vertebral cancellous bone images. The results indicated that there were significant differences in vertebral Ca2+-water and water-Ca2+ densities determined by gemstone spectral imaging (GSI) between males and females in subjects aged 50–59 years, 60–69 years, 70–79 years and ≥80 years (P<0.05). The ages of male and female participants were negatively correlated with vertebral Ca2+-water density (P<0.01) and water-Ca2+ density (P<0.01). In conclusion, GSI may be used as a novel method of measuring the vertebral adult bone mineral density. PMID:27703518

  8. Bone morphometry and mineral density measurement using quantitative computed tomography

    SciTech Connect

    Jacobson, D.R.

    1991-01-01

    Application of computed tomography (CT) to the study of bone structure and density was explored and developed. A review of bone mineral densitometry (BMD) methodology and general principles of quantitative CT (QCT) are presented. A method for QCT of the spine was developed using a flexible tissue equivalent reference placed adjacent to the patient. A methodology for the development and production of tissue equivalent materials is also presented. Patient equivalent phantoms were used to characterize the method, and phantom studies were performed at five clinical sites. A protocol is defined for measuring the inside diameter of the lumbar pedicular canal. Data generated from this study has proven invaluable in the planning for lumbar fusion surgery when screws are to be used for immobilization. Pedicular canal data from 33 patients is presented. QCT was also used to quantify several parameters of the femoral shaft for use in hip replacement surgical planning. Parameters studied include inside diameter, BMD, endosteal BMD and proximal shaft morphology. The structure and trabecular BMD of the proximal femur was extensively studied using QCT. A large variation was found in the fat content of marrow within the proximal femur, and phantom studies were performed to quantify the effect of fat on trabecular QCT BMD. Cadaveric trabecular bone samples with marrow were analyzed physically to determine water, fat, non-fat soft tissue, and ash content. Multiple thin-slice CT studies were performed on cadaveric femurs. A structural model of the proximal femur was developed in which the structural support is provided primarily by trabecular bone. This model may have profound implications in the study of femoral fractures and prosthetic hardware design.

  9. Effect of Clothing on Measurement of Bone Mineral Density.

    PubMed

    McNamara, Elizabeth A; Feldman, Anna Z; Malabanan, Alan O; Abate, Ejigayehu G; Whittaker, LaTarsha G; Yano-Litwin, Amanda; Dorazio, Jolene; Rosen, Harold N

    2016-01-01

    It is unknown whether allowing patients to have BMD (bone mineral density) studies acquired while wearing radiolucent clothing adlib contributes appreciably to the measurement error seen. To examine this question, a spine phantom was scanned 30 times without any clothing, while draped with a gown, and while draped with heavy winter clothing. The effect on mean BMD and on SD (standard deviation) was assessed. The effect of clothing on mean or SD of the area was not significant. The effect of clothing on mean and SD for BMD was small but significant and was around 1.6% for the mean. However, the effect on BMD precision was much more clinically important. Without clothing the spine phantom had an least significant change of 0.0077 gm/cm(2), while when introducing variability of clothing the least significant change rose as high as 0.0305 gm/cm(2). We conclude that, adding clothing to the spine phantom had a small but statistically significant effect on the mean BMD and on variance of the measurement. It is unlikely that the effect on mean BMD has any clinical significance, but the effect on the reproducibility (precision) of the result is likely clinically significant.

  10. Kinetic measurements of bone mineral metabolism: The use of Na-22 as a tracer for long-term bone mineral turnover studies

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1978-01-01

    Sodium-22 was studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with (22)Na which is released through the metabolic turnover of the bone. The (22)Na which is not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high but nontoxic levels of NaCl. The (22)Na tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  11. Bone mineral density in children and adolescents with juvenile diabetes: selective measurement of bone mineral density of trabecular and cortical bone using peripheral quantitative computed tomography.

    PubMed

    Lettgen, B; Hauffa, B; Möhlmann, C; Jeken, C; Reiners, C

    1995-01-01

    Bone mineral density (BMD) was studied in 21 children and adolescents with type I diabetes and in age- and sex-matched healthy controls. BMD was selectively measured in trabecular and total bone using peripheral quantitative computed tomography (pQCT). Cortical bone density was calculated. There was a decrease of trabecular bone density (-18.9%, p < 0.01), total bone density (-9.0%, NS) and cortical bone density (-5.1%, NS) in diabetes. Trabecular bone density was inversely correlated with the duration of diabetes and the concentration of glycosylated hemoglobin (HbA1) (r = -0.48, p = 0.027 and r = -0.63, p = 0.002, respectively). Total BMD correlated inversely with HbA1 (r = -0.52, p = 0.017). pQCT allows the selective measurement of metabolically active trabecular bone where changes of mineralization first occur. We conclude that pQCT is a useful method for investigating BMD in diabetes.

  12. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  13. Discriminative ability of total body bone-mineral measured by dual photon absorptiometry.

    PubMed

    Gotfredsen, A; Pødenphant, J; Nilas, L; Christiansen, C

    1989-04-01

    We investigated the discriminative ability of total body bone-mineral expressed as the total body bone-density (TBBD) measured by dual photon absorptiometry (DPA) in 79 healthy premenopausal women, 27 healthy postmenopausal women, and 120 female osteoporotic fracture patients presenting with either Colles' fracture, vertebral fracture or femoral neck-fracture. TBBD was compared to the bone-mineral density of the lumbar spine (BMDspine) also measured by DPA, and to the bone-mineral content of the forearms (BMCforearm) measured by single photon absorptiometry (SPA). TBBD, BMDspine and BMCforearm showed that all the fracture patient groups had significantly reduced bone-mass. Using receiver operating characteristic (ROC) analysis, we found that TBBD had a tendency towards better discriminative ability than BMDspine or BMCforearm with regard to the discrimination between healthy premenopausal women and the three types of osteoporotic fractures (not significant in spinal fracture patients). BMCforearm had an intermediate position, whereas BMDspine had the smallest discriminative ability. TBBD also discriminated better between healthy postmenopausal women and hip-fracture patients than BMDspine or BMCforearm, whereas there was no significant difference between the three methods regarding the discrimination between the healthy postmenopausal women and the Colles' and spinal fracture patients. We conclude that the TBBD measurement by DPA has a discriminative potential which is better than the local spine or forearm measurements.

  14. Automated measurement of bone-mineral-density (BMD) values of vertebral bones based on X-ray torso CT images.

    PubMed

    Zhou, X; Hayashi, T; Chen, H; Hara, T; Yokoyama, R; Kanematsu, M; Hoshi, H; Fujita, H

    2009-01-01

    Bone is one of the most important anatomical structures in humans and osteoporosis is one of the major public health concerns in the world. Osteoporosis is a main target disease of bone, which can be detected by medical image techniques. The purpose of this study is to develop a fully automated computer scheme to measure bone-mineral-density (BMD) values for vertebral trabecular bones. This scheme will aid osteoporosis diagnosis performed using computer tomography (CT) images. This scheme includes the following processing steps: segmentation of the bone region, recognition of the skeletal structures and measurement of the BMD value in vertebral trabecular bone of each vertebral body. The proposed scheme was applied to 20 X-ray torso CT cases to measure the BMD values for vertebral trabecular bones. The experimental results show that the mean and standard deviation of the difference between the BMD values measured by using the proposed method and those measured using a manual segmentation method were 6.93 mg/cm(3) and 6.82 mg/cm(3) respectively. The accuracy of the proposed scheme satisfied the requirement for a computer-aided system used in osteoporosis diagnosis.

  15. Associations of lean and fat mass measures with whole body bone mineral content and bone mineral density in female adolescent weightlifters and swimmers.

    PubMed

    Koşar, Şükran Nazan

    2016-01-01

    Body composition and sport participation have been associated with bone mass. The purpose of this study was to determine the associations of lean and fat mass measures with whole body bone mineral content (BMC) and bone mineral density (BMD) in female adolescent weightlifters, swimmers and non-athletic counterparts. This study included a total of 25 female adolescents (mean age: 15.3±1.1 years). Body composition and bone mass were measured by dual-energy X-ray absorptiometry. In most of the studied variables weight lifters had higher values compared to swimmers and non-athletes (p < 0.05). No significant difference was observed between swimmers and non-athletes (p > 0.05). Lean and fat mass measures were positively associated with BMC and BMD for the total participants (p < 0.05) while the associations differed when the study groups were analysed separately. In conclusion, both lean and fat mass measures were strongly related to BMC and BMD in female adolescents while these associations differed in swimmers, weightlifters and non-athletes.

  16. Photon absorptiometry for non-invasive measurement of bone mineral content

    SciTech Connect

    Gupta, S.; Luna, E.; Belsky, J.; Gelfman, N.; Miller, K.; Davies, T.

    1984-08-01

    Bone mineral content of the distal radius was determined in 106 patients by single photon absorptiometry using iodine-125 monochromatic source. The technique provided a reliable means to assess the degree of mineral loss in conditions such as osteoporosis, renal osteodystrophy in patients on chronic maintenance dialysis, subjects on long-term steroid therapy, and those with diabetes mellitus. It is more sensitive than conventional radiography and completely noninvasive compared to bone biopsy. It is suggested that photon absorptiometry is a simple, sensitive, and reliable technique for assessment and follow-up of the bone mineral content in a host of disorders associated with bone demineralization.

  17. Parametric electrical impedance tomography for measuring bone mineral density in the pelvis using a computational model.

    PubMed

    Kimel-Naor, Shani; Abboud, Shimon; Arad, Marina

    2016-08-01

    Osteoporosis is defined as bone microstructure deterioration resulting a decrease of bone's strength. Measured bone mineral density (BMD) constitutes the main tool for Osteoporosis diagnosis, management, and defines patient's fracture risk. In the present study, parametric electrical impedance tomography (pEIT) method was examined for monitoring BMD, using a computerized simulation model and preliminary real measurements. A numerical solver was developed to simulate surface potentials measured over a 3D computerized pelvis model. Varying cortical and cancellous BMD were simulated by changing bone conductivity and permittivity. Up to 35% and 16% change was found in the real and imaginary modules of the calculated potential, respectively, while BMD changes from 100% (normal) to 60% (Osteoporosis). Negligible BMD relative error was obtained with SNR>60 [dB]. Position changes errors indicate that for long term monitoring, measurement should be taken at the same geometrical configuration with great accuracy. The numerical simulations were compared to actual measurements that were acquired from a healthy male subject using a five electrodes belt bioimpedance device. The results suggest that pEIT may provide an inexpensive easy to use tool for frequent monitoring BMD in small clinics during pharmacological treatment, as a complementary method to DEXA test.

  18. [Determination of changes in the mineral content of the bones of diabetics by photon absorption measurements].

    PubMed

    Achkova, P; Diadov, V; Sotirov, G; Diankov, L

    1983-01-01

    The absolute value of mineral content of the bones (MCB), obtained from a single measurement and compared with the so called mean or normal value for a certain age-sex population, cannot be a reliable diagnostic index owing to the great individual discrepancies of MCB, reaching even to +/- 40%. Only the successive, dynamic and compared within each other values of MCB could be of use for the purposes of medical diagnostics and therapy. As a result for periodic measurements in patients with diabetes, the juvenile diabetes was concluded to be characterized by a higher initial MCB value and a faster demineralization, contrary to diabetes that advanced at an older age.

  19. Local Variation in Femoral Neck Cortical Bone: In Vitro Measured Bone Mineral Density, Geometry and Mechanical Properties.

    PubMed

    Coutts, Louise V; Jenkins, Thomas; Oreffo, Richard O C; Dunlop, Doug G; Cooper, Cyrus; Harvey, Nicholas C; Thurner, Philipp J

    2015-12-17

    Age- and disease (osteoporotic fractured and osteoarthritic tissue)-related changes in the distribution of cortical bone were examined, using a multimodality approach, including measurement of local density, geometry and mechanical properties, where changes in these properties can give rise to instability and increasing probability of fracture. In contrast to the majority of previously reported research, this study also focuses on the characteristic non-circular femoral neck cross-sectional geometry and variation in bone mineral density (BMD) around the femoral neck. Twenty-two osteoarthritic and 7 osteoporotic femoral neck slices, collected from elective and trauma-related arthroplasty, and 16 cadaveric donor tissue controls were tested mechanically using Reference Point Indentation (BioDent™, Active Life Technologies®, Santa Barbara, CA) and then scanned with in vitro-based radiography intended to replicate the dual-energy X-ray absorptiometry technique. All parameters were measured regionally around the circumference of the femoral neck, allowing examination of spatial variability within the cortical bone. Fractured tissue was less resistant to indentation in the thinner superolateral segment compared to other segments and other groups. BMD around the fractured femoral necks appeared more consistent than that of nonfractured tissue, where BMD was reduced in the superolateral segment for the other groups. Cortical bone was thin in the superolateral segment for all groups except for the osteoarthritic group, and was thicker in the inferomedial segment for both osteoarthritic and fractured groups, resulting in the largest variation in buckling ratio (ratio of cortical bone diameter to cortical bone thickness) around the femoral neck for the fractured group. With age, healthy controls appeared to have lower inferomedial cortical thickness, whereas no significant differences in Reference Point Indentation measurements and density were observed. The study has

  20. Arteriovenous Fistula Affects Bone Mineral Density Measurements in End-Stage Renal Failure Patients

    PubMed Central

    Torregrosa, José-Vicente; Fuster, David; Peris, Pilar; Vidal-Sicart, Sergi; Solà, Oriol; Domenech, Beatriz; Martín, Gloria; Casellas, Joan; Pons, Francisca

    2009-01-01

    Background and objectives: Hemodialysis needs an arteriovenous fistula (AVF) that may influence the structure and growth of nearby bone and affect bone mass measurement. The study analyzed the effect of AVF in the assessment of forearm bone mineral density (BMD) measured by dual energy x-ray absorptiometry (DXA) and examined its influence on the final diagnosis of osteoporosis. Design, setting, participants, & measurements: Forty patients (52 ± 18 yr) in hemodialysis program (12 ± 8 yr) with permeable AVF in forearm were included. Patients were divided in two groups (over and under 50 yr). BMD of both forearms (three areas), lumbar spine, and femur was measured by DXA. Forearm measurements in each arm were compared. Patients were diagnosed as normal only if all territories were considered nonpathologic and osteoporosis/osteopenia was determined by the lowest score found. Results: Ten patients were excluded and 30 patients were analyzed. BMD in the forearm with AVF was significantly lower than that observed in the contralateral forearm in both groups of patients and in all forearm areas analyzed. When only lumbar spine and femur measurements were considered, 70% of patients were nonpathologic and 30% were osteoporotic. However, inclusion of AVF forearm classified 63% as osteoporotic and a further 27% as osteopenic, leaving only 10% as nonpathologic. Conclusions: Forearm AVF affects BMD measurements by decreasing their values in patients with end-stage renal failure. This may produce an overdiagnosis of osteoporosis, which should be taken into account when evaluating patients of this type. PMID:19713298

  1. Comparison and evaluation of bone measurements for the assessment of mineral phosphorus sources in broilers.

    PubMed

    Shastak, Y; Witzig, M; Hartung, K; Bessei, W; Rodehutscord, M

    2012-09-01

    The main objective of this study was to compare different bone measurements in response to supplements of mineral P sources. Comparisons were also made with P retention and digestibility responses determined in a companion study and with blood inorganic phosphate (P(i)) responses. A corn-soybean meal-based basal diet was used (0.35% total P on DM basis). Anhydrous monosodium phosphate (MSP(a)) or anhydrous dibasic calcium phosphate (DCP(a)) was supplemented to increment the P concentration by 0.08%, 0.16%, or 0.24%. Each of the 7 diets was fed for 10 d starting 11 d (period 1) or 25 d posthatch (period 2). Bone ash and P were determined, and density criteria were measured using quantitative computed tomography. Responses were evaluated and compared based on linear regression analysis. In general, responses to MSP(a) had a greater slope than DCP(a) for all criteria studied. In period 1, differences between the slopes were significant (P < 0.05) for almost all bone criteria. In period 2, the slopes significantly differed for the amounts of ash and P of all bones studied, for tibia, tarsometatarus, and foot ash percentage, for total and cortical density of tibiae, but not for the other criteria. For the different bones, the ratio of slopes for MSP(a) and DCP(a) was very similar based on the amount of ash in both periods. Foot ash proved to be as sensitive as tibia ash for evaluation of mineral P sources in both periods. Ninety-four percent of the variance of the corticalis content based on quantitative computed tomography measurements could be explained by the amount of tibia ash in period 1. Blood serum P(i) and BW gain were not suitable for P evaluation. We concluded that the ranking of mineral P sources based on bone criteria differed from the ranking that was based on P retention or prececal digestibility. This underlines the need for developing a standard protocol of determination of available P in poultry.

  2. Study of Different Involutive Changes in Bone Mineral Density Measured in Ward's Triangle and Trabecular Volume Measured in Iliac Crest in Relation to Age

    PubMed Central

    Castillo, RF; Gallegos, RF

    2015-01-01

    ABSTRACT Background: The ageing process causes changes in the bone structure, in bone mineral density, and musculoskeletal disorders. Aims: The purpose of this study is to evaluate and compare involutive changes in bone structure that occur in relation to age in men and women through the study of bone mineral density at the Ward's triangle and trabecular volume. Subjects and Methods: In this study, we analysed bone mineral density at Ward's triangle in 70 people (38 men and 32 women) and did a histomorphometric study of trabecular volume at the right iliac crest in 66 samples (42 males and 24 females) obtained from autopsies of court cases, aged between 13 and 83 years. Results: The results show significant correlations between measurements of bone mineral density, trabecular volume values and anthropometric measures of age, gender and body mass index. Conclusions: This study shows involutional changes that occur in the bone mineral density and Ward's triangle in the bone structure during the process of ageing. In addition, both weight and height have a great influence on bone mineral density and changes in bone that occur; and body mass index is a very important determinant of bone mineral density. PMID:26360671

  3. Comparison of dual-energy x-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine

    SciTech Connect

    Wahner, H.W.; Dunn, W.L.; Brown, M.L.; Morin, R.L.; Riggs, B.L.

    1988-11-01

    A new x-ray-based (dual-energy x-ray absorptiometry (DEXA)) instrument for measurement of bone mineral in the spine and hips was compared with a commercial dual photon absorptiometry (DPA) instrument that uses a 153Gd source (DP3, Lunar Radiation Corporation). Measurements were made on phantoms and lumbar spines of patients to study accuracy, precision, limitations, and compatibility of results between instruments. Both instruments measure bone mineral of integral bone in terms of area bone density with an entrance exposure of less than 5 mR. For spinal bone mineral measurements, the DEXA instrument had a shorter scanning time and higher resolution images than the DPA system. The DEXA instrument also showed better precision in a spine phantom and reduced influence of thickness for patient measurement. For bone mineral content, accuracy was about equal for both instruments; for measurements of the area of the region of interest, accuracy was better with the DEXA instrument. With both instruments, fat had little effect on bone mineral density in bone phantom studies. Measurements on both instruments were influenced by the location of a bone phantom within the photon beam. Results in patients showed good correlation (r = 0.988) for bone mineral density. Measurements of bone mineral density in patients were consistently lower with the DEXA instrument because of better accuracy in area measurements. The new x-ray-based instrument is a major advance in bone mineral absorptiometry and provides improved, yet less expensive, measurements in research and clinical applications.

  4. Dual energy x-ray laser measurement of calcaneal bone mineral density

    NASA Astrophysics Data System (ADS)

    Hakulinen, M. A.; Saarakkala, S.; Töyräs, J.; Kröger, H.; Jurvelin, J. S.

    2003-06-01

    In dual energy x-ray absorptiometry (DXA) the photon attenuation is assumed to be similar in soft tissue overlying, adjacent to and inside the measured bone. In the calcaneal dual energy x-ray laser (DXL) technique, this assumption is not needed as attenuation by soft tissues at the local bone site is determined by combining DXA and heel thickness measurements. In the present study, 38 subjects were measured with DXL Calscan, Lunar PIXI and Lunar DPX-IQ DXA instruments and Hologic Sahara ultrasound instrument, and the performance and agreement of the instruments were analysed. Furthermore, numerical simulations on the effect of non-uniform fat-to-lean tissue ratio within soft tissue in heel were conducted. In vivo short-term precision (CV%, sCV%) of DXL Calscan (1.24%, 1.48%) was similar to that of Lunar PIXI (1.28%, 1.60%). Calcaneal areal bone mineral densities (BMD, g cm-2) measured using DXL Calscan and Lunar PIXI predicted equally well variations in BMD of femoral neck (r2 = 0.63 and 0.52, respectively) or lumbar spine (r2 = 0.61 and 0.64, respectively), determined with Lunar DPX-IQ. BMD values measured with DXL Calscan were, on average, 19% lower (p < 0.01) than those determined with Lunar PIXI. Interestingly, the difference in BMD values between instruments increased as a function of body mass index (BMI) (r2 = 0.17, p < 0.02) or heel thickness (r2 = 0.37, p < 0.01). Numerical simulations suggested that the spatial variation of soft tissue composition in heel can induce incontrollable inaccuracy in BMD when measured with the DXA technique. Theoretically, in contrast to DXA instruments, elimination of the effect of non-uniform soft tissue is possible with DXL Calscan.

  5. Bone mineral density (BMD) and computer tomographic measurements of the equine proximal phalanx in correlation with breaking strength.

    PubMed

    Tóth, P; Horváth, C; Ferencz, V; Tóth, B; Váradi, A; Szenci, O; Bodó, G

    2013-01-01

    Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean +/- SD: 1.52 +/- 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P = 0.023, r = 0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.

  6. Applications of the direct photon absorption technique for measuring bone mineral content in vivo. Determination of body composition in vivo

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.

    1972-01-01

    The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.

  7. Known VDR polymorphisms are not associated with bone mineral density measures in pediatric Cushing disease.

    PubMed

    Lodish, Maya B; Mastroyannis, Spyridon A; Sinaii, Ninet; Boikos, Sosipatros A; Stratakis, Constantine A

    2012-01-01

    Decreased bone mineral density (BMD) has been documented in adults with Cushing disease (CD), and allelic variants of the vitamin D receptor (VDR) gene have been associated with osteopenia. Genetic factors play an important role in bone accrual and its response to various diseases; among them, the most studied are the allelic variants of the VDR gene. There is debate as to whether described variants in the VDR gene have an effect on BMD. In the current study, we sought to analyze whether BMD differences in patients with CD were associated with the Taq1 and Apal VDR allelotypes. The data showed lack of association between BMD and these widely studied VDR polymorphisms, suggesting that the effect of endogenous hypercortisolism on bone in the context of CD does not depend on VDR genotypes.

  8. Urinary Mineral Concentrations in European Pre-Adolescent Children and Their Association with Calcaneal Bone Quantitative Ultrasound Measurements

    PubMed Central

    Van den Bussche, Karen; Herrmann, Diana; De Henauw, Stefaan; Kourides, Yiannis A.; Lauria, Fabio; Marild, Staffan; Molnár, Dénes; Moreno, Luis A.; Veidebaum, Toomas; Ahrens, Wolfgang; Sioen, Isabelle

    2016-01-01

    This study investigates differences and associations between urinary mineral concentrations and calcaneal bone measures assessed by quantitative ultrasonography (QUS) in 4322 children (3.1–11.9 years, 50.6% boys) from seven European countries. Urinary mineral concentrations and calcaneal QUS parameters differed significantly across countries. Clustering revealed a lower stiffness index (SI) in children with low and medium urinary mineral concentrations, and a higher SI in children with high urinary mineral concentrations. Urinary sodium (uNa) was positively correlated with urinary calcium (uCa), and was positively associated with broadband ultrasound attenuation and SI after adjustment for age, sex and fat-free mass. Urinary potassium (uK) was negatively correlated with uCa but positively associated with speed of sound after adjustment. No association was found between uCa and QUS parameters after adjustment, but when additionally adjusting for uNa, uCa was negatively associated with SI. Our findings suggest that urinary mineral concentrations are associated with calcaneal QUS parameters and may therefore implicate bone properties. These findings should be confirmed in longitudinal studies that include the food intake and repeated measurement of urinary mineral concentrations to better estimate usual intake and minimize bias. PMID:27164120

  9. Dual photon absorptiometry using a gadolinium-153 source applied to measure equine bone mineral content

    NASA Astrophysics Data System (ADS)

    Moure, Alessandro; Reichmann, Peter; Remigio Gamba, Humberto

    2003-12-01

    The application of the dual photon absorptiometry (DPA) technique, using gadolinium-153 as the photon source, to evaluate the bone mineral density (BMD) of the third metacarpal bone of horses is presented. The radiation detector was implemented with a NaI(TI) scintillator coupled to a 14 stage photomultiplier. A modular mechanical system allows the position of the prototype to be adjusted in relation to the animal. A moveable carrier makes it possible to scan the third metacarpal with a velocity adjustable between 1 and 12 mm s-1, in steps of 1 mm s-1, for a total distance of 250 mm. The prototype was evaluated with a phantom of the third metacarpal bone made of perspex and aluminium, and in vitro with a transverse slice of the third metacarpal bone of a horse. The tests showed that the prototype has an accuracy and precision of, approximately, 10% and 6%, respectively, for a 6 s acquisition time. Preliminary studies carried out in three foals from birth to one year of age indicated that the prototype is well suited to in vivo and in situ analysis of the BMD of the third metacarpal bones of horses, making it possible to evaluate the changes of BMD levels on a monthly basis. Also, results indicated an exponential behaviour of the BMD curve during the first year of life of the studied horses.

  10. A fast experimental beam hardening correction method for accurate bone mineral measurements in 3D μCT imaging system.

    PubMed

    Koubar, Khodor; Bekaert, Virgile; Brasse, David; Laquerriere, Patrice

    2015-06-01

    Bone mineral density plays an important role in the determination of bone strength and fracture risks. Consequently, it is very important to obtain accurate bone mineral density measurements. The microcomputerized tomography system provides 3D information about the architectural properties of bone. Quantitative analysis accuracy is decreased by the presence of artefacts in the reconstructed images, mainly due to beam hardening artefacts (such as cupping artefacts). In this paper, we introduced a new beam hardening correction method based on a postreconstruction technique performed with the use of off-line water and bone linearization curves experimentally calculated aiming to take into account the nonhomogeneity in the scanned animal. In order to evaluate the mass correction rate, calibration line has been carried out to convert the reconstructed linear attenuation coefficient into bone masses. The presented correction method was then applied on a multimaterial cylindrical phantom and on mouse skeleton images. Mass correction rate up to 18% between uncorrected and corrected images were obtained as well as a remarkable improvement of a calculated mouse femur mass has been noticed. Results were also compared to those obtained when using the simple water linearization technique which does not take into account the nonhomogeneity in the object.

  11. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT.

    PubMed

    Yu, Elaine W; Thomas, Bijoy J; Brown, J Keenan; Finkelstein, Joel S

    2012-01-01

    Major alterations in body composition, such as with obesity and weight loss, have complex effects on the measurement of bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA). The effects of altered body fat on quantitative computed tomography (QCT) measurements are unknown. We scanned a spine phantom by DXA and QCT before and after surrounding with sequential fat layers (up to 12 kg). In addition, we measured lumbar spine and proximal femur BMD by DXA and trabecular spine BMD by QCT in 13 adult volunteers before and after a simulated 7.5 kg increase in body fat. With the spine phantom, DXA BMD increased linearly with sequential fat layering at the normal (p < 0.01) and osteopenic (p < 0.01) levels, but QCT BMD did not change significantly. In humans, fat layering significantly reduced DXA spine BMD values (mean ± SD: -2.2 ± 3.7%, p = 0.05) and increased the variability of measurements. In contrast, fat layering increased QCT spine BMD in humans (mean ± SD: 1.5 ± 2.5%, p = 0.05). Fat layering did not change mean DXA BMD of the femoral neck or total hip in humans significantly, but measurements became less precise. Associations between baseline and fat-simulation scans were stronger for QCT of the spine (r(2)= 0.97) than for DXA of the spine (r(2)= 0.87), total hip (r(2) = 0.80), or femoral neck (r(2)= 0.75). Bland-Altman plots revealed that fat-associated errors were greater for DXA spine and hip BMD than for QCT trabecular spine BMD. Fat layering introduces error and decreases the reproducibility of DXA spine and hip BMD measurements in human volunteers. Although overlying fat also affects QCT BMD measurements, the error is smaller and more uniform than with DXA BMD. Caution must be used when interpreting BMD changes in humans whose body composition is changing.

  12. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.

    PubMed

    Cao, Haihui; Nazarian, Ara; Ackerman, Jerome L; Snyder, Brian D; Rosenberg, Andrew E; Nazarian, Rosalynn M; Hrovat, Mirko I; Dai, Guangping; Mintzopoulos, Dionyssios; Wu, Yaotang

    2010-06-01

    In this study, bone mineral density (BMD) of normal (CON), ovariectomized (OVX), and partially nephrectomized (NFR) rats was measured by (31)P NMR spectroscopy; bone matrix density was measured by (1)H water- and fat-suppressed projection imaging (WASPI); and the extent of bone mineralization (EBM) was obtained by the ratio of BMD/bone matrix density. The capability of these MR methods to distinguish the bone composition of the CON, OVX, and NFR groups was evaluated against chemical analysis (gravimetry). For cortical bone specimens, BMD of the CON and OVX groups was not significantly different; BMD of the NFR group was 22.1% (by (31)P NMR) and 17.5% (by gravimetry) lower than CON. For trabecular bone specimens, BMD of the OVX group was 40.5% (by (31)P NMR) and 24.6% (by gravimetry) lower than CON; BMD of the NFR group was 26.8% (by (31)P NMR) and 21.5% (by gravimetry) lower than CON. No significant change of cortical bone matrix density between CON and OVX was observed by WASPI or gravimetry; NFR cortical bone matrix density was 10.3% (by WASPI) and 13.9% (by gravimetry) lower than CON. OVX trabecular bone matrix density was 38.0% (by WASPI) and 30.8% (by gravimetry) lower than CON, while no significant change in NFR trabecular bone matrix density was observed by either method. The EBMs of OVX cortical and trabecular specimens were slightly higher than CON but not significantly different from CON. Importantly, EBMs of NFR cortical and trabecular specimens were 12.4% and 26.3% lower than CON by (31)P NMR/WASPI, respectively, and 4.0% and 11.9% lower by gravimetry. Histopathology showed evidence of osteoporosis in the OVX group and severe secondary hyperparathyroidism (renal osteodystrophy) in the NFR group. These results demonstrate that the combined (31)P NMR/WASPI method is capable of discerning the difference in EBM between animals with osteoporosis and those with impaired bone mineralization.

  13. Is bone mineral density measurement using dual-energy X-ray absorptiometry affected by gamma rays?

    PubMed

    Xie, Liang-Jun; Li, Jian-Fang; Zeng, Feng-Wei; Jiang, Hang; Cheng, Mu-Hua; Chen, Yi

    2013-01-01

    The objective of this study was to determine whether the gamma rays emitted from the radionuclide effect bone mineral density (BMD) measurement. Nine subjects (mean age: 56 ± 17.96 yr) scheduled for bone scanning underwent BMD measurement using dual-energy X-ray absorptiometry (DXA) (Hologic/Discovery A) before and 1, 2, and 4 h after injection of technetium-99m-methylene diphosphonate (99mTc-MDP). Ten subjects (mean age: 41 ± 15.47 yr) scheduled for therapy of differentiated thyroid carcinoma with iodine-131 underwent BMD measurement before and 2 h after therapeutic radionuclide administration. All patients were given whole body BMD measurement, including head, arm, ribs, lumbar spine, pelvis, and leg sites. Besides, patients who referred to radioiodine therapy were given total hip and femoral neck BMD measurement as well. No statistically significant changes in BMD values were detected after 99mTc-MDP and iodine-131 administration for all measurement sites (p > 0.05), and individual difference of BMD before and after radionuclide imaging or therapy was less than the least significant change in lumbar spine, total hip, and femoral neck. In conclusion, BMD measurements are not influenced by the gamma rays emitted from technetium-99m and iodine-131. DXA bone densitometry may be performed simultaneously with bone scanning and radioiodine therapy.

  14. Bone mineral content and bone mineral density are lower in older than in younger females with Rett syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although bone mineral deficits have been identified in Rett syndrome (RTT), the prevalence of low bone mineral density (BMD) and its association with skeletal fractures and scoliosis has not been characterized fully in girls and women with RTT. Accordingly, we measured total body bone mineral conten...

  15. The soy isoflavones for reducing bone loss study: 3-yr effects on pQCT bone mineral density and strength measures in postmenopausal women.

    PubMed

    Shedd-Wise, Kristine M; Alekel, D Lee; Hofmann, Heike; Hanson, Kathy B; Schiferl, Dan J; Hanson, Laura N; Van Loan, Marta D

    2011-01-01

    Soy isoflavones exert inconsistent bone density-preserving effects, but the bone strength-preserving effects in humans are unknown. Our double-blind randomized controlled trial examined 2 soy isoflavone doses (80 or 120mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength (by means of peripheral quantitative computed tomography) in healthy postmenopausal women (46-63yr). We measured 3-yr changes in cortical BMD (CtBMD), cortical thickness (CtThk), periosteal circumference (PC), endosteal circumference (EC), and strength-strain index (SSI) at 1/3 midshaft femur (N=171), and trabecular BMD (TbBMD), PC, and SSI at 4% distal tibia (N=162). We found no treatment effect on femur CtThk, PC, or EC, or tibia TbBMD or PC. The strongest predictors (negative) of tibia TbBMD and SSI and femur CtBMD were timepoint and bone resorption; whole-body fat mass was protective of SSI. As time since last menstrual period (TLMP) increased (p=0.012), 120-mg/d dose was protective of CtBMD. The strongest predictors of femur SSI were timepoint, bone resorption, and TLMP (protective). Isoflavone tablets were negative predictors of SSI, but 80-mg/d dose became protective as bone turnover increased (p=0.011). Soy isoflavone treatment for 3yr was modestly beneficial for midshaft femur vBMD as TLMP increased and for midshaft femur SSI as bone turnover increased.

  16. Bone mineral density test

    MedlinePlus

    ... density test; Bone densitometry; DEXA scan; DXA; Dual-energy x-ray absorptiometry; p-DEXA; Osteoporosis-BMD ... most common and accurate way uses a dual-energy x-ray absorptiometry (DEXA) scan. DEXA uses low- ...

  17. Anthropometric models of bone mineral content and areal bone mineral density based on the bone mineral density in childhood study

    PubMed Central

    Gilsanz, V.; Kalkwarf, H. J.; Lappe, J. M.; Oberfield, S.; Shepherd, J. A.; Winer, K. K.; Zemel, B. S.; Hangartner, T. N.

    2016-01-01

    Summary New models describing anthropometrically adjusted normal values of bone mineral density and content in children have been created for the various measurement sites. The inclusion of multiple explanatory variables in the models provides the opportunity to calculate Z-scores that are adjusted with respect to the relevant anthropometric parameters. Introduction Previous descriptions of children’s bone mineral measurements by age have focused on segmenting diverse populations by race and sex without adjusting for anthropometric variables or have included the effects of a single anthropometric variable. Methods We applied multivariate semi-metric smoothing to the various pediatric bone-measurement sites using data from the Bone Mineral Density in Childhood Study to evaluate which of sex, race, age, height, weight, percent body fat, and sexual maturity explain variations in the population’s bone mineral values. By balancing high adjusted R2 values with clinical needs, two models are examined. Results At the spine, whole body, whole body sub head, total hip, hip neck, and forearm sites, models were created using sex, race, age, height, and weight as well as an additional set of models containing these anthropometric variables and percent body fat. For bone mineral density, weight is more important than percent body fat, which is more important than height. For bone mineral content, the order varied by site with body fat being the weakest component. Including more anthropometrics in the model reduces the overlap of the critical groups, identified as those individuals with a Z-score below −2, from the standard sex, race, and age model. Conclusions If body fat is not available, the simpler model including height and weight should be used. The inclusion of multiple explanatory variables in the models provides the opportunity to calculate Z-scores that are adjusted with respect to the relevant anthropometric parameters. PMID:25311106

  18. Precision and accuracy of in vivo bone mineral measurement in rats using dual-energy X-ray absorptiometry.

    PubMed

    Rozenberg, S; Vandromme, J; Neve, J; Aguilera, A; Muregancuro, A; Peretz, A; Kinthaert, J; Ham, H

    1995-01-01

    The aim of this study was to evaluate the precision and accuracy of dual-energy X-ray absorptiometry (DXA) for measuring bone mineral content at different sites of the skeleton in rats. In vitro the reproducibility error was very small (< 1%), but in vivo the intra-observer variability ranged from 0.9% to 6.0%. Several factors have been shown to affect in vivo reproducibility: the reproducibility was better when the results were expressed as bone mineral density (BMD) rather than bone mineral content (BMC), intra-observer variability was better than the inter-observer variability, and a higher error was observed for the tibia compared with that for vertebrae and femur. The accuracy of measurement at the femur and tibia was assessed by comparing the values with ash weight and with biochemically determined calcium content. The correlation coefficients (R) between the in vitro BMC and the dry weight or the calcium content were higher than 0.99 for both the femur and the tibia. SEE ranged between 0.0 g (ash weight) and 2.0 mg (Ca content). Using in vitro BMC, ash weight could be estimated with an accuracy error close to 0 and calcium content with an error ranging between 0.82% and 6.80%. The R values obtained between the in vivo and in vitro BMC were 0.98 and 0.97 respectively for femur and tibia, with SEE of 0.04 and 0.02 g respectively. In conclusion, the in vivo precision of the technique was found to be too low. To be of practical use it is important in the design of experimentation to try to reduce the measurement error.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. The Soy Isoflavones to Reduce Bone Loss (SIRBL) Study: Three Year Effects on pQCT Bone Mineral Density and Strength Measures in Postmenopausal Women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soy isoflavones exert inconsistent bone density preserving effects, but the bone strength preserving effects in humans are unknown. Our double-blind randomized controlled trial examined 2 soy isoflavone doses (80 or 120 mg/d) vs placebo tablets on volumetric bone mineral density (vBMD) and strength ...

  20. Quantitative Comparison of 2 Dual-Energy X-ray Absorptiometry Systems in Assessing Body Composition and Bone Mineral Measurements.

    PubMed

    Xu, Wenhua; Chafi, Hatim; Guo, Beibei; Heymsfield, Steven B; Murray, Kori B; Zheng, Jolene; Jia, Guang

    2016-01-01

    Dual-energy X-ray absorptiometry (DXA) is widely used in body composition measurement and evaluation. Because of its numerous applications, the probability of instrument discrepancies has increased dramatically. This study quantitatively compares 2 different DXA systems. In this study, 96 subjects (60 female and 36 male, aged 19-82 years) were recruited and scanned using a General Electric Lunar iDXA and a Hologic Discovery scanner. Four measurements (percent fat, total mass, bone mineral density [BMD], and bone mineral content [BMC]) were quantitatively compared in the whole body and in specific anatomic regions (arms, legs, trunk, android, gynoid, head, ribs, and pelvis). A simple linear regression of each measurement was performed to examine the correlation between the 2 systems. Percent fat, total mass, BMC, and BMD were highly correlated between the 2 DXA systems, with correlation r values greater than 0.854 for both the whole body and the individual anatomic regions except for BMC and BMD in ribs. The high correlation between the 2 DXA systems with systematic differences enabled development of calibration equations for extending the multisystem measurements to advanced quantitative analyses.

  1. The determination of serum concentrations of osteocalcin in growing pigs and its relationship to end-measures of bone mineralization.

    PubMed

    Carter, S D; Cromwell, G L; Combs, T R; Colombo, G; Fanti, P

    1996-11-01

    Osteocalcin, a 49-amino acid, gamma-carboxyglutamic acid-containing protein produced by the osteoblast, has been shown in laboratory animals to be a better marker of bone turnover than alkaline phosphatase. To determine serum osteocalcin levels in growing pigs, we isolated pure porcine osteocalcin and developed a double-antibody RIA. To evaluate the effects of dietary Ca and P levels on serum osteocalcin, 36 individually penned crossbred pigs (19.5 kg initial BW) were fed fortified corn-soybean meal diets (.95% lysine) containing four levels of Ca (.42, .66, .90, 1.14%) and P (.35, .55, .75, .95%) in a 30-d test. Increasing dietary Ca and P improved body weight gain quadratically (P < .02). Most bone traits improved quadratically (P < .05) with increasing Ca and P. Pigs were bled on d 0, 10, 20, and 30 to determine serum levels of alkaline phosphatase, 1,25-dihydroxyvitamin D3, and osteocalcin. Osteocalcin decreased (P < .02) linearly with increasing Ca and P on d 10, 20, and 30. However, this effect was much more pronounced on d 20 and 30. Alkaline phosphatase decreased with the first incremental increase in dietary Ca and P, but was not affected by higher levels on any day measured. Osteocalcin was inversely correlated with growth rate (r = -.54, P < .01), bone strength (r = -.57, P < .01), metacarpal ash (r = -.29, P < .10), femur ash (r = -.60, P < .01), and femur ash weight (r = -.65, P < .01). Similar results were found for 1,25-dihydroxyvitamin D3. Alkaline phosphatase was not correlated with performance or most bone traits on d 30. Based on this model, these results suggest that serum osteocalcin and 1,25-dihydroxyvitamin D3 are better predictors of bone mineralization and(or) turnover in pigs than serum alkaline phosphatase.

  2. Kinetic aspects of bone mineral metabolism

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1973-01-01

    Two techniques were studied for measuring changes in bone mass in rats. One technique measures the Ar-37 produced from calcium during neutron irradiation and the other measures the changes in the Na-22 content which has been incorporated within the rat bone. Both methods are performed in VIVO and cause no significant physiological damage. The Ar-37 leaves the body of a rat within an hour after being produced, and it can be quantitatively collected and measured with a precision of - or + 2% on the same rat. With appropriate irradiation conditions it appears that the absolute quantity of calcuim in any rat can be determined within - or + 3% regardless of animal size. The Na-22 when uniformly distributed in bone, can be used to monitor bone mineral turnover and this has been demonstrated in conditions of calcium deficiency during growth and also pregnancy coupled with calcium deficiency.

  3. Bone Mineral 31P and Matrix-Bound Water Densities Measured by Solid-State 1H and 31P MRI

    PubMed Central

    Seifert, Alan C.; Li, Cheng; Rajapakse, Chamith S.; Bashoor- Zadeh, Mahdieh; Bhagat, Yusuf A.; Wright, Alexander C.; Zemel, Babette S.; Zavaliangos, Antonios; Wehrli, Felix W.

    2014-01-01

    Bone is a composite material consisting of mineral and hydrated collagen fractions. MRI of bone is challenging due to extremely short transverse relaxation times, but solid-state imaging sequences exist that can acquire the short-lived signal from bone tissue. Previous work to quantify bone density via MRI used powerful experimental scanners. This work seeks to establish the feasibility of MRI-based measurement on clinical scanners of bone mineral and collagen-bound water densities, the latter as a surrogate of matrix density, and to examine the associations of these parameters with porosity and donors’ age. Mineral and matrix-bound water images of reference phantoms and cortical bone from 16 human donors, ages 27-97 years, were acquired by zero-echo-time 31P and 1H MRI on whole body 7T and 3T scanners, respectively. Images were corrected for relaxation and RF inhomogeneity to obtain density maps. Cortical porosity was measured by micro-CT, and apparent mineral density by pQCT. MRI-derived densities were compared to x-ray-based measurements by least-squares regression. Mean bone mineral 31P density was 6.74±1.22 mol/L (corresponding to 1129±204 mg/cc mineral), and mean bound water 1H density was 31.3±4.2 mol/L (corresponding to 28.3±3.7 %v/v). Both 31P and bound water (BW) densities were correlated negatively with porosity (31P: R2 = 0.32, p < 0.005; BW: R2 = 0.63, p < 0.0005) and age (31P: R2 = 0.39, p < 0.05; BW: R2 = 0.70, p < 0.0001), and positively with pQCT density (31P: R2 = 0.46, p < 0.05; BW: R2 = 0.50, p < 0.005). In contrast, the bone mineralization ratio (expressed here as the ratio of 31P density to bound water density), which is proportional to true bone mineralization, was found to be uncorrelated with porosity, age, or pQCT density. This work establishes the feasibility of image-based quantification of bone mineral and bound water densities using clinical hardware. PMID:24846186

  4. Bone mineral content in normal US whites

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Cameron, J. R.

    1974-01-01

    Photon absorptiometry with I-125 was used to measure the bone mineral content and the bone width on 763 children between the ages of 5 and 19 years, on 538 adults between the ages of 20 and 49 years, and on 550 adults over the age of 50 years. Measurements were made on the midshaft and the distal end of the radius and the ulna, and on the humerus midshaft. This has permitted analysis of annual bone growth in children, and the rate of change in elderly adults per decade. Male and female children grew at about the same rate until adolescence. After adolescence females grew at a slow rate until the mid-twenties, while males reached adult mineralization by age 20. Males remained relatively constant until the fifties, and females began their decline in the forties.

  5. Bone mineral density, Bone mineral contents, MMP-8 and MMP-9 levels in Human Mandible and alveolar bone: Simulated microgravity

    NASA Astrophysics Data System (ADS)

    Rai, Balwant; Kaur, Jasdeep; Catalina, Maria

    Exposure to microgravity has been associated with several physiological changes in astronauts and cosmonauts, including an osteoporosis-like loss of bone mass. It has been reported that head-down tilt bed-rest studies mimic many of the observations seen in flights. There is no study on the correlation on effects of mandibular bone and alveolar bone loss in both sex in simulating microgravity. This study was designed to determine the Bone mineral density and GCF MMP-8 MMP-9 in normal healthy subject of both sexes in simulated microgravity condition of -6 head-down-tilt (HDT) bed rest. The subjects of this investigation were 10 male and 10 female volunteers participated in three weeks 6 HDT bed-rest exposure. The Bone density and bone mineral contents were measured by dual energy X-ray absorptiometry before and in simulated microgravity. The GCF MMP-8 MMP-8 were measured by Enzyme-linked immunosorbent assays (Human Quantikine MMP-8,-9 ELISA kit). The bone mineral density and bone mineral contents levels were significantly decreased in simulated microgravity condition in both genders, although insignificantly loss was higher in females as compared to males. MMP-8 MMP-9 levels were significantly increased in simulated microgravity as compared to normal condition although insignificantly higher in females as compared to males. Further study is required on large samples size including all factors effecting in simulated microgravity and microgravity. Keys words-Simulated microgravity condition, head-down-tilt, Bone loss, MMP-8, MMP-9, Bone density, Bone mineral contents.

  6. Relationship between Bone-Specific Physical Activity Scores and Measures for Body Composition and Bone Mineral Density in Healthy Young College Women

    PubMed Central

    Kim, SoJung; So, Wi-Young; Kim, Jooyoung; Sung, Dong Jun

    2016-01-01

    Objective The purpose of this cross-sectional study was to investigate the relationship between bone-specific physical activity (BPAQ) scores, body composition, and bone mineral density (BMD) in healthy young college women. Methods Seventy-three college women (21.7 ± 1.8 years; 162.1 ± 4.6 cm; 53.9 ± 5.8 kg) between the ages of 19 and 26 years were recruited from the universities in Seoul and Gyeonggi province, South Korea. We used dual energy X-ray absorptiometry to measure the lumbar spine (L2-L4) and proximal femur BMD (left side; total hip, femoral neck). The BPAQ scores (past, pBPAQ; current, cBPAQ; total, tBPAQ) were used to obtain a comprehensive account of lifetime physical activity related to bone health. We used X-scan plus II instrumentation to measure height (cm), weight (kg), fat free mass (FFM, kg), percent body fat (%), and body mass index (BMI). Participants were asked to record their 24-hour food intake in a questionnaire. Results There were positive correlations between BPAQ scores and total hip (pBPAQ r = 0.308, p = 0.008; tBPAQ, r = 0.286, p = 0.014) and FN BMD (pBPAQ r = 0.309, p = 0.008; tBPAQ, r = 0.311, p = 0.007), while no significant relationships were found in cBPAQ (p > 0.05). When FFM, Vitamin D intake, cBPAQ, pBPAQ, and tBPAQ were included in a stepwise multiple linear regression analysis, FFM and pBPAQ were predictors of total hip, accounting for 16% (p = 0.024), while FFM and tBPAQ predicted 14% of the variance in FN (p = 0.015). Only FFM predicted 15% of the variance in L2-L4 (p = 0.004). There was a positive correlation between Vitamin D intake and L2-L4 (p = 0.025), but other dietary intakes variables were not significant (p > 0.05). Conclusions BPAQ-derived physical activity scores and FFM were positively associated with total hip and FN BMD in healthy young college women. Our study suggests that osteoporosis awareness and effective bone healthy behaviors for college women are required to prevent serious bone diseases later in

  7. Regulation of bone mineral loss during lactation

    NASA Technical Reports Server (NTRS)

    Brommage, R.; Deluca, H. F.

    1985-01-01

    The effects of varyng dietary calcium and phosphorous levels, vitamin D deficiency, oophorectomy, adrenalectomy, and simultaneous pregnancy on bone mineral loss during lactation in rats are studied. The experimental procedures and evaluations are described. The femur ash weight of lactating and nonlactating rats are calculated. The data reveals that a decrease in dietary calcium of 0.02 percent results in an increased loss of bone mineral, an increase in calcium to 1.4 percent does not lessen bone mineral loss, and bone mineral loss in vitamin D deficient rats is independent of calcium levels. It is observed that changes in dietary phosphorous level, oophorectomy, adrenalectomy, and simultaneous pragnancy do not reduce bone mineral loss during lactation. The analysis of various hormones to determine the mechanism that triggers bone mineral loss during lactation is presented.

  8. Low bone mineral density and decreased bone turnover in Duchenne muscular dystrophy.

    PubMed

    Söderpalm, Ann-Charlott; Magnusson, Per; Ahlander, Anne-Christine; Karlsson, Jón; Kroksmark, Anna-Karin; Tulinius, Már; Swolin-Eide, Diana

    2007-12-01

    This cross-sectional study examined bone mineral density, bone turnover, body composition and calciotropic hormones in 24 boys with Duchenne muscular dystrophy (DMD) (2.3-19.7 years), most of whom were being treated with prednisolone, and 24 age-matched healthy boys. Our study demonstrated lower bone mineral density in the DMD group for total body, spine, hip, heel and forearm measurements. These differences between DMD patients and controls increased with increasing age. Biochemical markers of both bone formation and resorption revealed reduced bone turnover in DMD patients. The fracture rate was not higher in DMD patients. The DMD group had low vitamin D levels but high leptin levels in comparison with the control group. Muscle strength correlated with bone mineral density assessed at the hip and heel in the DMD group. Interventions that increase bone formation should be considered, as DMD patients have reduced bone turnover in addition to their low bone mineral density.

  9. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    NASA Astrophysics Data System (ADS)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  10. Precision errors, least significant change, and monitoring time interval in pediatric measurements of bone mineral density, body composition, and mechanostat parameters by GE lunar prodigy.

    PubMed

    Jaworski, Maciej; Pludowski, Pawel

    2013-01-01

    Dual-energy X-ray absorptiometry (DXA) method is widely used in pediatrics in the study of bone density and body composition. However, there is a limit to how precise DXA can estimate bone and body composition measures in children. The study was aimed to (1) evaluate precision errors for bone mineral density, bone mass and bone area, body composition, and mechanostat parameters, (2) assess the relationships between precision errors and anthropometric parameters, and (3) calculate a "least significant change" and "monitoring time interval" values for DXA measures in children of wide age range (5-18yr) using GE Lunar Prodigy densitometer. It is observed that absolute precision error values were different for thin and standard technical modes of DXA measures and depended on age, body weight, and height. In contrast, relative precision error values expressed in percentages were similar for thin and standard modes (except total body bone mineral density [TBBMD]) and were not related to anthropometric variables (except TBBMD). Concluding, due to stability of percentage coefficient of variation values in wide range of age, the use of precision error expressed in percentages, instead of absolute error, appeared as convenient in pediatric population.

  11. Mineralized Three-Dimensional Bone Constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2013-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  12. Mineralized three-dimensional bone constructs

    NASA Technical Reports Server (NTRS)

    Clarke, Mark S. F. (Inventor); Sundaresan, Alamelu (Inventor); Pellis, Neal R. (Inventor)

    2011-01-01

    The present disclosure provides ex vivo-derived mineralized three-dimensional bone constructs. The bone constructs are obtained by culturing osteoblasts and osteoclast precursors under randomized gravity vector conditions. Preferably, the randomized gravity vector conditions are obtained using a low shear stress rotating bioreactor, such as a High Aspect Ratio Vessel (HARV) culture system. The bone constructs of the disclosure have utility in physiological studies of bone formation and bone function, in drug discovery, and in orthopedics.

  13. Objectively measured physical activity predicts hip and spine bone mineral content in children and adolescents ages 5-15 years: iowa bone development study.

    PubMed

    Janz, Kathleen F; Letuchy, Elena M; Francis, Shelby L; Metcalf, Kristen M; Burns, Trudy L; Levy, Steven M

    2014-01-01

    This study examined the association between physical activity (PA) and bone mineral content (BMC; gram) from middle childhood to middle adolescence and compared the impact of vigorous-intensity PA (VPA) over moderate- to vigorous-intensity PA (MVPA). Participants from the Iowa bone development study were examined at ages 5, 8, 11, 13, and 15 years (n = 369, 449, 452, 410, and 307, respectively). MVPA and VPA (minutes per day) were measured using ActiGraph accelerometers. Anthropometry was used to measure body size and somatic maturity. Spine BMC and hip BMC were measured via dual-energy x-ray absorptiometry. Sex-specific multi-level linear models were fit for spine BMC and hip BMC, adjusted for weight (kilogram), height (centimeter), linear age (year), non-linear age (year(2)), and maturity (pre peak height velocity vs. at/post peak height velocity). The interaction effects of PA × maturity and PA × age were tested. We also examined differences in spine BMC and hip BMC between the least (10th percentile) and most (90th percentile) active participants at each examination period. Results indicated that PA added to prediction of BMC throughout the 10-year follow-up, except MVPA, did not predict spine BMC in females. Maturity and age neither modify the PA effect for males nor females. At age 5, the males at the 90th percentile for VPA had 8.5% more hip BMC than males in the 10th percentile for VPA. At age 15, this difference was 2.0%. Females at age 5 in the 90th percentile for VPA had 6.1% more hip BMC than those in the 10th percentile for VPA. The age 15 difference was 1.8%. VPA was associated with BMC at weight-bearing skeletal sites from childhood to adolescence, and the effect was not modified by maturity or age. Our findings indicate the importance of early and sustained interventions that focus on VPA. Approaches focused on MVPA may be inadequate for optimal bone health, particularly for females.

  14. The importance of severity of arthrosis for the reliability of bone mineral density measurement in women.

    PubMed

    Hayirlioglu, Alper; Gokaslan, Husnu; Cimsit, Canan; Baysal, Begumhan

    2009-02-01

    The objective of this study is to investigate the effect of the severity of degenerative changes on measurements of A-P lumbar spines BMD values and to determine the reliability of DEXA measurements associated with severity of the disease on A-P lumbar spines BMD values using DEXA. The measurements using DEXA were taken from L2-L4 spines and femoral neck of total 271 female cases. One hundred and ten of them had mild arthrosis (Group 0), and 69 had severe arthrosis (Group 1). Ninety-two cases without arthrosis were chosen as control group (Group 2). The cases with arthrosic changes were grouped according to their degree of severity of arthrosis. The groups were compared two by two and Tukey multiple comparison test was used for the analysis of the difference of the means of the groups. The mean age of cases was 61.79, 61.84, and 60.47, respectively. The average height was 157.26, 155.93, and 15.92 cm while the average weight was 69.21, 70.78, and 71.45 kg, respectively. The mean body mass index (BMI) was 0.00283, 0.00291, and 0.00293, respectively. L2-L4 A-P spinal BMD values were 0.9870, 0.9848, and 1.0836 g/cm(2) while the femoral neck BMD values were 0.7964, 0.8056, and 0.8223 g/cm(2), respectively. There was no statistical significance between study and control groups in terms of age, weight, height, BMI, and BMD values obtained from femoral neck. However, lumbar region BMD values of the cases with severe arthrosis were statistically significantly high when compared with other two groups. The femoral neck measurement is the prominent alternative method in severe arthrosis while taking measurements from lumbar region is still the most appropriate method in cases with mild arthrosis without having giant osteophytes.

  15. Citrate bridges between mineral platelets in bone.

    PubMed

    Davies, Erika; Müller, Karin H; Wong, Wai Ching; Pickard, Chris J; Reid, David G; Skepper, Jeremy N; Duer, Melinda J

    2014-04-08

    We provide evidence that citrate anions bridge between mineral platelets in bone and hypothesize that their presence acts to maintain separate platelets with disordered regions between them rather than gradual transformations into larger, more ordered blocks of mineral. To assess this hypothesis, we take as a model for a citrate bridging between layers of calcium phosphate mineral a double salt octacalcium phosphate citrate (OCP-citrate). We use a combination of multinuclear solid-state NMR spectroscopy, powder X-ray diffraction, and first principles electronic structure calculations to propose a quantitative structure for this material, in which citrate anions reside in a hydrated layer, bridging between apatitic layers. To assess the relevance of such a structure in native bone mineral, we present for the first time, to our knowledge, (17)O NMR data on bone and compare them with (17)O NMR data for OCP-citrate and other calcium phosphate minerals relevant to bone. The proposed structural model that we deduce from this work for bone mineral is a layered structure with thin apatitic platelets sandwiched between OCP-citrate-like hydrated layers. Such a structure can explain a number of known structural features of bone mineral: the thin, plate-like morphology of mature bone mineral crystals, the presence of significant quantities of strongly bound water molecules, and the relatively high concentration of hydrogen phosphate as well as the maintenance of a disordered region between mineral platelets.

  16. Bone Mineral Density and Fatty Degeneration of Thigh Muscles Measured by Computed Tomography in Hip Fracture Patients

    PubMed Central

    Hahn, Myung Hoon

    2016-01-01

    Background Recently, as an independent fracture factor from Bone mineral density (BMD), muscle weakness due to the fatty degeneration of thigh muscles have been attracting attentions as causes of hip fracture. The purpose of this study is to investigate the correlation between the body composition and BMD and fatty degeneration of thigh muscles of the female patients over 65 years old with osteoporotic hip fracture. Methods This study was conducted with 178 female osteoporotic hip fracture patients. Total hip BMD was measured using dual energy X-ray absorptiometry. Cross-sectional area (CSA), cross-sectional muscle area (CSmA), muscle attenuation coefficient (MAC), and intramuscular adipose tissue (IMAT) of gluteus maximus, hip abductors, quadriceps and hamstring muscle were measured with computed tomography. Normalized IMAT (nIMAT) was calculated by dividing the fat area in the muscle into the size of each muscle. The correlation between each measurement is examined then the differences between the intertrochanteric fracture group and the femoral neck fracture group were analyzed. Results CSmA and MAC of quadriceps were the largest and nIMAT was the lowest. CSA and CSmA of the four muscles showed a statistically significant positive correlation with weight, height, body mass index (BMI), and BMD. MAC of 2 gluteal muscles was positively correlated with weight, BMI and BMD. nIMAT of all four muscles was positively correlation with weight and BMI but nIMAT of 2 mid-thigh muscles was positively correlation with BMD. Conclusions Muscle size and fatty degeneration in the thigh muscles were most positively correlated with the body weight. BMD was positively correlation with CSA and CSmA of all thigh muscles, and MAC of 2 gluteal muscles and fatty degeneration of 2 mid-thigh muscles. There was no statistically significant difference in the size of the femoral muscle and the degree of fatty degeneration between the two fracture groups. PMID:27965943

  17. Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: a twin study.

    PubMed

    Howard, G M; Nguyen, T V; Harris, M; Kelly, P J; Eisman, J A

    1998-08-01

    This study was designed to assess the relative contributions of genetic and environmental factors to the variation and covariation of quantitative ultrasound (QUS) measurements and their relationships to bone mineral density (BMD). Forty-nine monozygotic (MZ) and 44 dizygotic (DZ) female twins between 20 and 83 years of age (53 +/- 13 years, mean +/- SD) were studied. Digital (phalangeal) QUS (speed of sound [SOS]) and calcaneal QUS (broadband ultrasound attenuation [BUA] and velocity of sound [VOS]) were measured using a DBM Sonic 1200 ultrasound densitometer and a CUBA ultrasound densitometer, respectively. Femoral neck (FN), lumbar spine (LS), and total body (TB) BMD were measured using dual-energy X-ray absorptiometry. Familial resemblance and hence heritability (proportion of variance of a trait attributable to genetic factors) were assessed by analysis of variance, univariate, and multivariate model-fitting genetic analyses. In both QUS and BMD parameters, MZ twins were more alike than DZ pairs. Estimates of heritability for age- and weight-adjusted BUA, VOS, and SOS were 0.74, 0.55, and 0.82, respectively. Corresponding indices of heritability for LS, FN, and TB BMD were 0.79, 0.77, and 0.82, respectively. In cross-sectional analysis, both BUA and SOS, but not VOS, were independently associated with BMD measurements. However, analysis based on intrapair differences suggested that only BUA was related to BMD. Bivariate genetic analysis indicated that the genetic correlations between BUA and BMD ranged between 0.43 and 0.51 (p < 0.001), whereas the environmental correlations ranged between 0.20 and 0.28 (p < 0.01). While the genetic correlations within QUS and BMD measurements were significant, factor analysis indicates that common genes affect BMD at different sites. Also, individual QUS measurements appear to be influenced by some common sets of genes rather than by environmental factors. Significant environmental correlations were only found for BMD

  18. Can forearm bone mineral density be measured with dxa in the supine position? A study in Chinese population.

    PubMed

    Zhao, Jinhua; Xing, Yan; Zhou, Qi; Jin, Wenya; Wacker, Wynn; Barden, Howard S

    2010-01-01

    The purpose of our study was to confirm that forearm bone mineral density (BMD) results obtained with the patient in the supine position are equivalent to results obtained with patient in the sitting position. The subjects were a Chinese sample of 82 healthy adults (35 males and 47 females; age: 22.5-59.8 yr; body mass index: 17.6-32.4). Forearm BMD was measured by dual-energy X-ray absorptiometry, with the forearm positioned in the sitting and supine positions. Repeated measurements were available for some subjects, and the average of the repeats for those subjects were used in the analysis. The standard enCORE software (GE Lunar, Madison, WI) adjustment for supine position was applied to the BMD values obtained in the supine position for 33% radius, ultradistal (UD) radius, and radius total regions of interest (ROIs) to give sitting-equivalent values. The supine sitting-equivalent results were regressed on the sitting values through the origin. There were statistically significant differences in the UD and total-radius forearm results between supine sitting-equivalent BMD and sitting BMD. The correlation coefficients of UD and total radius were 0.967 and 0.976, respectively. There was no significant difference between supine sitting-equivalent BMD and sitting BMD in the 33% radius forearm BMD. The correlation coefficient of 33% radius was 0.956. For Chinese subjects, there was no significant difference in BMD for the 33% radius, the only ROI recommended for diagnosis by ISCD. Forearm scans could be accomplished with the patient suitably positioned for the routine lumbar spine and proximal femur scans.

  19. Method for improved prediction of bone fracture risk using bone mineral density in structural analysis

    NASA Technical Reports Server (NTRS)

    Cann, Christopher E. (Inventor); Faulkner, Kenneth G. (Inventor)

    1992-01-01

    A non-invasive in-vivo method of analyzing a bone for fracture risk includes obtaining data from the bone such as by computed tomography or projection imaging which data represents a measure of bone material characteristics such as bone mineral density. The distribution of the bone material characteristics is used to generate a finite element method (FEM) mesh from which load capability of the bone can be determined. In determining load capability, the bone is mathematically compressed, and stress, strain force, force/area versus bone material characteristics are determined.

  20. Low bone mineral density among young healthy adult Saudi women

    PubMed Central

    Zeidan, Zeidan A.; Sultan, Intisar E.; Guraya, Shaista S.; Al-Zalabani, Abdulmohsen H.; Khoshhal, Khalid I.

    2016-01-01

    Objectives: To screen for low bone mineral density among young adult Saudi women using quantitative ultrasound (QUS) and exploring the high risk groups. Methods: A cross-sectional study was performed on 279, 20-36 years old female students and employees of Taibah University, Al Madinah Al Munawwarah, Kingdom of Saudi Arabia between January and May 2014. The study included bone status assessed using QUS, a structured self-reported questionnaire, anthropometric measurements, and evaluation of bone markers of bone metabolism. Results: The prevalence of low bone mineral density was 9%. Serum osteocalcin was found significantly higher in candidates with low bone mineral density, 20.67 ng/ml versus 10.7 ng/ml, and it was negatively correlated with T-scores. At any given point in time the exposed subjects to low calcium intake and inadequate sun exposure in the population were 11 times and 3 times more likely to have low bone mineral density, (adjusted odds ratio [OR], 11.0; 95%confidence interval [CI]=3.16, 38.34; p=0.001) and (adjusted OR, 3.32, 95%CI=1.27, 8.66, p<0.01). Conclusion: Early detection screening programs for low bone mineral density are needed in Saudi Arabia as it affects young Saudi women specially the high-risk group that includes young women with insufficient calcium intake and insufficient sun exposure. Serum osteocalcin as a biomarker for screening for low bone mineral density could be introduced. PMID:27761561

  1. Bone mineral content measured by DEXA scan in preterm neonates receiving total parentral nutrition with and without phosphorus supplementation.

    PubMed

    Awad, H A; Farid, T M; Khafagy, S M; Nofal, R I

    2010-09-15

    Intravenous phosphorus preparation was not available in Egypt till recently. So we aimed to prove the positive effect of adding intravenous phosphorus to total parentral nutrition (TPN) on calcium (Ca) and phosphorus (PO4) metabolism ofpreterm neonates by measuring bone mineral content (BMC) using DEXA scan. A case-control study was conducted in NICU of Obstetric and Gynecology Hospital of Ain Shams University which is a tertiary care unit in Cairo. Thirty preterm infants were prospectively enrolled in the study divided into 2 groups; 15 preterm infants received TPN with phosphorus supplementation (group 1) and 15 preterm received TPN without phosphorus supplementation (group 2). Serum Ca, PO4 and alkaline phosphatase (ALP) assay were done together with urinary calcium/creatinine (Ca/Cr) ratio, abdominal ultrasound and DEXA scan. There were no significant difference regarding serum Ca and PO4 between group 1 and 2. Yet there were highly significant increase in serum ALP and urinary Ca/Cr ratio in group 2 compared to group 1 (p = 0.001). Also group 1 had significantly higher BMC compared to group 2 even with TPN duration less than 15 days (p = 0.001). BMC was significantly positively correlated with G.A and B.W in both groups and was significantly negatively correlated with serum ALP in group 2 and with urinary calcium/creatinine ratio in group 1. Duration of TPN as short as 2 weeks can affect negatively the BMC as documented by DEXA scan in preterm infants receiving TPN without phosphorus supplementation.

  2. Minimum detectable limits of measuring bone mineral density using an energy dispersive X-ray diffraction system

    NASA Astrophysics Data System (ADS)

    Allday, A. W.; Farquharson, M. J.

    2001-06-01

    In the clinical environment, the most common method of assessing bone mineral density (BMD) loss is dual energy X-ray absorptiometry (DEXA), which relies on the transmission of X-ray photons through the volume of interest. Energy dispersive X-ray diffraction (EDXRD), which utilises coherent X-ray scattering, potentially is a more accurate method. As part of the development of a precision EDXRD system, an experiment was performed using a range of bone and fat mix phantoms, which were also used for DEXA evaluation. The results are presented here and suggest initial minimum detectable limits of the order of 5% BMD loss for the EDXRD experiment and 10-15% for the DEXA assessment.

  3. Localized tissue mineralization regulated by bone remodelling: A computational approach

    PubMed Central

    Decco, Oscar; Adams, George; Cook, Richard B.; García Aznar, José Manuel

    2017-01-01

    Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent–material density curve. Numerical results are discussed pointing to potential clinical applications. PMID:28306746

  4. Localized tissue mineralization regulated by bone remodelling: A computational approach.

    PubMed

    Berli, Marcelo; Borau, Carlos; Decco, Oscar; Adams, George; Cook, Richard B; García Aznar, José Manuel; Zioupos, Peter

    2017-01-01

    Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent-material density curve. Numerical results are discussed pointing to potential clinical applications.

  5. Vegetarian lifestyle and bone mineral density.

    PubMed

    Marsh, A G; Sanchez, T V; Michelsen, O; Chaffee, F L; Fagal, S M

    1988-09-01

    The amount and type of dietary protein affect bone mineral loss after the menopause. This observation was substantiated in 10 y of studies by direct photon absorptiometry, four results of which follow. 1) Studies of 1600 women in southwestern Michigan revealed that those who had followed the lactoovovegetarian diet for at least 20 y had only 18% less bone mineral by age 80 whereas closely paired omnivores had 35% less bone mineral. 2) A study of self-selected weighed food intake showed no statistical difference in nutrient intakes but a difference in Ca:P ratio and acid-base formation of diet, each significant to p less than 0.001. 3) When sulfur intake of a fixed diet was increased, the titratable acidity of the urine increased proportionately. 4) Bone mineral densities of 304 older women from the continental United States closely paralleled those from earlier Michigan studies.

  6. A long femur scan field does not alter proximal femur bone mineral density measurements by dual-energy X-ray absorptiometry.

    PubMed

    McKiernan, Fergus Eoin; Hocking, Jane; Cournoyer, Susan; Berg, Richard L; Linneman, James

    2011-01-01

    A longer dual-energy X-ray absorptiometry (DXA) femur scan field might be useful for the detection of atypical, subtrochanteric femur fractures (ASFF). Thirty adult subjects underwent triplicate measures of femoral neck (FN) and total hip (TH) bone mineral density (BMD) by DXA using a conventional (i.e., short) and a longer femur scan field. Differences in measured BMD between the 2 scan field lengths were small and less than the precision error inherent in DXA testing. A longer proximal femur scan field does not substantially alter BMD measurements made at the FN and TH and may be useful for the detection of ASFF in clinical practice.

  7. Premenopausal and postmenopausal changes in bone mineral density of the proximal femur measured by dual-energy X-ray absorptiometry.

    PubMed

    Ravn, P; Hetland, M L; Overgaard, K; Christiansen, C

    1994-12-01

    Total and regional bone mineral density (BMD) of the proximal femur was measured by DXA in 1238 healthy white women. In the 389 premenopausal women, aged 21-54 years, no bone loss was observed before the menopause, except in the femoral neck and Ward's triangle, in which BMD decreased by 0.3%/year (SEE 0.2-0.9%/year, p < 0.001) and 0.6%/year (SEE 0.4-0.8%/year, p < 0.001), respectively. In the postmenopausal women aged 48-75 years, there was a highly significant exponential decay in BMD with age and years since menopause (YSM) in all regions (-0.58 < r < -0.48, p < 0.001). However, YSM was a better predictor of BMD than age. The decrease in BMD in the first 5 years postmenopause reached values of 9-13%. The estimated bone loss after 20 years was 17-30%, greatest in Ward's triangle and smallest in the intertrochanteric region. BMD correlated highly significantly with BMI (0.26 < r < 0.48, p < 0.001). In conclusion, the present study indicates a stable premenopausal bone mass of the proximal femur and a postmenopausal bone loss, which is influenced mainly by YSM within the first 10-15 years after menopause. BMD correlated with body mass index (BMI) in the postmenopausal years, confirming that low BMI constitutes a potential risk factor for osteoporosis.

  8. Derangements in bone mineral parameters and bone mineral density in south Indian subjects on antiepileptic medications

    PubMed Central

    Koshy, George; Varghese, Ron Thomas; Naik, Dukhabandhu; Asha, Hesargatta Shyamsunder; Thomas, Nihal; Seshadri, Mandalam Subramaniam; Alexander, Mathew; Thomas, Maya; Aaron, Sanjith; Paul, Thomas Vizhalil

    2014-01-01

    Background: Although there are reports describing the association of alternations of bone and mineral metabolism in epileptic patients with long-term anticonvulsant therapy, there are only limited Indian studies which have looked at this aspect. Objectives: This study was done to compare the prevalence of changes in bone mineral parameters and bone mineral density (BMD) in ambulant individuals on long-term anticonvulsant therapy with age- and body mass index (BMI)-matched healthy controls. Materials and Methods: There were 55 men (on medications for more than 6 months) and age- and BMI-matched 53 controls. Drug history, dietary calcium intake (DCI), and duration of sunlight exposure were recorded. Bone mineral parameters and BMD were measured. Results: The control group had a significantly higher daily DCI with mean ± SD of 396 ± 91 mg versus 326 ± 101 mg (P = 0.007) and more sunlight exposure of 234 ± 81 vs 167 ± 69 min (P = 0.05). BMD at the femoral neck was significantly lower in cases (0.783 ± 0.105 g/cm2) when compared to controls (0.819 ± 0.114 g/cm2). Majority of the patients (61%) had low femoral neck BMD (P = 0.04). There was no significant difference in the proportion of subjects with vitamin D deficiency (<20 ng/mL) between cases (n = 32) and controls (n = 37) (P = 0.234). Conclusions: Vitamin D deficiency was seen in both the groups in equal proportions, highlighting the existence of a high prevalence of this problem in India. Low femoral neck BMD found in cases may stress the need for supplementing calcium and treating vitamin D deficiency in this specific group. However, the benefit of such intervention has to be studied in a larger proportion of epileptic patients. PMID:25221394

  9. High-strength mineralized collagen artificial bone

    NASA Astrophysics Data System (ADS)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  10. Dependence of Long Bone Flexural Properties on Bone Mineral Distribution

    NASA Technical Reports Server (NTRS)

    Katz, BethAnn; Cleek, Tammy M.; Whalen, Robert T.; Connolly, James P. (Technical Monitor)

    1995-01-01

    The objective of this study is to assess whether a non-invasive determination of long bone cross-sectional areal properties using bone densitometry accurately estimates true long bone flexural properties. In this study, section properties of two pairs of human female embalmed tibiae were compared using two methods: special analysis of bone densitometry data, and experimental determination of flexural regidities from bone surface strain measurements during controlled loading.

  11. Mathematical Model for the Mineralization of Bone

    NASA Technical Reports Server (NTRS)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. ne model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  12. Mathematical Model for the Mineralization of Bone

    NASA Technical Reports Server (NTRS)

    Martin, Bruce

    1994-01-01

    A mathematical model is presented for the transport and precipitation of mineral in refilling osteons. One goal of this model was to explain calcification 'halos,' in which the bone near the haversian canal is more highly mineralized than the more peripheral lamellae, which have been mineralizing longer. It was assumed that the precipitation rate of mineral is proportional to the difference between the local concentration of calcium ions and an equilibrium concentration and that the transport of ions is by either diffusion or some other concentration gradient-dependent process. Transport of ions was assumed to be slowed by the accumulation of mineral in the matrix along the transport path. The model also mimics bone apposition, slowing of apposition during refilling, and mineralization lag time. It was found that simple diffusion cannot account for the transport of calcium ions into mineralizing bone, because the diffusion coefficient is two orders of magnitude too low. If a more rapid concentration gradient-driven means of transport exists, the model demonstrates that osteonal geometry and variable rate of refilling work together to produce calcification halos, as well as the primary and secondary calcification effect reported in the literature.

  13. [Hyperprolactinaemia and bone mineral density].

    PubMed

    Kostrzak, Anna; Męczekalski, Błażej

    2015-08-01

    Hyperprolactinaemia is one of the most common endocrinological disorder at women at the reproductive age. Prolactin is produced by the anterior lobe of the pituitary.The main role of prolactin is associated with mamotrophic action and lactogenesis. Hyperprolactinaemia causes several symptoms such as menstrual disorders, infertility, decrease of sexual function, galactorrhea in women and gynecomasty, impotence and decrease of semen quality in men. Recent studies have presented prolactin as a homone involved in many metabolic processes. Long-term consequences of high prolactin serum concentration are related to higher risk of cardiovascular system disease, disturbances in lipid profile and immunological system. Hyperprolactiaemia causes decrease of bone mass density (BMD). High serum prolactin levels lead to increase of the risk of osteopenia or/and osteoporosis. Decrease of BMD results from hypoestrogenism induced by hyperprolactinaemia and also by the direct negative influence of prolactin on bone. Hyperprolactinaemia related to prolactinoma significantly (more than functional hyperprolactiaemia) increases the risk of osteopenia, osteoporosis and bone fractures. Important group of patients threatened by osteoporosis and bone fracture is constituted by women which use antipsychotic drugs (which induce hyperprolactinaemia). Hyperprolactinaemia diagnosed in patients should be treated as soon as possible. Hyperprolactinaemic patients should be diagnosed in the direction of osteopenia and osteoporosis. When diagnosis is confirmed proper treatment is indicated.

  14. Pediatric data for dual X-ray absorptiometric measures of normal lumbar bone mineral density in children under 5 years of age using the lunar prodigy densitometer

    PubMed Central

    Manousaki, D.; Rauch, F.; Chabot, G.; Dubois, J.; Fiscaletti, M.; Alos, N.

    2016-01-01

    Objectives: Knowledge of physiological variations of bone mineral density (BMD) in newborns and infants is necessary to evaluate pathological changes associated with fractures. Limited reference data for children under 5 years old are available. This study provides normative data of lumbar BMD for the Lunar Prodigy in young children under 5 years old. Subjects and methods: We assessed cross-sectionally 155 healthy children (77 boys, 80% Caucasian), ranging in age from newborn to the age of 5 years. Lumbar bone mineral content (BMC) and areal BMD were measured by dual-energy X-ray absorptiometry using a Lunar Prodigy absorptiometer. Volumetric BMD was calculated using the Kroeger and Carter methods. Results: BMC and areal BMD increased from birth to 5 years (p<0.001). Volumetric BMD did not change with age. BMD and BMC correlated with age, weight and height (R2≥0.85 for all), with a maximum gain between the ages of 1 and 4 years, which did not follow the same pattern as height velocity. We did not find significant sex difference for any of the three measured parameters. Conclusion: This study provides normative data for lumbar spine densitometry of infants and young children using the Lunar Prodigy DXA system. PMID:27609039

  15. Bone-composition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density

    SciTech Connect

    Batchelar, Deidre L.; Davidson, Melanie T.M.; Dabrowski, Waldemar; Cunningham, Ian A.

    2006-04-15

    Quantitative analysis of bone composition is necessary for the accurate diagnosis and monitoring of metabolic bone diseases. Accurate assessment of the bone mineralization state is the first requirement for a comprehensive analysis. In diagnostic imaging, x-ray coherent scatter depends upon the molecular structure of tissues. Coherent-scatter computed tomography (CSCT) exploits this feature to identify tissue types in composite biological specimens. We have used CSCT to map the distributions of tissues relevant to bone disease (fat, soft tissue, collagen, and mineral) within bone-tissue phantoms and an excised cadaveric bone sample. Using a purpose-built scanner, we have measured hydroxyapatite (bone mineral) concentrations based on coherent-scatter patterns from a series of samples with varying hydroxyapatite content. The measured scatter intensity is proportional to mineral density in true g/cm{sup 3}. Repeated measurements of the hydroxyapatite concentration in each sample were within, at most, 2% of each other, revealing an excellent precision in determining hydroxyapatite concentration. All measurements were also found to be accurate to within 3% of the known values. Phantoms simulating normal, over-, and under-mineralized bone were created by mixing known masses of pure collagen and hydroxyapatite. An analysis of the composite scatter patterns gave the density of each material. For each composite, the densities were within 2% of the known values. Collagen and hydroxyapatite concentrations were also examined in a bone-mimicking phantom, incorporating other bone constituents (fat, soft tissue). Tomographic maps of the coherent-scatter properties of each specimen were reconstructed, from which material-specific images were generated. Each tissue was clearly distinguished and the collagen-mineral ratio determined from this phantom was also within 2% of the known value. Existing bone analysis techniques cannot determine the collagen-mineral ratio in intact

  16. Computerized tomographic determination of spinal bone mineral content

    NASA Technical Reports Server (NTRS)

    Cann, C. E.; Genant, H. K.

    1980-01-01

    The aims of the study were three-fold: to determine the magnitude of vertebral cancellous mineral loss in normal subjects during bedrest, to compare this loss with calcium balance and mineral loss in peripheral bones, and to use the vertebral measurements as an evaluative criterion for the C12MDP treatment and compare it with other methods. The methods used are described and the results from 14 subjects are presented.

  17. Continued investigation of kinetic aspects of bone mineral metabolism. [determining body calcium by measuring argon after neutron irradiation

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1974-01-01

    The total body calcium in humans was determined by measuring expired Ar-37 after neutron irradiation. The excretion of Ar-37 from humans was found to be much slower than the excretion from rats and dogs, and to be related to the age of a person. A study of the uniformity of the Ar-37 production throughout the thickness of the body was studied using phantoms. The results indicate that it should be possible to obtain a uniformity within plus or minus 3% for the production of Ar-37 per unit of calcium by using a bilateral irradiation. New low background, large volume proportional counters were developed and constructed, for more sensitive measurement of Ar-37 in the expired air from patients. A new irradiation enclosure was developed for measuring total body calcium in rats by the Ar-37 method. With this enclosure the Ar-37 production per gram of calcium is constant with a standard deviation of plus or minus 2.8% for any size rat between 100 and 500 grams. The use of Na-22 as measure of bone replacement in the fractured femur of a dog was not successful.

  18. Can Dental Cone Beam Computed Tomography Assess Bone Mineral Density?

    PubMed Central

    2014-01-01

    Mineral density distribution of bone tissue is altered by active bone modeling and remodeling due to bone complications including bone disease and implantation surgery. Clinical cone beam computed tomography (CBCT) has been examined whether it can assess oral bone mineral density (BMD) in patient. It has been indicated that CBCT has disadvantages of higher noise and lower contrast than conventional medical computed tomography (CT) systems. On the other hand, it has advantages of a relatively lower cost and radiation dose but higher spatial resolution. However, the reliability of CBCT based mineral density measurement has not yet been fully validated. Thus, the objectives of this review are to discuss 1) why assessment of BMD distribution is important and 2) whether the clinical CBCT can be used as a potential tool to measure the BMD. Brief descriptions of image artefacts associated with assessment of gray value, which has been used to account for mineral density, in CBCT images are provided. Techniques to correct local and conversion errors in obtaining the gray values in CBCT images are also introduced. This review can be used as a quick reference for users who may encounter these errors during analysis of CBCT images. PMID:25006568

  19. Osteoprotective effect of hormone therapy on bone microarchitecture before impaired bone mineral density in ovariectomized rats

    PubMed Central

    Terzi, Hasan; Çırpan, Teksin; Terzi, Rabia; Yeniel, Ahmet Özgür; Aktuğ, Hüseyin; Bilgin, Onur

    2012-01-01

    Objective: We aimed to determine the effect of hormone replacement therapy on bone microarchitecture in ovariectomized rats. Material and Methods: In the Animal Ethics Committee approved-study, the effect of treatment with 17 β-estradiol 50 μg/kg and medroxyprogesterone 2.5 mg/kg on bone architecture and bone mineral density in rats versus ovariectomized control rats over the course of 20 days were evaluated. Femoral and lumbar bone mineral density levels and morphometric measurements were performed. Results: There were no significant differences in the femoral and lumbar bone mineral density levels between the groups. In the intact control group, the trabecular structures were significantly superior to those in the other groups. Additionally, the osteoblast count was significantly higher while the osteoclast count was significantly lower than in all other groups. Two parameters reflecting trabecular bone microarchitecture, which include the trabecular count and the trabecular area, demonstrated significant improvement in the hormone replacement group when compared to the ovariectomized control group. In the hormone replacement groups, the osteoblast count was significantly higher while the osteoclast count was significantly lower than in the ovariectomized control group. Conclusion: We suggest that offering estrogen alone or in combination with progestogen can be a beneficial approach in preventing early postmenopausal bone loss regardless of bone mineral density. PMID:24592053

  20. Relationship of bone mineral density to progression of knee osteoarthritis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective. To evaluate the longitudinal relationship between bone mineral density (BMD) and BMD changes and the progression of knee osteoarthritis (OA), as measured by cartilage outcomes. Methods. We used observational cohort data from the Vitamin D for Knee Osteoarthritis trial. Bilateral femoral ...

  1. Bone mineral imaging using a digital magnification mammography system

    NASA Astrophysics Data System (ADS)

    Toyofuku, Fukai; Tokumori, Kenji; Higashida, Yoshiharu; Arimura, Hidetaka; Morishita, Junji; Ohki, Masafumi

    2008-03-01

    The measurement of bone mineral content is important for diagnosis of demineralization diseases such as osteoporosis. A reliable method of obtaining bone mineral images using a digital magnification mammography system has been developed. The full-field digital phase contrast mammography (PCM) system, which has a molybdenum target of 0.1mm focal spot size, was used with 1.75 x magnification. We have performed several phantom experiments using aluminum step wedges (0.2 mm - 6.0 mm in thickness) and a bone mineral standard phantom composed of calcium carbonate and polyurethane (CaCO 3 concentration: 26.7 - 939.0 mg/cm 3) within a water or Lucite phantom. X-ray spectra on the exposure field are measured using a CdTe detector for evaluation of heel effect. From the equations of x-ray attenuation and the thickness of the subjects, quantitative images of both components were obtained. The quantitative images of the two components were obtained for different tube voltages of 24 kV to 39 kV. The relative accuracy was less than 2.5% for the entire aluminum thickness of 0.5 to 6.0 mm at 5 cm water thickness. Accuracy of bone mineral thickness was within 3.5% for 5cm water phantom. The magnified quantitative images of a hand phantom significantly increased the visibility of fine structures of bones. The digital magnification mammography system is useful not only for measurement of bone mineral content, but also high-resolution quantitative imaging of trabecular structure.

  2. High resolution bone mineral densitometry with a gamma camera

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Evans, H.; Jhingran, S.; Johnson, P.

    1983-01-01

    A technique by which the regional distribution of bone mineral can be determined in bone samples from small animals is described. The technique employs an Anger camera interfaced to a medical computer. High resolution imaging is possible by producing magnified images of the bone samples. Regional densitometry of femurs from oophorectomised and bone mineral loss.

  3. Bone and mineral metabolism in African Americans.

    PubMed

    Bell, N H

    1997-08-01

    Important differences exist in the metabolism of bone and mineral and the vitamin D endocrine system between whites and African Americans and include rate o f skeletal remodeling, bone mass, and vitamin D metabolism. A higher bone mineral density (BMD) in African Americans is associated with a diminished incidence o f osteoporosis and fractures. Serum 17beta-estradiol and the rate of GH secretion are higher in black than in white men, but there is no racial difference in women in this regard. The mechanisms for reduced rate o f skeletal remodeling and for greater BMD in blacks are not known, but diminished rate of skeletal remodeling could be a contributing factor for greater bone mass. Reduction in serum 25-hydroxyvitamin D in blacks is attributed to increased skin pigment and to diminished dermal production of vitamin D(3) and consequent decreased hepatic synthesis o f the metabolite. There is no evidence that alteration of the vitamin D endocrine system contributes to or is responsible for racial differences in skeletal remodeling and bone mass. Black infants, however, are at risk for developing vitamin D-deficient rickets, particularly when breast-fed.

  4. Comparison of Sex Steroid Measurements in Men by Immunoassay versus Mass Spectroscopy and Relationships with Cortical and Trabecular Volumetric Bone Mineral Density

    PubMed Central

    Khosla, Sundeep; Amin, Shreyasee; Singh, Ravinder J.; Atkinson, Elizabeth J.; Melton, L. Joseph; Riggs, B. Lawrence

    2009-01-01

    Introduction While immunoassays have been used extensively for measurement of serum testosterone (T) and estradiol (E2) levels, there is concern about their specificity, particularly at low E2 levels as present in men. Methods We compared T and E2 measured by mass spectroscopy to levels measured by immunoassay in men (n = 313, age 22 to 91 years) and related these to volumetric bone mineral density (vBMD) at various skeletal sites. Results Serum T and non-SHBG bound (or bioavailable) T levels by immunoassay correlated well with the corresponding mass spectroscopy measurements (R = 0.90 and 0.95, respectively, P < 0.001); the correlations for serum E2 measured using the two techniques were less robust (R = 0.63 for total E2 and 0.84 for bioavailable E2, P < 0.001). Overall relationships between serum bioavailable T and E2 levels with vBMD at various skeletal sites were similar for the immunoassay and mass spectroscopic measures. Conclusions Although E2 levels with immunoassay correlate less well with the mass spectroscopic measurements than do the T measurements in men, our findings indicate that the fundamental relationships observed previously between vBMD and the sex steroids by immunoassay are also present with the mass spectroscopic measurements. PMID:18338096

  5. Screening for osteoporosis using easily obtainable biometrical data: diagnostic accuracy of measured, self-reported and recalled BMI, and related costs of bone mineral density measurements.

    PubMed

    van der Voort, D J; Brandon, S; Dinant, G J; van Wersch, J W

    2000-01-01

    The aims of the present study were: to determine the diagnostic accuracy of objectively measured, self-reported and recalled body mass index (BMI) for osteoporosis and osteopenia; to determine the diagnostic costs, in terms of bone mineral density (BMD) measurements, per osteoporotic or osteopenic patient detected, using different BMI tests; and to determine the extent to which the results can be used within the framework of the current screening program for breast cancer in The Netherlands. Within the framework of a cross-sectional study on the prevalence of osteoporosis in the south of The Netherlands, 1155 postmenopausal women aged 50-80 years were asked for their present height and their weight at age 20-30 years. Subsequently their actual weight, height and BMD of the lumbar spine (DXA) were measured. The BMD cutoff was 0.800 g/cm2 for osteoporosis and 0.970 g/cm2 for low BMD (osteoporosis + osteopenia). After receiver operating characteristic analysis, age was cut off at 60 years and BMI at 27 kg/m2. Diagnostic accuracies of objectively measured, self-reported and recalled BMI were evaluated using predictive values (PV) and odds ratios. The resulting 'true positive' and 'false positive' rates were used to calculate diagnostic costs (i.e., DXA) for each osteoporotic patient or low-BMD patient detected. The prevalence of osteoporosis in the study population was 25%, that of low BMD 65%. Only the age-BMI tests 'age > or = 60, BMI < or = 27' showed PVs for osteoporosis (31-41%) and for low BMD (71-81%) that were higher than the prior probabilities for these conditions. Related odds ratios were 2.14-3.18 (osteoporosis) and 1.87-3.04 (low BMD). The objective BMI test detected 50% of the osteoporotic patients. Using the self-reported BMI test and the recalled BMI test, detection rates increased to 55% and 69%, respectively. Concomitant costs per osteoporotic patient detected rose by 24%. Detection of patients with a low BMD increased from 38% for objective BMI and

  6. The use of Na-22 as a tracer for long-term bone mineral turnover studies.

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.; Rieksts, G. A.; Palmer, R. F.; Gillis, M. F.

    1979-01-01

    Sodium-22 has been studied as a tracer for bone mineral metabolism in rats and dogs. When incorporated into bone during growth from birth to adulthood, the bone becomes uniformly tagged with Na-22, which is released through the metabolic turnover of the bone. The Na-22 not incorporated in the bone matrix is rapidly excreted within a few days when animals are fed high, but nontoxic levels of NaCl. The Na-22 tracer can be used to measure bone mineral loss in animals during space flight and in research on bone disease.

  7. Preservation of bone structure and function by Lithothamnion sp. derived minerals.

    PubMed

    Aslam, Muhammad Nadeem; Bergin, Ingrid; Jepsen, Karl; Kreider, Jaclynn M; Graf, Kristin H; Naik, Madhav; Goldstein, Steven A; Varani, James

    2013-12-01

    Progressive bone mineral loss and increasing bone fragility are hallmarks of osteoporosis. A combination of minerals isolated from the red marine algae, Lithothamnion sp. was examined for ability to inhibit bone mineral loss in female mice maintained on either a standard rodent chow (control) diet or a high-fat western diet (HFWD) for 5, 12, and 18 months. At each time point, femora were subjected to μ-CT analysis and biomechanical testing. A subset of caudal vertebrae was also analyzed. Following this, individual elements were assessed in bones. Serum levels of the 5b isoform of tartrate-resistant acid phosphatase (TRAP) and procollagen type I propeptide (P1NP) were also measured. Trabecular bone loss occurred in both diets (evident as early as 5 months). Cortical bone increased through month 5 and then declined. Cortical bone loss was primarily in mice on the HFWD. Inclusion of the minerals in the diet reduced bone mineral loss in both diets and improved bone strength. Bone mineral density was also enhanced by these minerals. Of several cationic minerals known to be important to bone health, only strontium was significantly increased in bone tissue from animals fed the mineral diets, but the increase was large (5-10 fold). Serum levels of TRAP were consistently higher in mice receiving the minerals, but levels of P1NP were not. These data suggest that trace minerals derived from marine red algae may be used to prevent progressive bone mineral loss in conjunction with calcium. Mineral supplementation could find use as part of an osteoporosis-prevention strategy.

  8. Cross-Calibration of GE Healthcare Lunar Prodigy and iDXA Dual-Energy X-Ray Densitometers for Bone Mineral Measurements

    PubMed Central

    Saarelainen, J.; Hakulinen, M.; Rikkonen, T.; Kröger, H.; Tuppurainen, M.; Koivumaa-Honkanen, H.; Honkanen, R.; Hujo, M.; Jurvelin, J. S.

    2016-01-01

    In long-term prospective studies, dual-energy X-ray absorptiometry (DXA) devices need to be inevitably changed. It is essential to assess whether systematic differences will exist between measurements with the new and old device. A group of female volunteers (21–72 years) underwent anteroposterior lumbar spine L2–L4 (n = 72), proximal femur (n = 72), and total body (n = 62) measurements with the Prodigy and the iDXA scanners at the same visit. The bone mineral density (BMD) measurements with these two scanners showed a high linear association at all tested sites (r = 0.962–0.995; p < 0.0001). The average iDXA BMD values were 1.5%, 0.5%, and 0.9% higher than those of Prodigy for lumbar spine (L2–L4) (p < 0.0001), femoral neck (p = 0.048), and total hip (p < 0.0001), respectively. Total body BMD values measured with the iDXA were −1.3% lower (p < 0.0001) than those measured with the Prodigy. For total body, lumbar spine, and femoral neck, the BMD differences as measured with these two devices were independent of subject height and weight. Linear correction equations were developed to ensure comparability of BMD measurements obtained with both DXA scanners. Importantly, use of equations from previous studies would have increased the discrepancy between these particular DXA scanners, especially at hip and at spine. PMID:27239366

  9. Bone mineral density, adiposity, and cognitive functions

    PubMed Central

    Sohrabi, Hamid R.; Bates, Kristyn A.; Weinborn, Michael; Bucks, Romola S.; Rainey-Smith, Stephanie R.; Rodrigues, Mark A.; Bird, Sabine M.; Brown, Belinda M.; Beilby, John; Howard, Matthew; Criddle, Arthur; Wraith, Megan; Taddei, Kevin; Martins, Georgia; Paton, Athena; Shah, Tejal; Dhaliwal, Satvinder S.; Mehta, Pankaj D.; Foster, Jonathan K.; Martins, Ian J.; Lautenschlager, Nicola T.; Mastaglia, Francis; Laws, Simon M.; Martins, Ralph N.

    2015-01-01

    Cognitive decline and dementia due to Alzheimer's disease (AD) have been associated with genetic, lifestyle, and environmental factors. A number of potentially modifiable risk factors should be taken into account when preventive or ameliorative interventions targeting dementia and its preclinical stages are investigated. Bone mineral density (BMD) and body composition are two such potentially modifiable risk factors, and their association with cognitive decline was investigated in this study. 164 participants, aged 34–87 years old (62.78 ± 9.27), were recruited for this longitudinal study and underwent cognitive and clinical examinations at baseline and after 3 years. Blood samples were collected for apolipoprotein E (APOE) genotyping and dual energy x-ray absorptiometry (DXA) was conducted at the same day as cognitive assessment. Using hierarchical regression analysis, we found that BMD and lean body mass, as measured using DXA were significant predictors of episodic memory. Age, gender, APOE status, and premorbid IQ were controlled for. Specifically, the List A learning from California Verbal Learning Test was significantly associated with BMD and lean mass both at baseline and at follow up assessment. Our findings indicate that there is a significant association between BMD and lean body mass and episodic verbal learning. While the involvement of modifiable lifestyle factors in human cognitive function has been examined in different studies, there is a need for further research to understand the potential underlying mechanisms. PMID:25741279

  10. Endochondral bone growth, bone calcium accretion, and bone mineral density: how are they related?

    PubMed

    Wongdee, Kannikar; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2012-07-01

    Endochondral bone growth in young growing mammals or adult mammals with persistent growth plates progresses from proliferation, maturation and hypertrophy of growth plate chondrocytes to mineralization of cartilaginous matrix to form an osseous tissue. This complex process is tightly regulated by a number of factors with different impacts, such as genetics, endocrine/paracrine factors [e.g., PTHrP, 1,25(OH)(2)D(3), IGF-1, FGFs, and prolactin], and nutritional status (e.g., dietary calcium and vitamin D). Despite a strong link between growth plate function and elongation of the long bone, little is known whether endochondral bone growth indeed determines bone calcium accretion, bone mineral density (BMD), and/or peak bone mass. Since the process ends with cartilaginous matrix calcification, an increase in endochondral bone growth typically leads to more calcium accretion in the primary spongiosa and thus higher BMD. However, in lactating rats with enhanced trabecular bone resorption, bone elongation is inversely correlated with BMD. Although BMD can be increased by factors that enhance endochondral bone growth, the endochondral bone growth itself is unlikely to be an important determinant of peak bone mass since it is strongly determined by genetics. Therefore, endochondral bone growth and bone elongation are associated with calcium accretion only in a particular subregion of the long bone, but do not necessarily predict BMD and peak bone mass.

  11. Postmenopausal women with colles' fracture have lower values of bone mineral density than controls as measured by quantitative ultrasound and densitometry.

    PubMed

    Sosa, Manuel; Saavedra, P; del Pino-Montes, J; Alegre, J; Pérez-Cano, R; Guerra, G Martínez Díaz; Díaz-Curiel, M; Valero, C; Muñoz-Torres, M; Torrijos, A; Mosquera, J; Gómez-Alonso, C

    2005-01-01

    Measurement of ultrasonographic parameters provides information concerning not only bone density but also bone architecture. We investigated the usefulness of ultrasonographic parameters and bone mineral density (BMD) to evaluate the probability of Colles' fracture. Two-hundred eighty-nine postmenopausal women (62.3 +/- 8.7 yr) with (n = 76) and without (n = 213) Colles' fracture were studied. BMD of lumbar spine and proximal femur was evaluated in all women by dual-energy X-ray absorptiometry (DXA) and speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness in the calcaneus were measured by a Sahara ultrasonometer (Hologic). Patients suffering from Colles' fracture had lower values of BMD adjusted by height at the lumbar spine, L2-L4 (0.797 g/cm2 vs 0.860 g/cm2), femoral neck (0.685 g/cm2 vs 0.712 g/cm2 ), SOS (1518 m/sg vs 1525 m/sg), and stiffness (74.6 vs 77.7) (p < 0.05). Nevertheless, BUA values were similar in both groups. After stepwise logistic regression analysis, the area found under receiver operating characteristic (ROC) curves was 0.60 for L2L4 and 0.63 for a formula combining L2L4 and height. Our data suggest that patients suffering from Colles' fracture have lower values of BMD by DXA, SOS, and stiffness. However, the ability of these techniques to discriminate is low because the values for the area under ROC curve are 0.60 for L2-L4 and 0.63 for a formula derived of the combination of L2-L4 and height.

  12. Effects of ethnicity and vitamin D supplementation on vitamin D status and changes in bone mineral content in infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the effects on serum 25(OH)D and bone mineralization of supplementation of breast-fed Hispanic and non-Hispanic Caucasian infants with vitamin D in infants in Houston, Texas. We measured cord serum 25(OH)D levels, bone mineral content (BMC), bone mineral density (BMD) and their changes o...

  13. Distal radius bone mineral density estimation using the filling factor of trabecular bone in the x-ray image.

    PubMed

    Lee, Sooyeul; Jeong, Ji-Wook; Lee, Jeong Won; Yoo, Done-Sik; Kim, Seunghwan

    2006-01-01

    Osteoporosis is characterized by an abnormal loss of bone mineral content, which leads to a tendency to non-traumatic bone fractures or to structural deformations of bone. Thus, bone density measurement has been considered as a most reliable method to assess bone fracture risk due to osteoporosis. In past decades, X-ray images have been studied in connection with the bone mineral density estimation. However, the estimated bone mineral density from the X-ray image can undergo a relatively large accuracy or precision error. The most relevant origin of the accuracy or precision error may be unstable X-ray image acquisition condition. Thus, we focus our attentions on finding a bone mineral density estimation method that is relatively insensitive to the X-ray image acquisition condition. In this paper, we develop a simple technique for distal radius bone mineral density estimation using the trabecular bone filling factor in the X-ray image and apply the technique to the wrist X-ray images of 20 women. Estimated bone mineral density shows a high linear correlation with a dual-energy X-ray absorptiometry (r=0.87).

  14. Effect of ¹⁸F-FDG administration on measurements of bone mineral density and body composition by dual-energy X-ray absorptiometry.

    PubMed

    Kim, Dae-Weung; Kim, Woo Hyoung; Kim, Myoung Hyoun; Kim, Seong Su; Mo, Eun Hee; Lee, Chun Ho; Kim, Chang Guhn

    2013-01-01

    The purpose of this study was to determine whether antecedent administration of ¹⁸F-fluorodeoxyglucose (FDG) used in positron emission tomography (PET) scanning results in corruption of bone mineral density (BMD) and body composition measured by dual-energy X-ray absorptiometry (DXA) system. DXA measurements of BMD and body composition had been performed twice, before and after ¹⁸F-FDG PET scan in 30 patients. The comparison of pre-values and post-values of all BMD values showed a decrease after the injection. However, only the decrease of whole-body BMD (WB-BMD) was statistically significant (p < 0.05). Whole-body fat mass had increased and whole-body lean body mass had decreased after the injection of ¹⁸F-FDG, and these were statistically significant (p < 0.05). There is statistically significant correlation between the injected ¹⁸F-FDG dose and a decrease of WB-BMD (r = -0.405; p < 0.05). The findings of this study suggest that when both ¹⁸F-FDG PET and DXA measurements for whole-body composition are performed in close-time proximity, ¹⁸F-FDG PET scans should follow the DXA measurement. Otherwise, BMD measurements of total femur or lumbar spine could be followed by ¹⁸F-FDG PET in close-time proximity.

  15. Serial bone mineral density ratio measurement for fixator removal in tibia distraction osteogenesis and need of a supportive method using the pixel value ratio.

    PubMed

    Song, Sang-Heon; Agashe, Mandar; Kim, Tae-Young; Sinha, Shivam; Park, Young-Eun; Kim, Seung-Ju; Hong, Jin-Ho; Song, Sang-Youn; Song, Hae-Ryong

    2012-03-01

    Distraction osteogenesis is one of the common procedures for limb lengthening. However, attempts are being made constantly to establish objective guidelines for early and safe removal of a fixator using a sensitive and quantitative measurement technique. Dual-energy X-ray absorptiometry (DEXA) has been evaluated in the past for understanding callus stiffness, and the present study is a step further in this direction. The purpose of this study was to evaluate the correlation between bone mineral density ratio (BMDR) obtained by a DEXA scan and the pixel value ratio (PVR) on plain digital radiographs at each cortex and various callus pathways and callus shapes as described by Ru-Li's classification. A retrospective analysis of 40 tibial segments in 23 patients operated upon for various indications for limb lengthening was carried out. There were 11 male and 12 female patients with a mean age of 18 years. The Ilizarov method was applied after monofocal osteotomy, and distraction and consolidation were monitored using digital radiographs and DEXA scanning. BMDR was positively correlated with PVR, and the optimal BMDR for removal of the fixator was found to be 0.511. PVR of all cortices, except the anterior cortex, showed significant positive correlation with BMDR of the regenerate. There was good correlation between BMDR and PVR in the homogenous or heterogenous pathway according to callus shape and pathway. Thus, this study shows that BMD measurement can provide an objective and noninvasive method for assessing the rate of new bone formation during tibial distraction osteogenesis. It can thus function as an effective adjunct to measure callus stiffness, along with PVR, using digital radiographs, especially in cases in which callus maturation and stiffness is doubtful. Further studies especially dealing with callus progression through the lucent pathway as well as those dealing with regenerate fractures may be needed to conclusively prove the efficacy of this method

  16. The impact of sex hormone changes on bone mineral deficit in chronic renal failure.

    PubMed

    Doumouchtsis, Konstantinos K; Perrea, Despoina N; Doumouchtsis, Stergios K

    2009-01-01

    In chronic renal failure several factors affect bone homeostasis leading to the development of renal osteodystrophy. Common calcitropic hormone derangements in renal failure play a central role in bone structure and mineral defects, which in turn accompany osteodystrophy frequently resulting in low bone mineral density (BMD) values. However, patients with end-stage renal disease (ESRD) suffer from several comorbidities, which may partly account for renal bone disease lesions. Hypogonadism in particular accompanies chronic renal failure frequently and exerts an additive effect on bone loss potential. Sex hormones contribute to the equilibrium of osteotropic hormones and cytokines, exerting a protective action on bone tissue. Estrogens have a regulatory effect on bone metabolism in women with renal failure as well. Hypogonadal ESRD women experience a higher bone turnover and more significant bone mass decrements than ESRD women with relatively normal hormone profile and menstrual habits. Female hemodialysis patients have lower BMD values than male patients on average, probably because of menstrual cycle irregularities. However, hypogonadal ESRD men may also experience bone mineral deficits and the severity of hypogonadism may correlate to their bone mineral status. Hormone replacement therapy (HRT) appears to reverse bone mineral loss to some extent in both sexes. In conclusion hypogonadism in renal failure contributes to the bone structure and mineral defects as well as the low-energy fracture risk, reflected in BMD measurements. HRT in ESRD patients should therefore not be overlooked in these patients in the face of their significant comorbidities.

  17. Brief Report: HIV Infection Is Associated With Worse Bone Material Properties, Independently of Bone Mineral Density.

    PubMed

    Güerri-Fernández, Robert; Molina, Daniel; Villar-García, Judit; Prieto-Alhambra, Daniel; Mellibovsky, Leonardo; Nogués, Xavier; González-Mena, Alicia; Guelar, Ana; Trenchs-Rodríguez, Marta; Herrera-Fernández, Sabina; Horcajada, Juan Pablo; Díez-Pérez, Adolfo; Knobel, Hernando

    2016-07-01

    Low bone mineral density (BMD) in HIV-infected individuals has been documented in an increasing number of studies. However, it is not clear whether it is the infection itself or the treatment that causes bone impairment. Microindentation measures bone material strength (Bone Material Strength index) directly. We recruited 85 patients, 50 infected with HIV and 35 controls. Median Bone Material Strength index was 84.5 (interquartile range 83-87) in HIV-infected patients and 90 (88.5-93) in controls (P < 0.001). No significant differences in BMD between cases and controls at any of the sites examined (total hip, femoral neck, and lumbar spine). HIV infection is associated with bone damage, independently of BMD.

  18. Effects of Exercise on Bone Mineral Content in Postmenopausal Women.

    ERIC Educational Resources Information Center

    Rikli, Roberta E.; McManis, Beth G.

    1990-01-01

    Study tested the effect of exercise programs on bone mineral content (BMC) and BMC/bone width in 31 postmenopausal women. Subjects were placed in groups with aerobic exercise, aerobics plus upper-body weight training, or no exercise. Results indicate that regular exercise programs positively affect bone mineral maintenance in postmenopausal women.…

  19. Bone mineral density: testing for osteoporosis

    PubMed Central

    Sheu, Angela; Diamond, Terry

    2016-01-01

    Summary Primary osteoporosis is related to bone loss from ageing. Secondary osteoporosis results from specific conditions that may be reversible. A thoracolumbar X-ray is useful in identifying vertebral fractures, and dual energy X-ray absorptiometry is the preferred method of calculating bone mineral density. The density of the total hip is the best predictor for a hip fracture, while the lumbar spine is the best site for monitoring the effect of treatment. The T-score is a comparison of the patient’s bone density with healthy, young individuals of the same sex. A negative T-score of –2.5 or less at the femoral neck defines osteoporosis. The Z-score is a comparison with the bone density of people of the same age and sex as the patient. A negative Z-score of –2.5 or less should raise suspicion of a secondary cause of osteoporosis. Clinical risk calculators can be used to predict the 10-year probability of a hip or major osteoporotic fracture. A probability of more than 5% for the hip or more than 20% for any fracture is abnormal and treatment may be warranted. PMID:27340320

  20. Association between bone mineralization, body composition, and cardiorespiratory fitness level in young Australian men.

    PubMed

    Liberato, Selma Coelho; Maple-Brown, Louise; Bressan, Josefina

    2015-01-01

    The critical age for attainment of peak bone mineralization is however 20-30 yr, but few studies have investigated bone mineralization and its association with body composition and cardiorespiratory fitness level in young men. This study aimed to investigate relationships between age, bone mineral measurements, body composition measurements, and cardiorespiratory fitness level in a group of young healthy Australian men. Thirty-five healthy men aged 18-25 yr had anthropometric measures, body composition, and cardiorespiratory fitness level assessed. Bone mineral content was significantly associated with height, body mass and lean mass, and bone mineral density positively correlated with lean mass and body mass. Bone mineral measurements did not correlate with fat mass, percentage of fat mass, or cardiorespiratory fitness level. Age was directly correlated with total body mass, body fat, and percentage of fat mass. Body mineral measurements correlated with lean mass but not with fat mass or with cardiorespiratory fitness in this group of young healthy men. Positive association between body fat and age in such young group suggests that more studies with young men are warranted and may help inform strategies to optimize increase in bone mineral measurements.

  1. Differences by sex and handedness in right and left femur bone mineral densities.

    PubMed

    Sahin, Ali; Dane, Senol; Seven, Bedri; Akar, Sedat; Yildirim, Serap

    2009-12-01

    Left-handedness was reported to be a risk factor for accident-related injuries, head injuries, traumatic brain injuries, sport-related injuries, and bone breaks and fractures. As decreased bone mineral density is a good marker of bone fractures, the femoral bone mineral densities of normal left-handed university students were compared with those of right-handed students. Hand preference of 66 men and 47 women was assessed using the Edinburgh Handedness Inventory. Measures of bone mineral density with a Hologic QDR-4500W (S/N 48403) densitometer showed bone mineral densities of both right and left proximal femur regions were higher in right-handed than in left-handed students. These results are consistent with the claim that left-handed participants had higher trauma and injury risk. Also, these results may explain the sex-related differences by handedness for susceptibility in accident-related injuries such as bone fractures.

  2. Hypermineralized whale rostrum as the exemplar for bone mineral

    PubMed Central

    Li, Zhen; Pasteris, Jill D.; Novack, Deborah

    2013-01-01

    Although bone is a nanocomposite of mineral and collagen, mineral has been the more elusive component to study. A standard for bone mineral clearly is needed. We hypothesized that the most natural, least-processed bone mineral could be retrieved from the most highly mineralized bone. We therefore studied the rostrum of the toothed whale Mesoplodon densirostris, which has the densest recognized bone. Essential to establishment of a standard for bone mineral is documentation that the proposed tissue is bone-like in all properties except for its remarkably high concentration of mineral. Transmitted-light microscopy of unstained sections of rostral material shows normal bone morphology in osteon geometry, lacunae concentration, and vasculature development. Stained sections reveal extremely low density of thin collagen fibers throughout most of the bone, but enrichment in and thicker collagen fibers around vascular holes and in a minority of osteons. FE-SEM shows the rostrum to consist mostly of dense mineral prisms. Most rostral areas have the same chemical-structural features, Raman spectroscopically dominated by strong bands at ~962 Δcm−1 and weak bands at ~2940 Δcm−1. Spectral features indicate that the rostrum is composed mainly of the calcium phosphate mineral apatite and has only about 4 wt.% organic content. The degree of carbonate substitution (~8.5 wt.% carbonate) in the apatite is in the upper range found in most types of bone. We conclude that, despite its enamel-like extraordinarily high degree of mineralization, the rostrum is in all other features bone-like. Its mineral component is the long-sought uncontaminated, unaltered exemplar of bone mineral. PMID:23586370

  3. Bone geometry, structure and mineral distribution using Dual energy X ray Absorptiometry (DXA)

    NASA Technical Reports Server (NTRS)

    Whalen, Robert; Cleek, Tammy

    1993-01-01

    Dual energy x-ray absorptiometry (DXA) is currently the most widely used method of analyzing regional and whole body changes in bone mineral content (BMC) and areal (g/sq cm) bone mineral density (BMD). However, BMC and BMD do not provide direct measures of long bone geometry, structure, or strength nor do regional measurements detect localized changes in other regions of the same bone. The capabilities of DXA can be enhanced significantly by special processing of pixel BMC data which yields cross-sectional geometric and structural information. We have extended this method of analysis in order to develop non-uniform structural beam models of long bones.

  4. The effect of 99mTc on dual-energy X-ray absorptiometry measurement of body composition and bone mineral density.

    PubMed

    Fosbøl, Marie Øbro; Dupont, Anders; Alslev, Louise; Zerahn, Bo

    2013-01-01

    Whether the γ-emission by radioisotopes influences the outcome of dual-energy X-ray absorptiometry (DXA) measurements is not fully elucidated. The aim of this study was to evaluate the effect of antecedent administration of 99mTc on DXA measurements regarding body composition and bone mineral density (BMD) using a K-edge filter scanner. The phantom measurements were performed by placing a urinary bladder phantom containing 40 mL of radioisotope solution on the pelvic region of a whole-body phantom. Twenty-seven patients attending our department for a routine examination involving the administration of a tracer marked with 99mTc were included. The patients underwent a whole-body DXA scan before and within 2 h after tracer injection using a GE/Lunar Prodigy scanner. Control scans were performed on 40 volunteers, who had not received any radioactive tracer. In both phantom and patient measurements, we found a significant dose-related decrease in fat mass and BMD and a corresponding increase in fat-free mass (p < 0.001). Based on the linear regression analysis, we suggest upper dose limits for the measurement of BMD at 0.77 μSv/h and body composition at 0.21 μSv/h (dose rate measured at a distance of 1m from the patient). Caution should be taken when interpreting the results of DXA scans performed in close temporal proximity to procedures involving the administration of 99mTc.

  5. Impaired Vestibular Function and Low Bone Mineral Density: Data from the Baltimore Longitudinal Study of Aging.

    PubMed

    Bigelow, Robin T; Semenov, Yevgeniy R; Anson, Eric; du Lac, Sascha; Ferrucci, Luigi; Agrawal, Yuri

    2016-10-01

    Animal studies have demonstrated that experimentally induced vestibular ablation leads to a decrease in bone mineral density, through mechanisms mediated by the sympathetic nervous system. Loss of bone mineral density is a common and potentially morbid condition that occurs with aging, and we sought to investigate whether vestibular loss is associated with low bone mineral density in older adults. We evaluated this question in a cross-sectional analysis of data from the Baltimore Longitudinal Study of Aging (BLSA), a large, prospective cohort study managed by the National Institute on Aging (N = 389). Vestibular function was assessed with cervical vestibular evoked myogenic potentials (cVEMPs), a measure of saccular function. Bone mineral density was assessed using dual-energy X-ray absorptiometry (DEXA). In two-way t test analysis, we observed that individuals with reduced vestibular physiologic function had significantly lower bone mineral density. In adjusted multivariate linear regression analyses, we observed that older individuals with reduced vestibular physiologic function had significantly lower bone mineral density, specifically in weight-bearing hip and lower extremity bones. These results suggest that the vestibular system may contribute to bone homeostasis in older adults, notably of the weight-bearing hip bones at greatest risk of osteoporotic fracture. Further longitudinal analysis of vestibular function and bone mineral density in humans is needed to characterize this relationship and investigate the potential confounding effect of physical activity.

  6. International longitudinal pediatric reference standards for bone mineral content.

    PubMed

    Baxter-Jones, Adam D G; Burrows, Melonie; Bachrach, Laura K; Lloyd, Tom; Petit, Moira; Macdonald, Heather; Mirwald, Robert L; Bailey, Don; McKay, Heather

    2010-01-01

    To render a diagnosis pediatricians rely upon reference standards for bone mineral density or bone mineral content, which are based on cross-sectional data from a relatively small sample of children. These standards are unable to adequately represent growth in a diverse pediatric population. Thus, the goal of this study was to develop sex and site-specific standards for BMC using longitudinal data collected from four international sites in Canada and the United States. Data from four studies were combined; Saskatchewan Paediatric Bone Mineral Accrual Study (n=251), UBC Healthy Bones Study (n=382); Penn State Young Women's Health Study (n=112) and Stanford's Bone Mineral Accretion study (n=423). Males and females (8 to 25 years) were measured for whole body (WB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) BMC (g). Data were analyzed using random effects models. Bland-Altman was used to investigate agreement between predicted and actual data. Age, height, weight and ethnicity independently predicted BMC accrual across sites (P<0.05). Compared to White males, Asian males had 31.8 (6.8) g less WB BMC accrual; Hispanic 75.4 (28.2) g less BMC accrual; Blacks 82.8 (26.3) g more BMC accrual with confounders of age, height and weight controlled. We report similar findings for the PF and FN. Models for females for all sites were similar with age, height and weight as independent significant predictors of BMC accrual (P<0.05). We provide a tool to calculate a child's BMC Z-score, accounting for age, size, sex and ethnicity. In conclusion, when interpreting BMC in pediatrics we recommend standards that are sex, age, size and ethnic specific.

  7. Bone Mineral Density in Elite DanceSport Athletes.

    PubMed

    Kruusamäe, Helena; Maasalu, Katre; Jürimäe, Jaak

    2016-03-01

    This study compared bone mineral density (BMD) variables of female and male elite dancesport athletes with untrained control subjects of the same gender. Sixty-six elite dancesport athletes (M 33, F 33) and 64 untrained controls (M 34, F 31) participated in this study. Elite dancesport athletes were dancing couples competing at the international level. Whole-body bone mineral content and whole-body, forearm, lumbar-spine, and femoral-neck BMD, as well as whole-body fat mass and fat free mass, were measured by dual-energy X-ray absorptiometry. There were no differences (p>0.05) in height and body mass between dancers and controls of the same gender, but percent body fat was lower (p<0.05) in dancers of both genders than in untrained controls. Elite dancesport athletes had significantly higher femoral-neck BMD, and male dancers also higher whole-body BMD values when compared with controls of the same gender. All other measured bone mineral values did not differ between the groups of the same gender. In addition, training experience was positively correlated with whole-body BMD (r=0.27; p<0.05) in dancesport athletes. Based on this study, it can be concluded that elite dancesport athletes have higher BMD values at the weight-bearing site (femoral-neck BMD), while other measured areas and whole-body bone mineral values do not differ from the corresponding values of healthy sedentary controls of the same gender. According to our results, low BMD is not an issue for elite female dancesport athletes, despite their lower percent body fat values.

  8. Preoperative Periarticular Knee Bone Mineral Density in Osteoarthritic Patients Undergoing TKA

    PubMed Central

    Ishii, Yoshinori; Noguchi, Hideo; Sato, Junko; Todoroki, Koji; Ezawa, Nobukazu; Toyabe, Shin-ichi

    2016-01-01

    Background: Preoperative periarticular bone quality is affected by joint loading. The purpose of this study was to determine the periarticular bone mineral density of the knee joint of patients undergoing total knee arthroplasty, and whether the location of the load-bearing axis correlates with the measured bone mineral density. Materials and Methods: The bone mineral densities of the medial and lateral femoral condyles and the medial and lateral tibial condyles were analyzed in consecutive 116 osteoarthritic patients (130 knees) by dual energy x-ray absorptiometry. Results: The median bone mineral density values in the condyles were 1.138 in femoral medial, 0.767 in femoral lateral, 1.056 in tibial medial, and 0.714 in tibial lateral. The medial condyles showed significantly higher bone mineral densities than the lateral condyles in both the femur and tibia. In addition, the femoral medial showed significantly higher bone mineral density levels than the tibial medial, and the femoral lateral condyle had higher bone mineral density levels than the tibial lateral. The bone mineral density Medial/Lateral ratio was significantly negatively correlated with the location (tibial medial edge 0%, lateral edge 100%) of the load-bearing axis in the femur and tibia. Conclusion: Preoperative bone mineral density values may provide against the changes in bone mineral density after total knee arthroplasty by reflecting the correlation with joint loading axis. These results help explain why total knee arthroplasty has such good long-term clinical outcomes with a low frequency of component loosening and periarticular fractures despite a high degree of postoperative bone loss. PMID:27583058

  9. Nonalcoholic Fatty Liver Disease is Associated with Low Bone Mineral Density in Obese Children

    PubMed Central

    Pardee, Perrie E.; Dunn, Winston; Schwimmer, Jeffrey B.

    2015-01-01

    SUMMARY BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. Liver disease can be a cause of low bone mineral density. Whether NAFLD influences bone health is unknown. AIM To evaluate bone mineral density in obese children with and without NAFLD. METHODS Thirty-eight children with biopsy-proven NAFLD were matched for age, sex, race, ethnicity, height, and weight to children without evidence of liver disease from the National Health and Nutrition Examination Survey. Bone mineral density was measured by dual energy x-ray absorptiometry. Age and sex-specific bone mineral density Z-scores were calculated and compared between children with and without NAFLD. After controlling for age, sex, race, ethnicity, and total percent body fat, the relationship between bone mineral density and the severity of histology was analyzed in children with NAFLD. RESULTS Obese children with NAFLD had significantly (p<0.0001) lower bone mineral density Z-scores (−1.98) than obese children without NAFLD (0.48). Forty-five percent of children with NAFLD had low bone mineral density for age, compared to none of the children without NAFLD (p < 0.0001). Among those children with NAFLD, children with NASH had a significantly (p< 0.05) lower bone mineral density Z-score (−2.37) than children with NAFLD who did not have NASH (−1.58). CONCLUSIONS NAFLD was associated with poor bone health in obese children. More severe disease was associated with lower bone mineralization. Further studies are needed to evaluate the underlying mechanisms and consequences of poor bone mineralization in children with NAFLD. PMID:22111971

  10. Quantification of bone mineral density to define osteoporosis in rat.

    PubMed

    Srivastava, M; Mandal, S K; Sengupta, S; Arshad, M; Singh, M M

    2008-05-01

    The diagnosis of osteoporosis centers on assessment of bone mass and quality. In the absence of evidence-based guidelines to assess bone status in laboratory animals and unsuitability of use of T-/Z-scores meant for clinical application in animal studies, most investigators involved in new drug research and development employ clinical biomarkers and kits to assess bone turnover rate and portray change in bone mineral density (BMD) as percentage of increase/decrease, making comparative assessment of the effect highly impractical. This study proposes threshold boundaries of BMD (rT-score) in colony-bred Sprague-Dawley rats, distinct from those used clinically. Boundaries were obtained keeping fixed Type-I error (alpha=0.025). Femur neck was considered best for defining bone status using BMD measured by dual-energy X-ray absorptiometry. Findings demonstrate that BMD-1.96 and <-0.80 rT-score as osteopenia. Performance of boundaries to ascertain bone status was examined through simulation under different physiological/ hormonal states viz. estrogen deficiency, ageing, estrus cycle, pregnancy, and lactation. The Area Under the Receiver Operating Characteristic curve of 0.98 obtained using BMD of femur neck, being close to unity, shows excellent ability of the proposed rT-score to effectively identify osteoporosis. Further studies using certain hierarchical measures of bone quality such as histomorphometry, mechanical testing etc. could supplement these findings. Since, unlike humans, most laboratory animals including rats only exhibit osteopenia and do not fracture their bones, the proposed thresholds are intended to serve as categorical tools to define bone quality and not to predict fracture risk.

  11. Bone Mineral Density in Children and Adolescents with Congenital Adrenal Hyperplasia

    PubMed Central

    Garcia Alves Junior, Paulo Alonso; Schueftan, Daniel Luis Gilban; de Mendonça, Laura Maria Carvalho; Farias, Maria Lucia Fleiuss; Beserra, Izabel Calland Ricarte

    2014-01-01

    Chronic glucocorticoid therapy is associated with reduced bone mineral density. In paediatric patients with congenital adrenal hyperplasia, increased levels of androgens could not only counteract this effect, but could also advance bone age, with interference in the evaluation of densitometry. We evaluate bone mineral density in paediatric patients with classic congenital adrenal hyperplasia taking into account chronological and bone ages at the time of the measurement. Patients aged between 5 and 19 years underwent radiography of the hand and wrist followed by total body and lumbar spine densitometry. Chronological and bone ages were used in the scans interpretation. In fourteen patients, mean bone mineral density Z-score of total body to bone age was −0.76 and of lumbar spine to bone age was −0.26, lower than those related to chronological age (+0.03 and +0.62, resp.). Mean Z-score differences were statistically significant (P = 0.004 for total body and P = 0.003 for lumbar spine). One patient was classified as having low bone mineral density only when assessed by bone age. We conclude that there was a reduction in the bone mineral density Z-score in classic congenital adrenal hyperplasia paediatric patients when bone age was taken into account instead of chronological age. PMID:24734045

  12. Bone mineral density in children and adolescents with congenital adrenal hyperplasia.

    PubMed

    Garcia Alves Junior, Paulo Alonso; Schueftan, Daniel Luis Gilban; de Mendonça, Laura Maria Carvalho; Farias, Maria Lucia Fleiuss; Beserra, Izabel Calland Ricarte

    2014-01-01

    Chronic glucocorticoid therapy is associated with reduced bone mineral density. In paediatric patients with congenital adrenal hyperplasia, increased levels of androgens could not only counteract this effect, but could also advance bone age, with interference in the evaluation of densitometry. We evaluate bone mineral density in paediatric patients with classic congenital adrenal hyperplasia taking into account chronological and bone ages at the time of the measurement. Patients aged between 5 and 19 years underwent radiography of the hand and wrist followed by total body and lumbar spine densitometry. Chronological and bone ages were used in the scans interpretation. In fourteen patients, mean bone mineral density Z-score of total body to bone age was -0.76 and of lumbar spine to bone age was -0.26, lower than those related to chronological age (+0.03 and +0.62, resp.). Mean Z-score differences were statistically significant (P = 0.004 for total body and P = 0.003 for lumbar spine). One patient was classified as having low bone mineral density only when assessed by bone age. We conclude that there was a reduction in the bone mineral density Z-score in classic congenital adrenal hyperplasia paediatric patients when bone age was taken into account instead of chronological age.

  13. Age-related differences in the bone mineralization pattern of rats following exercise

    SciTech Connect

    McDonald, R.; Hegenauer, J.; Saltman, P.

    1986-07-01

    The effect of 12 weeks of treadmill exercise on the mineralization of trabecular and cortical bone was studied in rats 7, 14, and 19 months of age. Bone mineralization was evaluated by measuring concentrations of Ca, Mg, and hydroxyproline as well as uptake of 45Ca concentration in the femur, humerus, rib and calvaria. The 7- and 14-month-old rats increased mineralization in those cortical bones directly involved in exercise. The 19-month animal responded to exercise by increasing mineralization in all bones examined, including the nonweight bearing trabecular calvaria and cortical rib. From these data, it is apparent that the older animals undergo a total skeletal mineralization in response to exercise compared with local adaptation in the younger animal. Further, we provide evidence to support the use of the rat as a model in which to study mammalian bone physiology during the aging process.

  14. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  15. Bone geometry, bone mineral density, and micro-architecture in patients with myelofibrosis: a cross-sectional study using DXA, HR-pQCT, and bone turnover markers.

    PubMed

    Farmer, Sarah; Vestergaard, Hanne; Hansen, Stinus; Shanbhogue, Vikram Vinod; Shanbhoque, Vikram Vinod; Stahlberg, Claudia Irene; Hermann, Anne Pernille; Frederiksen, Henrik

    2015-07-01

    Primary myelofibrosis (MF) is a severe chronic myeloproliferative neoplasm, progressing towards a terminal stage with insufficient haematopoiesis and osteosclerotic manifestations. Whilst densitometry studies have showed MF patients to have elevated bone mineral density, data on bone geometry and micro-structure assessed with non-invasive methods are lacking. We measured areal bone mineral density (aBMD) using dual-energy X-ray absorptiometry (DXA). Bone geometry, volumetric BMD, and micro-architecture were measured using high-resolution peripheral quantitative computed tomography (HR-pQCT). We compared the structural parameters of bones by comparing 18 patients with MF and healthy controls matched for age, sex, and height. Blood was analysed for biochemical markers of bone turnover in patients with MF. There were no significant differences in measurements of bone geometry, volumetric bone mineral density, and micro-structure between MF patients and matched controls. Estimated bone stiffness and bone strength were similar between MF patients and controls. The level of pro-collagen type 1 N-terminal pro-peptide (P1NP) was significantly increased in MF, which may indicate extensive collagen synthesis, one of the major diagnostic criteria in MF. We conclude that bone mineral density, geometry, and micro-architecture in this cohort of MF patients are comparable with those in healthy individuals.

  16. Optical studies of changes in bone mineral density

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Matcher, Stephen J.; Attenburrow, Don P.

    2003-07-01

    The ability to measure changes in bone-mineral-density (BMD) in-vivo has potential applications in monitoring stress-induced bone remodelling in, for example, competition race horses. In this study we have begun to investigate the potential of optical techniques to monitor such changes via changes in bone optical scattering. Using integrating spheres, we have investigated the optical properties of bone samples taken from the leg of the horse. Since our samples have stable characteristics over the time, we are able to use a single integrating-sphere technique. Diffuse reflection and transmission coefficients have been measured over the wavelength range 520 to 960 nm. Measurements were made on samples immersed in formic acid solution for different lengths of time; this was to investigate the effect of reduction in BMD on the optical properties. The experimental results and a Monte-Carlo based inversion method were used to extract the absorption coefficient and unmodified scattering coefficient of the samples. After full demineralisation scattering coefficient fell by a factor 4. This shows that the calcium-content in bone influences its optical properties considerably. Our experiments confirm the possibility of using optical techniques to determine changes in the BMD of samples.

  17. [Metabolic status and bone mineral density in patients with pseudarthrosis of long bones in hyperhomocysteinemia].

    PubMed

    Bezsmertnyĭ, Iu O

    2013-06-01

    In article described research of the metabolic status and bone mineral density in 153 patients with with pseudarthrosis of long bones, in individuals with consolidated fractures and healthy people. The violations of reparative osteogenesis at hyperhomocysteinemia are accompanied by disturbances of the functional state of bone tissue, inhibition of biosynthetic and increased destruction processes, reduced bone mineral density in the formation of osteopenia and osteoporosis. The degree and direction of change of bone depends on the type of violation of reparative osteogenesis.

  18. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    PubMed

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases.

  19. Tendon gradient mineralization for tendon to bone interface integration.

    PubMed

    Qu, Jin; Thoreson, Andrew R; Chen, Qingshan; An, Kai-Nan; Amadio, Peter C; Zhao, Chunfeng

    2013-11-01

    Tendon-to-bone integration is a great challenge for tendon or ligament reconstruction regardless of use of autograft or allograft tendons. We mineralized the tendon, thus transforming the tendon-to-bone into a "bone-to-bone" interface for healing. Sixty dog flexor digitorum profundus (FDP) tendons were divided randomly into five groups: (1) normal FDP tendon, (2) CaP (non-extraction and mineralization without fetuin), (3) CaPEXT (Extraction by Na2 HPO4 and mineralization without fetuin), (4) CaPFetuin (non-extraction and mineralization with fetuin), and (5) CaPEXTFetuin (extraction and mineralization with fetuin). The calcium and phosphate content significantly increased in tendons treated with combination of extraction and fetuin compared to the other treatments. Histology also revealed a dense mineral deposition throughout the tendon outer layers and penetrated into the tendon to a depth of 200 µm in a graded manner. Compressive moduli were significantly lower in the four mineralized groups compared with normal control group. No significant differences in maximum failure strength or stiffness were found in the suture pull-out test among all groups. Mineralization of tendon alters the interface from tendon to bone into mineralized tendon to bone, which may facilitate tendon-to-bone junction healing following tendon or ligament reconstruction.

  20. Bone mineral density in premenopausal women receiving levothyroxine suppressive therapy.

    PubMed

    Nuzzo, V; Lupoli, G; Esposito Del Puente, A; Rampone, E; Carpinelli, A; Del Puente, A E; Oriente, P

    1998-10-01

    Osteoporosis is a well-known complication of thyrotoxicosis. Prolonged subclinical hyperthyroidism due to L-thyroxine treatment has been associated with reduced bone mass and thus with the potential risk of premature development of osteoporosis. The aim of this study was to assess the effect of a chronic L-thyroxine suppressive treatment on bone mineral density (BMD) in a group of premenopausal women. Forty consecutive patients (mean age +/- SE = 40.95 +/- 1.56 years) affected by non-toxic goiter underwent bone mineral densitometry (dual energy X-ray absorptiometry; DEXA) of the lumbar spine (L1-L4) and right femoral neck. At the time of the study the patients had been under thyroid stimulating hormone (TSH) suppressive therapy for 74.95 +/- 10.34 months (range 17-168 months). Baseline levels of free thyroxine (fT4), free triiodothyronine (fT3), TSH, calcium and phosphorus were measured and correlated with BMD. The age of starting, duration of treatment, main daily dose, cumulative dose of treatment and body mass index (BMI) were also correlated with BMD. Statistical analysis was performed by multiple linear regression. BMD among female patients was not significantly different from that of the general population matched for age and sex. With the use of the regression model, no significant correlation was found between BMD and the variables considered. In conclusion, our data suggest that L-thyroxine suppressive therapy, if carefully carried out and monitored, has no significant effect on bone mass.

  1. Bone Mineral Density in Healthy Female Adolescents According to Age, Bone Age and Pubertal Breast Stage

    PubMed Central

    Moretto, M.R; Silva, C.C; Kurokawa, C.S; Fortes, C.M; Capela, R.C; Teixeira, A.S; Dalmas, J.C; Goldberg, T.B

    2011-01-01

    Objectives: This study was designed to evaluate bone mineral density (BMD) in healthy female Brazilian adolescents in five groups looking at chronological age, bone age, and pubertal breast stage, and determining BMD behavior for each classification. Methods: Seventy-two healthy female adolescents aged between 10 to 20 incomplete years were divided into five groups and evaluated for calcium intake, weight, height, body mass index (BMI), pubertal breast stage, bone age, and BMD. Bone mass was measured by bone densitometry (DXA) in lumbar spine and proximal femur regions, and the total body. BMI was estimated by Quetelet index. Breast development was assessed by Tanner’s criteria and skeletal maturity by bone age. BMD comparison according to chronologic and bone age, and breast development were analyzed by Anova, with Scheffe’s test used to find significant differences between groups at P≤0.05. Results: BMD (g·cm-2) increased in all studied regions as age advanced, indicating differences from the ages of 13 to 14 years. This group differed to the 10 and 11 to 12 years old groups for lumbar spine BMD (0.865±0.127 vs 0.672±0.082 and 0.689±0.083, respectively) and in girls at pubertal development stage B3, lumbar spine BMD differed from B5 (0.709±0.073 vs 0.936±0.130) and whole body BMD differed from B4 and B5 (0.867±0.056 vs 0.977±0.086 and 1.040±0.080, respectively). Conclusion: Bone mineralization increased in the B3 breast maturity group, and the critical years for bone mass acquisition were between 13 and 14 years of age for all sites evaluated by densitometry. PMID:21966336

  2. Assessing screening criteria for the radiocarbon dating of bone mineral

    NASA Astrophysics Data System (ADS)

    Fernandes, Ricardo; Hüls, Matthias; Nadeau, Marie-Josée; Grootes, Pieter M.; Garbe-Schönberg, C.-Dieter; Hollund, Hege I.; Lotnyk, Andriy; Kienle, Lorenz

    2013-01-01

    Radiocarbon dating of bone mineral (carbonate in the apatite lattice) has been the target of sporadic research for the last 40 years. Results obtained by different decontamination protocols have, however, failed to provide a consistent agreement with reference ages. In particular, quality criteria to assess bone mineral radiocarbon dating reliability are still lacking. Systematic research was undertaken to identify optimal preservation criteria for bone mineral in archeological bones. Six human long bones, originating from a single site, were radiocarbon-dated both for collagen and apatite, with the level of agreement between the dates providing an indication of exogenous carbon contamination. Several techniques (Histology, FTIR, TEM, LA-ICP-MS) were employed to determine the preservation status of each sample. Research results highlight the importance of a micro-scale approach in establishing bone preservation, in particular the use of trace element concentration profiles demonstrated its potential use as a viable sample selection criterion for bone carbonate radiocarbon dating.

  3. Minerals form a continuum phase in mature cancellous bone.

    PubMed

    Chen, Po-Yu; Toroian, Damon; Price, Paul A; McKittrick, Joanna

    2011-05-01

    Bone is a hierarchically structured composite consisting of a protein phase (type I collagen) and a mineral phase (carbonated apatite). The objective of this study was to investigate the hierarchical structure of mineral in mature bone. A method to completely deproteinize bone without altering the original structure is developed, and the completion is confirmed by protein analysis techniques. Stereoscopy and field emission electron microscopy are used to examine the structural features from submillimeter- to micrometer- to nanometer-length scales of bovine femur cancellous bone. Stereoscopic images of fully deproteinized and demineralized bovine femur cancellous bone samples show that fine trabecular architecture is unaltered and the microstructural features are preserved, indicating the structural integrity of mineral and protein constituents. SEM revealed that bone minerals are fused together and form a sheet-like structure in a coherent manner with collagen fibrils. Well-organized pore systems are observed at varying hierarchical levels. Mineral sheets are peeled off and folded after compressive deformation, implying strong connection between individual crystallites. Results were compared with commercially available heat-deproteinized bone (Bio-Oss(®)), and evidence showed consistency in bone mineral structure. A two-phase interpenetrating composite model of mature bone is proposed and discussed.

  4. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    NASA Astrophysics Data System (ADS)

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-06-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible.

  5. Instrumentation for bone density measurement

    NASA Technical Reports Server (NTRS)

    Meharg, L. S.

    1968-01-01

    Measurement system evaluates the integrated bone density over a specific cross section of bone. A digital computer converts stored bone scan data to equivalent aluminum calibration wedge thickness, and bone density is then integrated along the scan by using the trapezoidal approximation integration formula.

  6. Periprosthetic tibial bone mineral density changes after total knee arthroplasty

    PubMed Central

    Jaroma, Antti; Soininvaara, Tarja; Kröger, Heikki

    2016-01-01

    Background and purpose Total knee arthroplasty (TKA) may cause postoperative periprosthetic bone loss due to stress shielding. Bone also adapts to mechanical alterations such as correction of malalignment. We investigated medium-term changes in bone mineral density (BMD) in tibial periprosthetic bone after TKA. Patients and methods 86 TKA patients were prospectively measured with dual-energy X-ray absorptiometry (DXA), the baseline measurement being within 1 week after TKA and the follow-up measurements being at 3 and 6 months, and at 1, 2, 4, and 7 years postoperatively. Long standing radiographs were taken and clinical evaluation was done with the American Knee Society (AKS) score. Results The baseline BMD of the medial tibial metaphyseal region of interest (ROI) was higher in the varus aligned knees (25%; p < 0.001). Medial metaphyseal BMD decreased in subjects with preoperatively varus aligned knees (13%, p < 0.001) and in those with preoperatively valgus aligned knees (12%, p = 0.02) between the baseline and 7-year measurements. No statistically significant changes in BMD were detected in lateral metaphyseal ROIs. No implant failures or revision surgery due to tibial problems occurred. Interpretation Tibial metaphyseal periprosthetic bone is remodeled after TKA due to mechanical axis correction, resulting in more balanced bone stock below the tibial tray. The diaphyseal BMD remains unchanged after the initial drop, within 3–6 months. This remodeling process was related to good component survival, as there were no implant failures or revision operations due to tibial problems in this medium-term follow-up. PMID:27120266

  7. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure.

    PubMed

    Scholz-Ahrens, Katharina E; Ade, Peter; Marten, Berit; Weber, Petra; Timm, Wolfram; Açil, Yahya; Glüer, Claus-C; Schrezenmeir, Jürgen

    2007-03-01

    Several studies in animals and humans have shown positive effects of nondigestible oligosaccharides (NDO) on mineral absorption and metabolism and bone composition and architecture. These include inulin, oligofructose, fructooligosaccharides, galactooligosaccharides, soybean oligosaccharide, and also resistant starches, sugar alcohols, and difructose anhydride. A positive outcome of dietary prebiotics is promoted by a high dietary calcium content up to a threshold level and an optimum amount and composition of supplemented prebiotics. There might be an optimum composition of fructooligosaccharides with different chain lengths (synergy products). The efficacy of dietary prebiotics depends on chronological age, physiological age, menopausal status, and calcium absorption capacity. There is evidence for an independent probiotic effect on facilitating mineral absorption. Synbiotics, i.e., a combination of probiotics and prebiotics, can induce additional effects. Whether a low content of habitual NDO would augment the effect of dietary prebiotics or synbiotics remains to be studied. The underlying mechanisms are manifold: increased solubility of minerals because of increased bacterial production of short-chain fatty acids, which is promoted by the greater supply of substrate; an enlargement of the absorption surface by promoting proliferation of enterocytes mediated by bacterial fermentation products, predominantly lactate and butyrate; increased expression of calcium-binding proteins; improvement of gut health; degradation of mineral complexing phytic acid; release of bone-modulating factors such as phytoestrogens from foods; stabilization of the intestinal flora and ecology, also in the presence of antibiotics; stabilization of the intestinal mucus; and impact of modulating growth factors such as polyamines. In conclusion, prebiotics are the most promising but also best investigated substances with respect to a bone-health-promoting potential, compared with probiotics

  8. FLUORIDE EFFECTS ON BONE FORMATION AND MINERALIZATION ARE INFLUENCED BY GENETICS

    PubMed Central

    Mousny, M.; Omelon, S.; Wise, L.; Everett, E. T.; Dumitriu, M.; Holmyard, D. P.; Banse, X.; Devogelaer, J. P.; Grynpas, M. D

    2008-01-01

    Introduction A variation in bone response to fluoride (F−) exposure has been attributed to genetic factors. Increasing fluoride doses (0ppm, 25ppm, 50ppm, 100ppm) for three inbred mouse strains with different susceptibilities to developing dental enamel fluorosis (A/J, a “susceptible” strain; SWR/J, an “intermediate” strain; 129P3/J, a “resistant” strain) had different effects on their cortical and trabecular bone mechanical properties. In this paper, the structural and material properties of the bone were evaluated to explain the previously observed changes in mechanical properties. Materials and Methods This study assessed the effect of increasing fluoride doses on the bone formation, microarchitecture, mineralization and microhardness of the A/J, SWR/J and 129P3/J mouse strains. Bone microarchitecture was quantified with microcomputed tomography and strut analysis. Bone formation was evaluated by static histomorphometry. Bone mineralization was quantified with backscattered electron (BSE) imaging and powder x-ray diffraction. Microhardness measurements were taken from the vertebral bodies (cortical and trabecular bone) and the cortex of the distal femur. Results Fluoride treatment had no significant effect on bone microarchitecture for any of the strains. All three strains demonstrated a significant increase in osteoid formation at the largest fluoride dose. Vertebral body trabecular bone BSE imaging revealed significantly decreased mineralization heterogeneity in the SWR/J strain at 50ppm and 100ppm F−. The trabecular and cortical bone mineralization profiles showed a non-significant shift towards higher mineralization with increasing F− dose in the three strains. Powder x-ray diffraction showed significantly smaller crystals for the 129P3/J strain, and increased crystal width with increasing F− dose for all strains. There was no effect of F− on trabecular and cortical bone microhardness. Conclusion Fluoride treatment had no significant

  9. Molecular packing in bone collagen fibrils prior to mineralization

    NASA Astrophysics Data System (ADS)

    Hsiao, Benjamin; Zhou, Hong-Wen; Burger, Christian; Chu, Benjamin; Glimcher, Melvin J.

    2012-02-01

    The three-dimensional packing of collagen molecules in bone collagen fibrils has been largely unknown because even in moderately mineralized bone tissues, the organic matrix structure is severely perturbed by the deposition of mineral crystals. During the past decades, the structure of tendon collagen (e.g. rat tail) --- a tissue that cannot mineralize in vivo, has been assumed to be representative for bone collagen fibrils. Small-angle X-ray diffraction analysis of the native, uncalcified intramuscular fish bone has revealed a new molecular packing scheme, significantly different from the quasi-hexagonal arrangement often found in tendons. The deduced structure in bone collagen fibrils indicates the presence of spatially discrete microfibrils, and an arrangement of intrafibrillar space to form ``channels'', which could accommodate crystals with dimensions typically found in bone apatite.

  10. Body composition and bone mineral status in patients with Turner syndrome

    PubMed Central

    Shi, Kun; Liu, Li; He, Yao-Juan; Li, Duan; Yuan, Lian-Xiong; Lash, Gendie E.; Li, Li

    2016-01-01

    Turner syndrome (TS) is associated with decreased bone mineral density and increased fracture rate. However, the developmental trajectory of bone density or body composition in patients with TS is still unclear. The present study tested the hypothesis that different karyotypes and/or age contributes to abnormal body composition and decreased bone mineral status parameters in patients with TS. This study included 24 girls with TS, in which 13 girls exhibited X0 karyotype and 11 had mosaicism. Quantitative ultrasound (QUS) assessed the bone mineral status of the calcaneus, including bone mineral density (BMD), amplitude-dependent speed of sound (AD-SOS), broadband ultrasound attenuation (BUA) and InBody 770 assessed body composition. Pearson’s test was performed to correlate measured parameters with patient age. The body composition and bone mineral status parameters were not significantly influenced by patient karyotype. There was a correlation between patient age and AD-SOS (r = −0.61, P = 0.002) and BUA (r = 0.50, P = 0.013) but not BMD (r = −0.19, P = 0.379). In conclusion, there was no effect of karyotype on body composition or body mineral status. Bone mineral status, as evidenced by changes in AD-SOS and BUA, alters with age regardless of karyotype. The developmental trajectory demonstrated in the current study warrants further validation in a longitudinal study. PMID:27901060

  11. WNT16 influences bone mineral density, cortical bone thickness, bone strength, and osteoporotic fracture risk.

    PubMed

    Zheng, Hou-Feng; Tobias, Jon H; Duncan, Emma; Evans, David M; Eriksson, Joel; Paternoster, Lavinia; Yerges-Armstrong, Laura M; Lehtimäki, Terho; Bergström, Ulrica; Kähönen, Mika; Leo, Paul J; Raitakari, Olli; Laaksonen, Marika; Nicholson, Geoffrey C; Viikari, Jorma; Ladouceur, Martin; Lyytikäinen, Leo-Pekka; Medina-Gomez, Carolina; Rivadeneira, Fernando; Prince, Richard L; Sievanen, Harri; Leslie, William D; Mellström, Dan; Eisman, John A; Movérare-Skrtic, Sofia; Goltzman, David; Hanley, David A; Jones, Graeme; St Pourcain, Beate; Xiao, Yongjun; Timpson, Nicholas J; Smith, George Davey; Reid, Ian R; Ring, Susan M; Sambrook, Philip N; Karlsson, Magnus; Dennison, Elaine M; Kemp, John P; Danoy, Patrick; Sayers, Adrian; Wilson, Scott G; Nethander, Maria; McCloskey, Eugene; Vandenput, Liesbeth; Eastell, Richard; Liu, Jeff; Spector, Tim; Mitchell, Braxton D; Streeten, Elizabeth A; Brommage, Robert; Pettersson-Kymmer, Ulrika; Brown, Matthew A; Ohlsson, Claes; Richards, J Brent; Lorentzon, Mattias

    2012-07-01

    We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2 × 10(-9)). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3 × 10(-12), and -0.16 SD per G allele, P = 1.2 × 10(-15), respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3 × 10(-9)), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9 × 10(-6) and rs2707466: OR = 1.22, P = 7.2 × 10(-6)). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16(-/-) mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5 × 10(-13)bone strength, and risk of fracture.

  12. Natural variations in calcium isotope composition as a monitor of bone mineral balance in humans.

    NASA Astrophysics Data System (ADS)

    Skulan, J.; Anbar, A.; Thomas, B.; Smith, S.

    2004-12-01

    The skeleton is the largest reservoir of calcium in the human body and is responsible for the short term control of blood levels of this element. Accurate measurement of changes in bone calcium balance is critical to understanding how calcium metabolism responds to physiological and environmental changes and, more specifically, to diagnosing and evaluating the effectiveness of treatments for osteoporosis and other serious calcium-related disorders. It is very difficult to measure bone calcium balance using current techniques, however, because these techniques rely either on separate estimates of bone resorption and formation that are not quantitatively comparable, or on complex and expensive studies of calcium kinetics using administered isotopic tracers. This difficulty is even more apparent and more severe for measurements of short-term changes in bone calcium balance that do not produce detectable changes in bone mineral density. Calcium isotopes may provide a novel means of addressing this problem. The foundation of this isotope application is the ca. 1.3 per mil fractionation of calcium during bone formation, favoring light calcium in the bone. This fractionation results in a steady-state isotopic offset between calcium in bone and calcium in soft tissues, blood and urine. Perturbations to this steady state due to changes in the net formation or resorption of bone should be reflected in changes in the isotopic composition of soft tissues and fluids. Here we present evidence that easily detectable shifts in the natural calcium isotope composition of human urine rapidly reflect changes in bone calcium balance. Urine from subjects in a 17-week bed rest study was analyzed for calcium isotopic composition. Bed rest promotes net resorption of bone, shifting calcium from bone to soft tissues, blood and urine. The calcium isotope composition of patients in this study shifted toward lighter values during bed rest, consistent with net resorption of isotopically

  13. Mechanisms of Bone Mineralization and Effects of Mechanical Loading

    NASA Technical Reports Server (NTRS)

    Babich, Michael

    1996-01-01

    The data suggest that PTH and PKC inhibit nodule formation, and that alternative energy sources are utilized by osteoblasts in the process of mineralization. The conditions and techniques to grow, fix, photograph, and measure bone mineralization in vitro were defined. The results are presently in preliminary form and require further assessment as follows; quantitate the surface area of nodules + treatments via computer-aided image analysis; use PTH + inhibitors of signaling pathways to determine the mechanism of nodule formation; determine how protein kinase C is involved as a promotor of nodule formation; cell proliferation vs. cell death affected by modulation of signal transduction (i.e., PTH, enzyme inhibitors and activators); identify mRNA induced or decreased in response to PTH and signaling modulators that encode proteins that regulate cell morphology, proliferation, and nodule formation. Therefore, several follow-up studies between the laboratories at NASA-Ames Research Center and my laboratory at the University of Illinois have been initiated.

  14. Autophagy in osteoblasts is involved in mineralization and bone homeostasis

    PubMed Central

    Nollet, Marie; Santucci-Darmanin, Sabine; Breuil, Véronique; Al-Sahlanee, Rasha; Cros, Chantal; Topi, Majlinda; Momier, David; Samson, Michel; Pagnotta, Sophie; Cailleteau, Laurence; Battaglia, Séverine; Farlay, Delphine; Dacquin, Romain; Barois, Nicolas; Jurdic, Pierre; Boivin, Georges; Heymann, Dominique; Lafont, Frank; Lu, Shi Shou; Dempster, David W; Carle, Georges F; Pierrefite-Carle, Valérie

    2014-01-01

    Bone remodeling is a tightly controlled mechanism in which osteoblasts (OB), the cells responsible for bone formation, osteoclasts (OC), the cells specialized for bone resorption, and osteocytes, the multifunctional mechanosensing cells embedded in the bone matrix, are the main actors. Increased oxidative stress in OB, the cells producing and mineralizing bone matrix, has been associated with osteoporosis development but the role of autophagy in OB has not yet been addressed. This is the goal of the present study. We first show that the autophagic process is induced in OB during mineralization. Then, using knockdown of autophagy-essential genes and OB-specific autophagy-deficient mice, we demonstrate that autophagy deficiency reduces mineralization capacity. Moreover, our data suggest that autophagic vacuoles could be used as vehicles in OB to secrete apatite crystals. In addition, autophagy-deficient OB exhibit increased oxidative stress and secretion of the receptor activator of NFKB1 (TNFSF11/RANKL), favoring generation of OC, the cells specialized in bone resorption. In vivo, we observed a 50% reduction in trabecular bone mass in OB-specific autophagy-deficient mice. Taken together, our results show for the first time that autophagy in OB is involved both in the mineralization process and in bone homeostasis. These findings are of importance for mineralized tissues which extend from corals to vertebrates and uncover new therapeutic targets for calcified tissue-related metabolic pathologies. PMID:25484092

  15. Bone mineral disorders in pediatric and adolescent renal transplant recipients.

    PubMed

    Derakhshan, Ali; Behbahan, Afshin G; Lotfi, Mehrzad; Omrani, Gholam-Hossein; Fallahzadeh, Mohammad-Hossein; Basiratnia, Mitra; Al-Hashemi, Ghamar H

    2011-06-01

    Incomplete resolution of abnormalities of mineral metabolism associated with CRF results in the relatively high prevalence of ROD in pediatric kidney recipients. This non-randomized, cross-sectional, and analytic-descriptive study on bone density, vitamin D, and mineral metabolism was performed in 57 children and adolescents who had received a total of 60 renal allografts in Shiraz, Iran. The height and weight of the patients were measured; their serum calcium (Ca), phosphorus (P), Alk-P, PTH, 25(OH)-vitamin D(3), BUN, creatinine, and electrolyte levels were analyzed, and a complete blood count was performed. In addition, standard radiologic bone assessments, which included conventional left hand-wrist radiography and bone mineral densitometry by the DXA technique, were carried out. Special pediatric software was used for age-related interpretation of the Z-scores of BMD. SPSS(®) software (version 15) was used for statistical analyses. We studied 57 patients (27 males [47.4%]) with a mean age of 18.7 ± 4.25 (9-27) yr and a mean age at transplantation of 13.1 ± 3.46 (4.5-20) yr. They had a post-transplantation follow-up of 67.1 ± 33.8 (6-132) months, and all had well-functioning allografts at enrollment. The mean height age of the patients was 11.9 ± 1.8 (6-15.5), and the mean bone age was 15.6 ± 3.3 (7-19) yr, which corresponded to mean height-age and bone-age retardations of 5.7 ± 2.3 (0.5-10.5) and 1.22 ± 1.47 (0-7) yr, respectively. Hyperphosphatemia and hypercalcemia were each found in nine patients (15.8%), hypophosphatemia in five (8.8%), and hypocalcemia in none of the patients. Seven out of 57 patients (12.3%) had a (Ca×P) product of more than 55 mg(2)/dL(2). Hyperparathyroidism was found in 27 (47.3%) and vitamin D(3) deficiency in four (7%) of the cases. The serum level of Alk-P was higher than the age-related normal range in 20 patients (35%). Left hand-wrist radiography showed no radiologic sign of ROD in any patient. The mean BMD Z-score was

  16. Single x-ray transmission system for bone mineral density determination

    SciTech Connect

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Rodriguez-Garcia, Mario E.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  17. Single x-ray transmission system for bone mineral density determination

    NASA Astrophysics Data System (ADS)

    Jimenez-Mendoza, Daniel; Espinosa-Arbelaez, Diego G.; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Vargas-Vazquez, Damian; Rodriguez-Garcia, Mario E.

    2011-12-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm2)], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  18. Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Miller, Lisa M.; Hamerman, David; Chance, Mark R.; Carlson, Cathy S.

    1999-10-01

    Infrared (IR) microspectroscopy is an analytical technique that is highly sensitive to the chemical components in bone. The brightness of a synchrotron source permits the examination of individual regions of bone in situ at a spatial resolution superior to that of a conventional infrared source. At Beamlines U10B and U2B at the National Synchrotron Light Source, we are examining the role of bone chemical composition in bone disease. In osteoarthritis (OA), it has been demonstrated that the bone underlying the joint cartilage (subchondral bone) becomes thickened prior to cartilage breakdown. Using synchrotron infrared microspectroscopy, we have examined the chemical composition of the subchondral bone in histologically normal and OA monkeys. Results demonstrate that the subchondral bone of OA monkeys is significantly more mineralized than the normal bone, primarily due to an increase in carbonate concentration in the OA bone. High resolution analysis indicates that differences in carbonate content are uniform throughout the subchondral bone region, suggesting that high subchondral bone carbonate may be a marker for OA. Conversely, increases in phosphate content are more pronounced in the region near the marrow space, suggesting that, as the subchondral bone thickens, the bone also becomes more mineralized. Osteoporosis is a disease characterized by a reduction in bone mass and a skeleton that is more susceptible to fracture. To date, it is unclear whether bone remodeled after the onset of osteoporosis differs in chemical composition from older bone. Using fluorescence-assisted infrared microspectroscopy, we are comparing the composition of monkey bone remodeled at various time points after the onset of osteoporosis (induced by ovariectomy). We find that the chemical composition of bone remodeled one year after ovariectomy and one year prior to necropsy is similar to normal bone. On the other hand, bone remodeled two years after ovariectomy is less mature, indicated

  19. Correlating chemical changes in subchondral bone mineral due to aging or defective type II collagen by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dehring, Karen A.; Roessler, Blake J.; Morris, Michael D.

    2007-02-01

    We show that early indicators of osteoarthritis are observed in Raman spectroscopy by probing femur surfaces excised from mouse models of early-onset osteoarthritis. Current clinical methods to examine arthritic joints include radiological examination of the joint, but may not be capable of detecting subtle chemical changes in the bone tissue, which may provide the earliest indications of osteoarthritis. Recent research has indicated that the subchondral bone may have a more significant role in the onset of osteoarthritis than previously realized. We will report the effect of age and defective type II collagen on Raman band area ratios used to describe bone structure and function. The carbonate-to-phosphate ratio is used to assess carbonate substitution into the bone mineral and the mineral-to-matrix ratio is used to measure bone mineralization. Mineral-to-matrix ratios indicate that subchondral bone becomes less mineralized as both the wild-type and Del1 (+/-) transgenic mice age. Moreover, the mineral-to-matrix ratios show that the subchondral bone of Del1 (+/-) transgenic mice is less mineralized than that of the wild-type mice. Carbonate-to-phosphate ratios from Del1 (+/-) transgenic mice follow the same longitudinal trend as wild-type mice. The ratio is slightly higher in the transgenic mice, indicating more carbonate content in the bone mineral. Raman characterization of bone mineralization provides an invaluable insight into the process of cartilage degeneration and the relationship with subchondral bone at the ultrastructural level.

  20. Molecular mechanics of mineralized collagen fibrils in bone

    NASA Astrophysics Data System (ADS)

    Nair, Arun K.; Gautieri, Alfonso; Chang, Shu-Wei; Buehler, Markus J.

    2013-04-01

    Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen protein matrix to try to better understand its mechanical characteristics under tensile loading at various mineral densities. We find that as the mineral density increases, the tensile modulus of the network increases monotonically and well beyond that of pure collagen fibrils. Our results suggest that the mineral crystals within this network bears up to four times the stress of the collagen fibrils, whereas the collagen is predominantly responsible for the material’s deformation response. These findings reveal the mechanism by which bone is able to achieve superior energy dissipation and fracture resistance characteristics beyond its individual constituents.

  1. Bone mineral density testing after fragility fracture

    PubMed Central

    Posen, Joshua; Beaton, Dorcas E.; Sale, Joanna; Bogoch, Earl R.

    2013-01-01

    Abstract Objective To determine the proportion of patients with fragility fractures who can be expected to have low bone mineral density (BMD) at the time of fracture and to assist FPs in deciding whether to refer patients for BMD testing. Data sources MEDLINE, EMBASE, and CINAHL were searched from the earliest available dates through September 2009. Study selection English-language articles reporting BMD test results of patients with fragility fractures who were managed in an orthopedic environment (eg, fracture clinic, emergency management by orthopedic surgeons, inpatients) were eligible for review. While the orthopedic environment has been identified as an ideal point for case finding, FPs are often responsible for investigation and treatment. Factors that potentially influenced BMD test results (eg, selection of fracture types, exclusion criteria) were identified. Studies with 2 or more selection factors of potential influence were flagged, and rates of low BMD were calculated including and excluding these studies. Synthesis The distribution of the proportion of persons with low BMD was summarized across studies using descriptive statistics. We calculated lower boundaries on this distribution, using standard statistical thresholds, to determine a lower threshold of the expected rate of low BMD. Conclusion Family physicians evaluating patients with fragility fractures can expect that at least two-thirds of patients with fragility fractures who are older than 50 years of age will have low BMD (T score ≤ −1.0). With this a priori expectation, FPs might more readily conduct a fracture risk assessment and pursue warranted fracture risk reduction strategies following fragility fracture. PMID:24336562

  2. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women.

    PubMed

    Wensel, Terri M; Iranikhah, Maryam M; Wilborn, Teresa W

    2011-05-01

    Osteoporosis is a degenerative bone disease affecting approximately 10 million American adults. Several options are available to prevent development of the disease or slow and even stop its progression. Nonpharmacologic measures include adequate intake of calcium and vitamin D, exercise, fall prevention, and avoidance of tobacco and excessive alcohol intake. Current drug therapy includes bisphosphonates, calcitonin, estrogen or hormone therapy, selective estrogen receptor modulators, and teriparatide. Denosumab, a receptor activator of nuclear factor-K B ligand (RANKL) inhibitor, was recently approved by the United States Food and Drug Administration for treatment of postmenopausal osteoporosis. Patients treated with denosumab experienced significant gains in bone mineral density, rapid reductions in markers of bone turnover, and a reduced risk for new vertebral fracture. Compared with placebo, patients receiving denosumab 60 mg subcutaneously once every 6 months experienced gains in bone mineral density of 6.5-11% when treated for 24-48 months. One trial demonstrated the superiority of denosumab compared with alendronate, but the differences were small. The most common adverse reactions to denosumab include back pain, pain in extremities, musculoskeletal pain, and cystitis. Serious, but rare, adverse reactions include the development of serious infections, dermatologic changes, and hypocalcemia. The recommended dosing of denosumab is 60 mg every 6 months as a subcutaneous injection in the upper arm, upper thigh, or abdomen. Although beneficial effects on bone mineral density and fracture rate have been established in clinical trials, the risks associated with denosumab must be evaluated before therapy initiation. Of concern is the risk of infection, and denosumab should likely be avoided in patients taking immunosuppressive therapy or at high risk for infection. Therefore, bisphosphonates will likely remain as first-line therapy. Denosumab should be considered in

  3. Serum Bone Markers Levels and Bone Mineral Density in Familial Mediterranean Fever

    PubMed Central

    Aydın, Teoman; Taspınar, Ozgur; Akbal, Yildiz; Peru, Celaleddin; Guler, Mustafa; Uysal, Omer; Yakıcıer, M. Cengiz

    2014-01-01

    [Purpose] The aim of this study was to measure bone mineral density, serum and urinary bone turnover parameters, and to evaluate the influence of demographic and genetic factors on these parameters in FMF patients. [Subjects and Methods] Twenty-seven attack-free patients who were diagnosed with FMF (in accordance with Tel Hashomer criteria) were recruited at outpatient rheumatology clinics. We investigated whether there were any differences between the FMF patients and a control group in terms of lumbar and femur bone mineral density (BMD), standard deviation scores (Z scores and T scores) and bone markers. [Results] In terms of the median values of lumbar BMD (p = 0.21), lumbar T (p = 0.098) and Z (p = 0.109) scores, femoral neck BMD, femoral T and Z scores and total femur BMD, T (p = 0.788) and Z scores, there were no significant differences. [Conclusion] In our study, no statistically significant differences were found between FMF patients and a control group in terms of osteoporosis. The 25-OH vitamin D was found to be significantly lower in FMF patients than in the control group. PMID:25276036

  4. Bone assessment via thermal photoacoustic measurements

    NASA Astrophysics Data System (ADS)

    Feng, Ting; Kozloff, Kenneth M.; Hsiao, Yi-Sing; Tian, Chao; Perosky, Joseph; Du, Sidan; Yuan, Jie; Deng, Cheri X.; Wang, Xueding

    2015-03-01

    The feasibility of an innovative biomedical diagnostic technique, thermal photoacoustic (TPA) measurement, for nonionizing and non-invasive assessment of bone health is investigated. Unlike conventional photoacoustic PA methods which are mostly focused on the measurement of absolute signal intensity, TPA targets the change in PA signal intensity as a function of the sample temperature, i.e. the temperature dependent Grueneisen parameter which is closely relevant to the chemical and molecular properties in the sample. Based on the differentiation measurement, the results from TPA technique is less susceptible to the variations associated with sample and system, and could be quantified with improved accurately. Due to the fact that the PA signal intensity from organic components such as blood changes faster than that from non-organic mineral under the same modulation of temperature, TPA measurement is able to objectively evaluate bone mineral density (BMD) and its loss as a result of osteoporosis. In an experiment on well established rat models of bone loss and preservation, PA measurements of rat tibia bones were conducted over a temperature range from 370 C to 440 C. The slope of PA signal intensity verses temperature was quantified for each specimen. The comparison among three groups of specimens with different BMD shows that bones with lower BMD have higher slopes, demonstrating the potential of the proposed TPA technique in future clinical management of osteoporosis.

  5. Local calibrated bone mineral density in the mandible presented using a color coding scheme.

    PubMed

    Homolka, P; Beer, A; Birkfellner, W; Gahleitner, A; Nowotny, R; Bergmann, H

    2001-11-01

    Calibrated information on bone mineral density (BMD) may be used in dental implantology to measure "bone quality". It can be used to estimate the expected primary implant stability preoperatively and to guide the surgeon in selecting optimum implant types and operation techniques. Using a preoperative dental computed tomography (Dental-CT) scan, all of this information can be obtained without additional examinations and thus without additional X-ray exposure of the patient. In contrast to bone mineral determination in other body regions, local BMD values are important in the jaw bone. Therefore, a regimen where color-coded information on local bone mineralization is superimposed on Dental-CT images is proposed using the original CT volumes as well as reformatted views.

  6. Effect of hydrazine based deproteination protocol on bone mineral crystal structure.

    PubMed

    Karampas, I A; Orkoula, M G; Kontoyannis, C G

    2012-05-01

    In several bone deproteination protocols the chemical agent used for protein cleavage is hydrazine. The effect of hydrazine deproteination method on the crystal size and crystallinity of the bone mineral was studied. Bovine bones were subjected to this protocol and the crystal size and crystallinity of the remaining bone mineral were determined by X-ray Diffraction (XRD), by measuring the width at the half of the maximum intensity of the (002) reflection. It was found that hydrazine deproteination induces noteworthy increase of crystal size and crystallinity. The effect was enhanced by increasing hydrazine temperature from 25 to 55°C. Furthermore, infrared spectroscopy revealed that hydrazine facilitates the removal of carbonate and acid phosphate ions from bone mineral. It is proposed that the mechanism of modification of crystal size and crystallinity lies on the removal of these ions thus, resulting in crystal re-organization.

  7. Bone mineral status in children with congenital adrenal hyperplasia.

    PubMed

    Fleischman, Amy; Ringelheim, Julie; Feldman, Henry A; Gordon, Catherine M

    2007-02-01

    Congenital adrenal hyperplasia (CAH) is caused by a deficiency in an adrenal enzyme resulting in alterations in cortisol and aldosterone production. Bone status is affected by chronic glucocorticoid therapy and excess androgen exposure in children with CAH. This cross-sectional study enrolled participants with 21-hydroxylase deficiency from a pediatric referral center. Bone mineral density in the participants was normal when compared to age, gender and ethnicity adjusted standards, with respect to chronological age or bone age. Lean body mass was positively correlated with bone mineral content (BMC), independent of fat mass (p < 0.001). There was no significant correlation between glucocorticoid dose or serum androgen levels and skeletal endpoints. In conclusion, lean body mass appears to be an important correlate of BMC in patients with CAH. The normal bone status may be explained by the differential effects of glucocorticoids on growing bone, beneficial androgen effects, or other disease specific factors.

  8. Bone Mineral Density in Sheehan's Syndrome; Prevalence of Low Bone Mass and Associated Factors.

    PubMed

    Chihaoui, Melika; Yazidi, Meriem; Chaker, Fatma; Belouidhnine, Manel; Kanoun, Faouzi; Lamine, Faiza; Ftouhi, Bochra; Sahli, Hela; Slimane, Hedia

    2016-10-01

    Hypopituitarism is a known cause of bone mineral loss. This study aimed to evaluate the frequency of osteopenia and osteoporosis in patients with Sheehan's syndrome (SS) and to determine the risk factors. This is a retrospective study of 60 cases of SS that have had a bone mineral density (BMD) measurement. Clinical, biological, and therapeutic data were collected. The parameters of osteodensitometry at the femoral neck and the lumbar spine of 60 patients with SS were compared with those of 60 age-, height-, and weight-matched control women. The mean age at BMD measurement was 49.4 ± 9.9 yr (range: 25-76 yr). The mean duration of SS was 19.3 ± 8.5 yr (range: 3-41 yr). All patients had corticotropin deficiency and were treated with hydrocortisone at a mean daily dose of 26.3 ± 4.1 mg. Fifty-seven patients (95%) had thyrotropin deficiency and were treated with thyroxine at a mean daily dose of 124.3 ± 47.4 µg. Thirty-five of the 49 patients, aged less than 50 yr at diagnosis and having gonadotropin deficiency (71.4%), had estrogen-progesterone substitution. Osteopenia was present in 25 patients (41.7%) and osteoporosis in 21 (35.0%). The BMD was significantly lower in the group with SS than in the control group (p < 0.001). The odds ratio of osteopenia-osteoporosis was 3.1 (95% confidence interval: 1.4-6.8) at the femoral neck and 3.7 (95% confidence interval: 1.7-7.8) at the lumbar spine. The lumbar spine was more frequently affected by low bone mineral mass (p < 0.05). The duration of the disease and the daily dose of hydrocortisone were independently and inversely associated with BMD at the femoral neck. The daily dose of thyroxine was independently and inversely associated with BMD at the lumbar spine. Estrogen-progesterone replacement therapy was not associated with BMD. Low bone mineral mass was very common in patients with SS. The lumbar spine was more frequently affected. The duration of the disease and the doses of

  9. Bone Mineral Density and Secondary Hyperparathyroidism in Pulmonary Hypertension

    PubMed Central

    Ulrich, Silvia; Hersberger, Martin; Fischler, Manuel; Huber, Lars C; Senn, Oliver; Treder, Ursula; Speich, Rudolf; Schmid, Christoph

    2009-01-01

    Background: Low bone mineral density (BMD) is common in chronic lung diseases and associated with reduced quality of life. Little is known about BMD in pulmonary hypertension (PH). Methods: Steroid-naïve patients with PH (n=34; 19 idiopathic, 15 chronic thromboembolic) had BMD measured by DXA at the time of diagnostic right heart catheterization. Exercise capacity, quality of life and various parameters related to PH severity and bone metabolism were also assessed. 24 patients with left heart failure (LHF) were similarly assessed as controls. Results: The prevalence of osteopenia was high both in PH (80%) and in controls with LHF (75%). Low BMD was associated with lean body mass, age, lower BMI, impaired exercise capacity and in PH with higher pulmonary vascular resistance. Serum parathyroid hormone (PTH) was elevated and considerably higher in PH than in LHF (above normal, in 55 vs 29%). Secondary hyperparathyroidism was not related to impaired renal function but possibly to low vitamin D status. Conclusions: Osteopenia is common in PH and in chronically ill patients with LHF. Osteopenia is associated with known risk factors but in PH also with disease severity. Preventive measures in an increasingly chronic ill PH population should be considered. Secondary hyperparathyroidism is highly prevalent in PH and might contribute to bone and possibly pulmonary vascular disease. Whether adequate vitamin D substitution could prevent low BMD in PH remains to be determined. PMID:19461899

  10. Osteocyte regulation of bone mineral: a little give and take.

    PubMed

    Atkins, G J; Findlay, D M

    2012-08-01

    Osteocytes actively participate in almost every phase of mineral handling by bone. They regulate the mineralisation of osteoid during bone formation, and they are also a major RANKL-producing cell. Osteocytes are thus able to liberate bone mineral by regulating osteoclast differentiation and activity in response to a range of stimuli, including bone matrix damage, bone disuse and mechanical unloading, oestrogen deficiency, high-dose glucocorticoid and chemotherapeutic agents. At least some of these activities may be regulated by the osteocyte-secreted product, sclerostin. There is also mounting evidence that in addition to regulating phosphate homeostasis systemically, osteocytes contribute directly to calcium homeostasis in the mature skeleton. Osteocyte cell death and the local loss of control of bone mineralisation may be the cause of focal hypermineralisation of bone and osteopetrosis, as seen in aging and pathology. The sheer number of osteocytes in bone means that "a little give and take" in terms of regulation of bone mineral content translates into a powerful whole organism effect.

  11. Effect of intravenous pamidronate on bone markers and local bone mineral density in fibrous dysplasia.

    PubMed

    Parisi, Muriel S; Oliveri, Beatriz; Mautalen, Carlos A

    2003-10-01

    Bisphosphonates have proven to be effective in patients with fibrous dysplasia of the bone (FD) as shown by their effect on bone pain, markers of bone turnover, or radiological changes. The aim of this study was to evaluate the usefulness of measuring bone mineral density (BMD) of affected bones to assess the efficacy of bisphosphonate treatment. Seven patients (mean age 26 years) received courses of 180 mg intravenous infusion of pamidronate every 6 months (60 mg/day during 3 days). Clinical symptoms, serum alkaline phosphatase, and urinary C-terminal cross-linking telopeptide of type I collagen were assessed every 3 months. BMD of total skeleton and X-rays of FD areas (FDa) were performed at baseline and at 12 months. BMD of FDa was compared with the contralateral side (CL) using the region of interest program on the total skeleton scan. BMD of total skeleton was normal at baseline. Average BMD of FDa was -11.4% compared with CL, a significantly greater difference than that observed between the left and right sides in healthy controls, -0.7% (P < 0.02). At 12 months bone pain diminished in all patients. Bone turnover markers decreased. Mean total skeleton BMD increased 3.3% (P < 0.02). Subregions of the total skeleton scan presenting FD lesions augmented: arms +9.6% (P < 0.02), legs +4.2%, and pelvis +3.5% (P < 0.05). The increase in mean BMD of FDa was +6.8% compared with +2.6% in CL. No changes were observed on the X-ray. These results indicate that simultaneous determination of markers of bone turnover and BMD of FDa is useful in short-term follow-up to determine the efficacy of intravenous pamidronate.

  12. AN INVESTIGATION OF THE MINERAL IN DUCTILE AND BRITTLE CORTICAL MOUSE BONE

    PubMed Central

    Rodriguez-Florez, Naiara; Garcia-Tunon, Esther; Mukadam, Quresh; Saiz, Eduardo; Oldknow, Karla J.; Farquharson, Colin; Millán, José Luis; Boyde, Alan; Shefelbine, Sandra J.

    2015-01-01

    Bone is a strong and tough material composed of apatite mineral, organic matter and water. Changes in composition and organization of these building blocks affect bone’s mechanical integrity. Skeletal disorders often affect bone’s mineral phase, either by variations in the collagen or directly altering mineralization. The aim of the current study was to explore the differences in the mineral of brittle and ductile cortical bone at the mineral (nm) and tissue (µm) levels using two mouse phenotypes. Osteogenesis imperfecta murine (oim−/−) mice were used to model brittle bone; PHOSPHO1 mutants (Phospho1−/−) had ductile bone. They were compared to their respective wild-type controls. Femora were defatted and ground to powder to measure average mineral crystal size using X-ray diffraction (XRD), and to monitor the bulk mineral to matrix ratio via thermogravimetric analysis (TGA). XRD scans were run after TGA for phase identification, to assess the fractions of hydroxyapatite and β-tricalcium phosphate. Tibiae were embedded to measure elastic properties with nanoindentation and the extent of mineralization with backscattered electron microscopy (qbSEM). Interestingly, the mineral of brittle oim−/− and ductile Phospho1−/− bones had many similar characteristics. Both pathology models had smaller apatite crystals, lower mineral to matrix ratio, and showed more thermal conversion to β-tricalcium phosphate than their wild-types, indicating deviations from stoichiometric hydroxyapatite in the original mineral. The degree of mineralization of the bone matrix was different for each strain: oim−/− were hypermineralized, while Phospho1−/− were hypomineralized. However, alterations in the mineral were associated with reduced tissue elastic moduli in both pathologies. Results revealed that despite having extremely different whole bone mechanics, the mineral of oim−/− and Phospho1−/− has several similar trends at smaller length scales. This

  13. Practice of martial arts and bone mineral density in adolescents of both sexes

    PubMed Central

    Ito, Igor Hideki; Mantovani, Alessandra Madia; Agostinete, Ricardo Ribeiro; Costa, Paulo; Zanuto, Edner Fernando; Christofaro, Diego Giulliano Destro; Ribeiro, Luis Pedro; Fernandes, Rômulo Araújo

    2016-01-01

    Abstract Objective: The purpose of this study was to analyze the relationship between martial arts practice (judo, karate and kung-fu) and bone mineral density in adolescents. Methods: The study was composed of 138 (48 martial arts practitioners and 90 non-practitioners) adolescents of both sexes, with an average age of 12.6 years. Bone mineral density was measured using Dual-Energy X-ray Absorptiometry in arms, legs, spine, trunk, pelvis and total. Weekly training load and previous time of engagement in the sport modality were reported by the coach. Partial correlation tested the association between weekly training load and bone mineral density, controlled by sex, chronological age, previous practice and somatic maturation. Analysis of covariance was used to compare bone mineral density values according to control and martial arts groups, controlled by sex, chronological age, previous practice and somatic maturation. Significant relationships between bone mineral density and muscle mass were inserted into a multivariate model and the slopes of the models were compared using the Student t test (control versus martial art). Results: Adolescents engaged in judo practice presented higher values of bone mineral density than the control individuals (p-value=0.042; Medium Effect size [Eta-squared=0.063]), while the relationship between quantity of weekly training and bone mineral density was significant among adolescents engaged in judo (arms [r=0.308] and legs [r=0.223]) and kung-fu (arms [r=0.248] and spine [r=0.228]). Conclusions: Different modalities of martial arts are related to higher bone mineral density in different body regions among adolescents. PMID:27017002

  14. Agave fructans: their effect on mineral absorption and bone mineral content.

    PubMed

    García-Vieyra, María Isabel; Del Real, Alicia; López, Mercedes G

    2014-11-01

    In this study we investigate the effect that Agave fructans as new prebiotics have on mineral absorption improvement. Forty-eight 12-week-old C57BL/6J mice were used in this study. Forty mice were ovariectomized and eight were sham-operated controls. Mice were fed standard diets or diets supplemented with 10% Agave fructans or 10% inulin fructans. Calcium and magnesium were evaluated as well as their excretion in feces. Osteocalcin levels were also measured; femur structure was studied by scanning electron microscopy. Other parameters, such as food intake, body weight, glucose, and short-chain fatty acid content, were recorded. Calcium in plasma and bone increased in Agave fructan groups (from 53.1 to 56 and 85 mg/L and from 0.402 to 0.474 and 0.478 g/g, respectively) and osteocalcin increased in all fructan groups (>50%). Scanning electron microscopy showed that fructans were able to mitigate bone loss. In conclusion, we demonstrated that supplementation with Agave fructans prevents bone loss and improves bone formation.

  15. Mechanical properties of nacre and highly mineralized bone.

    PubMed

    Currey, J D; Zioupos, P; Davies, P; Casino, A

    2001-01-07

    We compared the mechanical properties of 'ordinary' bovine bone, the highly mineralized bone of the rostrum of the whale Mesoplodon densirostris, and mother of pearl (nacre) of the pearl oyster Pinctada margaritifera. The rostrum and the nacre are similar in having very little organic material. However, the rostral bone is much weaker and more brittle than nacre, which in these properties is close to ordinary bone. The ability of nacre to outperform rostral bone is the result of its extremely well-ordered microstructure, with organic material forming a nearly continuous jacket round all the tiny aragonite plates, a design well adapted to produce toughness. In contrast, in the rostrum the organic material, mainly collagen, is poorly organized and discontinuous, allowing the mineral to join up to form, in effect, a brittle stony material.

  16. Mechanical properties of nacre and highly mineralized bone.

    PubMed Central

    Currey, J D; Zioupos, P; Davies, P; Casino, A

    2001-01-01

    We compared the mechanical properties of 'ordinary' bovine bone, the highly mineralized bone of the rostrum of the whale Mesoplodon densirostris, and mother of pearl (nacre) of the pearl oyster Pinctada margaritifera. The rostrum and the nacre are similar in having very little organic material. However, the rostral bone is much weaker and more brittle than nacre, which in these properties is close to ordinary bone. The ability of nacre to outperform rostral bone is the result of its extremely well-ordered microstructure, with organic material forming a nearly continuous jacket round all the tiny aragonite plates, a design well adapted to produce toughness. In contrast, in the rostrum the organic material, mainly collagen, is poorly organized and discontinuous, allowing the mineral to join up to form, in effect, a brittle stony material. PMID:12123292

  17. Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae.

    PubMed

    Busse, Björn; Hahn, Michael; Soltau, Markus; Zustin, Jozef; Püschel, Klaus; Duda, Georg N; Amling, Michael

    2009-12-01

    The differentiation and degree of the effects of mineral content and/or morphology on bone quality remain, to a large extent, unanswered due to several microarchitectural particularities in spatial measuring fields (e.g., force transfer, trajectories, microcalli). Therefore, as the smallest basic component of cancellous bone, we focused on single trabeculae to investigate the effects of mineralization and structure, both independently and in superposition. Transiliac Bordier bone cores and T12 vertebrae were obtained from 20 females at autopsy for specimen preparation, enabling radiographical analyses, histomorphometry, Bone Mineral Density Distribution (BMDD) analyses, and trabecular singularization to be performed. Evaluated contact X-rays and histomorphometric limits from cases with osteoporotic vertebral fractures generated two subdivisions, osteoporotic (n=12, Ø 78 years) and non-osteoporotic (n=8, Ø 49 years) cases, based on fracture appearance and bone volume (BV/TV). Measurements of trabecular number (Tb.N.), trabecular separation (Tb.Sp.), trabecular thickness (Tb.Th.), trabecular bone pattern factor (TBPf) and eroded surface (ES/BS) were carried out to provide detailed structural properties of the investigated groups. The mechanical properties of 400 rod-like single vertebral trabeculae, assessed by three-point bending, were matched with mineral properties as quantified by BMDD analyses of cross-sectioned rod-like and plate-like trabeculae, both in superposition and independently. Non-osteoporotic iliac crests and vertebrae displayed linear dependency on structure parameters, whereas osteoporotic compartments proved to be non-correlated with bone structure. Independent of trabecular thickness, osteoporotic rod-like trabeculae showed decreases in Young's modulus, fracture load, yield strength, ultimate stress, work to failure and bending stiffness, along with significantly increased mean calcium content and calcium width. Non-osteoporotic trabeculae

  18. Weight Loss and Bone Mineral Density

    PubMed Central

    Hunter, Gary R.; Plaisance, Eric P.; Fisher, Gordon

    2014-01-01

    Purpose of the Review Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low BMD, fearing BMD will be decreased. Confusion exists concerning the effects weight loss has on bone health. Recent Findings Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid/large weight loss is often associated with loss of bone density, slower/smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. While dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Summary Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss. PMID:25105997

  19. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  20. Genetic variants in adult bone mineral density and fracture risk genes are associated with the rate of bone mineral density acquisition in adolescence

    PubMed Central

    Warrington, Nicole M.; Kemp, John P.; Tilling, Kate; Tobias, Jonathan H.; Evans, David M.

    2015-01-01

    Previous studies have identified 63 single-nucleotide polymorphisms (SNPs) associated with bone mineral density (BMD) in adults. These SNPs are thought to reflect variants that influence bone maintenance and/or loss in adults. It is unclear whether they affect the rate of bone acquisition during adolescence. Bone measurements and genetic data were available on 6397 individuals from the Avon Longitudinal Study of Parents and Children at up to five follow-up clinics. Linear mixed effects models with smoothing splines were used for longitudinal modelling of BMD and its components bone mineral content (BMC) and bone area (BA), from 9 to 17 years. Genotype data from the 63 adult BMD associated SNPs were investigated individually and as a genetic risk score in the longitudinal model. Each additional BMD lowering allele of the genetic risk score was associated with lower BMD at age 13 [per allele effect size, 0.002 g/cm2 (SE = 0.0001, P = 1.24 × 10−38)] and decreased BMD acquisition from 9 to 17 years (P = 9.17 × 10−7). This association was driven by changes in BMC rather than BA. The genetic risk score explained ∼2% of the variation in BMD at 9 and 17 years, a third of that explained in adults (6%). Genetic variants that putatively affect bone maintenance and/or loss in adults appear to have a small influence on the rate of bone acquisition through adolescence. PMID:25941325

  1. Longitudinal bone mineral content and density in Rett syndrome and their contributing factors.

    PubMed

    Jefferson, Amanda; Fyfe, Sue; Downs, Jenny; Woodhead, Helen; Jacoby, Peter; Leonard, Helen

    2015-05-01

    Bone mass and density are low in females with Rett syndrome. This study used Dual energy x-ray absorptiometry to measure annual changes in z-scores for areal bone mineral density (aBMD) and bone mineral content (BMC) in the lumbar spine and total body in an Australian Rett syndrome cohort at baseline and then after three to four years. Bone mineral apparent density (BMAD) was calculated in the lumbar spine. Annual changes in lean tissue mass (LTM) and bone area (BA) were also assessed. The effects of age, genotype, mobility, menstrual status and epilepsy diagnosis on these parameters were also investigated. The baseline sample included 97 individuals who were representative of the total live Australian Rett syndrome population under 30years in 2005 (n=274). Of these 74 had a follow-up scan. Less than a quarter of females were able to walk on their own at follow-up. Bone area and LTM z-scores declined over the time between the baseline and follow-up scans. Mean height-standardised z-scores for the bone outcomes were obtained from multiple regression models. The lumbar spine showed a positive mean annual BMAD z-score change (0.08) and a marginal decrease in aBMD (-0.04). The mean z-score change per annum for those 'who could walk unaided' was more positive for LS BMAD (p=0.040). Total body BMD mean annual z-score change from baseline to follow-up was negative (-0.03). However this change was positive in those who had achieved menses prior to the study (0.03, p=0,040). Total body BMC showed the most negative change (-0.60), representing a decrease in bone mineral content over time. This normalised to a z-score change of 0.21 once adjusted for the reduced lean tissue mass mean z-score change (-0.21) and bone area mean z-score change (-0.14). Overall, the bone mineral content, bone mineral density, bone area and lean tissue mass z-scores for all outcome measures declined, with the TB BMC showing significant decreases. Weight, height and muscle mass appear to have

  2. Digestive efficiency mediated by serum calcium predicts bone mineral density in the common marmoset (Callithrix jacchus).

    PubMed

    Jarcho, Michael R; Power, Michael L; Layne-Colon, Donna G; Tardif, Suzette D

    2013-02-01

    Two health problems have plagued captive common marmoset (Callithrix jacchus) colonies for nearly as long as those colonies have existed: marmoset wasting syndrome and metabolic bone disease. While marmoset wasting syndrome is explicitly linked to nutrient malabsorption, we propose metabolic bone disease is also linked to nutrient malabsorption, although indirectly. If animals experience negative nutrient balance chronically, critical nutrients may be taken from mineral stores such as the skeleton, thus leaving those stores depleted. We indirectly tested this prediction through an initial investigation of digestive efficiency, as measured by apparent energy digestibility, and serum parameters known to play a part in metabolic bone mineral density of captive common marmoset monkeys. In our initial study on 12 clinically healthy animals, we found a wide range of digestive efficiencies, and subjects with lower digestive efficiency had lower serum vitamin D despite having higher food intakes. A second experiment on 23 subjects including several with suspected bone disease was undertaken to measure digestive and serum parameters, with the addition of a measure of bone mineral density by dual-energy X-ray absorptiometry (DEXA). Bone mineral density was positively associated with apparent digestibility of energy, vitamin D, and serum calcium. Further, digestive efficiency was found to predict bone mineral density when mediated by serum calcium. These data indicate that a poor ability to digest and absorb nutrients leads to calcium and vitamin D insufficiency. Vitamin D absorption may be particularly critical for indoor-housed animals, as opposed to animals in a more natural setting, because vitamin D that would otherwise be synthesized via exposure to sunlight must be absorbed from their diet. If malabsorption persists, metabolic bone disease is a possible consequence in common marmosets. These findings support our hypothesis that both wasting syndrome and metabolic bone

  3. Paracetamol (acetaminophen) use, fracture and bone mineral density.

    PubMed

    Williams, Lana J; Pasco, Julie A; Henry, Margaret J; Sanders, Kerrie M; Nicholson, Geoffrey C; Kotowicz, Mark A; Berk, Michael

    2011-06-01

    Paracetamol is the most widely prescribed simple analgesic and antipyretic. It exerts its effects via cyclooxygenase and endocannabinoid pathways, which may affect signalling in bone cells and hence influence bone metabolism. Given the high rates of paracetamol use in the community and the evidence linking its mechanism of action to bone metabolism, we aimed to investigate the association between paracetamol use, fracture, and bone mineral density (BMD) in women participating in the Geelong Osteoporosis Study (GOS). Cases (n = 569) were women aged ≥ 50 years identified from radiological reports as having sustained a fracture between 1994 and 1996. Controls (n = 775) were women without fracture recruited from the same region during this period. BMD was measured at the spine, hip, total body and forearm using dual energy absorptiometry. Medication use, medical history and lifestyle factors were self-reported. There were 69 (12.1%) paracetamol users among the cases and 63 (8.1%) among the controls. Paracetamol use increased the odds for fracture (OR = 1.56, 95%CI 1.09-2.24, p = 0.02). Adjustment for BMD at the spine, total hip and forearm did not confound the association. However, incorporating total body BMD into the model attenuated the association (adjusted OR = 1.46, 95%CI 1.00-2.14, p = 0.051). Further adjustment for age, weight, physical activity, smoking, alcohol, calcium intake, medication use, medical conditions, falls and previous fracture did not explain the association. These data suggest that paracetamol use is a risk factor for fracture, although the mechanism of action remains unclear.

  4. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  5. A pilot study on the impact of body composition on bone and mineral metabolism in Parkinson's disease.

    PubMed

    Fernández, María C; Parisi, Muriel S; Díaz, Sergio P; Mastaglia, Silvina R; Deferrari, Juan M; Seijo, Mariana; Bagur, Alicia; Micheli, Federico; Oliveri, Beatriz

    2007-08-01

    The impact of body composition on bone and mineral metabolism in Parkinson's disease (PD) was evaluated. Body fat mass, lean mass, bone mineral content, and bone mineral density (BMD) were measured by DXA in 22 PD patients and 104 controls. Female patients exhibited reduced body mass index, fat mass, and BMD compared to controls (p<0.05). Significant positive correlation was found between 25 OHD levels and BMC. Diminished bone mass in women with PD was found to be associated with alterations in body composition and low 25 OHD levels.

  6. Relationship between mechanical properties and bone mineral density of human femoral bone retrieved from patients with osteoarthritis.

    PubMed

    Haba, Yvonne; Lindner, Tobias; Fritsche, Andreas; Schiebenhöfer, Ann-Kristin; Souffrant, Robert; Kluess, Daniel; Skripitz, Ralf; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    The objective of this study was to analyse retrieved human femoral bone samples using three different test methods, to elucidate the relationship between bone mineral density and mechanical properties. Human femoral heads were retrieved from 22 donors undergoing primary total hip replacement due to hip osteoarthritis and stored for a maximum of 24 hours postoperatively at + 6 °C to 8 °C.Analysis revealed an average structural modulus of 232±130 N/mm(2) and ultimate compression strength of 6.1±3.3 N/mm(2) with high standard deviations. Bone mineral densities of 385±133 mg/cm(2) and 353±172 mg/cm(3) were measured using thedual energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), respectively. Ashing resulted in a bone mineral density of 323±97 mg/cm(3). In particular, significant linear correlations were found between DXA and ashing with r = 0.89 (p < 0.01, n = 22) and between structural modulus and ashing with r = 0.76 (p < 0.01, n = 22).Thus, we demonstrated a significant relationship between mechanical properties and bone density. The correlations found can help to determine the mechanical load capacity of individual patients undergoing surgical treatments by means of noninvasive bone density measurements.

  7. Mineralization and bone regeneration using a bioactive elastin-like recombinamer membrane.

    PubMed

    Tejeda-Montes, Esther; Klymov, Alexey; Nejadnik, M Reza; Alonso, Matilde; Rodriguez-Cabello, J Carlos; Walboomers, X Frank; Mata, Alvaro

    2014-09-01

    The search for alternative therapies to improve bone regeneration continues to be a major challenge for the medical community. Here we report on the enhanced mineralization, osteogenesis, and in vivo bone regeneration properties of a bioactive elastin-like recombinamer (ELR) membrane. Three bioactive ELRs exhibiting epitopes designed to promote mesenchymal stem cell adhesion (RGDS), mineralization (DDDEEKFLRRIGRFG), and both cell adhesion and mineralization were synthesized using standard recombinant protein techniques. The ELR materials were then used to fabricate membranes comprising either a smooth surface (Smooth) or channel microtopographies (Channels). Mineralization and osteoblastic differentiation of primary rat mesenchymal stem cells (rMSCs) were analyzed in both static and dynamic (uniaxial strain of 8% at 1 Hz frequency) conditions. Smooth mineralization membranes in static condition exhibited the highest quantity of calcium phosphate (Ca/P of 1.78) deposition with and without the presence of cells, the highest Young's modulus, and the highest production of alkaline phosphatase on day 10 in the presence of cells growing in non-osteogenic differentiation medium. These membranes were tested in a 5 mm-diameter critical-size rat calvarial defect model and analyzed for bone formation on day 36 after implantation. Animals treated with the mineralization membranes exhibited the highest bone volume within the defect as measured by micro-computed tomography and histology with no significant increase in inflammation. This study demonstrates the possibility of using bioactive ELR membranes for bone regeneration applications.

  8. Bone and mineral metabolism in adult celiac disease

    SciTech Connect

    Caraceni, M.P.; Molteni, N.; Bardella, M.T.; Ortolani, S.; Nogara, A.; Bianchi, P.A.

    1988-03-01

    Bone mineral density (/sup 125/I photon absorptiometry) was lower in 20 untreated adult celiac patients than in sex- and age-matched controls (p less than 0.001), and plasma alkaline phosphatase, parathyroid hormone, urinary hydroxyproline/creatinine levels were higher than normal (p less than 0.05, less than 0.001, less than 0.05, respectively). Gluten-free diet was started, and the patients were divided randomly into two treatment groups, one which received oral 25-hydroxyvitamin D 50 micrograms/day and one which did not. After 12 months' treatment, bone turnover markers showed a decrease, which did not reach statistical significance, and bone mineral density did not show significant modifications compared with base line in either group. It was found that a gluten-free diet followed for 1 yr can prevent further bone loss, but no significant differences were detected between the two groups.

  9. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects.

    PubMed

    Broggini, Nina; Bosshardt, Dieter D; Jensen, Simon S; Bornstein, Michael M; Wang, Chun-Cheng; Buser, Daniel

    2015-10-01

    The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2.25%). At 8 weeks, percent filler amongst the test groups (DBBM (31.6%), HA-SiO (31.23%), followed by BCP 60/40 (23.65%)) demonstrated a similar pattern and was again significantly higher as compared to autogenous bone (9.29%). Autogenous bone again exhibited statistically significantly greater new bone (55.13%) over HA-SiO (40.62%), BCP 60/40 (40.21%), and DBBM (36.35%). These results suggest that the osteogenic potential of HA-SiO and BCP is inferior when compared to autogenous bone. However, in instances where a low substitution rate is desired to maintain the volume stability of augmented sites, particularly in the esthetic zone, HA-SiO and DBBM may be favored.

  10. Measuring the Hardness of Minerals

    ERIC Educational Resources Information Center

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  11. Tooth dentin defects reflect genetic disorders affecting bone mineralization

    PubMed Central

    Vital, S. Opsahl; Gaucher, C.; Bardet, C.; Rowe, P.S.; George, A.; Linglart, A.; Chaussain, C.

    2012-01-01

    Several genetic disorders affecting bone mineralization may manifest during dentin mineralization. Dentin and bone are similar in several aspects, especially pertaining to the composition of the extracellular matrix (ECM) which is secreted by well-differentiated odontoblasts and osteoblasts, respectively. However, unlike bone, dentin is not remodelled and is not involved in the regulation of calcium and phosphate metabolism. In contrast to bone, teeth are accessible tissues with the shedding of deciduous teeth and the extractions of premolars and third molars for orthodontic treatment. The feasibility of obtaining dentin makes this a good model to study biomineralization in physiological and pathological conditions. In this review, we focus on two genetic diseases that disrupt both bone and dentin mineralization. Hypophosphatemic rickets is related to abnormal secretory proteins involved in the ECM organization of both bone and dentin, as well as in the calcium and phosphate metabolism. Osteogenesis imperfecta affects proteins involved in the local organization of the ECM. In addition, dentin examination permits evaluation of the effects of the systemic treatment prescribed to hypophosphatemic patients during growth. In conclusion, dentin constitutes a valuable tool for better understanding of the pathological processes affecting biomineralization. PMID:22296718

  12. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers.

    PubMed

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-12-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed.

  13. Comparison of nutritional intake, body composition, bone mineral density, and isokinetic strength in collegiate female dancers

    PubMed Central

    Lim, Se-Na; Chai, Joo-Hee; Song, Jong Kook; Seo, Myong-Won; Kim, Hyun-Bae

    2015-01-01

    This study compared nutritional intake, body composition, bone mineral density, and isokinetic strength by dance type in collegiate female dancers. The study subjects included Korean dancers (n=12), ballet dancers (n=13), contemporary dancers (n=8), and controls (n=12). Nutritional intake was estimated using the Computer Aided Nutritional Analysis Program. Body composition and bone mineral density were measured using dual-energy X-ray absorptiometry. Isokinetic knee joint strength was measured by Cybex 770-NORM. All statistical analyses were performed by SAS 9.2. Means and standard deviations were calculated using descriptive statistics. One-way analysis of variance was applied to evaluate nutritional intake, body composition, bone mineral density, and isokinetic strength differences. Duncan multiple range test was used for post hoc testing. A level of significance was set at P<0.05. The study results indicated no significant differences in nutritional in-take among dancer types. Despite no significant differences in body composition among dancer types, contemporary and ballet dancers had lower body fat percentages than controls (P<0.05). No significant differences were seen in bone mineral density and bone mineral contents among dancer types. No significant differences were found in isokinetic strength in right or left knee flexion and extension at 60°/sec (P<0.05). There were significant differences in body composition and isokinetic strength between dancer groups and the control group. Further studies of different professional dance type and more scientific methods of dance training are needed. PMID:26730387

  14. Bone mineral density and body composition in a myelomeningocele children population: effects of walking ability and sport activity.

    PubMed

    Ausili, E; Focarelli, B; Tabacco, F; Fortunelli, G; Caradonna, P; Massimi, L; Sigismondi, M; Salvaggio, E; Rendeli, C

    2008-01-01

    Myelomeningocele causes serious locomotor disability, osteoporosis and pathologic fractures. The aim of this study was to investigate the relationship between body composition, bone mineral density, walking ability and sport activity in myelomeningocele children. 60 patients aged between 5 and 14 yrs with myelomeningocele (22 ambulatory and 38 non-ambulatory), were studied. Fat mass and fat-free-mass were calculated by anthropometry. The bone mineral density at lumbar and femoral neck were evaluated. Bone mineral density at the lumbar and femoral neck was lower than in the normal population. In the non-ambulaty group, bone mineral density was approximately 1 SD lower than in the ambulatory one (p < 0.01). Fat mass was greater than expected but without significantly differences between walking group (mean 26%) and wheel-chair users (25%). Patients practised sport activity had a better bone mineral density and body fat compared with other patients with the same disability. Patients with myelomeningocele have decreased bone mineral density and are at higher risk of pathologic bone fractures. All subjects showed an excess of fat as percentage of body weight and are shorter than normal children. The measurement of bone mineral density may help to identify those patients at greatest risk of suffering of multiple fractures. Walk ability and sport activity, associated with the development of muscle mass, are important factors in promoting bone and body growth, to reduce the risk of obesity and of pathological fractures.

  15. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  16. Determinants of bone mineral density in Chinese men.

    PubMed

    Cheung, E Y N; Ho, A Y Y; Lam, K F; Tam, S; Kung, A W C

    2005-12-01

    Osteoporotic fractures are increasing among Asian populations in both genders, but the risk factors for low bone mineral density (BMD) in Asian men is unclear. To determine the hormonal and lifestyle risk factors for low BMD in Asian men, we studied 407 community-dwelling southern Chinese men aged 50 years and above. Medical history and lifestyle habits were obtained with a structured questionnaire. Dietary calcium and phytoestrogen intake were assessed by a semi-quantitative questionnaire. BMD at the spine and hip were measured by dual-energy X-ray absorptiometry (DXA). Fasting blood was analyzed for 25(OH)D, parathyroid hormone (PTH), total and bioavailable estradiol (bio-E) and testosterone (bio-T). The mean age of the cohort was 68.42+/-10.4 (50-96) years. In the linear regression model, weight, age, body mass index (BMI), bio-E, PTH, cigarette smoking and weight-bearing exercise were significant determinants of total hip BMD. Together they explained 55% of the total variance of hip BMD, with body weight being the most important determining factor. With age and weight adjustment, height, bio-T and flavonoid intake were identified as additional determinants of total hip BMD. Strategies to prevent bone loss and osteoporosis in Asian men should include lifestyle modification and maintenance of hormonal sufficiency.

  17. [Regulation of bone mineralization by parathyroid hormone].

    PubMed

    Shimizu, Masaru; Tamura, Tatsuya

    2004-06-01

    In randomized clinical trials, parathyroid hormone (PTH) showed potent anabolic effects on the lumbar spine and decreased the risk of incident vertebral fractures dramatically. Although the anabolic effect of PTH on cortical bone in the femoral neck is still unclear, it should be demonstrated in further clinical studies. Concurrent or sequential therapies of PTH and anti-resorptive agents will be one of the major issues of treatment for osteoporosis in the future.

  18. Study of photoacoustic measurement of bone health based on clinically relevant models

    NASA Astrophysics Data System (ADS)

    Feng, Ting; Kozloff, Ken; Cao, Meng; Cheng, Qian; Yuan, Jie; Wang, Xueding

    2016-02-01

    Photoacoustic (PA) technique involving both ultrasound and light has been explored for potential application in the assessment of bone health. The optical and ultrasound penetration in bone have been studied. The feasibility of conducting 3D PA imaging of bone, and performing quantitative evaluation of bone microstructures by using photoacoustic spectrum analysis (PASA) has also been investigated. The findings from the experiments demonstrate that PA measurement could offer information of bone mineral density and bone microstructure, both relevant to bone health.

  19. Probing carbonate in bone forming minerals on the nanometre scale.

    PubMed

    Kłosowski, Michał M; Friederichs, Robert J; Nichol, Robert; Antolin, Nikolas; Carzaniga, Raffaella; Windl, Wolfgang; Best, Serena M; Shefelbine, Sandra J; McComb, David W; Porter, Alexandra E

    2015-07-01

    To devise new strategies to treat bone disease in an ageing society, a more detailed characterisation of the process by which bone mineralises is needed. In vitro studies have suggested that carbonated mineral might be a precursor for deposition of bone apatite. Increased carbonate content in bone may also have significant implications in altering the mechanical properties, for example in diseased bone. However, information about the chemistry and coordination environment of bone mineral, and their spatial distribution within healthy and diseased tissues, is lacking. Spatially resolved analytical transmission electron microscopy is the only method available to probe this information at the length scale of the collagen fibrils in bone. In this study, scanning transmission electron microscopy combined with electron energy-loss spectroscopy (STEM-EELS) was used to differentiate between calcium-containing biominerals (hydroxyapatite, carbonated hydroxyapatite, beta-tricalcium phosphate and calcite). A carbon K-edge peak at 290 eV is a direct marker of the presence of carbonate. We found that the oxygen K-edge structure changed most significantly between minerals allowing discrimination between calcium phosphates and calcium carbonates. The presence of carbonate in carbonated HA (CHA) was confirmed by the formation of peak at 533 eV in the oxygen K-edge. These observations were confirmed by simulations using density functional theory. Finally, we show that this method can be utilised to map carbonate from the crystallites in bone. We propose that our calibration library of EELS spectra could be extended to provide spatially resolved information about the coordination environment within bioceramic implants to stimulate the development of structural biomaterials.

  20. Difference in Bone Mineral Density between Young versus Midlife Women

    ERIC Educational Resources Information Center

    Sanderson, Sonya; Anderson, Pamela S.; Benton, Melissa J.

    2016-01-01

    Background: Older age is a risk factor for low bone mineral density (BMD). Older women have been found to have lower BMD than younger women. Recent trends for decreased calcium consumption and physical activity may place younger women at greater risk than previously anticipated. Purpose: The purpose of this study was to evaluate the effect of age…

  1. Time Related Changes of Mineral and Collagen and Their Roles in Cortical Bone Mechanics of Ovariectomized Rabbits

    PubMed Central

    Xu, Chao; Wu, Zi-Xiang; Zhang, Yang; Feng, Ya-Fei; Yan, Ya-Bo; Lei, Wei

    2015-01-01

    As cortical bone has a hierarchical structure, the macroscopic bone strength may be affected by the alterations of mineral crystal and collagen, which are main components of cortical bone. Limited studies focused on the time related alterations of these two components in osteoporosis, and their contributions to bone mechanics at tissue level and whole-bone level. Therefore, the purpose of this study was to elucidate the time related changes of mineral and collagen in cortical bone of ovariectomized (OVX) rabbits, and to relate these changes to cortical bone nanomechanics and macromechanics. 40 Rabbits (7-month-old) were randomly allocated into two groups (OVX and sham). OVX group received bilateral ovariectomy operation. Sham group received sham-OVX operation. Cortical bone quality of five rabbits in each group were assessed by DXA, μCT, nanoindentation, Fourier transform infrared (FTIR) spectroscopy and biomechanical tests (3-point bending of femoral midshaft) at pre-OVX, 4, 6, and 8 weeks after OVX. As time increased from pre-OVX to 8 weeks, the mineral to matrix ratio decreased with time, while both collagen crosslink ratio and crystallinity increased with time in OVX group. Elastic modulus and hardness measured by nanoindentation, whole-bone strength measured by biomechanical tests all decreased in OVX group with time. Bone material properties measured by FTIR correlated well with nano or whole-bone level mechanics. However, bone mineral density (BMD), structure, tissue-level and whole-bone mechanical properties did not change with age in sham group. Our study demonstrated that OVX could affect the tissue-level mechanics and bone strength of cortical bone. And this influence was attributed to the time related alterations of mineral and collagen properties, which may help us to design earlier interventions and more effective treatment strategies on osteoporosis. PMID:26046792

  2. Value of bone scintigraphy for detection and ageing of vertebral fractures in patients with severe osteoporosis and correlation between bone scintigraphy and mineral bone density.

    PubMed

    Kucukalic-Selimovic, Elma; Begic, Amela

    2004-01-01

    Osteoporosis is the most common of the metabolic bone diseases, and is an important cause of morbidity in the elderly. Bone scintigraphy is used to detect skeletal lesions at the earliest possible time, to monitor the course of the skeletal discase and to evaluate the metabolic activity of skeletal lesions. The aim of this study was to determine, by using the bone scan age of vertebral fractures in patients with severe osteoporosis, and make correlation between bone scintigraphy and mineral bone density. Material and methods 30 female patients were studied with bone scintigraphy after BMD.BMD was measurred with DEXA Hologic QDR 4500 Elite System. Correlation between T-score and uptake of radiofarmaceutical (Tc-99mMDP) was 0.849, and it was high. Intensity of uptake of Tc-99m MDP scintigraphy is an accurate method for the detection and ageing of fractures in osteoporotic patients.

  3. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    PubMed Central

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  4. Hake fish bone as a calcium source for efficient bone mineralization.

    PubMed

    Flammini, Lisa; Martuzzi, Francesca; Vivo, Valentina; Ghirri, Alessia; Salomi, Enrico; Bignetti, Enrico; Barocelli, Elisabetta

    2016-01-01

    Calcium is recognized as an essential nutritional factor for bone health. An adequate intake is important to achieve or maintain optimal bone mass in particular during growth and old age. The aim of the present study was to evaluate the efficiency of hake fish bone (HBF) as a calcium source for bone mineralization: in vitro on osteosarcoma SaOS-2 cells, cultured in Ca-free osteogenic medium (OM) and in vivo on young growing rats fed a low-calcium diet. Lithotame (L), a Ca supplement derived from Lithothamnium calcareum, was used as control. In vitro experiments showed that HBF supplementation provided bone mineralization similar to standard OM, whereas L supplementation showed lower activity. In vivo low-Ca HBF-added and L-added diet similarly affected bone deposition. Physico-chemical parameters concerning bone mineralization, such as femur breaking force, tibia density and calcium/phosphorus mineral content, had beneficial effects from both Ca supplementations, in the absence of any evident adverse effect. We conclude HBF derived from by-product from the fish industry is a good calcium supplier with comparable efficacy to L.

  5. Bone Mineral Status in Children and Adolescents with Klinefelter Syndrome

    PubMed Central

    Stagi, Stefano; Di Tommaso, Mariarosaria; Manoni, Cristina; Scalini, Perla; Chiarelli, Francesco; Verrotti, Alberto; Lapi, Elisabetta; Giglio, Sabrina; Dosa, Laura; de Martino, Maurizio

    2016-01-01

    Objective. Klinefelter syndrome (KS) has long-term consequences on bone health. However, studies regarding bone status and metabolism during childhood and adolescence are very rare. Patients. This cross-sectional study involved 40 (mean age: 13.7 ± 3.8 years) KS children and adolescents and 80 age-matched healthy subjects. For both patient and control groups, we evaluated serum levels of ionised and total calcium, phosphate, total testosterone, luteinising hormone, follicle stimulating hormone, parathyroid hormone (PTH), 25-hydroxyvitamin D (25(OH)D), 1,25-dihydroxyvitamin D, osteocalcin, bone alkaline phosphatase, and urinary deoxypyridinoline concentrations. We also calculated the z-scores of the phalangeal amplitude-dependent speed of sound (AD-SoS) and the bone transmission time (BTT). Results. KS children and adolescents showed significantly reduced AD-SoS (p < 0.005) and BTT (p < 0.0005) z-scores compared to the controls. However, KS patients presented significantly higher PTH (p < 0.0001) and significantly lower 25(OH)D (p < 0.0001), osteocalcin (p < 0.05), and bone alkaline phosphatase levels (p < 0.005). Interestingly, these metabolic bone disorders were already present in the prepubertal subjects. Conclusions. KS children and adolescents exhibited impaired bone mineral status and metabolism with higher PTH levels and a significant reduction of 25-OH-D and bone formation markers. Interestingly, this impairment was already evident in prepubertal KS patients. Follow-ups should be scheduled with KS patients to investigate and ameliorate bone mineral status and metabolism until the prepubertal ages. PMID:27413371

  6. Dietary l-carnitine supplementation improves bone mineral density by suppressing bone turnover in aged ovariectomized rats.

    PubMed

    Hooshmand, Shirin; Balakrishnan, Anju; Clark, Richard M; Owen, Kevin Q; Koo, Sung I; Arjmandi, Bahram H

    2008-08-01

    Postmenopausal bone loss is a major public health concern. Although drug therapies are available, women are interested in alternative/adjunct therapies to slow down the bone loss associated with ovarian hormone deficiency. The purpose of this study was to determine whether dietary supplementation of l-carnitine can influence bone density and slow the rate of bone turnover in an aging ovariectomized rat model. Eighteen-month-old Fisher-344 female rats were ovariectomized and assigned to two groups: (1) a control group in which rats were fed ad libitum a carnitine-free (-CN) diet (AIN-93M) and (2) another fed the same diet but supplemented with l-carnitine (+CN). At the end of 8 weeks of feeding, animals were sacrificed and bone specimens were collected for measuring bone mineral content (BMC) and density (BMD) using dual energy X-ray absorptiometry. Femoral microarchitectural properties were assessed by microcomputed tomography. Femoral mRNA levels of selected bone matrix proteins were determined by northern blot analysis. Data showed that tibial BMD was significantly higher in the rat fed the +CN diet than those fed the -CN (control) diet. Dietary carnitine significantly decreased the mRNA level of tartrate-resistant acid phosphatase (TRAP), an indicator of bone resorption by 72.8%, and decreased the mRNA abundance of alkaline phosphatase (ALP) and collagen type-1 (COL), measures of bone formation by 63.6% and 61.2%, respectively. The findings suggest that carnitine supplementation slows bone loss and improves bone microstructural properties by decreasing bone turnover.

  7. Effects of genistein on vertebral trabecular bone microstructure, bone mineral density, microcracks, osteocyte density, and bone strength in ovariectomized rats.

    PubMed

    Dai, Ruchun; Ma, Yulin; Sheng, Zhifeng; Jin, Yan; Zhang, Yuhai; Fang, Lingna; Fan, Huijie; Liao, Eryuan

    2008-01-01

    Until now, the effects of phytoestrogen on bone in both women and ovarian hormone-deficient animal models of osteoporosis have remained uncertain. We have aimed here to investigate the effect of genistein (GEN) on trabecular bone quality in ovariectomized (OVX) rats. Forty 7-month-old female Sprague-Dawley rats were randomly divided into the following four groups: OVX, sham-operated (SHAM), treated with 17beta-estradiol (EST, 10 microg x kg(-1) x day(-1)), and GEN (5 mg x kg(-1) x day(-1)). At 15 weeks postoperation, the compressive test was performed on the L5 vertebral body; additionally, microcomputed tomography (micro-CT) assessment was performed to estimate the bone mineral density (BMD) and microstructure parameters of the L6 vertebral body. After fatigue damage testing, the L6 vertebral body was bulk-stained in 1% basic fuchsin and embedded in methylmethacrylate. The L4 vertebral body was embedded in methylmethacrylate for dynamic histomorphometry analysis without staining. Mounted bone slices were used to measure microcrack parameters, empty osteocyte lacuna density (e.Lc.Dn), and osteocyte density (Ot.N/T.Ar). Maximum loading (ML) and Ot.N/T.Ar were significantly lower in the OVX group than in the other groups. E.Lc.Dn was significantly decreased in GEN and EST groups compared to the OVX group. ML was significantly decreased in the GEN group compared to the SHAM group. Microcrack density, microcrack surface density, and microcrack length were significantly increased in the OVX group compared to the other groups. Mineral apposition rate was significantly decreased in the OVX group compared to the SHAM and GEN groups. Bone formation rate was significantly decreased in the OVX group compared to other groups. There were no significant differences with regard to mineralizing surface among the four groups. Volumetric BMD at organ was significantly lower in OVX, EST, and GEN groups than in the SHAM group. Bone mineral content was significantly lower in the OVX

  8. A Piece of the Puzzle: The Bone Health Index of the BoneXpert Software Reflects Cortical Bone Mineral Density in Pediatric and Adolescent Patients

    PubMed Central

    Schündeln, Michael M.; Marschke, Laura; Bauer, Jens J.; Hauffa, Pia K.; Schweiger, Bernd; Führer-Sakel, Dagmar; Lahner, Harald; Poeppel, Thorsten D.; Kiewert, Cordula; Hauffa, Berthold P.; Grasemann, Corinna

    2016-01-01

    Introduction Suspected osteopathology in chronically ill children often necessitates the assessment of bone mineral density. The most frequently used methods are dual-energy X-ray-absorption (DXA) and peripheral quantitative computed tomography (pQCT). The BoneXpert software provides an automated radiogrammatic method to assess skeletal age from digitalized X-rays of the left hand. Furthermore, the program calculates the Bone Health Index (BHI), a measure of cortical thickness and mineralization, which is obtained from indices of three metacarpal bones. In our study, we analyzed the manner in which BHI information provided by BoneXpert compares with DXA or pQCT measurements in youths. Study Design The BHI was retrospectively obtained using digitalized X-rays of the left hand and compared with the results of 203 corresponding DXA readings (Lunar Prodigy, GE Healthcare) of the lumbar vertebrae and femur as well as 117 pQCT readings (XCT 900, Stratec) of the distal radius. Results The BHI values showed a strong positive correlation with the DXA readings at each and all lumbar vertebrae (L1 –L4: r = 0.73; P < 0.0001). The age-adjusted Z-score of L1 –L4 and the height-adjusted score showed a positive correlation with the BHI-SDS (standard deviation score, r = 0.23; P < 0.002 and r = 0.27; P < 0.001, respectively). Total bone mineral density, as assessed via pQCT, also positively correlated with the BHI (r = 0.39; P < 0.0001), but the trabecular values displayed only a weak correlation. Conclusions The BHI obtained using BoneXpert can be a useful parameter in the assessment of bone health in children in most cases. This technique provides observer-independent information on cortical thickness and mineralization based on X-ray imaging of the hands. PMID:27014874

  9. [Effect of vitamin D on bone mineral density; bone strength and fracture prevention].

    PubMed

    Okuizumi, Hiroyasu; Harada, Atsushi

    2006-07-01

    Although vitamin D improves bone mineral density 0.66% per year at spine site and 1.23% per year at femoral neck site, respectively, vitamin D is useful for preventing osteoporotic fractures, especially hip fractures in the elderly. Vitamin D affects microstructure and bone turnover for osteoporotic bone to become strong bone. And vitamin D improves muscle function to prevent falls in the elderly. Moreover the appropriate amount and treatment target of vitamin D must be considered for the elderly with many different diseases.

  10. Investigation of the relationship between low environmental exposure to metals and bone mineral density, bone resorption and renal function.

    PubMed

    Callan, A C; Devine, A; Qi, L; Ng, J C; Hinwood, A L

    2015-07-01

    Environmental exposure to metals has been linked to adverse health outcomes. Exposure to cadmium has been associated with decreased bone density, an increased risk of osteoporotic fracture and possible renal dysfunction. Older women are a group at risk of renal and bone density impacts and exposure to metals may be an important risk factor for these health outcomes. This study was a cross sectional study of 77 women aged 50 years and above examining the relationship between metals exposure and renal and bone health. Urinary and blood metals concentrations, plasma creatinine, iron, ferritin and transferrin were measured in these subjects. Bone biomarkers assessed included the pyridinium crosslinks, pyridinoline and deoxypyridinoline measured by ELISA. Renal function was assessed using eGFR and KIM-1. Whole body, hip and lumbar spine bone mineral density was assessed using DEXA. Blood and urinary metals concentrations were generally low in the subjects, with a median urinary cadmium concentration of 0.26 μg/g creatinine (range <0.065-1.03 μg/g). Urinary cadmium was found to be a significant predictor of bone mineral density at whole body, lumber spine, total hip and femoral neck, with increasing urinary Cd concentrations associated with decreased bone density. Urinary cadmium and aluminium concentrations were positively correlated with bone resorption whilst blood zinc and mercury concentrations were negatively correlated. Urinary aluminium was positively correlated with KIM-1 concentrations, a marker of early kidney damage, however blood zinc concentrations were significantly negatively correlated with this biomarker. This study provides additional support for low cadmium exposure being of concern for the health of older women. Further investigation into the role of exposure to other metals on bone and renal health is warranted.

  11. Contribution of mineral to bone structural behavior and tissue mechanical properties.

    PubMed

    Donnelly, Eve; Chen, Dan X; Boskey, Adele L; Baker, Shefford P; van der Meulen, Marjolein C H

    2010-11-01

    Bone geometry and tissue material properties jointly govern whole-bone structural behavior. While the role of geometry in structural behavior is well characterized, the contribution of the tissue material properties is less clear, partially due to the multiple tissue constituents and hierarchical levels at which these properties can be characterized. Our objective was to elucidate the contribution of the mineral phase to bone mechanical properties across multiple length scales, from the tissue material level to the structural level. Vitamin D and calcium deficiency in 6-week-old male rats was employed as a model of reduced mineral content with minimal collagen changes. The structural properties of the humeri were measured in three-point bending and related to the mineral content and geometry from microcomputed tomography. Whole-cortex and local bone tissue properties were examined with infrared (IR) spectroscopy, Raman spectroscopy, and nanoindentation to understand the role of altered mineral content on the constituent material behavior. Structural stiffness (-47%) and strength (-50%) were reduced in vitamin D-deficient (-D) humeri relative to controls. Moment of inertia (-38%), tissue mineral density (TMD, -9%), periosteal mineralization (-28%), and IR mineral:matrix ratio (-19%) were reduced in -D cortices. Thus, both decreased tissue mineral content and changes in cortical geometry contributed to impaired skeletal load-bearing function. In fact, 97% of the variability in humeral strength was explained by moment of inertia, TMD, and IR mineral:matrix ratio. The strong relationships between structural properties and cortical material composition demonstrate a critical role of the microscale material behavior in skeletal load-bearing performance.

  12. Mineralization of human bone tissue under hypokinesia and physical exercise with calcium supplements

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Verentsov, Grigori E.; Abratov, Nikolai I.

    It has been suggested that physical exercise and calcium supplements may be used to prevent demineralization of bone tissue under hypokinesia (diminished muscular activity). Thus, the aim of this study was to determine mineral content of bones of 12 physically healthy men aged 19-24 years under 90 days of hypokinesia and intensive physical exercise (PE) with calcium lactate (C) supplements. They were divided into experimental and control groups with 6 men in each. The experimental group of men were subjected to hypokinesia (HK) and intensive PE and took 650 mg C 6 times per day; the control group was placed under pure HK, i.e. without the use of any preventive measures. The mineral content of different bone tissues was measured with a densitometric X-ray method in milligrams of calcium per 1 mm 3 before and after exposure to HK. The level of bone density of the examined bone tissues decreased by 7-9% and 5-7% for the control and experimental groups of men, respectively. A statistical analysis revealed that the reduction of bone mineralization was significant with P < 0.01 in both groups of men. A comparison between bone density changes in the control and experimental groups of men failed to demonstrate significant differences. It was concluded that the level of mineralization of bone tissues decreased under hypokinesia and physical exercise with calcium supplements. Experimental studies of hypokinetic physiology are generally based on the assumption that diminished muscular activity (progressive reduction of number of steps per day) is detrimental to animal and human organisms, since the entire animal kingdom had been formed in an environment of high motor activity which left its imprint on the evolution, structure, function and behaviour of animals and men. The impossibility of the body tissues to retain optimum amounts of fluid and electrolytes is the dominant hypokinetic effect.

  13. Strong Association Between Tibial Plateau Bone Mineral Density and Cartilage Damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tibial bone mineral density (BMD) is associated with radiographic features of osteoarthritis (OA), but no study has looked at its relationship with a direct measure of cartilage damage. We hypothesize that a relative increase in medial and lateral tibial BMD will be associated with cartilage damage...

  14. Bone Mineral Density in Adults With Down Syndrome, Intellectual Disability, and Nondisabled Adults

    ERIC Educational Resources Information Center

    Geijer, Justin R.; Stanish, Heidi I.; Draheim, Christopher C.; Dengel, Donald R.

    2014-01-01

    Individuals with intellectual disability (ID) or Down syndrome (DS) may be at greater risk of osteoporosis. The purpose of this study was to compare bone mineral density (BMD) of DS, ID, and non-intellectually disabled (NID) populations. In each group, 33 participants between the ages of 28 and 60 years were compared. BMD was measured with…

  15. Bone mineral density predicts fractures in chronic kidney disease.

    PubMed

    West, Sarah L; Lok, Charmaine E; Langsetmo, Lisa; Cheung, Angela M; Szabo, Eva; Pearce, Dawn; Fusaro, Maria; Wald, Ron; Weinstein, Jordan; Jamal, Sophie A

    2015-05-01

    Fractures are common in chronic kidney disease (CKD). The optimal methods by which to assess fracture risk are unknown, in part, due to a lack of prospective studies. We determined if bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA), and/or high-resolution peripheral quantitative computed tomography (HRpQCT) could predict fractures in men and women ≥18 years old with stages 3 to 5 CKD. BMD was measured by DXA (at the total hip, lumbar spine, ultradistal, and 1/3 radius) and by HRpQCT (at the radius), and subjects were followed for 2 years for incident morphometric spine fractures and low-trauma clinical fractures. The mean age of the subjects was 62 years with equal numbers having stages 3, 4, and 5 CKD. Over 2 years there were 51 fractures in 35 subjects. BMD by DXA at baseline was significantly lower at all sites among those with incident fractures versus those without. For example, the mean BMD at the total hip in those with incident fractures was 0.77 g/cm2 (95% confidence interval [CI], 0.73 to 0.80) and in those without fracture was 0.95 g/cm2 (95% CI, 0.92 to 0.98). Almost all baseline HRpQCT measures were lower in those with incident fracture versus those without. For example, volumetric BMD in those with incident fractures was 232 mg HA/cm3 (95% CI, 213 to 251) and in those without fracture was 317.6 mg HA/cm3 (95% CI, 306 to 329.1). Bone loss occurred in all subjects, but was significantly greater among those with incident fractures. Our data demonstrate that low BMD (by DXA and HRpQCT) and a greater annualized percent decrease in BMD are risk factors for subsequent fracture in men and women with predialysis CKD.

  16. Effect of probiotics supplementation on bone mineral content and bone mass density.

    PubMed

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium. The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density.

  17. Effect of Probiotics Supplementation on Bone Mineral Content and Bone Mass Density

    PubMed Central

    Parvaneh, Kolsoom; Jamaluddin, Rosita; Karimi, Golgis; Erfani, Reza

    2014-01-01

    A few studies in animals and a study in humans showed a positive effect of probiotic on bone metabolism and bone mass density. Most of the investigated bacteria were Lactobacillus and Bifidobacterium . The positive results of the probiotics were supported by the high content of dietary calcium and the high amounts of supplemented probiotics. Some of the principal mechanisms include (1) increasing mineral solubility due to production of short chain fatty acids; (2) producing phytase enzyme by bacteria to overcome the effect of mineral depressed by phytate; (3) reducing intestinal inflammation followed by increasing bone mass density; (4) hydrolysing glycoside bond food in the intestines by Lactobacillus and Bifidobacteria. These mechanisms lead to increase bioavailability of the minerals. In conclusion, probiotics showed potential effects on bone metabolism through different mechanisms with outstanding results in the animal model. The results also showed that postmenopausal women who suffered from low bone mass density are potential targets to consume probiotics for increasing mineral bioavailability including calcium and consequently increasing bone mass density. PMID:24587733

  18. Unique biochemical and mineral composition of whale ear bones.

    PubMed

    Kim, Sora L; Thewissen, J G M; Churchill, Morgan M; Suydam, Robert S; Ketten, Darlene R; Clementz, Mark T

    2014-01-01

    Abstract Cetaceans are obligate aquatic mammals derived from terrestrial artiodactyls. The defining characteristic of cetaceans is a thick and dense lip (pachyosteosclerotic involucrum) of an ear bone (the tympanic). This unique feature is absent in modern terrestrial artiodactyls and is suggested to be important in underwater hearing. Here, we investigate the mineralogical and biochemical properties of the involucrum, as these may hold clues to the aquatic adaptations of cetaceans. We compared bioapatites (enamel, dentine, cementum, and skeletal bone) of cetaceans with those of terrestrial artiodactyls and pachyosteosclerotic ribs of manatees (Sirenia). We investigated organic, carbonate, and mineral composition as well as crystal size and crystallinity index. In all studied variables, bioapatites of the cetacean involucrum were intermediate in composition and structure between those of tooth enamel on the one hand and those of dentine, cementum, and skeletal bone on the other. We also studied the amino acid composition of the cetacean involucrum relative to that of other skeletal bone. The central involucrum had low glycine and hydroxyproline concentrations but high concentrations of nonessential amino acids, unlike most bone samples but similar to the tympanic of hippos and the (pachyosteosclerotic) ribs of manatees. These amino acid results are evidence of rapid bone development. We hypothesize that the mineralogical and amino acid composition of cetacean bullae differs from that of other bone because of (1) functional modifications for underwater sound reception and (2) structural adaptations related to rapid ossification.

  19. Comparative investigation of bone mineral density using CT and DEXA in a canine femoral model.

    PubMed

    Lucas, Karin; Behrens, Bernd-Arno; Nolte, Ingo; Galindo-Zamora, Vladimir; Betancur, Stefanie; Almohallami, Amer; Bouguecha, Anas; Mostafa, Ayman; Lerch, Matthias; Stukenborg-Colsman, Christina; Wefstaedt, Patrick

    2017-04-07

    Bone density measurements using computed tomography (CT) instead of dual-energy X-ray absorptiometry (DEXA) are currently of great interest in human and veterinary medical research as it would be beneficial to use CT scans obtained for other indications also for determining bone density. For Hounsfield units (HU) measured with CT in specific regions of interests (ROIs) in one or several slice/s a corrrelation with bone mineral density (BMD) measured by DEXA in humans and dogs of between 0.44 and 0.77 is reported in the literature. In the present study instead certain volumes of interest (VOIs) obtained by CT scan and the corresponding HU to the respective VOIs were compared with the bone mineral density of the corresponding areas measured by DEXA. The aim of the study was to investigate whether this procedure gives more accurate information about bone density of the bones as 3-dimensional objects of the respective patient. Correlation between measured HU in the respective VOI and BMD measured with DEXA in the corresponding ROI showed a very good correlation of 0.93. Linear regression with R(2) = 0.85 (p = 0.0262) was calculated. Except for VOI5, similar distribution of values and significant differences (p < 0.0001-0.0087) between ROIs/VOIs were detected. Determining HU for assessing bone mineral density in a certain volume provides more accurate results than those previously reported from 2-dimensional (2D) CT measurements. This article is protected by copyright. All rights reserved.

  20. Socket preservation using deproteinized horse-derived bone mineral

    PubMed Central

    Park, Jang-Yeol; Koo, Ki-Tae; Kim, Tae-Il; Seol, Yang-Jo; Lee, Yong-Moo; Ku, Young; Rhyu, In-Chul

    2010-01-01

    Purpose The healing process following tooth extraction apparently results in a pronounced resorption of the alveolar ridge. As a result, the width of alveolar ridge is reduced and severe alveolar bone resorption occurs. The purpose of this experiment is to clinically and histologically evaluate the results of using horse-derived bone mineral for socket preservation. Methods The study comprised 4 patients who were scheduled for extraction as a consequence of severe chronic periodontitis or apical lesion. The extraction was followed by socket preservation using horse-derived bone minerals. Clinical parameters included buccal-palatal width, mid-buccal crest height, and mid-palatal crest height. A histologic examination was conducted. Results The surgical sites healed uneventfully. The mean ridge width was 7.75 ± 2.75 mm at baseline and 7.00 ± 2.45 mm at 6 months. The ridge width exhibited no significant difference between baseline and 6 months. The mean buccal crest height at baseline was 7.5 ± 5.20 mm, and at 6 months, 3.50 ± 0.58 mm. The mean palatal crest height at baseline was 7.75 ± 3.10 mm, and at 6 months, 5.00 ± 0.82 mm. There were no significant differences between baseline and 6 months regarding buccal and palatal crest heights. The amount of newly formed bone was 9.88 ± 2.90%, the amount of graft particles was 42.62 ± 6.57%, and the amount of soft tissue was 47.50 ± 9.28%. Conclusions Socket preservation using horse-derived bone mineral can effectively maintain ridge dimensions following tooth extraction and can promote new bone formation through osteoconductive activities. PMID:21072219

  1. Effects of lactation on bone mineral content in healthy postpartum women

    SciTech Connect

    Hayslip, C.C.; Klein, T.A.; Wray, H.L.; Duncan, W.E.

    1989-04-01

    Bone mineral contents were estimated by dual photon absorptiometry of the lumbar spine (L2-L4) and single photon absorptiometry of the mid- and distal radius in 19 healthy women on their second postpartum day and at 6 months postpartum. All bone mineral measurements were performed by one technician, and the single and dual photon absorptiometry results were read by one observer. Daily oral calcium intakes were estimated from dietary histories obtained by a dietitian. Twelve women who breast-fed exclusively throughout the first 6 months postpartum were compared with seven formula-feeding women who did not breast-feed or who breast-fed for less than 3 months postpartum. No differences were found in age, parity, height, weight, or daily calcium intake between the breast- and formula-feeding women. Breast-feeding women had a significant decrease (averaging 6.5%) in bone mineral of the lumbar spine at 6 months postpartum as compared with 2 days postpartum (1.14 +/- 0.03 versus 1.22 +/- 0.03 g/cm2, mean +/- SEM; P less than .001), whereas no significant change occurred in the formula-feeding women at 6 months (1.24 +/- 0.03 versus 1.26 +/- 0.04 g/cm2). At 6 months postpartum, the breast-feeding women had a significantly lower mean bone mineral content of the lumbar spine than did formula-feeding women (P less than .05). No significant changes were noted in bone mineral content of the mid- or distal radius in either group of women during the period of evaluation. We conclude that during the first 6 months postpartum, breast-feeding is associated with bone mineral loss from the lumbar spine, but not from the mid- or distal radius.

  2. Body Composition and Bone Mineral Density in Patients With Heart Failure.

    PubMed

    Abshire, Demetrius A; Moser, Debra K; Clasey, Jody L; Chung, Misook L; Pressler, Susan J; Dunbar, Sandra B; Heo, Seongkum; Lennie, Terry A

    2016-07-10

    The purpose of this study was to examine associations among bone mineral density, osteopenia/osteoporosis, body mass index (BMI), and body composition in patients with heart failure (HF). A total of 119 patients (age = 61 ± 12 years, 65% male) underwent dual-energy X-ray absorptiometry scans to determine bone mineral density and body composition. In multivariable linear regressions, BMI, relative skeletal muscle index (RSMI), and mineral-free lean mass were positively associated with total body bone mineral density. Mineral-free lean mass was most strongly associated with bone mineral density (β = .398). In multivariable logistic regressions, higher BMI, RSMI, and mineral-free lean mass were associated with lower odds for osteopenia/osteoporosis. Fat mass was not associated with total body bone mineral density or osteopenia/osteoporosis. These results suggest that muscle mass may be the important component of body mass associated with bone mineral density in patients with HF.

  3. Preliminary report: effect of adrenal androgen and estrogen on bone maturation and bone mineral density.

    PubMed

    Arisaka, O; Hoshi, M; Kanazawa, S; Numata, M; Nakajima, D; Kanno, S; Negishi, M; Nishikura, K; Nitta, A; Imataka, M; Kuribayashi, T; Kano, K

    2001-04-01

    To clarify the independent physiological roles of adrenal androgen and estrogen on bone growth, we compared the lumbar spine bone mineral density (BMD) in prepubertal girls with virilizing congenital adrenal hyperplasia (CAH) (n = 17) and girls with central precocious puberty (CPP) (n = 18). When BMD was analyzed according to chronologic age, no significant differences were found between CPP and CAH patients. However, when adjusted to bone age, BMD was statistically higher in CAH than in CPP subjects. This finding suggests that adrenal androgen, as well as estrogen, plays an important role in increasing BMD. Adrenal androgen may act on bone not only as androgen, but as estrogen after having been metabolized into an aromatized bone-active compound in peripheral tissues, such as bone and fat. Therefore, adrenal androgen may have a more important role in increasing BMD than previously realized.

  4. Modification of os calcis bone mineral profiles during bedrest

    NASA Technical Reports Server (NTRS)

    Vogel, J. M.

    1977-01-01

    The mineral content of the left central os calcis was determined using the photon absorptiometric technique modified for the space missions to permit area scanning, and was compared with total body calcium balance changes. The instrument consists of a rectilinear scanner that is programmed by a specially designed control module to move a low energy X-ray emitting radionuclide placed in opposition to a detector to scan the foot which is places between them. The foot is placed in a plexiglas box filled with water to provide tissue equivalence and to compensate for irregularities in thickness of tissue cover that surrounds the bone. The mineral content is obtained from basic attenuation equation.

  5. CALCOSPHERULITES* ISOLATED FROM THE MINERALIZATION FRONT OF BONE INDUCE THE MINERALIZATION OF TYPE I COLLAGEN

    PubMed Central

    Midura, Ronald J.; Vasanji, Amit; Su, Xiaowei; Wang, Aimin; Midura, Sharon B.; Gorski, Jeff P.

    2007-01-01

    Previous work has suggested that “calcospherulites” actively participate in the mineralization of developing and healing bone. This study sought to directly test this hypothesis by developing a method to isolate calcospherulites and analyzing their capacity to seed mineralization of fibrillar collagen. The periosteal surface of juvenile rat tibial diaphysis was enriched in spherulites of ~0.5-micron diameter exhibiting a Ca/P ratio of 1.3. Their identity as calcospherulites was confirmed by their uptake of calcein at the tibial mineralization front 24 h following in vivo injection. Periosteum was dissected and unmineralized osteoid removed by collagenase in order to expose calcospherulites. Calcein-labeled calcospherulites were then released from the mineralization front by dispase digestion and isolated via fluorescence flow sorting. X-ray diffraction analysis revealed they contained apatite crystals (c-axis length of 17.5 ± 0.2 nm), though their Ca/P ratio of 1.3 is lower than that of hydroxyapatite. Much of their non-mineral phosphorous content was removed by ice-cold ethanol, elevating their Ca/P ratio to 1.6, suggesting the presence of phospholipids. Western blot analyses showed the presence of bone matrix proteins and type I collagen in these preparations. Incubating isolated calcospherulites in collagen hydrogels demonstrated that they could seed a mineralization reaction on type I collagen fibers in vitro. Ultrastructural analyses revealed crystals on the collagen fibers that were distributed rather uniformly along the fiber lengths. Furthermore, crystals were observed at distances well away from the observed calcospherulites. Our results directly support an active role for calcospherulites in inducing the mineralization of type I collagen fibers at the mineralization front of bone. PMID:17936099

  6. Assessing Bone Mineral Density Following Acute Hip Fractures

    PubMed Central

    Wiggin, Molly; Hemmati, Pouya; Switzer, Julie

    2015-01-01

    Objectives: In older patients, bone mineral density (BMD) diminishes with age, increasing susceptibility to femoral neck fractures. Evidence has emerged that patients who should have dual x-ray absorptiometry scans to evaluate their bone health are not doing so. Because computed tomography (CT) attenuation has now been correlated with BMD thresholds relating to osteoporosis, virtually any existing CT scan that includes the L1 vertebra can be used to assess BMD. This study evaluates the utility of CT attenuation in characterizing BMD in patients after femoral neck fractures. Methods: The electronic medical records of adults who presented to a level I trauma center with hip fractures were evaluated for eligibility. Those with a CT scan of the abdomen or other CT scan with a complete view of the L1 vertebra were included. To measure attenuation, a region of interest was selected to include the body of the L1 vertebra in the axial plane and exclude the cortices and posterior venous complex. Results: Of the 589 patients reviewed, 217 met inclusion criteria; 112 were aged 18 to 64, while 105 were ≥65. Eight (7.1%) patients in the younger cohort had a mean CT attenuation below the 110-HU threshold set for 90% specificity, whereas 31 (29.5%) patients in the older cohort had a mean CT attenuation below this threshold. Using the 160-HU threshold set for 90% sensitivity, 39 (34.8%) patients of the younger cohort and 74 (70%) patients of the older cohort were osteoporotic; all differences in CT attenuation by age were strongly significant (P < .0001). Conclusions: A significantly larger proportion of older patients with hip fractures had osteoporosis, helping validate the utility of CT attenuation in this context. In addition, a large proportion of these patients already had these images available, thus potentially helping limit cost and unnecessary medical investigations. PMID:26246948

  7. Comparison of radiograph-based texture analysis and bone mineral density with three-dimensional microarchitecture of trabecular bone

    SciTech Connect

    Ranjanomennahary, P.; Ghalila, S. Sevestre; Malouche, D; Marchadier, A.; Rachidi, M.; Benhamou, Cl.; Chappard, C.

    2011-01-15

    Purpose: Hip fracture is a serious health problem and textural methods are being developed to assess bone quality. The authors aimed to perform textural analysis at femur on high-resolution digital radiographs compared to three-dimensional (3D) microarchitecture comparatively to bone mineral density. Methods: Sixteen cadaveric femurs were imaged with an x-ray device using a C-MOS sensor. One 17 mm square region of interest (ROI) was selected in the femoral head (FH) and one in the great trochanter (GT). Two-dimensional (2D) textural features from the co-occurrence matrices were extracted. Site-matched measurements of bone mineral density were performed. Inside each ROI, a 16 mm diameter core was extracted. Apparent density (D{sub app}) and bone volume proportion (BV/TV{sub Arch}) were measured from a defatted bone core using Archimedes' principle. Microcomputed tomography images of the entire length of the core were obtained (Skyscan 1072) at 19.8 {mu}m of resolution and usual 3D morphometric parameters were computed on the binary volume after calibration from BV/TV{sub Arch}. Then, bone surface/bone volume, trabecular thickness, trabecular separation, and trabecular number were obtained by direct methods without model assumption and the structure model index was calculated. Results: In univariate analysis, the correlation coefficients between 2D textural features and 3D morphological parameters reached 0.83 at the FH and 0.79 at the GT. In multivariate canonical correlation analysis, coefficients of the first component reached 0.95 at the FH and 0.88 at the GT. Conclusions: Digital radiographs, widely available and economically viable, are an alternative method for evaluating bone microarchitectural structure.

  8. Artemisia capillaris Alleviates Bone Loss by Stimulating Osteoblast Mineralization and Suppressing Osteoclast Differentiation and Bone Resorption.

    PubMed

    Lee, Chung-Jo; Shim, Ki-Shuk; Ma, Jin Yeul

    2016-01-01

    Artemisia capillaris has been used to treat jaundice and relieve high liver-heat in traditional medicine. In this study, we found that the administration of a water extract from A. capillaris (WEAC) to the receptor activator of nuclear factor kappa-B ligand (RANKL)-induced bone loss model significantly prevents osteoporotic bone loss, increasing bone volume/trabecular volume by 22% and trabecular number by 24%, and decreasing trabecular separation by 29%. WEAC stimulated in vitro osteoblast mineralization from primary osteoblasts in association with increasing expression of osterix, nuclear factor of activated T cells cytoplasmic 1, and activator protein-1, as well as phosphorylation of extracellular signal-regulated kinase. In contrast to the anabolic effect of WEAC, WEAC significantly suppressed in vitro osteoclast formation from bone marrow macrophages by inhibiting the RANKL signaling pathways and bone resorption by downregulating the expression of resorption markers. Therefore, this study demonstrated that WEAC has a beneficial effect on bone loss through the regulation of osteoblast mineralization, as well as osteoclast formation and bone resorption. These results suggest that A. capillaris may be a promising herbal candidate for therapeutic agents to treat or prevent osteoporotic bone diseases.

  9. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism.

    PubMed

    Egido, Jesús; Martínez-Castelao, Alberto; Bover, Jordi; Praga, Manuel; Torregrosa, José Vicente; Fernández-Giráldez, Elvira; Solozábal, Carlos

    2016-01-01

    Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease (CKD) that is characterised by elevated parathyroid hormone (PTH) levels and a series of bone-mineral metabolism anomalies. In patients with SHPT, treatment with paricalcitol, a selective vitamin D receptor activator, has been shown to reduce PTH levels with minimal serum calcium and phosphorus variations. The classic effect of paricalcitol is that of a mediator in mineral and bone homeostasis. However, recent studies have suggested that the benefits of treatment with paricalcitol go beyond PTH reduction and, for instance, it has a positive effect on cardiovascular disease and survival. The objective of this study is to review the most significant studies on the so-called pleiotropic effects of paricalcitol treatment in patients with CKD.

  10. Effect of Multiparity and Prolonged Lactation on Bone Mineral Density

    PubMed Central

    Natung, Tanie; Barooah, Rituparna; Ahanthem, Santa Singh

    2016-01-01

    Objectives This study was done to determine the effect of multiparity and prolonged lactation on bone mineral density (BMD). Methods This cross-sectional study included 196 perimenopausal and postmenopausal women aged 40 to 60 years old. Age, body mass index (BMI), menopausal status, duration of menopause, parity and total duration of lactation, nutritional history were recorded. Lumbar spine (LS; L2-L4) and femur neck (FN) BMD were measured using dual energy X-ray absorptiometry. Correlation of parity and lactation with BMD were investigated using multiple regression analysis. Results Parity was inversely correlated to BMD for LS (β = −0.266, P = 0.001) and FN (β = −0.380, P = 0.000). This relation remained significant even after adjusting for age, BMI and duration of menopause. Duration of lactation was inversely correlated with BMD for LS (β = −0.271, P = 0.001) but no for FN (β = −0.124, P = 0.130). Conclusions Multiparity and prolonged lactation have negative impact on BMD especially with in a socioeconomic group whose nutritional intake is borderline. Our data support that parity and duration of lactation can be associated with future osteoporosis. PMID:28119896

  11. Relation between body composition and bone mineral density in young undregraduate students with different nutritional status

    PubMed Central

    Rodrigues, Edil de Albuquerque; dos Santos, Marcos André Moura; da Silva, Amanda Tabosa Pereira; Farah, Breno Quintella; Costa, Manoel da Cunha; Campos, Florisbela de Arruda Camara e Siqueira; Falcão, Ana Patrícia Siqueira Tavares

    2016-01-01

    ABSTRACT Objective To investigate the relationship between total and segmental body fat, bone mineral density and bone mineral content in undergraduate students stratified according to nutritional status. Methods The study included 45 male undergraduate students aged between 20 and 30 years. Total and segmental body composition, bone mineral density and bone mineral content assessments were performed using dual energy X-ray absorptiometry. Subjects were allocated into three groups (eutrophic, overweight and obese). Results With the exception of upper limb bone mineral content, significantly higher (p<0.05) mean bone mineral density, bone mineral content, and relative body fat values were documented in the obese group. Total body and segmental relative body fat (lower limbs and trunk) were positively correlated (p<0.05) with bone mineral density in the overweight group. Upper limb fat was negatively correlated (p<0.05) with bone mineral content in the normal and eutrophic groups. Conclusion Total body and segmental body fat were correlated with bone mineral density and bone mineral content in male undergraduate students, particularly in overweight individuals. PMID:27074228

  12. Utilization of DXA Bone Mineral Densitometry in Ontario

    PubMed Central

    2006-01-01

    Executive Summary Issue Systematic reviews and analyses of administrative data were performed to determine the appropriate use of bone mineral density (BMD) assessments using dual energy x-ray absorptiometry (DXA), and the associated trends in wrist and hip fractures in Ontario. Background Dual Energy X-ray Absorptiometry Bone Mineral Density Assessment Dual energy x-ray absorptiometry bone densitometers measure bone density based on differential absorption of 2 x-ray beams by bone and soft tissues. It is the gold standard for detecting and diagnosing osteoporosis, a systemic disease characterized by low bone density and altered bone structure, resulting in low bone strength and increased risk of fractures. The test is fast (approximately 10 minutes) and accurate (exceeds 90% at the hip), with low radiation (1/3 to 1/5 of that from a chest x-ray). DXA densitometers are licensed as Class 3 medical devices in Canada. The World Health Organization has established criteria for osteoporosis and osteopenia based on DXA BMD measurements: osteoporosis is defined as a BMD that is >2.5 standard deviations below the mean BMD for normal young adults (i.e. T-score <–2.5), while osteopenia is defined as BMD that is more than 1 standard deviation but less than 2.5 standard deviation below the mean for normal young adults (i.e. T-score< –1 & ≥–2.5). DXA densitometry is presently an insured health service in Ontario. Clinical Need   Burden of Disease The Canadian Multicenter Osteoporosis Study (CaMos) found that 16% of Canadian women and 6.6% of Canadian men have osteoporosis based on the WHO criteria, with prevalence increasing with age. Osteopenia was found in 49.6% of Canadian women and 39% of Canadian men. In Ontario, it is estimated that nearly 530,000 Ontarians have some degrees of osteoporosis. Osteoporosis-related fragility fractures occur most often in the wrist, femur and pelvis. These fractures, particularly those in the hip, are associated with increased

  13. Mineralized polymer composites as biogenic bone substitute material

    NASA Astrophysics Data System (ADS)

    Shah, Rushita; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-05-01

    Mineralized polymer composites (MPC) are recognized as potential fillers of bone defects. Though bioceramics exhibits quite a good bone-bonding and vascularization, it is considered to be too stiff and brittle for using alone. Thus, the use of polymer scaffold instead of bioceramics has several advantages including combining the osteoconductivity and bone-bonding potential of the inorganic phase with the porosity and interconnectivity of the three-dimensional construction. Aiming the advantages of ceramic-polymer composite scaffolds, the calcium carbonate (CaCO3) based biomineralized scaffold was prepared, where the PVP-CMC hydrogel was used as an extracellular matrix. This paper is reported about the morphology, swelling trend (in physiological solution) and viscoelastic behavior of (90 min mineralized) MPC. The dry MPC are off-white, coarse in texture, comparatively less flexible than the original PVP-CMC based hydrogel film, and the deposition of granular structures on the surface of the hydrogel film confirms about the development of biomineralized scaffold/polymer composites. Irrespective of thickness, the dry MPC shows higher values of swelling ratio within 30 min, which varies between 200-250 approximately. The dynamic viscoelastic nature of freshly prepared MPC was investigated applying 1% and 10% strain. At higher strain the viscoelastic moduli (G' and G") show significant change, and the nature of MPC turns from elastic to viscous. Based on the observed basic properties, the MPC (calcite based polymer composites) can be recommended for the treatment of adyanamic bone disorder.

  14. Prediction of Areal Bone Mineral Density and Bone Mineral Content in Children and Adolescents Living With HIV Based on Anthropometric Variables.

    PubMed

    Lima, Luiz Rodrigo Augustemak de; Krug, Rodrigo de Rosso; Silva, Rosane Carla Rosendo da; Carvalho, Aroldo Prohmann de; González-Chica, David Alejandro; Back, Isabela de Carlos; Petroski, Edio Luiz

    2016-10-01

    Children and adolescents living with HIV have low bone mass for age. There are reliable and accurate methods for evaluation of bone mass, however, alternative methods are necessary, especially, for application in limited-resource scenarios. Anthropometry is a noninvasive and low cost method that can predict bone mass in healthy youths. The aim of the study was to develop predictive equations for bone mineral content and bone mineral density in children and adolescents living with HIV based on anthropometric variables. Forty-eight children and adolescents of both sexes (24 females) from 7 to 17 years, living in greater Florianopolis area, Santa Catarina, Brazil, who were under clinical follow-up at "Hospital Infantil Joana de Gusmão", participated in the study. Dual-energy X-ray absorptiometry was used to evaluate whole-body bone mineral content (BMC) and areal bone mineral density (aBMD). Height, body weight, bone diameters, arm circumference, and triceps skinfold were measured and the body mass index and arm muscle area were calculated. Multiple regression models were fitted to predict BMC and aBMD, using backward selection (p ≥ 0.05). Two predictive models with high R(2) values (84%-94%) were developed. Model 1 to estimate aBMD [Y = -0.1450124 + (height × 0.0033807) + (age × 0.0146381) + (body mass index × 0.0158838) + (skin color × 0.0421068)], and model 2 to estimate BMC [Y = 1095.1 + (body weight × 45.66973) + (age × 31.36516) + (arm circumference × -53.27204) + (femoral diameter × -9.594018)].The predictive models using anthropometry provided reliable estimates and can be useful to monitor aBMD and BMC in children and adolescents living with human immunodeficiency virus where limited resources are available.

  15. Automated, foot-bone registration using subdivision-embedded atlases for spatial mapping of bone mineral density.

    PubMed

    Liu, Lu; Commean, Paul K; Hildebolt, Charles; Sinacore, Dave; Prior, Fred; Carson, James P; Kakadiaris, Ioannis; Ju, Tao

    2013-06-01

    We present an atlas-based registration method for bones segmented from quantitative computed tomography (QCT) scans, with the goal of mapping their interior bone mineral densities (BMDs) volumetrically. We introduce a new type of deformable atlas, called subdivision-embedded atlas, which consists of a control grid represented as a tetrahedral subdivision mesh and a template bone surface embedded within the grid. Compared to a typical lattice-based deformation grid, the subdivision control grid possesses a relatively small degree of freedom tailored to the shape of the bone, which allows efficient fitting onto subjects. Compared with previous subdivision atlases, the novelty of our atlas lies in the addition of the embedded template surface, which further increases the accuracy of the fitting. Using this new atlas representation, we developed an efficient and fully automated pipeline for registering atlases of 12 tarsal and metatarsal bones to a segmented QCT scan of a human foot. Our evaluation shows that the mapping of BMD enabled by the registration is consistent for bones in repeated scans, and the regional BMD automatically computed from the mapping is not significantly different from expert annotations. The results suggest that our improved subdivision-based registration method is a reliable, efficient way to replace manual labor for measuring regional BMD in foot bones in QCT scans.

  16. Bone mineral density in children and young adults with neurofibromatosis type 1.

    PubMed

    Lodish, Maya B; Dagalakis, Urania; Sinaii, Ninet; Bornstein, Ethan; Kim, Aerang; Lokie, Kelsey B; Baldwin, Andrea M; Reynolds, James C; Dombi, Eva; Stratakis, Constantine A; Widemann, Brigitte C

    2012-12-01

    Concern for impaired bone health in children with neurofibromatosis type 1 (NF-1) has led to increased interest in bone densitometry in this population. Our study assessed bone mineral apparent density (BMAD) and whole-body bone mineral content (BMC)/height in pediatric patients with NF-1 with a high plexiform neurofibroma burden. Sixty-nine patients with NF-1 (age range 5.2-24.8; mean 13.7 ± 4.8 years) were studied. Hologic dual-energy X-ray absorptiometry scans (Hologic, Inc., Bedford, MA, USA) were performed on all patients. BMD was normalized to derive a reference volume by correcting for height through the use of the BMAD, as well as the BMC. BMAD of the lumbar spine (LS 2-4), femoral neck (FN), and total body BMC/height were measured and Z-scores were calculated. Impaired bone mineral density was defined as a Z-score ≤-2. Forty-seven percent of patients exhibited impaired bone mineral density at any bone site, with 36% at the LS, 18% at the FN, and 20% total BMC/height. BMAD Z-scores of the LS (-1.60 ± 1.26) were more impaired compared with both the FN (-0.54 ± 1.58; P=0.0003) and the whole-body BMC/height Z-scores (-1.16 ± 0.90; P=0.036). Plexiform neurofibroma burden was negatively correlated with LS BMAD (r(s)=-0.36, P=0.01). In pediatric and young adult patients with NF-1, LS BMAD was more severely affected than the FN BMAD or whole-body BMC/height.

  17. Evaluation of the effect of cola drinks on bone mineral density and associated factors.

    PubMed

    Ogur, Recai; Uysal, Bulent; Ogur, Torel; Yaman, Halil; Oztas, Emin; Ozdemir, Aysegul; Hasde, Metin

    2007-05-01

    The aim of the study was to determine bone mineral density changes caused by consumption of cola drinks and the associated factors. Thirty Sprague-Dawley rats were divided into four groups. Groups 1 and 2, consisting of 10 male and 10 female rats, respectively, were provided with as much food, water and cola drinks as they wanted. Groups 3 and 4, consisting of five rats each, received only rat chow and water. The bone mineral density of the rats was measured using dual energy X-ray absorptiometry at the end of 30 days. The blood values and weights of the animals were also determined. The oesophagus and kidneys were removed for histopathological examination. The weight gain was higher in the groups consuming cola drinks than the control group rats (P < 0.05). Water consumption decreased 5.9 times while total fluid consumption increased 1.6-1.9 times in the group consuming cola drinks. No significant change was detected in the blood calcium levels. There was a significant decrease in the bone mineral density of test groups when compared to the control groups (P < 0.05). While we did not detect any pathological oesophageal changes in the rats consuming cola drinks, examination of the kidneys revealed general glomerular congestion and intertubular bleeding. We suggest that the decrease in bone mineral density might be related to the renal damage caused by cola drinks in addition to other related factors.

  18. Assessing Bone Quality in Terms of Bone Mineral Density, Buckling Ratio and Critical Fracture Load

    PubMed Central

    Anitha, D

    2014-01-01

    Background Bone mineral density (BMD) is used as a sole parameter in the diagnosis of osteoporosis. Due to the ease of acquirement of BMD, clinical diagnosis still involves its usage although the limitations of BMD are quite well-established. Therefore, this preliminary study hoped to reduce the errors introduced by BMD alone by incorporating geometric and structural predictors simultaneously to observe if strength was implicitly dependent on the geometry and BMD. Hence, we illustrated the triadic relationship between BMD, buckling ratio (BR) and critical fracture load (Fcr). Methods The geometric predictor was the BR as it involves both the changes in the periosteum and the cortical thickness. Also, structural changes were monitored by finite element (FE) analysis-predicted Fcr. These BR and Fcr measurements were plotted with their respective femoral neck BMD values in elderly female patients (n=6) in a 3-year follow-up study, treated with ibandronate. Results In all the three-dimensional plots (baseline, mid and final year), high Fcr values were found at regions containing high BMD and low BR values. Quantitatively, this was also proven where an averaged highest Fcr across the three years had a relatively higher BMD (46%) and lower BR (19%) than that of the averaged lowest Fcr. The dependence of FE predicted strength on both the geometry and bone density was illustrated. Conclusions We conclude that use of triadic relationships for the evaluation of osteoporosis and hip fractures with the combination of strength, radiology-derived BR and bone density will lay the foundation for more accurate predictions in the future. PMID:25489572

  19. Experimental investigation of bone mineral density in Thoroughbreds using quantitative computed tomography

    PubMed Central

    YAMADA, Kazutaka; SATO, Fumio; HIGUCHI, Tohru; NISHIHARA, Kaori; KAYANO, Mitsunori; SASAKI, Naoki; NAMBO, Yasuo

    2015-01-01

    ABSTRACT Bone mineral density (BMD) is one of the indications of the strength and health. BMD measured by quantitative computed tomography (QCT) was compared with that measured by dual energy X-ray absorptiometry (DXA) and radiographic bone aluminum equivalence (RBAE). Limbs were removed from horses that had been euthanized for reasons not associated with this study. Sixteen limbs (left and right metacarpals and metatarsals) from 4 horses were used to compare BMD as measured by QCT with those measured by DXA and RBAE. There was a strong correlation between BMD values measured by QCT and those measured by DXA (R2=0.85); correlation was also observed between values obtained by QCT and those obtained by RBAE (R2=0.61). To investigate changes in BMD with age, 37 right metacarpal bones, including 7 from horses euthanized because of fracture were examined by QCT. The BMD value of samples from horses dramatically increased until 2 years of age and then plateaued, a pattern similar to the growth curve. The BMD values of bone samples from horses euthanized because of fracture were within the population range, and samples of morbid fracture were not included. The relationship between BMD and age provides a reference for further quantitative studies of bone development and remodeling. Quantitative measurement of BMD using QCT may have great potential for the evaluation of bone biology for breeding and rearing management. PMID:26435681

  20. Fitting of bone mineral density with consideration of anthropometric parameters

    PubMed Central

    Short, D. F.; Zemel, B. S.; Gilsanz, V.; Kalkwarf, H. J.; Lappe, J. M.; Mahboubi, S.; Oberfield, S. E.; Shepherd, J. A.; Winer, K. K.

    2010-01-01

    Summary A new model describing normal values of bone mineral density in children has been evaluated, which includes not only the traditional parameters of age, gender, and race, but also weight, height, percent body fat, and sexual maturity. This model may constitute a better comparative norm for a specific child with given anthropometric values. Introduction Previous descriptions of children's bone mineral density (BMD) by age have focused on segmenting diverse populations by race and gender without adjusting for anthropometric variables or have included the effects of anthropometric variables over a relatively homogeneous population. Methods Multivariate semi-metric smoothing (MS2) provides a way to describe a diverse population using a model that includes multiple effects and their interactions while producing a result that can be smoothed with respect to age in order to provide connected percentiles. We applied MS2 to spine BMD data from the Bone Mineral Density in Childhood Study to evaluate which of gender, race, age, height, weight, percent body fat, and sexual maturity explain variations in the population's BMD values. By balancing high adjusted R2 values and low mean square errors with clinical needs, a model using age, gender, race, weight, and percent body fat is proposed and examined. Results This model provides narrower distributions and slight shifts of BMD values compared to the traditional model, which includes only age, gender, and race. Thus, the proposed model might constitute a better comparative standard for a specific child with given anthropometric values and should be less dependent on the anthropometric characteristics of the cohort used to devise the model. Conclusions The inclusion of multiple explanatory variables in the model, while creating smooth output curves, makes the MS2 method attractive in modeling practically sized data sets. The clinical use of this model by the bone research community has yet to be fully established. PMID

  1. Natural calcium isotonic composition of urine as a marker of bone mineral balance

    USGS Publications Warehouse

    Skulan, J.; Bullen, T.; Anbar, A.D.; Puzas, J.E.; Shackelford, L.; LeBlanc, A.; Smith, S.M.

    2007-01-01

    Background: We investigated whether changes in the natural isotopic composition of calcium in human urine track changes in net bone mineral balance, as predicted by a model of calcium isotopic behavior in vertebrates. If so, isotopic analysis of natural urine or blood calcium could be used to monitor short-term changes in bone mineral balance that cannot be detected with other techniques. Methods: Calcium isotopic compositions are expressed as ??44Ca, or the difference in parts per thousand between the 44Ca/40Ca of a sample and the 44Ca/ 40Ca of a standard reference material. ??44Ca was measured in urine samples from 10 persons who participated in a study of the effectiveness of countermeasures to bone loss in spaceflight, in which 17 weeks of bed rest was used to induce bone loss. Study participants were assigned to 1 of 3 treatment groups: controls received no treatment, one treatment group received alendronate, and another group performed resistive exercise. Measurements were made on urine samples collected before, at 2 or 3 points during, and after bed rest. Results: Urine ??44Ca values during bed rest were lower in controls than in individuals treated with alendronate (P <0.05, ANOVA) or exercise (P <0.05), and lower than the control group baseline (P <0.05, Mest). Results were consistent with the model and with biochemical and bone mineral density data. Conclusion: Results confirm the predicted relationship between bone mineral balance and calcium isotopes, suggesting that calcium isotopic analysis of urine might be refined into a clinical and research tool. ?? 2007 American Association for Clinical Chemistry.

  2. Nonenzymatic Glycation and Degree of Mineralization Are Higher in Bone From Fractured Patients With Type 1 Diabetes Mellitus.

    PubMed

    Farlay, Delphine; Armas, Laura A G; Gineyts, Evelyne; Akhter, Mohammed P; Recker, Robert R; Boivin, Georges

    2016-01-01

    Low-energy fractures are frequent complications in type 1 diabetes mellitus patients (T1DM). Modifications of bone intrinsic composition might be a potential cause of fragility observed in diabetic subjects. Advanced glycation end products (AGEs) were found in numerous connective tissues from T1DM patients. However, whether AGEs are present at high levels in bone matrix from diabetic subjects is unknown. Moreover, whether elevated AGEs in the bone matrix impair mineralization has not been addressed in humans. The purposes of this study were 1) to determine whether bone matrix from fracturing and nonfracturing T1DM contained more AGEs than bone from healthy patients (CTL), and 2) to compare the degree of mineralization of bone and hardness between fracturing and nonfracturing T1DM versus CTL. We analyzed iliac crest bone biopsies from 5 fracturing T1DM patients, 5 nonfracturing T1DM patients, and 5 healthy subjects, all age- and sex-matched. AGEs (pentosidine) in bone matrix was measured by high-performance liquid chromatography separately in trabecular and cortical bone. The degree of mineralization of bone (DMB) was assessed by digitized microradiography, and mechanical properties by micro- and nanohardness tests. Trabecular bone from fracturing T1DM exhibited significantly higher levels of pentosidine than CTL (p = 0.04) and was more mineralized than nonfracturing T1DM (p = 0.04) and CTL (p = 0.04). Trabecular bone was not significantly different in pentosidine between nonfracturing T1DM and CTL. Cortical bone from nonfracturing T1DM was not significantly different from CTL. Positive correlations were found between HbA1c and pentosidine (r' = 0.79, p < 0.003) and between HbA1c and DMB (r' = 0.64, p < 0.02). Both modifications could lead to less flexible bone (reduced modulus of elasticity) and a tendency toward low-energy fractures in T1DM patients.

  3. Bone mineral density, muscle strength, and recreational exercise in men

    NASA Technical Reports Server (NTRS)

    Snow-Harter, C.; Whalen, R.; Myburgh, K.; Arnaud, S.; Marcus, R.

    1992-01-01

    Muscle strength has been shown to predict bone mineral density (BMD) in women. We examined this relationship in 50 healthy men who ranged in age from 28 to 51 years (average 38.3 years). BMD of the lumbar spine, proximal femur, whole body, and tibia were measured by dual-energy x-ray absorptiometry (Hologic QDR 1000W). Dynamic strength using one repetition maximum was assessed for the biceps, quadriceps, and back extensors and for the hip abductors, adductors, and flexors. Isometric grip strength was measured by dynamometry. Daily walking mileage was assessed by 9 week stepmeter records and kinematic analysis of video filming. Subjects were designated as exercisers and nonexercisers. Exercisers participated in recreational exercise at least two times each week. The results demonstrated that BMD at all sites correlated with back and biceps strength (p < 0.01 to p = 0.0001). Body weight correlated with tibia and whole-body BMD (p < 0.001); age negatively correlated with Ward's triangle BMD (p < 0.01). In stepwise multiple regressions, back strength was the only independent predictor of spine and femoral neck density (R2 = 0.27). Further, back strength was the most robust predictor of BMD at the trochanter, Ward's triangle, whole body, and tibia, although biceps strength, age, body weight, and leg strength contributed significantly to BMD at these skeletal sites, accounting for 35-52% of the variance in BMD. Exercisers and nonexercisers were similar for walking (3.97 versus 3.94 miles/day), age (37.8 versus 38.5) years, and weight (80.0 versus 77.7 kg). However, BMD and muscle strength were significantly greater in exercises than in nonexercisers.(ABSTRACT TRUNCATED AT 250 WORDS).

  4. Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content.

    PubMed

    Vetter, J R; Perman, W H; Kalender, W A; Mazess, R B; Holden, J E

    1986-01-01

    A prototype dual-energy computed tomographic (CT) scanner (Siemens Somatom DR3) with rapid kVp switching and prereconstruction processing has been used to measure vertebral bone mineral density. With this approach misregistration and beam hardening inaccuracies can be reduced considerably. Basis material images of aluminum- and Lucite-equivalent density enable measurements of bone mineral density that are nearly independent of the amount of marrow fat. To simulate variable marrow fat, alcohol-water mixtures were used as media in calibration standards. A section of dried trabecular bone was also scanned immersed in varying alcohol-water mixtures. In both simulations it was shown that the dual-energy measurement is nearly independent of marrow composition whereas the single-energy measurement would be strongly influenced by marrow fat. Dual-energy CT was compared to dual-photon absorptiometry (153Gd) for the measurement of bone mineral mass of ten excised human vertebrae. There was a high degree of correlation between the two measurements (r = 0.97). Dual-energy and single-energy CT measurements on 17 patients with suspected metabolic bone disease strongly support the conclusion that the influence of fat can lead to significant errors in single-energy determinations of the mineral density of trabecular bone.

  5. Bone mineral density-affecting genes in Africans.

    PubMed Central

    Gong, Gordon; Haynatzki, Gleb; Haynatzka, Vera; Howell, Ryan; Kosoko-Lasaki, Sade; Fu, Yun-Xin; Yu, Fei; Gallagher, John C.; Wilson, M. Roy

    2006-01-01

    BACKGROUND: We have recently reported the role of environmental exposure in the ethnic diversity of bone mineral density (BMD). Potential genetic difference has not been adequately assessed. PURPOSE: To determine allele frequencies of BMD-affecting genes and their association with BMD in Africans. METHODS: Allele frequencies at 18 polymorphic sites in 13 genes that affect BMD in Asians and/or Caucasians were determined in 143 recent immigrants (55 men and 88 women, 18-51 years of age) from sub-Saharan Sudan to the United States. Genetic association studies were performed. RESULTS: Among the 14 single-nucleotide polymorphisms (SNPs), 10 were significantly different in allele frequency between Sudanese and Asians, and 10 between Sudanese and Caucasians. Only the osteocalcin gene was not significantly different in allele frequency among Sudanese, Asians and Caucasians. Allele frequencies in the TGFB, COL1A1 and CSR genes were extremely low (<0.04) in the Sudanese. Frequencies of microsatellite alleles in four genes were significantly different among Sudanese, Asians and Caucasians. SNPs in the VDR and ERalpha genes were associated with BMD and/or BMC (bone mineral content) at several bone sites. CONCLUSIONS: Genetic difference may play a role in the ethnic diversity in BMD and/or BMC. PMID:16895279

  6. The application of backscattered ultrasound and photoacoustic signals for assessment of bone collagen and mineral contents

    PubMed Central

    Lashkari, Bahman; Yang, Lifeng

    2015-01-01

    Background This study examines the backscattered ultrasound (US) and back-propagating photoacoustic (PA) signals from trabecular bones, and their variations with reduction in bone minerals and collagen content. While the collagen status is directly related to the strength of the bone, diagnosis of its condition using US remains a challenge. Methods For both PA and US methods, coded-excitation signals and matched filtering were utilized to provide high sensitivity of the detected signal. The optical source was a 805-nm CW laser and signals were detected employing a 2.2-MHz ultrasonic transducer. Bone decalcification and decollagenization were induced with mild ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite solutions, respectively. Results The PA and US signals were measured on cattle bones, and apparent integrated backscatter/back-propagating (AIB) parameters were compared before and after demineralization and decollagenization. Conclusions The results show that both PA and US are sensitive to mineral changes. In addition, PA is also sensitive to changes in the collagen content of the bone, but US is not significantly sensitive to these changes. PMID:25694953

  7. [Investigation of mineral density and the bone structure following 105 day experiment in an isolated environment (MARS-105)].

    PubMed

    Prostiakov, I V; Novikov, V E; Morukov, B V

    2010-01-01

    Healthy volunteers' bone system investigation was performed before and after 105 days experiment in an isolated environment (MARS-105) using dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT). Volumetric bone mineral density (VBMD), bone mineral density (BMD), structural parameters of radius and tibia were evaluated. There were no significant BMD changes revealed in skeletal parts critical in terms of biomechanical properties. pQCT examination noted microarchitecture deterioration of radius that was reflected in decreasing of trabecular number and increasing of bone tissue inhomogeneity. Decreasing VBMD both cortical and trabecular bone were revealed for tibia. Unexpectedly, increasing oftrabecular number and decreasing of inhomogeneity were revealed for tibia. Experiment showed that only the complex investigation including DXA and pQCT measurements gives an idea about bone system changes under simulated experiment conditions.

  8. Minodronic acid (ONO-5920/YM529) prevents decrease in bone mineral density and bone strength, and improves bone microarchitecture in ovariectomized cynomolgus monkeys.

    PubMed

    Mori, Hiroshi; Tanaka, Makoto; Kayasuga, Ryoji; Masuda, Taisei; Ochi, Yasuo; Yamada, Hiroyuki; Kishikawa, Katsuya; Ito, Masako; Nakamura, Toshitaka

    2008-11-01

    This study examined the effect of the highly potent nitrogen-containing bisphosphonate, minodronic acid (ONO-5920/YM529), on bone mineral density (BMD), bone turnover, bone microarchitecture and bone strength in ovariectomized (OVX) cynomolgus monkeys. Skeletally mature female cynomolgus monkeys, aged 9-17 years, were ovariectomized or sham-operated. Minodronic acid was administered orally once a day in doses of 0, 0.015, and 0.15 mg/kg from the day after surgery for 17 months. Bone resorption markers (urinary N-terminal cross-linking telopeptide of type I collagen and deoxypyridinoline), bone formation markers (serum osteocalcin and bone alkaline phosphatase) and lumbar vertebral BMD were measured at baseline and at 4, 8, 12 and 16 months after surgery. Treatment with minodronic acid dose-dependently inhibited OVX-induced increase in bone turnover markers and decrease in lumbar vertebral BMD, and minodronic acid at 0.15 mg/kg completely prevented these changes. At 17 months after surgery, minodronic acid also suppressed bone resorption (Oc.S/BS and N.Oc/BS) and bone formation (OS/BS, MS/BS, MAR, BFR/BS, and BFR/BV) in the lumbar vertebral bodies and tibia. In the mechanical tests, ultimate load on lumbar vertebral bodies and femoral neck of the OVX-control animals were significantly reduced compared to the sham animals. Minodronic acid prevented these reductions in bone strength at 0.15 mg/kg. There was significant correlation between BMD and bone strength, suggesting that the increase in bone strength was associated with the increase in BMD produced by minodronic acid. In micro-CT analysis of the lumbar vertebral bodies, minodronic acid improved trabecular architecture, converting rod structures into plate structures, and preventing the increase in trabecular disconnectivity at 0.15 mg/kg. In conclusion, similar to patients with postmenopausal osteoporosis, reduction in bone strength of lumbar vertebral bodies and femoral neck was clearly demonstrated in OVX

  9. Moderate alcohol consumption and increased bone mineral density: potential ethanol and non-ethanol mechanisms.

    PubMed

    Jugdaohsingh, R; O'Connell, M A; Sripanyakorn, S; Powell, J J

    2006-08-01

    Mounting epidemiological evidence indicates an association between the moderate ingestion of alcoholic beverages and higher bone mineral density (v. abstainers). More limited findings provide some evidence for translation of this association into reduced fracture risk, but further studies are required. Here, these data are reviewed and caveats in their assimilation, comparison and interpretation as well as in the use and application of bone health indices are discussed. Whilst it is concluded that evidence is now strong for the moderate alcohol-bone health association, at least in relation to bone mineral density, mechanisms are less clear. Both ethanol and non-ethanol components have been implicated as factors that positively affect bone health in the light of moderate consumption of alcoholic beverages, and four particular areas are discussed. First, recent findings suggest that moderate ethanol consumption acutely inhibits bone resorption, in a non-parathyroid hormone- and non-calcitonin-dependent fashion, which can only partly be attributed to an energy effect. Second, critical review of the literature does not support a role for moderate ethanol consumption affecting oestrogen status and leading to a knock-on effect on bone. Third, Si is present at high levels in certain alcoholic beverages, especially beer, and may have a measurable role in promoting bone formation. Fourth, a large body of work indicates that phytochemicals (e.g. polyphenols) from alcoholic beverages could influence bone health, but human data are lacking. With further work it is hoped to be able to model epidemiological observations and provide a clear pathway between the magnitude of association and the relative contribution of these mechanisms for the major classes of alcoholic beverage.

  10. Bone mineral density and metabolism in familial dysautonomia.

    PubMed

    Maayan, C; Bar-On, E; Foldes, A J; Gesundheit, B; Pollak, R Dresner

    2002-05-01

    Familial dysautonomia (FD) patients suffer from multiple fractures and have reduced bone pain, which defers the diagnosis. The pathogenesis of bone fragility in FD is unknown. This study aimed to characterize bone mineral metabolism and density in FD. Seventy-nine FD patients aged 8 months to 48 years (mean age 13.9 +/- 10.4 years, median 12.3) were studied. Clinical data included weight, height, bone age, weekly physical activity and history of fractures. Bone mineral density (BMD) of the lumbar spine (n = 43), femoral neck (n = 26), total hip (n = 22) and whole body (n = 15) were determined by dual-energy X-ray absorptiometry. Serum 25-hydroxyvitamin D3, osteocalcin, bone alkaline phosphatase (B-ALP), parathyroid hormone and urinary N-telopeptide cross-linked type 1 collagen (NTx) were determined in 68 patients and age- and sex-matched controls. Forty-two of 79 patients (53%) sustained 75 fractures. Twenty-four of 43 patients had a spine Z-score < -2.0, and 13 of 26 had a femoral neck Z-score < -2.0. Mean femoral neck BMD Z-score was lower in patients with fractures compared with those without (-2.5 +/- 0.9 vs -1.5 +/- 1.0, p = 0.01). Mean body mass index (BMI) was 16 kg/m2 in prepubertal patients and 18.4 kg/m2 in postpubertal patients. Bone age was significantly lower than chronological age (75.5 vs 99.3 months in prepubertal patients, p < 0.001; 151 vs 174 in postpubertal patients, p < 0.05). NTx and osteocalcin levels were higher in FD patients compared with controls (400 +/- 338 vs 303 +/- 308, BCE/mM creatinine p < 0.02; 90 +/- 59.5 vs 61.8 +/- 36.9 ng/ml, p < 0.001, respectively). B-ALP was lower in FD patients compared with controls (44.66 +/- 21.8 vs 55.36 +/- 36.6 ng/ml, p < 0.04). Mean spine Z-score was significantly lower in physically inactive compared with active patients (-3.00 +/- 1.70 vs -1.77 +/- 1.3, respectively, p = 0.05). We conclude that fractures in FD patients are associated with reduced BMD. FD patients have increased NTx and osteocalcin

  11. Effect of Three-year Multi-Component Exercise Training on Bone Mineral Density and Content in a Postmenopausal Woman with Osteoporosis: A Case Report.

    PubMed

    Movaseghi, Farzaneh; Sadeghi, Heydar

    2015-05-01

    The purpose of the present study was to examine the effect of 3-years of moderate multi-component exercise training on bone mineral density and bone mineral content in a female subject with osteoporosis. A 57-year-old postmenopausal woman, a known case of osteoporosis following an accident, participated in this study. Bone mineral density and bone mineral content was measured in the femoral neck area and the lumbar spine by dual energy X-ray absorptiometry. The measurements lasted four years, first year without any exercise training and three succeeding years with exercise intervention. After three years of exercise training, bone mineral density and bone mineral content were improved in both regions, despite the increase in age and decrease in weight. This case highlights the importance of exercise training in maintaining and increasing bone mineral density and bone mineral content of the spine and hip in post-menopausal women. Considering its positive effects, regular and lifelong exercise training must be incorporated into peoples' life due to the chronic nature of bone loss in aging process.

  12. In ovo feeding with minerals and vitamin D3 improves bone properties in hatchlings and mature broilers.

    PubMed

    Yair, R; Shahar, R; Uni, Z

    2015-11-01

    The objective of this study was to examine the effect of in ovo feeding (IOF) with inorganic minerals or organic minerals and vitamin D3 on bone properties and mineral consumption. Eggs were incubated and divided into 4 groups: IOF with organic minerals, phosphate, and vitamin D3 (IOF-OMD); IOF with inorganic minerals and phosphate (IOF-IM); sham; and non-treated controls (NTC). IOF was performed on embryonic day (E) 17; tibiae and yolk samples were taken on E19 and E21. Post-hatch, only chicks from the IOF-OMD, sham, and NTC were raised, and tibiae were taken on d 10 and 38. Yolk mineral content was examined by inductively coupled plasma spectroscopy. Tibiae were tested for their whole-bone mechanical properties, and mid-diaphysis bone sections were indented in a micro-indenter to determine bone material stiffness (Young's modulus). Micro-computed tomography (μCT) was used to examine cortical and trabecular bone structure. Ash content analysis was used to examine bone mineralization. A latency-to-lie (LTL) test was used to measure standing ability of the d 38 broilers. The results showed that embryos from both IOF-OMD and IOF-IM treatments had elevated Cu, Mn, and Zn amounts in the yolk on E19 and E21 and consumed more of these minerals (between E19 and E21) in comparison to the sham and NTC. On E21, these hatchlings had higher whole-bone stiffness in comparison to the NTC. On d 38, the IOF-OMD had higher ash content, elevated whole-bone stiffness, and elevated Young's modulus (in males) in comparison to the sham and NTC; however, no differences in standing ability were found. Very few structural differences were seen during the whole experiment. This study demonstrates that mineral supplementation by in ovo feeding is sufficient to induce higher mineral consumption from the yolk, regardless of its chemical form or the presence of vitamin D3. Additionally, IOF with organic minerals and vitamin D3 can increase bone ash content, as well as stiffness of the whole

  13. Bone mineral density in cystic fibrosis: benefit of exercise capacity.

    PubMed

    Dodd, Jonathan D; Barry, Sinead C; Barry, Rupert B M; Cawood, Tom J; McKenna, Malachi J; Gallagher, Charles G

    2008-01-01

    The aim of this study was to evaluate the association between bone mineral density (BMD) and objective maximal exercise measurements in adults with cystic fibrosis (CF). Twenty-five CF patients (19 males, 6 females, mean age 25.5 yr, range: 17-52) underwent BMD assessment and maximal-cycle ergometer exercise testing. We examined the relationship between gas exchange (% peak-predicted O(2) uptake, CO(2) output, O(2) saturation), exercise performance (maximum power, exercise duration), and respiratory mechanics (tidal volume, rate) with lumbar spine and total proximal femur BMD. The strongest clinical correlate with BMD was forced expiratory volume at 1s (lumbar spine Z-score, r=0.36; total proximal femur Z-score, r=0.68, p<0.01). The strongest exercise correlate was % peak-predicted O(2) uptake (lumbar spine Z-score, r=0.44, p<0.01; total proximal femur Z-score, r=0.59, p<0.01). There was a closer association between exercise parameters and total proximal femur BMD (r=0.43-0.60) than with lumbar spine BMD (r=0.04-0.45). Multiple regression analysis revealed VO(2) to be the strongest independent predictor of BMD (R(2)=0.86, p<0.001) followed by petCO(2) and body mass index (R(2)=0.7 and 0.5, respectively, p<0.01). Exercise appears to influence total proximal femur BMD more than lumbar spine BMD in CF. Exercise rehabilitation programs focusing on peripheral strength training may benefit those CF patients with low total proximal femur BMD.

  14. The relationships between two different drinking water fluoride levels, dental fluorosis and bone mineral density of children.

    PubMed

    Grobler, S R; Louw, A J; Chikte, U M E; Rossouw, R J; van W Kotze, T J

    2009-04-03

    This field study included the whole population of children aged 10-15 years (77 from a 0.19 mg/L F area; 89 from a 3.00 mg/L F area), with similar nutritional, dietary habits and similar ethnic and socioeconomic status. The fluoride concentration in the drinking water, the bone mineral content, the bone density and the degree of dental fluorosis were determined. The left radius was measured for bone width, bone mineral content, and bone mineral density. The mean fluorosis score was 1.3 in the low fluoride area and 3,6 in the high fluoride area. More than half the children in the low fluoride area had no fluorosis (scores 0 and 1) while only 5% in the high fluoride area had none. Severe fluorosis (30%) was only observed in the high fluoride area. The Wilcoxon Rank Sum Test indicated that fluorosis levels differed significantly (p < 0.05) between the two areas. No relationships were found between dental fluorosis and bone width or between fluorosis and bone mineral density in the two areas (Spearment Rank correlations). A significant increase in bone width was found with age but no differences amongst and boys and girls. A significant positive correlation was found in the high fluoride area between bone mineral density over age. In the 12-13 and 13-14 year age groups in the high fluoride area, girls had higher bone mineral densities. However, a significant negative correlation (p<0.02) was found for the low fluoride area (0.19 mg/L F) over age.

  15. Updated association of tea consumption and bone mineral density

    PubMed Central

    Zhang, Zhao-Fei; Yang, Jun-Long; Jiang, Huan-Chang; Lai, Zheng; Wu, Feng; Liu, Zhi-Xiang

    2017-01-01

    Abstract Background: Current studies evaluating the association of tea consumption and bone mineral density (BMD) have yielded inconsistent findings. Therefore, we conducted a meta-analysis to assess the relationship between tea consumption and BMD. Methods: The PubMed, Embase, and Cochrane Library databases were comprehensively searched, and a meta-analysis performed of all observational studies assessing the association of tea consumption and BMD. Forest plots were used to illustrate the results graphically. The Q-test and I2 statistic were employed to evaluate between-study heterogeneity. Potential publication bias was assessed by the funnel plot. Results: Four cohort, 1 case–control, and 8 cross-sectional studies including a total of 12,635 cases were included. Tea consumption was shown to prevent bone loss [odds ratio (OR): 0.66; 95% confidence interval (CI), 0.47–0.94; P = 0.02], yielding higher mineral densities in several bones, including the lumbar spine [standardized mean difference (SMD): 0.19; 95% CI, 0.08–0.31; P = 0.001], hip (SMD: 0.19; 95% CI, 0.05–0.34; P = 0.01), femoral neck [mean difference (MD): 0.01; 95% CI, 0.00–0.02; P = 0.04], Ward triangle (MD: 0.02; 95% CI, 0.01–0.04; P = 0.001), and greater trochanter (MD: 0.03; 95% CI, 0.02–0.04; P < 0.00001), than the non-tea consumption group. Conclusion: This meta-analysis provided a potential trend that tea consumption might be beneficial for BMD, especially in the lumbar spine, hip, femoral neck, Ward triangle, and greater trochanter, which might help prevent bone loss. PMID:28328853

  16. Evaluation of bone mineral density among type 2 diabetes mellitus patients in South Karnataka

    PubMed Central

    Asokan, Athulya G.; Jaganathan, Jayakumar; Philip, Rajeev; Soman, Rino Roopak; Sebastian, Shibu Thomas; Pullishery, Fawaz

    2017-01-01

    Background: Diabetes is one of the world's biggest health problems and the disease affects almost all organ systems. The relationship between type 2 diabetes mellitus (T2DM) and bone mineral density (BMD) has been controversial. Early identification of reduction in bone mass in a diabetic patient may be helpful in preventing the bone loss and future fracture risks. Objective: The aim is to study the effect of T2DM on BMD among patients in South Karnataka. Materials and Methods: A cross-sectional study was conducted on 150 patients between 40 and 70 years of age which included 75 diabetic and 75 nondiabetic subjects. BMD was measured using qualitative ultrasound and the data were compared among age-matched subjects of both the groups. Statistical analysis was performed using unpaired Student's t-test and test of equality of proportions. Results: No significant difference was observed in bone density of both the groups. On further analyzing the data, incidence of osteoporosis was higher among diabetic subjects, whereas incidence of osteopenia was higher among nondiabetic subjects. Conclusion: Although significant difference in bone mineral density was not observed in both the groups, the incidence of osteoporosis was higher among type 2 diabetics. Hence, all type 2 diabetics should be evaluated for the risk of osteoporosis and should be offered appropriate preventive measures. PMID:28250682

  17. The Formation of Calcified Nanospherites during Micropetrosis Represents a Unique Mineralization Mechanism in Aged Human Bone.

    PubMed

    Milovanovic, Petar; Zimmermann, Elizabeth A; Vom Scheidt, Annika; Hoffmann, Björn; Sarau, George; Yorgan, Timur; Schweizer, Michaela; Amling, Michael; Christiansen, Silke; Busse, Björn

    2017-01-01

    Osteocytes-the central regulators of bone remodeling-are enclosed in a network of microcavities (lacunae) and nanocanals (canaliculi) pervading the mineralized bone. In a hitherto obscure process related to aging and disease, local plugs in the lacuno-canalicular network disrupt cellular communication and impede bone homeostasis. By utilizing a suite of high-resolution imaging and physics-based techniques, it is shown here that the local plugs develop by accumulation and fusion of calcified nanospherites in lacunae and canaliculi (micropetrosis). Two distinctive nanospherites phenotypes are found to originate from different osteocytic elements. A substantial deviation in the spherites' composition in comparison to mineralized bone further suggests a mineralization process unlike regular bone mineralization. Clearly, mineralization of osteocyte lacunae qualifies as a strong marker for degrading bone material quality in skeletal aging. The understanding of micropetrosis may guide future therapeutics toward preserving osteocyte viability to maintain mechanical competence and fracture resistance of bone in elderly individuals.

  18. Dietary modifications alone do not improve bone mineral density in children with idiopathic hypercalciuria.

    PubMed

    Schwaderer, A L; Srivastava, T; Schueller, L; Cronin, R; Mahan, J D; Hains, D

    2011-11-01

    Prior cross-sectional studies have demonstrated an association between hypercalciuria and low bone mineral density (BMD) in children and adults. However, the natural history of BMD in children with hypercalciuria and its response to therapy has not been evaluated. The objective of this retrospective study was to determine the change over time in lumbar (L1 - L4) BMD Z-score measured on sequential DXA scans in 19 children with hypercalciuria treated with dietary recommendations without (n = 12, Group A) and with citrate (n = 7, Group B). The mean lumbar bone density Z-score/year decreased in Group A (-0.11 ±/0.41) indicating that children with hypercalciuria lose L1 - L4 BMD over time. In contrast, the L1 - L4 BMD Zscore/ year increased in Group B (0.19 ± 0.38) suggesting that pharmacologic therapy may reverse this trend. Similarly 75% of patients in Group A, but only 29% patients in Group B had a decrease in L1 - L4 BMD. There was a definite, although not significant, trend towards improved mean bone mineral density Z-score per year and a lower percentage of patients with a decreased Z-score in hypercalciuric children treated with potassium citrate. Our findings suggest the possibility that dietary recommendations alone is not adequate as the bone mineral density of children with hypercalciuria will decrease over time, potentially increasing the risk for osteoporosis as an adult.

  19. Cadmium and lead in blood in relation to low bone mineral density and tubular proteinuria.

    PubMed Central

    Alfvén, Tobias; Järup, Lars; Elinder, Carl-Gustaf

    2002-01-01

    Long-term exposure to cadmium may cause kidney and bone damage. Urinary cadmium is commonly used as the dose estimate for the body burden of cadmium. However, elevated levels of cadmium in the urine may reflect not only high levels of cadmium dose but also renal dysfunction. In this study we used blood cadmium as the dose estimate. In addition, we analyzed blood lead. We examined 479 men and 542 women, ages 16-81 years, who were environmentally or occupationally exposed to cadmium and lead. We used urinary protein alpha 1-microglobulin as a marker for tubular proteinuria and measured forearm bone mineral density using dual-energy X-ray absorptiometry. The relationship between blood cadmium and tubular proteinuria was strong, even when we excluded occupationally exposed participants. The subgroup with the highest blood cadmium levels had a 4-fold risk of tubular proteinuria compared to the subgroup with the lowest blood cadmium levels. In the older age group (age > 60), the risk of low bone mineral density (z-score < -1) for the subgroup with the highest blood cadmium levels was almost 3-fold compared to the group with lowest blood cadmium levels. We found no similar associations for lead. The observed effects may be caused by higher cadmium exposure in the past. This study strengthens previous evidence that cadmium exposure may affect both bone mineral density and kidney function. PMID:12117647

  20. Bone Mineral Density as a Marker of Cumulative Estrogen Exposure in Psychotic Disorder: A 3 Year Follow-Up Study

    PubMed Central

    van der Leeuw, Christine; Peeters, Sanne; Domen, Patrick; van Kroonenburgh, Marinus; van Os, Jim; Marcelis, Machteld

    2015-01-01

    Altered estrogen-induced neuroprotection has been implicated in the etiology of psychotic disorders. Using bone mineral density as a marker of lifetime estrogen exposure, a longitudinal family study was conducted to discriminate between etiological mechanisms and secondary effects of disease and treatment. Dual X-ray absorptiometry scans were acquired twice, with an interval of 3 years, in 30 patients with psychotic disorder (male (M)/female (F): 24/6, mean age of 32 years at second measurement), 44 non-psychotic siblings of patients with a psychotic disorder (M/F: 26/18, mean age 32) and 27 controls (M/F: 7/20, mean age 35). Total bone mineral density, Z-scores and T-scores were measured in the lumbar spine and proximal femur. Associations between group and bone mineral density changes were investigated with multilevel random regression analyses. The effect of prolactin-raising antipsychotic medication was evaluated. (Increased risk of) psychotic disorder was not associated with disproportionate bone mineral density loss over a three year period. Instead, femoral bone mineral density measures appeared to decrease less in the patient versus control comparison (total BMD: B = 0.026, 95% CI 0.002 to 0.050, p = 0.037; Z-score: B = 0.224, 95% CI 0.035 to 0.412, p = 0.020; and T-score: B = 0.193, 95% CI 0.003 to 0.382, p = 0.046). Current or past use of a prolactin-raising antipsychotic medication was not associated with bone mineral density changes. In this small longitudinal study, there was no evidence of ongoing estrogen deficiency in psychotic disorder as there was no excessive loss of bone mineral density over a 3-year period in patients using antipsychotic medication. PMID:26309037

  1. Bone resorption and mineral excretion in rats during spaceflight

    NASA Technical Reports Server (NTRS)

    Cann, C. E.; Adachi, R. R.

    1983-01-01

    Bone resorption was measured directly in flight and synchronous control rats during COSMOS 1129. Continuous tracer administration techniques were used, with replacement of dietary calcium with isotopically enriched Ca-40 and measurement by neutron activation analysis of the Ca-48 released by the skeleton. There is no large change in bone resorption in rats at the end of 20 days of spaceflight as has been found for bone formation. Based on the time course of changes, the measured 20-25 percent decrease in resorption is probably secondary to a decrease in total body calcium turnover. The excretion of sodium, potassium, and zinc all increase during flight, sodium and potassium to a level four to five times control values.

  2. Advances in noninvasive bone measurement

    SciTech Connect

    Mazess, R.B.; Barden, H.; Vetter, J.; Ettinger, M.

    1989-01-01

    Several noninvasive measurement methods are used for evaluation of metabolic disease. Single-photon (/sup 125/I) scans of the peripheral skeleton are useful in some diseases but are ineffective in osteoporosis (even on the distal radius or os calcis) because they cannot predict spinal or femoral density. Also, peripheral measurements show high percentages of false negatives, that is many patients with fractures have normal peripheral density. Dual-photon (/sup 153/Gd) scans of the spine, femur, and total skeleton are precise and accurate (2% error) and provide direct measurements of bone strength at fracture sites. This gives the best discrimination of abnormality and the most sensitive monitoring. Quantitative computed computed tomography (QCT) allows measurement of the spine but not the critical proximal femur area. QCT has a large accuracy error because (a) the limited area measured (under 5 cm3) fails to represent the total vertebral body, (b) technical errors, and (c) variable fat and osteoid influence the results. 25 references.

  3. Tensile properties of rat femoral bone as functions of bone volume fraction, apparent density and volumetric bone mineral density.

    PubMed

    Nazarian, Ara; Araiza Arroyo, Francisco J; Rosso, Claudio; Aran, Shima; Snyder, Brian D

    2011-09-02

    Mechanical testing has been regarded as the gold standard to investigate the effects of pathologies on the structure-function properties of the skeleton. Tensile properties of cancellous and cortical bone have been reported previously; however, no relationships describing these properties for rat bone as a function of volumetric bone mineral density (ρ(MIN)), apparent density or bone volume fraction (BV/TV) have been reported in the literature. We have shown that at macro level, compression and torsion properties of rat cortical and cancellous bone can be well described as a function of BV/TV, apparent density or ρ(MIN) using non-destructive micro-computed tomographic imaging and mechanical testing to failure. Therefore, the aim of this study is to derive a relationship expressing the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρ(MIN) over a range of normal and pathologic bones. We used bones from normal, ovariectomized and osteomalacic animals. All specimens underwent micro-computed tomographic imaging to assess bone morphometric and densitometric indices and uniaxial tension to failure. We obtained univariate relationships describing 74-77% of the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρ(MIN) over a range of density and common skeletal pathologies. The relationships reported in this study can be used in the structural rigidity to provide a non-invasive method to assess the tensile behavior of bones affected by pathology and/or treatment options.

  4. Effects of Rubus coreanus-Cheonggukjang on Bone Mineral Density and Bone Mineral Content in Growing Rats

    PubMed Central

    Jung, Yun-Jung; Choi, Mi-Ja

    2015-01-01

    The purpose of the present study was to investigate the bone-conserving effects of Rubus coreanus-Cheonggukjang (RC-CGJ) supplemented with more intensified phytochemicals compared to general Cheonggukjang (CGJ) in growing rats. Eighteen rats were divided into 3 treatment groups (Control, CGJ, and RC-CGJ) and were given experimental diets for 9 weeks. All of the rats in this study were fed a AIN-93G-based diet. Both CGJ groups were fed with 33.1% CGJ and RC-CGJ powder, respectively. The results of this study indicate that weight gain, mean food intake, and food efficiency ratio were not significantly different by the experimental diets among all groups. Spine bone mineral density (BMD) and femur BMD were not significantly different by the experimental diets. Spine bone mineral content (BMC) was significantly higher in the RC-CGJ and CGJ groups than in the control group, regardless of CGJ type. The femur BMC of the CGJ supplemented group was significantly higher compared with the control group and the RC-CGJ group. Compared with the control group, spine BMD and femur BMD per weight were markedly increased in the RC-CGJ and CGJ group regardless of CGJ type. Also, spine BMC per weight was significantly higher in the RC-CGJ group than in the CGJ group. However, femur BMC per weight was significantly higher in the CGJ group than in the RC-CGJ group. It can be concluded that RC-CGJ and CGJ supplemented diets have more beneficial effects on spine and femur peak bone mass in growing rats. PMID:26770913

  5. Vascular calcification, bone and mineral metabolism after kidney transplantation

    PubMed Central

    D’Marco, Luis; Bellasi, Antonio; Mazzaferro, Sandro; Raggi, Paolo

    2015-01-01

    The development of end stage renal failure can be seen as a catastrophic health event and patients with this condition are considered at the highest risk of cardiovascular disease among any other patient groups and risk categories. Although kidney transplantation was hailed as an optimal solution to such devastating disease, many issues related to immune-suppressive drugs soon emerged and it became evident that cardiovascular disease would remain a vexing problem. Progression of chronic kidney disease is accompanied by profound alterations of mineral and bone metabolism that are believed to have an impact on the cardiovascular health of patients with advanced degrees of renal failure. Cardiovascular risk factors remain highly prevalent after kidney transplantation, some immune-suppression drugs worsen the risk profile of graft recipients and the alterations of mineral and bone metabolism seen in end stage renal failure are not completely resolved. Whether this complex situation promotes progression of vascular calcification, a hall-mark of advanced chronic kidney disease, and whether vascular calcifications contribute to the poor cardiovascular outcome of post-transplant patients is reviewed in this article. PMID:26722649

  6. Body composition and bone mineral density of collegiate American football players

    PubMed Central

    Turnagöl, Hüseyin Hüsrev

    2016-01-01

    Abstract The aim of this study was to compare whole and segmental body composition and bone mineral density of collegiate American football players by playing positions. Forty collegiate American football players voluntarily participated in this study. Participants were categorized by playing positions into one of five categories i.e., defensive linemen, offensive linemen, defensive secondary players, offensive secondary players and receivers. Whole body composition and bone mineral density were measured by dual x-ray absorptiometry. Offensive and defensive linemen had higher body mass, a body mass index, lean mass and a fat mass index compared to the remaining three positions and a higher lean mass index compared to offensive secondary players and receivers. Offensive linemen had a higher body fat percentage and lower values of upper to lower lean mass than offensive and defensive secondary players and receivers, and higher total mass to the lean mass ratio and fat mass to the lean mass ratio compared to the other players. Offensive linemen had a higher fat mass index and fat mass to the lean mass ratio than defensive linemen. However, in all other measures they were similar. Offensive and defensive secondary players and receivers were similar with respect to the measured variables. Bone mineral density of the players was within the normal range and no difference in lean mass was observed between the legs. In conclusion, findings of this study showed that the total and segmental body composition profile of collegiate American football players reflected the demands of particular playing positions. PMID:28149373

  7. Exposure to cadmium and persistent organochlorine pollutants and its association with bone mineral density and markers of bone metabolism on postmenopausal women

    SciTech Connect

    Rignell-Hydbom, A.; Skerfving, S.; Lundh, T.; Lindh, C.H.; Elmstahl, S.; Bjellerup, P.; Juensson, B.A.G.; Struemberg, U.; Akesson, A.

    2009-11-15

    Environmental contaminants such as cadmium and persistent organochlorine pollutants have been proposed as risk factors of osteoporosis, and women may be at an increased risk. To assess associations between exposure to cadmium and two different POPs (2,2',4,4',5,5'-hexachlorobiphenyl CB-153, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene p,p'-DDE), on one hand, and bone effects, on the other, in a population-based study among postmenopausal (60-70 years) Swedish women with biobanked blood samples. The study included 908 women and was designed to have a large contrast of bone mineral densities, measured with a single photon absorptiometry technique in the non-dominant forearm. Biochemical markers related to bone metabolism were analyzed in serum. Exposure assessment was based on cadmium concentrations in erythrocytes and serum concentrations of CB-153 and p,p'-DDE. Cadmium was negatively associated with bone mineral density and parathyroid hormone, positively with the marker of bone resorption. However, this association disappeared after adjustment for smoking. The major DDT metabolite (p,p'-DDE) was positively associated with bone mineral density, an association which remained after adjustment for confounders, but the effect was weak. There was no evidence that the estrogenic congener (CB-153) was associated with any of the bone markers. In conclusion, no convincing associations were observed between cadmium and POPs, on one hand, and bone metabolism markers and BMD, on the other.

  8. Accelerated growth plate mineralization and foreshortened proximal limb bones in fetuin-A knockout mice.

    PubMed

    Seto, Jong; Busse, Björn; Gupta, Himadri S; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W C; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix--a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth.

  9. Accelerated Growth Plate Mineralization and Foreshortened Proximal Limb Bones in Fetuin-A Knockout Mice

    PubMed Central

    Gupta, Himadri S.; Schäfer, Cora; Krauss, Stefanie; Dunlop, John W. C.; Masic, Admir; Kerschnitzki, Michael; Zaslansky, Paul; Boesecke, Peter; Catalá-Lehnen, Philip; Schinke, Thorsten; Fratzl, Peter; Jahnen-Dechent, Willi

    2012-01-01

    The plasma protein fetuin-A/alpha2-HS-glycoprotein (genetic symbol Ahsg) is a systemic inhibitor of extraskeletal mineralization, which is best underscored by the excessive mineral deposition found in various tissues of fetuin-A deficient mice on the calcification-prone genetic background DBA/2. Fetuin-A is known to accumulate in the bone matrix thus an effect of fetuin-A on skeletal mineralization is expected. We examined the bones of fetuin-A deficient mice maintained on a C57BL/6 genetic background to avoid bone disease secondary to renal calcification. Here, we show that fetuin-A deficient mice display normal trabecular bone mass in the spine, but increased cortical thickness in the femur. Bone material properties, as well as mineral and collagen characteristics of cortical bone were unaffected by the absence of fetuin-A. In contrast, the long bones especially proximal limb bones were severely stunted in fetuin-A deficient mice compared to wildtype littermates, resulting in increased biomechanical stability of fetuin-A deficient femora in three-point-bending tests. Elevated backscattered electron signal intensities reflected an increased mineral content in the growth plates of fetuin-A deficient long bones, corroborating its physiological role as an inhibitor of excessive mineralization in the growth plate cartilage matrix - a site of vigorous physiological mineralization. We show that in the case of fetuin-A deficiency, active mineralization inhibition is a necessity for proper long bone growth. PMID:23091616

  10. Expanding the Description of Spaceflight Effects beyond Bone Mineral Density [BMD]: Trabecular Bone Score [TBS] in ISS Astronauts

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Spector, E. R.; King, L. J.; Evans, H. J.; Smith, S. A.

    2014-01-01

    Dual-energy x-ray absorptiometry [DXA] is the widely-applied bone densitometry method used to diagnose osteoporosis in a terrestrial population known to be at risk for age-related bone loss. This medical test, which measures areal bone mineral density [aBMD] of clinically-relevant skeletal sites (e.g., hip and spine), helps the clinician to identify which persons, among postmenopausal women and men older than 50 years, are at high risk for low trauma or fragility fractures and might require an intervention. The most recognized osteoporotic fragility fracture is the vertebral compression fracture which can lead to kyphosis or hunched backs typically seen in the elderly. DXA measurement of BMD however is recognized to be insufficient as a sole index for assessing fracture risk. DXA's limitation may be related to its inability to monitor changes in structural parameters, such as trabecular vs. cortical bone volumes, bone geometry or trabecular microarchitecture. Hence, in order to understand risks to human health and performance due to space exposure, NASA needs to expand its measurements of bone to include other contributors to skeletal integrity. To this aim, the Bone and Mineral Lab conducted a pilot study for a novel measurement of bone microarchitecture that can be obtained by retrospective analysis of DXA scans. Trabecular Bone Score (TBS) assesses changes to trabecular microarchitecture by measuring the grey color "texture" information extracted from DXA images of the lumbar spine. An analysis of TBS in 51 ISS astronauts was conducted to assess if TBS could detect 1) an effect of spaceflight and 2) a response to countermeasures independent of DXA BMD. In addition, changes in trunk body lean tissue mass and in trunk body fat tissue mass were also evaluated to explore an association between body composition, as impacted by ARED exercise, and bone microarchitecture. The pilot analysis of 51 astronaut scans of the lumbar spine suggests that, following an ISS

  11. Study of bone mineral metabolism. [during body immobilization, bed rest, and space flight

    NASA Technical Reports Server (NTRS)

    Palmer, H. E.

    1975-01-01

    The use of Sr-85 as an indicator of the skeletal location and relative amount of bone demineralization which occurs during immobilization of the body or body parts, bed-rest or space flight was studied. The bone mineral replacement which occurs after immobilization was measured rather than the bone loss which occurs during immobilization. In a study with two adult beagle dogs, the Sr-85 uptake in a leg which had been immobilized for two months was 400 percent higher than the uptake in the legs in regular use. This increased uptake probably resulted from only a few percent loss in bone mineral and indicates that losses less than one percent can be easily detected and located. The sensitivity, simplicity, and low radiation dose associated with the use of this method indicates that it should receive consideration for use on humans in bed-rest and space flight studies. Methods for measuring changes in total body nitrogen and in assisting the Johnson Space Center in calibrating a whole body counter for total body potassium measurements were also investigated.

  12. Dynamic Alterations in Microarchitecture, Mineralization and Mechanical Property of Subchondral Bone in Rat Medial Meniscal Tear Model of Osteoarthritis

    PubMed Central

    Yu, De-Gang; Nie, Shao-Bo; Liu, Feng-Xiang; Wu, Chuan-Long; Tian, Bo; Wang, Wen-Gang; Wang, Xiao-Qing; Zhu, Zhen-An; Mao, Yuan-Qing

    2015-01-01

    Background: The properties of subchondral bone influence the integrity of articular cartilage in the pathogenesis of osteoarthritis (OA). However, the characteristics of subchondral bone alterations remain unresolved. The present study aimed to observe the dynamic alterations in the microarchitecture, mineralization, and mechanical properties of subchondral bone during the progression of OA. Methods: A medial meniscal tear (MMT) operation was performed in 128 adult Sprague Dawley rats to induce OA. At 2, 4, 8, and 12 weeks following the MMT operation, cartilage degeneration was evaluated using toluidine blue O staining, whereas changes in the microarchitecture indices and tissue mineral density (TMD), mineral-to-collagen ratio, and intrinsic mechanical properties of subchondral bone plates (BPs) and trabecular bones (Tbs) were measured using micro-computed tomography scanning, confocal Raman microspectroscopy and nanoindentation testing, respectively. Results: Cartilage degeneration occurred and worsened progressively from 2 to 12 weeks after OA induction. Microarchitecture analysis revealed that the subchondral bone shifted from bone resorption early (reduced trabecular BV/TV, trabecular number, connectivity density and trabecular thickness [Tb.Th], and increased trabecular spacing (Tb.Sp) at 2 and 4 weeks) to bone accretion late (increased BV/TV, Tb.Th and thickness of subchondral bone plate, and reduced Tb.Sp at 8 and 12 weeks). The TMD of both the BP and Tb displayed no significant changes at 2 and 4 weeks but decreased at 8 and 12 weeks. The mineral-to-collagen ratio showed a significant decrease from 4 weeks for the Tb and from 8 weeks for the BP after OA induction. Both the elastic modulus and hardness of the Tb showed a significant decrease from 4 weeks after OA induction. The BP showed a significant decrease in its elastic modulus from 8 weeks and its hardness from 4 weeks. Conclusion: The microarchitecture, mineralization and mechanical properties of

  13. Maternal beef and postweaning herring diets increase bone mineral density and strength in mouse offspring.

    PubMed

    Hussain, Aysha; Olausson, Hanna; Nilsson, Staffan; Nookaew, Intawat; Khoomrung, Sakda; Andersson, Louise; Koskela, Antti; Tuukkanen, Juha; Ohlsson, Claes; Holmäng, Agneta

    2013-12-01

    The maternal diet during gestation and lactation affects the long-term health of the offspring. We sought to determine whether maternal and postweaning crossover isocaloric diets based on fish or meat affect the geometry, mineral density, and biomechanical properties of bone in mouse offspring in adulthood. During gestation and lactation, C57BL/6 dams were fed a herring- or beef-based diet. After weaning, half of the pups in each group were fed the same diet as their dams, and half were fed the other diet. Areal bone mineral density (aBMD) and bone mineral content (BMC) of the whole body and lumbar spine were measured in the offspring by dual X-ray absorptiometry at 9 and 21 weeks of age. At 22-26 weeks, tibia bone geometry (length, cortical volumetric (v) BMD, BMC, area and thickness) was analyzed by peripheral quantitative computed tomography, and the biomechanical properties of the tibia were analyzed by the three-point bending test. Plasma insulin-like growth factor-1 was analyzed at 12 weeks. In comparison to the maternal herring diet, the maternal beef diet increased aBMD and BMC in the whole body and lumbar spine of adult offspring, as well as cortical vBMD, BMC, bone area, and thickness at the mid-diaphyseal region of the tibia and the biomechanical properties of tibia strength. In contrast, a postweaning beef diet decreased aBMD in the lumbar spine and BMC in the whole body and lumbar spine compared with a postweaning herring diet, which instead increased plasma insulin-like growth factor-1 levels. The change from a maternal beef diet before weaning to a herring diet after weaning decreased body weight and increased the cortical area, vBMD, BMC, thickness, and strength of the tibia. These significant crossover effects indicate that a preweaning maternal beef diet and a postweaning herring diet are optimal for increasing BMC and bone strength in offspring in adulthood.

  14. An update on childhood bone health: mineral accrual, assessment and treatment

    PubMed Central

    Sopher, Aviva B.; Fennoy, Ilene; Oberfield, Sharon E.

    2015-01-01

    Purpose of Review To update the reader's knowledge about the factors that influence bone mineral accrual and to review the advances in the assessment of bone health and treatment of bone disorders. Recent Findings Maternal vitamin D status influences neonatal calcium levels, bone mineral density and bone size. In turn, bone mineral density z-score tends to track in childhood. These factors highlight the importance of bone health as early as fetal life. Dual-energy x-ray absorptiometry is the mainstay of clinical bone health assessment in this population due to the availability of appropriate reference data. Recently, more information has become available about assessment and treatment of bone disease in chronically ill pediatric patients. Summary Bone health must become a health focus starting prenatally in order to maximize peak bone mass and to prevent osteoporosis-related bone disease in adulthood. Vitamin D, calcium and weight-bearing activity are factors of key importance throughout childhood in achieving optimal bone health as bone mineral density z-score tracks through childhood and into adulthood. Recent updates of the International Society for Clinical Densitometry focus on the appropriate use of dual-energy x-ray absorptiometry in children of all ages, including children with chronic disease, and on the treatment of pediatric bone disease. PMID:25517023

  15. [Relation between body mass index and bone mineral density in a sample population of Mexican women].

    PubMed

    Murillo-Uribe, A; Aranda-Gallegos, J E; Río de la Loza-Cava, M F; Ortíz-Luna, G; Mendoza-Torres, L J; Santos-González, J

    1998-07-01

    The purpose of this trial is to demonstrate that a women with high body mass index (BMI > or = 28) has greater bone mineral density (BMD) from that with lower BMI. We studied 922 healthy women who met the inclusion criteria. They were classified into four groups according to their BMI (> or = 28 and < 28) and age (> or = 35 and < 35 years). Bone mineral measurement was performed by dual-energy X-ray absorptiometry (DEXA) in the hip and at the lumbar region. BMD in overweight women older than 35 years was significantly higher in comparison with that of women with lower BMI, both in the hip and the lumbar spine. In overweight women younger than 35 years, we found greater BMD in the hip reaching statistical significance, but not at the lumbar spine. We conclude that obesity is associated with greater BMD (4% at the lumbar spine; 11% at the hip) probably due to both greater physical stress and higher estrogen levels.

  16. Electrical and dielectric properties of bovine trabecular bone--relationships with mechanical properties and mineral density.

    PubMed

    Sierpowska, J; Töyräs, J; Hakulinen, M A; Saarakkala, S; Jurvelin, J S; Lappalainen, R

    2003-03-21

    Interrelationships of trabecular bone electrical and dielectric properties with mechanical characteristics and density are poorly known. While electrical stimulation is used for healing fractures, better understanding of these relations has clinical importance. Furthermore, earlier studies have suggested that bone electrical and dielectric properties depend on the bone density and could, therefore, be used to predict bone strength. To clarify these issues, volumetric bone mineral density (BMDvol), electrical and dielectric as well as mechanical properties were determined from 40 cylindrical plugs of bovine trabecular bone. Phase angle, relative permittivity, loss factor and conductivity of wet bovine trabecular bone were correlated with Young's modulus, yield stress, ultimate strength, resilience and BMDvol. The reproducibility of in vitro electrical and dielectric measurements was excellent (standardized coefficient of variation less than 1%, for all parameters), especially at frequencies higher than 1 kHz. Correlations of electrical and dielectric parameters with the bone mechanical properties or density were frequency-dependent. The relative permittivity showed the strongest linear correlations with mechanical parameters (r > 0.547, p < 0.01, n = 40, at 50 kHz) and with BMDvol (r = 0.866, p < 0.01, n = 40, at 50 kHz). In general, linear correlations between relative permittivity and mechanical properties or BMDvol were highest at frequencies over 6 kHz. In addition, a significant site-dependent variation of electrical and dielectric characteristics, mechanical properties and BMDvol was revealed in bovine femur (p < 0.05, Kruskall-Wallis H-test). Based on the present results, we conclude that the measurement of electrical and dielectric properties provides quantitative information that is related to bone quantity and quality.

  17. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals.

    PubMed

    Mondy, Kristin; Yarasheski, Kevin; Powderly, William G; Whyte, Michael; Claxton, Sherry; DeMarco, Debra; Hoffmann, Mary; Tebas, Pablo

    2003-02-15

    The underlying mechanisms of several bone disorders in human immunodeficiency virus (HIV)-infected persons and any relation to antiretroviral therapy have yet to be defined. A longitudinal study was conducted to estimate the prevalence of osteopenia or osteoporosis in HIV-infected persons; to assess bone mineralization, metabolism, and histomorphometry over time; and to evaluate predisposing factors. A total of 128 patients enrolled the study, and 93 were observed for 72 weeks. "Classic" risk factors (low body mass index, history of weight loss, steroid use, and smoking) for low bone mineral density (BMD) and duration of HIV infection were strongly associated with osteopenia. There was a weak association between low BMD and receipt of treatment with protease inhibitors; this association disappeared after controlling for the above factors. Markers of bone turnover tended to be elevated in the whole cohort but were not associated with low BMD. BMD increased slightly during follow-up. Traditional risk factors and advanced HIV infection play a more significant pathogenic role in the development of osteopenia and osteoporosis associated with HIV infection than do treatment-associated factors.

  18. Method and system for in vivo measurement of bone tissue using a two level energy source

    NASA Technical Reports Server (NTRS)

    Cameron, J. R.; Judy, P. F. (Inventor)

    1976-01-01

    Methods and apparatus are provided for radiologically determining the bone mineral content of living human bone tissue independently of the concurrent presence of adipose and other soft tissues. A target section of the body of the subject is irradiated with a beam of penetrative radiations of preselected energy to determine the attenuation of such beam with respect to the intensity of each of two radiations of different predetermined energy levels. The resulting measurements are then employed to determine bone mineral content.

  19. No change detected by DEXA in bone mineral density after periacetabular osteotomy.

    PubMed

    Mechlenburg, Inger; Kold, Søren; Søballe, Kjeld

    2009-12-01

    The purpose of this study was to assess acetabular bone mineral density after periacetabular osteotomy and to examine whether bone mineral density correlates with postoperative migration of the osteotomised acetabular fragment. Twenty-five female and three male patients scheduled for periacetabular osteotomy were consecutively included. The patients were scanned by dual energy X-ray absorptiometry (DEXA) at 1 week, 1 year, and 2 1/2 years after surgery. Radiostereometric analyses (RSA) were done at 1, 4, 8, and 24 weeks after surgery. Two and a half years after periacetabular osteotomy, no significant changes in bone mineral density or any biological effect on bone remodelling due a changed loading pattern in the acetabulum could be detected. There was no significant correlation between bone mineral density and migration of the acetabulum. Dual energy X-ray absorptiometry is not an appropriate method to demonstrate the changes in bone mineral density after periacetabular osteotomy or to predict postoperative acetabular migration.

  20. Experimental assessment of bone mineral density using quantitative computed tomography in holstein dairy cows

    PubMed Central

    MAETANI, Ayami; ITOH, Megumi; NISHIHARA, Kahori; AOKI, Takahiro; OHTANI, Masayuki; SHIBANO, Kenichi; KAYANO, Mitsunori; YAMADA, Kazutaka

    2016-01-01

    The aim of this study was to assess the measurement of bone mineral density (BMD) by quantitative computed tomography (QCT), comparing the relationships of BMD between QCT and dual-energy X-ray absorptiometry (DXA) and between QCT and radiographic absorptiometry (RA) in the metacarpal bone of Holstein dairy cows (n=27). A significant positive correlation was found between QCT and DXA measurements (r=0.70, P<0.01), and a significant correlation was found between QCT and RA measurements (r=0.50, P<0.01). We conclude that QCT provides quantitative evaluation of BMD in dairy cows, because BMD measured by QCT showed positive correlations with BMD measured by the two conventional methods: DXA and RA. PMID:27075115

  1. Gonadal steroid–dependent effects on bone turnover and bone mineral density in men

    PubMed Central

    Finkelstein, Joel S.; Lee, Hang; Leder, Benjamin Z.; Goldstein, David W.; Hahn, Christopher W.; Hirsch, Sarah C.; Linker, Alex; Perros, Nicholas; Servais, Andrew B.; Taylor, Alexander P.; Webb, Matthew L.; Youngner, Jonathan M.; Yu, Elaine W.

    2016-01-01

    BACKGROUND. Severe gonadal steroid deficiency induces bone loss in adult men; however, the specific roles of androgen and estrogen deficiency in hypogonadal bone loss are unclear. Additionally, the threshold levels of testosterone and estradiol that initiate bone loss are uncertain. METHODS. One hundred ninety-eight healthy men, ages 20–50, received goserelin acetate, which suppresses endogenous gonadal steroid production, and were randomized to treatment with 0, 1.25, 2.5, 5, or 10 grams of testosterone gel daily for 16 weeks. An additional cohort of 202 men was randomized to receive these treatments plus anastrozole, which suppresses conversion of androgens to estrogens. Thirty-seven men served as controls and received placebos for goserelin and testosterone. Changes in bone turnover markers, bone mineral density (BMD) by dual-energy x-ray absorptiometry (DXA), and BMD by quantitative computed tomography (QCT) were assessed in all men. Bone microarchitecture was assessed in 100 men. RESULTS. As testosterone dosage decreased, the percent change in C-telopeptide increased. These increases were considerably greater when aromatization of testosterone to estradiol was also suppressed, suggesting effects of both testosterone and estradiol deficiency. Decreases in DXA BMD were observed when aromatization was suppressed but were modest in most groups. QCT spine BMD fell substantially in all testosterone-dose groups in which aromatization was also suppressed, and this decline was independent of testosterone dose. Estradiol deficiency disrupted cortical microarchitecture at peripheral sites. Estradiol levels above 10 pg/ml and testosterone levels above 200 ng/dl were generally sufficient to prevent increases in bone resorption and decreases in BMD in men. CONCLUSIONS. Estrogens primarily regulate bone homeostasis in adult men, and testosterone and estradiol levels must decline substantially to impact the skeleton. TRIAL REGISTRATION. ClinicalTrials.gov, NCT00114114

  2. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.

    PubMed

    Vercher-Martínez, Ana; Giner, Eugenio; Arango, Camila; Fuenmayor, F Javier

    2015-02-01

    In this work, a three-dimensional finite element model of the staggered distribution of the mineral within the mineralized collagen fibril has been developed to characterize the lamellar bone elastic behavior at the sub-micro length scale. Minerals have been assumed to be embedded in a collagen matrix, and different degrees of mineralization have been considered allowing the growth of platelet-shaped minerals both in the axial and the transverse directions of the fibril, through the variation of the lateral space between platelets. We provide numerical values and trends for all the elastic constants of the mineralized collagen fibril as a function of the volume fraction of mineral. In our results, we verify the high influence of the mineral overlapping on the mechanical response of the fibril and we highlight that the lateral distance between crystals is relevant to the mechanical behavior of the fibril and not only the mineral overlapping in the axial direction.

  3. Risk factors for developing mineral bone disease in phenylketonuric patients.

    PubMed

    Mirás, Alicia; Bóveda, M Dolores; Leis, María R; Mera, Antonio; Aldámiz-Echevarría, Luís; Fernández-Lorenzo, José R; Fraga, José M; Couce, María L

    2013-03-01

    There is a compromised bone mass in phenylketonuria patients compared with normal population, but the mechanisms responsible are still a matter of investigation. In addition, tetrahydrobiopterin therapy is a new option for a significant proportion of these patients and the prevalence of mineral bone disease (MBD) in these patients is unknown. We conducted a cross-sectional observational study including 43 phenylketonuric patients. Bone densitometry, nutritional assessment, physical activity questionnaire, biochemical parameters, and molecular study were performed in all patients. Patients were stratified by phenotype, age and type of treatment. The MBD prevalence in phenylketonuria was 14%. Osteopenic and osteoporotic (n=6 patients) had an average daily natural protein intake significantly lower than the remaining (n=37) patients with PKU (14.33 ± 8.95 g vs 21.25 ± 20.85 g). Besides, a lower body mass index was found. There were no statistical differences in physical activity level, calcium, phosphorus and fat intake, and in phenylalanine, vitamin D, paratohormone, docosahexaenoic and eicosapentaenoic acid blood levels. Mutational spectrum was found in up to 30 different PAH genotypes and no relationship was established among genotype and development of MBD. None of the twelve phenylketonuric patients treated with tetrahydrobiopterin (27.9%), for an average of 7.1 years, developed MBD. Natural protein intake and blood levels of eicosapentaenoic acid were significantly higher while calcium intake was lower in these patients. This study shows that the decrease in natural protein intake can play an important role in MBD development in phenylketonuric patients. Therapy with tetrahydrobiopterin allows a more relaxed protein diet, which is associated with better bone mass.

  4. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  5. Dual-Energy X-Ray Absorptiometry: Beyond Bone Mineral Density Determination

    PubMed Central

    2016-01-01

    Significant improvements in dual-energy X-ray absorptiometry (DXA) concerning quality, image resolution and image acquisition time have allowed the development of various functions. DXA can evaluate bone quality by indirect analysis of micro- and macro-architecture of the bone, which and improve the prediction of fracture risk. DXA can also detect existing fractures, such as vertebral fractures or atypical femur fractures, without additional radiologic imaging and radiation exposure. Moreover, it can assess the metabolic status by the measurement of body composition parameters like muscle mass and visceral fat. Although more studies are required to validate and clinically use these parameters, it is clear that DXA is not just for bone mineral densitometry. PMID:26996419

  6. Bone Mineral Density in Adolescent Girls with Hypogonadotropic and Hypergonadotropic Hypogonadism

    PubMed Central

    Özbek, Mehmet Nuri; Demirbilek, Hüseyin; Baran, Rıza Taner; Baran, Ahmet

    2016-01-01

    Objective: Deficiency of sex steroids has a negative impact on bone mineral content. In studies conducted on postmenopausal women and animal studies, elevated follicle-stimulating hormone (FSH) levels were found to be correlated with a decrease in bone mineralization and osteoporosis. The aim of the present study was to evaluate bone mineral density (BMD) in adolescent girls with hypogonadotropic and hypergonadotropic hypogonadism and also to investigate the correlation between FSH level and BMD. Methods: The study group included 33 adolescent girls with hypogonadism (14 with hypogonadotropic hypogonadism and 19 with hypergonadotropic hypogonadism). FSH, luteinizing hormone, estradiol levels, and BMD (using dual energy x-ray absorptiometry) were measured. Results: There were no statistically significant differences between the chronological age and bone age of the two patient groups, namely, with hypogonadotropic and hypergonadotropic hypogonadism. There was also no significant difference between BMD z-score values obtained from measurements from the spine and the femur neck of patients in the two groups (p-values were 0.841 and 0.281, respectively). In the hypergonadotropic group, a moderately negative correlation was detected between FSH level and BMD z-score measured from the femur neck (ρ=-0.69, p=0.001), whilst no correlation was observed between FSH levels and height adjusted BMD-z scores measured from the spine (ρ=0.17, p=0.493). FSH level was not found to be an independent variable affecting BMD z-score. Conclusion: BMD z-scores were detected to be similar in adolescent girls with hypogonadotropic and hypergonadotropic hypogonadism, and FSH levels were not found to have a clinically relevant impact on BMD. PMID:27087454

  7. Correlation between serum leptin and bone mineral density in hemodialysis patients

    PubMed Central

    Ghorban-Sabbagh, Mahin; Nazemian, Fatemeh; Naghibi, Massih; Shakeri, Mohammad-Taghi; Ahmadi-Simab, Saeedeh; Javidi-Dasht-Bayaz, Reza

    2016-01-01

    Introduction: For diagnosing of specific types of bone lesions in hemodialysis (HD) patients, it is necessary to conduct a bone biopsy as the gold standard method. However, it is an invasive procedure. While different markers have been suggested as alternative methods, none of them has been selected. The frequency of hip fractures is 80 fold in HD patients who have two-fold mortality as compared with general population. Objectives: Recently, serum leptin has been suggested as a bone density marker. This study tries to confirm this proposal. Patients and Methods: In this study about 104 HD patients (53.8% male and 46.2% female) were enrolled. The average age was 38.28±7.89 years. Serum leptin, bone alkaline phosphatase, intact parathyroid hormone (iPTH), 25(OH)D, calcium, phosphorus and bone mineral density (BMD) (at the femoral neck and lumbar spine, as measured by dual-energy x-ray absorptiometry [DXA]) were assessed. Results: Analysis by polynomial regression revealed no correlation between BMD Z-score at two points and serum leptin level. According to the thresholds of 25 ng/mL and 18-24 ng/mL in some studies, we detected 25 ng/mL as the threshold in our patients. Under this threshold, the leptin effect on bone mass was negative, and above the threshold of 25 ng/mL, we found leptin had positive effect on bone mass. Conclusion: In this investigation, we found, leptin has a bimodal effect on bone mass. Cortical bones assessment may be a better option for assessment. PMID:27689105

  8. Bisphosphonate Treatment Modifies Canine Bone Mineral and Matrix Properties and their Heterogeneity

    PubMed Central

    Gourion-Arsiquaud, Samuel; Allen, Matthew R.; Burr, David B.; Vashishth, Deepak; Tang, Simon Y.; Boskey, Adele L.

    2009-01-01

    Bone loss and alterations in bone quality are major causes leading to bone fragility in postmenopausal women. Although bisphosphonates are well known to reduce bone turnover and prevent bone loss in postmenopausal osteoporosis, their effects on other bone properties are not fully characterized. Changes in bone mineral and matrix properties may contribute to the anti-fracture efficacy observed with bisphosphonate treatments. The aim of this work was to analyze the effect of a one-year treatment with either alendronate or risedronate, at low and high doses, on spatially resolved bone material and compositional properties that could contribute to the fracture efficacy of these agents. Distal tibias from thirty normal beagles that had been treated daily for one year with oral doses of vehicle (Veh), alendronate (Aln) at 0.2 or 1 mg/kg, and risedronate (Ris) at 0.1 or 0.5 mg/kg were analyzed by Fourier Transform Infrared imaging (FTIRI) to assess the changes in both mineral and matrix properties in discrete bone areas. The widths at half maximum of the pixel histograms for each FTIRI parameter were used to assess the heterogeneity of the bone tissue. Aln and Ris increased the mineral content and the collagen maturity mainly in cancellous bone and at the endocortical surface. Significant differences were observed in the mineral content and in the hydroxyapatite crystallinity distribution in bone tissue, which can contribute to reduced ductility and micro-crack accumulation. No significant differences were observed between low and high dose nor between Aln and Ris treatments. These results show that pharmacologic suppression of bone turnover increases the mineral and matrix bone tissue maturity in normal cancellous and endocortical bone areas where bone turnover is higher. These positive effects for decreased fracture risk are also associated with a loss of bone heterogeneity that could be one factor contributing to increased bone tissue brittleness and micro

  9. Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone.

    PubMed

    Saito, Mitsuru; Grynpas, Marc D; Burr, David B; Allen, Matthew R; Smith, Susan Y; Doyle, Nancy; Amizuka, Norio; Hasegawa, Tomoka; Kida, Yoshikuni; Marumo, Keishi; Saito, Hitoshi

    2015-04-01

    Eldecalcitol (ELD), an active form of vitamin D analog approved for the treatment of osteoporosis in Japan, increases lumbar spine bone mineral density (BMD), suppresses bone turnover markers, and reduces fracture risk in patients with osteoporosis. We have previously reported that treatment with ELD for 6 months improved the mechanical properties of the lumbar spine in ovariectomized (OVX) cynomolgus monkeys. ELD treatment increased lumbar BMD, suppressed bone turnover markers, and reduced histomorphometric parameters of both bone formation and resorption in vertebral trabecular bone. In this study, we elucidated the effects of ELD on bone quality (namely, mineralization, microarchitecture, microdamage, and bone collagen crosslinks) in OVX cynomolgus monkeys in comparison with OVX-vehicle control monkeys. Density fractionation of bone powder prepared from lumbar vertebrae revealed that ELD treatment shifted the distribution profile of bone mineralization to a higher density, and backscattered electron microscopic imaging showed improved trabecular bone connectivity in the ELD-treated groups. Higher doses of ELD more significantly reduced the amount of microdamage compared to OVX-vehicle controls. The fractionated bone powder samples were divided according to their density, and analyzed for collagen crosslinks. Enzymatic crosslinks were higher in both the high-density (≥2.0 mg/mL) and low-density (<2.0 mg/mL) fractions from the ELD-treated groups than in the corresponding fractions in the OVX-vehicle control groups. On the other hand, non-enzymatic crosslinks were lower in both the high- and low-density fractions. These observations indicated that ELD treatment stimulated the enzymatic reaction of collagen crosslinks and bone mineralization, but prevented non-enzymatic reaction of collagen crosslinks and accumulation of bone microdamage. Bone anti-resorptive agents such as bisphosphonates slow down bone remodeling so that bone mineralization, bone microdamage

  10. The effect of weight bearing on bone mineral density and bone growth in children with cerebral palsy

    PubMed Central

    Han, Eun Young; Choi, Jung Hwa; Kim, Sun-Hyun; Im, Sang Hee

    2017-01-01

    Abstract Background: The present study aims to explore the effect of weight bearing exercise on bone mineral density (BMD) and bone growth in children with cerebral palsy (CP). Methods: Twelve children with CP of functional level of gross motor functional classification scale (GMFCS) V and 6 healthy children (control group) were included in the study. Participants underwent a dual-energy X-ray absorptiometry scan to measure the BMD of the femur and full-length anteroposterior radiography to measure the bone length of the femur and tibia at baseline and after 6 months. Patients were randomly divided into 2 groups: group A with programmed standing exercises and assisted standing for more than 2 hours a day, more than 5 days a week; and group B with conventional physiotherapy with a standing program for 20 minutes a day, 2 to 3 days a week. Results: A 6-month follow-up showed significantly increased BMD on the femur neck in the control group. Although the changes in BMD were not significant in both groups, group A demonstrated an increased trend of BMD, whereas group B showed a decreased trend. Bone length was significantly increased in all 3 groups at the 6-month follow-up. Although this increase was not significant, the change in bone length was greatest in the control group. The smallest changes were observed in group B. Conclusions: Weight bearing exercise may play an important role in increasing or maintaining BMD in children with CP and is also expected to promote bone growth. Programmed standing may be used as an effective treatment method to increase BMD in children with CP. However, further studies with a larger cohort and longer follow-up period are required to reveal further information on the benefit of weight bearing exercise and to develop a detailed program. PMID:28272197

  11. Competitive season of triathlon does not alter bone metabolism and bone mineral status in male triathletes.

    PubMed

    Maïmoun, L; Galy, O; Manetta, J; Coste, O; Peruchon, E; Micallef, J P; Mariano-Goulart, D; Couret, I; Sultan, C; Rossi, M

    2004-04-01

    This longitudinal study evaluated the effects of a triathlon season on bone metabolism and hormonal status. Seven male competitive triathletes (mean age 19.3 years, range 18 - 20) with 5.0 +/- 0.3 years of competition experience were tested twice during the season: at the beginning of training and 32 weeks later. Total and regional bone mineral density (BMD) was determined by dual-energy X-ray absorptiometry, while bone turnover was evaluated by specific biochemical markers: bone-specific alkaline phosphatase (B-ALP), osteocalcin, and urinary type I collagen C-telopeptide. In addition, sexual, calciotropic and somatotropic hormones were also analyzed. After 32 weeks, a BMD increase was found at the lumbar spine (1.9 %; p = 0.031) and skull (3.1 %; p = 0.048), while no variation was observed for total body or at the proximal femur. The B-ALP level decreased (-23.2 %; p = 0.031), but no variation was found for the other bone markers. 1.25 (OH) (2)D3, IGF-1 and the bioavailability IGF-1 index (IGF-1/IGFBP-3) increased by 18.3 % (p = 0.047), 29 % (p = 0.048), 33 % (p = 0.011), respectively, while PTH, testosterone, IGFBP-3 and cortisol concentrations were unchanged. In conclusion, the triathlon season had a moderately favourable effect on BMD, although a slowing down of bone formation activity was observed. No variation in hormonal levels was observed that could have limited the effects of exercise on bone tissue.

  12. Assessment of bone mineral density in the jaws and its relationship to radiomorphometric indices

    PubMed Central

    Gulsahi, A; Paksoy, CS; Ozden, S; Kucuk, NO; Cebeci, ARI; Genc, Y

    2010-01-01

    Objectives The aim of this study was to evaluate maxillary, mandibular and femoral neck bone mineral density using dual energy X-ray absorptiometry (DXA) and to determine any correlation between the bone mineral density of the jaws and panoramic radiomorphometric indices. Methods 49 edentulous patients (18 males and 31 females) aged between 41 and 78 years (mean age 60.2 ± 11.04) were examined by panoramic radiography. Bone mineral density (BMD) of the jaws and femoral neck was measured with a DXA; bone mineral density was calculated at the anterior, premolar and molar regions of the maxilla and mandible. Results The mean maxillary molar BMD (0.45 g cm−2) was significantly greater than the maxillary anterior and premolar BMD (0.31 g cm−2, P < 0.05). Furthermore, the mean mandibular anterior and premolar BMD (1.39 g cm−2 and 1.28 g cm−2, respectively) was significantly greater than the mean mandibular molar BMD (1.09 g cm−2, P < 0.01). Although BMD in the maxillary anterior and premolar regions were correlated, BMD in all the mandibular regions were highly correlated. Maxillary and mandibular BMD were not correlated with femoral BMD. In addition, mandibular cortical index (MCI) classification, mental index (MI) or panoramic mandibular index (PMI) values were not significantly correlated with the maxillary and mandibular BMDs (P > 0.05). Conclusions The BMD in this study was highest in the mandibular anterior region and lowest in the maxillary anterior and premolar regions. The BMD of the jaws was not correlated with either femoral BMD or panoramic radiomorphometric indices. PMID:20587652

  13. Comparison of bone mineral density in the jaws of patients with and without chronic periodontitis

    PubMed Central

    Öztürk Tonguç, M; Ş Büyükkaplan, U; Fentoğlu, Ö; A Gümüş, B; S Çerçi, S; Y Kırzıoğlu, F

    2012-01-01

    Objectives Although several studies have addressed the relationship between systemic bone mineral status and the severity of periodontitis, there is little knowledge of the relationship between periodontal disease and locally detected bone mineral density. The aim of this study was to compare the mandibular bone mineral density of patients with chronic periodontitis with that of periodontally healthy subjects. Methods 48 systemically healthy subjects were included in the study and underwent a periodontal examination to determine their status. 24 subjects were periodontally healthy and the other 24 had moderate or severe chronic periodontitis. The mandibular bone mineral density of the subjects was determined by dual energy X-ray absorptiometry. The region of interest on the body of the mandible was independently determined on the dual energy absorptiometry radiographs, and a computer calculated the bone mineral density of these regions. Results The mandibular bone mineral density of the subjects with periodontitis was significantly lower than that of the periodontally healthy subjects (p < 0.01). There were significant negative correlations between the mandibular bone mineral density values and parameters related to the amount of periodontal destruction. Conclusions Low bone mineral density in the jaw may be associated with chronic periodontitis. PMID:22241867

  14. The Development of Bone Mineral Lateralization in the Arms

    PubMed Central

    Siminoski, Kerry; Lee, Kwok-Choy; Abish, Sharon; Alos, Nathalie; Bell, Lorraine; Blydt-Hansen, Tom; Couch, Robert; Cummings, Elizabeth A.; Ellsworth, Janet; Feber, Janusz; Fernandez, Conrad V.; Halton, Jacqueline; Huber, Adam M.; Israels, Sara; Jurencak, Roman; Lang, Bianca; Laverdière, Caroline; LeBlanc., Claire; Lewis, Victor; Midgley, Julian; Miettunen, Paivi M.; Oen, Kiem; Phan, Veronique; Pinsk, Maury; Rauch, Frank; Rodd, Celia; Roth, Johannes; Saint-Cyr, Claire; Scuccimarri, Rosie; Stephure, David; Taback, Shayne; Wilson, Beverly; Ward, Leanne M.

    2014-01-01

    Purpose Bone mineral content (BMC) exhibits sidedness in the arms after the age of 8 years, but it is not known whether BMC is greater in the dominant arm from birth or whether lateralization develops in early childhood. To address this, we examined bone mineral status in relation to handedness and age. Methods Subjects (n = 158) were children recently initiating glucocorticoid for underlying disease (leukemia 43%, rheumatic conditions 39%, nephrotic syndrome 18%). Handedness was determined by questionnaire and BMC by dual-energy x-ray absorptiometry. Results Median age was 7.2 years (range, 1.5 to 17.0 years), 49% were male, and the spine BMD Z-score was −0.9 (SD, 1.3). By linear regression, BMC sidedness in the arms was significantly related to age (r = 0.294, p = 0.0005). Breakpoint analysis revealed two lines with a knot at 6.0 years (95% CI, 4.5–7.5 years). The formula for the first line was: dominant:nondominant arm BMC ratio = 0.029 × age [in years] + 0.850 (r = 0.323, p = 0.017). The slope of the second line was not different from 0 (p = 0.332), while the slopes for the two lines were significantly different (p = 0.027). Conclusions These results show that arm BMC sidedness in this patient group develops up to age six years and then remains stable into late adolescence. This temporal profile is consistent with mechanical stimulation of the skeleton in response to asymmetrical muscle use as handedness becomes manifest. PMID:22744715

  15. Age-related decrements in bone mineral density in women over 65

    NASA Technical Reports Server (NTRS)

    Steiger, P.; Cummings, S. R.; Black, D. M.; Spencer, N. E.; Genant, H. K.

    1992-01-01

    Age-related changes in bone density contribute to the risk of fractures. To describe the relationship between age and bone mass in elderly women, we studied a large cohort of women over age 65 years who were recruited from population-based lists in four cities in the United States. Bone density in g/cm2 was measured by single-photon absorptiometry (SPA) and dual x-ray absorptiometry (DXA) at the distal and proximal radius, the calcaneus, the lumbar spine, and the proximal femur. Centralized data collection was used to control data quality and consistency. We found a strong inverse relationship between bone density and age for most sites. Decrements in bone density between women aged 65-69 years and women 85 years and older exceeded 16% in all regions except the spine, where the difference between the two age groups was 6%. Ward's triangle and the calcaneus exhibited the largest decrements, with 26 and 21%, respectively. The estimates of annual changes in bone mineral density by linear regression at sites other than the spine ranged from -0.82% at the femoral neck and trochanter to -1.30% at Ward's triangle. Correlations between the different regions ranged from r = 0.51 between the proximal radius and Ward's triangle to r = 0.66 between the distal radius and calcaneus. We conclude that the inverse relationship between age and bone mass measured by absorptiometry techniques in white women continues into the ninth decade of life. The relationship is strongest for bone density of Ward's triangle and the calcaneus and weakest for the spine.

  16. Quantitative Measures of Mineral Supply Risk

    NASA Astrophysics Data System (ADS)

    Long, K. R.

    2009-12-01

    Almost all metals and many non-metallic minerals are traded internationally. An advantage of global mineral markets is that minerals can be obtained from the globally lowest-cost source. For example, one rare-earth element (REE) mine in China, Bayan Obo, is able to supply most of world demand for rare earth elements at a cost significantly less than its main competitors. Concentration of global supplies at a single mine raises significant political risks, illustrated by China’s recent decision to prohibit the export of some REEs and severely limit the export of others. The expected loss of REE supplies will have a significant impact on the cost and production of important national defense technologies and on alternative energy programs. Hybrid vehicles and wind-turbine generators, for example, require REEs for magnets and batteries. Compact fluorescent light bulbs use REE-based phosphors. These recent events raise the general issue of how to measure the degree of supply risk for internationally sourced minerals. Two factors, concentration of supply and political risk, must first be addressed. Concentration of supply can be measured with standard economic tools for measuring industry concentration, using countries rather than firms as the unit of analysis. There are many measures of political risk available. That of the OECD is a measure of a country’s commitment to rule-of-law and enforcement of contracts, as well as political stability. Combining these measures provides a comparative view of mineral supply risk across commodities and identifies several minerals other than REEs that could suddenly become less available. Combined with an assessment of the impact of a reduction in supply, decision makers can use these measures to prioritize risk reduction efforts.

  17. Combat sports practice favors bone mineral density among adolescent male athletes.

    PubMed

    Nasri, Raouf; Hassen Zrour, Saoussen; Rebai, Haithem; Neffeti, Fadoua; Najjar, Mohamed Fadhel; Bergaoui, Naceur; Mejdoub, Hafedh; Tabka, Zouhair

    2015-01-01

    The aim of this study was to determine the impact of combat sports practice on bone mineral density (BMD) and to analyze the relationship between bone parameters and anthropometric measurements, bone markers, and activity index (AI). In other words, to detect the most important determinant of BMD in the adolescent period among combat sports athletes. Fifty athletes engaged in combat sports, mean age 17.1±0.2 yr, were compared with 30 sedentary subjects who were matched for age, height, and pubertal stage. For all subjects, the whole-body BMD, lumbar spine BMD (L2-L4), and BMD in the pelvis, arms, and legs was measured by dual-energy X-ray absorptiometry, and anthropometric measurements were evaluated. Daily calcium intake, bone resorption, and formation markers were measured. BMD measurements were greater in the combat sports athletes than in the sedentary group (p<0.01). Weight, body mass index, and lean body mass were significantly correlated with BMD in different sites. Daily calcium consumption lower than daily calcium intake recommended in both athletes and sedentary group. AI was strongly correlated with all BMD measurements particularly with the whole body, legs, and arms. Negative correlations were observed between bone markers and BMD in different sites. The common major predictor of BMD measurements was AI (p<0.0001). AI associated to lean body mass determined whole-body BMD until 74%. AI explained both BMD in arms and L2-L4 at 25%. AI associated to height can account for 63% of the variance in BMD legs. These observations suggested that the best model predicting BMD in different sites among adolescent combat sports athletes was the AI. Children and adolescents should be encouraged to participate in combat sports to maximize their bone accrual.

  18. Effects of estrogen deficiency and low bone mineral density on healthy knee cartilage in rabbits.

    PubMed

    Castañeda, Santos; Largo, Raquel; Calvo, Emilio; Bellido, Miriam; Gómez-Vaquero, Carmen; Herrero-Beaumont, Gabriel

    2010-06-01

    The purpose of this study was to compare the effects of estrogen deficiency and bone mass loss on normal knee cartilage in mature rabbits. Bilateral ovariectomy (OVX) was performed in 13 rabbits, 6 of which also received systemic glucocorticoid for 4 weeks. Seven additional healthy rabbits were used as controls. Bone mineral density (BMD) was measured by dual X-ray absorptiometry in lumbar spine, knee, and subchondral bone of the knee at baseline and 22 weeks after OVX. After sacrifice, the knees were dissected, macroscopy was assessed, and histological cartilage abnormalities were evaluated according to the Mankin score. Correlations of Mankin with BMD at different regions were also performed. When compared to baseline, differences in BMD were only found in spine and knee of the animals receiving glucocorticoids. All the animals subjected to OVX had a significantly higher Mankin score than controls. Mankin was upper in OVX animals receiving glucocorticoids, but differences were not significant. The Mankin score was inversely related with BMD in lumbar spine (r = -0.67; p < 0.01). Although low bone mineral density contributes to the minor osteoarthritic alterations observed in our model, estrogen deficiency itself seems to act directly to induce the main pathogenic effects in healthy cartilage of the rabbit.

  19. Bone mineral density and blood metals in premenopausal women

    SciTech Connect

    Pollack, A.Z.; Mumford, S.L.; Wactawski-Wende, J.; Yeung, E.; Mendola, P.; Mattison, D.R.; Schisterman, E.F.

    2013-01-15

    Exposure to metals, specifically cadmium, lead, and mercury, is widespread and is associated with reduced bone mineral density (BMD) in older populations, but the associations among premenopausal women are unclear. Therefore, we evaluated the relationship between these metals in blood and BMD (whole body, total hip, lumbar spine, and non-dominant wrist) quantified by dual energy X-ray absorptiometry in 248 premenopausal women, aged 18-44. Participants were of normal body mass index (mean BMI 24.1), young (mean age 27.4), 60% were white, 20% non-Hispanic black, 15% Asian, and 6% other race group, and were from the Buffalo, New York region. The median (interquartile range) level of cadmium was 0.30 {mu}g/l (0.19-0.43), of lead was 0.86 {mu}g/dl (0.68-1.20), and of mercury was 1.10 {mu}g/l (0.58-2.00). BMD was treated both as a continuous variable in linear regression and dichotomized at the 10th percentile for logistic regression analyses. Mercury was associated with reduced odds of decreased lumbar spine BMD (0.66, 95% confidence interval: 0.44, 0.99), but overall, metals at environmentally relevant levels of exposure were not associated with reduced BMD in this population of healthy, reproductive-aged women. Further research is needed to determine if the blood levels of cadmium, lead, and mercury in this population are sufficiently low that there is no substantive impact on bone, or if effects on bone can be expected only at older ages.

  20. [MINERAL BONE DENSITY AND BODY COMPOSITION IN PARTICIPANTS IN EXPERIMENT MARS-500].

    PubMed

    Novikov, V E; Oganov, V S; Kabitskaya, O E; Murashko, L M; Naidina, V P; Chernikhova, E A

    2016-01-01

    Investigations of the bone system and body composition in Mars-500 test-subjects (prior to and on completion of the experiment) involved dual-energy X-ray absorptiometry (DXA) using the HOLOGIC Delphy densitometer and the protocol performed to examine cosmonauts. Bone density of lumber vertebrae and femoral proximal epiphysis, and body composition were measured. Reliable changes in vertebral density found in 3 test-subjects displayed different trends from +2.6 to -2.4%. At the same time, the experiment decreased significantly mineral density of the femoral proximal epiphysis, including the neck, in all test-subjects. Four test-subjects had cranial mineralization increased by 5-9%, same as in some cosmonauts after space flight. All tests-subjects incurred adipose loss from 2 to 7 kg; one test-subject lost 20 kg, i.e. his adipose mass became three times less. Changes in lean mass (1-3 kg) typically were negative; as for changes in lean mass of extremities, they could be linked with adherence to one or another type of physical activity. Therefore, extended exposure to confinement may affect mineralization of some parts of the skeleton. Unlike real space missions and long-term bedrest studies conducted at the Institute of Biomedical Problems in the past, Mars-500 did not cause clinically significant mineral losses (osteoporosis, osteopenia), probably because of the absence of effects of microgravity.

  1. Ubiquitin C-terminal hydrolase L1 deficiency decreases bone mineralization.

    PubMed

    Shim, Sehwan; Kwon, Young-Bae; Yoshikawa, Yasuhiro; Kwon, Jungkee

    2008-06-01

    Ubiquitin C-terminal hydrolase L1 is a component of the ubiquitin proteasome system, which evidences unique biological activities. In this study, we report the pattern of UCH-L1 expression, and show that it regulates bone mineralization in osteogenesis. UCH-L1 was expressed in osteoblasts, osteoclasts, and hematopoietic precursor cells of bone marrow in the metaphysis and diaphysis of the femora. To further assess the involvement of UCH-L1 in the regulation of bone mineralization, we evaluated the bone mineral density (BMD) rate of gad mice, using the Latheta computed tomography system. Male gad mice evidenced a significantly decreased BMD rate in the metaphysis and diaphysis of the femora. These findings of decreased BMD rate in the bones of gad mice may suggest that UCH-L1 function regulates bone mineralization during osteogenesis.

  2. Bone mineral density and body composition in adult patients with cystic fibrosis.

    PubMed Central

    Grey, A B; Ames, R W; Matthews, R D; Reid, I R

    1993-01-01

    BACKGROUND--Cystic fibrosis is a multisystem disease characterised by chronic pulmonary sepsis and malnutrition. To ascertain whether osteoporosis is a feature of cystic fibrosis in adult patients, total body and regional bone mineral density (BMD) was measured in a group of eight men and eight women aged 17-42 years. METHODS--Total body and regional BMD (lumbar spine L2-L4, femoral neck, trochanteric, and Ward's triangle), as well as total body fat and lean mass, were measured by dual energy x ray absorptiometry. A range of biochemical, lifestyle, and anthropometric variables was also assessed. RESULTS--Patients with cystic fibrosis had significantly reduced bone density at all sites compared with normal young adults. The mean reductions ranged from 7% at Ward's triangle to 13% at the trochanter. Body mass index (BMI) was positively correlated with BMD at four sites and disease severity negatively correlated with BMD at two sites. Other biochemical and anthropometric variables were not predictive of bone density. Total body fat mass was reduced by 30% compared with normal young adults. CONCLUSIONS--Bone density is decreased in adult patients with cystic fibrosis and BMI and disease severity are independent predictors of bone density. PMID:8346485

  3. Evaluation of Bone Mineral Density by Computed Tomography in Patients with Obstructive Sleep Apnea

    PubMed Central

    Hamada, Satoshi; Ikezoe, Kohei; Hirai, Toyohiro; Oguma, Tsuyoshi; Tanizawa, Kiminobu; Inouchi, Morito; Handa, Tomohiro; Oga, Toru; Mishima, Michiaki; Chin, Kazuo

    2016-01-01

    Study Objectives: Clinical studies have investigated whether obstructive sleep apnea (OSA) can modulate bone metabolism but data are conflicting. Bone mineral density (BMD) measured by dual-energy x-ray absorptiometry is the standard technique for quantifying bone strength but has limitations in overweight patients (body mass index [BMI] ≥ 25 kg/m2). The aim of this study was to examine the association between OSA and BMD by examining CT images that allow true volumetric measurements of the bone regardless of BMI. Methods: Lumbar vertebrae BMD was evaluated in 234 persons (180 males and 54 females) by CT scan. The method was calibrated by a phantom containing a known concentration of hydroxyapatite. Results: BMD was lower in male patients with severe OSA (apnea-hypopnea index [AHI] ≥ 30/h) than non OSA (AHI < 5; p < 0.05), while OSA and BMD had no association in females. Linear and multiple regression analyses revealed that age (p < 0.0001, β = −0.52), hypertension (p = 0.0068, β = −0.17), and the alveolar-arterial oxygen pressure difference (A-aDO2) (p = 0.012, β = −0.15) in males were associated with BMD, while only age (p < 0.0001, β = −0.68) was associated with BMD in females. Conclusion: Males with severe OSA had a significantly lower BMD than non OSA participants. Age, hypertension, and elevation of A-aDO2 were significant factors for BMD by CT imaging. The usefulness of measuring BMD in OSA patients by CT scanning should be studied in future. Citation: Hamada S, Ikezoe K, Hirai T, Oguma T, Tanizawa K, Inouchi M, Handa T, Oga T, Mishima M, Chin K. Evaluation of bone mineral density by computed tomography in patients with obstructive sleep apnea. J Clin Sleep Med 2016;12(1):25–34. PMID:26235157

  4. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone.

    PubMed

    Granke, Mathilde; Makowski, Alexander J; Uppuganti, Sasidhar; Nyman, Jeffry S

    2016-09-06

    Changes in the distribution of bone mineralization occurring with aging, disease, or treatment have prompted concerns that alterations in mineralization heterogeneity may affect the fracture resistance of bone. Yet, so far, studies assessing bone from hip fracture cases and fracture-free women have not reached a consensus on how heterogeneity in tissue mineralization relates to skeletal fragility. Owing to the multifactorial nature of toughening mechanisms occurring in bone, we assessed the relative contribution of heterogeneity in mineralization to fracture resistance with respect to age, porosity, and area fraction of osteonal tissue. The latter parameters were extracted from quantitative backscattered electron imaging of human cortical bone sections following R-curve tests of single-edge notched beam specimens to determine fracture toughness properties. Microstructural heterogeneity was determined as the width of the mineral distribution (bulk) and as the sill of the variogram (local). In univariate analyses of measures from 62 human donors (21 to 101 years), local but not bulk heterogeneity as well as pore clustering negatively correlated with fracture toughness properties. With age as covariate, heterogeneity was a significant predictor of crack initiation, though local had a stronger negative contribution than bulk. When considering all potential covariates, age, cortical porosity and area fraction of osteons explained up to 50% of the variance in bone׳s crack initiation toughness. However, including heterogeneity in mineralization did not improve upon this prediction. The findings of the present work stress the necessity to account for porosity and microstructure when evaluating the potential of matrix-related features to affect skeletal fragility.

  5. Determinants of bone mineral density in immobilization: a study on hemiplegic patients.

    PubMed

    del Puente, A; Pappone, N; Mandes, M G; Mantova, D; Scarpa, R; Oriente, P

    1996-01-01

    Osteoporosis that develops during immobilization is a severe condition that confers increased risk of fractures with their burden of mortality and disability. The aim of this study was to investigate the determinants of immobilization osteoporosis. As a model of this condition we studied hemiplegic subjects, measuring bone mineral density in the paralyzed lower limb as compared with the non-paralyzed one. In spite of the limits related to the loss of nervous stimulation, this model offers the advantage of a proper control for the complex genetic and environmental cofactors involved. We examined 48 hemiplegic subjects (31 men, 17 women in menopause) admitted consecutively over a 9-month period. Mean length immobilization was 10.9 months for men (range 1-48 months) and 7.8 months for women (range 1-40 months). The average time since menopause was 14.9 years (range 1.7-23.9 years). For each subject the following were performed: questionnaire, medical examination, anthropometric measurements, evaluation of the scores for spasticity and for lower limb motor capacity in order to account for the different degrees of disability among patients. Bone mineral density was measured using dual-energy X-ray absorptiometry (DXA) at both femoral necks. For each patient we defined a percentage difference in bone loss between the paralyzed and non-paralyzed limb. Regression coefficient were calculated by multiple logistic regression. There was significant bone loss in the paralyzed limb in both sexes, accounting for up to 6.3% in women. Multiple regression analysis showed that the degree of bone loss depends significantly and directly on the length of immobilization, even when controlling for age and sex in the regression model (R = 0.193, p = 0.034). However, when time since menopause was included in the regression model, with length of immobility as a covariate, it was the only significant determinant of bone loss (R = 0.312, p = 0.039). No additional factors were observed among

  6. Placental calcium transporter (PMCA3) gene expression predicts intrauterine bone mineral accrual.

    PubMed

    Martin, R; Harvey, N C; Crozier, S R; Poole, J R; Javaid, M K; Dennison, E M; Inskip, H M; Hanson, M; Godfrey, K M; Cooper, C; Lewis, R

    2007-05-01

    Evidence is accruing that environmental exposures during critical periods of early development induce persisting changes in skeletal growth, and alter fracture risk in later life. We have previously demonstrated that placental calcium transport, partly determined by maternal 25-(OH) vitamin D status, may underlie this phenomenon. However, the precise relationship between expression of calcium transport proteins in the human placenta, and neonatal bone mineral accrual in the offspring, remains unknown. Tissue samples from 70 human placentae were fast frozen in liquid nitrogen and stored at -70 degrees C. A quantitative real time reverse transcriptase polymerase chain reaction was used to measure the mRNA expression of PMCA isoforms 1-4, using beta-actin as a control gene. Neonatal whole body bone area, mineral content and areal density (BA, BMC, BMD) were measured within 2 weeks of birth using DXA. PMCA3 mRNA expression predicted BA (r=0.28, p=0.02), BMC (r=0.25, p=0.04), placental weight (r=0.26, p=0.04) and birth weight (r=0.33, p=0.006) of the neonate. In a multivariate model, the relationship between placental PMCA3 expression and neonatal BMC was independent of maternal height, pre-pregnant fat stores, parity, physical activity, smoking, and calcium intake (p<0.05). Expression of the placental calcium transporter PMCA3 mRNA predicts neonatal whole body bone mineral content. This association may explain, in part, the mechanism whereby a mother's 25(OH)-vitamin D stores influence her offspring's bone mass.

  7. Novel anatomic adaptation of cortical bone to meet increased mineral demands of reproduction.

    PubMed

    Macica, Carolyn M; King, Helen E; Wang, Meina; McEachon, Courtney L; Skinner, Catherine W; Tommasini, Steven M

    2016-04-01

    The goal of this study was to investigate the effects of reproductive adaptations to mineral homeostasis on the skeleton in a mouse model of compromised mineral homeostasis compared to adaptations in control, unaffected mice. During pregnancy, maternal adaptations to high mineral demand include more than doubling intestinal calcium absorption by increasing calcitriol production. However, calcitriol biosynthesis is impaired in HYP mice, a murine model of X-linked hypophosphatemia (XLH). In addition, there is a paucity of mineralized trabecular bone, a primary target of bone resorption during pregnancy and lactation. Because the highest density of mineral is in mature cortical bone, we hypothesized that mineral demand is met by utilizing intracortical mineral reserves. Indeed, analysis of HYP mice revealed dramatic increases in intracortical porosity characterized by elevated serum PTH and type-I collagen matrix-degrading enzyme MMP-13. We discovered an increase in carbonate ion substitution in the bone mineral matrix during pregnancy and lactation of HYP mice, suggesting an alternative mechanism of bone remodeling that maintains maternal bone mass during periods of high mineral demand. This phenomenon is not restricted to XLH, as increased carbonate in the mineral matrix also occurred in wild-type mice during lactation. Taken together, these data suggest that increased intracortical perilacunar mineral turnover also contributes to maintaining phosphate levels during periods of high mineral demand. Understanding the mechanisms of skeletal contribution to mineral homeostasis is important to improving the treatment and prevention of fracture risk and bone fragility for female patients with XLH, but also provides important insight into the role and unique adaptations of the maternal skeleton to the demands of fetal development and the needs of postnatal nutrition.

  8. Tibial bone mineral distribution as influenced by calcium, phosphorus, and vitamin D feeding levels in the growing turkey

    NASA Technical Reports Server (NTRS)

    Spurrell, F. A.; Brenes, J.; Waibel, P.

    1974-01-01

    Roentgen signs, subperiosteal, endosteal, and trabecular bone growth are evaluated in turkeys fed phosphorus at the 0.5, 0.56, 0.68, 0.90, and 2.70 percent levels. Calcium levels of 0.30, 0.40, 0.60, 1.2, and 3.60 percent were also tested. Vitamin D levels of 0, 100, 300, 900 and 27,000 I.U. per day were likewise evaluated. Roentgen signs, bone mineral as measured by T-125 gamma ray absorption, and bone mineral growth patterns as shown by radiograph area projection are correlated with calcium, phosphorus, and vitamin D feeding levels. Differences in bone growth at the various feeding levels were observed which were not reflected by differences in other studied parameters.

  9. Evaluation of Bone Mineral Density and Bone Biomarkers in Patients With Type 2 Diabetes Treated With Canagliflozin

    PubMed Central

    Watts, Nelson B.; Usiskin, Keith; Polidori, David; Fung, Albert; Sullivan, Daniel; Rosenthal, Norm

    2016-01-01

    Context: Canagliflozin is a sodium glucose cotransporter 2 inhibitor developed to treat type 2 diabetes mellitus (T2DM). Objective: Our objective is to describe the effects of canagliflozin on bone mineral density (BMD) and bone biomarkers in patients with T2DM. Design: This was a randomized study, consisting of a 26-week, double-blind, placebo-controlled period and a 78-week, double-blind, placebo-controlled extension. Setting: This study was undertaken in 90 centers in 17 countries. Patients: Patients were aged 55–80 years (N = 716) and whose T2DM was inadequately controlled on a stable antihyperglycemic regimen. Interventions: Canagliflozin 100 or 300 mg or placebo were administered once daily. Outcome and Measures: BMD was assessed using dual-energy x-ray absorptiometry at weeks 26, 52, and 104. Bone strength was assessed using quantitative computed tomography and finite element analysis at week 52. Serum collagen type 1 β-carboxy-telopeptide, osteocalcin, and estradiol were assessed at weeks 26 and 52. Results: Canagliflozin doses of 100 and 300 mg were associated with a decrease in total hip BMD over 104 weeks, (placebo-subtracted changes: −0.9% and −1.2%, respectively), but not at other sites measured (femoral neck, lumbar spine, or distal forearm). No meaningful changes in bone strength were observed. At week 52, canagliflozin was associated with an increase in collagen type 1 β-carboxy-telopeptide that was significantly correlated with a reduction in body weight, an increase in osteocalcin, and, in women, a decrease in estradiol. Conclusions: In older patients with T2DM, canagliflozin showed small but significant reductions in total hip BMD and increases in bone formation and resorption biomarkers, due at least in part to weight loss. PMID:26580234

  10. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia.

    PubMed

    Mačukat, Indira Radin; Spanjol, Josip; Orlič, Zeljka Crncevič; Butorac, Marta Zuvič; Marinovič, Marin; Ćupič, Dora Fučkar

    2014-09-01

    Testosterone is converted to dihyrotestosterone by two isoenzymes of 5alpha-reductase. Finasteride and dutasteride are 5alpha-reductase inhibitors commonly used in the treatment of benign prostatic hyperplasia. We compared indices of bone mineral density in 50 men treated with finasteride, 50 men treated with dutasteride and 50 men as control. Bone mineral density of spine and hip were measured using dual energy X-ray absorptiometry. Bone formation was assessed by measuring serum osteocalcin and bone resorptionby measuring serum C-terminal telopeptide of collagen type 1. In addition serum total testosteron and estradiol were determined. The dutasteride group had significantly higher mean bone min- eral density, mean bone mineral content, mean T score, mean Z score at femoral neck and mean total hip Z score than control. Mean total testosterone and estradiol levels were higher in the dutasteride group. There were no significant dif- ferences between the groups in lumbar spine bone density parameters or bone turnover markers. Our results provide evidence that long-term 5alpha-reductase suppression does not adversely affect bone mineral density. Dutasteride therapy could have beneficial effect on bone density.

  11. Serum leptin, bone mineral density and the healing of long bone fractures in men with spinal cord injury.

    PubMed

    Wang, Lei; Liu, Linjuan; Pan, Zhanpeng; Zeng, Yanjun

    2015-11-16

    Previously reported fracture rates in patients with spinal cord injury range from 1% to 20%. However, the exact role of spinal cord injury in bone metabolism has not yet been clarified. In order to investigate the effects of serum leptin and bone mineral density on the healing of long bone fractures in men with spinal cord injury, 15 male SCI patients and 15 matched controls were involved in our study. The outcome indicated that at 4 and 8 weeks after bone fracture, callus production in patients with spinal cord injury was lower than that in controls. Besides, bone mineral density was significantly reduced at 2, 4 and 8 weeks. In addition, it was found that at each time point, patients with spinal cord injury had significantly higher serum leptin levels than controls and no association was found between serum leptin level and bone mineral density of lumbar vertebrae. Moreover, bone mineral density was positively correlated with bone formation in both of the groups. These findings suggest that in early phases i.e. week 4 and 8, fracture healing was impaired in patients with spinal cord injury and that various factors participated in the complicated healing process, such as hormonal and mechanical factors.

  12. t10c12-CLA maintains higher bone mineral density during aging by modulating osteoclastogenesis and bone marrow adiposity.

    PubMed

    Rahman, Md M; Halade, Ganesh V; Williams, Paul J; Fernandes, Gabriel

    2011-09-01

    Conjugated linoleic acid (CLA) has been shown to positively influence calcium and bone metabolism. Earlier, we showed that CLA (equal mixture of c9t11-CLA and t10c12-CLA) could protect age-associated bone loss by modulating inflammatory markers and osteoclastogenesis. Since, c9t11-CLA and t10c12-CLA isomers differentially regulate functional parameters and gene expression in different cell types, we examined the efficacy of individual CLA isomers against age-associated bone loss using 12 months old C57BL/6 female mice fed for 6 months with 10% corn oil (CO), 9.5% CO + 0.5% c9t11-CLA, 9.5% CO + 0.5% t10c12-CLA or 9.5% CO + 0.25% c9t11-CLA + 0.25% t10c12-CLA. Mice fed a t10c12-CLA diet maintained a significantly higher bone mineral density (BMD) in femoral, tibial and lumbar regions than those fed CO and c9t11-CLA diets as measured by dual-energy-X-ray absorptiometry (DXA). The increased BMD was accompanied by a decreased production of osteoclastogenic factors, that is, RANKL, TRAP5b, TNF-alpha and IL-6 in serum. Moreover, a significant reduction of high fat diet-induced bone marrow adiposity was observed in t10c12-CLA fed mice as compared to that of CO and c9t11-CLA fed mice, as measured by Oil-Red-O staining of bone marrow sections. In addition, a significant reduction of osteoclast differentiation and bone resorbing pit formation was observed in t10c12-CLA treated RAW 264.7 cell culture stimulated with RANKL as compared to that of c9t11-CLA and linoleic acid treated cultures. In conclusion, these findings suggest that t10c12-CLA is the most potent CLA isomer and it exerts its anti-osteoporotic effect by modulating osteoclastogenesis and bone marrow adiposity.

  13. Bone mineral density in patients with destructive arthrosis of the hip joint.

    PubMed

    Okano, Kunihiko; Aoyagi, Kiyoshi; Enomoto, Hiroshi; Osaki, Makoto; Chiba, Ko; Yamaguchi, Kazumasa

    2014-05-01

    Recent reports have shown the existence of subchondral insufficiency fracture in rapidly destructive arthrosis of the hip joint (RDA), and the findings suggest that osteopenia is related to the pathogenesis of the rapid progression of this disease. Therefore, we measured bone mineral density (BMD) in RDA patients. We measured BMD of the lumbar spine, radius, and calcaneus using dual-energy X-ray absorptiometry in 19 patients with RDA and 75 with osteoarthritis of the hip (OA) and compared BMD at different skeletal sites between RDA and OA patients. No significant differences were observed in BMD of the lumbar spine, ultradistal radius, mid-radius, and calcaneous between the RDA and OA groups. Our data suggest that RDA is not accompanied by generalized osteoporosis. Factors other than generalized bone status, for example, BMD around the affected hip joint before destruction, need to be analyzed to elucidate the pathophysiological mechanism of RDA.

  14. Feasibility of Quantitative Ultrasound Measurement of the Heel Bone in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Mergler, S.; Lobker, B.; Evenhuis, H. M.; Penning, C.

    2010-01-01

    Low bone mineral density (BMD) and fractures are common in people with intellectual disabilities (ID). Reduced mobility in case of motor impairment and the use of anti-epileptic drugs contribute to the development of low BMD. Quantitative ultrasound (QUS) measurement of the heel bone is a non-invasive and radiation-free method for measuring bone…

  15. Pilot study of bone mineral density in breast cancer patients treated with adjuvant chemotherapy

    NASA Technical Reports Server (NTRS)

    Headley, J. A.; Theriault, R. L.; LeBlanc, A. D.; Vassilopoulou-Sellin, R.; Hortobagyi, G. N.

    1998-01-01

    The objective of this cross-sectional study was to determine lumbar spine bone mineral density (BMD) in breast cancer patients previously treated with adjuvant chemotherapy. Sixteen of 27 patients who received adjuvant chemotherapy became permanently amenorrheic as a result of chemotherapy. BMD was measured at the lumbar spine using dual energy X-ray absorptiometry (DEXA). Chemotherapy drugs and dosages along with a history of risk factors for reduced bone density including activity level, tobacco and/or alcohol use, metabolic bone disease, family history, and hormone exposure were identified. Results showed that women who became permanently amenorrheic as a result of chemotherapy had BMD 14% lower than women who maintained menses after chemotherapy. Chemotherapy-treated women who maintained ovarian function had normal BMD. This study suggests that women who have premature menopause as a result of chemotherapy for breast cancer are at increased risk of bone loss and may be at risk for early development of osteoporosis. Women who maintain menses do not appear to be at risk for accelerated trabecular bone loss.

  16. Recovery of Spaceflight-induced Bone Loss: Bone Mineral Density after Long-Duration Missions as Fitted with an Exponential Function

    NASA Technical Reports Server (NTRS)

    Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.

    2007-01-01

    The loss of bone mineral in NASA astronauts during spaceflight has been investigated throughout the more than 40 years of space travel. Consequently, it is a medical requirement at NASA Johnson Space Center (JSC) that changes in bone mass be monitored in crew members by measuring bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) before and after flight on astronauts who serve on long-duration missions (4-6 months). We evaluated this repository of medical data to track whether there is recovery of bone mineral that was lost during spaceflight. Our analysis was supplemented by BMD data from cosmonauts ( by convention, a space traveler formally employed by the Russia Aviation and Space Agency or by the previous Soviet Union) who had also flown on long-duration missions. Data from a total of 45 individual crew members -- a small number of whom flew on more than one mission -- were used in this analysis. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing). Plotted BMD changes were fitted to an exponential mathematical function that estimated: i) BMD change on landing day (day 0) and ii) the number of days after landing when 50% of the lost bone would be recovered ("50% recovery time") in the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. In sum, averaged losses of bone mineral after long-duration spaceflight ranged between 2-9% across all sites with our recovery model predicting a 50% restoration of bone loss for all sites to be within 9 months.

  17. A network modeling approach for the spatial distribution and structure of bone mineral content.

    PubMed

    Li, Hui; Zhang, Aidong; Bone, Lawrence; Buyea, Cathy; Ramanathan, Murali

    2014-05-01

    This study aims to develop a spatial model of bone for quantitative assessments of bone mineral density and microarchitecture. A spatially structured network model for bone microarchitecture was systematically investigated. Bone mineral-forming foci were distributed radially according to the cumulative normal distribution, and Voronoi tessellation was used to obtain edges representing bone mineral lattice. Methods to simulate X-ray images were developed. The network model recapitulated key features of real bone and contained spongy interior regions resembling trabecular bone that transitioned seamlessly to densely mineralized, compact cortical bone-like microarchitecture. Model-simulated imaging profiles were similar to patients' X-ray images. The morphometric metrics were concordant with microcomputed tomography results for real bone. Simulations comparing normal and diseased bone of 20-30 to 70-80 year-olds demonstrated the method's effectiveness for modeling osteoporosis. The novel spatial model may be useful for pharmacodynamic simulations of bone drugs and for modeling imaging data in clinical trials.

  18. The effects of strontium on bone mineral: A review on current knowledge and microanalytical approaches.

    PubMed

    Querido, William; Rossi, Andre L; Farina, Marcos

    2016-01-01

    The interest in effects of strontium (Sr) on bone has greatly increased in the last decade due to the development of the promising drug strontium ranelate. This drug is used for treating osteoporosis, a major bone disease affecting hundreds of millions of people worldwide, especially postmenopausal women. The novelty of strontium ranelate compared to other treatments for osteoporosis is its unique effect on bone: it simultaneously promotes bone formation by osteoblasts and inhibits bone resorption by osteoclasts. Besides affecting bone cells, treatment with strontium ranelate also has a direct effect on the mineralized bone matrix. Due to the chemical similarities between Sr and Ca, a topic that has long been of particular interest is the incorporation of Sr into bones replacing Ca from the mineral phase, which is composed by carbonated hydroxyapatite nanocrystals. Several groups have analyzed the mineral produced during treatment; however, most analysis were done with relatively large samples containing numerous nanocrystals, resulting thus on data that represents an average of many crystalline domains. The nanoscale analysis of the bone apatite crystals containing Sr has only been described in a few studies. In this study, we review the current knowledge on the effects of Sr on bone mineral and discuss the methodological approaches that have been used in the field. In particular, we focus on the great potential that advanced microscopy and microanalytical techniques may have on the detailed analysis of the nanostructure and composition of bone apatite nanocrystals produced during treatment with strontium ranelate.

  19. Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development.

    PubMed

    Kerschnitzki, Michael; Akiva, Anat; Ben Shoham, Adi; Koifman, Naama; Shimoni, Eyal; Rechav, Katya; Arraf, Alaa A; Schultheiss, Thomas M; Talmon, Yeshayahu; Zelzer, Elazar; Weiner, Stephen; Addadi, Lia

    2016-02-01

    During bone formation in embryos, large amounts of calcium and phosphate are taken up and transported to the site where solid mineral is first deposited. The initial mineral forms in vesicles inside osteoblasts and is deposited as a highly disordered calcium phosphate phase. The mineral is then translocated to the extracellular space where it penetrates the collagen matrix and crystallizes. To date little is known about the transport mechanisms of calcium and phosphate in the vascular system, especially when high transport rates are needed and the concentrations of these ions in the blood serum may exceed the solubility product of the mineral phase. Here we used a rapidly growing biological model, the chick embryo, to study the bone mineralization pathway taking advantage of the fact that large amounts of bone mineral constituents are transported. Cryo scanning electron microscopy together with cryo energy dispersive X-ray spectroscopy and focused-ion beam imaging in the serial surface view mode surprisingly reveal the presence of abundant vesicles containing small mineral particles in the lumen of the blood vessels. Morphologically similar vesicles are also found in the cells associated with bone formation. This observation directly implicates the vascular system in solid mineral distribution, as opposed to the transport of ions in solution. Mineral particle transport inside vesicles implies that far larger amounts of the bone mineral constituents can be transported through the vasculature, without the danger of ectopic precipitation. This introduces a new stage into the bone mineral formation pathway, with the first mineral being formed far from the bone itself.

  20. Corticosteroid use and bone mineral accretion in children with asthma: effect modification by vitamin D

    PubMed Central

    Tse, Sze Man; Kelly, H. William; Litonjua, Augusto; Van Natta, Mark L.; Weiss, Scott T.; Tantisira, Kelan

    2012-01-01

    Background The adverse effects of corticosteroids on bone mineral accretion (BMA) have been well documented. Vitamin D insufficiency, a prevalent condition in the pediatric population, has also been associated with decreased bone mineral density (BMD). Objective To determine whether children with asthma who have lower vitamin D levels are more susceptible to the negative effects of corticosteroids on BMD over time. Methods Children aged 5–12 years with mild-to-moderate asthma who participated in the Childhood Asthma Management Program were followed for a mean of 4.3 years. Total doses of inhaled and oral corticosteroids (OCS) were recorded, serum 25-hydroxyvitamin D3 levels were measured at the beginning of the trial and serial DEXA scans of the lumbar spine were performed. Annual BMA rates were defined as: [(BMD at 4 years follow-up − BMD at baseline)/4 years]. Results BMA was calculated for 780 subjects. In boys, baseline vitamin D levels significantly modified the relationship between OCS and BMA (vitamin D x OCS interaction, p=0.023). Stratification by vitamin D levels showed a decrease in BMA with increased use of OCS in vitamin D insufficient boys only (p<0.001). Compared to vitamin D sufficient boys, vitamin D insufficient boys exposed to more than 2 courses of oral corticosteroids per year had twice the decrease in BMA rate (relative to boys who were OCS-unexposed). Conclusions Vitamin D levels significantly modified the effect of oral corticosteroids on bone mineral accretion in boys. Further research is needed to examine whether vitamin D supplementation in children with poorly controlled asthma may confer benefits to bone health. PMID:22608570

  1. Bio-inspired mineralization of hydroxyapatite in 3D silk fibroin hydrogel for bone tissue engineering.

    PubMed

    Jin, Yashi; Kundu, Banani; Cai, Yurong; Kundu, Subhas C; Yao, Juming

    2015-10-01

    To fabricate hard tissue implants with bone-like structure using a biomimetic mineralization method is drawing much more attentions in bone tissue engineering. The present work focuses in designing 3D silk fibroin hydrogel to modulate the nucleation and growth of hydroxyapatite crystals via a simple ion diffusion method. The study indicates that Ca(2+) incorporation within the hydrogel provides the nucleation sites for hydroxyapatite crystals and subsequently regulates their oriented growth. The mineralization process is regulated in a Ca(2+) concentration- and minerlization time-dependent way. Further, the compressive strength of the mineralized hydrogels is directly proportional with the mineral content in hydrogel. The orchestrated organic/inorganic composite supports well the viability and proliferation of human osteoblast cells; improved cyto-compatibility with increased mineral content. Together, the present investigation reports a simple and biomimetic process to fabricate 3D bone-like biomaterial with desired efficacy to repair bone defects.

  2. EFFECTS OF MINERAL CONTENT ON THE FRACTURE PROPERTIES OF EQUINE CORTICAL BONE IN DOUBLE-NOTCHED BEAMS

    PubMed Central

    McCormack, Jordan; Stover, Susan M.; Gibeling, Jeffery C.; Fyhrie, David P.

    2012-01-01

    We recently developed a method to measure cortical bone fracture initiation toughness using a double-notched beam in four-point bending. This method was used to test the hypothesis that mineralization around the two notch roots is correlated with fracture toughness and crack extension (physical damage). Total energy absorbed to failure negatively correlated with average mineralization of the beam (r2=0.62), but not with notch root mineralization. Fracture initiation toughness was positively correlated to mineralization at the broken notch root (r2=0.34). Crack length extension at the unbroken notch was strongly negatively correlated with the average mineralization of the notch roots (r2=0.81) whereas crack length extension at the broken notch did not correlate with any of the mineralization measurements. Mineralization at the notch roots and the average mineralization contributed independently to the mechanical and damage properties. The data are consistent with an hypothesis that a) high notch root mineralization results in less stable crack length extension but high force to initiate unstable crack propagation while b) higher average mineralization leads to low post-yield (and total) energy absorption to failure. PMID:22394589

  3. Determinants of ovine compact bone viscoelastic properties: effects of architecture, mineralization, and remodeling.

    PubMed

    Les, C M; Spence, C A; Vance, J L; Christopherson, G T; Patel, B; Turner, A S; Divine, G W; Fyhrie, D P

    2004-09-01

    Significant decreases in ovine compact bone viscoelastic properties (specifically, stress-rate sensitivity, and damping efficiency) are associated with three years of ovariectomy and are particularly evident at higher frequencies [Proc. Orthop. Res. Soc. 27 (2002) 89]. It is unclear what materials or architectural features of bone are responsible for either the viscoelastic properties themselves, or for the changes in those properties that were observed with estrogen depletion. In this study, we examined the relationship between these viscoelastic mechanical properties and features involving bone architecture (BV/TV), materials parameters (ash density, %mineralization), and histologic evidence of remodeling (%remodeled, cement line interface). The extent of mineralization was inversely proportional to the material's efficiency in damping stress oscillations. The damping characteristics of bone material from ovariectomized animals were significantly more sensitive to variation in mineralization than was bone from control animals. At low frequencies (6 Hz or less), increased histologic evidence of remodeling was positively correlated with increased damping efficiency. However, the dramatic decreases in stress-rate sensitivity that accompanied 3-year ovariectomy were seen throughout the bone structure and occurred even in areas with little or no secondary Haversian remodeling as well as in areas of complete remodeling. Taken together, these data suggest that, while the mineral component may modify the viscoelastic behavior of bone, the basic mechanism underlying bone viscoelastic behavior, and of the changes in that behavior with estrogen depletion, reside in a non-mineral component of the bone that can be significantly altered in the absence of secondary remodeling.

  4. Bone mineral density in glycogen storage disease type Ia and Ib.

    PubMed

    Minarich, Laurie A; Kirpich, Alexander; Fiske, Laurie M; Weinstein, David A

    2012-04-05

    Purpose:The aim of this study was to characterize the pathogenesis of low bone mineral density in glycogen storage disease type Ia and Ib.Methods:A retrospective chart review performed at the University of Florida Glycogen Storage Disease Program included patients with glycogen storage disease type Ia and Ib for whom dual-energy X-ray absorptiometry analysis was performed. A Z-score less than -2 SD was considered low. Analysis for association of bone mineral density with age, gender, presence of complications, mean triglyceride and 25-hydroxyvitamin D concentrations, erythrocyte sedimentation rate, duration of granulocyte colony-stimulating factor therapy, and history of corticosteroid use was performed.Results:In glycogen storage disease Ia, 23/42 patients (55%) had low bone mineral density. Low bone mineral density was associated with other disease complications (P = 0.02) and lower mean serum 25-hydroxyvitamin D concentration (P = 0.03). There was a nonsignificant trend toward lower mean triglyceride concentration in the normal bone mineral density group (P = 0.1).In patients with glycogen storage disease type Ib, 8/12 (66.7%) had low bone mineral density. We did not detect an association with duration of granulocyte colony-stimulating factor therapy (P = 0.68), mean triglyceride level (P = 0.267), erythrocyte sedimentation rate (P = 0.3), or 25-hydroxyvitamin D (P = 0.63) concentration, and there was no evidence that corticosteroid therapy was associated with lower bone mineral density (P = 1).Conclusion:In glycogen storage disease type Ia, bone mineral density is associated with other complications and 25-hydroxyvitamin D status. In glycogen storage disease type Ib, bone mineral density was not associated with any covariates analyzed, suggesting multifactorial etiology or reflecting a small sample.Genet Med advance online publication 5 April 2012.

  5. A comparative study of zwitterionic ligands-mediated mineralization and the potential of mineralized zwitterionic matrices for bone tissue engineering

    PubMed Central

    Liu, Pingsheng; Emmons, Erin

    2014-01-01

    Cationic and anionic residues of the extracellular matrices (ECM) of bone play synergistic roles in recruiting precursor ions and templating the nucleation, growth and crystalline transformations of calcium apatite in natural biomineralization. We previously reported that zwitterionic sulfobetaine ligands can template extensive 3-dimensional (3-D) hydroxyapaptite (HA)-mineralization of photo-crosslinked polymethacrylatehydrogels. Here, we compared the potency of two other major zwitterionic ligands, phosphobetaine and carboxybetaine, with that of the sulfobetaine in mediating 3-D mineralization using the crosslinked polymethacrylate hydrogel platform. We confirmed that all three zwitterionic hydrogels were able to effectively template 3-D mineralization, supporting the general ability of zwitterions to mediate templated mineralization. Among them, however, sulfobetaine and phosphobetaine hydrogels templated denser 3-D mineralizationthan the carboxybetaine hydrogel, likely due to their higher free water fractions and better maintenance of zwitterionic nature throughout the pH-changes during the in vitro mineralization process. We further demonstrated that the extensively mineralized zwitterionic hydrogels could be exploited for efficient retention (e.g. 99% retention after 24-h incubation in PBS) of osteogenic growth factor recombinant bone morphogenetic protein-2 (rhBMP-2) and subsequent sustained local release with retained bioactivity. Combined with the excellent cytocompatibility of all three zwitterionic hydrogels and the significantly improved cell adhesive properties of their mineralized matrices, these materials could find promising applications in bone tissue engineering. PMID:25558374

  6. Bone mineral loss and recovery after 17 weeks of bed rest

    NASA Technical Reports Server (NTRS)

    Leblanc, A. D.; Schneider, V. S.; Evans, H. J.; Engelbretson, D. A.; Krebs, J. M.; LaBlanc, A. D. (Principal Investigator)

    1990-01-01

    The purpose of this work was to determine the rate and extent of bone loss and recovery from long-term disuse and in particular from disuse after exposure to weightlessness. For this purpose, bed rest is used to simulate the reduced stress and strain on the skeleton. This study reports on the bone loss and recovery after 17 weeks of continuous bed rest and 6 months of reambulation in six normal male volunteers. Bone regions measured were the lumbar spine, hip, tibia, forearm, calcaneus, total body, and segmental regions from the total-body scan. The total body, lumbar spine, femoral neck, trochanter, tibia, and calcaneus demonstrated significant loss, p less than 0.05. Expressed as the percentage change from baseline, these were 1.4, 3.9, 3.6, 4.6, 2.2, and 10.4, respectively. Although several areas showed positive slopes during reambulation, only the calcaneus was significant (p less than 0.05), with nearly 100% recovery. Segmental analysis of the total-body scans showed significant loss (p less than 0.05) in the lumbar spine, total spine, pelvis, trunk, and legs. During reambulation, the majority of the regions demonstrated positive slopes, although only the pelvis and trunk were significant (p less than 0.05). Potential redistribution of bone mineral was observed: during bed rest the bone mineral increased in the skull of all subjects. The change in total BMD and calcium from calcium balance were significantly (p less than 0.05) correlated, R = 0.88.

  7. Effects of high-intensity resistance training on bone mineral density in young male powerlifters.

    PubMed

    Tsuzuku, S; Ikegami, Y; Yabe, K

    1998-10-01

    The effects of high-intensity resistance training on bone mineral density (BMD) and its relationship to strength were investigated. Lumbar spine (L2-L4), proximal femur, and whole body BMD were measured in 10 male powerlifters and 11 controls using dual-energy X-ray absorptiometry (DXA). There were significant differences in lumbar spine and whole body BMD between powerlifters and controls, but not in proximal femur BMD. A significant correlation was found between lumbar spine BMD and powerlifting performance. These results suggest that high-intensity resistance training is effective in increasing the lumbar spine and whole body BMD.

  8. Cross-sex pattern of bone mineral density in early onset gender identity disorder.

    PubMed

    Haraldsen, I R; Haug, E; Falch, J; Egeland, T; Opjordsmoen, S

    2007-09-01

    Hormonally controlled differences in bone mineral density (BMD) between males and females are well studied. The effects of cross-sex hormones on bone metabolism in patients with early onset gender identity disorder (EO-GID), however, are unclear. We examined BMD, total body fat (TBF) and total lean body mass (TLBM) in patients prior to initiation of sex hormone treatment and during treatment at months 3 and 12. The study included 33 EO-GID patients who were approved for sex reassignment and a control group of 122 healthy Norwegians (males, n=77; females, n=45). Male patients (n=12) received an oral dose of 50 mug ethinylestradiol daily for the first 3 months and 100 mug daily thereafter. Female patients (n=21) received 250 mg testosterone enantate intramuscularly every third week. BMD, TBF and TLBM were estimated using dual energy X-ray absorptiometry (DXA). In male patients, the DXA measurements except TBF were significantly lower compared to their same-sex control group at baseline and did not change during treatment. In female patients, the DXA measurements were slightly higher than in same-sex controls at baseline and also remained unchanged during treatment. In conclusion, this study reports that body composition and bone density of EO-GID patients show less pronounced sex differences compared to controls and that bone density was unaffected by cross-sex hormone treatment.

  9. FRAX and fracture prediction without bone mineral density.

    PubMed

    Kanis, J A; Harvey, N C; Johansson, H; Odén, A; Leslie, W D; McCloskey, E V

    2015-01-01

    The major application of FRAX in osteoporosis is to direct pharmacological interventions to those at high risk of fracture. Whereas the efficacy of osteoporosis treatment, with the possible exception of alendronate, is largely independent of baseline bone mineral density (BMD), it remains a widely held perception that osteoporosis therapies are only effective in the presence of low BMD. Thus, the use of FRAX in the absence of BMD to identify individuals requiring therapy remains the subject of some debate and is the focus of this review. The clinical risk factors used in FRAX have high evidence-based validity to identify a risk responsive to intervention. The selection of high-risk individuals with FRAX, without knowledge of BMD, preferentially selects for low BMD and thus identifies a risk that is responsive to pharmacological intervention. The prediction of fractures with the use of clinical risk factors alone in FRAX is comparable to the use of BMD alone to predict fractures and is suitable, therefore, in the many countries where facilities for BMD testing are sparse. In countries where access to BMD is greater, FRAX can be used without BMD in the majority of cases and BMD tests reserved for those close to a probability-based intervention threshold. Thus concerns surrounding the use of FRAX in clinical practice without information on BMD are largely misplaced.

  10. Measures of Complexity to quantify Bone Structure

    NASA Astrophysics Data System (ADS)

    Saparin, Peter; Gowin, Wolfgang; Kurths, Jürgen; Felsenberg, Dieter

    1998-03-01

    We propose a technique to assess structure of the bone in its spatial distribution by describing and quantifying the structural architecture as a whole. The concept of measures of complexity based on symbolic dynamics is applied to computed tomography (CT) - images obtained from human lumbar vertebra. CT-images have been transformed into images consisting of 5 different symbols, whereby both statical and dynamical coding are included. Different aspects of the bone structure are quantified by several measures which have been introduced: index of global ensemble of elements composing the bone; complexity, homogeneity and dynamics within the bone architecture; complexity and inhomogeneity of the trabecular net. This leads to new insides to the understanding of bone's internal structure. The results give the first experimental and quantitative evidence of the theoretical prediction that complexity of bone structure declines rapidly with the increased disintegration of bone structures leading to the loss of bone mass and specify experimentally that bone structure is exponentially related to its density. Especially, osteoporotic vertebrae are less complex organized than normal ones. In addition, this method is significantly sensitive to changes in bone structure and provides improvements of diagnostic of pathological structural loss.

  11. Measurement of spine and total body mineral by dual-photon absorptiometry

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.; Young, D.

    1983-01-01

    The use of Gd-153 dual-photon absorptiometry at 43 and 100 keV to measure individual-bone and total-body bone minerals is discussed in a survey of recent studies on humans, phantoms, and monkeys. Precision errors of as low as 1 percent have been achieved in vivo, suggesting the use of sequential measurements in studies of immobilization and space-flight effects.

  12. High Salt Diets, Bone Strength and Mineral Content of Mature Femur After Skeletal Unloading

    NASA Technical Reports Server (NTRS)

    Liang, Michael T. C.

    1998-01-01

    It is known that high salt diets increase urinary calcium (Ca) loss, but it is not known whether this effect weakens bone during space flight. The Bone Hormone Lab has studied the effect of high salt diets on Ca balance and whole body Ca in a space flight model (2,8). Neither the strength nor mineral content of the femurs from these studies has been evaluated. The purpose of this study was to determine the effect of high salt diets (HiNa) and skeletal unloading on femoral bone strength and bone mineral content (BMC) in mature rats.

  13. [Bone mineral density in pregnant women from Moscow: possible effects of pregnancy dynamics and nutrient intake].

    PubMed

    Kon, I Ya; Safronova, A I; Gmoshinskaya, M V; Shcheplyagina, L A; Korosteleva, M M; Toboleva, M A; Aleshina, I V; Kurkova, V I; Larionova, Z G

    2014-01-01

    Supporting of bone health is one of the main approaches to provide health in pregnant women considering intensive calcium and other mineral mobilization from mass bone that is necessary forforming fetus bone. This mobilization may lead to decrease of bone mineral density and development of osteopenia and osteoporosis. The important factors of development of bone impairment in pregnancy are nutrition and particular deficient consumption of protein, Ca, vitamin D. The possible role of reduced intake of pregnant women other nutrients remains unexplored. The aim of the research was estimating the prevalence of bone mineral density decrease in regard to the particular course of pregnancy and studying possible effects of key nutrients on bone mineral density in pregnant women. 131 women at different stages of pregnancy were involved in the survey. The bone density assessment was conducted using Bone Densitometer Omnisense 7000. As a criterion for bone density decrease in women used a Z-score, which was considered as normal to -1.0, as reduced from -1.0 to -2,0, and as significantly reduced when Z-score was less than -2,0. Analysis of the actual nutrition was performed by a 24-hour recording of 58 pregnant women. Normal bone mineral density was detected in 54 women or 41% of the total number of women surveyed. In 51 (39%) pregnant women reduced bone mineral density was discovered, and in 26 (20%) patients--significantly reduced bone density. There was a considerable deviation in pregnant patients' diet from the nutrition guidelines, which include, in particular, the high content of fat and saturated fatty acid, reduced intake of some micronutrients such as calcium, zinc, folic acid, β-carotene, vitamins A, B1, E. However, differences in the actual consumption of nutrients in women with varying bone mineral density have been identified only in case of consumption of fat and energy value of diets, also Mn and I. So, it may be suggested that the differences in bone mineral

  14. Quantification of the relative contribution of estrogen to bone mineral density in men and women

    PubMed Central

    2013-01-01

    Background The study quantified the relative contributions of estrogen (E2) and total testosterone (TT) to variation in bone mineral density in men and women. Methods This was a cross-sectional study which involved 200 men and 415 women aged 18 to 89 years. BMD at the lumbar spine (LS) and femoral neck (FN) was measured by DXA. Serum levels of E2 and TT were measured by electrochemiluminescence immunoassays. The association between E2, TT, and BMD was analyzed by the multiple linear regression model, adjusting for age and BMI. The contribution of each hormone to the variation in BMD was quantified by the bootstrap method. Results In women, higher serum levels of E2, but not TT, were significantly associated with greater BMD at the FN (P = 0.001) and LS (P < 0.0001). In men, higher serum levels of E2 were independently associated with greater FNBMD (P = 0.008) and LSBMD (P = 0.086). In the multiple linear regression model, age, body weight and E2 accounted for 50-55% variance in FNBMD, and 25% (in men) and 48% (in women) variance in LSBMD. Variation in E2 accounted for 2.5% (95% CI 0.4 - 7.8%) and 11.3% (95% CI 8.1 - 15.3%) variation in FNBMD in men and women, respectively. Moreover, E2 contributed 1.2% (95% CI 0.1 - 5.8%) and 11.7% (95% CI 8.5 - 15.9%) variation in LSBMD in men and women, respectively. Conclusions Estrogen is more important than testosterone in the determination of age-related bone mineral density men and women of Vietnamese background. However, the relative contributions of estrogen to bone mineral density in men are likely modest. PMID:24364861

  15. Subtle changes in bone mineralization density distribution in most severely affected patients with chronic obstructive pulmonary disease.

    PubMed

    Misof, B M; Roschger, P; Jorgetti, V; Klaushofer, K; Borba, V Z C; Boguszewski, C L; Cohen, A; Shane, E; Zhou, H; Dempster, D W; Moreira, C A

    2015-10-01

    Chronic obstructive pulmonary disease (COPD) is associated with low aBMD as measured by DXA and altered microstructure as assessed by bone histomorphometry and microcomputed tomography. Knowledge of bone matrix mineralization is lacking in COPD. Using quantitative backscatter electron imaging (qBEI), we assessed cancellous (Cn.) and cortical (Ct.) bone mineralization density distribution (BMDD) in 19 postmenopausal women (62.1 ± 7.3 years of age) with COPD. Eight had sustained fragility fractures, and 13 had received treatment with inhaled glucocorticoids. The BMDD outcomes from the patients were compared with healthy reference data and were correlated with previous clinical and histomorphometric findings. In general, the BMDD outcomes for the patients were not significantly different from the reference data. Neither the subgroups of with or without fragility fractures or of who did or did not receive inhaled glucocorticoid treatment, showed differences in BMDD. However, subgroup comparison according to severity revealed 10% decreased cancellous mineralization heterogeneity (Cn.CaWidth) for the most severely affected compared with less affected patients (p=0.042) and compared with healthy premenopausal controls (p=0.021). BMDD parameters were highly correlated with histomorphometric cancellous bone volume (BV/TV) and formation indices: mean degree of mineralization (Cn.CaMean) versus BV/TV (r=0.58, p=0.009), and Cn.CaMean and Ct.CaMean versus bone formation rate (BFR/BS) (r=-0.71, p<0.001). In particular, those with lower BV/TV (<50th percentile) had significantly lower Cn.CaMean (p=0.037) and higher Cn.CaLow (p=0.020) compared with those with higher (>50th percentile) BV/TV. The normality in most of the BMDD parameters and bone formation rates as well as the significant correlations between them suggests unaffected mineralization processes in COPD. Our findings also indicate no significant negative effect of treatment with inhaled glucocorticoids on the bone

  16. Microscale Material Properties of Bone and the Mineralized Tissues of the Intervertebral Disc-Vertebral Body Interface

    NASA Astrophysics Data System (ADS)

    Paietta, Rachel C.

    mineralized biological tissues and at the bone-cartilage interface plays an important mechanical role. Nanoindentation measurements in osteonal bone are affected by location within the lamellar structure, even though mineral volume fraction within a single osteon is relatively consistent compared to the differences observed between bone and calcified cartilage. While increasing mineral volume fraction contributes to increases in modulus in the calcified cartilage layer of the vertebral body-intervertebral disc interface, significant scatter remains. The collagenous matrix structure and type of collagen appear to have a significant influence on modulus as well. Collagen fibers of the disc mineralize adjacent to the bone of the vertebral body, and the persistence of this attachment zone from adolescence through senescence indicates that it likely serves a mechanical function. Fiber insertions into thick calcified cartilage regions likely create mechanically robust anchor points at the osteochondral interface.

  17. Negative Effects of Total Gastrectomy on Bone Tissue Metabolism and Volumetric Bone Mineral Density (vBMD) of Lumbar Spine in 1-Year Study in Men

    PubMed Central

    Krupski, Witold; Tatara, Marcin R.; Bury, Pawel; Szabelska, Anna; Charuta, Anna; Maciejewski, Ryszard; Wallner, Grzegorz; Dabrowski, Andrzej

    2016-01-01

    Abstract Gastrectomy induces severe osteoporosis in humans but its quantitative scale within trabecular and cortical compartments was not estimated. The aim of the study was to determine changes of volumetric bone mineral density (vBMD) in lumbar vertebrae (L1–L4) and biochemical bone metabolism markers in serum of patients 1 year after total gastrectomy. The control group consisted of patients (N = 8) subjected to abdominal surgery due to cardiospasmus. Total gastrectomy was performed in the experimental group (N = 6). Volumetric bone mineral density of trabecular and cortical bone of lumbar spine was measured before (baseline) and 1 year after the gastric surgery using the quantitative computed tomography method. Serum concentrations of insulin, insulin-like growth factor-1, tyroxine, interleukin-6, C-terminal telopeptides of type II collagen and bone formation, and resorption markers were determined at baseline and 1 year later, using ELISA, EIA, and IEMA methods. Total gastrectomy induced significant decrease of vBMD values, up to 16.8% and 10.0%, within the trabecular and cortical bone compartments of lumbar spine (P < 0.05). These negative changes of vBMD were associated with significantly increased serum concentration of bone resorption markers such as deoxypyridinoline, pyridinoline, and C-terminal telopeptides of type I collagen, by 13.5%, 32.2%, and 121.5%, respectively (P < 0.05). Neither vBMD nor biochemical bone turnover markers and hormone concentrations were influenced in the control patients. Dramatic bone loss during the first year in gastrectomized patients has proven dynamic osteoporosis progress indicating an importance of treatment interventions in these patients with emphasis on inhibition of intensive bone resorption processes. PMID:26886633

  18. Biomimetic mineralization of woven bone-like nanocomposites: role of collagen cross-links.

    PubMed

    Li, Yuping; Thula, Taili T; Jee, Sangsoo; Perkins, Sasha L; Aparicio, Conrado; Douglas, Elliot P; Gower, Laurie B

    2012-01-09

    Ideal biomaterials for bone grafts must be biocompatible, osteoconductive, osteoinductive and have appropriate mechanical properties. For this, the development of synthetic bone substitutes mimicking natural bone is desirable, but this requires controllable mineralization of the collagen matrix. In this study, densified collagen films (up to 100 μm thick) were fabricated by a plastic compression technique and cross-linked using carbodiimide. Then, collagen-hydroxyapatite composites were prepared by using a polymer-induced liquid-precursor (PILP) mineralization process. Compared to traditional methods that produce only extrafibrillar hydroxyapatite (HA) clusters on the surface of collagen scaffolds, by using the PILP mineralization process, homogeneous intra- and extrafibrillar minerals were achieved on densified collagen films, leading to a similar nanostructure as bone, and a woven microstructure analogous to woven bone. The role of collagen cross-links on mineralization was examined and it was found that the cross-linked collagen films stimulated the mineralization reaction, which in turn enhanced the mechanical properties (hardness and modulus). The highest value of hardness and elastic modulus was 0.7 ± 0.1 and 9.1 ± 1.4 GPa in the dry state, respectively, which is comparable to that of woven bone. In the wet state, the values were much lower (177 ± 31 and 8 ± 3 MPa) due to inherent microporosity in the films, but still comparable to those of woven bone in the same conditions. Mineralization of collagen films with controllable mineral content and good mechanical properties provide a biomimetic route toward the development of bone substitutes for the next generation of biomaterials. This work also provides insight into understanding the role of collagen fibrils on mineralization.

  19. The clinical utility of bone marker measurements in osteoporosis.

    PubMed

    Wheater, Gillian; Elshahaly, Mohsen; Tuck, Stephen P; Datta, Harish K; van Laar, Jacob M

    2013-08-29

    Osteoporosis is characterised by low bone mass and structural deterioration of bone tissue, resulting in increased fragility and susceptibility to fracture. Osteoporotic fractures are a significant cause of morbidity and mortality. Direct medical costs from such fractures in the UK are currently estimated at over two billion pounds per year, resulting in a substantial healthcare burden that is expected to rise exponentially due to increasing life expectancy. Currently bone mineral density is the WHO standard for diagnosis of osteoporosis, but poor sensitivity means that potential fractures will be missed if it is used alone. During the past decade considerable progress has been made in the identification and characterisation of specific biomarkers to aid the management of metabolic bone disease. Technological developments have greatly enhanced assay performance producing reliable, rapid, non-invasive cost effective assays with improved sensitivity and specificity. We now have a greater understanding of the need to regulate pre-analytical sample collection to minimise the effects of biological variation. However, bone turnover markers (BTMs) still have limited clinical utility. It is not routinely recommended to use BTMs to select those at risk of fractures, but baseline measurements of resorption markers are useful before commencement of anti-resorptive treatment and can be checked 3-6 months later to monitor response and adherence to treatment. Similarly, formation markers can be used to monitor bone forming agents. BTMs may also be useful when monitoring patients during treatment holidays and aid in the decision as to when therapy should be recommenced. Recent recommendations by the Bone Marker Standards Working Group propose to standardise research and include a specific marker of bone resorption (CTX) and bone formation (P1NP) in all future studies. It is hoped that improved research in turn will lead to optimised markers for the clinical management of

  20. Characteristics of bone turnover in the long bone metaphysis fractured patients with normal or low Bone Mineral Density (BMD).

    PubMed

    Wölfl, Christoph; Schweppenhäuser, Daniela; Gühring, Thorsten; Takur, Caner; Höner, Bernd; Kneser, Ulrich; Grützner, Paul Alfred; Kolios, Leila

    2014-01-01

    The incidence of osteoporotic fractures increases as our population ages. Until now, the exact biochemical processes that occur during the healing of metaphyseal fractures remain unclear. Diagnostic instruments that allow a dynamic insight into the fracture healing process are as yet unavailable. In the present matched pair analysis, we study the time course of the osteoanabolic markers bone specific alkaline phosphatase (BAP) and transforming growth factor β1 (TGFβ1), as well as the osteocatabolic markers crosslinked C-telopeptide of type-I-collagen (β-CTX) and serum band 5 tartrate-resistant acid phosphatase (TRAP5b), during the healing of fractures that have a low level of bone mineral density (BMD) compared with fractures that have a normal BMD. Between March 2007 and February 2009, 30 patients aged older than 50 years who suffered a metaphyseal fracture were included in our study. BMDs were verified by dual energy Xray absorptiometry (DXEA) scans. The levels of BTMs were examined over an 8-week period. Osteoanabolic BAP levels in those with low levels of BMD were significantly different from the BAP levels in those with normal BMD. BAP levels in the former group increased constantly, whereas the latter group showed an initial strong decrease in BAP followed by slowly rising values. Osteocatabolic β-CTX increased in the bone of the normal BMD group constantly, whereas these levels decreased significantly in the bone of the group with low BMD from the first week. TRAP5b was significantly reduced in the low level BMD group. With this work, we conduct first insights into the molecular biology of the fracture healing process in patients with low levels of BMD that explains the mechanism of its fracture healing. The results may be one reason for the reduced healing qualities in bones with low BMD.

  1. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography.

    PubMed

    Landis, W J; Hodgens, K J; Arena, J; Song, M J; McEwen, B F

    1996-02-01

    Aspects of the ultrastructural interaction between collagen and mineral crystals in embryonic chick bone have been examined by the novel technique of high voltage electron microscopic tomography to obtain three-dimensional information concerning extracellular calcification in this tissue. Newly mineralizing osteoid along periosteal surfaces of mid-diaphyseal regions from normal chick tibiae was embedded, cut into 0.25 microns thick sections, and documented at 1.0 MV in the Albany AEI-EM7 high voltage electron microscope. The areas of the tissue studied contained electron dense mineral crystals associated with collagen fibrils, some marked by crystals disposed along their cylindrically shaped lengths. Tomographic reconstructions of one site with two mineralizing fibrils were computed from a 5 degrees tilt series of micrographs over a +/- 60 degrees range. Reconstructions showed that the mineral crystals were platelets of irregular shape. Their sizes were variable, measured here up to 80 x 30 x 8 nm in length, width, and thickness, respectively. The longest crystal dimension, corresponding to the c-axis crystallographically, was generally parallel to the collagen fibril long axis. Individual crystals were oriented parallel to one another in each fibril examined. They were also parallel in the neighboring but apparently spatially separate fibrils. Crystals were periodically (approximately 67 nm repeat distance) arranged along the fibrils and their location appeared to correspond to collagen hole and overlap zones defined by geometrical imaging techniques. The crystals appeared to be continuously distributed along a fibril, their size and number increasing in a tapered fashion from a relatively narrow tip containing smaller and infrequent crystals to wider regions having more densely packed and larger crystals. Defined for the first time by direct visual 3D imaging, these data describe the size, shape, location, orientation, and development of early crystals in normal

  2. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; Arena, J.; Song, M. J.; McEwen, B. F.

    1996-01-01

    Aspects of the ultrastructural interaction between collagen and mineral crystals in embryonic chick bone have been examined by the novel technique of high voltage electron microscopic tomography to obtain three-dimensional information concerning extracellular calcification in this tissue. Newly mineralizing osteoid along periosteal surfaces of mid-diaphyseal regions from normal chick tibiae was embedded, cut into 0.25 microns thick sections, and documented at 1.0 MV in the Albany AEI-EM7 high voltage electron microscope. The areas of the tissue studied contained electron dense mineral crystals associated with collagen fibrils, some marked by crystals disposed along their cylindrically shaped lengths. Tomographic reconstructions of one site with two mineralizing fibrils were computed from a 5 degrees tilt series of micrographs over a +/- 60 degrees range. Reconstructions showed that the mineral crystals were platelets of irregular shape. Their sizes were variable, measured here up to 80 x 30 x 8 nm in length, width, and thickness, respectively. The longest crystal dimension, corresponding to the c-axis crystallographically, was generally parallel to the collagen fibril long axis. Individual crystals were oriented parallel to one another in each fibril examined. They were also parallel in the neighboring but apparently spatially separate fibrils. Crystals were periodically (approximately 67 nm repeat distance) arranged along the fibrils and their location appeared to correspond to collagen hole and overlap zones defined by geometrical imaging techniques. The crystals appeared to be continuously distributed along a fibril, their size and number increasing in a tapered fashion from a relatively narrow tip containing smaller and infrequent crystals to wider regions having more densely packed and larger crystals. Defined for the first time by direct visual 3D imaging, these data describe the size, shape, location, orientation, and development of early crystals in normal

  3. Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hop bone mineral density and hip fracture in older adults: The Framingham Osteoporosis Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyunsaturated fatty acids (PUFA) may influence bone health. Our objective was to examine associations between plasma phosphatidylcholine (PC) PUFA concentrations and hip measures: 1) femoral neck bone mineral density (FN-BMD) (n=765); 2) 4-y change in FN-BMD (n=556); and 3) hip fracture risk (n=76...

  4. Physiology of bone: Mineral compartment proteins as candidates for environmental perturbation by lead

    SciTech Connect

    Sauk, J.J.; Somerman, M.J. )

    1991-02-01

    Termine et al. first demonstrated that sequential dissociative extraction and fractionation procedures with protease inhibitors could provide a convenient approach for the study of mineral compartment constituents. The primary extraction regimen used 4 M guanidine HCl to remove most of the protein from the nonmineralized phase of bone. Subsequently, EDTA-guanidine was used to remove the mineral-phase components. These methods discriminate on the basis of physical-chemical association with a mineral phase rather than on the specific gene products of a particular cell. In the present discussion emphasis is directed at a group of divalent cation binding proteins isolated from the mineral compartment of bone. The localization, synthesis, and chemical characteristics of osteonectin, bone sialoproteins I and II, and bone acidic glycoprotein-75 are discussed and offered as possible sites for perturbation by the environment with lead exposure.

  5. Physiology of bone: mineral compartment proteins as candidates for environmental perturbation by lead.

    PubMed Central

    Sauk, J J; Somerman, M J

    1991-01-01

    Termine et al. first demonstrated that sequential dissociative extraction and fractionation procedures with protease inhibitors could provide a convenient approach for the study of mineral compartment constituents. The primary extraction regimen used 4 M guanidine HCl to remove most of the protein from the nonmineralized phase of bone. Subsequently, EDTA-guanidine was used to remove the mineral-phase components. These methods discriminate on the basis of physical-chemical association with a mineral phase rather than on the specific gene products of a particular cell. In the present discussion emphasis is directed at a group of divalent cation binding proteins isolated from the mineral compartment of bone. The localization, synthesis, and chemical characteristics of osteonectin, bone sialoproteins I and II, and bone acidic glycoprotein-75 are discussed and offered as possible sites for perturbation by the environment with lead exposure. Images FIGURE 1. FIGURE 2. FIGURE 2. FIGURE 2. FIGURE 3. FIGURE 3. FIGURE 3. FIGURE 3. PMID:2040255

  6. Mineralization of Synthetic Polymer Scaffolds: A Bottom-upApproach for the Development of Artificial Bone

    SciTech Connect

    Song, Jie; Viengkham, Malathong; Bertozzi, Carolyn R.

    2004-09-27

    The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Crosslinked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bone-like composites and suggests a potential role for hydroxylated collagen proteins in bone mineralization.

  7. Noninvasive determination of ulnar stiffness from mechanical response--in vivo comparison of stiffness and bone mineral content in humans.

    PubMed

    Steele, C R; Zhou, L J; Guido, D; Marcus, R; Heinrichs, W L; Cheema, C

    1988-05-01

    An approach referred to as Mechanical Response Tissue Analysis (MRTA) has been developed for the noninvasive determination of mechanical properties of the constituents of the intact limb. Of specific interest in the present study is the bending stiffness of the ulna. The point mechanical impedance properties in the low frequency regime, between 60 and 1,600 Hz are used. The procedure requires a proper design of the probe for good contact of the skin at midshaft and proper support of the proximal and distal ends of the forearm to obtain an approximation to "simple support" of the ulna. A seven-parameter model for the mechanical response is then valid, which includes the first mode of anterior-posterior beam bending of the ulna, the damping and spring effect of the soft tissue between probe and bone, and the damping of musculature. A dynamic analyzer (HP3562A) provides in seconds the impedance curve and the pole-zero curve fit. The physical parameters are obtained from a closed-form solution in terms of the curve-fit parameters. The procedure is automated and is robust and analytically reliable at about the five percent level. Some 80 human subjects have been evaluated by this mechanical response system and by the Norland single photon absorptiometer, providing for the first time in vivo, a comparison of elastic bending stiffness (ulna) and bone mineral content (radius). Three functional parameters of potential clinical value are the cross-sectional bending stiffness EI, the axial load capability Pcr (Euler buckling load) and the bone "sufficiency" S, defined as the ratio of Pcr to body weight. The correlation between EI and bone mineral (r = 0.81) is only slightly less than previous in vitro results with both measurements on the same bone (r = 0.89). When sufficiency is taken into consideration, the correlation of Pcr and bone mineral content is improved (r = 0.89). An implication is that "quality" of bone is a factor which is not indicated by bone mineral content

  8. Bone mineral density in children with Fanconi anemia after hematopoietic cell transplantation

    PubMed Central

    Petryk, Anna; Polgreen, Lynda E.; Barnum, Jessie L.; Zhang, Lei; Hodges, James S.; Baker, K. Scott; Wagner, John E.; Steinberger, Julia; MacMillan, Margaret L.

    2015-01-01

    Fanconi anemia (FA) is an inherited DNA repair disorder associated with short stature and bone marrow failure usually requiring hematopoietic cell transplant (HCT). While low bone mineral density (BMD) has been reported in leukemia patients after HCT, little is known about BMD in FA children after HCT (FA HCT). This study's goals were to compare BMD in FA HCT to BMD in healthy controls, and in children who received HCT for hematologic malignancy (Cancer HCT), and to test for associations between BMD and risk factors for bone loss. This cross-sectional study included 20 FA HCT, 13 Cancer HCT, and 90 healthy controls, age-matched and <18 years old at evaluation. BMD Z-scores for total body (TBMD) and lumbar spine (LBMD) were measured by dual energy x-ray absorptiometry and adjusted for height-forage Z-score (HAZ). FA HCT had lower mean TBMDHAZ Z-score (by 0.8 SD) and higher fraction with Z-score ≤ −1 than healthy controls (42% vs. 11%). No LBMD deficits were detected. FA HCT and Cancer HCT groups did not differ significantly in TBMD or LBMD Z-scores. In FA HCT patients, lower BMI and lower percent fat were associated with lower BMD. This study highlights the importance of monitoring BMD to optimize bone health in FA patients. PMID:25591848

  9. Bone mineral density in children with fanconi anemia after hematopoietic cell transplantation.

    PubMed

    Petryk, Anna; Polgreen, Lynda E; Barnum, Jessie L; Zhang, Lei; Hodges, James S; Baker, K Scott; Wagner, John E; Steinberger, Julia; MacMillan, Margaret L

    2015-05-01

    Fanconi anemia (FA) is an inherited DNA repair disorder associated with short stature and bone marrow failure, usually requiring hematopoietic cell transplantation (HCT). Although low bone mineral density (BMD) has been reported in leukemia patients after HCT, little is known about BMD in FA children after HCT (FA HCT). This study's goals were to compare BMD in FA HCT to BMD in healthy controls and in children who received HCT for hematologic malignancy (cancer HCT), and to test for associations between BMD and risk factors for bone loss. This cross-sectional study included 20 FA HCT, 13 cancer HCT, and 90 healthy controls, age-matched and <18 years old at evaluation. BMD Z-scores for total body (TBMD) and lumbar spine (LBMD) were measured by dual energy x-ray absorptiometry and adjusted for height-for-age Z-score (HAZ). FA HCT had lower mean TBMDHAZ Z-score (by .8 SD) and higher fraction with Z-score ≤ -1 than healthy controls (42% versus 11%). No LBMD deficits were detected. FA HCT and cancer HCT groups did not differ significantly in TBMD or LBMD Z-scores. In FA HCT patients, lower body mass index and lower percent fat were associated with lower BMD. This study highlights the importance of monitoring BMD to optimize bone health in FA patients.

  10. Giemsa as a fluorescent dye for mineralizing bone-like nodules in vitro.

    PubMed

    Querido, W; Farina, M; Balduino, A

    2012-02-01

    Giemsa was first used as a fluorescent dye for mineralized bone and cartilage in tissue sections. The aim of this study was to establish the use of Giemsa as a fluorescent dye for mineralizing bone-like nodules produced in cell cultures. Osteoblasts were grown under mineralizing conditions for 14 days, producing typical bone-like nodules. Upon staining with Giemsa stock solution for 1 min, the mineralizing nodules could be selectively visualized emitting intense green and red fluorescence when observed under blue and green illumination, respectively. The textural details of the nodules were clearly observed under fluorescence microscopy, allowing to identify regions with different degrees of mineralization. The mineralized nature of the nodules was confirmed using von Kossa's method, Alizarin Red S staining and x-ray mapping for Ca and P in a scanning electron microscope, showing a strong correlation between the mineralizing and the fluorescent nodules. The selective fluorescence was related to the mineral phase, being absent in decalcified samples. The use of Giemsa as a fluorescent dye for mineralizing bone-like nodules presents a simple alternative method to quickly analyze biomineralization assays in vitro under fluorescence microscopy, particularly in the biological evaluation of biomaterials.

  11. Bone mineral density and vitamin D status in Parkinson's disease patients.

    PubMed

    van den Bos, F; Speelman, A D; van Nimwegen, M; van der Schouw, Y T; Backx, F J G; Bloem, B R; Munneke, M; Verhaar, H J J

    2013-03-01

    Bone loss is more common in Parkinson's disease (PD) than in the general population. Several factors may be involved in the development of bone loss, including malnutrition, immobilization, low body mass index, decreased muscle strength, vitamin D deficiency and medication use. This study investigates the prevalence of osteoporosis and possible risk factors associated with bone loss in early stage PD. In 186 PD patients (Hoehn and Yahr stage 1-2.5, mean age 64.1 years, 71 % men) bone mineral density (BMD) measurements were performed with DEXA. T- and Z-scores were calculated. Univariate linear regression analysis was performed to identify variables that contributed to BMD. 25-OH-vitamin D status of PD patients was compared with 802 controls (mean age 63.3 years, 50 % men) using linear regression analysis. Osteoporosis (11.8 %) and osteopenia (41.4 %) were common in PD patients. Mean Z-score for the hip was 0.24 (SD 0.93), and for the lumbar spine 0.72 (SD 1.91). Female gender, low weight, and low 25-OH-vitamin D were significantly correlated with BMD of the hip and lumbar spine. PD patients had lower 25(OH)D serum levels than controls (B = -10, p = 0.000). More than half of the patients with early stage PD had an abnormal BMD. Female gender, low weight, and low vitamin D concentration were associated with bone loss. Furthermore, vitamin D concentrations were reduced in PD patients. These results underscore the importance of proactive screening for bone loss and vitamin D deficiency, even in early stages of PD.

  12. Micro-Brillouin scattering measurements in mature and newly formed bone tissue surrounding an implant.

    PubMed

    Mathieu, Vincent; Fukui, Kenji; Matsukawa, Mami; Kawabe, Masahiko; Vayron, Romain; Soffer, Emmanuel; Anagnostou, Fani; Haiat, Guillaume

    2011-02-01

    The evolution of implant stability in bone tissue remains difficult to assess because remodeling phenomena at the bone-implant interface are still poorly understood. The characterization of the biomechanical properties of newly formed bone tissue in the vicinity of implants at the microscopic scale is of importance in order to better understand the osseointegration process. The objective of this study is to investigate the potentiality of micro-Brillouin scattering techniques to differentiate mature and newly formed bone elastic properties following a multimodality approach using histological analysis. Coin-shaped Ti-6Al-4V implants were placed in vivo at a distance of 200 μm from rabbit tibia leveled cortical bone surface, leading to an initially empty cavity of 200 μm×4.4 mm. After 7 weeks of implantation, the bone samples were removed, fixed, dehydrated, embedded in methyl methacrylate, and sliced into 190 μm thick sections. Ultrasonic velocity measurements were performed using a micro-Brillouin scattering device within regions of interest (ROIs) of 10 μm diameter. The ROIs were located in newly formed bone tissue (within the 200 μm gap) and in mature bone tissue (in the cortical layer of the bone sample). The same section was then stained for histological analysis of the mineral content of the bone sample. The mean values of the ultrasonic velocities were equal to 4.97×10(-3) m/s in newly formed bone tissue and 5.31×10(-3) m/s in mature bone. Analysis of variance (p=2.42×10(-4)) tests revealed significant differences between the two groups of measurements. The standard deviation of the velocities was significantly higher in newly formed bone than in mature bone. Histological observations allow to confirm the accurate locations of the velocity measurements and showed a lower degree of mineralization in newly formed bone than in the mature cortical bone. The higher ultrasonic velocity measured in newly formed bone tissue compared with

  13. Europium-Doped Gd2O3 Nanotubes Increase Bone Mineral Density in Vivo and Promote Mineralization in Vitro.

    PubMed

    Liu, Huifang; Jin, Yi; Ge, Kun; Jia, Guang; Li, Zhenhua; Yang, Xinjian; Chen, Shizhu; Ge, Min; Sun, Wentong; Liu, Dandan; Zhang, Jinchao

    2017-02-22

    Europium-doped Gd2O3 nanotubes (Gd2O3:Eu(3+) NTs) have been extensively applied in the field of bioscience for their photostability and magnetic properties. Nevertheless, the distribution and interaction between Gd2O3:Eu(3+) NTs and metabolism of bone are not yet sufficiently understood. In this study, a systematic study of the toxicity and distribution of Gd2O3:Eu(3+) NTs in mice after oral administration was carried out. The results showed that a small number of the Gd2O3:Eu(3+) NTs could pass through biological barriers into the lung, liver, and spleen, but a high concentration was observed in bone. Furthermore, the effects of Gd2O3:Eu(3+) NTs on bone metabolism were systematically studied in vitro and in vivo when accumulating in bone. After being administered to mice, the Gd2O3:Eu(3+) NTs extremely enhanced the bone mineral density and bone biomechanics. In vitro the Gd2O3:Eu(3+) NTs increased the alkaline phosphatase (ALP) activity and mineralization and promoted the expression of osteogenesis genes in preosteoblasts MC3T3-E1 through activation of the BMP signaling pathway. This study will be significant for appropriate application of Gd2O3:Eu(3+) NTs in the biomedical field and expounding the molecular mechanism of bone metabolism.

  14. Synovial cell production of IL-26 induces bone mineralization in spondyloarthritis.

    PubMed

    Heftdal, Line Dam; Andersen, Thomas; Jæhger, Ditte; Woetmann, Anders; Østgård, René; Kenngott, Elisabeth E; Syrbe, Uta; Sieper, Joachim; Hvid, Malene; Deleuran, Bent; Kragstrup, Tue W

    2017-04-02

    Spondyloarthritis (SpA) is characterized by inflammation and new bone formation and can be treated by inhibition of the proinflammatory cytokines TNF-α and IL-17A. IL-26 is considered a proinflammatory cytokine, predominantly related to Th17 cells. In the present study, we investigate IL-26 expression in SpA patients, and examine the in vitro production of IL-26 by synovial cells and the effects of IL-26 on human osteoblasts. IL-26 was measured by ELISA in plasma and synovial fluid (SF) of 15 SpA patients and in plasma samples from 12 healthy controls. Facet joints from axial SpA patients were stained for IL-26 and analyzed by fluorescence microscopy. Synovial fluid mononuclear cells, C-C motif chemokine receptor 6 memory Th17 cells, and fibroblast-like synoviocytes (FLSs) were isolated, and supernatants were analyzed for IL-26 content by ELISA. FLSs were further stained for IL-26 production and the myofibroblast marker α-smooth-muscle-actin (αSMA) and analyzed by flow cytometry. Human osteoblasts were cultured in the presence of IL-26, and the degree of mineralization was quantified. We found that IL-26 levels in SF were increased compared with plasma (P < 0.0001). Moreover, IL-26 expression was found in facet joints of axial SpA patients within the bone marrow. IL-26 secretion was primarily found in αSMA(+) myofibroblasts. In contrast, Th17 cells did not produce detectable amounts of IL-26. Human osteoblasts treated with IL-26 showed increased mineralization compared with untreated osteoblasts (P = 0.02). In conclusion, IL-26 seems to be produced by myofibroblasts in the inflamed synovium and could be a possible facilitator of bone mineralization in SpA.

  15. Bone mineral disorder in chronic kidney disease: Klotho and FGF23; cardiovascular implications.

    PubMed

    Salanova Villanueva, Laura; Sánchez González, Carmen; Sánchez Tomero, José Antonio; Aguilera, Abelardo; Ortega Junco, Esther

    2016-01-01

    Cardiovascular factors are one of the main causes of morbidity and mortality in patients with chronic kidney disease. Bone mineral metabolism disorders and inflammation are pathological conditions that involve increased cardiovascular risk in chronic kidney disease. The cardiovascular risk involvement of bone mineral metabolism classical biochemical parameters such as phosphorus, calcium, vitamin D and PTH is well known. The newest markers, FGF23 and klotho, could also be implicated in cardiovascular disease.

  16. Management of mineral and bone disorders in patients on dialysis: a team approach to improving outcomes.

    PubMed

    Carver, Michelle; Carder, Jacqueline; Hartwell, Lori; Arjomand, Mahiyar

    2008-01-01

    Most patients with mineral and bone disorders do not simultaneously achieve KDOQI target goals for parathyroid hormone, calcium, phosphorus, and the calcium-phosphorus product. A multidisciplinary team composed of the patient, nephrologists, nephrology nurses, renal dietitians, social workers, patient care technicians, clinical pharmacists, and physical therapists can help improve the coordination of care for mineral and bone disorders. The roles of team members are reviewed, with emphasis on nephrology nurses.

  17. Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice.

    PubMed

    Yang, Mao-Wei; Wang, Tong-Hao; Yan, Pei-Pei; Chu, Li-Wei; Yu, Jiang; Gao, Zhi-Da; Li, Yuan-Zhou; Guo, Bao-Lei

    2011-01-15

    Alzheimer's disease and osteoporosis are often observed to co-occur in clinical practice. The present study aimed to evaluate the bone microarchitecture and bone mineral density (BMD) of the proximal tibia in APP/PS1 transgenic mice by micro-computed tomography (micro-CT), and to search for evidence that curcumin can be used to reduce bone mineral losses and treat osteoporosis after senile dementia in these transgenic mice. Three-month-old female mice were divided into the following groups (n=9 per group): wild-type mice (WT group); APP/PS1 transgenic mice (APP group); and APP/PS1 transgenic mice with curcumin treatment (APP+Cur group). Between 9 and 12 months of age, the APP+Cur group were administered curcumin orally (600ppm). CT scans of the proximal tibia were taken at 6, 9 and 12 months. At 6 months, there were little differences in the structural parameters. At 9 months, the APP groups displayed loss of bone volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and connectivity density (Conn.D) and increases in trabecular separation (Tb.Sp) and geometric degree of anisotropy (DA) (P<0.05 or P<0.01), with significant changes in the BMD parameters. At 12 months, curcumin treatment led to constant increases in the trabecular bone mass of the metaphysis and clearly improved the BMD. By the same time, we measured the TNF-α and IL-6 in the serum among the different groups at 6, 9 and 12 months by enzyme-linked immunoassay(ELISA). These results suggest that APP/PS1 transgenic mice are susceptible to osteoporosis, and that curcumin can prevent further deterioration of the bone structure and produce beneficial changes in bone turnover. The change of inflammation cytokine, including TNF-α and IL-6, may play an important role in the mechanisms of action of curcumin, but the detail mechanism remains unknown.

  18. Jumping exercise preserves bone mineral density and mechanical properties in osteopenic ovariectomized rats even following established osteopenia.

    PubMed

    Okubo, R; Sanada, L S; Castania, V A; Louzada, M J Q; de Paula, F J A; Maffulli, N; Shimano, A C

    2017-04-01

    The effects of jump training on bone structure before and after ovariectomy-induced osteopenia in rats were investigated. Jumping exercise induced favorable changes in bone mineral density, bone mechanical properties, and bone formation/resorption markers. This exercise is effective to prevent bone loss after ovariectomy even when osteopenia is already established.

  19. Bone Mineral Density, Bone Turnover Markers and Fractures in Patients with Systemic Sclerosis: A Case Control Study

    PubMed Central

    Atteritano, Marco; Sorbara, Stefania; Bagnato, Gianluca; Miceli, Giovanni; Sangari, Donatella; Morgante, Salvatore; Visalli, Elisa; Bagnato, Gianfilippo

    2013-01-01

    Objective The aim of our study was to elucidate the pathophysiology of systemic sclerosis-related osteoporosis and the prevalence of vertebral fragility fracture in postmenopausal women with systemic sclerosis (SSc). Methodology Fifty-four postmenopausal women with scleroderma and 54 postmenopausal controls matched for age, BMI, and smoking habits were studied. BMD was measured by dual energy-x-ray absorptiometry at spine and femur, and by ultrasonography at calcaneus The markers of bone turnover included serum osteocalcin and urinary deoxypyridinoline. All subjects had a spine X-ray to ascertain the presence of vertebral fractures. Results bone mineral density at lumbar spine (BMD 0.78±0.08 vs 0.88±0.07; p<0,001), femoral neck (BMD: 0.56±0.04 vs 0.72±0.07; p<0,001) and total femur (BMD: 0.57±0.04 vs 0.71±0.06; p<0,001) and ultrasound parameter at calcaneus (SI: 80.10±5.10 vs 94.80±6.10 p<0,001) were significantly lower in scleroderma compared with controls; bone turnover markers and parathyroid hormone level were significantly higher in scleroderma compared with controls, while serum of 25(OH)D3 was significantly lower. In scleroderma group the serum levels of 25(OH)D3 significantly correlated with PTH levels, BMD, stiffness index and bone turnover markers. One or more moderate or severe vertebral fractures were found in 13 patients with scleroderma, wherease in control group only one patient had a mild vertebral fracture. Conclusion Our data shows, for the first time, that vertebral fractures are frequent in subjects with scleroderma, and suggest that lower levels of 25(OH)D3 may play a role in the risk of osteoporosis and vertebral fractures. PMID:23818972

  20. Relative Importance of Lean and Fat Mass on Bone Mineral Density in Iranian Children and Adolescents

    PubMed Central

    Jeddi, Marjan; Dabbaghmanesh, Mohammad Hossein; Ranjbar Omrani, Gholamhossein; Ayatollahi, Sayed Mohammad Taghi; Bagheri, Zahra; Bakhshayeshkaram, Marzieh

    2015-01-01

    Background: Body weight is made up of lean and fat mass and both are involved in growth and development. Impression of these two components in bone density accrual has been controversial. Objectives: The aim of this study was to evaluate the relationship between fat and lean mass and bone density in Iranian children and adolescents. Patients and Methods: A cross-sectional study was performed on 472 subjects (235 girls, 237 boys) aged 9-18 years old in Fars Province. The participants' weight, height, waist circumference, stage of puberty, and level of physical activity were recorded. Bone Mineral Content (BMC), Bone Mineral Density (BMD), total body fat and lean mass were measured using dual-energy X-ray absorptiometry. Results: Results showed that 12.2% of boys and 12.3% of girls were overweight and 5.5% of boys and 4.7% of girls were obese. Obese individuals had greater total body BMD (0.96 ± 0.11) than normal-weight ones (0.86 ± 0.11) (P < 0.001). We found the greatest correlation between total body BMD and total body lean mass (R = 0.78. P < 0.001) and the least correlation with total body fat percentage (R = 0.03, P = 0.44). Total lean mass in more active boys was 38.1 ± 10.9 and in less active boys was 32.3 ± 11.0 (P < 0.001). The results of multiple regression analysis showed that age and total body lean mass were independent factors of BMD in growing children and adolescents. Conclusions: These findings suggest that lean mass was the most important predictor of BMD in both genders. Physical activity appears to positively impact on lean mass and needs to be considered in physical education and health-enhancing programs in Iranian school children. PMID:26401143

  1. Optimal management of bone mineral disorders in chronic kidney disease and ESRD

    PubMed Central

    Lundquist, Andrew L.; Nigwekar, Sagar U.

    2016-01-01

    Purpose of review This review summarizes recent studies on chronic kidney disease-mineral bone disorders, with a focus on new developments in disease management. Recent findings The term chronic kidney disease-mineral bone disorder has come to describe an increasingly complex network of alterations in minerals and skeletal disorders that contribute to the significant cardiovascular morbidity and mortality seen in patients with chronic kidney disease and ESRD. Clinical studies continue to suggest associations with clinical outcomes, yet current clinical trials have failed to support causality. Variability in practice exists as current guidelines for management of bone-mineral disorders are often based on weak evidence. Recent studies implicate novel pathways for therapeutic intervention in clinical trials. Summary Mineral-bone disorders in chronic kidney disease arise from alterations in a number of molecules in an increasingly complex physiological network interconnecting bone and the cardiovascular system. Despite extensive associations with improved outcomes in a number of molecules, clinical trials have yet to prove causality and there is an absence of new therapies available to improve patient outcomes. Additional clinical trials that can incorporate the complexity of mineral bone disorders and with the ability to intervene on more than one pathway are needed to advance patient care. PMID:26785065

  2. [Bone mineral density in residents living on radioactive territories of Cheliabinsk Region].

    PubMed

    Tolstykh, E I; Shagina, N B; Peremyslova, L M; Degteva, M O

    2010-01-01

    Operation of "Mayak" plutonium production complex resulted in radioactive contamination of the part of Chelyabinsk Region in 1950-60s. Significant gas-aerosol emissions of 1311 occurred since 1948; in 1957, a radiation accident resulted in 90Sr contamination of large territories. This paper presents comparison of bone mineral density of persons lived on territories with different levels of soil 90Sr-contamination with a control group. It was found that in 1970-1975 the bone mineral density, estimated from mineral content in bone samples, in residents of contaminated areas born in 1936-1952 was significantly lower compared with the control group. For persons born in 1880-1935 such differences were not found. It was shown that the decrease in bone mineral density was not related to 90Sr exposure of osteogenic cells in the dose range from 0.1 to 1300 mGy: the coefficient of correlation between individual 90Sr-doses and bone mineral contents was not significant. The decrease in bone mineral density of persons born in 1936-1952 could be associated with exposure of thyroid and parathyroid glands (systemic regulators of calcium turnover) by 131I from gas-aerosol emissions from "Mayak". Maximum gas-aerosol emissions occurred in 1948-1954 and coincided with growth and development of thyroid gland, characterizing by intensive accumulation of 131I, and with growth and maturation of the skeleton of persons born in these calendar years.

  3. Prolactinoma: A Massive Effect on Bone Mineral Density in a Young Patient

    PubMed Central

    2016-01-01

    This case highlights a prolactinoma in a young male, and its impact on bone health. Osteoporosis has been noted to be an issue in postmenopausal women with prolactinomas. This case shows a similar impact on bone health in a young male resulting in low bone mineral density for age based on Z-score. This case report highlights the possible mechanisms for the bone loss in the setting of prolactinoma and the need for assessing bone health in such patients. Furthermore it highlights the need for a thorough evaluation in such patients. PMID:27446618

  4. Response Of Mineralizing And Non-Mineralizing Bone Cells To Fluid Flow: An In Vitro Model For Mechanotransruction

    NASA Technical Reports Server (NTRS)

    Makuch, Lauren A.

    2004-01-01

    osteoblasts, including increased proliferation, osteoblastic differentiation, alkaline phosphatase activity, and production of nitric oxide, prostaglandins, and osteopontin. Several proteins have been implicated in osteoblastic mechanotransduction including Bone Morphogenetic Protein-2 (BMP-2), parathyroid hormone, 1,25-dihydroxyvitamin D3 receptor, osteopontin (OPN), osteoprotegerin (OPG), and alkaline phosphatase (AP). We will characterize relative levels of each protein in mineralizing or non-mineralizing MC3T3 osteoblastic cells that have been exposed to fluid flow compared to non-fluid flow using immunofluorescent staining and two- photon laser microscopy as well as western blotting. Because calcium-mediated pathways are important in osteoblastic signaling, we will transfect MC3T3 cells with cameleon probes for Ca2+ containing YFP and CFP. Results will be analyzed using FRET/FLIM to study differential release of intracellular Ca(2+) in response to fluid flow and conditions inducing matrix mineralization. In addition, we plan to conduct several microarray experiments to determine differential gene expression in MC3T3 cells in response to fluid flow and conditions inducing mineralization.

  5. Milk calcium taken with cheese increases bone mineral density and bone strength in growing rats.

    PubMed

    Kato, Ken; Takada, Yukihiro; Matsuyama, Hiroaki; Kawasaki, Yoshihiro; Aoe, Seiichiro; Yano, Hideo; Toba, Yasuhiro

    2002-11-01

    We investigated the calcium bioavailability of milk calcium, taken with or without cheese. Twenty-four 6-week-old male rats for a meal-feeding experiment were trained to consume an AIN-76 diet within 2 h (2 times per day) for 2 weeks. The rats were then divided into three experimental groups, each fed 2 types of experimental diets: Control group, Cheese group, and Ca-Cheese group. The rats were each alternately given 2 types of experimental diets at 2-h meal-feeding for 31 days. The breaking force and energy of the femur in the Ca-Cheese group were significantly higher than in the control group. The bone mineral density (BMD) of the lumbar spine and the femur in the Ca-Cheese group was also significantly higher than in the other two groups. These results indicate that milk calcium taken with cheese increases bone strength and BMD efficiently, results that may be useful for the prevention of osteoporosis.

  6. The effect of enamel matrix proteins and deproteinized bovine bone mineral on heterotopic bone formation.

    PubMed

    Donos, Nikolaos; Kostopoulos, Lambros; Tonetti, Maurizio; Karring, Thorkild; Lang, Niklaus P

    2006-08-01

    To evaluate the osteoinductive potential of deproteinized bovine bone mineral (DBBM) and an enamel matrix derivative (EMD) in the muscle of rats. Sixteen rats were used in this study. The animals were divided in three groups. Group A: a pouch was created in one of the pectoralis profundis muscles of the thorax of the rats and DBBM particles (Bio-Oss) were placed into the pouch. Healing: 60 days. Group B: a small pouch was created on both pectoralis profundis muscles at each side of the thorax midline. In one side, a mixture of EMD (Emdogain) mixed with DBBM was placed into one of the pouches, whereas in the contralateral side of the thorax the pouch was implanted with DBBM mixed with the propylene glycol alginate (PGA--carrier for enamel matrix proteins of EMD). Healing: 60 days. Group C: the same procedure as group B, but with a healing period of 120 days. Qualitative histological analysis of the results was performed. At 60 days, the histological appearance of the DBBM particles implanted alone was similar to that of the particles implanted together with EMD or PGA at both 60 and 120 days. The DBBM particles were encapsulated into a connective tissue stroma and an inflammatory infiltrate. At 120 days, the DBBM particles implanted together with EMD or PGA exhibited the presence of resorption lacunae in some cases. Intramuscular bone formation was not encountered in any group. The implantation of DBBM particles alone, combined with EMD or its carrier (PGA) failed to exhibit extraskeletal, bone-inductive properties.

  7. The link between nutritional parameters and bone mineral density in women: results of a screening programme for osteoporosis

    PubMed Central

    2014-01-01

    Background A positive association between handgrip strength and bone mineral density was demonstrated, but not all the investigations confirmed these results. We conducted a screening programme for osteoporosis in a large cohort of postmenopausal women to investigate the relationship between handgrip strength, other nutritional parameters and bone density. Methods This investigation involved 1,300 white volunteers. All participants underwent a bone mineral density evaluation at the heel and a handgrip strength measurement. Results The mean T-score value was -1.15 ± 1; a total of 181 participants reported at least one osteoporotic fracture. In the univariate analysis, both handgrip strength and body mass index were associated with the T-score value. Adjustment for confounding factors confirmed this relationship showing, in the multivariate analysis, that the body mass index was positively correlated to the T-score (B = 0.034; p = 0.001) and, in the logistic regression analysis, that handgrip strength was associated with the presence of osteoporosis (P = 0.005). Conclusion Both body mass index and handgrip strength were strongly correlated to bone mineral density, assessed with ultrasound, suggesting a possible key role as bone disease predictors. PMID:24548517

  8. Strong familial association of bone mineral density between parents and offspring: KNHANES 2008-2011.

    PubMed

    Choi, H S; Park, J H; Kim, S H; Shin, S; Park, M J

    2017-03-01

    Bone mineral density (BMD) of offspring was significantly associated with their parents' BMD. Parental BMD Z-score ≤-1 was a significant predictor for BMD Z-score ≤-1 in their offspring. Peak bone mass acquisition during early adulthood is more substantially influenced by genetic factors rather than lifestyle or environmental factors.

  9. Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents.

    PubMed

    Novitskaya, Ekaterina; Chen, Po-Yu; Lee, Steve; Castro-Ceseña, Ana; Hirata, Gustavo; Lubarda, Vlado A; McKittrick, Joanna

    2011-08-01

    The mechanical properties of fully demineralized, fully deproteinized and untreated cortical bovine femur bone were investigated by compression testing in three anatomical directions (longitudinal, radial and transverse). The weighted sum of the stress-strain curves of the treated bones was far lower than that of the untreated bone, indicating a strong molecular and/or mechanical interaction between the collagen matrix and the mineral phase. Demineralization and deproteinization of the bone demonstrated that contiguous, stand-alone structures result, showing that bone can be considered an interpenetrating composite material. Structural features of the samples from all groups were studied by optical and scanning electron microscopy. Anisotropic mechanical properties were observed: the radial direction was found to be the strongest for untreated bone, while the longitudinal one was found to be the strongest for deproteinized and demineralized bones. A possible explanation for this phenomenon is the difference in bone microstructure in the radial and longitudinal directions.

  10. Osteoporosis: Are we measuring what we intend to measure? In search of the ideal bone strength study

    NASA Astrophysics Data System (ADS)

    de Riese, Cornelia

    2006-02-01

    In 1991 the World Health Organization (WHO) defined osteoporosis as a "loss of bone mass and micro architectural deterioration of the skeleton leading to increased risk of fracture." 1,2 Since microarchitecture can not be measured directly, a panel of the WHO recommended that the diagnosis be made according to a quantifiable surrogate marker, calcium mineral, in bone. Subsequently in 1994, the definition focused on the actual bone "density," giving densitometric technology a central place in establishing the diagnosis of osteoporosis. 3,4 But soon it became obvious that there was only limited correlation between bone mineral density (BMD) and actual occurrence of fractures and that decreases in bone mass account for only about 50% of the deterioration of bone strength with aging. In other words only about 60% of bone strength is related to BMD. 5 Recent developments in bone research have shown that bone mineral density in itself is not sufficient to accurately predict fracture risk. Bone is composed of inorganic calcium apatite crystals that mineralize an organic type I collagen matrix. The degree of mineralization, the properties of the collagen matrix, crystal size, trabecular orientation, special distribution of the different components and many more factors are all impacting bone strength. 6-14 Human cadaver studies have confirmed the correlation between bone density and bone. 26 strength. 5,15-20 Changes in cancellous bone morphology appear to lead to a disproportionate decrease in bone strength. 21-26 When postmenopausal women are stratified by age, obvious differences between BMD and actual fracture risk are observed. 24 Felsenberg eloquently summarizes what he calls the "Bone Quality Framework." In great detail he talks about the geometry and micro- architecture of bone and how the different components are related to functional stability. 27 Are our current testing modalities appropriately addressing these structural factors? Are we keeping in mind that in

  11. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase.

    PubMed

    Douglas, Timothy E L; Messersmith, Philip B; Chasan, Safak; Mikos, Antonios G; de Mulder, Eric L W; Dickson, Glenn; Schaubroeck, David; Balcaen, Lieve; Vanhaecke, Frank; Dubruel, Peter; Jansen, John A; Leeuwenburgh, Sander C G

    2012-08-01

    Alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, is incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These are collagen type I, a mussel-protein-inspired adhesive consisting of PEG substituted with catechol groups, cPEG, and the PEG/fumaric acid copolymer OPF. After incubation in Ca-GP solution, FTIR, EDS, SEM, XRD, SAED, ICP-OES, and von Kossa staining confirm CaP formation. The amount of mineral formed decreases in the order cPEG > collagen > OPF. The mineral:polymer ratio decreases in the order collagen > cPEG > OPF. Mineralization increases Young's modulus, most profoundly for cPEG. Such enzymatically mineralized hydrogel/CaP composites may find application as bone regeneration materials.

  12. Enzymatic mineralization of hydrogels for bone tissue engineering by incorporation of alkaline phosphatase

    PubMed Central

    Douglas, Timothy E.L.; Messersmith, Philip B.; Chasan, Safak; Mikos, Antonios G.; de Mulder, Eric L.W.; Dickson, Glenn; Schaubroeck, David; Balcaen, Lieve; Vanhaecke, Frank; Dubruel, Peter; Jansen, John A.

    2013-01-01

    Alkaline Phosphatase (ALP), an enzyme involved in mineralization of bone, was incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These were collagen type I, a mussel protein-inspired adhesive consisting of PEG substituted with catechol groups, cPEG, and the PEG-fumaric acid copolymer OPF. After incubation in calcium glycerophosphate (Ca-GP) solution, FTIR, EDS, SEM, XRD, SAED, ICP-OES and von Kossa staining confirmed CaP formation. The amount of mineral formed decreased in the order cPEG > collagen > OPF. Mineral:polymer ratio decreased in the order collagen > cPEG > OPF. Mineralization increased Young’s modulus, most profoundly for cPEG. Such enzymatically mineralized hydrogel-CaP composites could find application as bone regeneration materials. PMID:22648976

  13. Osteoporotic-like effects of cadmium on bone mineral density and content in aged ovariectomized beagles

    SciTech Connect

    Sacco-Gibson, N.; Abrams, J.; Chaudhry, S.; Hurst, D.; Peterson, D.; Bhattacharyya, M.

    1992-12-31

    Our purpose was to evaluate the effects of ovariectomy in conjunction with cadmium (Cd) exposure on bone. Aged female beagles with {sup 45}Ca-labeled skeletons ovariectomized and exposed to Cd. Successive vertebral scans by dual photon absorptiometry monitored changes in bone mineral density (BMD) in each dog with time. Results showed that ovariectomy or Cd exposure alone caused significant decreases in BMD; ovariectomy with Cd exposure caused the greatest decrease. Ovariectomy alone did not decrease BMD in the distal end or mid-shaft of the tibia while BMD of the distal tibia decreased significantly due to Cd exposure alone. Combination treatment resulted in significant decreases in BMD of both tibial regions. At necropsy, tibiae, humeri, lumbar vertebrae and ribs were obtained for biochemical analysis. No group-to-group differences in bone weights (wet, dry, ash), in ash/dry ratios, or in long bone and vertebral Ca/dry or Ca/ash ratios were observed. Significantly higher total {sup 45}Ca content and {sup 45}Ca/dry and {sup 45}Ca/ash ratios were observed in long bones and vertebrae of OV- and OV+ groups. In contrast, intact ribs showed significantly decreased Ca/dry and Ca/ash ratios compared to the SO-group. Quartered ribs demonstrated regional responses to specific treatment; decreases in total Ca content were greatest in the mid-rib region ({minus}36 to {minus}46%). Results suggest that in the aged female beagle, bone mineral loss associated with estrogen depletion is not only related to bone type (trabecular versus cortical) but also to bone Ca pools. Our results also suggest that a regional heterogeneity of bone plays a role in responsiveness to ovariectomy and Cd exposure. These aspects suggest that Cd is an exogenous factor affecting bone mineral loss independently of estrogen depletion. However, estrogen depletion primes bone for responsiveness to Cd-induced bone mineral loss.

  14. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  15. Osteopenia of Prematurity: Does Physical Activity Improve Bone Mineralization in Preterm Infants?

    PubMed

    Stalnaker, Kelsey A; Poskey, Gail A

    2016-01-01

    Bone mineralization of preterm infants is significantly less than full-term infants at birth, placing preterm infants at risk for osteopenia of prematurity and other metabolic bone diseases. Advances in nutritional supplementation and standard nursing care alone have been unsuccessful in improving bone mineralization postnatally. Research supports a daily physical activity protocol of passive range of motion and gentle joint compression when combined with adequate nutritional supplementation reduces osteopenia of prematurity. This article provides a systematic review of the current evidence surrounding early physical activity and neonatal massage for the treatment of osteopenia and indicates the need for universal handling protocols in caring for this unique population.

  16. The association of chronic kidney disease-mineral bone disorder and cardiovascular risk.

    PubMed

    Eddington, Helen; Kalra, Philip A

    2010-05-01

    Chronic kidney disease-mineral bone disorder (CKD-MBD) is a multifaceted definition used to help describe the systemic derangement of mineral bone metabolism in renal disease. This was previously referred to, rather simplistically, as 'renal osteodystrophy' or 'renal bone disease'. In this review, we will try to show the evidence relating these factors to cardiovascular morbidity and mortality and give some evidence as to the mechanisms for this. The treatments used for this condition are also integral to the increased cardiovascular mortality seen in renal patients and a summary of these effects will also be covered.

  17. Case study: Bone mineral density of two elite senior female powerlifters.

    PubMed

    Walters, Peter H; Jezequel, Joel J; Grove, Mary B

    2012-03-01

    The purpose of this case study was to examine the bone mineral density (BMD) of 2 women, aged 48 and 54 years, who had engaged in high-intensity resistance training for >30 years each and gained national prominence for their lifting performances. Each subject was measured using a dual x-ray absorptiometry (GE Lunar Prodigy, Fairfield, CT, USA) for both the BMD (grams per centimeter squared) and bone mineral content (grams) of the lumbar spine, dual femur, and total body. The Z and T scores of the 49-year-old subject were significantly higher than either age and gender-matched or peak BMD norms (lumbar spine Z + 2.2, T + 1.8, femoral mean Z + 1.1, T + 0.6, total body Z + 2.4, T + 2.0). The Z and T scores of the 54-year-old mark the largest ever reported in the literature for a Caucasian woman of this age (lumbar spine Z + 2.8, T + 2.2, femoral mean Z + 1.4, T + 1.9, total body Z + 2.6, T + 3.0). Although these results do not prove any causal relationship between long-term high-intensity strength training and elevated BMDs among women, they do raise questions that some type of relationship may exist.

  18. Obesity Impact Evaluated from Fat Percentage in Bone Mineral Density of Male Adolescents

    PubMed Central

    Ripka, Wagner Luis; Modesto, Jhomyr Dias; Ulbricht, Leandra; Gewehr, Pedro Miguel

    2016-01-01

    Objective To analyze bone mineral density (BMD) values in adolescents and to assess obesity impact, measured through body fat #x2013;on this variable through the assessment by DEXA. Methodology A total of 318 males adolescents (12–17 years) were evaluated considering weight, height, body mass index (BMI), bone mineral density (BMD), fat and lean mass. BMD was assessed for the arms, legs, hips, and lumbar regions, as well as for total amount. Stratification of the nutritional status was determined by body fat (%BF) percentage; comparison of groups was scrutinized by analysis of variance; and the association of variables was performed using Pearson's test. Results There was a progressive increase in weight, height, and BMD for all evaluated age groups following the advance of chronological age. A negative correlation was found between the %BF with BMD in all evaluated segments. Significant differences were found between the eutrophic group compared to the overweight group and the obesity group in the evaluated segments (P <0.01) noting a reduction of up to 12.92% for the lumbar region between eutrophic and obese. Conclusion The results suggest that increase %BF is associated with lower BMD among male adolescents. PMID:27685942

  19. Effects of Radiation and a High Iron Load on Bone Mineral Density

    NASA Technical Reports Server (NTRS)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.

    2012-01-01

    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  20. Modulation and Predictors of Periprosthetic Bone Mineral Density following Total Knee Arthroplasty

    PubMed Central

    Felser, Sabine; Skripitz, Ralf

    2015-01-01

    Total knee arthroplasty (TKA) leads to a loss of periprosthetic bone mineral density (BMD). Great importance is attached to the prevention of periprosthetic bone loss with a view to ensuring a long service life of the prosthesis. In order to provide appropriate recommendations for preventive movement therapy measures to combat peri-implant bone loss, it is necessary to know the predictors of periprosthetic BMD. The aim of this study was (1) to determine the change of periprosthetic BMD of the femur and tibia and (2) to analyse the effects of different predictors on periprosthetic BMD. Twenty-three patients with primary TKA were evaluated 10 days and 3 months postoperatively. The data analysis comprised (1) the change in periprosthetic BMD from pretest to posttest and (2) the correlations between BMD and the variables isometric maximum voluntary force, lean mass, physical activity (step count), and BMI using multiple linear regression and structural equation modelling (SEM). BMD of the distal femur was significantly reduced by 19.7% (P = 0.008) 3 months after surgery, while no changes were found in BMD of the tibia. The results of SEM demonstrate that 55% of the BMD variance was explained by the model (χ2 = 0.002; df = 1; P = 0.96; χ2/df = 0.002; RMSEA < 0.01; TLI = 1.5; CFI = 1.0). A significant direct effect was only evidenced by the variable lean mass (β = 0.38; b = 0.15; SE = 0.07; C.R. = 2.0; P = 0.046). It can be assumed that a large muscle mass with accompanying distribution of high mechanical load in the bones can contribute to local changes of periprosthetic BMD. Concrete recommendations for preventing peri-implant bone loss therefore include exercises which have the aim of maintaining or building up muscle mass. PMID:25793194

  1. Decreased Bone Mineral Density in Adults Born with Very Low Birth Weight: A Cohort Study

    PubMed Central

    Hovi, Petteri; Andersson, Sture; Järvenpää, Anna-Liisa; Eriksson, Johan G.; Strang-Karlsson, Sonja; Kajantie, Eero; Mäkitie, Outi

    2009-01-01

    Background Very-low-birth-weight (VLBW, <1,500 g) infants have compromised bone mass accrual during childhood, but it is unclear whether this results in subnormal peak bone mass and increased risk of impaired skeletal health in adulthood. We hypothesized that VLBW is associated with reduced bone mineral density (BMD) in adulthood. Methods and Findings The Helsinki Study of Very Low Birth Weight Adults is a multidisciplinary cohort study representative of all VLBW births within the larger Helsinki area from 1978 to 1985. This study evaluated skeletal health in 144 such participants (all born preterm, mean gestational age 29.3 wk, birth weight 1,127 g, birth weight Z score 1.3), and in 139 comparison participants born at term, matched for sex, age, and birth hospital. BMD was measured by dual energy X-ray absorptiometry at age 18.5 to 27.1 y. Adults born with VLBW had, in comparison to participants born at term, a 0.51-unit (95% confidence interval [CI] 0.28–0.75) lower lumbar spine Z score and a 0.56-unit (95% CI 0.34–0.78) lower femoral neck Z score for areal BMD. These differences remained statistically significant after adjustment for the VLBW adults' shorter height and lower self-reported exercise intensity. Conclusions Young adults born with VLBW, when studied close to the age of peak bone mass, have significantly lower BMD than do their term-born peers. This suggests that compromised childhood bone mass accrual in preterm VLBW children translates into increased risk for osteoporosis in adulthood, warranting vigilance in osteoporosis prevention. Please see later in the article for the Editors' Summary PMID:19707270

  2. Intensive Hemodialysis, Mineral and Bone Disorder, and Phosphate Binder Use.

    PubMed

    Copland, Michael; Komenda, Paul; Weinhandl, Eric D; McCullough, Peter A; Morfin, Jose A

    2016-11-01

    Mineral and bone disorder is a common complication of end-stage renal disease. Notably, hyperphosphatemia likely promotes calcification of the myocardium, valves, and arteries. Hyperphosphatemia is associated with higher risk for cardiovascular mortality and morbidity along a gradient beginning at 5.0mg/dL. Among contemporary hemodialysis (HD) patients, mean serum phosphorus level is 5.2mg/dL, although 25% of patients have serum phosphorus levels of 5.5 to 6.9mg/dL; and 13%, >7.0mg/dL. Treatment of hyperphosphatemia is burdensome. Dialysis patients consume a mean of 19 pills per day, half of which are phosphate binders. Medicare Part D expenditures on binders for dialysis patients approached $700 million in 2013. Phosphorus removal with thrice-weekly HD (4 hours per session) is ∼3,000mg/wk. However, clearance is unlikely to counterbalance dietary intake, which varies around a mean of 7,000mg/wk. Dietary restriction and phosphate binders are important interventions, but each has limitations. Dietary control is complicated by limited access to healthy food choices and unclear labeling. Meanwhile, adherence to phosphate binders is poor, especially in younger patients and those with high pill burden. Multiple randomized clinical trials show that intensive HD reduces serum phosphorus levels. In the Frequent Hemodialysis Network (FHN) trial, short daily and nocturnal schedules reduced serum phosphorus levels by 0.6 and 1.6mg/dL, respectively, relative to 3 sessions per week. A similar effect of nocturnal HD was observed in an earlier trial. In the daily arm of the FHN trial, intensive HD significantly lowered estimated phosphate binder dose per day, whereas in the nocturnal arm, intensive HD led to binder discontinuation in 75% of patients. However, intensive HD appears to have no meaningful effects on serum calcium and parathyroid hormone concentrations. In conclusion, intensive HD, especially nocturnal HD, lowers serum phosphorus levels and decreases the need for

  3. The Rare Bone Disease Working Group: report from the 2016 American Society for Bone and Mineral Research Annual Meeting.

    PubMed

    Drake, Matthew T; Collins, Michael T; Hsiao, Edward C

    2017-01-20

    A working group on rare bone diseases was held in Atlanta, Georgia as part of the 2016 annual meeting of the American Society for Bone and Mineral Research. The meeting was organized by Matthew Drake. Given recent advances in our understanding of fibrodysplasia ossificans progressiva (FOP), the initial portion of the program was devoted to basic, translational, and clinical aspects of FOP. The remainder of the program was divided into updates on an array of rare bone diseases as detailed below. In total, there were more than 120 scientists from academia and industry in attendance.

  4. Long-term safety of antiresorptive treatment: bone material, matrix and mineralization aspects

    PubMed Central

    Misof, Barbara M; Fratzl-Zelman, Nadja; Paschalis, Eleftherios P; Roschger, Paul; Klaushofer, Klaus

    2015-01-01

    It is well established that long-term antiresorptive use is effective in the reduction of fracture risk in high bone turnover osteoporosis. Nevertheless, during recent years, concerns emerged that longer bone turnover reduction might favor the occurrence of fatigue fractures. However, the underlying mechanisms for both beneficial and suspected adverse effects are not fully understood yet. There is some evidence that their effects on the bone material characteristics have an important role. In principle, the composition and nanostructure of bone material, for example, collagen cross-links and mineral content and crystallinity, is highly dependent on tissue age. Bone turnover determines the age distribution of the bone structural units (BSUs) present in bone, which in turn is decisive for its intrinsic material properties. It is noteworthy that the effects of bone turnover reduction on bone material were observed to be dependent on the duration of the antiresorptive therapy. During the first 2–3 years, significant decreases in the heterogeneity of material properties such as mineralization of the BSUs have been observed. In the long term (5–10 years), the mineralization pattern reverts towards normal heterogeneity and degree of mineralization, with no signs of hypermineralization in the bone matrix. Nevertheless, it has been hypothesized that the occurrence of fatigue fractures (such as atypical femoral fractures) might be linked to a reduced ability of microdamage repair under antiresorptive therapy. The present article examines results from clinical studies after antiresorptive, in particular long-term, therapy with the aforementioned potentially positive or negative effects on bone material. PMID:25709811

  5. Calcium Regulation and Bone Mineral Metabolism in Elderly Patients with Chronic Kidney Disease

    PubMed Central

    Tejwani, Vickram; Qian, Qi

    2013-01-01

    The elderly chronic kidney disease (CKD) population is growing. Both aging and CKD can disrupt calcium (Ca2+) homeostasis and cause alterations of multiple Ca2+-regulatory mechanisms, including parathyroid hormone, vitamin D, fibroblast growth factor-23/Klotho, calcium-sensing receptor and Ca2+-phosphate product. These alterations can be deleterious to bone mineral metabolism and soft tissue health, leading to metabolic bone disease and vascular calcification and aging, termed CKD-mineral and bone disorder (MBD). CKD-MBD is associated with morbid clinical outcomes, including fracture, cardiovascular events and all-cause mortality. In this paper, we comprehensively review Ca2+ regulation and bone mineral metabolism, with a special emphasis on elderly CKD patients. We also present the current treatment-guidelines and management options for CKD-MBD. PMID:23760058

  6. Biosynthesis and in vitro evaluation of macroporous mineralized bacterial nanocellulose scaffolds for bone tissue engineering.

    PubMed

    Sundberg, Johan; Götherström, Cecilia; Gatenholm, Paul

    2015-01-01

    Macroporous bacterial nanocellulose (BNC) scaffolds with calcium phosphate coated surfaces is a candidate for future bone tissue engineering applications. The mineralization of the macroporous BNC scaffolds was achieved by a biomimetic process, resulting in an environment resembling native bone tissues' mineralized extra cellular matrix both topographically and chemically. The deposited crystals were analyzed with electron spectroscopy for chemical analysis (ESCA), energy-dispersive X-ray spectroscopy (EDX) and X-ray crystallography (XRD). MSCs were cultured in osteogeneic medium for 21 days on the scaffolds. The results of this study show that macroporous BNC can be mineralized with hydroxyapatite and that MSCs retain their ability to proliferate and differentiate towards an osteoblastic phenotype within the mineralized BNC, showing the promise of this material in bone tissue engineering applications.

  7. Rapidly Assessing Changes in Bone Mineral Balance Using Natural Stable Calcium Isotopes

    NASA Technical Reports Server (NTRS)

    Morgan, J. L. L.; Gordon, G. W.; Romaniello, S. J.; Skulan, J. L.; Smith, S. M.; Anbar, A. D.

    2011-01-01

    We demonstrate that variations in the Ca isotope ratios in urine rapidly and quantitatively reflect changes in bone mineral balance. This variation occurs because bone formation depletes soft tissue of light Ca isotopes, while bone resorption releases that isotopically light Ca back into soft tissue. In a study of 12 individuals confined to bed rest, a condition known to induce bone resorption, we show that Ca isotope ratios shift in a direction consistent with net bone loss after just 7 days, long before detectible changes in bone density occur. Consistent with this interpretation, the Ca isotope variations track changes observed in N-teleopeptide, a bone resorption biomarker, while bone-specific alkaline phosphatase, a bone formation biomarker, is unchanged. Ca isotopes can in principle be used to quantify net changes in bone mass. Ca isotopes indicate an average loss of 0.62 +/- 0.16 % in bone mass over the course of this 30-day study. The Ca isotope technique should accelerate the pace of discovery of new treatments for bone disease and provide novel insights into the dynamics of bone metabolism.

  8. Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats.

    PubMed

    Lyu, Ying; Feng, Xin; Zhao, Pengling; Wu, Zhenghao; Xu, Hao; Fang, Yuehui; Hou, Yangfeng; Denney, Liya; Xu, Yajun; Feng, Haotian

    2014-11-01

    Osteoporosis is a chronic disease affecting millions of people worldwide. It is generally accepted that acquisition of a high peak bone mass (PBM) early in life can reduce the risk of osteoporosis later in life. The aims of this study were to investigate the effects of Fructus Ligustri Lucidi (FLL) ethanol extract on bone mineral density and its mechanical properties in growing female rats and to explore the underlying mechanisms. The rats were given different doses of FLL extract mixed with AIN-93G formula (0.40, 0.65 and 0.90 %), and a group given AIN-93G diet treatment only was used as control. The intervention lasted for 16 weeks until the animals were about 5 months old, the time when the animals almost reach their PBM. Our results showed that FLL treatment increased bone mineral density and improved bone mechanical properties in the growing female rats in a dose-dependent manner. In addition, FLL treatment significantly decreased the serum bone-resorbing marker, CTX-I, while significantly increasing serum 25(OH)D3 and thereby increasing Ca absorption and Ca retention. Intriguingly, both in vivo and in vitro results demonstrated that FLL treatment could reduce the RANKL/OPG ratio. In conclusion, FLL ethanol extract exerted beneficial effects on peak bone mass acquisition and the improvement of bone mechanical properties by favoring Ca metabolism and decreasing the RANKL/OPG ratio.

  9. Assessment of bone mineral status in children with Marfan syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder with skeletal involvement. It is caused by mutations in fibrillin1 (FBN1) gene resulting in activation of TGF-ßeta, which developmentally regulates bone mass and matrix properties. There is no consensus regarding bone minerali...

  10. Bone mineral density in elite adolescent female figure skaters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elite adolescent figure skaters must accommodate both the physical demands of competitive training and the accelerated rate of bone growth that is associated with adolescence. Although, these athletes apparently undergo sufficient physical activity to develop healthy bones, it is possible that other...

  11. Multi-Generational Drinking of Bottled Low Mineral Water Impairs Bone Quality in Female Rats

    PubMed Central

    Zeng, Hui; Wang, Lingqiao; Wang, Dahua; Luo, Jiaohua; Zhang, Liang; Huang, Yujing; Chen, Ji-an; Shu, Weiqun

    2015-01-01

    Background Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse. Objective To elucidate the skeletal effects of multi-generational bottled water drinking in female rats. Methods Rats continuously drank tap water (TW), bottled natural water (bNW), bottled mineralized water (bMW), or bottled purified water (bPW) for three generations. Results The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups) were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group. Conclusion Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model. PMID:25803851

  12. Quantum dots as mineral- and matrix-specific strain gages for bone biomechanical studies

    NASA Astrophysics Data System (ADS)

    Zhu, Peizhi; Xu, Jiadi; Morris, Michael; Ramamoorthy, Ayyalusamy; Sahar, Nadder; Kohn, David

    2009-02-01

    We report the use of quantum dots (Qdots) as strain gages in the study of bone biomechanics using solid state nuclear magnetic resonance (NMR) spectroscopy. We have developed solid state NMR sample cells for investigation of deformations of bone tissue components at loads up to several Mega Pascal. The size constraints of the NMR instrumentation limit the bone specimen diameter and length to be no greater than 2-3 mm and 30 mm respectively. Further, magic angle spinning (MAS) solid state NMR experiments require the use of non-metallic apparatus that can be rotated at kilohertz rates. These experimental constraints preclude the use of standard biomechanical measurement systems. In this paper we explore the use of quantum dot center of gravity measurement as a strain gage technology consistent with the constraints of solid state NMR. We use Qdots that bind calcium (625 nm emission) and collagen (705 nm emission) for measurement of strain in these components. Compressive loads are applied to a specimen in a cell through a fine pitch screw turned with a mini-torque wrench. Displacement is measured as changes in the positions of arrays of quantum dots on the surface of a specimen. Arrays are created by spotting the specimen with dilute suspensions of Qdots. Mineral labeling is achieved with 705 nm carboxylated dots and matrix labeling with 565 nm quantum dots conjugated to collagen I antibodies. After each load increment the new positions of the quantum dots are measured by fluorescence microscopy. Changes in Qdot center of gravity as a function of applied load can be measured with submicron accuracy.

  13. Bone mineral density and osteoporosis after preterm birth: the role of early life factors and nutrition.

    PubMed

    Wood, Claire L; Wood, Alexander M; Harker, Caroline; Embleton, Nicholas D

    2013-01-01

    The effects of preterm birth and perinatal events on bone health in later life remain largely unknown. Bone mineral density (BMD) and osteoporosis risk may be programmed by early life factors. We summarise the existing literature relating to the effects of prematurity on adult BMD and the Developmental Origins of Health and Disease hypothesis and programming of bone growth. Metabolic bone disease of prematurity and the influence of epigenetics on bone metabolism are discussed and current evidence regarding the effects of breastfeeding and aluminium exposure on bone metabolism is summarised. This review highlights the need for further research into modifiable early life factors and their effect on long-term bone health after preterm birth.

  14. Physical activity and lifestyle effects on bone mineral density among young adults: sociodemographic and biochemical analysis

    PubMed Central

    Alghadir, Ahmad H.; Gabr, Sami A.; Al-Eisa, Einas

    2015-01-01

    [Purpose] The purpose of this study was to assess the possible role of physical activities, calcium consumption and lifestyle factors in both bone mineral density and bone metabolism indices in 350 young adult volunteers. [Subjects and Methods] All volunteers were recruited for the assessment of lifestyle behaviors and physical activity traits using validated questioners, and bone mineral density (BMD), serum osteocalcin (s-OC), bone-specific alkaline phosphatase (BAP), and calcium were estimated using dual-energy X-ray absorptiometry analysis, and immunoassay techniques. [Results] Male participants showed a significant increase in BMD along with an increase in bone metabolism markers compared with females in all groups. However, younger subjects showed a significant increase in BMD, OC, BAP, and calcium compared with older subjects. Osteoporosis was more common in older subjects linked with abnormal body mass index and waist circumference. Bone metabolism markers correlated positively with BMD, physically activity and negatively with osteoporosis in all stages. Also, moderate to higher calcium and milk intake correlated positively with higher BMD. However, low calcium and milk intake along with higher caffeine, and carbonated beverage consumption, and heavy cigarette smoking showed a negative effect on the status of bone mineral density. Stepwise regression analysis showed that life style factors including physical activity and demographic parameters explained around 58–69.8% of the bone mineral density variation in young adults especially females. [Conclusion] body mass index, physical activity, low calcium consumption, and abnormal lifestyle have role in bone mineral density and prognosis of osteoporosis in young adults. PMID:26311965

  15. Relationship of serum GDF11 levels with bone mineral density and bone turnover markers in postmenopausal Chinese women

    PubMed Central

    Chen, Yusi; Guo, Qi; Zhang, Min; Song, Shumin; Quan, Tonggui; Zhao, Tiepeng; Li, Hongliang; Guo, Lijuan; Jiang, Tiejian; Wang, Guangwei

    2016-01-01

    Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the relationship between serum GDF11 level, bone mass, and bone turnover markers in postmenopausal Chinese women. Serum GDF11 level, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 169 postmenopausal Chinese women (47–78 years old). GDF11 serum levels increased with aging. There were negative correlations between GDF11 and BMD at the various skeletal sites. After adjusting for age and body mass index (BMI), the correlations remained statistically significant. In the multiple linear stepwise regression analysis, age or years since menopause, BMI, GDF11, and estradiol were independent predictors of BMD. A significant negative correlation between GDF11 and bone alkaline phosphatase (BAP) was identified and remained significant after adjusting for age and BMI. No significant correlation was noted between cross-linked N-telopeptides of type I collagen (NTX) and GDF11. In conclusion, GDF11 is an independent negative predictor of BMD and correlates with a biomarker of bone formation, BAP, in postmenopausal Chinese women. GDF11 potentially exerts a negative effect on bone mass by regulating bone formation. PMID:27408764

  16. Effect of Sunlight Exposure on Bone Mineral Density in Children with Severe Disability.

    PubMed

    Kanemura, Hideaki; Hatakeyama, Kazuo; Sano, Fumikazu; Yagasaki, Hideaki; Sugita, Kanji; Aihara, Masao

    2016-08-01

    The aim of this study was to determine the efficacy of sunlight exposure for increasing bone mineral density (BMD) in children with severe disability. The subjects were five children with severe disability, aged 6 to 8 years. BMD was measured at baseline and after 3, 6, 9, and 12 months of starting sunlight exposure. All caregivers of patients were instructed to create opportunities to stay outdoors. Daily sunlight exposure time was defined as hours of staying outdoors. Mean hours of sunbathing per day were calculated at baseline and after 3, 6, 9, and 12 months of starting sunlight exposure. Sunlight exposure tended to be longer after starting than before starting in all patients, but the difference was not significant (p = 0.052). Along with the increase in sunlight exposure, BMD increased significantly after the start of sunlight exposure in all patients (p < 0.01). The serum values of total alkaline phosphatase and intact parathyroid hormone were significantly decreased and that of 25-hydroxyvitamin D was significantly increased 12 months after starting sunlight exposure. No patients had bone fractures after the start of sunlight exposure. These results suggest that sunlight exposure increased BMD, and that this may reduce the risk of bone fracture in children with disability.

  17. Change in bone mineral density at one year following glucocorticoid withdrawal in kidney transplant recipients.

    PubMed

    Ing, Steven W; Sinnott, Loraine T; Donepudi, Sirisha; Davies, Elizabeth A; Pelletier, Ronald P; Lane, Nancy E

    2011-01-01

    Glucocorticoid (GC) therapy induces deleterious effects on the skeleton in kidney transplantation but studies of GC discontinuation in this population are limited. This study evaluated changes in areal bone mineral density (BMD) with GC withdrawal. Subjects were enrolled one yr after renal transplantation and randomized to continue or stop prednisone; all subjects continued cyclosporine and mycophenolate mofetil. BMD measured by dual-energy X-ray absorptiometry was performed at enrollment and repeated at one yr and values were standardized. Mean ± standard deviation of annualized change in standardized BMD between GC withdrawal vs. continuation group at the lumbar spine was +4.7% ± 5.5 vs. +0.9% ± 5.3 (p = 0.0014); total hip +2.4% ± 4.2 vs. -0.4% ± 4.2 (p = 0.013), and femoral neck +2.1% ± 4.6 vs. +1.0% ± 6.0 (p = 0.37). There was no confounding by prednisone dose prior to enrollment, change in creatinine clearance, weight, or use of bone-active medications following study entry. Multivariate analysis determined that the change in BMD was positively associated with baseline alkaline phosphatase and creatinine clearance and negatively associated with baseline BMD. BMD improves with GC withdrawal after renal transplantation, and this gain in BMD is dependent on the baseline bone turnover, renal function, and BMD.

  18. Prevalence of Low Bone Mineral Density and Associated Risk Factors in Korean Puerperal Women

    PubMed Central

    2016-01-01

    Although pregnancy is a medical condition that contributes to bone loss, little information is available regarding bone mineral density (BMD) in puerperal women. This cross sectional study aimed to evaluate the prevalence of low BMD in puerperal women and to identify associated risk factors. We surveyed all puerperal women who had BMD measurements taken 4–6 weeks after delivery in a tertiary university hospital, and did not have any bone loss-related comorbidities. Among the 1,561 Korean puerperal women, 566 (36.3%) had low BMD at the lumbar spine, total hip, femoral neck, and/or trochanter. Multivariate analysis revealed that underweight women had a significantly higher risk of low BMD compared with obese women at pre-pregnancy (adjusted odds ratio [aOR], 3.21; 95% confidence interval [CI], 1.83–5.63). Also, women with inadequate gestational weight gain (GWG) were 1.4 times more likely to have low BMD than women with excessive GWG (aOR, 1.42; 95% CI, 1.04–1.94). One-way ANOVA showed that BMDs at the lumbar spine and total hip were significantly different between the 4 BMI groups (both P < 0.001) and also between the 3 GWG groups (both P < 0.001). In conclusion, this study identifies a high prevalence of low BMD in puerperal women and thus suggests the need for further evaluation about the change of BMD in pregnancy and postpartum period. PMID:27709858

  19. PUFAs, Bone Mineral Density, and Fragility Fracture: Findings from Human Studies1

    PubMed Central

    Longo, Amanda B

    2016-01-01

    Osteoporosis is a global health problem that leads to an increased incidence of fragility fracture. Recent dietary patterns of Western populations include higher than recommended intakes of n–6 (ω-6) polyunsaturated fatty acids (PUFAs) relative to n–3 (ω-3) PUFAs that may result in a chronic state of sterile whole body inflammation. Findings from human bone cell culture experiments have revealed both benefits and detriments to bone-related outcomes depending on the quantity and source of PUFAs. Findings from observational and randomized controlled trials suggest that higher fatty fish intake is strongly linked with reduced risk of fragility fracture. Moreover, human studies largely support a greater intake of total PUFAs, total n–6 (ω-6) fatty acid, and total n–3 (ω-3) fatty acid for higher bone mineral density and reduced risk of fragility fracture. Less consistent evidence has been observed when investigating the role of long chain n–3 (ω-3) PUFAs or the ratio of n–6 (ω-6) PUFAs to n–3 (ω-3) PUFAs. Aspects to consider when interpreting the current literature involve participant characteristics, study duration, diet assessment tools, and the primary outcome measure. PMID:26980813

  20. Efficacy of pamidronate in pediatric osteosarcoma patients with low bone mineral density

    PubMed Central

    Lim, Se Won; Ahn, Ju Hyun; Choi, Aery; Cho, Wan Hyeong; Lee, Jun Ah; Kim, Dong Ho; Seo, Ju-Hee

    2016-01-01

    Purpose Most surviving pediatric osteosarcoma patients experience osteoporosis, bone pain, and pathologic fracture during and after therapy. The aim of this study was to evaluate the efficacy and side effects of pamidronate therapy in these patients. Methods Nine osteosarcoma patients (12.8±1.6 years of age; 5 boys and 4 girls) who had a history of nontraumatic fracture or severe pain after completing chemotherapy were included. Intravenous pamidronate (1.5 mg/kg) was given every 6 weeks for 4 to 6 cycles. Bone mineral density (BMD) of the lumbar spine was measured by dual-energy x-ray absorptiometry. Clinical outcomes including acute side effects were also evaluated. Results After pamidronate treatments, all patients experienced decreased pain. Seven of 9 patients could walk without a crutch. The BMD of lumbar spine was increased by 0.108±0.062 mg/cm2 after 8.4±1.0 months (n=8, P=0.017) and the mean z-score improved from –2.14±0.94 to –1.76±0.95 (P=0.161). Six patients (67%) had an acute-phase reaction, and 2 patients had symptomatic hypocalcemia. Conclusion Pamidronate appears to be safe and effective for the treatment of osteosarcoma in children with low BMD and bone pain. PMID:27104175

  1. PUFAs, Bone Mineral Density, and Fragility Fracture: Findings from Human Studies.

    PubMed

    Longo, Amanda B; Ward, Wendy E

    2016-03-01

    Osteoporosis is a global health problem that leads to an increased incidence of fragility fracture. Recent dietary patterns of Western populations include higher than recommended intakes of n-6 (ω-6) polyunsaturated fatty acids (PUFAs) relative to n-3 (ω-3) PUFAs that may result in a chronic state of sterile whole body inflammation. Findings from human bone cell culture experiments have revealed both benefits and detriments to bone-related outcomes depending on the quantity and source of PUFAs. Findings from observational and randomized controlled trials suggest that higher fatty fish intake is strongly linked with reduced risk of fragility fracture. Moreover, human studies largely support a greater intake of total PUFAs, total n-6 (ω-6) fatty acid, and total n-3 (ω-3) fatty acid for higher bone mineral density and reduced risk of fragility fracture. Less consistent evidence has been observed when investigating the role of long chain n-3 (ω-3) PUFAs or the ratio of n-6 (ω-6) PUFAs to n-3 (ω-3) PUFAs. Aspects to consider when interpreting the current literature involve participant characteristics, study duration, diet assessment tools, and the primary outcome measure.

  2. A versatile new mineralized bone stain for simultaneous assessment of tetracycline and osteoid seams.

    PubMed

    Villanueva, A R; Lundin, K D

    1989-05-01

    A versatile mineralized bone stain (MIBS) for demonstrating osteoid seams and tetracycline fluorescence simultaneously in thin or thick undecalcified sections has been developed. Bone specimens are fixed in 70% ethanol, but 10% buffered formalin is permissible. Depending upon one's preference, these specimens can be left unstained or be prestained before plastic embedding. Osteoid seams are stained green to jade green, or light to dark purple. Mineralized bone matrix is unstained or green. Osteoblast and osteoclast nuclei are light to dark purple, cytoplasm varies from slightly gray to pink. The identification of osteoid seams by this method agrees closely with identification by in vivo tetracycline uptake using the same section from the same biopsy. The method demonstrates halo volumes, an abnormal, lacunar, low density bone around viable osteocytes in purple. This phenomenon is commonly seen in vitamin D-resistant rickets, fluorosis, renal osteodystrophy, hyperparathyroidism, and is sometimes seen in fluoride treated osteoporotic patients. In osteomalacic bone, most osteoid seams are irregularly stained as indicated by the presence of unmineralized osteoid between mineralized lamellae. The method has been used effectively in staining new bone formation in hydroxyapatite implants and bone grafts. Old, unstained, plastic embedded undecalcified sections are stained as well as fresh sections after removal of the coverslip. This stain also promises to be valuable in the study of different metabolic bone diseases from the point of view of remodeling, histomorphometry, and pathology.

  3. Tracking Circadian Rhythms of Bone Mineral Deposition in Murine Calvarial Organ Cultures

    PubMed Central

    McElderry, John-David P.; Zhao, Guisheng; Khmaladze, Alexander; Wilson, Christopher G.; Franceschi, Renny T.; Morris, Michael D.

    2013-01-01

    Osteoblasts, which orchestrate the deposition of small apatite crystals through the expression of nucleating proteins, have been shown to also express clock genes associated with the circadian signaling pathway. We hypothesized that protein-mediated bone mineralization may be linked to circadian oscillator mechanisms functioning in peripheral bone tissue. In this study, Per1 expression in ex vivo neonatal murine calvaria organ cultures was monitored for 6 days using a Per1-luciferase transgene as a bioluminescent indicator of clock function. Fluctuations in Per1 expression had a period of 25±4 hours (n=14) with early expression at CT09:59±03:37 (circadian time). We also established the kinetics of mineral deposition in developing bone by using non-invasive Raman microscopy to track mineral accumulation in calvarial tissue. The content and quality of newly deposited mineral was continually examined at the interparietal bone/fontanel boundary for a period of 6 days with 1 hour temporal resolution. Using this approach, mineralization over time exhibited bursts of mineral deposition followed by little or no deposition, which was recurrent with a periodicity of 26.8±9.6 hours. As many as 6 near-daily mineralization events were observed in the calvaria before deposition ceased. Earliest mineralization events occurred at CT16:51±03:45, which is 6 hours behind Per1 expression. These findings are consistent with the hypothesis that mineralization in developing bone tissue is regulated by a local circadian oscillator mechanism. PMID:23505073

  4. Interleukin 1 beta, hand and foot bone mineral content and the development of joint erosions in rheumatoid arthritis.

    PubMed Central

    North, J; Situnayake, R D; Tikly, M; Cremona, A; Nicoll, J; Kumararatne, D S; Nuki, G

    1994-01-01

    OBJECTIVE--To assess the relationship between plasma levels of the cytokine interleukin-1 beta (IL-1 beta) and the progression of rheumatoid arthritis (RA). METHODS--Two subgroups of patients, one with persistently raised ESR (>/= 50 mm/hour, n = 16, group A) and one with persistently low ESR (bone mineral content measured by single photon absorptiometry and radiographic score of joint damage was measured over 12 months, together with plasma IL-1 beta and erythrocyte sedimentation rate. RESULTS--Significant progression of joint damage occurred in both subgroups over one year (p < 0.0001, paired t test) though progression was significantly less in the subgroup with low ESR (p < 0.05, ANOVA). Hand and foot bone mineral content decreased by almost 10% in the subgroup with raised ESR (p < 0.005, paired t test). Stepwise linear regression analysis revealed significant independent relationships between radiographic progression over one year and plasma IL-1 beta and ESR (multiple R 0.674, F = 11.64, p < 0.0002). No such relationships were observed for changes in bone mineral content parameters. CONCLUSIONS--Plasma IL-1 beta levels correlate weakly with progression of joint damage though not with loss of peripheral bone density in RA. A significant reduction in peripheral bone mineral content occurs over one year in patients with active RA with persistently raised ESR. PMID:7944642

  5. Application of XRF to measure strontium in human bone in vivo

    SciTech Connect

    Wielopolski, L.; Vartsky, D.; Yasumura, S.; Cohn, S.H.

    1982-01-01

    As a basis for better understanding the role that Sr fulfills in human body, it is desirable to measure directly the main Sr store in human body. Although strontium is omnipresent in human tissues, 99% is stored inthe mineral portion of the bone. In the present study x-ray fluorescence (XRF) was applied to measure the strontium content of the tibial shaft in vivo. The feasibility studies showed that normal levels of stable strontium in the bone can be measured successfully.

  6. Equilibrium-dependent bisphosphonate interaction with crystalline bone mineral explains the pharmacokinetics and osteonecrosis of the jaw in rats

    PubMed Central

    Hokugo, Akishige; Sun, Shuting; Park, Sil; McKenna, Charles E.; Nishimura, Ichiro

    2012-01-01

    Bisphosphonates (BPs) are chemically stable analogs of pyrophosphate exhibiting strong affinity to bone and have been used for the treatment of diseases characterized by excessive bone resorption. Contrary to the widely accepted BP accumulation model in bone after repeated applications, we report here that an equilibrium-dependent BP-crystalline bone mineral interaction may better explain BP bio-distribution and anti-catabolic bone remodeling and may be relevant to the appearance of osteonecrosis of the jaw (ONJ) in rats. Fluorescent-labeled BP analogs were synthesized and used to evaluate the mode of bone adsorption. After fluorescent-labeled BP adsorbed on crystalline calcium phosphates in vitro, subsequent BP application replaced the previously absorbed BP depending on the dose and the relative binding affinity to hydroxyapatite. The in vivo intravenous zoledronate (ZOL) injection of repeated fractional doses resulted in lower serum CTX and TRAP5b measurements than a single bolus injection in spite of the equivalent cumulative dose. Repeated injections resulted in the distribution of fluorescent-labeled BP on the large area of bone surfaces; whereas the single bolus injection gave rise to the intense BP bio-distribution at selected bone sites such as the alveolar process of jawbones. Necrotic maxillary alveolar bone was predominantly observed in vitamin D deficiency rats treated with bolus ZOL injection. The palatal necrotic bone was characteristically sequestrated by the fistulation of hyperplastic oral epithelium, suggesting the initial development of ONJ-like lesions in rats. Our results suggest that equilibrium-dependent BP-bone interaction may, in part, determine the effectiveness and influence side effects of long-term and repeated applications of BPs. PMID:23219943

  7. Can acetazolamide be used to treat diseases involving increased bone mineral density?

    PubMed Central

    González-Rodríguez, Juan David; Luis-Yanes, María Isabel; Inglés-Torres, Esther; Arango-Sancho, Pedro; Cabrera-Sevilla, José Eugenio; Duque-Fernández, María Rosario; Gil-Sánchez, Salvador; García-Nieto, Víctor Manuel

    2016-01-01

    Summary Sclerosing bone dysplasias are a series of clinically and genetically heterogeneous diseases characterized by functional failure of the osteoclasts in bone resorption, leading to an excessive amount of bone mineral density (BMD) which could have serious clinical consequences. We treated three children affected with seriously high levels of BMD with acetazolamide, with the intention of inducing metabolic acidosis, thus increasing bone resorption and reducing BMD. All our patients tolerated and followed the treatment well and the clinical response was satisfactory in all cases. PMID:27904825

  8. Decreased Bone Volume and Bone Mineral Density in the Tibial Trabecular Bone Is Associated with Per2 Gene by 405 nm Laser Stimulation

    PubMed Central

    Yoo, Yeong-Min; Lee, Myung-Han; Park, Ji Hyung; Seo, Dong-Hyun; Lee, Sangyeob; Jung, Byungjo; Kim, Han Sung; Bae, Kiho

    2015-01-01

    Low-level laser therapy/treatment (LLLT) using a minimally invasive laser needle system (MILNS) might enhance bone formation and suppress bone resorption. In this study, the use of 405 nm LLLT led to decreases in bone volume and bone mineral density (BMD) of tibial trabecular bone in wild-type (WT) and Per2 knockout (KO) mice. Bone volume and bone mineral density of tibial trabecular bone was decreased by 405 nm LLLT in Per2 KO compared to WT mice at two and four weeks. To determine the reduction in tibial bone, mRNA expressions of alkaline phosphatase (ALP) and Per2 were investigated at four weeks after 405 nm laser stimulation using MILNS. ALP gene expression was significantly reduced in the LLLT-stimulated right tibial bone of WT and Per2 KO mice compared to the non-irradiated left tibia (p < 0.001). Per2 mRNA expression in WT mice was significantly reduced in the LLLT-stimulated right tibial bone compared to the non-irradiated left tibia (p < 0.001). To identify the decrease in tibial bone mediated by the Per2 gene, levels of runt-related transcription factor 2 (Runx2) and ALP mRNAs were determined in non-irradiated WT and Per2 KO mice. These results demonstrated significant downregulation of Runx2 and ALP mRNA levels in Per2 KO mice (p < 0.001). Therefore, the reduction in tibial trabecular bone resulting from 405 nm LLLT using MILNS might be associated with Per2 gene expression. PMID:26580614

  9. 31P NMR Relaxation of Cortical Bone Mineral at Multiple Magnetic Field Strengths and Levels of Demineralization

    PubMed Central

    Seifert, Alan C.; Wright, Alexander C.; Wehrli, Suzanne L.; Ong, Henry H.; Li, Cheng; Wehrli, Felix W.

    2013-01-01

    Purpose Recent work has shown that solid-state 1H and 31P MRI can provide detailed insight into bone matrix and mineral properties, thereby potentially enabling differentiation of osteoporosis from osteomalacia. However, 31P MRI of bone mineral is hampered by unfavorable relaxation properties. Hence, accurate knowledge of these properties is critical to optimizing MRI of bone phosphorus. Methods In this work, 31P MRI signal-to-noise ratio (SNR) was predicted on the basis of T1 and T2* (effective transverse relaxation time) measured in lamb bone at six field strengths (1.5 – 11.7 T) and subsequently verified by 3-D ultra-short echo-time and zero echo-time imaging. Further, T1 was measured in deuterium-exchanged bone and partially demineralized bone. Results 31P T2* was found to decrease from 220.3 ± 4.3 μs to 98.0 ± 1.4 μs from 1.5 to 11.7 T, and T1 to increase from 12.8 ± 0.5 s to 97.3 ± 6.4 s. Deuteron substitution of exchangeable water showed that 76% of the 31P longitudinal relaxation rate is due to 1H-31P dipolar interactions. Lastly, hypomineralization was found to decrease T1, which may have implications for 31P MRI based mineralization density quantification. Conclusion Despite the steep decrease in the T2*/T1 ratio, SNR should increase with field strength as Bo0.4 for sample-dominated noise and as Bo1.1 for coil-dominated noise. This was confirmed by imaging experiments. PMID:23505120

  10. Random field assessment of inhomogeneous bone mineral density from DXA scans can enhance the differentiation between postmenopausal women with and without hip fractures.

    PubMed

    Dong, Xuanliang Neil; Pinninti, Rajeshwar; Lowe, Timothy; Cussen, Patricia; Ballard, Joyce E; Di Paolo, David; Shirvaikar, Mukul

    2015-04-13

    Bone mineral density (BMD) measurements from Dual-energy X-ray Absorptiometry (DXA) alone cannot account for all factors associated with the risk of hip fractures. For example, the inhomogeneity of bone mineral density in the hip region also contributes to bone strength. In the stochastic assessment of bone inhomogeneity, the BMD map in the hip region is considered as a random field and stochastic predictors can be calculated by fitting a theoretical model onto the experimental variogram of the BMD map. The objective of this study was to compare the ability of bone mineral density and stochastic assessment of inhomogeneous distribution of bone mineral density in predicting hip fractures for postmenopausal women. DXA scans in the hip region were obtained from postmenopausal women with hip fractures (N=47, Age: 71.3±11.4 years) and without hip fractures (N=45, Age: 66.7±11.4 years). Comparison of BMD measurements and stochastic predictors in assessing bone fragility was based on the area under the receiver operating characteristic curves (AUC) from logistic regression analyses. Although stochastic predictors offered higher accuracy (AUC=0.675) in predicting the risk of hip fractures than BMD measurements (AUC=0.625), this difference was not statistically significant (p=0.548). Nevertheless, the combination of stochastic predictors and BMD measurements had significantly (p=0.039) higher prediction accuracy (AUC=0.748) than BMD measurements alone. This study demonstrates that stochastic assessment of bone mineral distribution from DXA scans can serve as a valuable tool in enhancing the prediction of hip fractures for postmenopausal women in addition to BMD measurements.

  11. Magnesium intake mediates the association between bone mineral density and lean soft tissue in elite swimmers.

    PubMed

    Matias, Catarina N; Santos, Diana A; Monteiro, Cristina P; Vasco, Ana M; Baptista, Fátima; Sardinha, Luís B; Laires, Maria J; Silva, Analiza M

    2012-01-01

    Magnesium (Mg) deficiency has been associated with bone disorders. Physical activity is also crucial for bone mineralization. Bone mass loss has been observed to be accelerated in subjects with low Mg intake. We aim to understand if Mg intake mediates the association between bone mineral density (BMD) and lean soft tissue (LST) in elite swimmers. Seventeen elite swimmers (eight males; nine females) were evaluated. Bone mineral content, BMD, LST, and fat mass were assessed using dual energy X-ray absorptiometry. Energy and nutrient intake were assessed during a seven-day period and analyzed with Food Processor SQL. Males presented lower values than the normative data for BMD. Mg, phosphorus (P) and vitamin D intake were significantly lower than the recommended daily allowance. A linear regression model demonstrated a significant association between LST and BMD. When Mg intake was included, we observed that this was a significant, independent predictor of BMD, with a significant increase of 24% in the R(2) of the initial predictive model. When adjusted for energy, vitamin D, calcium, and P intake, Mg remained a significant predictor of BMD. In conclusion, young athletes engaged in low impact sports, should pay special attention to Mg intake, given its potential role in bone mineral mass acquisition during growth.

  12. The Kidney-Vascular-Bone Axis in the Chronic Kidney Disease-Mineral Bone Disorder

    PubMed Central

    Seifert, Michael E.; Hruska, Keith A.

    2015-01-01

    The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well, as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease-mineral bone disorder (CKD-MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This Overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy. PMID:26356179

  13. The Kidney-Vascular-Bone Axis in the Chronic Kidney Disease-Mineral Bone Disorder.

    PubMed

    Seifert, Michael E; Hruska, Keith A

    2016-03-01

    The last 25 years have been characterized by dramatic improvements in short-term patient and allograft survival after kidney transplantation. Long-term patient and allograft survival remains limited by cardiovascular disease and chronic allograft injury, among other factors. Cardiovascular disease remains a significant contributor to mortality in native chronic kidney disease as well as cardiovascular mortality in chronic kidney disease more than doubles that of the general population. The chronic kidney disease (CKD)-mineral bone disorder (MBD) is a syndrome recently coined to embody the biochemical, skeletal, and cardiovascular pathophysiology that results from disrupting the complex systems biology between the kidney, skeleton, and cardiovascular system in native and transplant kidney disease. The CKD-MBD is a unique kidney disease-specific syndrome containing novel cardiovascular risk factors, with an impact reaching far beyond traditional notions of renal osteodystrophy and hyperparathyroidism. This overview reviews current knowledge of the pathophysiology of the CKD-MBD, including emerging concepts surrounding the importance of circulating pathogenic factors released from the injured kidney that directly cause cardiovascular disease in native and transplant chronic kidney disease, with potential application to mechanisms of chronic allograft injury and vasculopathy.

  14. Do metabolic syndrome and its components have an impact on bone mineral density in adolescents?

    PubMed

    da Silva, Valéria Nóbrega; Fiorelli, Luciana Nunes Mosca; da Silva, Carla Cristiane; Kurokawa, Cilmery Suemi; Goldberg, Tamara Beres Lederer

    2017-01-01

    In recent years, there has been growing concern about the occurrence of metabolic syndrome (MetS) at an early age and its effects on bone mass in adolescents. Adolescence is considered a critical period for bone mass gain. Impaired bone acquisition during this phase can lead to "suboptimal" peak bone mass and increase the risk of osteopenia/osteoporosis and fractures in old age. The objective of this review was to perform a critical analysis of articles that specifically focus on this age group, evaluating the influence of MetS and its components on bone mineral density in adolescents. A possible relationship between this syndrome and bone mass has been demonstrated, but the number of studies addressing this topic in adolescents is small. Despite the scarcity of evidence, the results of those studies show that Metabolic Syndrome is negatively correlated with bone mass and also that some components of MetS are negatively correlated with bone mineral density in adolescents. However, the associations between MetS and bone mass development need to be further explored in the age group corresponding to adolescence. Further good-quality studies are necessary to complement the understanding of this relationship.

  15. Triceps Skinfold Thickness Is Associated With Lumbar Bone Mineral Density in Peritoneal Dialysis Patients.

    PubMed

    Lin, Yu-Li; Lai, Yu-Hsien; Wang, Chih-Hsien; Kuo, Chiu-Huang; Liou, Hung-Hsiang; Hsu, Bang-Gee

    2017-02-01

    Anthropometric measurements, including body mass index (BMI), body weight and total fat mass are associated with the bone mineral density (BMD) in the general population. Compared to that in the general population, BMD was lower in dialysis patients. However, the association between anthropometric measurements and BMD is not well-established among peritoneal dialysis (PD) patients. To study this, we conducted a cross-sectional study in 48 chronic PD patients. Anthropometric parameters, biochemical data, and BMD measured by dual energy X-ray absorptiometry in lumbar vertebrae (L2-L4) were collected. Among these PD patients, eight patients (16.7%) had osteoporosis and 22 patients (45.8%) osteopenia, while 18 patients were normal. Older age, decreased height, lower body weight, BMI, triceps skinfold thickness (TSF), mid-arm fat area (MAFA), and higher adiponectin levels were observed in our patients with lower lumbar T-scores. Height, body weight, waist circumference, BMI, body fat mass, TSF, mid-arm circumference, MAFA, and serum phosphorus levels were positively, while age, adiponectin levels were negatively correlated with lumbar BMD levels. According to our multivariate forward stepwise linear regression analysis, TSF (R(2) change = 0.080, P = 0.017) and body weight (R(2) change = 0.333, P = 0.002) were both correlated with low lumbar BMD. In conclusion, either TSF or body weight in our chronic PD patients was proved to be an independent predictor for osteolytic bone lesions.

  16. Chemistry of bone mineral, based on the hypermineralized rostrum of the beaked whale Mesoplodon densirostris

    PubMed Central

    Li, Zhen

    2014-01-01

    Carbonate-substituted hydroxylapatite is the inorganic component in bone. The nanometer size of bone crystallites and their interweaving with subequal volumes of collagen fibrils make the chemical analysis of the bone mineral extremely difficult. The few chemical analyses that are available commonly were made on ashed bone, which, in addition to mineral, also includes chemical residues of collagen. For the present study, we chose the rostrum of the whale Mesoplodon densirostris. Its mineral content of up to 96 wt% makes it an ideal material for pursuing the chemistry of bioapatite within bone. Both bulk (X-ray fluorescence, thermogravimetry, and carbon analysis) and point analyses and element mapping (electron microprobe) were applied to this densest of bone materials. Its bioapatite has an average carbonate content of ~8 wt% and an average Ca/P atomic ratio of 1.7. The rostrum shows extremely low-concentration trace elements (Al, Si, Fe, Ti and Sr) and some minor elements (K and Cl) as in typical bone materials. Homogeneity of elemental distribution is demonstrated in typical mineral-dominated areas within the rostrum sections except around a few vascular holes and vessels. The very good correlation between electron microprobe point analyses and the XRF bulk analyses of the rostrum indicate the latter to be a useful chemical model of bone mineral. The bulk analysis shows that the bioapatite in the rostrum has an average composition of (Ca8.40Mg0.20Na0.54)[(PO4)4.87(CO3)1.13] (OH)0.87. PMID:25484370

  17. Correlations between indentation modulus and mineral density in bone-fracture calluses

    PubMed Central

    Leong, Pui L.; Morgan, Elise F.

    2009-01-01

    The mechanical properties of a healing bone fracture depend not only on the geometry of the fracture callus but also on the material properties of the callus tissues. Despite the biomechanical importance of callus tissues in restoring mechanical integrity to the injured bone, little is known about the material properties of these tissues and whether these properties can be estimated non-invasively. This study used nanoindentation to quantify the spatial variations in indentation modulus throughout the fracture callus and correlated the measurements of modulus with measurements of tissue mineral density (TMD) obtained from images from micro-computed tomography (µCT). Fracture calluses were harvested from rats 24 days following creation of a full-thickness, transverse osteotomy in the femoral mid-diaphysis. Calluses were imaged using µCT, and the average TMD and the median grayvalue (X-ray attenuation) of five, pre-defined volumes of interest (VOIs) in each callus were computed. Nanoindentation was then performed at multiple, regularly spaced locations across 150 µm-thick, sagittal sections of the calluses. The indentation modulus ranged from 0.51 to 1680 MPa throughout the callus, with the highest moduli in the center of the fracture gap and the lowest in the periphery of the gap (P < 0.05). TMD was also highest in the center of the gap (P < 0.05). An increasing trend in both modulus and TMD was observed in the regions of the callus adjacent to the periosteal surfaces of the cortex. While no correlation was found between the average indentation modulus in a given VOI and the median grayvalue of that VOI, the average indentation modulus and the average TMD were positively correlated (R = 0.70, P < 0.05). Together, these findings establish the spatial heterogeneity in the mechanical behavior of tissues in fracture calluses and indicate that the indentation modulus of these tissues can be estimated by non-invasive measurements of tissue mineralization. PMID:21669846

  18. The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density.

    PubMed

    Butler, Joseph S; Murray, David W; Hurson, Conor J; O'Brien, Julie; Doran, Peter P; O'Byrne, John M

    2011-03-01

    The Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in regulating bone development and remodeling, with aberrations in signaling resulting in disturbances in bone mass. The objectives of our study were to correlate serum Dkk1 expression with bone mineral density (BMD) and assess the potential role of Dkk1 as a serological marker of bone mass. Serum was collected from a cohort of patients (n = 36), 18 patients with a reduced BMD and 18 control patients. Serum Dkk1 expression as quantified by ELISA was correlated with lumbar and femoral t- and z-scores. Serum Dkk1 concentration in the osteoporosis group was significantly higher than control group (941 ± 116 vs. 558 ± 47 pg/ml, p < 0.01). Serum Dkk1 expression was highly correlated with bone mass variables with inverse associations found between serum Dkk1 expression and lumbar t-score (r = -0.34, p = 0.00433), lumbar z-score (r = -0.22, p = 0.1907), femur t-score (r = -0.42, p = 0.0101), and femur z-score (r = -0.43, p = 0.0089). Our data further emphasizes the pivotal role played by Wnt/β-catenin signaling in bone mass regulation. Dkk1, a powerful antagonist of canonical Wnt signaling, may have a role to play as a serological marker for disorders of bone mass, warranting further evaluation.

  19. Effect of Bone Mineral Density on Rotator Cuff Tear: An Osteoporotic Rabbit Model

    PubMed Central

    Chen, Xiaobin; Giambini, Hugo; Ben-Abraham, Ephraim; An, Kai-Nan; Nassr, Ahmad; Zhao, Chunfeng

    2015-01-01

    Introduction An increased bone mineral density (BMD) in the proximity to tendon insertion can improve rotator cuff repair and healing. However, how a decrease of BMD in the humeral head affects the biomechanical properties of the rotator cuff tendon is still unclear. Previous studies have demonstrated ovariectomy in animals to lead to osteoporosis and decreased BMD, and Teriparatide (PTH) administration to improve BMD and strength of bone. This study aimed to explore the correlation between humeral head BMD and infraspinatus (ISP) tendon insertion strength, and if an increase in bone quantity of the humeral head can improve the strength of the rotator cuff. Materials and Methods Eighteen New England white rabbits were divided into the 3 groups: Control, Ovariectomy-Saline (OVX-Saline), and Ovariectomy-PTH (OVX-PTH). The OVX-Saline group and the OVX-PTH were administered daily saline and Teriparatide injections for 8 weeks starting at 17 weeks of OVX. BMD of the humeral head was measured, the ISP tendon failure load was tested and the failure stress was calculated. One specimen from each group was used for histological analysis. Linear regression analysis was used to derive equations for the BMD and failure stress. Results Significant differences were observed in the measured humeral head BMD of the Control and OVX-PTH groups compared to the OVX-Saline group (P = 0.0004 and P = 0.0024, respectively). No significant difference was found in failure stress among the three groups, but an expected trend with the control group and OVX-PTH group presenting higher failure strength compared to the OVX-Saline group. BMD at the humeral head showed a positive linear correlation with stress (r2 = 0.54). Histology results showed the superiority in OVX-PTH group ISP enthesis compared to the OVX-Saline group. Conclusion Bone loss of the humeral head leads to decreased tendon/bone insertion strength of the infraspinatus tendon enthesis. Teriparatide administration can increase bone

  20. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils

    PubMed Central

    Georgiadis, Marios; Müller, Ralph; Schneider, Philipp

    2016-01-01

    Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils. PMID:27335222

  1. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils.

    PubMed

    Georgiadis, Marios; Müller, Ralph; Schneider, Philipp

    2016-06-01

    Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.

  2. High dietary intake of retinol leads to bone marrow hypoxia and diaphyseal endosteal mineralization in rats.

    PubMed

    Lind, Thomas; Lind, P Monica; Jacobson, Annica; Hu, Lijuan; Sundqvist, Anders; Risteli, Juha; Yebra-Rodriguez, Africa; Larsson, Sune; Rodriguez-Navarro, Alejandro; Andersson, Göran; Melhus, Håkan

    2011-03-01

    Vitamin A (retinol) is the only molecule known to induce spontaneous fractures in laboratory animals and we have identified retinol as a risk factor for fracture in humans. Since subsequent observational studies in humans and old animal data both show that high retinol intake appears to only have small effects on bone mineral density (BMD) we undertook a mechanistic study of how excess retinol reduces bone diameter while leaving BMD essentially unaffected. We fed growing rats high doses of retinol for only 1 week. Bone analysis involved antibody-based methods, histology, pQCT, biomechanics and bone compartment-specific PCR together with Fourier Transform Infrared Spectroscopy of bone mineral. Excess dietary retinol induced weakening of bones with little apparent effect on BMD. Periosteal osteoclasts increased but unexpectedly endosteal osteoclasts disappeared and there was a reduction of osteoclastic serum markers. There was also a lack of capillary erythrocytes, endothelial cells and serum retinol transport protein in the endosteal/marrow compartment. A further indication of reduced endosteal/marrow blood flow was the increased expression of hypoxia-associated genes. Also, in contrast to the inhibitory effects in vitro, the marrow of retinol-treated rats showed increased expression of osteogenic genes. Finally, we show that hypervitaminotic bones have a higher degree of mineralization, which is in line with biomechanical data of preserved stiffness in spite of thinner bones. Together these novel findings suggest that a rapid primary effect of excess retinol on bone tissue is the impairment of endosteal/marrow blood flow leading to hypoxia and pathological endosteal mineralization.

  3. THE MEASUREMENT OF BONE QUALITY USING GRAY LEVEL CO-OCCURRENCE MATRIX TEXTURAL FEATURES.

    PubMed

    Shirvaikar, Mukul; Huang, Ning; Dong, Xuanliang Neil

    2016-10-01

    In this paper, statistical methods for the estimation of bone quality to predict the risk of fracture are reported. Bone mineral density and bone architecture properties are the main contributors of bone quality. Dual-energy X-ray Absorptiometry (DXA) is the traditional clinical measurement technique for bone mineral density, but does not include architectural information to enhance the prediction of bone fragility. Other modalities are not practical due to cost and access considerations. This study investigates statistical parameters based on the Gray Level Co-occurrence Matrix (GLCM) extracted from two-dimensional projection images and explores links with architectural properties and bone mechanics. Data analysis was conducted on Micro-CT images of 13 trabecular bones (with an in-plane spatial resolution of about 50μm). Ground truth data for bone volume fraction (BV/TV), bone strength and modulus were available based on complex 3D analysis and mechanical tests. Correlation between the statistical parameters and biomechanical test results was studied using regression analysis. The results showed Cluster-Shade was strongly correlated with the microarchitecture of the trabecular bone and related to mechanical properties. Once the principle thesis of utilizing second-order statistics is established, it can be extended to other modalities, providing cost and convenience advantages for patients and doctors.

  4. [The influence of calcium and phosphorus intake on bone mineral density in young women].

    PubMed

    Basabe Tuero, Beatriz; Mena Valverde, María Carmen; Faci Vega, Marta; Aparicio Vizuete, Aranzazu; López Sobaler, Ana María; Ortega Anta, Rosa María

    2004-06-01

    The threat of osteoporosis in later life means that the bone mass women achieve during their youth is important. Eighty seven women aged 18-35 y from the Madrid region were studied to determine the relationship between their calcium, phosphorus and milk product intakes and bone mineral density (BMD). Intakes of these items were moniroed using a three day food intake record. BMD was measured by double photonic densitometry of the lumbar region, hip and right forearm. Mean calcium intake (802.1+/-258.7 mg/day) was less than that recommended for 45% of women. A linear, positive correlation was seen between calcium intake and BMD at the hip (r=0.23) and greater trochanter (r=0.24) (p<0.05). Women whose calcium intake was >1000 mg/day had greater hip BMDs than those whose intake was below this level (0.97+/-0.11 g/cm2 compared to 0.90+/-0.10 g/cm2). Similar results were seen for the femur head and greater trochanter in subjects whose Ca/P ratio was >0.74 (50th percentile). In addition, an intake of more than two rations of milk per day was optimum for achieving adequate bone mass in different areas of the hip. These results show that greater calcium consumption and a Ca/P ratio of >0.74 are associated with better BMD values in young women, and that milk is the lactic product best associated with good bone health.

  5. Assessment of trabecular bone mineral density using quantitative computed tomography in normal cats.

    PubMed

    Cheon, Haengbok; Choi, Wooshin; Lee, Youngjae; Lee, Donghoon; Kim, Juhyung; Kang, Ji-Houn; Na, Kijeong; Chang, Jinhwa; Chang, Dongwoo

    2012-11-01

    The aim of this study was to assess age-related changes and anatomic variation in trabecular bone mineral density (tBMD) using quantitative computed tomography (QCT) in normal cats. Seventeen normal cats were included in this study and divided into the following 3 age groups:<6 months (n=4), 2-5 years (n=10) and >6 years (n=3). A computed tomographic scan of each vertebra from the 12th thoracic to the 7th lumbar spine and the pelvis was performed with a bone-density phantom (50, 100 and 150 mg/cm(3), calcium hydroxyapatite, CIRS phantom(®)). On the central transverse section, the elliptical region of interest (ROI) was drawn to measure the mean Hounsfield unit (HU) value. Those values were converted to equivalent tBMD (mg/cm(3)) by use of the bone-density phantom and linear regression analysis (r(2) >0.95). The mean tBMD value of the thoracic vertebrae (369.4 ± 31.8 mg/cm(3)) was significantly higher than that of the lumbar vertebrae (285 ± 58.1 mg/cm(3)). The maximum tBMD occurred at the T12, T13 and L1 levels in all age groups. There was a statistically significant difference in the mean tBMD value among the 3 age groups at the T12 (P<0.001), T13 (P<0.001) and L4 levels (P=0.013), respectively. The present study suggests that age-related changes and anatomic variation in tBMD values should be considered when assessing tBMD using QCT in cats with bone disorders.

  6. Thermal Conductivity Measurement of Synthesized Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Asimow, P. D.; Luo, S.; Mosenfelder, J. L.; Liu, W.; Staneff, G. D.; Ahrens, T. J.; Chen, G.

    2002-12-01

    Direct thermal conductivity (k) measurement of mantle minerals is crucial to constrain the thermal profile of the Earth as well as geodynamic studies of the mantle (e.g., to determine the Rayleigh number). We have embarked on systematic multi-anvil syntheses of dense polycrystalline specimens of mantle phases of adequate size and zero porosity for precise thermal conductivity measurements by the 3ω method (\\textit{Cahill and Pohl, Phys. Rev. B, 1987}) under elevated temperatures (T). Coesite and stishovite (see \\textit{Luo et al., GRL, 2002}) as well as majorite and wadsleyite have been synthesized; ringwoodite and perovskite are scheduled. Preliminary thermal conductivity measurements at ambient pressure on coesite (120 - 300 K, 9.53 Wm-1K-1 at 300 K) are consistent with prior room temperature data (\\textit{Yukutake & Shimada, PEPI, 1978}), while our stishovite data at 300 K appear to be low (1.96 Wm-1K-1). Efforts are being made to extend the measurement to higher temperatures (e.g., above Debye temperature Θ D), thus allowing determination of k(T) relationship (say, k~ T-n); success will depend on the decomposition kinetics of these metastable phases. The pressure dependence of k of these synthesized samples can also be measured (\\textit{e.g., Osako et al., HPMPS-6, 2002; Xu et al., EOS, 2001}). Recent thermal conductivity measurement on LiF and Al2O_3 from shock wave loading (\\textit{Holland & Ahrens, 1998}) is consistent with the modeling on MgO and Al2O_3 (\\textit{Manga & Jeanloz, JGR, 1997}) with classical theories. Thus, k values at modest pressures and T (say, above Θ D) would allow extrapolation of k to appropriate mantle conditions.

  7. Clodronate stimulates bone formation as well as inhibits bone resorption and increases bone mineral density in rats fed a low-calcium diet.

    PubMed

    Horie, Daisuke; Takahashi, Mariko; Aoki, Kazuhiro; Ohya, Keiichi

    2003-03-01

    The pharmacological actions of bisphosphonates are due to the inhibitory effects on bone resorption, but little is known about the bisphosphonate action on bone formation. The purpose of this study is to elucidate the actions of bisphosphonates, clodronate, on bone formation in the experimental in vivo and in vitro rat models. The bone mineral density (BMD) was decreased in the rats fed a low-calcium diet (0.05% Ca) for 6 days compared with the rats fed a normal-calcium diet (0.5% Ca). The decrease in BMD was suppressed in the 2 mgP/day and the 4 mgP/day clodronate administrations. Bone formation rate (BFR) in rats fed a low-calcium diet was significantly increased compared with the rats fed a normal-calcium diet, and the 2 mgP clodronate administration further increased the BFR. In the cultured rat bone marrow cells, the area of mineralized nodules was significantly increased at 10(-7) and 10(-6) M clodronate, but high concentration of clodronate decreased the area. From these results, it is concluded that clodronate stimulates bone formation when the drug was given to a rat with a relatively lower dose that is sufficient to prevent bone resorption and that this effect may be due to the stimulatory effect on the differentiation process of osteoblasts.

  8. Socket preservation using bovine bone mineral and collagen membrane: a randomized controlled clinical trial with histologic analysis.

    PubMed

    Cardaropoli, Daniele; Tamagnone, Lorenzo; Roffredo, Alessandro; Gaveglio, Lorena; Cardaropoli, Giuseppe

    2012-08-01

    After tooth extraction, varying amounts of bone resorption occur because of qualitative and quantitative changes at the edentulous site of the alveolar process. The aims of this randomized controlled clinical trial were (1) to compare the postextraction changes in residual ridge dimensions during spontaneous healing with those during socket preservation, (2) to analyze the histologic and histomorphometric aspects of the grafted sockets, and (3) to compare probing procket depth (PPD) and clinical attachment level (CAL) changes at teeth adjacent to extraction sites. Forty-eight teeth were extracted from 41 patients referred for extraction of 1 or more maxillary or mandibular premolars or molars. The edentulous sites were randomly assigned to the control (EXT, extraction alone) or experimental groups (SP, extraction and socket preservation). In the SP group, the sockets were filled with bovine bone mineral and covered with porcine collagen membrane. At baseline and after 4 months, PPD, gingival recession (REC), and CAL were measured at teeth adjacent to the edentulous sites. The changes in ridge dimensions from baseline to 4 months were assessed on dental casts. At 4 months, bone was harvested from the grafted areas in the SP group and the edentulous areas in the EXT group. PPD, REC, and CAL were comparable between groups. However, from baseline to 4 months, the SP group showed significantly less reduction in ridge width (1.04 ± 1.08 mm vs 4.48 ± 0.65 mm, P < .001) and height (0.46 ± 0.46 mm vs 1.54 ± 0.33 mm, P < .001). Histologically, the grafted sockets exhibited various stages of bone maturation and formation without inflammatory responses. No significant difference in the mineralized and nonmineralized fractions was noted between the groups. Socket preservation using bovine bone mineral and porcine collagen membrane considerably limits the amount of horizontal and vertical bone resorption when compared with extraction alone.

  9. Relationship of lean body mass with bone mass and bone mineral density in the general Korean population.

    PubMed

    Moon, Seong-Su

    2014-09-01

    We investigated association of lean body mass with bone mass (BM) and bone mineral density (BMD) according to gender and menopausal status in the general Korean population. Participants included 4,299 males and 5,226 females who were 20 years of age or older from the fourth and fifth Korea National Health and Nutritional Examination Surveys (2009-2010). Dual-energy X-ray absorptiometry was used for measurement of BMD and body composition. BMD was measured in the femur and lumbar spine. Appendicular skeletal muscle mass (ASM) was defined as the sum of the lean soft tissue masses for the arms and legs. Analysis was performed after categorizing participants into four groups (males <50 years, males ≥ 50 years, premenopausal females, and postmenopausal females). In males, the highest ASM was observed in the 20-29-year group and then showed a gradual decrease as age increased, and BM and BMD showed similar patterns of change, while in females, ASM, BMD, and BM reached the peak level in the 40-49-year group and then decreased. In multiple regression analysis, after adjusting for confounding factors, the results showed an independent association of ASM with an increase in BM and BMD (P < 0.05). After adjusting for confounding factors, total fat mass showed a significant association with BM (P < 0.05). These aforementioned relationships were commonly observed on both femur and lumbar spine in every group. Lean body mass showed an independent association with increased BM and BMD, regardless of gender, age in men, and menopausal status in women.

  10. Effect of Low Vitamin D on Volumetric Bone Mineral Density, Bone Microarchitecture, and Stiffness in Primary Hyperparathyroidism

    PubMed Central

    Nishiyama, Kyle K.; Zhou, Bin; Cong, Elaine; Wang, Ji; Lee, James A.; Kepley, Anna; Zhang, Chengchen; Guo, X. Edward; Silverberg, Shonni J.

    2016-01-01

    Context: Patients with 25-hydroxyvitamin D deficiency (25OHD <20 ng/ml) and primary hyperparathyroidism (PHPT) have more severe disease reflected by higher serum PTH levels compared to those with vitamin D levels in the insufficient (20–29 ng/ml) or replete range (≥30 ng/ml). Objective: To study the effect of low vitamin D in PHPT on volumetric bone mineral density (vBMD), bone microarchitecture, and bone strength. Design, Setting, and Participants: This is a cross-sectional analysis of 99 PHPT patients with and without 25OHD insufficiency and deficiency from a university hospital. Outcome Measures: Bone microarchitecture and strength were assessed with high-resolution peripheral quantitative computed tomography (HRpQCT), microfinite element analysis, and individual trabecula segmentation. Results: In this cohort, 25OHD levels were deficient in 18.1%, insufficient in 35.4% and replete in 46.5%. Those with lower 25OHD levels had higher PTH (P < .0001), were younger (P = .001) and tended to weigh more (P = .053). There were no age-, weight- and sex-adjusted between-group differences (<20 vs 20–29 vs ≥30 ng/ml) in any HRpQCT, microfinite element analysis, or individual trabecula segmentation indices. Because few participants had 25OHD below 20 ng/ml, we also compared those with 25OHD below 30 vs at least 30 ng/ml and found only a trend toward lower adjusted cortical vBMD (3.1%, P = .08) and higher cortical porosity (least squares mean ± SEM 7.5 ± 0.3 vs 6.6 ± 0.3%, P = .07) at the tibia but not the radius. Stiffness did not differ at either site. In multiple regression analysis, 25OHD accounted for only three of the 49.2% known variance in cortical vBMD; 25OHD was not significant in the model for cortical porosity at the tibia. Conclusion: Low 25OHD levels are associated with higher PTH levels in PHPT, but contrary to our hypothesis, these differences did not significantly affect vBMD or microarchitecture, nor did they result in lower stiffness. Low vitamin

  11. Vitamin D–Binding Protein Modifies the Vitamin D–Bone Mineral Density Relationship

    PubMed Central

    Powe, Camille E; Ricciardi, Catherine; Berg, Anders H; Erdenesanaa, Delger; Collerone, Gina; Ankers, Elizabeth; Wenger, Julia; Karumanchi, S Ananth; Thadhani, Ravi; Bhan, Ishir

    2011-01-01

    Studies examining the relationship between total circulating 25-hydroxyvitamin D [25(OH)D] levels and bone mineral density (BMD) have yielded mixed results. Vitamin D–binding protein (DBP), the major carrier protein for 25(OH)D, may alter the biologic activity of circulating vitamin D. We hypothesized that free and bioavailable 25(OH)D, calculated from total 25(OH)D, DBP, and serum albumin levels, would be more strongly associated with BMD than levels of total 25(OH)D. We measured total 25(OH)D, DBP, and serum albumin levels in 49 healthy young adults enrolled in the Metabolic Abnormalities in College-Aged Students (MACS) study. Lumbar spine BMD was measured in all subjects using dual-energy X-ray absorptiometry. Clinical, diet, and laboratory information also was gathered at this time. We determined free and bioavailable (free + albumin-bound) 25(OH)D using previously validated formulas and examined their associations with BMD. BMD was not associated with total 25(OH)D levels (r = 0.172, p = .236). In contrast, free and bioavailable 25(OH)D levels were positively correlated with BMD (r = 0.413, p = .003 for free, r = 0.441, p = .002 for bioavailable). Bioavailable 25(OH)D levels remained independently associated with BMD in multivariate regression models adjusting for age, sex, body mass index, and race (p = .03). It is concluded that free and bioavailable 25(OH)D are more strongly correlated with BMD than total 25(OH)D. These findings have important implications for vitamin D supplementation in vitamin D–deficient states. Future studies should continue to explore the relationship between free and bioavailable 25(OH)D and health outcomes. © 2011 American Society for Bone and Mineral Research. PMID:21416506

  12. Six months of disuse during hibernation does not increase intracortical porosity or decrease cortical bone geometry, strength, or mineralization in black bear (Ursus americanus) femurs.

    PubMed

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Bunnell, Kevin; Auger, Janene; Black, Hal L; Donahue, Seth W

    2009-07-22

    Disuse typically uncouples bone formation from resorption, leading to bone loss which compromises bone mechanical properties and increases the risk of bone fracture. Previous studies suggest that bears can prevent bone loss during long periods of disuse (hibernation), but small sample sizes have limited the conclusions that can be drawn regarding the effects of hibernation on bone structure and strength in bears. Here we quantified the effects of hibernation on structural, mineral, and mechanical properties of black bear (Ursus americanus) cortical bone by studying femurs from large groups of male and female bears (with wide age ranges) killed during pre-hibernation (fall) and post-hibernation (spring) periods. Bone properties that are affected by body mass (e.g. bone geometrical properties) tended to be larger in male compared to female bears. There were no differences (p>0.226) in bone structure, mineral content, or mechanical properties between fall and spring bears. Bone geometrical properties differed by less than 5% and bone mechanical properties differed by less than 10% between fall and spring bears. Porosity (fall: 5.5+/-2.2%; spring: 4.8+/-1.6%) and ash fraction (fall: 0.694+/-0.011; spring: 0.696+/-0.010) also showed no change (p>0.304) between seasons. Statistical power was high (>72%) for these analyses. Furthermore, bone geometrical properties and ash fraction (a measure of mineral content) increased with age and porosity decreased with age. These results support the idea that bears possess a biological mechanism to prevent disuse and age-related osteoporoses.

  13. The pathogenesis of infantile malignant osteopetrosis: bone mineral metabolism and complications in five infants.

    PubMed

    Reeves, J; Arnaud, S; Gordon, S; Subryan, B; Block, M; Huffer, W; Arnaud, C; Mundy, G; Haussler, M

    1981-01-01

    Bone mineral metabolism was studied in five infants aged 8 to 22 months with severe osteopetrosis. There were findings consistent with biochemical osteomalacia. These included hypocalcemia, hypophosphatemia, high serum acid phosphatase and alkaline phosphatase activity, high levels of serum parathyroid hormone, and high urinary cyclic AMP. Serum 1,25(OH)2 vitamin D3 level was high in the one patient tested. Radiographs in all infants revealed rachitic changes in the metaphyses. However, dense bones on radiographs, calcium balance studies, and radio-calcium absorption studies demonstrated markedly positive calcium balance. Iliac crest bone biopsies showed increased quantity of woven bone with abundant numbers of osteoclasts, excessive amounts of osteoid, myelofibrosis, and a decreased number of Howship's lacunae. The wide bands of unmineralized osteoid did not take up tetracycline. In vitro bone resorbing activity due to osteoclast activating factor from cultured stimulated leukocytes was normal. Bone turnover however, was now as evidenced by low urinary hydroxyproline levels. We interpret these findings as indicating there is decreased bone remodeling and resorption in spite of increased humoral stimuli and osteoclasts. Since calcitonin levels were normal for age, the most likely cause of the impaired bone remodeling sequence was defective osteoclast function. We postulate that there may be a common genetic defect in phagocyte cells, including monocytes, neutrophils and osteoclasts, which accounts for the abnormalities of mineral metabolism and previously reported hematologic, neurologic, and infectious complications.

  14. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch

    PubMed Central

    Bogden, John D; Kemp, Francis W; Huang, Abigail E; Shapses, Sue A; Ambia-Sobhan, Hasina; Jagpal, Sugeet; Brown, Ian L; Birkett, Anne M

    2008-01-01

    Background Although there is considerable evidence for a loss of bone mass with weight loss, the few human studies on the relationship between weight cycling and bone mass or density have differing results. Further, very few studies assessed the role of dietary composition on bone mass during weight cycling. The primary objective of this study was to determine if a diet high in amylase-resistant starch (RS2), which has been shown to increase absorption and balance of dietary minerals, can prevent or reduce loss of bone mass during weight cycling. Methods Female Sprague-Dawley (SD) rats (n = 84, age = 20 weeks) were randomly assigned to one of 6 treatment groups with 14 rats per group using a 2 × 3 experimental design with 2 diets and 3 weight cycling protocols. Rats were fed calcium-deficient diets without RS2 (controls) or diets high in RS2 (18% by weight) throughout the 21-week study. The weight cycling protocols were weight maintenance/gain with no weight cycling, 1 round of weight cycling, or 2 rounds of weight cycling. After the rats were euthanized bone mineral density (BMD) and bone mineral content (BMC) of femur were measured by dual energy X-ray absorptiometry, and concentrations of calcium, copper, iron, magnesium, manganese, and zinc in femur and lumbar vertebrae were determined by atomic absorption spectrophotometry. Results Rats undergoing weight cycling had lower femur BMC (p < 0.05) and marginally lower BMD (p = 0.09) than rats not undergoing weight cycling. In comparison to controls, rats fed RS2 had higher femur BMD (p < 0.01) and BMC (p < 0.05), as well as higher values for BMD and BMC measured at the distal end (p < 0.001 and p < 0.01) and femoral neck (p < 0.01 and p < 0.05). Consistent with these findings, RS2-fed rats also had higher femur calcium (p < 0.05) and magnesium (p < 0.0001) concentrations. They also had higher lumbar vertebrae calcium (p < 0.05) and magnesium (p < 0.05) concentrations. Conclusion Weight cycling reduces bone mass. A

  15. Mathematical modeling of the effects of CK2.3 on mineralization in osteoporotic bone

    PubMed Central

    Lisberg, A; Ellis, R; Nicholson, K; Moku, P; Swarup, A; Dhurjati, P

    2017-01-01

    Osteoporosis is caused by decreased bone mineral density (BMD) and new treatments for this disease are desperately needed. Bone morphogenetic protein 2 (BMP2) is crucial for bone formation. The mimetic peptide CK2.3 acts downstream of BMP2 and increases BMD when injected systemically into the tail vein of mice. However, the most effective dosage needed to induce BMD in humans is unknown. We developed a mathematical model for CK2.3‐dependent bone mineralization. We used a physiologically based pharmacokinetic (PBPK) model to derive the CK2.3 concentration needed to increase BMD. Based on our results, the ideal dose of CK2.3 for a healthy individual to achieve the maximum increase of mineralization was about 409 µM injected in 500 µL volume, while dosage for osteoporosis patients was about 990 µM. This model showed that CK2.3 could increase the average area of bone mineralization in patients and in healthy adults. PMID:28181418

  16. Probabilistic Failure Analysis of Bone Using a Finite Element Model of Mineral-Collagen Composites

    PubMed Central

    Dong, X. Neil; Guda, Teja; Millwater, Harry R.; Wang, Xiaodu

    2009-01-01

    Microdamage accumulation is a major pathway for energy dissipation during the post-yield deformation of bone. In this study, a two-dimensional probabilistic finite element model of a mineral-collagen composite was developed to investigate the influence of the tissue and ultrastructural properties of bone on the evolution of microdamage from an initial defect in tension. The probabilistic failure analyses indicated that the microdamage progression would be along the plane of the initial defect when the debonding at mineral-collagen interfaces was either absent or limited in the vicinity of the defect. In this case, the formation of a linear microcrack would be facilitated. However, the microdamage progression would be scattered away from the initial defect plane if interfacial debonding takes place at a large scale. This would suggest the possible formation of diffuse damage. In addition to interfacial debonding, the sensitivity analyses indicated that the microdamage progression was also dependent on the other material and ultrastructural properties of bone. The intensity of stress concentration accompanied with microdamage progression was more sensitive to the elastic modulus of the mineral phase and the nonlinearity of the collagen phase, whereas the scattering of failure location was largely dependent on the mineral to collagen ratio and the nonlinearity of the collagen phase. The findings of this study may help understanding the post-yield behavior of bone at the ultrastructural level and shed light on the underlying mechanism of bone fractures. PMID:19058806

  17. The role of bone in CKD-mediated mineral and vascular disease.

    PubMed

    Khouzam, Nadine M; Wesseling-Perry, Katherine; Salusky, Isidro B

    2015-09-01

    Cardiovascular disease is the leading cause of death in pediatric patients with chronic kidney disease (CKD), and vascular calcifications start early in the course of CKD. Based on the growing body of evidence that alterations of bone and mineral metabolism and the therapies designed to treat the skeletal consequences of CKD are linked to cardiovascular calcifications, the Kidney Disease, Improving Global Outcomes (KDIGO) working group redefined renal osteodystrophy as a systemic disorder of mineral and bone metabolism due to CKD, and this newly defined disorder is now known as "chronic kidney disease-mineral bone disorder (CKD-MBD)". Elevated fibroblast growth factor 23 (FGF23), a bone-derived protein, is the first biochemical abnormality to be associated with CKD-MBD, and high FGF23 levels correlate with increased cardiovascular morbidity and mortality, suggesting that bone is central to both initiating and perpetuating the abnormal mineral metabolism and vascular disease in CKD. The current standard therapies for CKD-MBD affect FGF23 levels differently; non-calcium-based binders with or without concurrent use of dietary phosphate restriction reduce FGF23 levels, while calcium-based binders seem to either increase or have no effect on FGF23 levels. Active vitamin D sterols increase FGF23 levels, whereas therapy with calcimimetics decreases FGF23 levels. Thus, the appropriate therapy that will minimize the rise in FGF23 and prevent cardiovascular morbidity remains to be defined.

  18. Does 12 weeks of regular standing prevent loss of ankle mobility and bone mineral density in people with recent spinal cord injuries?

    PubMed

    Ben, Marsha; Harvey, Lisa; Denis, Sophie; Glinsky, Joanne; Goehl, Gerlinde; Chee, Shane; Herbert, Robert D

    2005-01-01

    The purpose of this study was to determine the effects of a 12-week standing program on ankle mobility and femur bone mineral density in patients with lower limb paralysis following recent spinal cord injury. An assessor-blinded within-subject randomised controlled trial was undertaken. Twenty patients with lower limb paralysis following a recent spinal cord injury were recruited. Subjects stood weight-bearing through one leg on a tilt-table for 30 minutes, three times each week for 12 weeks. By standing on one leg a large dorsiflexion stretch was applied to the ankle and an axial load was applied to the bones of the weight-bearing leg. Ankle mobility and femur bone mineral density of both legs were measured at the beginning and end of the study. Ankle mobility (range of motion) was measured with the application of a 17 Nm dorsiflexion torque. Femur bone mineral density was measured using dual energy X-ray absorptiometry (DEXA). The effect of standing was estimated from the difference between legs in mean change of ankle mobility and femur bone mineral density. The results indicated a mean treatment effect on ankle mobility of 4 degrees (95% CI 2 to 6 degrees) and on femur bone mineral density of 0.005 g/cm(2) (95% CI -0.015 to 0.025 g/cm(2)). Tilt-table standing for 30 minutes, three times per week for 12 weeks has a small effect on ankle mobility, and little or no effect on femur bone mineral density. It is unclear whether clinicians and patients would consider such effects to be clinically worthwhile.

  19. A 3-year physical activity intervention program increases the gain in bone mineral and bone width in prepubertal girls but not boys: the prospective copenhagen school child interventions study (CoSCIS).

    PubMed

    Hasselstrøm, H A; Karlsson, M K; Hansen, S E; Grønfeldt, V; Froberg, K; Andersen, L B

    2008-10-01

    The aim of this study was to evaluate the effect of increasing the amount of time spent in physical education classes on bone mineral accrual and gain in bone size in prepubertal Danish children. A total of 135 boys and 108 girls, aged 6-8 years, were included in a school-based curriculum intervention program where the usual time spent in physical education classes was doubled to four classes (180 min) per week. The control group comprised age-matched children (62 boys and 76 girls) recruited from a separate community who completed the usual Danish school curriculum of physical activity (90 min/week). Dual-energy X-ray absorptiometry was used to evaluate bone mineral content (BMC; g), bone mineral density (g/cm(2)), and bone width at the calcaneus and distal forearm before and after 3 years of intervention. Anthropometrics and Tanner stages were evaluated on the same occasions. General physical activity was measured with an accelerometer worn for 4 days. In girls, the intervention group had a 12.5% increase (P = 0.04) in distal forearm BMC and a 13.2% increase (P = 0.005) in distal forearm scanned area compared with girls in the control group. No differences were found between the intervention and control groups in boys. Increasing the frequency of physical education classes for prepubertal children is associated with a higher accrual of bone mineral and higher gain in bone size after 3 years in girls but not in boys.

  20. Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders.

    PubMed

    Baroncelli, Giampiero I G L I; Federico, Giovanni; Bertelloni, Silvano; Sodini, Federica; De Terlizzi, Francesca; Cadossi, Ruggero; Saggese, Giuseppe

    2003-07-01

    Bone quality by quantitative ultrasound and fracture rate were assessed in 135 (64 males) children and adolescents aged 3-21 y with bone and mineral disorders such as chronic anticonvulsants or glucocorticoids treatment, juvenile rheumatoid arthritis, celiac disease, paucity of intrahepatic bile ducts, autoimmune hepatitis, genetic diseases, idiopathic juvenile osteoporosis, disuse osteoporosis, beta-thalassemia major, survivors of acute lymphoblastic leukemia, liver transplantation, calcium deficiency, and nutritional or X-linked hypophosphatemic rickets. Amplitude-dependent speed of sound through the distal end of the first phalangeal diaphysis of the last four fingers of the hand was measured by an ultrasound device. In the majority of patients cortical area to total area ratio by metacarpal radiogrammetry (n = 120) and lumbar bone mineral density (BMD) by dual-energy x-ray absorptiometry (n = 99) were also assessed. In patients with X-linked hypophosphatemic rickets radial BMD by single-photon absorptiometry instead of lumbar BMD was measured. Mean values of amplitude-dependent speed of sound, cortical area to total area ratio, lumbar BMDarea, or lumbar BMD corrected for bone sizes estimated by a mathematical model (BMDvolume), as well as mean values of radial BMD in patients with X-linked hypophosphatemic rickets, expressed as z score, were significantly reduced (p < 0.0001) in comparison with their reference values (-1.7 +/- 1.0, -2.0 +/- 0.9, -3.0 +/- 1.3, -1.9 +/- 1.0, -2.7 +/- 0.7, respectively). A positive relationship was found between amplitude-dependent speed of sound and cortical area to total area ratio (r = 0.90, p < 0.0001), lumbar BMDarea (r = 0.62, p < 0.0001), or lumbar BMDvolume (r = 0.66, p < 0.0001). Fifty-two patients (38.5%) had suffered fractures in the 6 mo preceding the bone measurements, the radial distal metaphysis being the most frequent fracture site (28.8%). Mean values of amplitude-dependent speed of sound, cortical area to total

  1. A Randomized Controlled Study of Effects of Dietary Magnesium Oxide Supplementation on Bone Mineral Content in Healthy Girls

    PubMed Central

    Carpenter, Thomas O.; DeLucia, Maria C.; Zhang, Jane Hongyuan; Bejnerowicz, Gina; Tartamella, Lisa; Dziura, James; Petersen, Kitt Falk; Befroy, Douglas; Cohen, Dorothy

    2010-01-01

    Context The role of magnesium (Mg) as a determinant of bone mass has not been extensively explored. Limited studies suggest that dietary Mg intake and bone mineral density are correlated in adults, but no data from interventional studies in children and adolescents are available. Objective We sought to determine whether Mg supplementation in periadolescent girls enhances accrual of bone mass. Design We carried out a prospective, placebo-controlled, randomized, one-year double-blind trial of Mg supplementation. Setting The study was conducted in the Clinical Research Centers at Yale University School of Medicine. Patients or Other Participants Healthy 8- to 14-yr-old Caucasian girls were recruited from community pediatricians’ offices. Dietary diaries from over 120 volunteers were analyzed, and those with dietary Mg intake of less than 220 mg/d were invited to participate in the intervention. Intervention Magnesium (300 mg elemental Mg per day in two divided doses) or placebo was given orally for 12 months. Main Outcome Measure The primary outcome measure was interval change in bone mineral content (BMC) of the total hip, femoral neck, Ward’s area, and lumbar spine (L1–L4) after 12 months of Mg supplementation. Results Significantly increased accrual (P = 0.05) in integrated hip BMC occurred in the Mg-supplemented vs. placebo group. Trends for a positive Mg effect were evident in the pre- and early puberty and in mid-late puberty. Lumbar spinal BMC accrual was slightly (but not significantly) greater in the Mg-treated group. Compliance was excellent; 73% of capsules were ingested as inferred by pill counts. Serum mineral levels, calciotropic hormones, and bone markers were similar between groups. Conclusions Oral Mg oxide capsules are safe and well tolerated. A positive effect of Mg supplementation on integrated hip BMC was evident in this small cohort. PMID:17018656

  2. [In vitro culture of human autologous osteoblast cells on natural bone mineral].

    PubMed

    Behrens, P; Wolf, E; Bruns, J

    2000-02-01

    Different methods are available for the treatment of osseous defects. In recent years the use of autologous bone was established as the golden standard. However, significant disadvantages are limited availability of the bone graft and its harvest implies additional morbidity for the patient. Alternatives to the use of autologous bone, as allogeneic bone from bone banks or biomaterials like hydroxyapatite are therefore of special interest. However, the currently available methods have severe disadvantages; allogenic bone carries a high risk of transmitting infectious diseases, most biomaterials show an unsatisfying osseous integration as well as prolonged healing with disability for the patient. Therefore, the aim has to be the development of a biomaterial that is as close as possible to human bone. In this in vitro study the natural bone mineral Bio-Oss/Orthos was used as a matrix for human osteoblast-like cells isolated from bone marrow of healthy patients. Even after three months the cell showed typical osteblast-like behaviour. Histologic evaluation demonstrated the ability of Bio-Oss/Orthos to guide cell growth within its matrix structure and therefore mimics in vivo situation of the healthy bone. The results show that culturing human osteoblast-like cells under standardised conditions is possible and that the combination of human osteoblast-like cell with an appropriate matrix may have the potential for a new treatment option of osseous defects.

  3. Effects of chronic lead exposure on bone mineral properties in femurs of growing rats.

    PubMed

    Álvarez-Lloret, Pedro; Lee, Ching Ming; Conti, María Inés; Terrizzi, Antonela Romina; González-López, Santiago; Martínez, María Pilar

    2017-02-15

    Lead exposure has been associated with several defective skeletal growth processes and bone mineral alterations. The aim of the present study is to make a more detailed description of the toxic effects of lead intoxication on bone intrinsic material properties as mineral composition, morphology and microstructural characteristics. For this purpose, Wistar rats were exposed (n=12) to 1000ppm lead acetate in drinking water for 90days while control group (n=8) were treated with sodium acetate. Femurs were examined using inductively coupled plasma optical emission spectrometry (ICP-OES), Attenuated Total Reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), and micro-Computed Tomography (μCT). Results showed that femur from the lead-exposed rats had higher carbonate content in bone mineral and (Ca(2+)+Mg(2+)+ Na(+))/P ratio values, although no variations were observed in crystal maturity and crystallite size. From morphological analyses, lead exposure rats showed a decreased in trabecular bone surface and distribution while trabecular thickness and cortical area increased. These overall effects indicate a similar mechanism of bone maturation normally associated to age-related processes. These responses are correlated with the adverse act