Science.gov

Sample records for measures mitigating heat

  1. Heat Island Mitigation Measures in Response to Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale a.; Estes, Maurice, Jr.; Crosson, William; Al-Hamdan, Mohammad

    2010-01-01

    This slide presentation examines the effect of cities, the accompanying heat island effect, and other impacts that urbanization has had on the environment. Various satellite views of several urban areas are shown.

  2. Secondary effects of urban heat island mitigation measures on air quality

    NASA Astrophysics Data System (ADS)

    Fallmann, Joachim; Forkel, Renate; Emeis, Stefan

    2016-01-01

    This study presents numerical simulations analysing the effect of urban heat island (UHI) mitigation measures on the chemical composition of the urban atmosphere. The mesoscale chemical transport model WRF-Chem is used to investigate the impact of urban greening and highly reflective surfaces on the concentrations of primary (CO, NO) as well as secondary pollutants (O3) inside the urban canopy. In order to account for the sub-grid scale heterogeneity of urban areas, a multi-layer urban canopy model is coupled to WRF-Chem. Using this canopy model at its full extend requires the introduction of several urban land use classes in WRF-Chem. The urban area of Stuttgart serves as a test bed for the modelling of a case scenario of the 2003 European Heat Wave. The selected mitigation measures are able to reduce the urban temperature by about 1 K and the mean ozone concentration by 5-8%. Model results however document also negative secondary effects on urban air quality, which are closely related to a decrease of vertical mixing in the urban boundary layer. An increase of primary pollutants NO and CO by 5-25% can be observed. In addition, highly reflective surfaces can increase peak ozone concentration by up to 12% due to a high intensity of reflected shortwave radiation accelerating photochemical reactions.

  3. Composition and sources of PM2.5 around the heating periods of 2013 and 2014 in Beijing: Implications for efficient mitigation measures

    NASA Astrophysics Data System (ADS)

    Yang, Hainan; Chen, Jing; Wen, Jiaojiao; Tian, Hezhong; Liu, Xingang

    2016-01-01

    The diurnal variations of the water soluble organic and inorganic components as well as six selected metals in PM2.5 around the heating periods of 2013 and 2014 in Beijing were analyzed in this study to investigate the contributions of secondary aerosols and primary pollutants to PM2.5 and the effects of domestic heating and mitigation measures. The before-heating sampling period in 2014 (from Nov. 1st to Nov. 15th) was characterized with reinforced short-term mitigation measures for the 2014 Asia-Pacific Economic Cooperation (APEC) meeting. As a result, the average mass concentrations of PM2.5 and most of the measured species except for Cu, Al, and Ca2+ were greatly reduced during the APEC meeting period. The domestic heating activity alone resulted in a 17.7% increase of PM2.5 in 2013, exerting lesser effects on the increase of PM2.5 than before. Water soluble organic carbon was the most abundant water soluble species in PM2.5, followed by NO3-, SO42-, and NH4+. According to the PMF model calculation, secondary aerosols, coal combustion, biomass/waste burning, traffic related pollution, long-range transport, and fugitive soil and sand dust were identified as the main sources of PM2.5 in Beijing, among which secondary formation of aerosols was the dominant source of PM2.5 during the non-APEC period while biomass/waste burning dominated during the APEC period. As a timely feedback on the effects of the mitigation measures adopted by the government, the results of this study provide knowledge necessary for a sustainable urban management.

  4. Pre-heating mitigates composite degradation

    PubMed Central

    da SILVA, Jessika Calixto; Rogério Vieira, REGES; REGE, Inara Carneiro Costa; CRUZ, Carlos Alberto dos Santos; VAZ, Luís Geraldo; ESTRELA, Carlos; de CASTRO, Fabrício Luscino Alves

    2015-01-01

    ABSTRACT Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey’s tests (α=5%). Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (p<0.05). After storage in water/NaOH, pre-heated specimens presented higher radiopacity values than non-pre-heated specimens (p<0.05). There was a lower penetration of silver in pre-heated specimens (p<0.05). Conclusions Pre-heating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth. PMID:26814459

  5. Pre-heating mitigates composite degradation.

    PubMed

    Silva, Jessika Calixto da; Rogério Vieira, Reges; Rege, Inara Carneiro Costa; Cruz, Carlos Alberto dos Santos; Vaz, Luís Geraldo; Estrela, Carlos; Castro, Fabrício Luscino Alves de

    2015-01-01

    Dental composites cured at high temperatures show improved properties and higher degrees of conversion; however, there is no information available about the effect of pre-heating on material degradation. Objectives This study evaluated the effect of pre-heating on the degradation of composites, based on the analysis of radiopacity and silver penetration using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Material and Methods Thirty specimens were fabricated using a metallic matrix (2x8 mm) and the composites Durafill VS (Heraeus Kulzer), Z-250 (3M/ESPE), and Z-350 (3M/ESPE), cured at 25°C (no pre-heating) or 60°C (pre-heating). Specimens were stored sequentially in the following solutions: 1) water for 7 days (60°C), plus 0.1 N sodium hydroxide (NaOH) for 14 days (60°C); 2) 50% silver nitrate (AgNO3) for 10 days (60°C). Specimens were radiographed at baseline and after each storage time, and the images were evaluated in gray scale. After the storage protocol, samples were analyzed using SEM/EDS to check the depth of silver penetration. Radiopacity and silver penetration data were analyzed using ANOVA and Tukey's tests (α=5%). Results Radiopacity levels were as follows: Durafill VSZ-350>Z-250 (p<0.05). After storage in water/NaOH, pre-heated specimens presented higher radiopacity values than non-pre-heated specimens (p<0.05). There was a lower penetration of silver in pre-heated specimens (p<0.05). Conclusions Pre-heating at 60°C mitigated the degradation of composites based on analysis of radiopacity and silver penetration depth.

  6. Heat waves in urban heat islands: interactions, impacts, and mitigation

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Li, D.

    2013-12-01

    Urbanization rates and the intensity of anthropogenic global warming are both on the rise. By the middle of this century, climate change impacts on humans will be largely manifested in urban regions and will result from a combination of global to regional impacts related to greenhouse gas emissions, as well as regional to local impacts related to land-cover changes associated with urbanization. Alarmingly, our understanding of how these two distinct impacts will interact remains very poor. One example, which is the focus of this study, is the interaction of urban heat islands and heat waves. Urban heat islands (UHIs) are spatial anomalies consisting of higher temperatures over built terrain; while their intensity varies with many factors, it consistently increases with city size. UHIs will hence intensify in the future as cities expand. Heat waves are temporal anomalies in the regional temperatures that affect both urban and rural areas; there is high certainty that the frequency and intensity of such waves will increase as a result global warming. However, whether urban and rural temperatures respond in the same way to heat waves remains a critical unanswered question. In this study, a combination of observational and modeling analyses of a heat wave event over the Baltimore-Washington urban corridor reveals synergistic interactions between urban heat islands and heat waves. Not only do heat waves increase the regional temperatures, but they also intensify the difference between urban and rural temperatures. That is, their impact is stronger in cities and the urban heat stress during such waves is larger than the sum of the background urban heat island effect and the heat wave effect. We also develop a simple analytical model of this interaction that suggests that this exacerbated impact in urban areas is primarily to the lack of surface moisture, with low wind speeds also playing a smaller role. Finally, the effectiveness of cool and green roofs as UHI mitigation

  7. Bioenergy as a Mitigation Measure

    NASA Astrophysics Data System (ADS)

    Dass, P.; Brovkin, V.; Müller, C.; Cramer, W.

    2011-12-01

    Numerous studies have shown that bioenergy, being one of the renewable energies with the lowest costs, is expected to play an important role in the near future as climate change mitigation measure. Current practices of converting crop products such as carbohydrates or plant oils to ethanol or biodiesel have limited capabilities to curb emission. Moreover, they compete with food production for the most fertile lands. Thus, second generation bioenergy technologies are being developed to process lignocellulosic plant materials from fast growing tree and grass species. A number of deforestation experiments using Earth System models have shown that in the mid- to high latitudes, deforested surface albedo strongly increases in presence of snow. This biophysical effect causes cooling, which could dominate over the biogeochemical warming effect because of the carbon emissions due to deforestation. In order to find out the global bioenergy potential of extensive plantations in the mid- to high latitudes, and the resultant savings in carbon emissions, we use the dynamic global vegetation model LPJmL run at a high spatial resolution of 0.5°. It represents both natural and managed ecosystems, including the cultivation of cellulosic energy crops. LPJmL is run with 21st century projections of climate and atmospheric CO2 concentration based on the IPCC-SRES business as usual or A2 scenario. Latitudes above 45° in both hemispheres are deforested and planted with crops having the highest bioenergy return for the respective pixels of the model. The rest of the Earth has natural vegetation. The agricultural management intensity values are used such that it results in the best approximation for 1999 - 2003 national yields of wheat and maize as reported by FAOSTAT 2009. Four different scenarios of land management are used ranging from an idealistic or best case scenario, where all limitations of soil and terrain properties are managed to the worst case scenario where none of these

  8. The Urban Heat Island Phenomenon and Potential Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Estes, Maurice G., Jr.; Gorsevski, Virginia; Russell, Camille; Quattrochi, Dale; Luvall, Jeffrey

    1999-01-01

    A survey of urban heat island research is provided to describe how heat islands develop, urban landscape and meteorological characteristics that facilitate development, use of aircraft remote sensing data, and why heat islands are of interest to planners, elected officials, and the public. The roles of the National Aeronautics and Space Administration (NASA), the Environmental Protection Agency (EPA), other federal agencies, national laboratories and universities, state and local governments, and non-governmental organizations (NGOS) in studying the urban heat island effect and developing mitigation strategies are explored. Barriers that hamper mitigation efforts and case studies in Atlanta and Salt Lake City are discussed.

  9. Measurements of Impurity and Heat Dynamics During Noble Gas Jet-Initiated Fast Plasma Shutdown for Disruption Mitigation in DIII-D

    SciTech Connect

    Hollmann, E M; Jernigan, T C; Groth, M; Whyte, D G; Gray, D S; Brennan, D P; Brooks, N H; Evans, T E; Humphreys, D A; Lasnier, C J; Moyer, R A; McClean, A; Parks, P B; Rozhansky, V; Rudakov, D L; Strait, E J; West, W P

    2004-12-01

    Impurity deposition and mixing during gas jet-initiated plasma shutdown is studied using a rapid ({approx}2 ms), massive ({approx}10{sup 22} particles) injection of neon or argon into stationary DIII-D H-mode discharges. Fast-gated camera images indicate that the bulk of the jet neutrals do not penetrate far into the plasma pedestal. Nevertheless, high ({approx}90%) thermal quench radiated power fractions are achieved; this appears to be facilitated through a combination of fast ion mixing and fast heat transport, both driven by large-scale MHD activity. Also, runaway electron suppression is achieved for sufficiently high gas jet pressures. These experiments suggest that massive gas injection could be viable for disruption mitigation in future tokamaks even if core penetration of jet neutrals is not achieved.

  10. Paving materials for heat island mitigation

    SciTech Connect

    Pomerantz, M.; Akbari, H.; Chen, A.; Taha, H.; Rosenfeld, A.H.

    1997-11-01

    This report summarizes paving materials suitable for urban streets, driveways, parking lots and walkways. The authors evaluate materials for their abilities to reflect sunlight, which will reduce their temperatures. This in turn reduces the excess air temperature of cities (the heat island effect). The report presents the compositions of the materials, their suitability for particular applications, and their approximate costs (in 1996). Both new and resurfacing are described. They conclude that, although light-colored materials may be more expensive than conventional black materials, a thin layer of light-colored pavement may produce energy savings and smog reductions whose long-term worth is greater than the extra cost.

  11. Debris mitigation measures of Russian launchers

    NASA Astrophysics Data System (ADS)

    Utkin, V. F.; Chekalin, S. V.; Lukiyashchenko, V. I.

    1995-08-01

    The paper contains the statistics of SLV launches by the former USSR briefly characterising them as space pollution sources. The major principles of forming the Russian launch capability system and measures undertaken to improve SLV ecological indices, in particular, the measures to mitigate near-earth space pollution with separated elements and to prevent in-orbit used rocket stage explosions are spoken about. In conclusion, recommendations as regards novel developments and concrete proposals to arrange international cooperation in this area are given.

  12. Space debris mitigation measures in India

    NASA Astrophysics Data System (ADS)

    Adimurthy, V.; Ganeshan, A. S.

    2006-02-01

    The Indian Space Research Organization (ISRO) recognizes the importance of the current space debris scenario, and the impact it has on the effective utilization of space technology for the improvement in the quality of life on the Earth. ISRO is committed to effective management of the threats due to space debris. Towards this commitment ISRO works on different aspects of space debris, including the debris mitigation measures. This paper highlights the activities and achievements in the implementation of the mitigation measures. ISRO successfully designed and developed a propellant venting system for implementation in the existing upper stage of India's Polar Satellite Launch Vehicle (PSLV), which uses Earth-storable liquid propellants. GSLV also employs passivation of the Cryogenic Upper Stage at the end of its useful mission. ISRO's communication satellites in GSO are designed with adequate propellant margins for re-orbiting at the end of their useful life to a higher graveyard orbit. A typical successful operation in connection with INSAT-2C is described. ISRO developed its debris environmental models and software to predict the close approach of any of the debris to the functional satellites. The software are regularly used for the debris risk management of the orbiting spacecraft and launch vehicles. ISRO recognizes the role of international cooperation in the debris mitigation measures and actively contributes to the efforts of the Inter-Agency Space Debris Coordination Committee (IADC) and United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS).

  13. Mitigating the surface urban heat island: Mechanism study and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Meng, Chunlei

    2017-08-01

    In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a "white roof"; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.

  14. Heat Flow Measurement

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Heat gauges are used to measure heat flow in industrial activities. They must periodically be certified by instruments designed to provide a heat flux measurement standard. CSTAR, a NASA CCDS, and REMTECH have developed a portable heat flux checker/calibrator. The Q-CHEC can be carried to the heat gauge for certification, reducing out of service time for the gauge and eliminating the need for a replacement gauge during certification. It can provide an "end-to-end" check of the instrumentation measurement system or be used as a standalone calibrator. Because Q-CHEC offers on-site capability to detect and eliminate measurement errors, measurements do not have to be repeated, and money is saved.

  15. Mitigation measures and programs in Hungary

    SciTech Connect

    Molnar, S.

    1996-12-31

    In Hungary there are four main governmental programs, which may result in a decrease of emissions of anthropogenic greenhouse gases (GHGs): (1) National program of energy efficiency improvement and energy conservation, (2) Afforestation program, (3) Volatile organic compounds (VOC) emission reduction program, and (4) Program to reduce the use of ozone depleting substances. These ambitious programs were launched in the beginning of the 90`s, but they have been slowed down because of budgetary problems. The comprehensive action plan for mitigation of GHG emissions should be based on these ongoing programs. These programs should be expanded by further measures and programs in order to fulfill the requirements of the FCCC. In the next sections the results and prospects of the above mentioned programs will be summarized. Also the results of the mitigation study supported by the U.S. Country Studies Program are included.

  16. Radon measurement and mitigation activity in Finland.

    PubMed

    Valmari, T; Arvela, H; Reisbacka, H; Holmgren, O

    2014-07-01

    Radon prevention, measurement and mitigation activities have been increasing in Finland during the 2000s. Nowadays, many municipal authorities, especially those located in high-radon areas, require radon prevention measures. This has activated radon measurements. Owners of new houses having radon piping installed under the floor slab are the most active group to measure and reduce the found high-radon values. Their radon awareness is apparently better than on the average, and the existing piping makes it easier and cheaper to reduce the radon levels. Local campaigns involving invitation flyers mailed to the residents have been a cost-effective means to activate measurements of older houses. So far 116,611 dwellings in low-rise residential buildings have been measured. At least 15% of the 16,860 dwellings found to exceed the reference level of 400 Bq m(-3) had their indoor radon level reduced below that.

  17. Numerical simulations of urban heat island mitigation strategies in Vienna

    NASA Astrophysics Data System (ADS)

    Koch, Roland; Zuvela-Aloise, Maja

    2013-04-01

    Effects of change in land use on daytime urban heat island (UHI) of Vienna is investigated using the local-scale atmospheric model MUKLIMO3 developed at the German Weather Service (DWD). Assuming that the observed trend towards urbanization negatively impacts the heat stress of urban areas, it becomes increasingly important to develop UHI mitigation strategies that aims to reduce the urban heat stress. The purpose of this study is to gain a further understanding of the structure of the daytime UHI in Vienna and to investigate the question to what degree changes in the urban land use affect the near-surface climate and heat stress in the city. The qualitative and quantitative characterization of the UHI is obtained by the computation of the mean annual number of summer days (Tmax × 25° C) of the 1981-2010 period using the so-called cuboid method (DWD). A set of mitigation strategies is developed and applied to MUKLIMO3 simulation experiments. The strategies take into account the change in urban land use as well as the modification of land use features. Results confirm the importance of green areas, water ways and pervious surfaces in the city. In addition, the size, location and distribution of new vegetated areas, i.e. parks, can crucially alter the urban heat stress. In view of the unique character of the city, the realization of adequate mitigation strategies is mainly limited to the existing urban land use. The obtained model results are intended to provide additional information for the city planners.

  18. Characterization of heat loads from mitigated and unmitigated vertical displacement events in DIII-D

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.; Commaux, N.; Eidietis, N. W.; Humphreys, D. A.; Jernigan, T. J.; Lasnier, C. J.; Moyer, R. A.; Pitts, R. A.; Sugihara, M.; Strait, E. J.; Watkins, J.; Wesley, J. C.

    2013-06-01

    Experiments have been conducted on the DIII-D tokamak to study the distribution and repeatability of heat loads and vessel currents resulting from vertical displacement events (VDEs). For unmitigated VDEs, the radiated power fraction appears to be of order 50%, with the remaining power dominantly conducted to the vessel walls. Shot-to-shot scatter in heat loads measured at one toroidal location is not large (<±50%), suggesting that toroidal asymmetries in conducted heat loads are not large. Conducted heat loads are clearly observed during the current quench (CQ) of both mitigated and unmitigated disruptions. Significant poloidal asymmetries in heat loads and radiated power are often observed in the experiments but are not yet understood. Energy dissipated resistively in the conducting walls during the CQ appears to be small (<5%). The mitigating effect of neon massive gas injection (MGI) as a function of MGI trigger delay has also been studied. Improved mitigation is observed as the MGI trigger delay is decreased. For sufficiently early MGI mitigation, close to 100% radiated energy and a reduction of roughly a factor 2 in vessel forces is achieved.

  19. Characterization of heat loads from mitigated and unmitigated vertical displacement events in DIII-D

    SciTech Connect

    Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Jernigan, T. J.; Eidietis, N. W.; Humphreys, D. A.; Strait, E. J.; Wesley, J. C.; Lasnier, C. J.; Pitts, R. A.; Sugihara, M.; Watkins, J.

    2013-06-15

    Experiments have been conducted on the DIII-D tokamak to study the distribution and repeatability of heat loads and vessel currents resulting from vertical displacement events (VDEs). For unmitigated VDEs, the radiated power fraction appears to be of order 50%, with the remaining power dominantly conducted to the vessel walls. Shot-to-shot scatter in heat loads measured at one toroidal location is not large (<±50%), suggesting that toroidal asymmetries in conducted heat loads are not large. Conducted heat loads are clearly observed during the current quench (CQ) of both mitigated and unmitigated disruptions. Significant poloidal asymmetries in heat loads and radiated power are often observed in the experiments but are not yet understood. Energy dissipated resistively in the conducting walls during the CQ appears to be small (<5%). The mitigating effect of neon massive gas injection (MGI) as a function of MGI trigger delay has also been studied. Improved mitigation is observed as the MGI trigger delay is decreased. For sufficiently early MGI mitigation, close to 100% radiated energy and a reduction of roughly a factor 2 in vessel forces is achieved.

  20. Latent Heat in Soil Heat Flux Measurements

    USDA-ARS?s Scientific Manuscript database

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  1. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  2. 13 CFR 123.21 - What is a mitigation measure?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false What is a mitigation measure? 123.21 Section 123.21 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION DISASTER LOAN PROGRAM Overview § 123.21 What is a mitigation measure? A mitigation measure is something done for the purpose...

  3. 13 CFR 123.21 - What is a mitigation measure?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false What is a mitigation measure? 123.21 Section 123.21 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION DISASTER LOAN PROGRAM Overview § 123.21 What is a mitigation measure? A mitigation measure is something done for the purpose...

  4. 13 CFR 123.21 - What is a mitigation measure?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false What is a mitigation measure? 123.21 Section 123.21 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION DISASTER LOAN PROGRAM Overview § 123.21 What is a mitigation measure? A mitigation measure is something done for the purpose...

  5. 13 CFR 123.21 - What is a mitigation measure?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What is a mitigation measure? 123.21 Section 123.21 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION DISASTER LOAN PROGRAM Overview § 123.21 What is a mitigation measure? A mitigation measure is something done for the purpose...

  6. 13 CFR 123.21 - What is a mitigation measure?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false What is a mitigation measure? 123.21 Section 123.21 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION DISASTER LOAN PROGRAM Overview § 123.21 What is a mitigation measure? A mitigation measure is something done for the purpose...

  7. 43 CFR 46.130 - Mitigation measures in analyses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Mitigation measures in analyses. 46.130... Mitigation measures in analyses. (a) Bureau proposed action. The analysis of the proposed action and any... of the effects of any appropriate mitigation measures or best management practices that are...

  8. 43 CFR 46.130 - Mitigation measures in analyses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Mitigation measures in analyses. 46.130... Mitigation measures in analyses. (a) Bureau proposed action. The analysis of the proposed action and any... of the effects of any appropriate mitigation measures or best management practices that are...

  9. Heat island mitigation using water retentive pavement sprinkled with reclaimed wastewater.

    PubMed

    Yamagata, H; Nasu, M; Yoshizawa, M; Miyamoto, A; Minamiyama, M

    2008-01-01

    In Japan, reclaimed wastewater has been recycled widely for non-potable urban applications and it is to be used for sprinkling roads to mitigate heat island in urban areas. To assess the heat island mitigation effects of the sprinkling reclaimed wastewater on water retentive pavement, we carried out a survey at Shiodome-District, Tokyo. The temperatures of air and roads, humidity, and WBGT (Wet-bulb globe temperature) were measured and heat flux was estimated to compare the condition of the areas with/without sprinkling. The following results were obtained. 1) Sprinkling reclaimed wastewater decreased the road surface temperature by 8 degrees during the daytime and by 3 degrees at night: temperatures equal to those on planting zones. Nevertheless sprinkling was done only in the daytime, the temperature decrease effect was not only obtained during the daytime: it continued through the night, due to the water retentive pavement. 2) Sprinkling reclaimed wastewater reduced the amount of sensible heat flux and increased that of latent heat flux. These results suggest that sprinkling reclaimed wastewater on water retentive pavement can effectively mitigate the heat island phenomenon.

  10. Structural master plan of flood mitigation measures

    NASA Astrophysics Data System (ADS)

    Heidari, A.

    2009-01-01

    Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.

  11. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  12. Measuring the Heats of Water.

    ERIC Educational Resources Information Center

    Hunt, James L.; Tegart, Tracy L.

    1994-01-01

    Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)

  13. Measuring the Heats of Water.

    ERIC Educational Resources Information Center

    Hunt, James L.; Tegart, Tracy L.

    1994-01-01

    Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)

  14. Mitigation of urban heat islands: meteorology, energy, and airquality impacts

    SciTech Connect

    Taha, Haider; Meier, Alan; Gao, Weijun; Ojima, Toshio

    1999-09-30

    This paper presents results from energy, meteorological andphotochemical (air quality) modeling for the Los Angeles Basin, one ofthe largest and smoggiest urban regions in the U.S. and the world. Oursimulations suggest that by mitigating urban heat islands, savings of 5to 10 percent peak utility load may be possible. In addition, heat islandmitigation can reduce smog formation by 10-20 percent. in summer, whichis as effective as controlling emissions from all mobile sources in theregion. For a typical late-August episode, our simulations suggest thatimplementing cool cities in the Los Angeles Basin would have a net effectof reducing ozone concentrations. Peak concentrations at 3 pm decrease byup to 7 percent (from 220 down to 205 ppb) while the total ozone mass inthe mixed layer decreases by up to 640 metric tons (a decrease of 4.7percent). Largest reductions in concentrations at 3 pm are on the orderof 50 ppb whereas the largest increases are on the order of 20 ppb. Withrespect to the National Ambient Air Quality Standard, domain widepopulation weighted exceedance exposure to ozone decreases by up to 20percent during peak afternoon hours and by up to 10 percent during thedaytime.

  15. Air pollution prevention through urban heat island mitigation: An update on the urban heat island pilot project

    SciTech Connect

    Gorsevski, V.; Taha, H.; Quattrochi, D.; Luvall, J.

    1998-07-01

    Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively cool the metropolitan landscape. In addition to the economic benefits, using less energy leads to reductions in emission of CO{sub 2}--a greenhouse gas--as well as ozone (smog) precursors such as NOx and VOCs. Because ozone is created when NOx and VOCs photochemically combine with heat and solar radiation, actions taken to lower ambient air temperature can significantly reduce ozone concentrations in certain areas. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three US cities. As part of the pilot, NASA will use remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. This information will be used by scientists at Lawrence Berkeley National Laboratory (LBNL) along with other data as inputs to model various scenarios that will help quantify the potential benefits of urban heat island mitigation measures in terms of reduced energy use and pollution. This paper will briefly describe this pilot project and provide an update on the progress to date.

  16. 43 CFR 46.130 - Mitigation measures in analyses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Mitigation measures in analyses. 46.130... Mitigation measures in analyses. (a) Bureau proposed action. The analysis of the proposed action and any alternatives must include an analysis of the effects of the proposed action or alternative as well as analysis...

  17. 43 CFR 46.130 - Mitigation measures in analyses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Mitigation measures in analyses. 46.130... Mitigation measures in analyses. (a) Bureau proposed action. The analysis of the proposed action and any alternatives must include an analysis of the effects of the proposed action or alternative as well as analysis...

  18. 43 CFR 46.130 - Mitigation measures in analyses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Mitigation measures in analyses. 46.130... Mitigation measures in analyses. (a) Bureau proposed action. The analysis of the proposed action and any alternatives must include an analysis of the effects of the proposed action or alternative as well as analysis...

  19. FOLLOW-UP RADON MEASUREMENTS IN 14 MITIGATED SCHOOLS

    EPA Science Inventory

    The report gives results of a determination of the long-term performance of radon mitigation systems installed in U. S. EPA research schools: radon measurements were conducted in 14 schools that had been mitigated between 1988 and 1991. The measurements were made between Februar...

  20. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  1. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  2. 50 CFR 665.812 - Sea turtle take mitigation measures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Sea turtle take mitigation measures. 665... Pacific Pelagic Fisheries § 665.812 Sea turtle take mitigation measures. (a) Possession and use of... sea turtle handling requirements set forth in paragraph (b) of this section. (1) Hawaii...

  3. Electrostatic particle-in-cell simulation of heat flux mitigation using magnetic fields

    NASA Astrophysics Data System (ADS)

    Lüskow, Karl Felix; Kemnitz, S.; Bandelow, G.; Duras, J.; Kahnfeld, D.; Matthias, P.; Schneider, R.; Konigorski, D.

    2016-10-01

    The particle-in-cell (PIC) method was used to simulate heat flux mitigation experiments with partially ionised argon. The experiments demonstrate the possibility of reducing heat flux towards a target using magnetic fields. Modelling using the PIC method is able to reproduce the heat flux mitigation qualitatively. This is driven by modified electron transport. Electrons are magnetised and react directly to the external magnetic field. In addition, an increase of radial turbulent transport is also needed to explain the experimental observations in the model. Close to the target an increase of electron density is created. Due to quasi-neutrality, ions follow the electrons. Charge exchange collisions couple the dynamics of the neutrals to the ions and reduce the flow velocity of neutrals by radial momentum transport and subsequent losses. By this, the dominant heat-transport channel by neutrals gets reduced and a reduction of the heat deposition, similar to the experiment, is observed. Using the simulation a diagnostic module for optical emission is developed and its results are compared with spectroscopic measurements and photos from the experiment. The results of this study are in good agreement with the experiment. Experimental observations such as a shrank bright emission region close to the nozzle exit, an additional emission in front of the target and an overall change in colour to red are reproduced by the simulation.

  4. Particle-In-Cell simulation concerning heat-flux mitigation using electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Lüskow, Karl Felix; Duras, Julia; Kemnitz, Stefan; Kahnfeld, Daniel; Matthias, Paul; Bandelow, Gunnas; Schneider, Ralf; Konigorski, Detlev

    2016-10-01

    In space missions enormous amount of money is spent for the thermal protection system for re-entry. To avoid complex materials and save money one idea is to reduce the heat-flux towards the spacecraft. The partially-ionized gas can be controlled by electromagnetic fields. For first-principle tests partially ionized argon flow from an arc-jet was used to measure the heat-flux mitigation created by an external magnetic field. In the successful experiment a reduction of 85% was measured. In this work the Particle-in-Cell (PIC) method was used to simulate this experiment. PIC is able to reproduce the heat flux mitigation qualitatively. The main mechanism is identified as a changed electron transport and by this, modified electron density due to the reaction to the applied magnetic field. Ions follow due to quasi-neutrality and influence then strongly by charge exchange collisions the neutrals dynamics and heat deposition. This work was supported by the German Space Agency DLR through Project 50RS1508.

  5. Ecological mitigation measures in English Environmental Impact Assessment.

    PubMed

    Drayson, Katherine; Thompson, Stewart

    2013-04-15

    Built development is one of the main drivers of biodiversity loss in the UK. Major built developments usually require an Environmental Impact Assessment (EIA) to be conducted, which frequently includes an Ecological Impact Assessment (EcIA) chapter. By identifying the flaws in EcIA mitigation measure proposals and their implementation in completed developments, it may be possible to develop measures to reduce biodiversity loss and help meet the UK's EU obligation to halt biodiversity loss by 2020. A review of 112 English EcIAs from 2000 onwards was conducted to provide a broad-scale overview of the information provision and detail of ecological mitigation measures. Audits of seven EIA development case study sites provided finer-scale detail of mitigation measure implementation, and the effectiveness of their grassland and marginal habitat creation and management measures was assessed using standard NVC methodology. Despite higher than expected levels of mitigation measure implementation in completed developments, EcIA mitigation proposal information and detail has seen little improvement since a 1997 review, and the effectiveness of the habitat mitigation measures studied was poor. This suggests that measures to improve ecological mitigation measures are best targeted at ecological consultants. A recommendation for EcIA-specific training of Competent Authorities is also made. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Utilising green and bluespace to mitigate urban heat island intensity.

    PubMed

    Gunawardena, K R; Wells, M J; Kershaw, T

    2017-04-15

    It has long been recognised that cities exhibit their own microclimate and are typically warmer than the surrounding rural areas. This 'mesoscale' influence is known as the urban heat island (UHI) effect and results largely from modification of surface properties leading to greater absorption of solar radiation, reduced convective cooling and lower water evaporation rates. Cities typically contain less vegetation and bodies of water than rural areas, and existing green and bluespace is often under threat from increasing population densities. This paper presents a meta-analysis of the key ways in which green and bluespace affect both urban canopy- and boundary-layer temperatures, examined from the perspectives of city-planning, urban climatology and climate science. The analysis suggests that the evapotranspiration-based cooling influence of both green and bluespace is primarily relevant for urban canopy-layer conditions, and that tree-dominated greenspace offers the greatest heat stress relief when it is most needed. However, the magnitude and transport of cooling experienced depends on size, spread, and geometry of greenspaces, with some solitary large parks found to offer minimal boundary-layer cooling. Contribution to cooling at the scale of the urban boundary-layer climate is attributed mainly to greenspace increasing surface roughness and thereby improving convection efficiency rather than evaporation. Although bluespace cooling and transport during the day can be substantial, nocturnal warming is highlighted as likely when conditions are most oppressive. However, when both features are employed together they can offer many synergistic ecosystem benefits including cooling. The ways in which green and bluespace infrastructure is applied in future urban growth strategies, particularly in countries expected to experience rapid urbanisation, warrants greater consideration in urban planning policy to mitigate the adverse effects of the UHI and enhance climate

  7. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    SciTech Connect

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  8. Mitigation technologies and measures in energy sector of Kazakstan

    SciTech Connect

    Pilifosova, O.; Danchuk, D.; Temertekov, T.

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  9. International workshop on greenhouse gas mitigation technologies and measures: Proceedings

    SciTech Connect

    1996-12-31

    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the global climate system. Climate change country studies are a significant step for developing countries and countries with economies in transition to meet their national reporting commitments to the FCCC. These studies also provide the basis for preparation of National Climate Change Action Plans and implementation of technologies and practices which reduce greenhouse gas emissions or enhance carbon sinks. The broad goals of the workshop were to: (1) present results of country study mitigation assessments, (2) identify promising no-regrets greenhouse gas mitigation options in land-use and energy sectors, (3) share information on development of mitigation technologies and measures which contribute to improved National Climate Change Actions Plans, and (4) begin the process of synthesizing mitigation assessments for use by FCCC subsidiary bodies. The 59 papers are arranged into the following topical sections: (1) national mitigation assessments, technology priorities, and measures; (2) sector-specific mitigation assessment results, subdivided further into: energy sector; non-energy sector; renewable energy; energy efficiency in industry and buildings; transportation; electricity supply; forestry; and methane mitigation; (3) support for mitigation technologies and measures; and (4) activities implemented jointly. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Flicker Detection, Measurement and Means of Mitigation: A Review

    NASA Astrophysics Data System (ADS)

    Virulkar, V. B.; Aware, M. V.

    2014-04-01

    The voltage fluctuations caused by rapid industrial load change have been a major concern for supply utilities, regulatory agencies and customers. This paper gives a general review about how to examine/assess voltage flicker and methods followed in measuring the flickers due to rapid changing loads and means for its mitigation. It discusses the effects on utilities conditions, compensators response time and compensator capacity of flicker mitigation. A comparison between conventional mitigation techniques and the state-of-art mitigation techniques are carried out. It is shown in many cases that the state-of-art solution provides higher performance compared with conventional mitigation techniques. However, the choice of most suitable solution depends on characteristics of the supply at the point of connection, the requirement of the load and economics.

  11. An observational urban heat island study: A primary step in heat event mitigation planning in Detroit, MI

    NASA Astrophysics Data System (ADS)

    Oswald, E.; Rood, R. B.; O'Neill, M.; Zhang, K.

    2010-12-01

    Knowledge of the structure and characteristics of urban heat islands (UHIs) is becoming evermore important to public health practitioners and city planners as they attempt to better identify parts of the city that are especially vulnerable and to plan strategies to mitigate heat-related health threats. The spatial structure of UHIs can be investigated in many different manners, but investigation of raw observations can be problematic. From a meteorological point of view, one goal is to map the structure of the urban heat island from routinely-made standard weather observations to a complex urban environment - in effect, a highly localized downscaling. In order to accomplish such a goal, we conducted analysis using a dense network of temporary observation stations, in concert with established observing networks, inside the city of Detroit. In this talk we correlate point-source temperature measurements with relevant spatial attributes (surface imperviousness, proximity to water, etc.) to model the observed temperature patterns. Future work towards mapping heat vulnerability includes co-analysis with spatial data of population adaptive capacity and sensitivity to heat stress.

  12. Social and ethical perspectives of landslide risk mitigation measures

    NASA Astrophysics Data System (ADS)

    Kalsnes, Bjørn; Vangelsten, Bjørn V.

    2015-04-01

    Landslide risk may be mitigated by use of a wide range of measures. Mitigation and prevention options may include (1) structural measures to reduce the frequency, severity or exposure to the hazard, (2) non-structural measures, such as land-use planning and early warning systems, to reduce the hazard frequency and consequences, and (3) measures to pool and transfer the risks. In a given situation the appropriate system of mitigation measures may be a combination of various types of measures, both structural and non-structural. In the process of choosing mitigation measures for a given landslide risk situation, the role of the geoscientist is normally to propose possible mitigation measures on basis of the risk level and technical feasibility. Social and ethical perspectives are often neglected in this process. However, awareness of the need to consider social as well as ethical issues in the design and management of mitigating landslide risk is rising. There is a growing understanding that technical experts acting alone cannot determine what will be considered the appropriate set of mitigation and prevention measures. Issues such as environment versus development, questions of acceptable risk, who bears the risks and benefits, and who makes the decisions, also need to be addressed. Policymakers and stakeholders engaged in solving environmental risk problems are increasingly recognising that traditional expert-based decision-making processes are insufficient. This paper analyse the process of choosing appropriate mitigation measures to mitigate landslide risk from a social and ethical perspective, considering technical, cultural, economical, environmental and political elements. The paper focus on stakeholder involvement in the decision making process, and shows how making strategies for risk communication is a key for a successful process. The study is supported by case study examples from Norway and Italy. In the Italian case study, three different risk mitigation

  13. Orbiting space debris: Dangers, measurement and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-06-01

    Space debris is a growing environmental problem. Accumulation of objects in earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, United States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical and diplomatic components. Actions need to be taken now to: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the loss of critical space systems such as the space shuttle or the space station.

  14. Orbiting space debris: Dangers, measurement, and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-01-01

    Space debris is a growing environmental problem. Accumulation of objects in Earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, Unites States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-Earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical, and diplomatic components. Actions need to be taken now for the following reasons: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the the loss of critical space systems such as the Space Shuttle or the Space Station.

  15. A web-based tool for ranking landslide mitigation measures

    NASA Astrophysics Data System (ADS)

    Lacasse, S.; Vaciago, G.; Choi, Y. J.; Kalsnes, B.

    2012-04-01

    As part of the research done in the European project SafeLand "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies", a compendium of structural and non-structural mitigation measures for different landslide types in Europe was prepared, and the measures were assembled into a web-based "toolbox". Emphasis was placed on providing a rational and flexible framework applicable to existing and future mitigation measures. The purpose of web-based toolbox is to assist decision-making and to guide the user in the choice of the most appropriate mitigation measures. The mitigation measures were classified into three categories, describing whether the mitigation measures addressed the landslide hazard, the vulnerability or the elements at risk themselves. The measures considered include structural measures reducing hazard and non-structural mitigation measures, reducing either the hazard or the consequences (or vulnerability and exposure of elements at risk). The structural measures include surface protection and control of surface erosion; measures modifying the slope geometry and/or mass distribution; measures modifying surface water regime - surface drainage; measures mo¬difying groundwater regime - deep drainage; measured modifying the mechanical charac¬teristics of unstable mass; transfer of loads to more competent strata; retaining structures (to modify slope geometry and/or to transfer stress to compe¬tent layer); deviating the path of landslide debris; dissipating the energy of debris flows; and arresting and containing landslide debris or rock fall. The non-structural mitigation measures, reducing either the hazard or the consequences: early warning systems; restricting or discouraging construction activities; increasing resistance or coping capacity of elements at risk; relocation of elements at risk; sharing of risk through insurance. The measures are described in the toolbox with fact sheets providing a

  16. A review on the generation, determination and mitigation of urban heat island.

    PubMed

    Memon, Rizwan Ahmed; Leung, Dennis Y C; Chunho, Liu

    2008-01-01

    Urban Heat Island (UHI) is considered as one of the major problems in the 21st century posed to human beings as a result of urbanization and industrialization of human civilization. The large amount of heat generated from urban structures, as they consume and re-radiate solar radiations, and from the anthropogenic heat sources are the main causes of UHI. The two heat sources increase the temperatures of an urban area as compared to its surroundings, which is known as Urban Heat Island Intensity (UHII). The problem is even worse in cities or metropolises with large population and extensive economic activities. The estimated three billion people living in the urban areas in the world are directly exposed to the problem, which will be increased significantly in the near future. Due to the severity of the problem, vast research effort has been dedicated and a wide range of literature is available for the subject. The literature available in this area includes the latest research approaches, concepts, methodologies, latest investigation tools and mitigation measures. This study was carried out to review and summarize this research area through an investigation of the most important feature of UHI. It was concluded that the heat re-radiated by the urban structures plays the most important role which should be investigated in details to study urban heating especially the UHI. It was also concluded that the future research should be focused on design and planning parameters for reducing the effects of urban heat island and ultimately living in a better environment.

  17. Modeling effects of urban heat island mitigation strategies on heat-related morbidity: a case study for Phoenix, Arizona, USA.

    PubMed

    Silva, Humberto R; Phelan, Patrick E; Golden, Jay S

    2010-01-01

    A zero-dimensional energy balance model was previously developed to serve as a user-friendly mitigation tool for practitioners seeking to study the urban heat island (UHI) effect. Accordingly, this established model is applied here to show the relative effects of four common mitigation strategies: increasing the overall (1) emissivity, (2) percentage of vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of percentage increases by 5, 10, 15, and 20% from baseline values. In addition to modeling mitigation strategies, we present how the model can be utilized to evaluate human health vulnerability from excessive heat-related events, based on heat-related emergency service data from 2002 to 2006. The 24-h average heat index is shown to have the greatest correlation to heat-related emergency calls in the Phoenix (Arizona, USA) metropolitan region. The four modeled UHI mitigation strategies, taken in combination, would lead to a 48% reduction in annual heat-related emergency service calls, where increasing the albedo is the single most effective UHI mitigation strategy.

  18. Modeling effects of urban heat island mitigation strategies on heat-related morbidity: a case study for Phoenix, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Silva, Humberto R.; Phelan, Patrick E.; Golden, Jay S.

    2010-01-01

    A zero-dimensional energy balance model was previously developed to serve as a user-friendly mitigation tool for practitioners seeking to study the urban heat island (UHI) effect. Accordingly, this established model is applied here to show the relative effects of four common mitigation strategies: increasing the overall (1) emissivity, (2) percentage of vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of percentage increases by 5, 10, 15, and 20% from baseline values. In addition to modeling mitigation strategies, we present how the model can be utilized to evaluate human health vulnerability from excessive heat-related events, based on heat-related emergency service data from 2002 to 2006. The 24-h average heat index is shown to have the greatest correlation to heat-related emergency calls in the Phoenix (Arizona, USA) metropolitan region. The four modeled UHI mitigation strategies, taken in combination, would lead to a 48% reduction in annual heat-related emergency service calls, where increasing the albedo is the single most effective UHI mitigation strategy.

  19. WEEE flow and mitigating measures in China.

    PubMed

    Yang, Jianxin; Lu, Bin; Xu, Cheng

    2008-01-01

    The research presented in this paper shows that Waste Electrical and Electronic Equipment (WEEE) issues associated with home appliances, such as TV sets, refrigerators, washing machines, air conditioners, and personal computers, are linked in the WEEE flow and recycling systems and are important to matters of public policy and regulation. In this paper, the sources and generation of WEEE in China are identified, and WEEE volumes are calculated. The results show that recycling capacity must increase if the rising quantity of domestic WEEE is to be handled properly. Simultaneously, suitable WEEE treatment will generate large volumes of secondary resources. Environmental problems caused by the existing recycling processes have been investigated in a case study. Problems mainly stem from open burning of plastic-metal parts and from precious metals leaching techniques that utilize acids. The existing WEEE flow at the national level was investigated and described. It became obvious that a considerable amount of obsolete items are stored in homes and offices and have not yet entered the recycling system. The reuse of used appliances has become a high priority for WEEE collectors and dealers because reuse generates higher economic profits than simple material recovery. The results of a cost analysis of WEEE flow shows that management and collection costs significantly influence current WEEE management. Heated discussions are ongoing in political and administrative bodies as to whether extended producer responsibilities policies are promoting WEEE recycling and management. This paper also discusses future challenges and strategies for WEEE management in China.

  20. WEEE flow and mitigating measures in China

    SciTech Connect

    Yang Jianxin Lu Bin; Xu Cheng

    2008-07-01

    The research presented in this paper shows that Waste Electrical and Electronic Equipment (WEEE) issues associated with home appliances, such as TV sets, refrigerators, washing machines, air conditioners, and personal computers, are linked in the WEEE flow and recycling systems and are important to matters of public policy and regulation. In this paper, the sources and generation of WEEE in China are identified, and WEEE volumes are calculated. The results show that recycling capacity must increase if the rising quantity of domestic WEEE is to be handled properly. Simultaneously, suitable WEEE treatment will generate large volumes of secondary resources. Environmental problems caused by the existing recycling processes have been investigated in a case study. Problems mainly stem from open burning of plastic-metal parts and from precious metals leaching techniques that utilize acids. The existing WEEE flow at the national level was investigated and described. It became obvious that a considerable amount of obsolete items are stored in homes and offices and have not yet entered the recycling system. The reuse of used appliances has become a high priority for WEEE collectors and dealers because reuse generates higher economic profits than simple material recovery. The results of a cost analysis of WEEE flow shows that management and collection costs significantly influence current WEEE management. Heated discussions are ongoing in political and administrative bodies as to whether extended producer responsibilities policies are promoting WEEE recycling and management. This paper also discusses future challenges and strategies for WEEE management in China.

  1. What land covers are effective in mitigating a heat island in urban building rooftop?

    NASA Astrophysics Data System (ADS)

    Lee, S.; Ryu, Y.

    2014-12-01

    Since the 20th century, due to the rapid urbanization many urban environment problems have got blossomed and above all heat island has been recognized as an important issue. There are several causes of urban heat island, but land cover change occupies the largest portion of them. Owing to urban expansion, vegetation is changed into asphalt pavements and concrete buildings, which reduces latent heat flux. To mitigate the problems, people enlarge vegetation covers such as planting street trees, making rooftop gardens and constructing parks or install white roofs that feature high albedo on a building. While the white roofs reflect about 70% of solar radiation and absorb less radiation, vegetation has low albedo but cools the air through transpiration and fixes carbon dioxide through photosynthesis. There are some studies concerning which one is more effective to mitigate heat island between the green roof and white roof. This study compares the green roof and white roof and additionally considers carbon fixation that has not been treated in other studies. Furthermore, this study ascertains an efficiency of solar-cell panel that is used for building roof recently. The panel produces electric power but has low albedo which could warm the air. The experiment is conducted at the rooftop in Seoul, Korea and compares green roof (grass), white roof (painted cover), black roof (solar panel) and normal painted roof. Surface temperature and albedo are observed for the four roof types and incoming shortwave, outgoing longwave and carbon flux are measured in green roof solely. In the case of solar panels, the electricity generation is calculated from the incoming radiation. We compute global warming potentials for the four roof types and test which roof type is most effective in reducing global warming potential.

  2. Orbiting Space Debris: Dangers, Measurement and Mitigation

    DTIC Science & Technology

    1992-06-01

    sure how many undetectable particles the fragmentation of a satellite creates. Actual ground-based tesis have been conducted in an attempt to...conducted by the Jet Propulsion Laboratory lo measure the presence of 0.2 lo 0.5 cm and 0.5 to 2 cm sized debris. The Areclbo radar in Puerto Rico

  3. Stress analysis and mitigation measures for floating pipeline

    NASA Astrophysics Data System (ADS)

    Wenpeng, Guo; Yuqing, Liu; Chao, Li

    2017-03-01

    Pipeline-floating is a kind of accident with contingency and uncertainty associated to natural gas pipeline occurring during rainy season, which is significantly harmful to the safety of pipeline. Treatment measures against pipeline floating accident are summarized in this paper on the basis of practical project cases. Stress states of pipeline upon floating are analyzed by means of Finite Element Calculation method. The effectiveness of prevention ways and subsequent mitigation measures upon pipeline-floating are verified for giving guidance to the mitigation of such accidents.

  4. Can stock rotation effectively mitigate EMS medication exposure to excessive heat and cold?

    PubMed

    Brown, Lawrence H; Wojcik, Susan M; Bailey, Leonard C; Tran, Calvin D

    2006-01-01

    The United States Pharmacopeia recently published a general chapter specifically addressing on-ambulance storage of medications, including a suggestion for stock rotation. This study describes the effectiveness of a simple stock rotation strategy in mitigating EMS medication exposure to excessive heat and cold. Previously collected on-ambulance temperature data from 5 US cities were randomly resampled to generate model exposures of 2 days to 6 months duration. The temperature measurements for every other 24-hour period were then set at 20 degrees C to model the rotation of medications into a controlled environment. For each model, we then determined consistency with the official United States Pharmacopeia definition of controlled room temperature. Without stock rotation, excessive heat occurred in 39.9% of the model exposures. With stock rotation, exposures to excessive heat occurred in less than 1% of northern city models and in 2.9% of the central US models. Stock rotation did not reduce heat exposures in the models for southern cities.

  5. Radon Mitigation Approach in a Laboratory Measurement Room.

    PubMed

    Blanco-Rodríguez, Patricia; Fernández-Serantes, Luis Alfonso; Otero-Pazos, Alberto; Calvo-Rolle, José Luis; de Cos Juez, Francisco Javier

    2017-05-11

    Radon gas is the second leading cause of lung cancer, causing thousands of deaths annually. It can be a problem for people or animals in houses, workplaces, schools or any building. Therefore, its mitigation has become essential to avoid health problems and to prevent radon from interfering in radioactive measurements. This study describes the implementation of radon mitigation systems at a radioactivity laboratory in order to reduce interferences in the different works carried out. A large set of radon concentration samples is obtained from measurements at the laboratory. While several mitigation methods were taken into account, the final applied solution is explained in detail, obtaining thus very good results by reducing the radon concentration by 76%.

  6. Radon Mitigation Approach in a Laboratory Measurement Room

    PubMed Central

    Blanco-Rodríguez, Patricia; Fernández-Serantes, Luis Alfonso; Otero-Pazos, Alberto; Calvo-Rolle, José Luis; de Cos Juez, Francisco Javier

    2017-01-01

    Radon gas is the second leading cause of lung cancer, causing thousands of deaths annually. It can be a problem for people or animals in houses, workplaces, schools or any building. Therefore, its mitigation has become essential to avoid health problems and to prevent radon from interfering in radioactive measurements. This study describes the implementation of radon mitigation systems at a radioactivity laboratory in order to reduce interferences in the different works carried out. A large set of radon concentration samples is obtained from measurements at the laboratory. While several mitigation methods were taken into account, the final applied solution is explained in detail, obtaining thus very good results by reducing the radon concentration by 76%. PMID:28492468

  7. Public Response to Community Mitigation Measures for Pandemic Influenza

    PubMed Central

    Koonin, Lisa M.; Benson, John M.; Cetron, Martin S.; Pollard, William E.; Mitchell, Elizabeth W.; Weldon, Kathleen J.; Herrmann, Melissa J.

    2008-01-01

    We report the results of a national survey conducted to help public health officials understand the public’s response to community mitigation interventions for a severe outbreak of pandemic influenza. Survey results suggest that if community mitigation measures are instituted, most respondents would comply with recommendations but would be challenged to do so if their income or job were severely compromised. The results also indicate that community mitigation measures could cause problems for persons with lower incomes and for racial and ethnic minorities. Twenty-four percent of respondents said that they would not have anyone available to take care of them if they became sick with pandemic influenza. Given these results, planning and public engagement will be needed to encourage the public to be prepared. PMID:18439361

  8. GHG emission mitigation measures and technologies in the Czech Republic

    SciTech Connect

    Tichy, M.

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  9. Calculations and Mitigation of THz Mirror Heating at the Jefferson Lab FEL

    SciTech Connect

    G.P. Williams; S.V. Benson; G.H. Biallas; D. Douglas; J.G. Gubeli; G. Neil; Michelle D. Shinn; S. Zhang; O.V. Chubar; P. D. Dumas

    2005-08-21

    Short bunches of electrons in the Jefferson Lab FEL emit multiparticle coherent edge radiation as they enter the dipole prior to the outcoupler mirror. This light is more collimated than synchrotron light and furthermore is modified by interference from the last chicane magnet after the high reflector. This light provides an additional heat load on the outcoupler in a wavelength range it was not designed to handle. We have performed calculations of this effect using a new extension of the Synchrotron Radiation Workshop code which, importantly, takes into account both acceleration and velocity (or Coulomb) terms of the emitted electric field. We have also measured THz properties of some of the mirrors. We show how the addition of a decompression chicane mitigates these problems.

  10. 40 CFR 93.163 - Timing of offsets and mitigation measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Timing of offsets and mitigation... offsets and mitigation measures. (a) The emissions reductions from an offset or mitigation measure used to... offset or mitigation measure with emissions reductions in another year will not: (i) Cause or contribute...

  11. Priority mitigation measures in non-energy sector in Kazakstan

    SciTech Connect

    Mizina, S.V.; Pilifosova, O.V.; Gossen, E.F.

    1996-12-31

    Fulfilling the Commitments on UN FCCC through the U.S. Country Studies Program, Kazakstan has developed the national GHG Inventory, vulnerability and adaptation assessment and estimated the possibility of mitigation measures in certain sectors. Next step is developing National Climate Change Action Plan. That process includes such major steps as setting priorities in mitigation measures and technologies, their comprehensive evaluation, preparation implementation strategies, developing the procedure of incorporation of the National Action Plan into other development plans and programs. This paper presents programs and measures that can reduce GHG emissions in non-energy sector. Measures in land-use change and forestry, agriculture and coal mining are considered. Current situation in non-energy sector of Kazakstan is discussed. The amount of GHG emissions reduction and cost analysis presented in this paper was developed with the use of IPCC recommendations.

  12. Simulation for heat flux mitigation by gas puffing in KSTAR

    NASA Astrophysics Data System (ADS)

    Shim, Seung Bo; Kotov, Vladislav; Hong, Suk-Ho; Detlev, Reiter; Kim, Jin Yong; Na, Yong Su; Lee, Hae June

    2013-10-01

    Control of heat flux is very important to achieve high performance long pulse operation in tokamaks. There are so many efforts to reduce the heat flux like change of divertor structure, snowflake divertor, and RMP, etc. Detachment by gas puffing is used for long time to reduce the heat flux. In this paper edge plasma scenarios of KSTAR are analyzed numerically by well-known B2-Eirene code package(SOLPS4.3). High performance discharges with heating power ~ 8 MW and core flux ~ 1021 s-1 is used. Gas puffed on the outer mid-plane(OMP), both divertors is likely to stay attached. So, gas puffed on the outer target, one is near the private flux region(PFR) and the other is near the scrape-off-layer(SOL). When gas puffed near the SOL is still attached, and it is worse than gas puff from OMP because it is too close to cryo-pump. The case near the PFR shows high recycling region easily compared with OMP case. When one forth gas puffed on the PFR, results are similar with OMP case. But it is still not good for detachment operation. Detachment operation window is too small for the gas puffing on the PFR. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)(No. 2012-0000579).

  13. Pulse Mitigation and Heat Transfer Enhancement Techniques. Volume 5. Transient Liquid Movement in Heat Pipe Wicks

    DTIC Science & Technology

    1992-08-01

    pipe wall. This is not likely to be the case in the thin wicks used in most heat pipes unless severe dryout occurs. Eninger [7] studied the capillary...balance on a randomly oriented fibecr. The theoretical model required an empirical constant obtained from the experimental results. Eninger also 6...structure was utilized for this experimpnt. The two-component wick structure was utilized previously by Eninger [7], who was able to measure slight

  14. PREFERENCE EVALUATION AND DECISION SUPPORT FOR MULTIPLE UTILITIES OF HEAT MITIGATION PROJECTS

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hideharu; Nakatani, Jun; Kurisu, Kiyo; Hanaki, Keisuke

    Heat mitigation projects, such as green roof, waterfront, mist spraying and water-retentive pavement, are mainly intended to decrease outdoor temperature, while some of them have multiple utilities including increase of species, mitigation of flood, improvement of spatial design and environmental enlightenment in addition to decrease in outdoor temperature. This paper proposes and demonstrates a decision support method for alternative design based on prioritization and preference evaluation for multiple utilities of heat mitigation projects. First, applying analytic hierarchy process (AHP), the priority order of project implementation was decided based on subjective evaluation of multi-stakeholders such as benefit recipients, experts and project implementers on multiple utilities of the projects. Then, the preference structure of office workers as benefit recipients of projects was identified using conjoint analysis, each utility was evaluated in monetary value, and discussed which aspects should be emphasized on detailed project planning.

  15. Cooler paving materials for heat-island mitigation

    SciTech Connect

    Pomerantz, M.; Akbari, H.

    1998-07-01

    Many cities suffer summer daytime temperatures greater than their suburban or rural surroundings. One of the causes of this heat island phenomenon is the absorption of sunlight by dark pavements. In warm climates, the urban heating damages the environment by adding to air-conditioning demand and creating smog. If urban roads, driveways and walkways were paved with light colored, and consequently cooler, materials these penalties would be diminished. However, lighter materials may cost more than the usual asphalt materials, In this report, the dollar value of potential air conditioning and smog savings from lighter pavements is estimated, and compared to the extra cost of such roads. The extra cost is minimized if the lighter-colored coating is applied as a thin layer when normal maintenance is performed. The authors find that, in Los Angeles, increasing the albedo from 0.1 to 0.35, could produce an air-conditioning saving of $0.012/m{sub 2}-yr. and smog savings of about $0.06/m{sub 2}-yr. The present value of these savings, for the 5 year lifetime of the resurfacing, is about 5 times the annual saving, or about $0.36/m{sub 2}. (The particular climate and smog problem clearly influence this result.) Thus one could purchase a cooler material whose extra cost is this amount, with no net expense. If roads are cooler they may also last longer and thus save money.

  16. Yeast probiotic supplementation mitigates some of the negative effects of heat stress in feedlot heifers

    USDA-ARS?s Scientific Manuscript database

    Heat stress (HS) in feedlot cattle can be detrimental to performance, health and profitability; however, utilization of feed additives has the potential to mitigate some of these negative effects. Therefore, this study was designed to determine if supplementation of a combination live yeast and ye...

  17. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    model predictions of soil moisture content and soil temperature with measurements at different GCHP locations over the UK. The combined effect of environment dynamics and horizontal GCHP technical properties on long-term GCHP performance will be assessed using a detailed land surface model (JULES: Joint UK Land Environment Simulator, Meteorological Office, UK) with additional equations embedded describing the interaction between GCHP heat exchangers and the surrounding soil. However, a number of key soil physical processes are currently not incorporated in JULES, such as groundwater flow, which, especially in lowland areas, can have an important effect on the heat flow between soil and HE. Furthermore, the interaction between HE and soil may also cause soil vapour and moisture fluxes. These will affect soil thermal conductivity and hence heat flow between the HE and the surrounding soil, which will in turn influence system performance. The project will address these issues. We propose to drive an improved version of JULES (with equations to simulate GCHP exchange embedded), with long-term gridded (1 km) atmospheric, soil and vegetation data (reflecting current and future environmental conditions) to reliably assess the mitigation potential of GCHPs over the entire domain of the UK, where uptake of GCHPs has been low traditionally. In this way we can identify areas that are most suitable for the installation of GCHPs. Only then recommendations can be made to local and regional governments, for example, on how to improve the mitigation potential in less suitable areas by adjusting GCHP configurations or design.

  18. Latent heat sink in soil heat flux measurements

    USDA-ARS?s Scientific Manuscript database

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  19. Mitigation of the tracer impurity accumulation by EC heating in the LHD

    NASA Astrophysics Data System (ADS)

    Tamura, N.; Sudo, S.; Suzuki, C.; Funaba, H.; Nakamura, Y.; Tanaka, K.; Yoshinuma, M.; Ida, K.; The LHD Experiment Group

    2016-11-01

    The mitigation of a tracer impurity accumulation in the core region of high-temperature helical plasma was clearly observed by applying electron cyclotron heating (ECH) in the large helical device (LHD). In the LHD, the accumulation of impurities toward the centre of the plasma has been observed in a high-density regime. In this study, for observing clearly the behaviour of impurity ions in the plasma core, the extrinsic ‘tracer’ impurity was injected into that region by means of a tracer-encapsulated solid pellet (TESPEL). The high-density LHD plasma without ECH definitely shows the strong impurity accumulation, and then it causes the reduction in electron and ion temperatures in the core region. When ECH was applied just after the TESPEL injection, the accumulation of the tracer impurity ions was mitigated. Even after ECH was switched-off, the intensities of the line emissions from the highly-ionized tracer impurity were increased very slightly. The micro-turbulence measurement with a 2-dimensional phase contrast imaging diagnostic during ECH does not support the view that the change in the micro-turbulence would enhance the outward flow (an increase in a diffusive flux, a decrease in an inward convective flux and/or a change the direction of the convective flux from inward to outward) of the impurity ions. Moreover, at this moment, there is no conclusive data regarding a radial electric field measured with a charge exchange spectroscopy diagnostic to support the view that the change in the radial electric field would be attributed to the increment in the outward flow of the impurity ions from the core region of the LHD plasma.

  20. Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools

    PubMed Central

    Sá, Juliana P.; Branco, Pedro T. B. S.; Alvim-Ferraz, Maria C. M.; Martins, Fernando G.; Sousa, Sofia I. V.

    2017-01-01

    Indoor air pollution mitigation measures are highly important due to the associated health impacts, especially on children, a risk group that spends significant time indoors. Thus, the main goal of the work here reported was the evaluation of mitigation measures implemented in nursery and primary schools to improve air quality. Continuous measurements of CO2, CO, NO2, O3, CH2O, total volatile organic compounds (VOC), PM1, PM2.5, PM10, Total Suspended Particles (TSP) and radon, as well as temperature and relative humidity were performed in two campaigns, before and after the implementation of low-cost mitigation measures. Evaluation of those mitigation measures was performed through the comparison of the concentrations measured in both campaigns. Exceedances to the values set by the national legislation and World Health Organization (WHO) were found for PM2.5, PM10, CO2 and CH2O during both indoor air quality campaigns. Temperature and relative humidity values were also above the ranges recommended by American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). In general, pollutant concentrations measured after the implementation of low-cost mitigation measures were significantly lower, mainly for CO2. However, mitigation measures were not always sufficient to decrease the pollutants’ concentrations till values considered safe to protect human health. PMID:28561795

  1. Evaluation of Low-Cost Mitigation Measures Implemented to Improve Air Quality in Nursery and Primary Schools.

    PubMed

    Sá, Juliana P; Branco, Pedro T B S; Alvim-Ferraz, Maria C M; Martins, Fernando G; Sousa, Sofia I V

    2017-05-31

    Indoor air pollution mitigation measures are highly important due to the associated health impacts, especially on children, a risk group that spends significant time indoors. Thus, the main goal of the work here reported was the evaluation of mitigation measures implemented in nursery and primary schools to improve air quality. Continuous measurements of CO₂, CO, NO₂, O₃, CH₂O, total volatile organic compounds (VOC), PM₁, PM2.5, PM10, Total Suspended Particles (TSP) and radon, as well as temperature and relative humidity were performed in two campaigns, before and after the implementation of low-cost mitigation measures. Evaluation of those mitigation measures was performed through the comparison of the concentrations measured in both campaigns. Exceedances to the values set by the national legislation and World Health Organization (WHO) were found for PM2.5, PM10, CO₂ and CH₂O during both indoor air quality campaigns. Temperature and relative humidity values were also above the ranges recommended by American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). In general, pollutant concentrations measured after the implementation of low-cost mitigation measures were significantly lower, mainly for CO₂. However, mitigation measures were not always sufficient to decrease the pollutants' concentrations till values considered safe to protect human health.

  2. Conception of Russian launchers buildup and foremost mitigation measures

    NASA Astrophysics Data System (ADS)

    Chekalin, S. V.; Yakovlev, M. V.; Blagun, V. P.; Kulik, S. V.

    2001-10-01

    The report is devoted to the problems of building up the space launch capabilities during the transfer period of forming the Russian space launch capability system (SLCS). While developing the SLCS concept a special attention is being paid to the measures of mitigating man-made space debris population. Russian launch vehicle launches under the federal and commercial programs up to 2015 have been predicted. The measures undertaken in comparison with the obsolete technology of operating SLCS would reduce by more than two times the accumulation of SLV upper stages and boost engines in orbits and basically prevent their in-orbit breakups.

  3. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete.

    PubMed

    Mohajerani, Abbas; Bakaric, Jason; Jeffrey-Bailey, Tristan

    2017-04-13

    The Urban Heat Island (UHI) is a phenomenon that affects many millions of people worldwide. The higher temperatures experienced in urban areas compared to the surrounding countryside has enormous consequences for the health and wellbeing of people living in cities. The increased use of manmade materials and increased anthropogenic heat production are the main causes of the UHI. This has led to the understanding that increased urbanisation is the primary cause of the urban heat island. The UHI effect also leads to increased energy needs that further contribute to the heating of our urban landscape, and the associated environmental and public health consequences. Pavements and roofs dominate the urban surface exposed to solar irradiation. This review article outlines the contribution that pavements make to the UHI effect and analyses localized and citywide mitigation strategies against the UHI. Asphalt Concrete (AC) is one of the most common pavement surfacing materials and is a significant contributor to the UHI. Densely graded AC has low albedo and high volumetric heat capacity, which results in surface temperatures reaching upwards of 60 °C on hot summer days. Cooling the surface of a pavement by utilizing cool pavements has been a consistent theme in recent literature. Cool pavements can be reflective or evaporative. However, the urban geometry and local atmospheric conditions should dictate whether or not these mitigation strategies should be used. Otherwise both of these pavements can actually increase the UHI effect. Increasing the prevalence of green spaces through the installation of street trees, city parks and rooftop gardens has consistently demonstrated a reduction in the UHI effect. Green spaces also increase the cooling effect derived from water and wind sources. This literature review demonstrates that UHI mitigation techniques are best used in combination with each other. As a result of the study, it was concluded that the current mitigation

  4. 40 CFR 93.164 - Inter-precursor mitigation measures and offsets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Inter-precursor mitigation measures... § 93.164 Inter-precursor mitigation measures and offsets. Federal agencies must reduce the same type of... mitigation measures of different precursors of the same criteria pollutant, if such trades are allowed by a...

  5. Validation of a Fast-Response Urban Micrometeorological Model to Assess the Performance of Urban Heat Island Mitigation Strategies

    NASA Astrophysics Data System (ADS)

    Nadeau, D.; Girard, P.; Overby, M.; Pardyjak, E.; Stoll, R., II; Willemsen, P.; Bailey, B.; Parlange, M. B.

    2015-12-01

    Urban heat islands (UHI) are a real threat in many cities worldwide and mitigation measures have become a central component of urban planning strategies. Even within a city, causes of UHI vary from one neighborhood to another, mostly due the spatial variability in surface thermal properties, building geometry, anthropogenic heat flux releases and vegetation cover. As a result, the performance of UHI mitigation measures also varies in space. Hence, there is a need to develop a tool to quantify the efficiency of UHI mitigation measures at the neighborhood scale. The objective of this ongoing study is to validate the fast-response micrometeorological model QUIC EnvSim (QES). This model can provide all information required for UHI studies with a fine spatial resolution (up to 0.5m) and short computation time. QES combines QUIC, a CFD-based wind solver and dispersion model, and EnvSim, composed of a radiation model, a land-surface model and a turbulent transport model. Here, high-resolution (1 m) simulations are run over a subset of the École Polytechnique Fédérale de Lausanne (EPFL) campus including complex buildings, various surfaces properties and vegetation. For nearly five months in 2006-07, a dense network of meteorological observations (92 weather stations over 0.1 km2) was deployed over the campus and these unique data are used here as a validation dataset. We present validation results for different test cases (e.g., sunny vs cloudy days, different incoming wind speeds and directions) and explore the effect of a few UHI mitigation strategies on the spatial distribution of near-surface air temperatures. Preliminary results suggest that QES may be a valuable tool in decision-making regarding adaptation of urban planning to UHI.

  6. Short duration heat transfer measurements

    NASA Astrophysics Data System (ADS)

    Arts, T.; Camci, C.

    Shock tunnels, blowdown cascades, and isentropic light piston compression tubes used to study heat transfer and aerodynamic phenomena in turbine components are described. Thin film heat transfer gages, calorimeter gages, and optical measurements methods are presented. Compression tube investigations of convective heat transfer on a flat plate, with and without film cooling; and convective heat transfer on a high pressure rotor blade with and without film cooling are summarized. Results show that along the suction side, laminar to turbulent transition is strongly influenced by the presence of the leading edge cooling holes, even when no coolant flow is ejected. Along the pressure side, the boundary layer behavior is dominated by the free stream pressure gradient rather than by the existence of the cooling holes. Significant coolant temperature effects are also observed. At low blowing rate this effect is mainly observed up to 35 to 40 hole diameters downstream of the suction side ejection rows when the coolant temperature is lowered from wall temperature to half of the mainstream level. At high blowing rate, the influence of the coolant temperature is felt much further downstream.

  7. Urban heat mitigation by roof surface materials during the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Ryu, Youngryel; Jiang, Chongya

    2015-12-01

    Roof surface materials, such as green and white roofs, have attracted attention in their role in urban heat mitigation, and various studies have assessed the cooling performance of roof surface materials during hot and sunny summer seasons. However, summers in the East Asian monsoon climate region are characterized by significant fluctuations in weather events, such as dry periods, heatwaves, and rainy and cloudy days. This study investigated the efficacy of different roof surface materials for heat mitigation, considering the temperatures both at and beneath the surface of the roof covering materials during a summer monsoon in Seoul, Korea. We performed continuous observations of temperature at and beneath the surface of the roof covering materials, and manual observation of albedo and the normalized difference vegetation index for a white roof, two green roofs (grass (Poa pratensis) and sedum (Sedum sarmentosum)), and a reference surface. Overall, the surface temperature of the white roof was significantly lower than that of the grass and sedum roofs (1.1 °C and 1.3 °C), whereas the temperature beneath the surface of the white roof did not differ significantly from that of the grass and sedum roofs during the summer. The degree of cloudiness significantly modified the surface temperature of the white roof compared with that of the grass and sedum roofs, which depended on plant metabolisms. It was difficult for the grass to maintain its cooling ability without adequate watering management. After considering the cooling performance and maintenance efforts for different environmental conditions, we concluded that white roof performed better in urban heat mitigation than grass and sedum during the East Asian summer monsoon. Our findings will be useful in urban heat mitigation in the region.

  8. Urban heat mitigation by roof surface materials during the East Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Ryu, Youngryel; Jiang, Chongya

    2017-04-01

    Roof surface materials, such as green and white roofs, have attracted attention in their role in urban heat mitigation, and various studies have assessed the cooling performance of roof surface materials during hot and sunny summer seasons. However, summers in the East Asian monsoon climate region are characterized by significant fluctuations in weather events, such as dry periods, heatwaves, and rainy and cloudy days. This study investigated the efficacy of different roof surface materials for heat mitigation, considering the temperatures both at and beneath the surface of the roof covering materials during a summer monsoon in Seoul, Korea. We performed continuous observations of temperature at and beneath the surface of the roof covering materials, and manual observation of albedo and the normalized difference vegetation index (NDVI) for a white roof, two green roofs (grass [Poa pratensis] and sedum [Sedum sarmentosum]), and a reference surface. Overall, the surface temperature of the white roof was significantly lower than that of the grass and sedum roofs (1.1 and 1.3°C), whereas the temperature beneath the surface of the white roof did not differ significantly from that of the grass and sedum roofs during the summer. The degree of cloudiness significantly modified the surface temperature of the white roof compared with that of the grass and sedum roofs, which depended on plant metabolisms. It was difficult for the grass to maintain its cooling ability without adequate watering management. After considering the cooling performance and maintenance efforts for different environmental conditions, we concluded that white roof performed better in urban heat mitigation than grass and sedum during the East Asian summer monsoon. Our findings will be useful in urban heat mitigation in the region.

  9. Assessment of GHG mitigation technology measures in Ukraine

    SciTech Connect

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  10. The Urban Tree as a Tool to Mitigate the Urban Heat Island in Mexico City: A Simple Phenomenological Model.

    PubMed

    Ballinas, Mónica; Barradas, Víctor L

    2016-01-01

    The urban heat island (UHI) is mainly a nocturnal phenomenon, but it also appears during the day in Mexico City. The UHI may affect human thermal comfort, which can influence human productivity and morbidity in the spring/summer period. A simple phenomenological model based on the energy balance was developed to generate theoretical support of UHI mitigation in Mexico City focused on the latent heat flux change by increasing tree coverage to reduce sensible heat flux and air temperature. Half-hourly data of the urban energy balance components were generated in a typical residential/commercial neighborhood of Mexico City and then parameterized using easily measured variables (air temperature, humidity, pressure, and visibility). Canopy conductance was estimated every hour in four tree species, and transpiration was estimated using sap flow technique and parameterized by the envelope function method. Averaged values of net radiation, energy storage, and sensible and latent heat flux were around 449, 224, 153, and 72 W m, respectively. Daily tree transpiration ranged from 3.64 to 4.35 Ld. To reduce air temperature by 1°C in the studied area, 63 large would be required per hectare, whereas to reduce the air temperature by 2°C only 24 large trees would be required. This study suggests increasing tree canopy cover in the city cannot mitigate UHI adequately but requires choosing the most appropriate tree species to solve this problem. It is imperative to include these types of studies in tree selection and urban development planning to adequately mitigate UHI.

  11. Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation

    NASA Astrophysics Data System (ADS)

    Takakura, Jun'ya; Fujimori, Shinichiro; Takahashi, Kiyoshi; Hijioka, Yasuaki; Hasegawa, Tomoko; Honda, Yasushi; Masui, Toshihiko

    2017-06-01

    The exposure of workers to hot environments is expected to increase as a result of climate change. In order to prevent heat-related illness, it is recommended that workers take breaks during working hours. However, this would lead to reductions in worktime and labor productivity. In this study, we estimate the economic cost of heat-related illness prevention through worker breaks associated with climate change under a wide range of climatic and socioeconomic conditions. We calculate the worktime reduction based on the recommendation of work/rest ratio and the estimated future wet bulb glove temperature, which is an index of heat stresses. Corresponding GDP losses (cost of heat-related illness prevention through worker breaks) are estimated using a computable general equilibrium model throughout this century. Under the highest emission scenario, GDP losses in 2100 will range from 2.6 to 4.0% compared to the current climate conditions. On the other hand, GDP losses will be less than 0.5% if the 2.0 °C goal is achieved. The benefit of climate-change mitigation for avoiding worktime loss is comparable to the cost of mitigation (cost of the greenhouse gas emission reduction) under the 2.0 °C goal. The relationship between the cost of heat-related illness prevention through worker breaks and global average temperature rise is approximately linear, and the difference in economic loss between the 1.5 °C goal and the 2.0 °C goal is expected to be approximately 0.3% of global GDP in 2100. Although climate mitigation and socioeconomic development can limit the vulnerable regions and sectors, particularly in developing countries, outdoor work is still expected to be affected. The effectiveness of some adaptation measures such as additional installation of air conditioning devices or shifting the time of day for working are also suggested. In order to reduce the economic impacts, adaptation measures should also be implemented as well as pursing ambitious climate change

  12. Study on mitigation of pulsed heat load for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.

    2015-03-01

    One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.

  13. Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Na, Yong-Su; Hong, Sang Hee; Ahn, Joon-Wook; Kim, Deok-Kyu; Han, Hyunsun; Shim, Seong Bo; Lee, Hae June

    2012-08-01

    Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D α emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m2 in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, ˜1.0 × 1020 /s and ˜5.0 × 1018 /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.

  14. CH2M Hill Heat Stress Mitigation Efforts During Tank Farm Work Activities

    SciTech Connect

    Smoot, W.L.

    2007-07-01

    In the past, while working under the hot summer sun at the Hanford Tank Farms, workers were assigned a protective work-rest regimen and heat stress mitigation efforts were applied to prevent heat-related illnesses and minimize impacts to project schedules. In February 2006, CH2M HILL kicked off a heat stress improvement initiative led by an experienced person emphasizing the importance of worker involvement, employee education, and the application of the ALARA, or As Low As Reasonably Achievable, concepts of engineered controls, administrative controls, personal protective equipment, and physiological and work site monitoring. As a result of this initiative built upon previous years' efforts, CH2M HILL experienced increased 'wrench time' during the summer of 2006 with fewer heat-related illnesses than in previous years. (authors)

  15. The role of one large greenspace in mitigating London's nocturnal urban heat island.

    PubMed

    Doick, Kieron J; Peace, Andrew; Hutchings, Tony R

    2014-09-15

    The term urban heat island (UHI) describes a phenomenon where cities are on average warmer than the surrounding rural area. Trees and greenspaces are recognised for their strong potential to regulate urban air temperatures and combat the UHI. Empirical data is required in the UK to inform predictions on cooling by urban greenspaces and guide planning to maximise cooling of urban populations. We describe a 5-month study to measure the temperature profile of one of central London's large greenspaces and also in an adjacent street to determine the extent to which the greenspace reduced night-time UHI intensity. Statistical modelling displayed an exponential decay in the extent of cooling with increased distance from the greenspace. The extent of cooling ranged from an estimated 20 m on some nights to 440 m on other nights. The mean temperature reduction over these distances was 1.1 °C in the summer months, with a maximum of 4 °C cooling observed on some nights. Results suggest that calculation of London's UHI using Met Stations close to urban greenspace can underestimate 'urban' heat island intensity due to the cooling effect of the greenspace and values could be in the region of 45% higher. Our results lend support to claims that urban greenspace is an important component of UHI mitigation strategies. Lack of certainty over the variables that govern the extent of the greenspace cooling influence indicates that the multifaceted roles of trees and greenspaces in the UK's urban environment merit further consideration. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  16. Mitigating the effects of measurement noise on Granger causality

    SciTech Connect

    Nalatore, Hariharan; Ding Mingzhou; Rangarajan, Govindan

    2007-03-15

    Computing Granger causal relations among bivariate experimentally observed time series has received increasing attention over the past few years. Such causal relations, if correctly estimated, can yield significant insights into the dynamical organization of the system being investigated. Since experimental measurements are inevitably contaminated by noise, it is thus important to understand the effects of such noise on Granger causality estimation. The first goal of this paper is to provide an analytical and numerical analysis of this problem. Specifically, we show that, due to noise contamination (1) spurious causality between two measured variables can arise and (2) true causality can be suppressed. The second goal of the paper is to provide a denoising strategy to mitigate this problem. Specifically, we propose a denoising algorithm based on the combined use of the Kalman filter theory and the expectation-maximization algorithm. Numerical examples are used to demonstrate the effectiveness of the denoising approach.

  17. Kinematic analysis for the implementation of landslide mitigation measures

    NASA Astrophysics Data System (ADS)

    Delmonaco, Giuseppe; Margottini, Claudio; Spizzichino, Daniele

    2010-05-01

    The present work is finalised at the implementation of a landslide risk mitigation master plan of the ancient citadel of Machu Picchu. After the warning launched in March 2001, by the scientific community on potential collapse of the citadel from a near-disastrous landslide event different studies have been promoted to reconstruct landslide activity and suggest landslide risk mitigation measures for the protection and conservation of Machu Picchu cultural heritage. A site-scale analysis has been implemented following the application and integration of geomechanical classifications, ambient noise measurements and structural and kinematical analysis. The geology of the area is characterized by granitoid bodies that had been emplaced in the axial zones of the main rift system that are now exposed at the highest altitudes, together with country rocks (Precambrian and Lower Paleozoic metamorphics) originally constituting the rift ‘roots'. The bedrock of the Inca citadel of Machu Picchu is mainly composed by granite and subordinately granodiorite. This is mainly located in the lower part of the slopes. Superficially, the granite is jointed in blocks with variable dimensions, promoted by local structural setting. Single blocks vary from 10-1 to about 200 m3. Soil cover, widely outcropping in the area, is mainly composed by individual blocks and subordinately by coarse materials originated by chemical and physical weathering of minerals. Regional tectonic uplift and structural setting rule the general morphological features of the area and as a consequence, landslide type and evolution. Rock falls, rock slides, debris flows and debris slides are the main landslide typologies affecting the citadel slopes. In the last mission in May 2009, elastic and deformation rock parameters have been collected using a passive seismic innovative technique based on natural microtremor measurements and geostructural scan lines elaboration. A landslide zoning of the citadel has been

  18. Atmospheric Effects on InSAR Measurements and Their Mitigation

    PubMed Central

    Ding, Xiao-li; Li, Zhi-wei; Zhu, Jian-jun; Feng, Guang-cai; Long, Jiang-ping

    2008-01-01

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful technology for observing the Earth surface, especially for mapping the Earth's topography and deformations. InSAR measurements are however often significantly affected by the atmosphere as the radar signals propagate through the atmosphere whose state varies both in space and in time. Great efforts have been made in recent years to better understand the properties of the atmospheric effects and to develop methods for mitigating the effects. This paper provides a systematic review of the work carried out in this area. The basic principles of atmospheric effects on repeat-pass InSAR are first introduced. The studies on the properties of the atmospheric effects, including the magnitudes of the effects determined in the various parts of the world, the spectra of the atmospheric effects, the isotropic properties and the statistical distributions of the effects, are then discussed. The various methods developed for mitigating the atmospheric effects are then reviewed, including the methods that are based on PSInSAR processing, the methods that are based on interferogram modeling, and those that are based on external data such as GPS observations, ground meteorological data, and satellite data including those from the MODIS and MERIS. Two examples that use MODIS and MERIS data respectively to calibrate atmospheric effects on InSAR are also given. PMID:27873822

  19. Atmospheric Effects on InSAR Measurements and Their Mitigation.

    PubMed

    Ding, Xiao-Li; Li, Zhi-Wei; Zhu, Jian-Jun; Feng, Guang-Cai; Long, Jiang-Ping

    2008-09-03

    Interferometric Synthetic Aperture Radar (InSAR) is a powerful technology for observing the Earth surface, especially for mapping the Earth's topography and deformations. InSAR measurements are however often significantly affected by the atmosphere as the radar signals propagate through the atmosphere whose state varies both in space and in time. Great efforts have been made in recent years to better understand the properties of the atmospheric effects and to develop methods for mitigating the effects. This paper provides a systematic review of the work carried out in this area. The basic principles of atmospheric effects on repeat-pass InSAR are first introduced. The studies on the properties of the atmospheric effects, including the magnitudes of the effects determined in the various parts of the world, the spectra of the atmospheric effects, the isotropic properties and the statistical distributions of the effects, are then discussed. The various methods developed for mitigating the atmospheric effects are then reviewed, including the methods that are based on PSInSAR processing, the methods that are based on interferogram modeling, and those that are based on external data such as GPS observations, ground meteorological data, and satellite data including those from the MODIS and MERIS. Two examples that use MODIS and MERIS data respectively to calibrate atmospheric effects on InSAR are also given.

  20. Mitigation of heat stress-related complications by a yeast fermentate product.

    PubMed

    Giblot Ducray, Henri Alexandre; Globa, Ludmila; Pustovyy, Oleg; Reeves, Stuart; Robinson, Larry; Vodyanoy, Vitaly; Sorokulova, Iryna

    2016-08-01

    Heat stress results in a multitude of biological and physiological responses which can become lethal if not properly managed. It has been shown that heat stress causes significant adverse effects in both human and animals. Different approaches have been proposed to mitigate the adverse effects caused by heat stress, among which are special diet and probiotics. We characterized the effect of the yeast fermentate EpiCor (EH) on the prevention of heat stress-related complications in rats. We found that increasing the body temperature of animals from 37.1±0.2 to 40.6±0.2°C by exposure to heat (45°C for 25min) resulted in significant morphological changes in the intestine. Villi height and total mucosal thickness decreased in heat-stressed rats pre-treated with PBS in comparison with control animals not exposed to the heat. Oral treatment of rats with EH before heat stress prevented the traumatic effects of heat on the intestine. Changes in intestinal morphology of heat-stressed rats, pre-treated with PBS resulted in significant elevation of lipopolysaccharides (LPS) level in the serum of these animals. Pre-treatment with EH was effective in the prevention of LPS release into the bloodstream of heat-stressed rats. Our study revealed that elevation of body temperature also resulted in a significant increase of the concentration of vesicles released by erythrocytes in rats, pre-treated with PBS. This is an indication of a pathological impact of heat on the erythrocyte structure. Treatment of rats with EH completely protected their erythrocytes from this heat-induced pathology. Finally, exposure to heat stress conditions resulted in a significant increase of white blood cells in rats. In the group of animals pre-treated with EH before heat stress, the white blood cell count remained the same as in non-heated controls. These results showed the protective effect of the EH product in the prevention of complications, caused by heat stress.

  1. Enforcement of mitigation measures resulting from environmental impact assessment

    NASA Astrophysics Data System (ADS)

    Hollick, Malcolm

    1981-11-01

    Until recently, relatively little attention has been paid to the problem of enforcing mitigation measures identified in environmental impact assessment. Present or proposed enforcement systems in the USA, New South Wales, South Australia, and Western Australia are described and discussed. Although the best enforcement system would depend on the local social, political, and legal systems, five universally desirable features are identified. First, a comprehensive coordinated monitoring and reassessment system is needed. Second, the agencies concerned must have adequate resources to do the work and incentives to carry it out well. Third, there must be the necessary legal powers. Fourth, provision must be made for changing the conditions based on experience. And fifth, the system should be equally effective against private companies and public authorities.

  2. Effects of road mortality and mitigation measures on amphibian populations.

    PubMed

    Beebee, Trevor J C

    2013-08-01

    Road mortality is a widely recognized but rarely quantified threat to the viability of amphibian populations. The global extent of the problem is substantial and factors affecting the number of animals killed on highways include life-history traits and landscape features. Secondary effects include genetic isolation due to roads acting as barriers to migration. Long-term effects of roads on population dynamics are often severe and mitigation methods include volunteer rescues and under-road tunnels. Despite the development of methods that reduce road kill in specific locations, especially under-road tunnels and culverts, there is scant evidence that such measures will protect populations over the long term. There also seems little likelihood that funding will be forthcoming to ameliorate the problem at the scale necessary to prevent further population declines. © 2013 Society for Conservation Biology.

  3. Uncertainty of Mitigation Measures to Floods in Jeddah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al Saud, M.

    2011-12-01

    As an aspect of the changing climatic conditions and anthropogenic impact; however, floods and torrents have been recently existed in Jeddah, the coastal Saudi city along the Red Sea. Distributed over 28 surface water basins, totaling an area of more than 2500km2, floods cover more than 15% of the area. This is well pronounced in 2009 and 2011, and it was attributed mainly to the torrential rainfall peaks the area witnesses lately. In addition, there is a chaotic urban distribution from the coastal zone to the adjacent mountain chains to the east, where torrential water runs towards the coast. A detailed assessment has been obtained using advanced space tools (e.g. high-resolution satellite images), and the application was carried out on several aspects of these images and at different dates. This was accomplished in combination the applications of geo-spatial systems to induce the mechanism of water flow regime and to identify the major reasons behind the high risk magnitude. Consequently, the geomorphologic and hydrologic parameters for flood occurrence were recognized. In the light of this catastrophic status; however, mitigation measures are rare enough to protect the area under risk. Recently, and after the 2009 and the recurrent 2011 disasters, which were resulted from floods, some mitigation measures have been undertaken and others were proposed. However, there is still uncertainty for an integrated flood control system. This can be viewed from the unsuitability of the selected sites and erroneous applications for flood controls. Besides, there is a lack to: 1) a giant channeling system for the risk area, 2) check dams, 3) ponds for water collection, 4) sediments-fixing controls, 5) traced watercourses. This is in addition to absence of proper legislation to prevent chaotic urban activities along valleys' pathways.

  4. 49 CFR 192.935 - What additional preventive and mitigative measures must an operator take?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false What additional preventive and mitigative measures... STANDARDS Gas Transmission Pipeline Integrity Management § 192.935 What additional preventive and mitigative... those already required by Part 192 to prevent a pipeline failure and to mitigate the consequences of a...

  5. Mitigation of biofouling using electromagnetic fields in tubular heat exchangers-condensers cooled by seawater.

    PubMed

    Trueba, Alfredo; García, Sergio; Otero, Félix M

    2014-01-01

    Electromagnetic field (EMF) treatment is presented as an alternative physical treatment for the mitigation of biofouling adhered to the tubes of a heat exchanger-condenser cooled by seawater. During an experimental phase, a fouling biofilm was allowed to grow until experimental variables indicated that its growth had stabilised. Subsequently, EMF treatment was applied to seawater to eliminate the biofilm and to maintain the achieved cleanliness. The results showed that EMFs precipitated ions dissolved in the seawater. As a consequence of the application of EMFs, erosion altered the intermolecular bonding of extracellular polymers, causing the destruction of the biofilm matrix and its detachment from the inner surface of the heat exchanger-condenser tubes. This detachment led to the partial removal of a mature biofilm and a partial recovery of the efficiency lost in the heat transfer process by using a physical treatment that is harmless to the marine environment.

  6. The impact of green areas in mitigation of urban heat island

    NASA Astrophysics Data System (ADS)

    Zaninovic, Ksenija

    2016-04-01

    In the framework of the project REPUBLICMED (REtroffiting PUBLic spaces in Intelligent MEDiterranean Cities) co-financed by the European Union, the changes in urban structure have to be proposed in order to mitigate the urban heat island in Zadar, Croatia. The intention is to compare thermal perception for selected locations in Zadar in the present situation and after proposed changes in different parts of the year. For that purpose, four days in different seasons were selected. For winter and summer, the days with extreme minimum and maximum temperatures were selected, whilst for spring and autumn the days in the middle of seasons (April and October) with mean temperatures similar to the corresponding mean seasonal temperatures were selected. All selected days were mainly clear or with small cloudiness resulting with maximum solar radiation. The thermal perception was calculated by means of biometeorological index based on energy equilibrium between human body and environment - physiologically equivalent temperature (PET). In the first analysis, daily courses of biometeorological index for selected situations based on hourly data were compared. During warmest parts of the day in summer the thermal perception differs up to 5°C under the tree shadow, while the differences in other seasons are smaller. The second analysis included the differences in the distribution of frequencies of thermal perception in the warmest part of the day (2 p.m.) throughout the year for selected locations. It is performed using meteorological data measured at the meteorological station Zadar in the 30-year climate period 1981-2010. The results have revealed the reduction in the frequency of sensations of hot and very hot (PET > 35°C or 41°C) under the shadow of the trees during summer, at the rate of up to 25% comparing to the situation before modification (without trees).

  7. Overview of mitigation policies and measures in the forestry sector

    SciTech Connect

    Sathaye, J.

    1996-12-31

    In this paper the author addresses questions on how the forestry sector can make a contribution to the general problem of greenhouse gases in the environment. Primarily this is in the form of carbon conservation and sequestering. There is a potential land area for conservation and sequestration estimated to be 700 Mha. The total carbon that could be sequestered and conserved globally by 2050 on this land is 60 - 87 GtC. Slowing deforestation, assisting regeneration, forestation and agroforestry are the primary mitigation measures for carbon conservation and sequestration. For long term success, enforcement to halt deforestation has to be accompained by economic and/or other benefits to the deforesters that equal or exceed their current remuneration. Making plantations a significant fuel for utility electricity generation will require higher biomass yields and thermal efficiency matching that of conventional plants. Significant reduction of global carbon emissions requires national governments to institute measures that provide local, national, economic and other benefits while conserving and sequestering carbon.

  8. Probe Measures Fouling As In Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  9. Probe Measures Fouling As In Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  10. Human Factors Research for Space Exploration: Measurement, Modeling, and Mitigation

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Allen, Christopher S.; Barshi, Immanuel; Billman, Dorrit; Holden, Kritina L.

    2010-01-01

    As part of NASA's Human Research Program, the Space Human Factors Engineering Project serves as the bridge between Human Factors research and Human Spaceflight applications. Our goal is to be responsive to the operational community while addressing issues at a sufficient level of abstraction to ensure that our tools and solutions generalize beyond the point design. In this panel, representatives from four of our research domains will discuss the challenges they face in solving current problems while also enabling future capabilities. Historically, engineering-dominated organizations have tended to view good Human Factors (HF) as a desire rather than a requirement in system design and development. Our field has made significant gains in the past decade, however; the Department of Defense, for example, now recognizes Human-System Integration (HSI), of which HF is a component, as an integral part of their divisions hardware acquisition processes. And our own agency was far more accepting of HF/HSI requirements during the most recent vehicle systems definition than in any prior cycle. Nonetheless, HF subject matter experts at NASA often find themselves in catch up mode... coping with legacy systems (hardware and software) and procedures that were designed with little regard for the human element, and too often with an attitude of we can deal with any operator issues during training. Our challenge, then, is to segregate the true knowledge gaps in Space Human Factors from the prior failures to incorporate best (or even good) HF design principles. Further, we strive to extract the overarching core HF issues from the point-design-specific concerns that capture the operators (and managers) attention. Generally, our approach embraces a 3M approach to Human Factors: Measurement, Modeling, and Mitigation. Our first step is to measure human performance, to move from subjective anecdotes to objective, quantified data. Next we model the phenomenon, using appropriate methods in

  11. Heat transfer measurements with TOIRT method

    NASA Astrophysics Data System (ADS)

    Solnař, S.; Petera, K.; Dostál, M.; Jirout, T.

    Temperature Oscillation Infra-Red Thermography (TOIRT) method was used to measure heat transfer coefficients between a at surface and a confined impinging jet generated by an impeller in a difusor and baffled vessel. The TOIRT method is based on measuring a phase-lag between the oscillating heat flux applied to the heat transfer surface and the surface temperature response using a contactless infra-red camera. The phase lag is in a direct relationship with the heat transfer coefficient.

  12. Climate benefits of changes in agricultural practices in the context of heat wave mitigation

    NASA Astrophysics Data System (ADS)

    Davin, E.; Seneviratne, S. I.; Ciais, P.; Olioso, A.; Wang, T.

    2014-12-01

    About half of the terrestrial biosphere is under direct human influence through land management (i.e., agricultural areas and managed forests). Changing management practices is therefore a promising avenue for climate change mitigation. The mitigation potential arising from changes in land management practices has been mainly evaluated in terms of carbon storage and GHG emissions [2]. On the other hand, these practices can also influence climate by altering the physical properties of the land surface, but these effects have received less attention so far. Here we show that peak temperatures during heat heaves can be attenuated through cropland albedo management [2]. We first present observational evidence that a substantial summer albedo increase can be obtained by switching from conventional to no-till agriculture. Then, using a regional climate model, we investigate the biogeophysical effect of a full conversion to no-till management over Europe. The cooling effect owing to albedo increase under no-till farming appears to be strongly amplified during warm events. This is due to the low cloud cover during these events, thus leading to a more efficient radiative cooling from albedo change. This implies a strong potential of no-till farming to mitigate heat wave impacts. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect remains the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 degrees. These findings strongly suggest that the biogeophysical effect of management practices should be considered in the design of climate mitigation policies involving land management. References:[1] Smith, P. et al. (2014): Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel

  13. Mitigating the Urban Heat Island under Climate Change through Urban Management

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Lee, X.; Oleson, K. W.; Schultz, N. M.; Smith, R. B.

    2015-12-01

    The urban heat island (UHI) represents ubiquitous urban warmth compared to surrounding rural areas. This phenomenon, when compounded with future climate warming, will exacerbate heat stress on urban residents who will comprise 70% of the world's population by 2070. At the same time, urban climate adaptation plans have shown great potential for reducing the impacts of global change. In this study, we assess three mitigation strategies, including reflective roofs, green roofs, and street trees, to ameliorate the warming under climate change through both "online" and "offline" methods. The "online" method compares modeling results from a modified urban roof albedo configuration (ALB-MOD) where the roof albedo is raised to a high reflective value to the modeling results from the default configuration (CTRL), both using the Community Earth System Model (CESM). Three pairs of simulations under current climate forcing and two future scenarios (RCP4.5 and RCP8.5) are conducted. The "offline" method uses a surface temperature attribution solution derived previously for partitioning the UHI intensity to assess the efficacy of the mitigation strategies. The "offline" method supplements the "online" method in assessing green roof and street tree strategies, because the current design of CESM does not have explicit vegetation in the urban canopy configuration. The excellent agreement between the "online" and "offline" results confirms the validity of the offline scheme, supporting that the "offline" method can be used to predict the impacts of various urban adaptation strategies for development planning. Results show that albedo management is the most effective and viable way to mitigate UHIs, whereas although green roof and street trees strategies have evaporative cooling effects, the cooling is compensated by vegetation's lower albedo, showing much less effectiveness on UHI mitigation. Although convection efficiency associated with the surface roughness is an important

  14. Are cooler surfaces a cost-effect mitigation of urban heat islands?

    DOE PAGES

    Pomerantz, Melvin

    2017-04-20

    Much research has gone into technologies to mitigate urban heat islands by making urban surfaces cooler by increasing their albedos. To be practical, the benefit of the technology must be greater than its cost. Here, this report provides simple methods for quantifying the maxima of some benefits that albedo increases may provide. The method used is an extension of an earlier paper that estimated the maximum possible electrical energy saving achievable in an entire city in a year by a change of albedo of its surfaces. The present report estimates the maximum amounts and monetary savings of avoided CO2 emissionsmore » and the decreases in peak power demands. As examples, for several warm cities in California, a 0.2 increase in albedo of pavements is found to reduce CO2 emissions by < 1 kg per m2 per year. At the current price of CO2 reduction in California, the monetary saving is < US$ 0.01 per year per m2 modified. The resulting maximum peak-power reductions are estimated to be < 7% of the base power of the city. In conclusion, the magnitudes of the savings are such that decision-makers should choose carefully which urban heat island mitigation techniques are cost effective.« less

  15. The effectiveness of cool and green roofs as urban heat island mitigation strategies

    NASA Astrophysics Data System (ADS)

    Li, Dan; Bou-Zeid, Elie; Oppenheimer, Michael

    2014-05-01

    Mitigation of the urban heat island (UHI) effect at the city-scale is investigated using the Weather Research and Forecasting (WRF) model in conjunction with the Princeton Urban Canopy Model (PUCM). Specifically, the cooling impacts of green roof and cool (white/high-albedo) roof strategies over the Baltimore-Washington metropolitan area during a heat wave period (7 June-10 June 2008) are assessed using the optimal set-up of WRF-PUCM described in the companion paper by Li and Bou-Zeid (2014). Results indicate that the surface UHI effect (defined based on the urban-rural surface temperature difference) is reduced significantly more than the near-surface UHI effect (defined based on urban-rural 2 m air temperature difference) when these mitigation strategies are adopted. In addition, as the green and cool roof fractions increase, the surface and near-surface UHIs are reduced almost linearly. Green roofs with relatively abundant soil moisture have comparable effect in reducing the surface and near-surface UHIs to cool roofs with an albedo value of 0.7. Significant indirect effects are also observed for both green and cool roof strategies; mainly, the low-level advection of atmospheric moisture from rural areas into urban terrain is enhanced when the fraction of these roofs increases, thus increasing the humidity in urban areas. The additional benefits or penalties associated with modifications of the main physical determinants of green or cool roof performance are also investigated. For green roofs, when the soil moisture is increased by irrigation, additional cooling effect is obtained, especially when the ‘unmanaged’ soil moisture is low. The effects of changing the albedo of cool roofs are also substantial. These results also underline the capabilities of the WRF-PUCM framework to support detailed analysis and diagnosis of the UHI phenomenon, and of its different mitigation strategies.

  16. 'Heat from Above' Heat Capacity Measurements in Liquid He-4

    NASA Technical Reports Server (NTRS)

    Lee, R. A. M.; Chatto, A.; Sergatskov, D. A.; Babkin, A. V.; Boyd, S. T. P.; Churilov, A. M.; McCarson, T. D.; Chui, T. C. P.; Day, P. K.; Dunca, R. V.

    2003-01-01

    We have made heat capacity measurements of superfluid He-4 at temperatures very close to the lambda point, T(sub lambda) , in a constant heat flux, Q, when the helium sample is heated from above. In this configuration the helium enters a self-organized (SOC) heat transport state at a temperature T(sub SOC)(Q), which for Q greater than or = 100 nW/sq cm lies below T(sub lambda). At low Q we observe little or no deviation from the bulk Q = 0 heat capacity up to T(sub SOC)(Q); beyond this temperature the heat capacity appears to be sharply depressed, deviating dramatically from its bulk behaviour. This marks the formation and propagation of a SOC/superfluid two phase state, which we confirm with a simple model. The excellent agreement between data and model serves as an independent confirmation of the existence of the SOC state. As Q is increased (up to 6 micron W/sq cm) we observe a Q dependant depression in the heat capacity that occurs just below T(sub SOC)(Q), when the entire sample is still superfluid. This is due to the emergence of a large thermal resistance in the sample, which we have measured and used to model the observed heat capacity depression. Our measurements of the superfluid thermal resistivity are a factor of ten larger than previous measurements by Baddar et al.

  17. Modeling of the Urban Heat Island (UHI) using WRF - Assessment of adaptation and mitigation strategies for the city of Stuttgart.

    NASA Astrophysics Data System (ADS)

    Fallmann, Joachim; Suppan, Peter; Emeis, Stefan

    2013-04-01

    Cities are warmer than their surroundings (called urban heat island, UHI). UHI influence urban atmospheric circulation, air quality, and ecological conditions. UHI leads to upward motion and compensating near-surface inflow from the surroundings which import rural trace substances. Chemical and aerosol formation processes are modified due to increased temperature, reduced humidity and modified urban-rural trace substance mixtures. UHIs produce enhanced heat stress for humans, animals and plants, less water availability and modified air quality. Growing cities and Climate Change will aggravate the UHI and its effects and urgently require adaptation and mitigation strategies. Prior to this, UHI properties must be assessed by surface observations, ground- and satellite-based vertical remote sensing and numerical modelling. The Weather Research and Forecasting Model (WRF) is an instrument to simulate and assess this phenomenon based on boundary conditions from observations and global climate models. Three urbanization schemes are available with WRF, which are tested during this study for different weather conditions in central Europe and will be enhanced if necessary. High resolution land use maps are used for this modeling effort. In situ measurements and Landsat thermal images are employed for validation of the results. The study will focus on the city of Stuttgart located in the south western part of Germany that is situated in a caldera-like orographic feature. This municipality has a long tradition in urban climate research and thus is well equipped with climatologic measurement stations. By using Geographical Information Systems (GIS), it is possible to simulate several scenarios for different surface properties. By increasing the albedo of roof and wall layers in the urban canopy model or by replacing urban land use by natural vegetation, simple urban planning strategies can be tested and the effect on urban heat island formation and air quality can be

  18. Using Remote Sensing Data and Research Results for Urban Heat Island Mitigation

    NASA Technical Reports Server (NTRS)

    Estes, Maury; Luvall, Jeffrey

    1999-01-01

    This paper provides information on the characteristics of the urban heat island, research designed to provide the data needed to develop effective urban heat island reduction strategies, and the development of local working groups to develop implementation plans. As background, an overview of research results on the urban heat island phenomenon and the resultant effect on energy usage and air quality will be explored. The use of more reflective roofing materials, paving materials, tree planting, and other initiatives will be explored as a basis for strategies to mitigate urban heat islands and improve the urban environment. Current efforts to use aircraft remote sensing data in Atlanta, Baton Rouge, Sacramento, and Salt Lake City and our work with non-profit organizations designated to lead public education and strategic development efforts will be presented. Efforts to organize working groups comprised of key stakeholders, the process followed in communicating research results, and methodology for soliciting feedback and incorporating ideas into local plans, policies and decision-making will be discussed. Challenges in developing and transferring data products and research results to stakeholders will be presented. It is our ultimate goal that such efforts be integrated into plans and/or decision models that encourage sustainable development.

  19. Using Remote Sensing Data and Research Results for Urban Heat Island Mitigation

    NASA Technical Reports Server (NTRS)

    Estes, Maury; Luvall, Jeffrey

    1999-01-01

    This paper provides information on the characteristics of the urban heat island, research designed to provide the data needed to develop effective urban heat island reduction strategies, and the development of local working groups to develop implementation plans. As background, an overview of research results on the urban heat island phenomenon and the resultant effect on energy usage and air quality will be explored. The use of more reflective roofing materials, paving materials, tree planting, and other initiatives will be explored as a basis for strategies to mitigate urban heat islands and improve the urban environment. Current efforts to use aircraft remote sensing data in Atlanta, Baton Rouge, Sacramento, and Salt Lake City and our work with non-profit organizations designated to lead public education and strategic development efforts will be presented. Efforts to organize working groups comprised of key stakeholders, the process followed in communicating research results, and methodology for soliciting feedback and incorporating ideas into local plans, policies and decision-making will be discussed. Challenges in developing and transferring data products and research results to stakeholders will be presented. It is our ultimate goal that such efforts be integrated into plans and/or decision models that encourage sustainable development.

  20. Hydraulic analysis of measures for flood mitigation in floodplain

    NASA Astrophysics Data System (ADS)

    Valentova, J.; Valenta, P.; Weyskrabova, L.; Dostal, T.

    2012-04-01

    The question of possible flood control and flood mitigation measures and their effects is still challenging. While the effect of purely technical flood control measures such as dams or levees is sufficiently described by using any of widely spread or more specific models, the effectiveness of close-to-nature ones (river restoration, appropriate land use, landscape structure regeneration, etc.) is not adequately verified and quantified. On that account, the benefits and feasibility of integration of the natural potential of floodplains to absorb and transform flood wave is being discussed. In addition, there are many side benefits of close-to-nature measures which are hard to evaluate and include into decision making processes. This contribution presents a part of the study related to river and floodplain restoration and revitalization measures in catchments and their flood-control effect. In the study the possibilities of using one-dimensional (HEC-RAS) and two-dimensional hydraulic mathematical models (FAST2D, DIFEM2D) of steady and unsteady flow for estimation of transformation effects of a floodplain were compared. The comparison of used models was made with respect to computed results and also to the availability of input data, mathematical stability, processes and accuracy demands and time requirements. The above mentioned methods of hydraulic modelling were applied to three case study localities in the Czech Republic. The parts of river channels and their floodplain differ in terms of morphology, river channel form and training situation and land-use. Case study areas were selected to represent the main types of floodplains within the Czech Republic for their further classification related to flood wave transformation potential. The transformation effect is compared not only for the natural state of the floodplain, but also for various theoretical scenarios in each locality. Keywords Hydraulic modelling, flood control, floodplain, storage capacity, river

  1. High Resolution Convective Heat Transfer Measurements

    DTIC Science & Technology

    2001-05-30

    ONR Thermal Materials Workshop 2001 1 HIGH RESOLUTION CONVECTIVE HEAT TRANSFER MEASUREMENTS Peter Ireland and Terry Jones R-R UTC in Heat Transfer...temperatures. • Fluid dynamics correct through use of Reynolds number, Mach number and Prandtl number. Mach)Pr,(Re,fNu Dimensionless heat transfer...depends on local h su rf ac e te m p T s gas temperature Tg timestart of test hTc Calibration Test data ONR Thermal Materials Workshop 2001 10 Heat

  2. Experimental and Numerical Studies of the Effects of Water Sprinkling on Urban Pavement on Heat Island Mitigation

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Tosaka, H.; Nakagawa, K.

    2007-12-01

    One of the main causes of 'heat island phenomeno' is thought to be the artificial covers of the ground surface with asphalt or concrete which reduce greatly inherent cooling effect of water evaporation from soil surface. In this study, as a candidate method of mitigating the heat island the effects of the 'water sprinkling' on the pavements are discussed from field experiments and numerical studies. Three field experiments of water sprinkling on the asphalt/concrete pavements were performed in hot summer days in 2004-2006. For detecting the change in temperatures, the authors developed and used a 3-D measurements system which consists of two vertical planes with 6m high and 16m wide, and has network arrays of 102 thermistors distributed spatially in the planes. The temperatures measured in and around the water sprinkled area indicated that the ground surface temperature decreased 5 to 15 degrees uniformly in the water sprinkled area compared with those in the un-sprinkled area, while the relative decrease of atmospheric temperature was approximately up to 1 degree. The subsurface temperature at a depth of 14cm under the pavement decreased significantly and kept lower than that at the same depth in un-sprinkled area over the next morning. A numerical model was developed and applied to interpret the experimental results. It deals with the heat balance of radiation, sensible/latent heat transfer at the ground surface and heat conduction through the artificial and natural soil layer under ground. temperature and vapor conditions changes at and near ground surface were modeled by using the bulk formula.Good agreements between the calculated time-temperature profiles and the experimental ones were obtained by assuming adequate physical parameters and meteorological conditions. The model could be improved in order to evaluate the changes of temperature and vapor contents in atmosphere near the ground surface caused by aerodynamic turbulent diffusion.

  3. 30 CFR 250.223 - What mitigation measures information must accompany the EP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What mitigation measures information must accompany the EP? 250.223 Section 250.223 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Contents of Exploration Plans (ep) § 250.223 What mitigation measures information must accompany the EP?...

  4. Assessment of human thermal comfort and mitigation measures in different urban climatotopes

    NASA Astrophysics Data System (ADS)

    Müller, N.; Kuttler, W.

    2012-04-01

    This study analyses thermal comfort in the model city of Oberhausen as an example for the densely populated metropolitan region Ruhr, Germany. As thermal loads increase due to climate change negative impacts especially for city dwellers will arise. Therefore mitigation strategies should be developed and considered in urban planning today to prevent future thermal stress. The method consists of the combination of in-situ measurements and numerical model simulations. So in a first step the actual thermal situation is determined and then possible mitigation strategies are derived. A measuring network was installed in eight climatotopes for a one year period recording air temperature, relative humidity, wind speed and wind direction. Based on these parameters the human thermal comfort in terms of physiological equivalent temperature (PET) was calculated by RayMan Pro software. Thus the human comfort of different climatotopes was determined. Heat stress in different land uses varies, so excess thermal loads in urban areas could be detected. Based on the measuring results mitigation strategies were developed, such as increasing areas with high evaporation capacity (green areas and water bodies). These strategies were implemented as different plan scenarios in the microscale urban climate model ENVI-met. The best measure should be identified by comparing the range and effect of these scenarios. Simulations were run in three of the eight climatotopes (city center, suburban and open land site) to analyse the effectiveness of the mitigation strategies in several land use structures. These cover the range of values of all eight climatotopes and therefore provide representative results. In the model area of 21 ha total, the modified section in the different plan scenarios was 1 ha. Thus the effect of small-scale changes could be analysed. Such areas can arise due to population decline and structural changes and hold conversion potential. Emphasis was also laid on analysing the

  5. Measuring Specific Heats at High Temperatures

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  6. Thermographic heat transfer measurements in separated flows

    NASA Astrophysics Data System (ADS)

    Scherer, V.; Wittig, S.; Bittlinger, G.; Pfeiffer, A.

    1993-12-01

    A measurement technique to determine the surface heat transfer distribution in complex turbulent flows is described. For this purpose, a constant wall heat flux test surface has been designed. To measure the surface temperature of the test plate, an infrared camera was used. The instrumentation allows the determination of the heat transfer with high accuracy and detailed spatial resolution. In examining combustor-type separated flow, the capabilities of the technique are demonstrated and its accuracy is verified by appropriate conventional techniques.

  7. Thwarting Phytophthora ramorum: a proposed disease cycle with mitigation measures

    Treesearch

    Betsy Randall-Schadel; Scott Redlin

    2006-01-01

    Phytophthora ramorum has become increasingly disruptive to the movement of nursery stock since it was described in 2001. Risk and mitigation assessments for P. ramorum have been done or are underway by APHIS. Because of the impact of this pathogen on forests and the nursery industry, accelerated research efforts are underway....

  8. Find a Radon Test Kit or Measurement and Mitigation Professional

    EPA Pesticide Factsheets

    Find a qualified radon service professional to fix or mitigate your home. If you have questions about a radon, you should contact your state radon contact and/or contact one or both of the two privately-run National Radon Proficiency Programs

  9. Latent Heating from TRMM Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Tao, W.; Takayabu, Y. N.; Shige, S.; Lang, S. E.; Olson, W. S.

    2012-12-01

    Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has been developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generated from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  10. Seebeck Coefficient Measured With Differential Heat Pulses

    NASA Technical Reports Server (NTRS)

    Zoltan, L.; Wood, C.; Stapfer, G.

    1986-01-01

    Common experimental errors reduced because pulse technique suppresses drifts in thermoelectric measurements. Differential-heat-pulse apparatus measures Seebeck coefficient in semiconductors at temperatures up to 1,900 K. Sample heated to measuring temperature in furnace. Ends of sample then differentially heated a few degrees more by lamps. Differential temperature rise and consequent Seebeck voltage measured via thermocouple leads. Because pulse technique used, errors that often arise from long-term drifts in thermoelectric measurements suppressed. Apparatus works with temperature differences of only few degrees, further increasing accuracy of coefficients obtained.

  11. Evaluating the effectiveness of flood damage mitigation measures by the application of propensity score matching

    NASA Astrophysics Data System (ADS)

    Hudson, P.; Botzen, W. J. W.; Kreibich, H.; Bubeck, P.; Aerts, J. C. J. H.

    2014-07-01

    The employment of damage mitigation measures (DMMs) by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the damage mitigation measures' effectiveness from survey data, one needs to control for sources of bias. A biased estimate can occur if risk characteristics differ between individuals who have, or have not, implemented mitigation measures. This study removed this bias by applying an econometric evaluation technique called propensity score matching (PSM) to a survey of German households along three major rivers that were flooded in 2002, 2005, and 2006. The application of this method detected substantial overestimates of mitigation measures' effectiveness if bias is not controlled for, ranging from nearly EUR 1700 to 15 000 per measure. Bias-corrected effectiveness estimates of several mitigation measures show that these measures are still very effective since they prevent between EUR 6700 and 14 000 of flood damage per flood event. This study concludes with four main recommendations regarding how to better apply propensity score matching in future studies, and makes several policy recommendations.

  12. Evaluating the effectiveness of flood damage mitigation measures by the application of Propensity Score Matching

    NASA Astrophysics Data System (ADS)

    Hudson, P.; Botzen, W. J. W.; Kreibich, H.; Bubeck, P.; Aerts, J. C. J. H.

    2014-01-01

    The employment of damage mitigation measures by individuals is an important component of integrated flood risk management. In order to promote efficient damage mitigation measures, accurate estimates of their damage mitigation potential are required. That is, for correctly assessing the damage mitigation measures' effectiveness from survey data, one needs to control for sources of bias. A biased estimate can occur if risk characteristics differ between individuals who have, or have not, implemented mitigation measures. This study removed this bias by applying an econometric evaluation technique called Propensity Score Matching to a survey of German households along along two major rivers major rivers that were flooded in 2002, 2005 and 2006. The application of this method detected substantial overestimates of mitigation measures' effectiveness if bias is not controlled for, ranging from nearly € 1700 to € 15 000 per measure. Bias-corrected effectiveness estimates of several mitigation measures show that these measures are still very effective since they prevent between € 6700-14 000 of flood damage. This study concludes with four main recommendations regarding how to better apply Propensity Score Matching in future studies, and makes several policy recommendations.

  13. Measuring Heat-Exchanger Water Leakage

    NASA Technical Reports Server (NTRS)

    Zampiceni, J.

    1986-01-01

    Water leakage in heat exchanger measured directly with help of electroytic hygrometer. In new technique, flow of nitrogen gas set up in one loop of heat exchanger. Other loop filled with water under pressure. Water concentration produced by leakage of water into nitrogen flow measured by hygrometer. New measurement method determines water concentrations up to 2,000 parts per million with accuracy of +/- 5 percent.

  14. Experimental study designs to improve the evaluation of road mitigation measures for wildlife.

    PubMed

    Rytwinski, Trina; van der Ree, Rodney; Cunnington, Glenn M; Fahrig, Lenore; Findlay, C Scott; Houlahan, Jeff; Jaeger, Jochen A G; Soanes, Kylie; van der Grift, Edgar A

    2015-05-01

    An experimental approach to road mitigation that maximizes inferential power is essential to ensure that mitigation is both ecologically-effective and cost-effective. Here, we set out the need for and standards of using an experimental approach to road mitigation, in order to improve knowledge of the influence of mitigation measures on wildlife populations. We point out two key areas that need to be considered when conducting mitigation experiments. First, researchers need to get involved at the earliest stage of the road or mitigation project to ensure the necessary planning and funds are available for conducting a high quality experiment. Second, experimentation will generate new knowledge about the parameters that influence mitigation effectiveness, which ultimately allows better prediction for future road mitigation projects. We identify seven key questions about mitigation structures (i.e., wildlife crossing structures and fencing) that remain largely or entirely unanswered at the population-level: (1) Does a given crossing structure work? What type and size of crossing structures should we use? (2) How many crossing structures should we build? (3) Is it more effective to install a small number of large-sized crossing structures or a large number of small-sized crossing structures? (4) How much barrier fencing is needed for a given length of road? (5) Do we need funnel fencing to lead animals to crossing structures, and how long does such fencing have to be? (6) How should we manage/manipulate the environment in the area around the crossing structures and fencing? (7) Where should we place crossing structures and barrier fencing? We provide experimental approaches to answering each of them using example Before-After-Control-Impact (BACI) study designs for two stages in the road/mitigation project where researchers may become involved: (1) at the beginning of a road/mitigation project, and (2) after the mitigation has been constructed; highlighting real case

  15. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  16. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E.; Olson, W.

    2005-01-01

    Rainfall production is a fundamental process within the Earth;s hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations with the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional amount of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the spacetime structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has and continues to be developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generate from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  17. Space debris mitigation measures applied to European launchers

    NASA Astrophysics Data System (ADS)

    Bonnal, Christophe; Gigou, Jacques; Aubin, Didier

    2009-12-01

    In November 1986, more than 20 years ago, an H8 upper stage of Ariane 1 exploded in orbit nine months after the end of its mission. So as to avoid the generation of debris in low Earth orbit, a dedicated complementary development modified the design, introducing systematic passivation of the stage. Ever since this event, space debris mitigation has been a major concern for all launcher activities in Europe. After a short recall of the launchers currently operated by Arianespace as well as those currently developed by ESA with CNES, particularly for the safeguard authority, including the most promising future evolutions, the set of applicable regulations is described. These rules are fundamentally derived from the IADC Guidelines (hence the UNCOPUOS ones), translated into European Code of Conduct and in some more applicable Standards, such as the one prepared by ESA. The process of preparing ISO standards, mainly through the ECSS Working Group, is also described. Three major families can be identified: minimization of Mission Related Objects, Passivation of stages at the end of mission, and orbital protected zones including the so-called 25-year rule. The paper describes how European launchers do or will fulfill these applicable standards, quantifying the efficiency of the mitigation rules, and describing improvement actions currently under study.

  18. 13 CFR 123.402 - Can your business include its relocation as a mitigation measure in an application for a pre...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... relocation as a mitigation measure in an application for a pre-disaster mitigation loan? 123.402 Section 123... Mitigation Loans § 123.402 Can your business include its relocation as a mitigation measure in an application for a pre-disaster mitigation loan? Yes, you may request a pre-disaster mitigation loan for the...

  19. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  20. 30 CFR 550.223 - What mitigation measures information must accompany the EP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... protected species may be incidentally taken by planned exploration activities, you must include mitigation measures designed to avoid or minimize the incidental take of: (1) Threatened and endangered species...

  1. 30 CFR 550.223 - What mitigation measures information must accompany the EP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... protected species may be incidentally taken by planned exploration activities, you must include mitigation measures designed to avoid or minimize the incidental take of: (1) Threatened and endangered species...

  2. Mitigating Exertional Heat Illness in Military Personnel: The Science Behind a Rice-Based Electrolyte and Rehydration Drink.

    PubMed

    Moore, Brenda; O'Hara, Reginald

    Exertional heat illness continues to be prevalent among members of active duty personnel, especially those in specific military occupational specialties such as loadmasters, flight crew, flight maintainers, and Special Operations Forces. Therefore, the primary objective of this article was to elucidate the various oral rehydration solutions (ORSs) on the market that are used to mitigate exertional heat illness (EHI) in military personnel, and to focus on the science behind a ricebased electrolyte drink, CeraSport®, currently used by US military personnel in mitigating EHI during sustained training operations in high-heat environments. A search of the literature (through March 2016) was performed using PubMed and ProQuest, in addition to searching bibliographies and text books. We reviewed 63 articles and three texts. Articles were limited to those published in English and to studies that used only carbohydrates (e.g., no amino acids) and drinks reported to be used by the military in field training and deployment. Heat illness is prevalent among military personnel operating in high-heat environments and a variety of ORSs and sports drinks are available to help mitigate this. However, CeraSport, compared with other ORSs and sports drinks, may offer benefits such as faster gastric emptying rates and improved absorption from the gastrointestinal tract, which can provide rapidly available carbohydrate substrates for energy needs, and increased water retention for maintenance of blood plasma volume. 2016.

  3. Identifiability in biobanks: models, measures, and mitigation strategies

    PubMed Central

    Loukides, Grigorios; Benitez, Kathleen; Clayton, Ellen Wright

    2013-01-01

    The collection and sharing of person-specific biospecimens has raised significant questions regarding privacy. In particular, the question of identifiability, or the degree to which materials stored in biobanks can be linked to the name of the individuals from which they were derived, is under scrutiny. The goal of this paper is to review the extent to which biospecimens and affiliated data can be designated as identifiable. To achieve this goal, we summarize recent research in identifiability assessment for DNA sequence data, as well as associated demographic and clinical data, shared via biobanks. We demonstrate the variability of the degree of risk, the factors that contribute to this variation, and potential ways to mitigate and manage such risk. Finally, we discuss the policy implications of these findings, particularly as they pertain to biobank security and access policies. We situate our review in the context of real data sharing scenarios and biorepositories. PMID:21739176

  4. Compact Instruments Measure Heat Potential

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Based in Huntsville, Alabama, AZ Technology Inc. is a woman- and veteran-owned business that offers expertise in electromechanical-optical design and advanced coatings. AZ Technology has received eight Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center for the development of spectral reflectometers and the measurement of surface thermal properties. The company uses a variety of measurement services and instruments, including the Spectrafire, a portable spectral emissometer it used to assist General Electric with the design of its award-winning Giraffe Warmer for neonatal intensive care units.

  5. Closing the Gap on Measuring Heat Waves

    NASA Astrophysics Data System (ADS)

    Perkins, S. E.; Alexander, L.

    2012-12-01

    Since the 4th IPCC assessment report, the scientific literature has established that anthropogenic climate change encompasses adverse changes in both mean climate conditions and extreme events, such as heat waves. Indeed, the affects of heat waves are felt across many different sectors, and have high economic, human, and physical impacts over many global regions. The spatial and monetary scale of heat wave impacts emphasizes the necessity of measuring and studying such events in an informative manner, which gives justice to the geographical region affected, the communities impacted, and the climatic fields involved. However, due to such wide interest in heat waves, their definition remains broad in describing a period of consecutive days where conditions are excessively hotter than normal. This has allowed for the employment of a plethora of metrics, which are usually unique to a given sector, or do not appropriately describe some of the important features of heat wave events. As such, it is difficult to ascertain a clear message regarding changes in heat waves, both in the observed record and in projections of future climate. This study addresses this issue by developing a multi-index, multi-aspect framework in which to measure heat waves. The methodology was constructed by assessing a wide range of heat wave and heat wave-related indices, both proposed and employed in the scientific literature. The broad implications of the occurrences, frequency and duration of heat waves and respective changes were also highly considered. The resulting indices measure three or more consecutive days where 1) maximum temperature exceeds the 90th percentile (TX90pct); 2) minimum temperature exceeds the 90th percentile (TN90pct); and 3) daily average temperature has a positive excess heat factor (EHF). The 90th percentiles from which TX90pct and TN90pct are calculated are based on 15-day windows for each calendar day, whereas the EHF is based upon two pre-calculated indices that

  6. Energy Saving Potentials and Air Quality Benefits of Urban Heat Island Mitigation

    SciTech Connect

    Akbari, Hashem

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  7. Are heat waves susceptible to mitigate the expansion of a species progressing with global warming?

    PubMed Central

    Robinet, Christelle; Rousselet, Jérôme; Pineau, Patrick; Miard, Florie; Roques, Alain

    2013-01-01

    A number of organisms, especially insects, are extending their range in response of the increasing trend of warmer temperatures. However, the effects of more frequent climatic anomalies on these species are not clearly known. The pine processionary moth, Thaumetopoea pityocampa, is a forest pest that is currently extending its geographical distribution in Europe in response to climate warming. However, its population density largely decreased in its northern expansion range (near Paris, France) the year following the 2003 heat wave. In this study, we tested whether the 2003 heat wave could have killed a large part of egg masses. First, the local heat wave intensity was determined. Then, an outdoor experiment was conducted to measure the deviation between the temperatures recorded by weather stations and those observed within sun-exposed egg masses. A second experiment was conducted under laboratory conditions to simulate heat wave conditions (with night/day temperatures of 20/32°C and 20/40°C compared to the control treatment 13/20°C) and measure the potential effects of this heat wave on egg masses. No effects were noticed on egg development. Then, larvae hatched from these egg masses were reared under mild conditions until the third instar and no delayed effects on the development of larvae were found. Instead of eggs, the 2003 heat wave had probably affected directly or indirectly the young larvae that were already hatched when it occurred. Our results suggest that the effects of extreme climatic anomalies occurring over narrow time windows are difficult to determine because they strongly depend on the life stage of the species exposed to these anomalies. However, these effects could potentially reduce or enhance the average warming effects. As extreme weather conditions are predicted to become more frequent in the future, it is necessary to disentangle the effects of the warming trend from the effects of climatic anomalies when predicting the response of a

  8. Are heat waves susceptible to mitigate the expansion of a species progressing with global warming?

    PubMed

    Robinet, Christelle; Rousselet, Jérôme; Pineau, Patrick; Miard, Florie; Roques, Alain

    2013-09-01

    A number of organisms, especially insects, are extending their range in response of the increasing trend of warmer temperatures. However, the effects of more frequent climatic anomalies on these species are not clearly known. The pine processionary moth, Thaumetopoea pityocampa, is a forest pest that is currently extending its geographical distribution in Europe in response to climate warming. However, its population density largely decreased in its northern expansion range (near Paris, France) the year following the 2003 heat wave. In this study, we tested whether the 2003 heat wave could have killed a large part of egg masses. First, the local heat wave intensity was determined. Then, an outdoor experiment was conducted to measure the deviation between the temperatures recorded by weather stations and those observed within sun-exposed egg masses. A second experiment was conducted under laboratory conditions to simulate heat wave conditions (with night/day temperatures of 20/32°C and 20/40°C compared to the control treatment 13/20°C) and measure the potential effects of this heat wave on egg masses. No effects were noticed on egg development. Then, larvae hatched from these egg masses were reared under mild conditions until the third instar and no delayed effects on the development of larvae were found. Instead of eggs, the 2003 heat wave had probably affected directly or indirectly the young larvae that were already hatched when it occurred. Our results suggest that the effects of extreme climatic anomalies occurring over narrow time windows are difficult to determine because they strongly depend on the life stage of the species exposed to these anomalies. However, these effects could potentially reduce or enhance the average warming effects. As extreme weather conditions are predicted to become more frequent in the future, it is necessary to disentangle the effects of the warming trend from the effects of climatic anomalies when predicting the response of a

  9. Nuclear reactor melt-retention structure to mitigate direct containment heating

    DOEpatents

    Tutu, Narinder K.; Ginsberg, Theodore; Klages, John R.

    1991-01-01

    A light water nuclear reactor melt-retention structure to mitigate the extent of direct containment heating of the reactor containment building. The structure includes a retention chamber for retaining molten core material away from the upper regions of the reactor containment building when a severe accident causes the bottom of the pressure vessel of the reactor to fail and discharge such molten material under high pressure through the reactor cavity into the retention chamber. In combination with the melt-retention chamber there is provided a passageway that includes molten core droplet deflector vanes and has gas vent means in its upper surface, which means are operable to deflect molten core droplets into the retention chamber while allowing high pressure steam and gases to be vented into the upper regions of the containment building. A plurality of platforms are mounted within the passageway and the melt-retention structure to direct the flow of molten core material and help retain it within the melt-retention chamber. In addition, ribs are mounted at spaced positions on the floor of the melt-retention chamber, and grid means are positioned at the entrance side of the retention chamber. The grid means develop gas back pressure that helps separate the molten core droplets from discharged high pressure steam and gases, thereby forcing the steam and gases to vent into the upper regions of the reactor containment building.

  10. Heat transfer measurements for Stirling machine cylinders

    NASA Technical Reports Server (NTRS)

    Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.

    1994-01-01

    The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially

  11. Effectiveness of mitigation measures with constructed forested wetlands in Maryland

    USGS Publications Warehouse

    Perry, M.C.

    1997-01-01

    Intensive research on six constructed forested wetlands in Central Maryland was conducted in 1993-1996 to determine success of these habitats as functional forested wetlands for wildlife. Areas studied ranged in size from 2 to 35 acres and were constructed by private companies under contract with three mitigation agencies. Adjacent natural forested wetlands were used as reference sites where similar data were collected. Based on data from the first four years of this study it appears that it will take 35-50 years before these areas have forested wetland vegetation and wildlife similar to that found on mature forested wetlands. This long-time period is based on the high mortality and slow growth of nursery-stock trees and shrubs transplanted on the areas. Mortality and slow growth resulted mostly from excessive surface water on the sites. The level of ground water did not appear to be a factor in regard to transplant mortality. Green ash was the woody transplant species that had the least mortality. Sampling of vegetative ground cover with one-meter square quadrats showed the predominance of grasses and herbs. [abridged abstract

  12. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants.

    PubMed

    Patra, Amlan K

    2016-01-01

    Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents

  13. Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants

    PubMed Central

    Patra, Amlan K.

    2016-01-01

    Methane (CH4) emission, which is mainly produced during normal fermentation of feeds by the rumen microorganisms, represents a major contributor to the greenhouse gas (GHG) emissions. Several enteric CH4 mitigation technologies have been explored recently. A number of new techniques have also been developed and existing techniques have been improved in order to evaluate CH4 mitigation technologies and prepare an inventory of GHG emissions precisely. The aim of this review is to discuss different CH4 measuring and mitigation technologies, which have been recently developed. Respiration chamber technique is still considered as a gold standard technique due to its greater precision and reproducibility in CH4 measurements. With the adoption of recent recommendations for improving the technique, the SF6 method can be used with a high level of precision similar to the chamber technique. Short-term measurement techniques of CH4 measurements generally invite considerable within- and between-animal variations. Among the short-term measuring techniques, Greenfeed and methane hood systems are likely more suitable for evaluation of CH4 mitigation studies, if measurements could be obtained at different times of the day relative to the diurnal cycle of the CH4 production. Carbon dioxide and CH4 ratio, sniffer, and other short-term breath analysis techniques are more suitable for on farm screening of large number of animals to generate the data of low CH4-producing animals for genetic selection purposes. Different indirect measuring techniques are also investigated in recent years. Several new dietary CH4 mitigation technologies have been explored, but only a few of them are practical and cost-effective. Future research should be directed toward both the medium- and long-term mitigation strategies, which could be utilized on farms to accomplish substantial reductions of CH4 emissions and to profitably reduce carbon footprint of livestock production systems. This review presents

  14. Heat Capacity Measurements in Pulsed Magnetic Fields

    SciTech Connect

    Jaime, M.; Movshovich, R.; Sarrao, J.L.; Kim, J.; Stewart, G.; Beyermann, W.P.; Canfield, P.C.

    1998-10-23

    The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 s at 45 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool.

  15. CO2 Mitigation Measures of Power Sector and Its Integrated Optimization in China

    PubMed Central

    Dai, Pan; Chen, Guang; Zhou, Hao; Su, Meirong; Bao, Haixia

    2012-01-01

    Power sector is responsible for about 40% of the total CO2 emissions in the world and plays a leading role in climate change mitigation. In this study, measures that lower CO2 emissions from the supply side, demand side, and power grid are discussed, based on which, an integrated optimization model of CO2 mitigation (IOCM) is proposed. Virtual energy, referring to energy saving capacity in both demand side and the power grid, together with conventional energy in supply side, is unified planning for IOCM. Consequently, the optimal plan of energy distribution, considering both economic benefits and mitigation benefits, is figured out through the application of IOCM. The results indicate that development of demand side management (DSM) and smart grid can make great contributions to CO2 mitigation of power sector in China by reducing the CO2 emissions by 10.02% and 12.59%, respectively, in 2015, and in 2020. PMID:23213305

  16. CO₂ mitigation measures of power sector and its integrated optimization in China.

    PubMed

    Dai, Pan; Chen, Guang; Zhou, Hao; Su, Meirong; Bao, Haixia

    2012-01-01

    Power sector is responsible for about 40% of the total CO₂ emissions in the world and plays a leading role in climate change mitigation. In this study, measures that lower CO₂ emissions from the supply side, demand side, and power grid are discussed, based on which, an integrated optimization model of CO₂ mitigation (IOCM) is proposed. Virtual energy, referring to energy saving capacity in both demand side and the power grid, together with conventional energy in supply side, is unified planning for IOCM. Consequently, the optimal plan of energy distribution, considering both economic benefits and mitigation benefits, is figured out through the application of IOCM. The results indicate that development of demand side management (DSM) and smart grid can make great contributions to CO₂ mitigation of power sector in China by reducing the CO₂ emissions by 10.02% and 12.59%, respectively, in 2015, and in 2020.

  17. Soil fumigants-risk mitigation measures for reregistration

    Treesearch

    Eric Olson

    2010-01-01

    The US Environmental Protection Agency is requiring important new safety measures for soil fumigant pesticides to increase protections for agricultural workers and bystanders, that is, people who live, work, or otherwise spend time near fields that are fumigated. These measures are included in Amended Reregistration Eligibility Decisions for the soil fumigants...

  18. Practical issues for using solar-reflective materials to mitigate urban heat islands

    NASA Astrophysics Data System (ADS)

    Bretz, Sarah; Akbari, Hashem; Rosenfeld, Arthur

    Solar-reflective or high-albedo, alternatives to traditionally absorptive urban surfaces such as rooftops and roadways can reduce cooling energy use and improve urban air quality at almost no cost. This paper presents information to support programs that mitigate urban heat islands with solar-reflective surfaces: estimates of the achievable increase in albedo for a variety of surfaces, issues related to the selection of materials and costs and benefits of using them. As an example, we present data for Sacramento, California. In Sacramento, we estimate that 20% of the 96 square mile area is dark roofing and 10% is dark pavement. Based on the change in albedo that is achievable for these surfaces, the overall albedo of Sacramento could be increased by 18%, a change that would produce significant energy savings and increase comfort within the city. Roofing market data indicate which roofing materials should be targeted for incentive programs. In 1995, asphalt shingle was used for over 65% of residential roofing area in the U.S. and 6% of commercial. Built-up roofing was used for about 5% of residential roofing and about 30% of commercial roofing. Single-ply membranes covered about 9% of the residential roofing area and over 30% of the commercial area. White, solar-reflective alternatives are presently available for these roofing materials but a low- first-cost, solar-reflective alternative to asphalt shingles is needed to capture the sloped-roof market. Since incoming solar radiation has a large non-visible component, solar-reflective materials can also be produced in a variety of colors.

  19. Modeled and Measured Underwater Sound Isopleths and Implications for Marine Mammal Mitigation in Alaska.

    PubMed

    Aerts, Lisanne A M; Streever, Bill

    2016-01-01

    Before operating air guns in Alaska, industry is usually required to model underwater sound isopleths, some of which have implications for the mitigation and monitoring of potential marine mammal impacts. Field measurements are often required to confirm or revise model predictions. We compared modeled and measured air gun sound isopleths from 2006 to 2012 and found poor agreement. Natural variability in the marine environment, application of precautionary correction factors, and data interpretation in the generation of circular isopleths all contributed to the observed poor agreement. A broader understanding of the realities of modeled and measured underwater sound isopleths will contribute to improved mitigation practices.

  20. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management

    NASA Astrophysics Data System (ADS)

    Li, H.; Harvey, J. T.; Holland, T. J.; Kayhanian, M.

    2013-03-01

    To help address the built environmental issues of both heat island and stormwater runoff, strategies that make pavements cooler and permeable have been investigated through measurements and modeling of a set of pavement test sections. The investigation included the hydraulic and thermal performance of the pavements. The permeability results showed that permeable interlocking concrete pavers have the highest permeability (or infiltration rate, ˜0.5 cm s-1). The two permeable asphalt pavements showed the lowest permeability, but still had an infiltration rate of ˜0.1 cm s-1, which is adequate to drain rainwater without generating surface runoff during most typical rain events in central California. An increase in albedo can significantly reduce the daytime high surface temperature in summer. Permeable pavements under wet conditions could give lower surface temperatures than impermeable pavements. The cooling effect highly depends on the availability of moisture near the surface layer and the evaporation rate. The peak cooling effect of watering for the test sections was approximately 15-35 °C on the pavement surface temperature in the early afternoon during summer in central California. The evaporative cooling effect on the pavement surface temperature at 4:00 pm on the third day (25 h after watering) was still 2-7 °C lower compared to that on the second day, without considering the higher air temperature on the third day. A separate and related simulation study performed by UCPRC showed that full depth permeable pavements, if designed properly, can carry both light-duty traffic and certain heavy-duty vehicles while retaining the runoff volume captured from an average California storm event. These preliminarily results indicated the technical feasibility of combined reflective and permeable pavements for addressing the built environment issues related to both heat island mitigation and stormwater runoff management.

  1. MEASUREMENT OF SPECIFIC HEAT CAPACITY OF SALTSTONE

    SciTech Connect

    Harbour, J; Vickie Williams, V

    2008-09-29

    One of the goals of the Saltstone variability study is to identify (and quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. The heat capacity of the Saltstone waste form is one of the important properties of Saltstone mixes that was last measured at SRNL in 1997. It is therefore important to develop a core competency for rapid and accurate analysis of the specific heat capacity of the Saltstone mixes in order to quantify the impact of compositional and operational variations on this property as part of the variability study. The heat capacity, coupled with the heat of hydration data obtained from isothermal calorimetry for a given Saltstone mix, can be used to predict the maximum temperature increase in the cells within the vaults of the Saltstone Disposal Facility (SDF). The temperature increase controls the processing rate and the pour schedule. The maximum temperature is also important to the performance properties of the Saltstone. For example, in mass pours of concrete or grout of which Saltstone is an example, the maximum temperature increase and the maximum temperature difference (between the surface and the hottest location) are controlled to ensure durability of the product and prevent or limit the cracking caused by the thermal gradients produced during curing. This report details the development and implementation of a method for the measurement of the heat capacities of Saltstone mixes as well as the heat capacities of the cementitious materials of the premix and the simulated salt solutions used to batch the mixes. The developed method utilizes the TAM Air isothermal calorimeter and takes advantage of the sophisticated heat flow measurement capabilities of the instrument. Standards and reference materials were identified and used to validate the procedure and ensure accuracy of testing. Heat capacities of Saltstone mixes were

  2. Hot spot mitigation in microprocessors by application of single phase microchannel heat sink and microprocessor floor planning

    NASA Astrophysics Data System (ADS)

    Chauhan, Anjali

    Poor thermal management in high frequency microprocessors results in thermal and mechanical stresses in the chip due to leakage losses, occurrence of hot spots and large temperature gradients. A micro-fluidics based cooling scheme of single phase microchannel heat sinks is found to be most promising cooling solution. Microchannel heat sinks have high cooling capability because of its high surface area to volume ratio and high heat transfer coefficient. Besides the fluid flow, heat transfer mechanism in microchannel heat sinks is affected by its installation on the microprocessor chip. Since microchannel heat sinks are capable of reducing only the average temperature rise of the microprocessor chip, technique of microprocessor floor planning can be applied to reduce hot spot temperature, mitigate multiple hot spots and reduce large temperature gradients on the surface of microprocessor chip. In this study, adequate installation of the microchannel heat sink on the processor chip has been proposed to extract maximum heat from the device. Microprocessor floor planning has also been explored to obtain an optimum chip floor plan on grounds of low performance penalty, low hot spot temperature and minimum number hot spots. The dependence of maximum hot spot temperature of the chip on pressure gradient across the microchannels has also been discussed.

  3. Measurement of heat and moisture exchanger efficiency.

    PubMed

    Chandler, M

    2013-09-01

    Deciding between a passive heat and moisture exchanger or active humidification depends upon the level of humidification that either will deliver. Published international standards dictate that active humidifiers should deliver a minimum humidity of 33 mg.l(-1); however, no such requirement exists, for heat and moisture exchangers. Anaesthetists instead have to rely on information provided by manufacturers, which may not allow comparison of different devices and their clinical effectiveness. I suggest that measurement of humidification efficiency, being the percentage moisture returned and determined by measuring the temperature of the respired gases, should be mandated, and report a modification of the standard method that will allow this to be easily measured. In this study, different types of heat and moisture exchangers for adults, children and patients with a tracheostomy were tested. Adult and paediatric models lost between 6.5 mg.l(-1) and 8.5 mg.l(-1) moisture (corresponding to an efficiency of around 80%); however, the models designed for patients with a tracheostomy lost between 16 mg.l(-1) and 18 mg.l(-1) (60% efficiency). I propose that all heat and moisture exchangers should be tested in this manner and percentage efficiency reported to allow an informed choice between different types and models.

  4. Measurement-based auralization methodology for the assessment of noise mitigation measures

    NASA Astrophysics Data System (ADS)

    Thomas, Pieter; Wei, Weigang; Van Renterghem, Timothy; Botteldooren, Dick

    2016-09-01

    The effect of noise mitigation measures is generally expressed by noise levels only, neglecting the listener's perception. In this study, an auralization methodology is proposed that enables an auditive preview of noise abatement measures for road traffic noise, based on the direction dependent attenuation of a priori recordings made with a dedicated 32-channel spherical microphone array. This measurement-based auralization has the advantage that all non-road traffic sounds that create the listening context are present. The potential of this auralization methodology is evaluated through the assessment of the effect of an L-shaped mound. The angular insertion loss of the mound is estimated by using the ISO 9613-2 propagation model, the Pierce barrier diffraction model and the Harmonoise point-to-point model. The realism of the auralization technique is evaluated by listening tests, indicating that listeners had great difficulty in differentiating between a posteriori recordings and auralized samples, which shows the validity of the followed approaches.

  5. Biogeophysical benefits of no-till agriculture for mitigating heat wave impacts

    NASA Astrophysics Data System (ADS)

    Davin, Edouard; Seneviratne, Sonia; Ciais, Philippe; Olioso, Albert; Wang, Tao

    2014-05-01

    Changes in agricultural practices are considered a possible option to mitigate climate change[1]. In particular, reducing or suppressing tillage (no-till) may have the potential to sequester carbon in soils, which could help slow global warming[1]. On the other hand, such practices also have a direct effect on regional climate by altering the physical properties of the land surface[2]. These biogeophysical effects, however, are still poorly known. Here we show that no-till management increases the surface albedo of croplands in summer and that the resulting cooling effect is amplified during hot extremes, thus attenuating peak temperatures reached during heatwaves. Using a regional climate model accounting for the observed effects of no-till farming on surface albedo, as well as possible reductions in soil evaporation, we investigate the potential consequences of a full conversion to no-till agriculture in Europe. We find that the summer cooling from cropland albedo increase is strongly amplified during hot summer days, when surface albedo has more impact on the Earth's radiative balance due to clear-sky conditions. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect is the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 degrees. The identified asymmetric impact of surface albedo change on summer temperature opens new avenues for climate engineering measures targeting high impact events rather than mean climate properties. References: [1] Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O'Mara, C. Rice, B. Scholes, O. Sirotenko (2007): Agriculture. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds

  6. Cooperative measures to mitigate Asia-Pacific maritime conflicts.

    SciTech Connect

    Chai, Wen-Chung

    2003-05-01

    The economies of East Asia are predominantly export based and, therefore, place special emphasis on the security of the sea lines of communication (SLOCs). Due to economic globalization, the United States shares these concerns. Cooperative measures by the concerned parties could reduce the potential for disruption by maritime conflicts. Primary threats against the SLOCs are disputes over the resources under the seas, disputes over some small island groups, disputes between particular parties (China-Taiwan and North-South Korea), or illegal activities like smuggling, piracy, or terrorism. This paper provides an overview on these threats, issue by issue, to identify common elements and needed cooperation. Cooperation on other topics such as search and rescue, fisheries protection, and oil spill response may help support improved relations to prevent maritime conflicts. Many technologies can help support maritime cooperation, including improved communications links, tracking and emergency beacon devices, and satellite imaging. Appropriate technical and political means are suggested for each threat to the SLOCs.

  7. Mitigating wildland fire hazard using complex network centrality measures

    NASA Astrophysics Data System (ADS)

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I.

    2016-12-01

    We show how to distribute firebreaks in heterogeneous forest landscapes in the presence of strong wind using complex network centrality measures. The proposed framework is essentially a two-tire one: at the inner part a state-of- the-art Cellular Automata model is used to compute the weights of the underlying lattice network while at the outer part the allocation of the fire breaks is scheduled in terms of a hierarchy of centralities which influence the most the spread of fire. For illustration purposes we applied the proposed framework to a real-case wildfire that broke up in Spetses Island, Greece in 1990. We evaluate the scheme against the benchmark of random allocation of firebreaks under the weather conditions of the real incident i.e. in the presence of relatively strong winds.

  8. Modeling, measuring, and mitigating instability growth in liner implosions on Z

    NASA Astrophysics Data System (ADS)

    Peterson, Kyle

    2015-11-01

    Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under

  9. Spatial Characteristics of Small Green Spaces' Mitigating Effects on Microscopic Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Park, J.; Lee, D. K.; Jeong, W.; Kim, J. H.; Huh, K. Y.

    2015-12-01

    The purpose of the study is to find small greens' disposition, types and sizes to reduce air temperature effectively in urban blocks. The research sites were six high developed blocks in Seoul, Korea. Air temperature was measured with mobile loggers in clear daytime during summer, from August to September, at screen level. Also the measurement repeated over three times a day during three days by walking and circulating around the experimental blocks and the control blocks at the same time. By analyzing spatial characteristics, the averaged air temperatures were classified with three spaces, sunny spaces, building-shaded spaces and small green spaces by using Kruskal-Wallis Test; and small green spaces in 6 blocks were classified into their outward forms, polygonal or linear and single or mixed. The polygonal and mixed types of small green spaces mitigated averaged air temperature of each block which they belonged with a simple linear regression model with adjusted R2 = 0.90**. As the area and volume of these types increased, the effect of air temperature reduction (ΔT; Air temperature difference between sunny space and green space in a block) also increased in a linear relationship. The experimental range of this research is 100m2 ~ 2,000m2 of area, and 1,000m3 ~ 10,000m3 of volume of small green space. As a result, more than 300m2 and 2,300m3 of polygonal green spaces with mixed vegetation is required to lower 1°C; 650m2 and 5,000m3 of them to lower 2°C; about 2,000m2 and about 10,000m3 of them to lower 4°C air temperature reduction in an urban block.

  10. Measurement of heat conduction through stacked screens.

    PubMed

    Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  11. Measurement of heat conduction through stacked screens

    NASA Technical Reports Server (NTRS)

    Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  12. Measurement of heat conduction through stacked screens

    NASA Technical Reports Server (NTRS)

    Lewis, M. A.; Kuriyama, T.; Kuriyama, F.; Radebaugh, R.

    1998-01-01

    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  13. Mitigation of pedestrian heat stress using parasols in a humid subtropical region

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinichi; Ishii, Jin

    2017-06-01

    Concerns over heat illness have been an increasing social problem in humid subtropical regions. One measure for avoiding excessive heat stress in hot outdoor environments is the use of parasols or umbrellas. The advantage of parasols is that they are a mobile and inexpensive way to provide personal shade outdoors. The objectives of this study were to compare the wet-bulb globe temperature (WBGT) under parasols and at an unshaded point as a reference, and to quantify the reduction in WBGT from the use of parasols in a humid subtropical region. Measurements using three parasols of different colors and materials were conducted at the athletics field at Daido University, Nagoya, Japan, between 9:00 and 15:00 Japan Standard Time in August 2015. The WBGT was obtained at heights of 0.1 m (ankles), 1.1 m (abdomen), and 1.7 m (head) above ground, according to the measurement procedure described in ISO 7243. On a sunny and partly cloudy day, the use of a parasol lowered the average globe temperature by up to 6.2 °C, through blocking direct solar radiation. The average reduction in WBGT by the parasol was found to be 1.8 °C at head level in sunny conditions with solar radiation of over 800 W/m2. The reduction in WBGT at head level by the use of parasols in sunny conditions was greater than that in cloudy conditions. However, although parasols can reduce WBGT at the head level of the user regardless of solar radiation, they cannot reduce it at the level of the abdomen or ankles.

  14. 30 CFR 250.254 - What mitigation measures information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What mitigation measures information must accompany the DPP or DOCD? 250.254 Section 250.254 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT... Information Contents of Development and Production Plans (dpp) and Development Operations...

  15. 30 CFR 550.254 - What mitigation measures information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that protected species may be incidentally taken by planned development and production activities, you must include mitigation measures designed to avoid or minimize that incidental take of: (1) Threatened and endangered species listed under the ESA; and (2) Marine mammals, as appropriate, if you have...

  16. 30 CFR 550.254 - What mitigation measures information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that protected species may be incidentally taken by planned development and production activities, you must include mitigation measures designed to avoid or minimize that incidental take of: (1) Threatened and endangered species listed under the ESA; and (2) Marine mammals, as appropriate, if you have...

  17. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... written commitments to mitigation measures must be obtained prior to a positive conformity determination... scope and project-level mitigation and control measures. 93.125 Section 93.125 Protection of Environment... measures. (a) Prior to determining that a transportation project is in conformity, the MPO, other...

  18. A review of post-accident mitigative measures affecting transport and isolation of radionuclides released from the Chernobyl accident

    SciTech Connect

    Waters, R.; Gibson, D.; Bugai, D.; Shalsky, A.; Dgepo, S.; Voitsekhovitch, O.

    1994-09-01

    This paper summarizes the results of eight years of mitigative measures to radioactive contamination within the 30 kilometer exclusion zone surrounding the Chernobyl Nuclear Power Plant. We hope to demonstrate that effectiveness of mitigative measures depends not only on proper application of technology but also on selection of projects offering significant risk reduction potential. In a limited national economy, environmental mitigation projects must maximize risk reduction and cost effectiveness or risk losing funding to more pressing social issues.

  19. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    DOE PAGES

    Hollmann, E. M.; Commaux, N.; Eidietis, N. W.; ...

    2015-10-12

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma current channel is seen to lock to a preferential phase during the VDE thermal quench, but this phasemore » is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Finally, clear indications of plasma infra-red emission are observed both before and during the disruptions; this infrared emission can affect calculation of disruption heat loads.« less

  20. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    SciTech Connect

    Hollmann, E. M.; Commaux, N.; Eidietis, N. W.; Lasnier, C. J.; Moyer, R. A.; Parks, P. B.; Shiraki, D.

    2015-10-12

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma current channel is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Finally, clear indications of plasma infra-red emission are observed both before and during the disruptions; this infrared emission can affect calculation of disruption heat loads.

  1. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    SciTech Connect

    Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Shiraki, D.; Eidietis, N. W.; Parks, P. B.; Lasnier, C. J.

    2015-10-15

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.

  2. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.; Commaux, N.; Eidietis, N. W.; Lasnier, C. J.; Moyer, R. A.; Parks, P. B.; Shiraki, D.

    2015-10-01

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.

  3. Acquisition systems for heat transfer measurement

    SciTech Connect

    De Witt, R.J.

    1983-01-01

    Practical heat transfer data acquisition systems are normally characterized by the need for high-resolution, low-drift, low-speed recording devices. Analog devices such as strip chart or circular recorders and FM analog magnetic tape have excellent resolution and work well when data will be presented in temperature versus time format only and need not be processed further. Digital systems are more complex and require an understanding of the following components: digitizing devices, interface bus types, processor requirements, and software design. This paper discusses all the above components of analog and digital data acquisition, as they are used in current practice. Additional information on thermocouple system analysis will aid the user in developing accurate heat transfer measuring systems.

  4. [Emergency measures on drinking water sanitation for mitigation of flood and waterlogging disasters].

    PubMed

    Li, S; Pan, S; Sun, F; Gu, L

    1998-01-01

    This article reports the emergency measures for mitigation during flood and waterlogging disasters to ensure drinking water sanitation and to prevent infectious disease outbreaks. Five preparatory and preventive measures for flood and waterlogging disasters include the construction of dual-purpose water supply installation for ordinary and disaster use, the storage of qualified technicians and materials (or their inventories), and the formulation of predetermination programme for disaster relief, ect.

  5. Nutrient pollution mitigation measures across Europe are resilient under future climate

    NASA Astrophysics Data System (ADS)

    Wade, Andrew; Skeffington, Richard; Couture, Raoul; Erlandsson, Martin; Groot, Simon; Halliday, Sarah; Harezlak, Valesca; Hejzlar, Joseph; Jackson-Blake, Leah; Lepistö, Ahti; Papastergiadou, Eva; Psaltopoulos, Demetrios; Riera, Joan; Rankinen, Katri; Skuras, Dimitris; Trolle, Dennis; Whitehead, Paul; Dunn, Sarah; Bucak, Tuba

    2016-04-01

    The key results from the application of catchment-scale biophysical models to assess the likely effectiveness of nutrient pollution mitigation measures set in the context of projected land management and climate change are presented. The assessment is based on the synthesis of modelled outputs of daily river flow, river and lake nitrogen and phosphorus concentrations, and lake chlorophyll-a, for baseline (1981-2010) and scenario (2031-2060) periods for nine study sites across Europe. Together the nine sites represent a sample of key climate and land management types. The robustness and uncertainty in the daily, seasonal and long-term modelled outputs was assessed prior to the scenario runs. Credible scenarios of land-management changes were provided by social scientists and economists familiar with each study site, whilst likely mitigation measures were derived from local stakeholder consultations and cost-effectiveness assessments. Modelled mitigation options were able to reduce nutrient concentrations, and there was no evidence here that they were less effective under future climate. With less certainty, mitigation options could affect the ecological status of waters at these sites in a positive manner, leading to improvement in Water Framework Directive status at some sites. However, modelled outcomes for sites in southern Europe highlighted that increased evaporation and decreased precipitation will cause much lower flows leading to adverse impacts of river and lake ecology. Uncertainties in the climate models, as represented by three GCM-RCM combinations, did not affect this overall picture much.

  6. Measurement of thermoacoustic convection heat transfer phenomenon

    NASA Technical Reports Server (NTRS)

    Parang, M.; Salah-Eddine, A.

    1983-01-01

    In this paper the results of an experimental investigation of thermoacoustic convection (TAC) heat transfer phenomenon in both zero-gravity and gravity environment are presented and compared with pure conduction heat transfer. The numerical solutions of the governing equations obtained by others for TAC heat transfer phenomenon are also discussed. The experimental results show that for rapid heating rate at a boundary, the contribution of TAC heat transfer to a gas could be significantly (one order of magnitude) higher than heat transfer rate from pure conduction. The results also show significantly reduced transient time in heat transfer processes involving thermoacoustic convective heat transfer mode in both space and gravity environment.

  7. Understanding Coronal Heating with Emission Measure Distributions

    NASA Technical Reports Server (NTRS)

    Klimchik, James A.; Tripathi, Durgesh; Bradshaw, Stephen J.; Mason, Helen E.

    2011-01-01

    It is widely believed that the cross-field spatial scale of coronal heating is small, so that the fundamental plasma structures (loop strands) are spatially unresolved. We therefore must appeal to diagnostic techniques that are not strongly affected by spatial averaging. One valuable observable is the emission measure distribution, EM(T), which indicates how much material is present at each temperature. Using data from the Extreme-ultraviolet Imaging Spectrograph on the Hinode mission, we have determined emission measure distributions in the cores of two active regions. The distributions have power law slopes of approximately 2.4 coolward of the peak. We compare these slopes, as well as the amount of emission measure at very high temperature, with the predictions of a series of models. The models assume impulsive heating (nanoflares) in unresolved strands and take full account of non equilibrium ionization. A variety of nanoflare properties and initial conditions are considered. We also comment on the selection of spectral lines for upcoming missions like Solar Orbiter.

  8. Work measurement in a quantum heat engine

    NASA Astrophysics Data System (ADS)

    Bariani, Francesco; Zhang, Keye; Dong, Ying; Meystre, Pierre

    2015-05-01

    We consider an optomechanical quantum heat engine operating on an Otto cycle for photon-phonon polaritons, the working substance of the engine. We discuss both the average value and quantum fluctuations of its work output, concentrating in particular on the effects of quantum non-adiabaticity due to the finite duration of the cycle. We also determine the quantum back-action of both absorptive and dispersive continuous measurements of the work, and quantify their impact on the Curzon-Ahlborn engine efficiency at maximum power and its fluctuations. We ackowledge financial support from National Basic Research Program of China, NSF, ARO and the DARPA QuaSAR programs

  9. Cost-benefit analysis of alternative LNG vapor-mitigation measures. Topical report, September 14, 1987-January 15, 1991

    SciTech Connect

    Atallah, S.

    1992-06-25

    A generalized methodology is presented for comparing the costs and safety benefits of alternative hazard mitigation measures for a large LNG vapor release. The procedure involves the quantification of the risk to the public before and after the application of LNG vapor mitigation measures. In the study, risk was defined as the product of the annual accident frequency, estimated from a fault tree analysis, and the severity of the accident. Severity was measured in terms of the number of people who may be exposed to 2.5% or higher concentration. The ratios of the annual costs of the various mitigation measures to their safety benefits (as determined by the differences between the risk before and after mitigation measure implementation), were then used to identify the most cost-effective approaches to vapor cloud mitigation.

  10. 13 CFR 123.401 - What types of mitigation measures can your business include in an application for a pre-disaster...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What types of mitigation measures can your business include in an application for a pre-disaster mitigation loan? 123.401 Section 123... Mitigation Loans § 123.401 What types of mitigation measures can your business include in an application for...

  11. Retrieval of Latent Heating from TRMM Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R. F.; Hou, A. Y.; Meneghini, R.; Simpson, J.; Haddad, Z. S.; Iguchi, T.; Satoh, S.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C. D.; Lang, S.; Nakamura, K.; Nakazawa, T.; Okamoto, K.; Shige, S.; Olson, W. S.; Takayabu, Y.; Tripoli, G. J.; Yang, S.

    2006-01-01

    Precipitation, in driving the global hydrological cycle, strongly influences the behavior of the Earth's weather and climate systems and is central to their variability. Two-thirds of the global rainfall occurs over the Tropics, which leads to its profound effect on the general circulation of the atmosphere. This is because its energetic equivalent, latent heating (LH), is the tropical convective heat engine's primary fuel source as originally emphasized by Riehl and Malkus (1958). At low latitudes, LH stemming from extended bands of rainfall modulates large-scale zonal and meridional circulations and their consequent mass overturnings (e.g., Hartmann et al. 1984; Hack and Schubert 1990). Also, LH is the principal energy source in the creation, growth, vertical structure, and propagation of long-lived tropical waves (e.g., Puri 1987; Lau and Chan 1988). Moreover, the distinct vertical distribution properties of convective and stratiform LH profiles help influence climatic outcomes via their tight control on large-scale circulations (Lau and Peng 1987; Nakazawa 1988; Sui and Lau 1988; Emanuel et al. 1994; Yanai et al. 2000; Sumi and Nakazawa 2002; Schumacher et al. 2004). The purpose of this paper is to describe how LH profiles are being derived from satellite precipitation rate retrievals, focusing on those being made with Tropical Rainfall Measuring Mission (TRMM) satellite measurements.

  12. Heat flow calorimeter. [measures output of Ni-Cd batteries

    NASA Technical Reports Server (NTRS)

    Fletcher, J. C.; Johnston, W. V. (Inventor)

    1974-01-01

    Heat flow calorimeter devices are used to measure heat liberated from or absorbed by an object. This device is capable of measuring the thermal output of sealed nickel-cadmium batteries or cells during charge-discharge cycles. An elongated metal heat conducting rod is coupled between the calorimeter vessel and a heat sink, thus providing the only heat exchange path from the calorimeter vessel itself.

  13. Meteorological insights from planetary heat flow measurements

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2015-04-01

    Planetary heat flow measurements are made with a series of high-precision temperature sensors deployed in a column of regolith to determine the geothermal gradient. Such sensors may, however, be susceptible to other influences, especially on worlds with atmospheres. First, pressure fluctuations at the surface may pump air in and out of pore space leading to observable, and otherwise unexpected, temperature fluctuations at depth. Such pumping is important in subsurface radon and methane transport on Earth: evidence of such pumping may inform understanding of methane or water vapor transport on Mars. Second, the subsurface profile contains a muted record of surface temperature history, and such measurements on other worlds may help constrain the extent to which Earth's Little Ice Age was directly solar-forced, versus volcanic-driven and/or amplified by climate feedbacks.

  14. Heat Transfer Measurements of Internally Finned Rotating Heat Pipes.

    DTIC Science & Technology

    1983-12-01

    Noncondensable Gases, Rotating Heat Pipe , Performance, Helical and Straight Pin, Internal Heat Transfer Coefficient. AS"RACY (40115111111141 WH ide of* 0686...improvement over the smooth condenser. By helically finning the tube wall in addition to increasing the internal area, the counter-clockwise spiral ... spirally -finned condenser then on the straight-finned condenser. Apparently, during fabrication of the helically -finned condenser, a series of

  15. Methane mitigation in cities: how new measurements and partnerships can contribute to emissions reduction strategies

    NASA Astrophysics Data System (ADS)

    Hopkins, F. M.; Bush, S. E.; Ehleringer, J. R.; Lai, C. T.; Rambo, J. P.; Wiggins, E. B.; Miu, J. C. L.; Carranza, V.; Randerson, J. T.

    2014-12-01

    Cities generate a large fraction of anthropogenic methane emissions that are increasing with urbanization and greater reliance on natural gas as fuel. New measurements of methane in cities suggest an as-yet unrealized potential for city-scale methane mitigation. We present high-resolution methane observations from four cities in North America to demonstrate the utility of methane surveys for identifying urban methane sources. We used portable, continuous on-road measurements to determine the spatial distribution of methane in Fairbanks, Los Angeles, Salt Lake City, and San Diego. Across cities, methane tended to be highly concentrated in space, suggesting discrete, point emission sources. Elevated methane levels were found near known emission sources, such as landfills, wastewater treatment facilities, and natural gas-fueled power plants, and revealed the location of fugitive leaks in natural gas infrastructure. The mix of sources and sizes of methane leaks varied among cities, highlighting a need for locally adaptive emissions regulation. Urban methane observations can inform anthropogenic processes in development of methane mitigation strategies. We discuss specific examples of how continuous atmospheric measurements can enhance the design of mitigation strategies in these cities, and potential contributions of these approaches to cross-sectoral efforts to reduce methane emissions at the city level.

  16. Micrometeorological simulations to predict the impacts of heat mitigation strategies on pedestrian thermal comfort in a Los Angeles neighborhood

    NASA Astrophysics Data System (ADS)

    Taleghani, Mohammad; Sailor, David; Ban-Weiss, George A.

    2016-02-01

    The urban heat island impacts the thermal comfort of pedestrians in cities. In this paper, the effects of four heat mitigation strategies on micrometeorology and the thermal comfort of pedestrians were simulated for a neighborhood in eastern Los Angeles County. The strategies investigated include solar reflective ‘cool roofs’, vegetative ‘green roofs’, solar reflective ‘cool pavements’, and increased street-level trees. A series of micrometeorological simulations for an extreme heat day were carried out assuming widespread adoption of each mitigation strategy. Comparing each simulation to the control simulation assuming current land cover for the neighborhood showed that additional street-trees and cool pavements reduced 1.5 m air temperature, while cool and green roofs mostly provided cooling at heights above pedestrian level. However, cool pavements increased reflected sunlight from the ground to pedestrians at a set of unshaded receptor locations. This reflected radiation intensified the mean radiant temperature and consequently increased physiological equivalent temperature (PET) by 2.2 °C during the day, reducing the thermal comfort of pedestrians. At another set of receptor locations that were on average 5 m from roadways and underneath preexisting tree cover, cool pavements caused significant reductions in surface air temperatures and small changes in mean radiant temperature during the day, leading to decreases in PET of 1.1 °C, and consequent improvements in thermal comfort. For improving thermal comfort of pedestrians during the afternoon in unshaded locations, adding street trees was found to be the most effective strategy. However, afternoon thermal comfort improvements in already shaded locations adjacent to streets were most significant for cool pavements. Green and cool roofs showed the lowest impact on the thermal comfort of pedestrians since they modify the energy balance at roof level, above the height of pedestrians.

  17. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.

    PubMed

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-21

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient's anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant's RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B(1)(+) field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient's anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  18. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants

    NASA Astrophysics Data System (ADS)

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-01

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  19. Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.

    SciTech Connect

    Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

    1996-07-01

    This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

  20. Disaster Characteristics and Mitigation Measures of Huge Glacial Debris Flows along the Sichuan-Tibet Railway

    NASA Astrophysics Data System (ADS)

    Liu, Jinfeng; You, Yong; Zhang, Guangze; Wang, Dong; Chen, Jiangang; Chen, Huayong

    2017-04-01

    The Ranwu-Tongmai section of the Sichuan-Tibet Railway passes through the Palongzangbu River basin which locates in the southeast Qinghai-Tibetan Plateau. Due to widely distributed maritime glacier in this area, the huge glacier debris flows are very developed. Consequently, the disastrous glacier debris flows with huge scale (106-108 m3 for one debris flow event) and damage become one of the key influencing factors for the route alignment of the Sichuan-Tibet Railway. The research on disaster characteristics and mitigation measures of huge glacial debris flows in the study area were conducted by the remote sensing interpretation, field investigation, parameter calculation and numerical simulation. Firstly, the distribution of the glaciers, glacier lakes and glacier debris flows were identified and classified; and the disaster characteristics for the huge glacier debris flow were analyzed and summarized. Secondly, the dynamic parameters including the flood peak discharge, debris flow peak discharge, velocity, total volume of a single debris flow event were calculated. Based on the disaster characteristics and the spatial relation with the railway, some mitigation principles and measures were proposed. Finally, the Guxiang Gully, where a huge glacier debris flow with 2*108m3 in volume occurred in 1953, was selected as a typical case to analyze its disaster characteristics and mitigation measures. The interpretation results show that the glacier area is about 970 km2 which accounts for 19% of the total study area. 130 glacier lakes and 102 glacier debris flows were identified and classified. The Sichuan-Tibet Railway passes through 43 glacier debris flows in the study area. The specific disaster characteristics were analyzed and corresponding mitigation measures were proposed for the route selection of the railway. For the Guxiang Gully, a numerical simulation to simulate the deposition condition at the alluvial fan was conducted. the simulation results show that the

  1. Effect of Wind Farm Noise on Local Residents' Decision to Adopt Mitigation Measures.

    PubMed

    Botelho, Anabela; Arezes, Pedro; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M Costa

    2017-07-11

    Wind turbines' noise is frequently pointed out as the reason for local communities' objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes' noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people's decision to adopt mitigating measures, independently of the reported annoyance.

  2. Effect of Wind Farm Noise on Local Residents’ Decision to Adopt Mitigation Measures

    PubMed Central

    Botelho, Anabela; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M. Costa

    2017-01-01

    Wind turbines’ noise is frequently pointed out as the reason for local communities’ objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes’ noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people’s decision to adopt mitigating measures, independently of the reported annoyance. PMID:28696404

  3. Heat transfer measurements of the 1983 kilauea lava flow.

    PubMed

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  4. Heat-transfer measurements of the 1983 Kilauea lava flow

    SciTech Connect

    Hardee, H.C.

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  5. Coupled Biogeochemical and Hydrodynamic Measurements over a Palauan Seagrass Bed: Can Seagrasses Mitigate Local Acidification Stress?

    NASA Astrophysics Data System (ADS)

    Hirsh, H.; Torres, W.; Shea, M.

    2016-02-01

    Interest in seagrass beds as a tool to locally mitigate ocean acidification is growing rapidly. Much of the interest in seagrasses is motivated by their root structure, which is able to sequester carbon over interannual and longer timescales. Far less is known about their biogeochemistry on shorter diel timescales, yet we know that diel cycle variation in CO2 chemistry on coral reefs can be quite substantial. Understanding short-term seagrass biogeochemistry is critical to evaluating if, and how, seagrasses may eventually be utilized to mitigate OA on coral reefs. We present the results of a high-resolution, 24-hour control volume experiment conducted in the Republic of Palau covering a 50m x 100m seagrass bed. Our dataset includes diel cycles of hydrodynamic (current profiles and turbulence), biogeochemical (pH, pCO2, TA, DIC, and O2), and environmental (temperature and salinity) parameters. We use these coupled hydrodynamic-biogeochemical measurements to estimate ecosystem metabolism and better quantify the capacity of seagrass to mitigate local acidification through the photosynthetic uptake of CO2. Combining our field observations with box model predictions allows us to gain better insight into the mechanisms that control seagrass metabolism and their ability to buffer CO2 for downstream corals.

  6. Measurement and mitigation of nitrous oxide emissions from a high nitrogen input vegetable system

    NASA Astrophysics Data System (ADS)

    Lam, Shu Kee; Suter, Helen; Davies, Rohan; Bai, Mei; Sun, Jianlei; Chen, Deli

    2015-02-01

    The emission and mitigation of nitrous oxide (N2O) from high nitrogen (N) vegetable systems is not well understood. Nitrification inhibitors are widely used to decrease N2O emissions in many cropping systems. However, most N2O flux measurements and inhibitor impacts have been made with small chambers and have not been investigated at a paddock-scale using micrometeorological techniques. We quantified N2O fluxes over a four ha celery paddock using open-path Fourier Transform Infrared spectroscopy in conjunction with a backward Lagrangian stochastic model, in addition to using a closed chamber technique. The celery crop was grown on a sandy soil in southern Victoria, Australia. The emission of N2O was measured following the application of chicken manure and N fertilizer with and without the application of a nitrification inhibitor 3, 4-dimethyl pyrazole phosphate (DMPP). The two techniques consistently demonstrated that DMPP application reduced N2O emission by 37-44%, even though the N2O fluxes measured by a micrometeorological technique were more than 10 times higher than the small chamber measurements. The results suggest that nitrification inhibitors have the potential to mitigate N2O emission from intensive vegetable production systems, and that the national soil N2O emission inventory assessments and modelling predictions may vary with gas measurement techniques.

  7. Thermal modelling approaches to enable mitigation measures implementation for salmonid gravel stages in hydropeaking rivers

    NASA Astrophysics Data System (ADS)

    Casas-Mulet, R.; Alfredsen, K. T.

    2016-12-01

    The dewatering of salmon spawning redds can lead to early life stages mortality due to hydropeaking operations, with higher impact on the alevins stages as they have lower tolerance to dewatering than the eggs. Targeted flow-related mitigations measures can reduce such mortality, but it is essential to understand how hydropeaking change thermal regimes in rivers and may impact embryo development; only then optimal measures can be implemented at the right development stage. We present a set of experimental approaches and modelling tools for the estimation of hatch and swim-up dates based on water temperature data in the river Lundesokna (Norway). We identified critical periods for gravel-stages survival and through comparing hydropeaking vs unregulated thermal and hydrological regimes, we established potential flow-release measures to minimise mortality. Modelling outcomes were then used assess the cost-efficiency of each measure. The combinations of modelling tools used in this study were overall satisfactory and their application can be useful especially in systems where little field data is available. Targeted measures built on well-informed modelling approaches can be pre-tested based on their efficiency to mitigate dewatering effects vs. the hydropower system capacity to release or conserve water for power production. Overall, environmental flow releases targeting specific ecological objectives can provide better cost-effective options than conventional operational rules complying with general legislation.

  8. Measurement and mitigation of nitrous oxide emissions from a high nitrogen input vegetable system.

    PubMed

    Lam, Shu Kee; Suter, Helen; Davies, Rohan; Bai, Mei; Sun, Jianlei; Chen, Deli

    2015-02-03

    The emission and mitigation of nitrous oxide (N2O) from high nitrogen (N) vegetable systems is not well understood. Nitrification inhibitors are widely used to decrease N2O emissions in many cropping systems. However, most N2O flux measurements and inhibitor impacts have been made with small chambers and have not been investigated at a paddock-scale using micrometeorological techniques. We quantified N2O fluxes over a four ha celery paddock using open-path Fourier Transform Infrared spectroscopy in conjunction with a backward Lagrangian stochastic model, in addition to using a closed chamber technique. The celery crop was grown on a sandy soil in southern Victoria, Australia. The emission of N2O was measured following the application of chicken manure and N fertilizer with and without the application of a nitrification inhibitor 3, 4-dimethyl pyrazole phosphate (DMPP). The two techniques consistently demonstrated that DMPP application reduced N2O emission by 37-44%, even though the N2O fluxes measured by a micrometeorological technique were more than 10 times higher than the small chamber measurements. The results suggest that nitrification inhibitors have the potential to mitigate N2O emission from intensive vegetable production systems, and that the national soil N2O emission inventory assessments and modelling predictions may vary with gas measurement techniques.

  9. The influence of governmental mitigation measures on contamination characteristics of PM(2.5) in Beijing.

    PubMed

    Chen, Yuan; Schleicher, Nina; Chen, Yizhen; Chai, Fahe; Norra, Stefan

    2014-08-15

    Beijing, the capital of China, has become one of the most air-polluted cities due to its rapid economic growth. Weekly PM2.5 samples-collected continuously from 2007 to 2010-were used to study the contamination characteristics of atmospheric particles and effects of governmental mitigation measures especially since the 2008 Summer Olympic Games. PM2.5 mass concentrations during the sampling period were reduced compared to the previous studies before 2005, although they were still too high in comparison with environmental standards of China and many other countries as well as WHO standards. Results of principle component analysis show that elements of primary anthropogenic origin had an obvious decline while elements mainly from the natural environment kept a relatively stable course. The governmental macro-control measures influenced both anthropogenic and geogenic sources, but they also led to some pollution peaks prior to implementation of the respective measures. Some element concentrations correlated to the restrictiveness of relative measures, especially during different traffic restrictions. The comparison with other countries and international standards shows that there is a long way to go in order to improve air quality in Beijing, and that governmental mitigation measures need to be continued and reinforced. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Measurement of temperature-dependent specific heat of biological tissues.

    PubMed

    Haemmerich, Dieter; Schutt, David J; dos Santos, Icaro; Webster, John G; Mahvi, David M

    2005-02-01

    We measured specific heat directly by heating a sample uniformly between two electrodes by an electric generator. We minimized heat loss by styrofoam insulation. We measured temperature from multiple thermocouples at temperatures from 25 degrees C to 80 degrees C while heating the sample, and corrected for heat loss. We confirm method accuracy with a 2.5% agar-0.4% saline physical model and obtain specific heat of 4121+/-89 J (kg K)(-1), with an average error of 3.1%.

  11. Measuring Furnace/Sample Heat-Transfer Coefficients

    NASA Technical Reports Server (NTRS)

    Rosch, William R.; Fripp, Archibald L., Jr.; Debnam, William J., Jr.; Woodell, Glenn A.

    1993-01-01

    Complicated, inexact calculations now unnecessary. Device called HTX used to simulate and measure transfer of heat between directional-solidification crystal-growth furnace and ampoule containing sample of crystalline to be grown. Yields measurement data used to calculate heat-transfer coefficients directly, without need for assumptions or prior knowledge of physical properties of furnace, furnace gas, or specimen. Determines not only total heat-transfer coefficients but also coefficients of transfer of heat in different modes.

  12. Mitigating environmental impacts through the energetic use of wood: Regional displacement factors generated by means of substituting non-wood heating systems.

    PubMed

    Wolf, Christian; Klein, Daniel; Richter, Klaus; Weber-Blaschke, Gabriele

    2016-11-01

    Wood biomass, especially when applied for heating, plays an important role for mitigating environmental impacts such as climate change and the transition towards higher shares of renewable energy in today's energy mix. However, the magnitude of mitigation benefits and burdens associated with wood use can vary greatly depending on regional parameters such as the displaced fossil reference or heating mix. Therefore, regionalized displacement factors, considering region-specific production conditions and substituted products are required when assessing the precise contribution of wood biomass towards the mitigation of environmental impacts. We carried out Life Cycle Assessments of wood heating systems for typical Bavarian conditions and substitute energy carriers with a focus on climate change and particulate matter emissions. In order to showcase regional effects, we created weighted displacement factors for the region of Bavaria, based on installed capacities of individual wood heating systems and the harvested tree species distribution. The study reveals that GHG displacements between -57gCO2-eq.∗MJ(-1) of useful energy through the substitution of natural gas with a 15kW spruce pellets heating system and -165gCO2-eq.∗MJ(-1) through the substitution of power utilized for heating with a modern 6kW beech split log heating system can be achieved. It was shown that the GHG mitigation potentials of wood utilization are overestimated through the common use of light fuel oil as the only reference system. We further propose a methodology for the calculation of displacement factors which is adaptable to other regions worldwide. Based on our approach it is possible to generate displacement factors for wood heating systems which enable accurate decision-making for project planning in households, heating plants, communities and also for entire regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Experiments Towards Mitigation of Motional Heating in Trapped Ion Quantum Information Processing

    DTIC Science & Technology

    2016-02-27

    magnitude [1]. However, it remains unclear why ion milling causes a much more dra- matic improvement than similar cleaning techniques such as plasma ...milling followed by plasma cleaning. We find that the resulting reduction in the heating rate is consistent with that obtained from plasma cleaning alone... Plasma Cleaning 85 8.1 Ex-Situ Milling Chamber . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.1.1 Chamber Design

  14. Green and cool roofs to mitigate urban heat island effects in the Chicago metropolitan area: evaluation with a regional climate model

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Conry, P.; Fernando, H. J. S.; Hamlet, Alan F.; Hellmann, J. J.; Chen, F.

    2016-06-01

    The effects of urban heat islands (UHIs) have a substantial bearing on the sustainability of cities and environs. This paper examines the efficacy of green and cool roofs as potential UHI mitigation strategies to make cities more resilient against UHI. We have employed the urbanized version of the Weather Research and Forecasting (uWRF) model at high (1 km) resolution with physically-based rooftop parameterization schemes (conventional, green and cool), a first-time application to the Chicago metropolitan area. We simulated a hot summer period (16-18 August 2013) and assessed (i) UHI reductions for different urban landuse with green/cool roofs, (ii) the interaction of lake breeze and UHI, and (iii) diurnal boundary layer dynamics. The performance of uWRF was evaluated using sensible heat flux and air temperature measurements from an urban mini-field campaign. The simulated roof surface energy balance captured the energy distribution with respective rooftop algorithms. Results showed that daytime roof temperature reduced and varied linearly with increasing green roof fractions, from less than 1 °C for the case of 25% green roof to ˜3 °C during peak daytime for 100% green roof. Diurnal transitions from land to lake breeze and vice versa had a substantial impact on the daytime cycle of roof surface UHI, which had a 3-4 hour lag in comparison to 2 m UHI. Green and cool roofs reduced horizontal and vertical wind speeds and affected lower atmosphere dynamics, including reduced vertical mixing, lower boundary layer depth, and weaker convective rolls. The lowered wind speeds and vertical mixing during daytime led to stagnation of air near the surface, potentially causing air quality issues. The selection of green and cool roofs for UHI mitigation should therefore carefully consider the competing feedbacks. The new results for regional land-lake circulations and boundary layer dynamics from this study may be extended to other urbanized areas, particularly to coastal

  15. Best Practices in Grid Integration of Variable Wind Power: Summary of Recent US Case Study Results and Mitigation Measures

    SciTech Connect

    Smith, J. Charles; Parsons, Brian; Acker, Thomas; Milligan, Michael; Zavidil, Robert; Schuerger, Matthew; DeMeo, Edgar

    2010-01-22

    This paper will summarize results from a number of utility wind integration case studies conducted recently in the US, and outline a number of mitigation measures based on insights from those studies.

  16. Phosphorus losses from agricultural areas in river basins: effects and uncertainties of targeted mitigation measures.

    PubMed

    Kronvang, B; Bechmann, M; Lundekvam, H; Behrendt, H; Rubaek, G H; Schoumans, O F; Syversen, N; Andersen, H E; Hoffmann, C C

    2005-01-01

    In this paper we show the quantitative and relative importance of phosphorus (P) losses from agricultural areas within European river basins and demonstrate the importance of P pathways, linking agricultural source areas to surface water at different scales. Agricultural P losses are increasingly important for the P concentration in most European rivers, lakes, and estuaries, even though the quantity of P lost from agricultural areas in European catchments varies at least one order of magnitude (<0.2 kg P ha(-1) to >2.1 kg P ha(-1)). We focus on the importance of P for the implementation of the EU Water Framework Directive and discuss the benefits, uncertainties, and side effects of the different targeted mitigation measures that can be adopted to combat P losses from agricultural areas in river basins. Experimental evidence of the effects of some of the main targeted mitigation measures hitherto implemented is demonstrated, including: (i) soil tillage changes, (ii) treatment of soils near ditches and streams with iron to reduce P transport from source areas to surface waters, (iii) establishment of buffer zones for retaining P from surface runoff, (iv) restoration of river-floodplain systems to allow natural inundation of riparian areas and deposition of P, and (v) inundation of riparian areas with tile drainage water for P retention. Furthermore, we show how river basin managers can map and analyze the extent and importance of P risk areas, exemplified by four catchments differing in size in Norway, Denmark, and the Netherlands. Finally, we discuss the factors and mechanisms that may delay and/or counteract the responses of mitigation measures for combating P losses from agricultural areas when monitored at the catchment scale.

  17. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    DOE PAGES

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; ...

    2016-02-16

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposuremore » process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.« less

  18. In situ mitigation of subsurface and peripheral focused ion beam damage via simultaneous pulsed laser heating

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Iberi, Vighter O.; Fowlkes, Jason Davidson; Tan, Shida; Livengood, Rick; Rack, Philip D.

    2016-02-16

    Focused helium and neon ion (He(+)/Ne(+) ) beam processing has recently been used to push resolution limits of direct-write nanoscale synthesis. The ubiquitous insertion of focused He(+) /Ne(+) beams as the next-generation nanofabrication tool-of-choice is currently limited by deleterious subsurface and peripheral damage induced by the energetic ions in the underlying substrate. The in situ mitigation of subsurface damage induced by He(+)/Ne(+) ion exposures in silicon via a synchronized infrared pulsed laser-assisted process is demonstrated. The pulsed laser assist provides highly localized in situ photothermal energy which reduces the implantation and defect concentration by greater than 90%. The laser-assisted exposure process is also shown to reduce peripheral defects in He(+) patterned graphene, which makes this process an attractive candidate for direct-write patterning of 2D materials. In conclusion, these results offer a necessary solution for the applicability of high-resolution direct-write nanoscale material processing via focused ion beams.

  19. Zoning and compartmentalisation as risk mitigation measures: an example from poultry production.

    PubMed

    Ratananakorn, L; Wilson, D

    2011-04-01

    This paper discusses the application of compartmentalisation in the Thai commercial poultry industry. The concept was adopted to address Thailand's inability to export fresh poultry meat because of endemic avian influenza. Owing to the nature of compartmentalisation, implementation required a strong partnership between government and the private sector (the Thai poultry exporters). The paper describes the processes implemented to ensure that appropriate risk mitigation measures were in place and to guarantee the continued biosecurity of the compartments. Other Members of the World Organisation for Animal Health may be able to adapt the compartment system used in Thailand to their own similar situations and the formal international recognition of such systems would be beneficial.

  20. Computation, measurement and mitigation of neutral-to-earth potentials on electrical distribution systems

    SciTech Connect

    Dick, W.K.; Winter, D.F.

    1987-04-01

    This paper presents computer generated profiles of primary-neutral-to-earth potentials of electrical distribution systems which incorporate a variety of techniques used to mitigate neutral-to-earth potential (''stray voltage'') at dairy farm facilities. Techniques available to the power supplier and power user include an Electronic Grounding System which provides voltage reduction factors of as much as 200 to 1. A new method of measuring these voltages using a computer data acquisition system which monitors every cycle of the power-frequency voltages on eight totally independent channels for extended periods is described.

  1. Marine and Hydrokinetic Renewable Energy Devices, Potential Navigational Hazards and Mitigation Measures

    SciTech Connect

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-01

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies. A technical report addressing our findings is available on this Science and Technology Information site under the Product Title, "Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures". This product is a brochure, primarily for project developers, that summarizes important issues in that more comprehensive report, identifies locations where that report can be downloaded, and identifies points of contact for more information.

  2. Surge Pressure Mitigation in the Global Precipitation Measurement Mission Core Propulsion System

    NASA Technical Reports Server (NTRS)

    Scroggins, Ashley R.; Fiebig, Mark D.

    2014-01-01

    The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.

  3. New debris flow mitigation measures in southern Gansu, China: a case study of the Zhouqu Region

    NASA Astrophysics Data System (ADS)

    Xiong, Muqi; Meng, Xingmin; Li, Yajun

    2014-05-01

    A devastating debris flow occurred in Zhouqu of Gansu Province, China, on 8th August 2010, resulting in a catastrophic disaster, with 1463 people being perished. The debris flow valleys, as other numerous debris valleys in the mountainous region, had preventive engineering constructions, such as check dames, properly designed based on common engineering practices for safe guiding the town located right on the debris flow fan. However, failures of such preventive measures often cause even heavier disasters than those that have no human interactions, as the mitigations give a false safety impression. Given such a weird situation and in order to explore a much more effective disaster prevention strategy against debris flows in the mountainous region, this paper makes a comparative study based on two cases in the area of which one had preventive structures and one hasn't. The result shows that inappropriate mitigation measures that have commonly been applying in the disaster reduction practices in the region are of questionable. It is concluded that going with the nature and following with the natural rules are the best strategy for disaster reduction in the region. Key words: debris flow disasters, disaster reduction strategy, preventive measures

  4. Benthic community recovery from brine impact after the implementation of mitigation measures.

    PubMed

    Del-Pilar-Ruso, Yoana; Martinez-Garcia, Elena; Giménez-Casalduero, Francisca; Loya-Fernández, Angel; Ferrero-Vicente, Luis Miguel; Marco-Méndez, Candela; de-la-Ossa-Carretero, Jose Antonio; Sánchez-Lizaso, José Luis

    2015-03-01

    In many regions, seawater desalination is a growing industry that has its impact on benthic communities. This study analyses the effect on benthic communities of a mitigation measure applied to a brine discharge, using polychaete assemblages as indicator. An eight-year study was conducted at San Pedro del Pinatar (SE Spain) establishing a grid of 12 sites at a depth range of 29-38 m during autumn. Brine discharge started in 2006 and produced a significant decrease in abundance, richness and diversity of polychaete families at the location closest to the discharge, where salinity reached 49. In 2010, a diffuser was deployed at the end of the pipeline in order to increase the mixing, to reduce the impact on benthic communities. After implementation of this mitigation measure, the salinity measured close to discharge was less than 38.5 and a significant recovery in polychaete richness and diversity was detected, to levels similar to those before the discharge. A less evident recovery in abundance was also observed, probably due to different recovery rates of polychaete families. Some families like Paraonidae and Magelonidae were more tolerant to this impact. Others like Syllidae and Capitellidae recovered quickly, although still affected by the discharge, while some families such as Sabellidae and Cirratulidae appeared to recover more slowly.

  5. Heat flux mitigation by impurity seeding in high-field tokamaks

    NASA Astrophysics Data System (ADS)

    Reinke, M. L.

    2017-03-01

    The ability for tokamaks to exhaust power in the boundary via impurity radiation is explored using empirical scalings and a simple 0D exhaust model, focusing on the scaling with toroidal field and major radius. By combining a scaling for the heat flux width and the L-H threshold power, the parallel heat flux in the SOL is shown to scale strongly with magnetic field, {{q}\\parallel}∼ B\\text{T}2.52 while having little to no scaling with machine size, {{q}\\parallel}∼ {{R}0.16} . Despite the increased heat flux at high field, it is shown that target temperatures relevant to detachment can be reached with finite main-ion dilution for a variety of impurity seeding gases, although non-equilibrium ionization balance is required in most cases. The necessary impurity fractions are estimated to scale like {{f}Z}∼ B\\text{T}0.88{{R}1.33} , a result that is facilitated by an increase in upstream temperature at high {{q}\\parallel} relative to peaks in the impurity cooling-curves. This scaling indicates that for optimizing reactors, minimizing device size while maximizing toroidal field, an approach shown to be consistent with energy confinement scaling, will also maximize the feasibility of reaching detachment at the lowest dilution. Despite this, analysis suggests an increase in the impurity fractions relative to existing devices will be required to exhaust power in a reactor-scale tokamak, with validation of impurity radiation physics required before both simple and detailed models can make reliable predictions of absolute f Z .

  6. Mechanisms Involved in the Mitigation of Urban Heat Islands through Vegetation

    NASA Astrophysics Data System (ADS)

    Montalto, F. A.; Smalls-Mantey, L.

    2016-12-01

    Urban heat islands are one of many challenges presented by today's unprecedented patterns of urbanization. At higher densities, urban populations are more vulnerable to the increased temperatures that accompany urban landscape change. Though in the US it is funded principally as a means of stormwater management, urban green infrastructure (GI) actually alters hydrologic, energetic, and thermal budgets of urban environments, with a suite of potential co-benefits related to the health of people and ecosystems. Recent research has underscored the roles that vegetation plays in such processes, for example by facilitating evapotranspiration, and regulating air temperature and water availability. While the magnitude of these and other impacts is determined in part by the size, type, location, and configuration of GI facilities, few studies have attempted to characterize and to quantify how various vegetation-mediated processes in GI systems impact the energy and thermal properties of their surroundings. Using data collected at rooftop and ground level GI facilities including green roofs and bioretention areas monitored by Drexel University, this research illustrates the role that processes such as evapotranspiration play in the individual GI site cooling potential, reducing neighborhood vulnerability to the urban heat island effect.

  7. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  8. Laser Measurement Of Convective-Heat-Transfer Coefficient

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

    1994-01-01

    Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

  9. Laser Measurement Of Convective-Heat-Transfer Coefficient

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

    1994-01-01

    Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

  10. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies

    NASA Astrophysics Data System (ADS)

    Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.; Duren, Riley M.; Miller, Charles E.; Lai, Chun-Ta; Hsu, Ying-Kuang; Carranza, Valerie; Randerson, James T.

    2016-09-01

    Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is growing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lack systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitigation approaches are absent or ineffective. These findings illustrate that tackling urban CH4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. We suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.

  11. A new modelling framework and mitigation measures for increased resilience to flooding

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Alexakis, Athanasios; Solley, Mark

    2015-04-01

    Flooding in rivers and estuaries is amongst the most significant challenges our society has yet to tackle effectively. Use of floodwall systems is one of the potential measures that can be used to mitigate the detrimental socio-economical and ecological impacts and alleviate the associated costs of flooding. This work demonstrates the utility of such systems for a case study via appropriate numerical simulations, in addition to conducting scaled flume experiments towards obtaining a better understanding of the performance and efficiency of the flood-wall systems. At first, the results of several characteristic inundation modeling scenarios and flood mitigation options, for a flood-prone region in Scotland. In particular, the history and hydrology of the area are discussed and the assumptions and hydraulic model input (model geometry including instream hydraulic structures -such as bridges and weirs- river and floodplain roughness, initial and boundary conditions) are presented, followed by the model results. Emphasis is given on the potential improvements brought about by mitigating flood risk using flood-wall systems. Further, the implementation of the floodwall in mitigating flood risk is demonstrated via appropriate numerical modeling, utilizing HEC-RAS to simulate the effect of a river's rising stage during a flood event, for a specific area. The later part of this work involves the design, building and utilization of a scaled physical model of a flood-wall system. These experiments are carried out at one of the research flumes in the Water Engineering laboratory of the University of Glasgow. These involve an experimental investigation where the increase of force applied on the floodwall is measured for different degrees of deflection of the water in the stream, under the maximum flow discharge that can be carried through without exceeding the floodwall height (and accounting for the effect of super-elevation). These results can be considered upon the

  12. Mitigation strategy

    NASA Astrophysics Data System (ADS)

    Carusi, Andrea; Perozzi, Ettore; Scholl, Hans

    2005-04-01

    There are three major options for mitigation of Near Earth Objects (NEOs). Deflection and disruption of NEOs require the development of new space technologies. A third option, the preparation of the target area on Earth to mitigate an impact, needs institutions for the required civil defense measures. The three options are complementary. Basic requirements for the presently most preferred strategy, deflection, are presented. To cite this article: A. Carusi et al., C. R. Physique 6 (2005).

  13. Pulse Mitigation and Heat Transfer Enhancement Techniques. Volume 4. Transient Behavior of Heat Pipe With Thermal Energy Storage Under Pulse Heat Loads

    DTIC Science & Technology

    1992-08-01

    the remarkable properties of the heat pipe have become appreciated, and serious developmental work is still taking place. A heat pipe consists of a...transient liquid flow model requires knowledge of the saturation dependence of the capillary flow properties , which can only be determined by experiment...their discretization equations which are physically unrealistic. In light of the above observation, an improved ADI method is proposed. The

  14. Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)

    NASA Astrophysics Data System (ADS)

    Brachert, Thomas C.; Reuter, Markus; Krüger, Stefan; Kirkerowicz, Julia; Klaus, James S.

    2016-03-01

    The fast growing calcareous skeletons of zooxanthellate reef corals (z corals) represent unique environmental proxy archives through their oxygen and carbon stable isotope composition (δ18O, δ13C). In addition, the accretion of the skeleton itself is ultimately linked to the environment and responds with variable growth rates (extension rate) and density to environmental changes. Here we present classical proxy data (δ18O, δ13C) in combination with calcification records from 15 massive z corals. The z corals were sampled from four interglacial units of the Florida carbonate platform (USA) dated approximately 3.2, 2.9, 1.8 and 1.2 Ma (middle Pliocene to early Pleistocene). The z corals (Solenastrea, Orbicella, Porites) derive from unlithified shallow marine carbonates and were carefully screened for primary preservation suited for proxy analysis. We show that skeletal accretion responded with decreasing overall calcification rates (decreasing extension rate but increasing density) to warmer water temperatures. Under high annual water temperatures, inferred from sub-annually resolved δ18O data, skeletal bulk density was high, but extension rates and overall calcification rates were at a minimum (endmember scenario 1). Maximum skeletal density was reached during the summer season giving rise to a growth band of high density within the annually banded skeletons ("high density band", HDB). With low mean annual water temperatures (endmember scenario 2), bulk skeletal density was low but extension rates and calcification rates reached a maximum, and under these conditions the HDB formed during winter. Although surface water temperatures in the Western Atlantic warm pool during the interglacials of the late Neogene were ˜ 2 °C higher than they are in the present day, intermittent upwelling of cool, nutrient-rich water mitigated water temperatures off south-western Florida and created temporary refuges for z coral growth. Based on the sub-annually resolved δ18O and

  15. Upwellings mitigated Plio-Pleistocene heat stress for reef corals on the Florida platform (USA)

    NASA Astrophysics Data System (ADS)

    Brachert, T. C.; Reuter, M.; Krüger, S.; Kirkerowicz, J.; Klaus, J. S.

    2015-10-01

    The fast growing calcareous skeletons of zooxanthellate reef corals (z-corals) represent unique environmental proxy archives through their oxygen and carbon stable isotope composition (δ18O, δ13C). In addition, the accretion of the skeleton itself is ultimately linked to the environment and responds with variable growth rates (extension rate) and density to environmental changes. Here we present classical proxy data (δ18O, δ13C) in combination with calcification records from 15 massive z-corals. The z-corals were sampled from four interglacial units of the Florida carbonate platform (USA) dated approximately 3.2, 2.9, 1.8 and 1.2 Ma (middle Pliocene to early Pleistocene). The z-corals (Solenastrea, Orbicella, Porites) derive from unlithified shallow marine carbonates and were carefully screened for primary preservation suited for proxy analysis. We show that skeletal accretion was non-linear and responded with decreasing overall calcification rates (decreasing extension rate but increasing density) to warmer water temperatures. Under high annual water temperatures, inferred from subannually resolved δ18O data, skeletal bulk density was high, but extension rates and overall calcification rates were at a minimum (endmember scenario 1). Maximum skeletal density was reached during the summer season giving rise to a growth band of high density within the annually banded skeletons ("high density band", HDB). With low mean annual water temperatures (endmember scenario 2), bulk skeletal density was low but extension rates and calcification rates reached a maximum, and under these conditions the HDB formed during winter. Although surface water temperatures in the Western Atlantic warm pool during the interglacials of the late Neogene where ∼ 2 °C higher than they are in the present-day, intermittent upwelling of cool, nutrient rich water mitigated water temperatures off southwestern Florida in the middle of the Atlantic warm pool and created temporary refuges for

  16. Targeting Heat Shock Proteins Mitigates Ventilator Induced Diaphragm Muscle Dysfunction in an Age-Dependent Manner

    PubMed Central

    Ogilvie, Hannah; Cacciani, Nicola; Akkad, Hazem; Larsson, Lars

    2016-01-01

    Intensive care unit (ICU) patients are often overtly subjected to mechanical ventilation and immobilization, which leads to impaired limb and respiratory muscle function. The latter, termed ventilator-induced diaphragm dysfunction (VIDD) has recently been related to compromised heat shock protein (Hsp) activation. The administration of a pharmacological drug BGP-15 acting as a Hsp chaperone co-inducer has been found to partially alleviate VIDD in young rats. Considering that the mean age in the ICU is increasing, we aimed to explore whether the beneficial functional effects are also present in old rats. For that, we exposed young (7–8 months) and old (28–32 months) rats to 5-day controlled mechanical ventilation and immobilization with or without systemic BGP-15 administration. We then dissected diaphragm muscles, membrane–permeabilized bundles and evaluated the contractile function at single fiber level. Results confirmed that administration of BGP-15 restored the force-generating capacity of isolated muscle cells from young rats in conjunction with an increased expression of Hsp72. On the other hand, our results highlighted that old rats did not positively respond to the BGP-15 treatment. Therefore, it is of crucial importance to comprehend in more depth the effect of VIDD on diaphragm function and ascertain any further age-related differences. PMID:27729867

  17. Targeting Heat Shock Proteins Mitigates Ventilator Induced Diaphragm Muscle Dysfunction in an Age-Dependent Manner.

    PubMed

    Ogilvie, Hannah; Cacciani, Nicola; Akkad, Hazem; Larsson, Lars

    2016-01-01

    Intensive care unit (ICU) patients are often overtly subjected to mechanical ventilation and immobilization, which leads to impaired limb and respiratory muscle function. The latter, termed ventilator-induced diaphragm dysfunction (VIDD) has recently been related to compromised heat shock protein (Hsp) activation. The administration of a pharmacological drug BGP-15 acting as a Hsp chaperone co-inducer has been found to partially alleviate VIDD in young rats. Considering that the mean age in the ICU is increasing, we aimed to explore whether the beneficial functional effects are also present in old rats. For that, we exposed young (7-8 months) and old (28-32 months) rats to 5-day controlled mechanical ventilation and immobilization with or without systemic BGP-15 administration. We then dissected diaphragm muscles, membrane-permeabilized bundles and evaluated the contractile function at single fiber level. Results confirmed that administration of BGP-15 restored the force-generating capacity of isolated muscle cells from young rats in conjunction with an increased expression of Hsp72. On the other hand, our results highlighted that old rats did not positively respond to the BGP-15 treatment. Therefore, it is of crucial importance to comprehend in more depth the effect of VIDD on diaphragm function and ascertain any further age-related differences.

  18. Investigation of the impact of climate change on river water temperature: possible mitigation measures using riparian vegetation

    NASA Astrophysics Data System (ADS)

    Weihs, Philipp; Trimmel, Heidelinde; Formayer, Herbert; Kalny, Gerda; Rauch, Hans Peter; Leidinger, David

    2016-04-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influence the sensitive and latent heat flux. The present study investigates the influence of climate change on water temperature of streams and the potential of riparian vegetation to mitigate its effects. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz were performed from spring 2012 until autumn 2014. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity were carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. This time period also includes the heat episode of summer 2013 during which the highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. The influence of riparian vegetation on water temperature, leading to lower water temperature by shading, is also detectable

  19. Measurements of thermophysical properties by a stepwise heating method

    NASA Astrophysics Data System (ADS)

    Araki, N.

    1984-03-01

    An outline of the stepwise heating method for measuring thermal diffusivity and specific heat capacity of samples in both solid and liquid phases is described. The method is based on the measurement of temperature response at the surface of a solid sample when the other surface is heated in step-function. By making the best use of the characteristic points of this method, applications to samples in the liquid state, especially to high temperature melts such as molten salts, have been tried. As examples of measurement results, the thermal diffusivity, specific heat capacity, and thermal conductivity of zirconia brick and the thermal diffusivity of molten salts are shown in graphic form.

  20. Analysis of the 2002 flood in Austria - facts, conclusions and mitigation measures

    NASA Astrophysics Data System (ADS)

    Formayer, H.; Habersack, H.; Holzmann, H.; Moser, A.; Seibert, P.

    2003-04-01

    In August 2002 Austria was affected - like other European countries e.g. Germany, Czech Republic or Romania - by an extreme flood event, which occurred in Central Europe and brought rainfall of extraordinary extent and flood recurrence intervals from several years to more than 1000 years. Losses of human life and livestock and damages of infrastructure, buildings, public and private properties rose the public awareness and the demand for improvement of future flood mitigation measures. The Centre of Natural Hazards and Risk Management of the BOKU-University for Natural Resources and Applied Life Sciences, Vienna startet as a first initiative with a summary and review of all reports and documents upon the regional impact of the event. The summary includes the description of the meteorological boundary conditions, the flood generation and their frequencies. A broad range of disciplinary aspects like river engineering, river ecology, vegetation and biology, soil science and soil mechanics, rural and urban planning were involved. The inventory and interpretation of the damages forms a base for assessment of shortcomings and requirements for a successful flood protection strategy for the future. The holistic approach will result in improved regional water management plans and assists in the development of a sustainable, catchment based flood mitigation strategy. Besides the review of the event the presentation will comment on some lacks and shortcomings in the collected data base and will give hints for future demands in online monitoring requirements, on establishment and improvement of forecasting tools and of the information transfer to the emergency services.

  1. Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.; Hensley, Scott; Chen, Curtis

    2010-01-01

    Satellite-based repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides a synoptic high spatial resolution perspective of Earth's changing surface, permitting one to view large areas quickly and efficiently. By measuring relative phase change from one observation to the next on a pixel-by-pixel basis, maps of deformation and change can be derived. Variability of the atmosphere and the ionosphere leads to phase/time delays that are present in the data that can mask many of the subtle deformation signatures of interest, so methods for mitigation of these effects are important. Many of these effects have been observed in existing ALOS PALSAR data, and studies are underway to characterize and mitigate the ionosphere using these data. Since the ionosphere is a dispersive medium, it is possible in principle distinguish the ionospheric signatures from the non-dispersive effects of deformation and the atmosphere. In this paper, we describe a method for mapping the ionosphere in InSAR data based on a multi-frequency split-spectrum processing technique.

  2. Built Expansion and Global Climate Change Drive Projected Urban Heat: Relative Magnitudes, Interactions, and Mitigation

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.

    2016-12-01

    Surface climates are projected to warm due to global climate change over the course of the 21st century, and demographic projections suggest urban areas in the United States will continue to expand and develop, with associated local climate outcomes. Interactions between these two drivers of urban heat have not been robustly quantified to date. Here, simulations with the Weather Research and Forecasting model (coupled to a Single-Layer Urban Canopy Model) are performed at 20 km resolution over the continental U.S. for two 10-year periods: contemporary (2000-2009) and end-of-century (2090-2099). Present and end of century urban land use are derived from the Environmental Protection Agency's Integrated Climate and Land-Use Scenarios. Modelled effects on urban climates are evaluated regionally. Sensitivity to climate projection (Community Climate System Model 4.0, RCP 4.5 vs. RCP 8.5) and associated urban development scenarios are assessed. Effects on near-surface urban air temperature of RCP8.5 climate change are greater than those attributable to the corresponding urban development in many regions. Interaction effects vary by region, and while of lesser magnitude, are not negligible. Moreover, urban development and its interactions with RCP8.5 climate change modify the distribution of convective precipitation over the eastern US. Interaction effects result from the different meteorological effects of urban areas under current and future climate. Finally, the potential for design implementations such as green roofs and high albedo roofs to offset the projected warming is considered. Impacts of these implementations on precipitation are also assessed.

  3. Heat flux measurements on ceramics with thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Holanda, Raymond; Anderson, Robert C.; Liebert, Curt H.

    1993-01-01

    Two methods were devised to measure heat flux through a thick ceramic using thin film thermocouples. The thermocouples were deposited on the front and back face of a flat ceramic substrate. The heat flux was applied to the front surface of the ceramic using an arc lamp Heat Flux Calibration Facility. Silicon nitride and mullite ceramics were used; two thicknesses of each material was tested, with ceramic temperatures to 1500 C. Heat flux ranged from 0.05-2.5 MW/m2(sup 2). One method for heat flux determination used an approximation technique to calculate instantaneous values of heat flux vs time; the other method used an extrapolation technique to determine the steady state heat flux from a record of transient data. Neither method measures heat flux in real time but the techniques may easily be adapted for quasi-real time measurement. In cases where a significant portion of the transient heat flux data is available, the calculated transient heat flux is seen to approach the extrapolated steady state heat flux value as expected.

  4. Modeling nexus of urban heat island mitigation strategies with electricity/power usage and consumer costs: a case study for Phoenix, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Silva, Humberto; Fillpot, Baron S.

    2016-11-01

    A reduction in both power and electricity usage was determined using a previously validated zero-dimensional energy balance model that implements mitigation strategies used to reduce the urban heat island (UHI) effect. The established model has been applied to show the change in urban characteristic temperature when executing four common mitigation strategies: increasing the overall (1) emissivity, (2) vegetated area, (3) thermal conductivity, and (4) albedo of the urban environment in a series of increases by 5, 10, 15, and 20% from baseline values. Separately, a correlation analysis was performed involving meteorological data and total daily energy (TDE) consumption where the 24-h average temperature was shown to have the greatest correlation to electricity service data in the Phoenix, Arizona, USA, metropolitan region. A methodology was then developed for using the model to predict TDE consumption reduction and corresponding cost-saving analysis when implementing the four mitigation strategies. The four modeled UHI mitigation strategies, taken in combination, would lead to the largest percent reduction in annual energy usage, where increasing the thermal conductivity is the single most effective mitigation strategy. The single least effective mitigation strategy, increasing the emissivity by 5% from the baseline value, resulted in an average calculated reduction of about 1570 GWh in yearly energy usage with a corresponding 157 million dollar cost savings. When the four parameters were increased in unison by 20% from baseline values, an average calculated reduction of about 2050 GWh in yearly energy usage was predicted with a corresponding 205 million dollar cost savings.

  5. Pulse Mitigation and Heat Transfer Enhancement Techniques. Volume 1. Spray Cooling.

    DTIC Science & Technology

    1992-08-01

    Temperature 32 S 4.4 Contact Angle Measurements 33 4.5 Contact Angle Effects 35 4.6 Surface Roughness Measurements 36 4.7 Surface Roughness Effects 37...Effect of Coolant Temperature - 3 71 4.9 Contact Angles 72 V 0 0 0 0 0 0 0 0 0 0 4.10 Effect of S--face Contact Angle - 1 73 4.11 Effect of Surface... Contact Angle - 2 74 4.12 Effect of Surface Contact Angle 3 75 4.13 Roughness Profile - 14-pm-grit polish 76 4.14 Roughness Profile - 0.3-pm-grit polish 77

  6. Using a Cold Radiometer to Measure Heat Loads and Survey Heat Leaks

    NASA Technical Reports Server (NTRS)

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2013-01-01

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  7. Using a Cold Radiometer to Measure Heat Loads and Survey Heat Leaks

    NASA Technical Reports Server (NTRS)

    Dipirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2014-01-01

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  8. Using a cold radiometer to measure heat loads and survey heat leaks

    SciTech Connect

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2014-01-29

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  9. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    SciTech Connect

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation from the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form of a

  10. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    1990-11-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  11. Heat flux measurement in SSME turbine blade tester

    NASA Astrophysics Data System (ADS)

    Liebert, Curt H.

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  12. Heat flux measurement in SSME turbine blade tester

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1990-01-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  13. Heat flux measurement in SSME turbine blade tester

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.

    1990-01-01

    Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.

  14. Soldier Protection Demonstration III - Field Testing and Analysis of Personal Cooling Systems for Heat Mitigation

    DTIC Science & Technology

    2008-11-01

    unable to swallow the sensor but still chose to take part in the demonstration, they were given the option to use the sensor as a suppository . At...important to note that more accurate core temperature measurements may be collected via self administration of the sensor as a suppository immediately... suppository method also eliminates any temperature variation due to gastrointestinal motility and changing location. The only negative rationales for

  15. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared

  16. Device for Measuring Heat Capacities of Microcalorimeter Absorber Materials

    NASA Astrophysics Data System (ADS)

    Kotsubo, Vincent; Beall, James; Ullom, Joel

    2009-12-01

    We are developing a device for measuring the heat capacity of candidate absorber materials for gamma-ray microcalorimeters with the goal of finding materials with low heat capacity and high stopping power to improve detector efficiency. To date, only Sn has been effective as an absorber, and speculation is that other materials suffer from anomalously high heat capacities at low temperatures. The key component of the measurement device is a 17 mm×17 mm low heat capacity silicon platform suspended by Kevlar fibers designed for accepting 1 g to 2 g samples, and whose heat capacity can be characterized prior to attaching a sample. The platform has a thin film Pd/Au heater deposited directly on the silicon, and a semiconducting thermometer bonded to the surface. The heat capacity is determined from C = Gτ, where G is the in-situ measured conductance and x is the measured temperature decay time from a step change in applied heat. For a platform without samples, decay periods on the order of 0.3 to 0.05 seconds were measured. With samples, decay periods of several seconds are projected, allowing good resolution of the heat capacities. Several thermometers were tested in an effort to find one with the optimum characteristics for measuring platform temperatures. These included a commercial thick-film Ruthenium-oxide surface-mount resistor, a germanium NTD, and a zirconium oxy-nitride thin-film thermometer.

  17. Mitigation of the impact of terrestrial contamination on organic measurements from the Mars Science Laboratory.

    PubMed

    ten Kate, Inge L; Canham, John S; Conrad, Pamela G; Errigo, Therese; Katz, Ira; Mahaffy, Paul R

    2008-06-01

    The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements.

  18. Measurement requirements for a Near-Earth Asteroid impact mitigation demonstration mission

    NASA Astrophysics Data System (ADS)

    Wolters, Stephen D.; Ball, Andrew J.; Wells, Nigel; Saunders, Christopher; McBride, Neil

    2011-10-01

    A concept for an Impact Mitigation Preparation Mission, called Don Quijote, is to send two spacecrafts to a Near-Earth Asteroid (NEA): an Orbiter and an Impactor. The Impactor collides with the asteroid while the Orbiter measures the resulting change in the asteroid's orbit, by means of a Radio Science Experiment (RSE) carried out before and after the impact. Three parallel Phase A studies on Don Quijote were carried out for the European Space Agency: the research presented here reflects the outcomes of the study by QinetiQ. We discuss the mission objectives with regard to the prioritisation of payload instruments, with emphasis on the interpretation of the impact. The Radio Science Experiment is described and it is examined how solar radiation pressure may increase the uncertainty in measuring the orbit of the target asteroid. It is determined that to measure the change in orbit accurately a thermal IR spectrometer is mandatory, to measure the Yarkovsky effect. The advantages of having a laser altimeter are discussed. The advantages of a dedicated wide-angle impact camera are discussed and the field-of-view is initially sized through a simple model of the impact.

  19. Predicting spacecraft multilayer insulation performance from heat transfer measurements

    NASA Technical Reports Server (NTRS)

    Stimpson, L. D.; Hagemeyer, W. A.

    1974-01-01

    Multilayer insulation (MLI) ideally consists of a series of radiation shields with low-conductivity spacers. When MLI blankets were installed on cryogenic tanks or spacecraft, a large discrepancy between the calorimeter measurements and the performance of the installed blankets was discovered. It was found that discontinuities such as exposed edges coupled with high lateral heat transfer created 'heat leaks' which overshadowed the basic heat transfer of the insulation. Approaches leading to improved performance predictions of MLI units are discussed.

  20. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    SciTech Connect

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane; Peterson, Per; Calderoni, Pattrick; Scheele, Randall; Casekka, Andrew; McNamara, Bruce

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsin had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  1. Nanomanufacturing concerns about measurements made in the SEM part IV: charging and its mitigation

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladár, András. E.

    2015-08-01

    This is the fourth part of a series of tutorial papers discussing various causes of measurement uncertainty in scanned particle beam instruments, and some of the solutions researched and developed at NIST and other research institutions. Scanned particle beam instruments especially the scanning electron microscope (SEM) have gone through tremendous evolution to become indispensable tools for many and diverse scientifi c and industrial applications. These improvements have signifi cantly enhanced their performance and made them far easier to operate. But, the ease of operation has also fostered operator complacency. In addition, the user-friendliness has reduced the apparent need for extensive operator training. Unfortunately, this has led to the idea that the SEM is just another expensive "digital camera" or another peripheral device connected to a computer and that all of the problems in obtaining good quality images and data have been solved. Hence, one using these instruments may be lulled into thinking that all of the potential pitfalls have been fully eliminated and believing that, everything one sees on the micrograph is always correct. But, as described in this and the earlier papers, this may not be the case. Care must always be taken when reliable quantitative data are being sought. The fi rst paper in this series discussed some of the issues related to signal generation in the SEM, including instrument calibration, electron beam-sample interactions and the need for physics-based modeling to understand the actual image formation mechanisms to properly interpret SEM images. The second paper has discussed another major issue confronting the microscopist: specimen contamination and methods to eliminate it. The third paper discussed mechanical vibration and stage drift and some useful solutions to mitigate the problems caused by them, and here, in this the fourth contribution, the issues related to specimen "charging" and its mitigation are discussed relative

  2. Nanomanufacturing Concerns about Measurements Made in the SEM Part IV: Charging and its Mitigation.

    PubMed

    Postek, Michael T; Vladár, András E

    2015-01-01

    This is the fourth part of a series of tutorial papers discussing various causes of measurement uncertainty in scanned particle beam instruments, and some of the solutions researched and developed at NIST and other research institutions. Scanned particle beam instruments especially the scanning electron microscope (SEM) have gone through tremendous evolution to become indispensable tools for many and diverse scientific and industrial applications. These improvements have significantly enhanced their performance and made them far easier to operate. But, the ease of operation has also fostered operator complacency. In addition, the user-friendliness has reduced the apparent need for extensive operator training. Unfortunately, this has led to the idea that the SEM is just another expensive "digital camera" or another peripheral device connected to a computer and that all of the problems in obtaining good quality images and data have been solved. Hence, one using these instruments may be lulled into thinking that all of the potential pitfalls have been fully eliminated and believing that, everything one sees on the micrograph is always correct. But, as described in this and the earlier papers, this may not be the case. Care must always be taken when reliable quantitative data are being sought. The first paper in this series discussed some of the issues related to signal generation in the SEM, including instrument calibration, electron beam-sample interactions and the need for physics-based modeling to understand the actual image formation mechanisms to properly interpret SEM images. The second paper has discussed another major issue confronting the microscopist: specimen contamination and methods to eliminate it. The third paper discussed mechanical vibration and stage drift and some useful solutions to mitigate the problems caused by them, and here, in this the fourth contribution, the issues related to specimen "charging" and its mitigation are discussed relative to

  3. Heat Island Compendium

    EPA Pesticide Factsheets

    Heat islands can be mitigated through measures like planting trees and vegetation, installing green roofs and cool roofs, and using cool pavements. The compendium describes all of these strategies and shows how communities around the country are being used

  4. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.

  5. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  6. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.

  7. Heat flux measurement in a high enthalpy plasma flow

    NASA Astrophysics Data System (ADS)

    Löhle, Stefan; Battaglia, Jean-Luc; Gardarein, Jean-Laurent; Jullien, Pierre; van Ootegem, Bruno

    2008-11-01

    It is a widely used approach to measure heat flux in harsh environments like high enthalpy plasma flows, fusion plasma and rocket motor combustion chambers based on solving the inverse heat conduction problem in a semi-infinite environment. This approach strongly depends on model parameters and geometrical aspects of the sensor design. In this work the surface heat flux is determined by solving the inverse heat conduction problem using an identified system as a direct model. The identification of the system is performed using calibration measurements with modern laser technique and advanced data handling. The results of the identified thermo-physical system show that a non-integer model appears most adapted to this particular problem. It is concluded that the new method improves the heat flux sensor significantly and furthermore extend its application to very short measurement times.

  8. In-situ measurements of lunar heat flow

    NASA Technical Reports Server (NTRS)

    Langseth, M. G.; Keihm, S. J.

    1974-01-01

    During the Apollo program two successful heat flow measurements were made in situ on the lunar surface. At the Apollo 15 site a value of 0.0000031 watts/sqcm was measured and at the Apollo 17 site a value of 0.0000022 watts/sqcm was determined. Both measurements have uncertainty limits of + or - 20% and have been corrected for perturbing topographic effects. The apparent difference between the observations may correlate with observed variations in the surface abundance of thorium. Comparison with earlier determinations of heat flow, using the microwave emission spectrum from the moon, gives support to the high gradients and heat flows observed in situ.

  9. In-situ measurements of lunar heat flow

    NASA Technical Reports Server (NTRS)

    Langseth, M. B.; Keihm, S. J.

    1977-01-01

    During the Apollo program two successful heat flow measurements were made in situ on the lunar surface. At the Apollo 15 site a value of .0000031 W/sq cm was measured, and at the Apollo 17 site a value of .0000022 W/sq cm was determined. Both measurements have uncertainty limits of + or - 20 percent and have been corrected for perturbing topographic effects. The apparent difference between the observations may correlate with observed variations in the surface abundance of thorium. Comparison with earlier determinations of heat flow, using the microwave emission spectrum from the moon, gives support to the high gradients and heat flows observed in situ.

  10. Atmospheric particulate mercury in the megacity Beijing: Efficiency of mitigation measures and assessment of health effects

    NASA Astrophysics Data System (ADS)

    Schleicher, N. J.; Schäfer, J.; Chen, Y.; Blanc, G.; Chen, Y.; Chai, F.; Cen, K.; Norra, S.

    2016-01-01

    Atmospheric particulate mercury (HgP) was studied before, during, and after the Olympic Summer Games in Beijing, China, in August 2008 in order to investigate the efficiency of the emission control measures implemented by the Chinese Government. These source control measures comprised traffic reductions, increase in public transportation, planting of vegetation, establishment of parks, building freeze at construction sites, cleaner production techniques for industries and industry closures in Beijing and also in the surrounding areas. Strictest measures including the "odd-even ban" to halve the vehicle volume were enforced from the 20th of July to the 20th of September 2008. The Olympic period provided the unique opportunity to investigate the efficiency of these comprehensive actions implemented in order to reduce air pollution on a large scale. Therefore, the sampling period covered summer (August, September) and winter (December and January) samples over several years from December 2005 to September 2013. Average HgP concentrations in total suspended particulates (TSP) sampled in August 2008 were 81 ± 39 pg/m3 while TSP mass concentrations were 93 ± 49 μg/m3. This equals a reduction by about 63% for TSP mass and 65% for HgP, respectively, compared to the previous two years demonstrating the short-term success of the measures. However, after the Olympic Games, HgP concentrations increased again to pre-Olympic levels in August 2009 while values in August 2010 decreased again by 30%. Moreover, winter samples, which were 2- to 11-fold higher than corresponding August values, showed decreasing concentrations over the years indicating a long-term improvement of HgP pollution in Beijing. However, regarding adverse health effects, comparisons with soil guideline values and studies from other cities highlighted that HgP concentrations in TSP remained high in Beijing despite respective control measures. Consequently, future mitigation measures need to be tailored more

  11. Evaluation of mitigation measures to reduce hydropeaking impacts on river ecosystems - a case study from the Swiss Alps.

    PubMed

    Tonolla, Diego; Bruder, Andreas; Schweizer, Steffen

    2017-01-01

    New Swiss legislation obligates hydropower plant owners to reduce detrimental impacts on rivers ecosystems caused by hydropeaking. We used a case study in the Swiss Alps (hydropower company Kraftwerke Oberhasli AG) to develop an efficient and successful procedure for the ecological evaluation of such impacts, and to predict the effects of possible mitigation measures. We evaluated the following scenarios using 12 biotic and abiotic indicators: the pre-mitigation scenario (i.e. current state), the future scenario with increased turbine capacity but without mitigation measures, and future scenarios with increased turbine capacity and four alternative mitigation measures. The evaluation was based on representative hydrographs and quantitative or qualitative prediction of the indicators. Despite uncertainties in the ecological responses and the future operation mode of the hydropower plant, the procedure allowed the most appropriate mitigation measure to be identified. This measure combines a basin and a cavern at a total retention volume of 80,000m(3), allowing for substantial dampening in the flow falling and ramping rates and in turn considerable reduction in stranding risk for juvenile trout and in macroinvertebrate drift. In general, this retention volume had the greatest predicted ecological benefit and can also, to some extent, compensate for possible modifications in the hydropower operation regime in the future, e.g. due to climate change, changes in the energy market, and changes in river morphology. Furthermore, it also allows for more specific seasonal regulations of retention volume during ecologically sensitive periods (e.g. fish spawning seasons). Overall experience gained from our case study is expected to support other hydropeaking mitigation projects.

  12. Voluntary suppression of hyperthermia-induced hyperventilation mitigates the reduction in cerebral blood flow velocity during exercise in the heat.

    PubMed

    Tsuji, Bun; Honda, Yasushi; Ikebe, Yusuke; Fujii, Naoto; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-04-15

    Hyperthermia during prolonged exercise leads to hyperventilation, which can reduce arterial CO2 pressure (PaCO2 ) and, in turn, cerebral blood flow (CBF) and thermoregulatory response. We investigated 1) whether humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise and 2) the effects of voluntary breathing control on PaCO2 , CBF, sweating, and skin blood flow. Twelve male subjects performed two exercise trials at 50% of peak oxygen uptake in the heat (37°C, 50% relative humidity) for up to 60 min. Throughout the exercise, subjects breathed normally (normal-breathing trial) or they tried to control their minute ventilation (respiratory frequency was timed with a metronome, and target tidal volumes were displayed on a monitor) to the level reached after 5 min of exercise (controlled-breathing trial). Plotting ventilatory and cerebrovascular responses against esophageal temperature (Tes) showed that minute ventilation increased linearly with rising Tes during normal breathing, whereas controlled breathing attenuated the increased ventilation (increase in minute ventilation from the onset of controlled breathing: 7.4 vs. 1.6 l/min at +1.1°C Tes; P < 0.001). Normal breathing led to decreases in estimated PaCO2 and middle cerebral artery blood flow velocity (MCAV) with rising Tes, but controlled breathing attenuated those reductions (estimated PaCO2 -3.4 vs. -0.8 mmHg; MCAV -10.4 vs. -3.9 cm/s at +1.1°C Tes; P = 0.002 and 0.011, respectively). Controlled breathing had no significant effect on chest sweating or forearm vascular conductance (P = 0.67 and 0.91, respectively). Our results indicate that humans can voluntarily suppress hyperthermic hyperventilation during prolonged exercise, and this suppression mitigates changes in PaCO2 and CBF.

  13. Debris mitigation measures by satellite design and operational methods - Findings from the DLR space debris End-to-End Service

    NASA Astrophysics Data System (ADS)

    Sdunnus, H.; Beltrami, P.; Janovsky, R.; Koppenwallner, G.; Krag, H.; Reimerdes, H.; Schäfer, F.

    Debris Mitigation has been recognised as an issue to be addressed by the space faring nations around the world. Currently, there are various activities going on, aiming at the establishment of debris mitigation guidelines on various levels, reaching from the UN down to national space agencies. Though guidelines established on the national level already provide concrete information how things should be done (rather that specifying what should be done or providing fundamental principles) potential users of the guidelines will still have the need to explore the technical, management, and financial implications of the guidelines for their projects. Those questions are addressed by the so called "Space Debris End-to-End Service" project, which has been initiated as a national initiative of the German Aerospace Centre (DLR). Based on a review of already existing mitigation guidelines or guidelines under development and following an identification of needs from a circle of industrial users the "End-to-End Service Gu idelines" have been established for designer and operators of spacecraft. The End-to-End Service Guidelines are based on requirements addressed by the mitigation guidelines and provide recommendations how and when the technical consideration of the mitigation guidelines should take place. By referencing requirements from the mitigation guidelines, the End-to-End Service Guidelines address the consideration of debris mitigation measures by spacecraft design and operational measures. This paper will give an introduction to the End-to-End Service Guidelines. It will focus on the proposals made for mitigation measures by the S/C system design, i.e. on protective design measures inside the spacecraft and on design measures, e.g. innovative protective (shielding) systems. Furthermore, approaches on the analytical optimisation of protective systems will be presented, aiming at the minimisation of shield mass under conservation of the protective effects. On the

  14. Planetary heat flow from shallow subsurface measurements: Mars

    NASA Astrophysics Data System (ADS)

    Cornwall, Marc; Hagermann, Axel

    2016-10-01

    Planetary heat flow probes measure heat flow (depth-resolved temperature and thermal conductivity) to provide insight into the internal state of a planet. The probes have been utilized extensively on Earth, twice on the Moon, and once on the Surface of comet 67P-CG. Mars is an important target for heat flow measurement as heat flow is a critical parameter in Martian thermal history models. Earlier studies indicate that Martian planetary heat flow can be accessed at 5 m below the surface in dry regolith monitored over at least one Martian year. A one Martian year monitoring period is necessary because, in the shallow subsurface, heat flow from the interior is superposed with time varying heat flow contributions, primarily due to insolation. Given that a heat flow probe may not achieve its target depth or monitoring period, this study investigates how the depth (2-5 m), duration (0-1 Martian year) and quality of measurements influence the accuracy of planetary heat flow. An inverse model is used to show that, in the preceding scenarios, the accuracy of planetary heat flow directly estimated from depth-dependent thermal conductivity with 10-20% precision errors, temperatures with 50-100 mK precision errors and modelling uncertainties up to 500 mK, can, on average, be improved by a factor of 27 with optimization to 13%. Accuracies increase with sensor penetration depth and regolith monitoring period. Heat flow optimized from instantaneous measurements or those with the shortest regolith monitoring periods have increased accuracy where the frequency and amplitude of the temperature variation are lowest. The inverse model is based on the Function Specification Inversion method. This study demonstrates that a solution subspace can be identified within a space of uncertainties modelled for the temperature measurements and planetary heat flow: the subspace is defined by a constant log-ratio of their respective standard deviations. Optimized heat flow estimates display

  15. An optimization model for regional air pollutants mitigation based on the economic structure adjustment and multiple measures: A case study in Urumqi city, China.

    PubMed

    Sun, Xiaowei; Li, Wei; Xie, Yulei; Huang, Guohe; Dong, Changjuan; Yin, Jianguang

    2016-11-01

    A model based on economic structure adjustment and pollutants mitigation was proposed and applied in Urumqi. Best-worst case analysis and scenarios analysis were performed in the model to guarantee the parameters accuracy, and to analyze the effect of changes of emission reduction styles. Results indicated that pollutant-mitigations of electric power industry, iron and steel industry, and traffic relied mainly on technological transformation measures, engineering transformation measures and structure emission reduction measures, respectively; Pollutant-mitigations of cement industry relied mainly on structure emission reduction measures and technological transformation measures; Pollutant-mitigations of thermal industry relied mainly on the four mitigation measures. They also indicated that structure emission reduction was a better measure for pollutants mitigation of Urumqi. Iron and steel industry contributed greatly in SO2, NOx and PM (particulate matters) emission reduction and should be given special attention in pollutants emission reduction. In addition, the scales of iron and steel industry should be reduced with the decrease of SO2 mitigation amounts. The scales of traffic and electric power industry should be reduced with the decrease of NOx mitigation amounts, and the scales of cement industry and iron and steel industry should be reduced with the decrease of PM mitigation amounts. The study can provide references of pollutants mitigation schemes to decision-makers for regional economic and environmental development in the 12th Five-Year Plan on National Economic and Social Development of Urumqi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Long term performance of radon mitigation systems

    SciTech Connect

    Prill, R.; Fisk, W.J.

    2002-03-01

    Researchers installed radon mitigation systems in 12 houses in Spokane, Washington and Coeur d'Alene, Idaho during the heating season 1985--1986 and continued to monitor indoor radon quarterly and annually for ten years. The mitigation systems included active sub-slab ventilation, basement over-pressurization, and crawlspace isolation and ventilation. The occupants reported various operational problems with these early mitigation systems. The long-term radon measurements were essential to track the effectiveness of the mitigation systems over time. All 12 homes were visited during the second year of the study, while a second set 5 homes was visited during the fifth year to determine the cause(s) of increased radon in the homes. During these visits, the mitigation systems were inspected and measurements of system performance were made. Maintenance and modifications were performed to improve system performance in these homes.

  17. Heat of freezing for supercooled water: measurements at atmospheric pressure.

    PubMed

    Cantrell, Will; Kostinski, Alexander; Szedlak, Anthony; Johnson, Alexandria

    2011-06-16

    Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds. © 2011 American Chemical Society

  18. Method of measuring heat influx of a cryogenic transfer system

    DOEpatents

    Niemann, Ralph C.; Zelipsky, Steven A.; Rezmer, Ronald R.; Smelser, Peter

    1981-01-01

    A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

  19. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    SciTech Connect

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

    2011-10-01

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses

  20. Mitigation measures to reduce losses of phosphorus during the non-cropping period - a northern European perspective

    USDA-ARS?s Scientific Manuscript database

    Degradation of natural waters by phosphorus (P) due to agricultural activities has been a problem in several countries for many years. Accordingly, mitigation measures to minimize this issue have been developed and used with varying success. Non-point source P from agricultural fields is one of the ...

  1. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... measures which are identified as conditions for NEPA process completion with respect to local CO, PM10,...

  2. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... measures which are identified as conditions for NEPA process completion with respect to local CO, PM10,...

  3. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... measures which are identified as conditions for NEPA process completion with respect to local CO, PM10,...

  4. 40 CFR 93.125 - Enforceability of design concept and scope and project-level mitigation and control measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Enforceability of design concept and... Transit Laws § 93.125 Enforceability of design concept and scope and project-level mitigation and control... measures which are identified as conditions for NEPA process completion with respect to local CO, PM10,...

  5. Heat flux measurements for use in physiological and clothing research.

    PubMed

    Niedermann, R; Psikuta, A; Rossi, R M

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies.

  6. Heat flux measurements for use in physiological and clothing research

    NASA Astrophysics Data System (ADS)

    Niedermann, R.; Psikuta, A.; Rossi, R. M.

    2014-08-01

    Scientists use passive heat flow meters to measure body heat exchanges with the environment. In recent years, several such sensors have been developed and concerns about their proper calibration have been addressed. However, calibration methods have differed in the geometry of the heated device as well as in the heat transfer mechanism. Therefore, a comparison of calibration methods is needed in order to understand the obtained differences in calibration lines. We chose three commercially available heat flux sensors and placed them on four different heated devices: a hot plate, double hot plate, nude cylinder and a cylinder covered with a spacer material. We found differences between the calibration line of the manufacturer and our own measurements, especially when forced convection was involved as the main heat transfer mechanism. The results showed clearly that the calibration method should be chosen according to the intended purpose of use. In addition, we recommend use a thin, light heat flux sensor with good thermal conduction in human subject studies.

  7. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  8. The measurement of capsule heat transfer gaps using neutron radiography.

    NASA Technical Reports Server (NTRS)

    Thaler, L. A.

    1971-01-01

    The use of neutron radiographs to determine dimensional changes of heat transfer gaps in cylindrical nuclear fueled capsules is described. A method was developed which involves scanning a very fine grained neutron radiograph negative with a recording microdensitometer. The output of the densitometer is recorded on graph paper and the heat transfer gap is plotted as a well-defined optical density change. Calibration of the recording microdensitometer ratio arms permits measurements to be made of the heat transfer optical density change from the microdensitometer trace. Total heat transfer gaps, measured by this method, agree with the physical measurements within plus or minus 0.005 cm over a range of gaps from 0.061 to 0.178 cm.

  9. Noise and LPI radar as part of counter-drone mitigation system measures

    NASA Astrophysics Data System (ADS)

    Zhang, Yan (Rockee); Huang, Yih-Ru; Thumann, Charles

    2017-05-01

    With the rapid proliferation of small unmanned aerial systems (UAS) in the national airspace, small operational drones are being sometimes considered as a security threat for critical infrastructures, such as sports stadiums, military facilities, and airports. There have been many civilian counter-drone solutions and products reported, including radar and electromagnetic counter measures. For the current electromagnetic solutions, they are usually limited to particular type of detection and counter-measure scheme, which is usually effective for the specific type of drones. Also, control and communication link technologies used in even RC drones nowadays are more sophisticated, making them more difficult to detect, decode and counter. Facing these challenges, our team proposes a "software-defined" solution based on noise and LPI radar. For the detection, wideband-noise radar has the resolution performance to discriminate possible micro-Doppler features of the drone versus biological scatterers. It also has the benefit of more adaptive to different types of drones, and covertly detecting for security application. For counter-measures, random noise can be combined with "random sweeping" jamming scheme, to achieve the optimal balance between peak power allowed and the effective jamming probabilities. Some theoretical analysis of the proposed solution is provided in this study, a design case study is developed, and initial laboratory experiments, as well as outdoor tests are conducted to validate the basic concepts and theories. The study demonstrates the basic feasibilities of the Drone Detection and Mitigation Radar (DDMR) concept, while there are still much work needs to be done for a complete and field-worthy technology development.

  10. 30 CFR 250.254 - What mitigation measures information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... in this part to minimize or mitigate environmental impacts from your proposed development and...

  11. 30 CFR 550.254 - What mitigation measures information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Plans... or mitigate environmental impacts from your proposed development and production activities, a...

  12. 30 CFR 250.223 - What mitigation measures information must accompany the EP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER... regulations in this part to minimize or mitigate environmental impacts from your proposed exploration...

  13. Agricultural non-point source pollution in China: causes and mitigation measures.

    PubMed

    Sun, Bo; Zhang, Linxiu; Yang, Linzhang; Zhang, Fusuo; Norse, David; Zhu, Zhaoliang

    2012-06-01

    Non-point source (NPS) pollution has been increasingly serious in China since the 1990s. The increases of agricultural NPS pollution in China is evaluated for the period 2000-2008 by surveying the literature on water and soil pollution from fertilizers and pesticides, and assessing the surplus nitrogen balance within provinces. The main causes for NPS pollution were excessive inputs of nitrogen fertilizer and pesticides, which were partly the result of the inadequate agricultural extension services and the rapid expansion of intensive livestock production with little of waste management. The annual application of synthetic nitrogen fertilizers and pesticides in China increased by 50.7 and 119.7%, respectively, during 1991-2008. The mitigation measures to reduce NPS pollution include: correct distortion in fertilizer prices; improve incentives for the recycling of organic manure; provide farmers with better information on the sound use of agro-chemicals; and tighten the regulations and national standards on organic waste disposal and pesticides use.

  14. Measurement of capsule heat transfer gaps using neutron radiography

    NASA Technical Reports Server (NTRS)

    Thaler, L. A.

    1974-01-01

    A technique is described for measuring heat transfer gaps from neutron radiographs. The method involves scanning the radiograph negative with a recording microdensitometer to obtain a trace of the optical density variation across the diameter of the capsule. The optical density change representing the gap is measured from the microdensitometer trace and related to the physical measurement. Heat transfer gaps from 0.061 to 0.178 cm have been determined by this technique and agree with preassembly physical measurements to plus or minus 0.005 cm.

  15. Mitigation of divertor heat flux by high-frequency ELM pacing with non-fuel pellet injection in DIII-D

    DOE PAGES

    Bortolon, A.; Maingi, R.; Mansfield, D. K.; ...

    2017-03-23

    Experiments have been conducted on DIII-D investigating high repetition rate injection of non-fuel pellets as a tool for pacing Edge Localized Modes (ELMs) and mitigating their transient divertor heat loads. Effective ELM pacing was obtained with injection of Li granules in different H-mode scenarios, at frequencies 3–5 times larger than the natural ELM frequency, with subsequent reduction of strike-point heat flux. However, in scenarios with high pedestal density (~6 × 1019 m–3), the magnitude of granule triggered ELMs shows a broad distribution, in terms of stored energy loss and peak heat flux, challenging the effectiveness of ELM mitigation. Furthermore, transientmore » heat-flux deposition correlated with granule injections was observed far from the strike-points. As a result, field line tracing suggest this phenomenon to be consistent with particle loss into the mid-plane far scrape-off layer, at toroidal location of the granule injection.« less

  16. Heat transfer measurements and CFD simulations of an impinging jet

    NASA Astrophysics Data System (ADS)

    Petera, Karel; Dostál, Martin

    2016-03-01

    Heat transport in impinging jets makes a part of many experimental and numerical studies because some similarities can be identified between a pure impingement jet and industrial processes like, for example, the heat transfer at the bottom of an agitated vessel. In this paper, experimental results based on measuring the response to heat flux oscillations applied to the heat transfer surface are compared with CFD simulations. The computational cost of a LES-based approach is usually too high therefore a comparison with less computationally expensive RANS-based turbulence models is made in this paper and a possible improvement of implementing an anisotropic explicit algebraic model for the turbulent heat flux model is evaluated.

  17. Gamma heating measurements with proportional counters

    SciTech Connect

    Chiu, H.; Bennett, E.F.; Micklich, B.J.

    1990-05-01

    A new data acquisition technique (the Continuously-varied Bias- voltage Acquisition mode) has been developed and tested for the low-flux broad-energy regime characteristic of existing fusion blanket mock-ups. This method of analysis allows for the acquisition of data spanning several orders of magnitude in energy with a single proportional counter. Utilizing this method, the gamma energy deposition in a mixed neutron and gamma field was measured. 7 refs., 5 figs.

  18. Modelling of agricultural diffuse pollution and mitigation measures effectiveness in Wallonia (Belgium)

    NASA Astrophysics Data System (ADS)

    Sohier, C.; Deraedt, D.; Degré, A.

    2012-04-01

    Implementation of European directives in the environmental field and, specially, in the water management field, generates a request from policy-makers for news tools able to evaluate impact of management measures aiming at reducing pressures on ecosystems. In Wallonia (Southern Region of Belgium), the Nitrate Directive (EEC/676/91) was transposed into the "Walloon action plan for nitrogen sustainable management in agriculture" (PGDA1) in 2002. In 2007, a second plan was launched to reinforce some topics (PGDA2). Furthermore, the goal of "good quality" of surface waters and groundwater imposed by the Water Framework Directive poses new challenges in water management. In this context, a "soil and vadose" hydrological model is used in order to evaluate diffuse pollutions and efficiency of mitigation measures. This model, called EPICgrid, has been developed at catchment scale with an original modular concept on the basis of the field scale "water-soil-plant" EPIC model (Williams J.R., Jones C.A., Dyke P.T. (1984). A modelling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE. 27, 129-144). The model estimates, for each HRU identified into a 1km2 grid, water and nutrients flows into the plant-soil-vadose zone system (Sohier C., Degré A., Dautrebande S. (2009). From root zone modelling to regional forecasting of nitrate concentration in recharge flows - The case of the Walloon Region (Belgium). Journal of Hydrology, Volume 369, Issues 3-4, 15 May 2009, Pages 350-359). The model is used to make prospective simulations in order to evaluate the impact of measures currently performed to reduce the effect of diffuse pollution on water surface quality and groundwater quality, at regional scale. Response of the soil-vadose zone to agricultural practices modification is analyzed for the deadlines of the Water Framework Directive: 2015, 2021 and 2027, taking into account two climatic scenarios. Simulations results showed

  19. Risk mitigation measures for diffuse pesticide entry into aquatic ecosystems: proposal of a guide to identify appropriate measures on a catchment scale.

    PubMed

    Bereswill, Renja; Streloke, Martin; Schulz, Ralf

    2014-04-01

    Measures to mitigate the risk of pesticide entry into aquatic ecosystems are becoming increasingly more important in the management of hot spots of pesticide transfer; such management, for example, is required by the European Union's directive for the sustainable use of pesticides (2009/128/EC). Measures beyond those currently stipulated for pesticide product authorization may be needed. A concise compilation of the appropriate measures for users (that are primarily farmers but also, e.g., regulators and farm extension services) and a guide for practically identifying these measures at the catchment scale is currently not available. Therefore, a proposal was developed for a guide focusing on the most important diffuse entry pathways (spray drift and runoff). Based on a survey of exposure-relevant landscape parameters (i.e., the riparian buffer strip width, riparian vegetation type, density of ground vegetation cover, coverage of the water body with aquatic macrophytes, field slope, and existence of concentrated flow paths), a set of risk mitigation measures focusing on the specific situation of pollution of a water body catchment can be identified. The user can then choose risk mitigation measures to implement, assisted by evaluations of their efficiency in reducing pesticide entry, feasibility, and expected acceptability to farmers. Currently, 12 landscape-related measures and 6 application-related measures are included. The present guide presents a step toward the practical implementation of risk mitigation measures for reducing pesticide entry in aquatic ecosystems.

  20. Time and Space Resolved Heat Flux Measurements During Nucleate Boiling with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Yerramilli, Vamsee K.; Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2005-01-01

    The lack of temporally and spatially resolved measurements under nucleate bubbles has complicated efforts to fully explain pool-boiling phenomena. The objective of this current work was to acquire time and space resolved temperature distributions under nucleating bubbles on a constant heat flux surface using a microheater array with 100x 100 square microns resolution, then numerically determine the wall to liquid heat flux. This data was then correlated with high speed (greater than l000Hz) visual recordings of The bubble growth and departure from the heater surface acquired from below and from the side of the heater. The data indicate that microlayer evaporation and contact line heat transfer are not major heat transfer mechanisms for bubble growth. The dominant heat transfer mechanism appears to be transient conduction into the liquid as the liquid rewets the wall during the bubble departure process.

  1. Corrections for heat flux measurements taken on launch vehicles

    NASA Astrophysics Data System (ADS)

    Reinarts, Thomas R.; Matson, Monique L.; Walls, Laurie K.

    2002-01-01

    Knowledge of aerothermally induced convective heat transfer and plume induced radiative heat transfer loads is essential to the design of thermal protection systems for launch vehicles. Aerothermal and radiative models are typically calibrated via the data from cylindrical, in-flight, flush-mounted surface heat flux gauges that are exposed to the external thermal and velocity boundary layers as well as thermal radiation. Typically, Schmidt-Boelter gauges, taking advantage of the 1-Dimensional Fourier's law, measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has an exposed surface temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher (potentially by factors of 2 or more) than it would have been on the insulation had the calorimeter not been there. In addition, the gauge can receive energy radially from the hotter insulation, contributing to the increase of the indicated heat flux. This paper will present an overview of an effort to model the heat flux gauge under typical flight conditions that includes an installation surrounded by high temperature insulation. The goal is to correct the measurements to reflect the local heat flux on the insulation had the instrument not been present. The three major components of this effort include: 1) a 3-Dimensional computational thermal math model including the internal conduction heat transfer details of a Schmidt-Boelter gauge. 2) a CFD analysis to determine the effects on measurement of the rapidly changing thermal boundary layer over the near step changes in wall temperature, and 3) testing performed on flat plates exposed to an aerothermal environment in the Marshall Space Flight Center (MSFC) Improved Hot Gas Facility (IHGF). A summary of the analytical efforts will be presented, as well as early testing results and preliminary model

  2. Turbulent heat flux measurements in a transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Sohn, K. H.; Zaman, K. B. M. Q.; Reshotko, E.

    1992-01-01

    During an experimental investigation of the transitional boundary layer over a heated flat plate, an unexpected result was encountered for the turbulent heat flux (bar-v't'). This quantity, representing the correlation between the fluctuating normal velocity and the temperature, was measured to be negative near the wall under certain conditions. The result was unexpected as it implied a counter-gradient heat transfer by the turbulent fluctuations. Possible reasons for this anomalous result were further investigated. The possible causes considered for this negative bar-v't' were: (1) plausible measurement error and peculiarity of the flow facility, (2) large probe size effect, (3) 'streaky structure' in the near wall boundary layer, and (4) contributions from other terms usually assumed negligible in the energy equation including the Reynolds heat flux in the streamwise direction (bar-u't'). Even though the energy balance has remained inconclusive, none of the items (1) to (3) appear to be contributing directly to the anomaly.

  3. Heat transfer measurements with a four-core optical fiber

    NASA Astrophysics Data System (ADS)

    Güvenç, Sema; Inci, Mehmet Naci

    2017-05-01

    A four-core optical fiber is used to investigate one-dimensional heat transfer measurements. Heat pulses from a Nd:YAG laser of 600 ms duration with a repetition rate of the order of 10 s are delivered onto one of the fiber cores. This results in an optical path length difference between the guiding cores due to the change in the refractive index and physical length of the targeted fiber core. As a result of this process, a phase shift of 1.30 rad is measured with a digital camera for 140 mW pulses in reflection scheme. The heat diffusion length in the selected fiber core is determined to be 2.8 mm, which contains 33.2 kJ/m2s heat, causing a temperature rise of 4.30 K.

  4. Making the Handoff from Earthquake Hazard Assessments to Effective Mitigation Measures (Invited)

    NASA Astrophysics Data System (ADS)

    Applegate, D.

    2010-12-01

    This year has witnessed a barrage of large earthquakes worldwide with the resulting damages ranging from inconsequential to truly catastrophic. We cannot predict when earthquakes will strike, but we can build communities that are resilient to strong shaking as well as to secondary hazards such as landslides and liquefaction. The contrasting impacts of the magnitude-7 earthquake that struck Haiti in January and the magnitude-8.8 event that struck Chile in April underscore the difference that mitigation and preparedness can make. In both cases, millions of people were exposed to severe shaking, but deaths in Chile were measured in the hundreds rather than the hundreds of thousands that perished in Haiti. Numerous factors contributed to these disparate outcomes, but the most significant is the presence of strong building codes in Chile and their total absence in Haiti. The financial cost of the Chilean earthquake still represents an unacceptably high percentage of that nation’s gross domestic product, a reminder that life safety is the paramount, but not the only, goal of disaster risk reduction measures. For building codes to be effective, both in terms of lives saved and economic cost, they need to reflect the hazard as accurately as possible. As one of four federal agencies that make up the congressionally mandated National Earthquake Hazards Reduction Program (NEHRP), the U.S. Geological Survey (USGS) develops national seismic hazard maps that form the basis for seismic provisions in model building codes through the Federal Emergency Management Agency and private-sector practitioners. This cooperation is central to NEHRP, which both fosters earthquake research and establishes pathways to translate research results into implementation measures. That translation depends on the ability of hazard-focused scientists to interact and develop mutual trust with risk-focused engineers and planners. Strengthening that interaction is an opportunity for the next generation

  5. On-line measurement of heat of combustion

    NASA Technical Reports Server (NTRS)

    Chaturvedi, S. K.; Chegini, H.

    1988-01-01

    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

  6. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  7. Accurate Measurement of Heat Capacity by Differential Scanning Calorimetry

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Experience with high quality heat capacity measurement by differential scanning calorimetry is summarized and illustrated, pointing out three major causes of error: (1) incompatible thermal histories of the sample, reference and blank runs; (2) unstable initial and final isotherms; (3) incompatible differences between initial and final isotherm amplitudes for sample, reference and blank runs. Considering these problems, it is shown for the case of polyoxymethylene that accuracies in heat capacity of 0.1 percent may be possible.

  8. Absorptivity Measurements and Heat Source Modeling to Simulate Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wirth, Florian; Eisenbarth, Daniel; Wegener, Konrad

    The laser cladding process gains importance, as it does not only allow the application of surface coatings, but also additive manufacturing of three-dimensional parts. In both cases, process simulation can contribute to process optimization. Heat source modeling is one of the main issues for an accurate model and simulation of the laser cladding process. While the laser beam intensity distribution is readily known, the other two main effects on the process' heat input are non-trivial. Namely the measurement of the absorptivity of the applied materials as well as the powder attenuation. Therefore, calorimetry measurements were carried out. The measurement method and the measurement results for laser cladding of Stellite 6 on structural steel S 235 and for the processing of Inconel 625 are presented both using a CO2 laser as well as a high power diode laser (HPDL). Additionally, a heat source model is deduced.

  9. A deterministic evaluation of heat stress mitigation and feed cost under climate change within the smallholder dairy sector.

    PubMed

    York, L; Heffernan, C; Rymer, C; Panda, N

    2016-12-28

    In the global South, dairying is often promoted as a means of poverty alleviation. Yet, under conditions of climate warming, little is known regarding the ability of small-scale dairy producers to maintain production and/or the robustness of possible adaptation options in meeting the challenges presented, particularly heat stress. The authors created a simple, deterministic model to explore the influence of breed and heat stress relief options on smallholder dairy farmers in Odisha, India. Breeds included indigenous Indian (non-descript), low-grade Jersey crossbreed and high-grade Jersey crossbreed. Relief strategies included providing shade, fanning and bathing. The impact of predicted critical global climate parameters, a 2°C and 4°C temperature rise were explored. A feed price scenario was modelled to illustrate the importance of feed in impact estimation. Feed costs were increased by 10% to 30%. Across the simulations, high-grade Jersey crossbreeds maintained higher milk yields, despite being the most sensitive to the negative effects of temperature. Low-capital relief strategies were the most effective at reducing heat stress impacts on household income. However, as feed costs increased the lower-grade Jersey crossbreed became the most profitable breed. The high-grade Jersey crossbreed was only marginally (4.64%) more profitable than the indigenous breed. The results demonstrate the importance of understanding the factors and practical trade-offs that underpin adaptation. The model also highlights the need for hot-climate dairying projects and programmes to consider animal genetic resources alongside environmentally sustainable adaptation measures for greatest poverty impact.

  10. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  11. Measurements of convective and radiative heating in wildland fires

    Treesearch

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Jason M. Forthofer; Paul Sopko; Kyle S. Shannon; J. Kevin Hiers; Roger D. Ottmar

    2012-01-01

    Time-resolved irradiance and convective heating and cooling of fast-response thermopile sensors were measured in 13 natural and prescribed wildland fires under a variety of fuel and ambient conditions. It was shown that a sensor exposed to the fire environment was subject to rapid fluctuations of convective transfer whereas irradiance measured by a windowed sensor was...

  12. Heat Islands

    EPA Pesticide Factsheets

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  13. Spatially resolved heat release rate measurements in turbulent premixed flames

    SciTech Connect

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.; Mastorakos, E.; Frank, J.H.

    2006-01-01

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique uses simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.

  14. Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.

    SciTech Connect

    Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

    2010-03-01

    An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

  15. The nitrogen fate beyond the current nutrient mitigation measures: sustainability of an integrated agriculture

    NASA Astrophysics Data System (ADS)

    Thieu, V.; Billen, G. F.; Garnier, J.; Lancelot, C.; Gypens, N.

    2010-12-01

    Located in the North-Western Europe the terrestrial continuum that includes the Seine, Somme, and Scheldt River basins offers an interesting example of a transborder territory (France, Belgium, and Netherlands) with high-intensity anthropogenic pressures. It well-illustrates the rapid development of modern agriculture in industrialised countries and the resulting severe alteration of water resources and jeopardising the capacity of rural territories to produce drinking water. The corresponding nutrient loads delivered then into the Southern Bight of the North Sea, strongly affect the ecological functioning of the coastal zone. An integrated ‘river-ocean’ assessment, coupling two deterministic models - the SENEQUE RIVESTRAHLER model simulating nutrient dynamic in the drainage network and the MIRO model describing the ecological functioning coastal ecosystem - points out the relevance of current policy based measures (improvement of waste water treatment) to mitigate phosphorous emissions, while the nitrogen pollution related to agriculture will remain critical despite the implementation of classical management measure (good agricultural practices). Therefore and irrespectively of the current political agenda, a more radical alternative is established, consisting of a generalised shift to an integrated agriculture of all agricultural areas in the three basins, excluding the use of synthetically compounded fertilisers and the importation of livestock feed. Such scenario aims at evaluating whether agriculture, by essence, can conciliate (i) the demand for food and feed by local populations, (ii) a good ecological functioning of aquatic ecosystems and (iii) a balanced nutrient status for the adjacent coastal area. This scenario involves an increased livestock density in the Seine and Somme and a decrease in livestock in the Scheldt basin. It leads to a significant reduction of agricultural production that finally brings the three basins closer to autotrophy

  16. Corrections of Heat Flux Measurements on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Reinarts, Thomas R.; Matson, Monique L.; Walls, Laurie K.

    2002-01-01

    Knowledge of aerothermally induced convective heat transfer is important in the design of thermal protection systems for launch vehicles. Aerothermal models are typically calibrated via the data from circular, in-flight, flush-mounted surface heat flux gauges exposed to the thermal and velocity boundary layers of the external flow. Typically, copper or aluminum Schmidt- Boelter gauges, which take advantage of the one-dimensional Fourier's law of heat conduction, are used to measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has a wall temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher than it would have been on the insulation had the calorimeter not been there. In addition, radial conductive heat transfer from the hotter insulation can cause the calorimeter to indicate heat fluxes higher than actual. An overview of an effort to develop and calibrate gauge correction techniques for both of these effects will be presented.

  17. Evaporation Measured In Situ by Sensible Heat Balance

    NASA Astrophysics Data System (ADS)

    Heitman, Josh; Xiao, Xinhua; Sauer, Thomas; Ren, Tusheng; Horton, Robert

    2016-04-01

    Measurement of evaporation independent from evapotranspiration remains a major challenge for quantifying water fluxes in the soil-plant-atmosphere system. Methodology based on soil sensible heat balance (SHB) has been developed to measure in situ, sub-surface soil water evaporation with heat-pulse sensors. Soil sensible heat flux and change in heat storage are measured at multiple depths near the soil surface, and a simple energy balance calculation is applied to determine latent heat flux (i.e., evaporation) as a residual. For bare surface conditions, comparison of SHB to micrometerological (Bowen ratio) and micro-lysimeter approaches indicates strong correlation (r2 = 0.96) with near 1:1 relationship and root mean square error of 0.2 mm/d. Recent efforts to apply SHB methodology in row-crop (maize) and vineyard systems demonstrate the potential for quantifying evaporation separate from evapotranspiration. For the maize system, SHB evaporation estimates differed from micro-lysimeters by < 0.2 mm/d. The SHB approach is one of very few measurement approaches that may be applied to partition evaporation from evapotranspiration.

  18. Basic data for some recent Australian heat-flow measurements

    USGS Publications Warehouse

    Munroe, Robert J.; Sass, J.H.; Milburn, G.T.; Jaeger, J.C.; Tammemagi, H.Y.

    1975-01-01

    This report has been compiled to provide background information and detailed temperature and thermal conductivity data for the heat-flow values reported in Sass, Jaeger, and Munroe (in press). The data were collected as part of a joint heat-flow study by the Australian National University (ANU) and the U.S. Geological Survey (USGS) under the direction of J. C. Jaeger (ANU) and J. H. Sass (USGS). The format is similar to that used for basic data from United States heat-flow determinations (Sass and Munroe, 1974). Each section contains a state map showing the geographic distribution of heat-flow data followed by tables which list individual temperatures, thermal conductivities, and radiogenic heat production values. A companion volume (Bunker and others, 1975) gives details of the heat-production measurements together with individual radioelement concentrations. Localities are arranged in alphabetical order within each state. The methods and techniques of measurements have been described by Sass and others (1971a, b). Unusual methods or procedures which differ markedly from these techniques are noted and described in the comments sections of the tables.

  19. Time and Space Resolved Heat Transfer Measurements Under Nucleate Bubbles with Constant Heat Flux Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Myers, Jerry G.; Hussey, Sam W.; Yee, Glenda F.; Kim, Jungho

    2003-01-01

    Investigations into single bubble pool boiling phenomena are often complicated by the difficulties in obtaining time and space resolved information in the bubble region. This usually occurs because the heaters and diagnostics used to measure heat transfer data are often on the order of, or larger than, the bubble characteristic length or region of influence. This has contributed to the development of many different and sometimes contradictory models of pool boiling phenomena and dominant heat transfer mechanisms. Recent investigations by Yaddanapyddi and Kim and Demiray and Kim have obtained time and space resolved heat transfer information at the bubble/heater interface under constant temperature conditions using a novel micro-heater array (10x10 array, each heater 100 microns on a side) that is semi-transparent and doubles as a measurement sensor. By using active feedback to maintain a state of constant temperature at the heater surface, they showed that the area of influence of bubbles generated in FC-72 was much smaller than predicted by standard models and that micro-conduction/micro-convection due to re-wetting dominated heat transfer effects. This study seeks to expand on the previous work by making time and space resolved measurements under bubbles nucleating on a micro-heater array operated under constant heat flux conditions. In the planned investigation, wall temperature measurements made under a single bubble nucleation site will be synchronized with high-speed video to allow analysis of the bubble energy removal from the wall.

  20. Heat flow measurements on the southeast coast of Australia

    USGS Publications Warehouse

    Hyndman, R.D.; Jaeger, J.C.; Sass, J.H.

    1969-01-01

    Three boreholes have been drilled for the Australian National University near the southeast coast of New South Wales, Australia. The heat flows found are 1.1, 1.0, and 1.3 ??cal/cm2sec. The errors resulting from the proximity of the sea and a lake, surface temperature change, conductivity structure and water flow have been examined. The radioactive heat production in some of the intrusive rocks of the area have also been measured. The heat flows are much lower than the values of about 2.0 found elsewhere in south eastern Australia. The lower values appear to be part of a distinct heat flow province in eastern Australia. ?? 1969.

  1. Direct electronic measurement of Peltier cooling and heating in graphene.

    PubMed

    Vera-Marun, I J; van den Berg, J J; Dejene, F K; van Wees, B J

    2016-05-10

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  2. Direct electronic measurement of Peltier cooling and heating in graphene

    NASA Astrophysics Data System (ADS)

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    2016-05-01

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  3. Direct electronic measurement of Peltier cooling and heating in graphene

    PubMed Central

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    2016-01-01

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials. PMID:27161186

  4. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    SciTech Connect

    Pomerantz, M.; Akbari, H.; Chang, S.-C.; Levinson, R.; Pon, B.

    2003-04-30

    Part of the urban heat island effect can be attributed to dark pavements that are commonly used on streets and parking lots. In this paper we consider two light colored, hence cooler, alternative paving materials that are in actual use in cities today. These are Portland cement concrete (PCC) pavements and chip seals. We report measurements of the albedos of some PCC and chip sealed pavements in the San Francisco Bay Area. The albedos of the PCC pavements ranged from about 0.18 to 0.35. The temperatures of some PCC pavements are also measured and calculated. We then consider how the albedos of the constituent materials of the PCC (stone, sand and cement) contribute to the albedos of the resulting finished concrete. The albedos of a set of chip sealed pavements in San Jose, CA, were measured and correlated with the times of their placement. It is found that the albedos decrease with age (and use) but remain higher than that of standard asphalt concrete (AC) for about five years. After t hat, the albedos of the chip seals are about 0.12, similar to aged AC. The fact that many PCC pavements have albedos at least twice as high as aged AC suggests that it is possible to have pavement albedos that remain high for many years.

  5. Specific Heat and Second Sound Measurements with the DYNAMIX Instrument

    NASA Technical Reports Server (NTRS)

    Nissen, Joel

    2003-01-01

    In addition to its primary role of studying non-linear heat transport effects near the lambda transition of He-4, the DYNAMX apparatus is suitable for measurements of the specific heat and the velocity of second sound. We plan to take advantage of available time on orbit to make measurements in these areas near to the lambda transition. The specific heat work would be similar to LPE, aimed at improving our knowledge of the singularity in the bulk heat capacity at the transition, but would provide more accurate results close to the transition. It would focus roughly equally on each side of the transition and would be synergistic with the CQ experiment, providing wider-range data at Q = 0. The second sound measurements are made possible by the fast time constant and high resolution of the DYNAMX thermometers, which allow accurate time-of-flight measurements of second sound pulses. It appears possible to measure the second sound velocity to about 1% at a reduced temperature of t = 5x10(exp -8) by averaging over a moderate number of pulses. The data would complement and extend earlier ground-based measurements, leading to improved tests of the theory of static critical phenomena at the lambda transition.

  6. Specific Heat and Second Sound Measurements with the DYNAMIX Instrument

    NASA Technical Reports Server (NTRS)

    Nissen, Joel

    2003-01-01

    In addition to its primary role of studying non-linear heat transport effects near the lambda transition of He-4, the DYNAMX apparatus is suitable for measurements of the specific heat and the velocity of second sound. We plan to take advantage of available time on orbit to make measurements in these areas near to the lambda transition. The specific heat work would be similar to LPE, aimed at improving our knowledge of the singularity in the bulk heat capacity at the transition, but would provide more accurate results close to the transition. It would focus roughly equally on each side of the transition and would be synergistic with the CQ experiment, providing wider-range data at Q = 0. The second sound measurements are made possible by the fast time constant and high resolution of the DYNAMX thermometers, which allow accurate time-of-flight measurements of second sound pulses. It appears possible to measure the second sound velocity to about 1% at a reduced temperature of t = 5x10(exp -8) by averaging over a moderate number of pulses. The data would complement and extend earlier ground-based measurements, leading to improved tests of the theory of static critical phenomena at the lambda transition.

  7. Communicating risk and promoting disease mitigation measures in epidemics and emerging disease settings.

    PubMed

    Schiavo, Renata; May Leung, May; Brown, Mason

    2014-03-01

    This review aims to identify and assess evidence on interventions to communicate risk and promote disease mitigation measures in epidemics and emerging disease outbreak settings. The study focuses on data that are relevant to low and middle-income country (LMIC) settings. We conducted a comprehensive literature search using five major electronic databases (Pubmed Medline, Biomed Central, EMBASE, Science of Citation Index, and Cochrane Library) and other sources to identify relevant studies published from January 2002 to July 2013. The review was guided by the socio-ecological model/perspective of public health and the ideation theory and focused on interventions at the community, healthcare, and multi-sectoral settings, which also reflect key intervention levels of the Ottawa Charter for Health Promotion. Eligible quantitative studies were selected according to specific study criteria and assessed using the Critical Appraisal Skills Program (CASP) framework. Conversely, qualitative studies, reviews, case studies, and editorials were not included. Studies were selected by two independent reviewers. Twenty-nine relevant studies from 16 countries were included. Most studies focused on a single intervention or intervention level, rather than multi-sectoral interventions. The majority of the evidence relates to programs aimed at behavioral and social results (or relevant intermediate steps) within a specific population group. Two studies included implications for improvements in health service delivery, two studies examined the intervention's impact on health systems-related outcomes, and three had also implications for environmental health outcomes. Cost- and health equity-related implications for select evidence were also discussed. The paucity of well-designed quantitative evaluations of interventions to communicate health risk and promote disease control measures in LMICs does not allow for any definitive conclusions. Yet, the review identified several promising

  8. Communicating risk and promoting disease mitigation measures in epidemics and emerging disease settings

    PubMed Central

    Schiavo, Renata; Leung, May May; Brown, Mason

    2014-01-01

    Objective This review aims to identify and assess evidence on interventions to communicate risk and promote disease mitigation measures in epidemics and emerging disease outbreak settings. The study focuses on data that are relevant to low and middle-income country (LMIC) settings. Methods We conducted a comprehensive literature search using five major electronic databases (Pubmed Medline, Biomed Central, EMBASE, Science of Citation Index, and Cochrane Library) and other sources to identify relevant studies published from January 2002 to July 2013. The review was guided by the socio-ecological model/perspective of public health and the ideation theory and focused on interventions at the community, healthcare, and multi-sectoral settings, which also reflect key intervention levels of the Ottawa Charter for Health Promotion. Eligible quantitative studies were selected according to specific study criteria and assessed using the Critical Appraisal Skills Program (CASP) framework. Conversely, qualitative studies, reviews, case studies, and editorials were not included. Studies were selected by two independent reviewers. Results Twenty-nine relevant studies from 16 countries were included. Most studies focused on a single intervention or intervention level, rather than multi-sectoral interventions. The majority of the evidence relates to programs aimed at behavioral and social results (or relevant intermediate steps) within a specific population group. Two studies included implications for improvements in health service delivery, two studies examined the intervention’s impact on health systems-related outcomes, and three had also implications for environmental health outcomes. Cost- and health equity-related implications for select evidence were also discussed. Conclusions The paucity of well-designed quantitative evaluations of interventions to communicate health risk and promote disease control measures in LMICs does not allow for any definitive conclusions. Yet, the

  9. Measuring personal heat exposure in an urban and rural environment.

    PubMed

    Bernhard, Molly C; Kent, Shia T; Sloan, Meagan E; Evans, Mary B; McClure, Leslie A; Gohlke, Julia M

    2015-02-01

    Previous studies have linked heat waves to adverse health outcomes using ambient temperature as a proxy for estimating exposure. The goal of the present study was to test a method for determining personal heat exposure. An occupationally exposed group (urban groundskeepers in Birmingham, AL, USA N=21), as well as urban and rural community members from Birmingham, AL (N=30) or west central AL (N=30) wore data logging temperature and light monitors clipped to the shoe for 7 days during the summer of 2012. We found that a temperature monitor clipped to the shoe provided a comfortable and feasible method for recording personal heat exposure. Ambient temperature (°C) recorded at the nearest weather station was significantly associated with personal heat exposure [β 0.37, 95%CI (0.35, 0.39)], particularly in groundskeepers who spent more of their total time outdoors [β 0.42, 95%CI (0.39, 0.46)]. Factors significantly associated with lower personal heat exposure include reported time indoors [β -2.02, 95%CI (-2.15, -1.89)], reported income>20K [β -1.05, 95%CI (-1.79, -0.30)], and measured % body fat [β -0.07, 95%CI (-0.12, -0.02)]. There were significant associations between income and % body fat with lower indoor and nighttime exposures, but not with outdoor heat exposure, suggesting modifications of the home thermal environment play an important role in determining overall heat exposure. Further delineation of the effect of personal characteristics on heat exposure may help to develop targeted strategies for preventing heat-related illness.

  10. Measuring personal heat exposure in an urban and rural environment

    PubMed Central

    Bernhard, Molly C; Kent, Shia T; Sloan, Meagan E; Evans, Mary B; McClure, Leslie A; Gohlke, Julia M

    2014-01-01

    Previous studies have linked heat waves to adverse health outcomes using ambient temperature as a proxy for estimating exposure. The goal of the present study was to test a method for determining personal heat exposure. An occupationally exposed group (urban groundskeepers in Birmingham, AL, USA N=21), as well as urban and rural community members from Birmingham, AL (N=30) or west central AL (N=30) wore data logging temperature and light monitors clipped to the shoe for 7 days during the summer of 2012. We found that a temperature monitor clipped to the shoe provided a comfortable and feasible method for recording personal heat exposure. Ambient temperature (°C) recorded at the nearest weather station was significantly associated with personal heat exposure [β 0.37, 95%CI (0.35, 0.39)], particularly in groundskeepers who spent more of their total time outdoors [β 0.42, 95%CI (0.39, 0.46)]. Factors significantly associated with lower personal heat exposure include reported time indoors [β −2.02, 95%CI (−2.15, −1.89)], reported income > 20K [β −1.05, 95%CI (−1.79, −0.30)], and measured % body fat [β −0.07, 95%CI (−0.12, −0.02)]. There were significant associations between income and % body fat with lower indoor and nighttime exposures, but not with outdoor heat exposure, suggesting modifications of the home thermal environment play an important role in determining overall heat exposure. Further delineation of the effect of personal characteristics on heat exposure may help to develop targeted strategies for preventing heat-related illness. PMID:25617601

  11. Alternative economic evaluation measures for solar industrial process heat

    SciTech Connect

    Not Available

    1980-07-30

    The measures most commonly used to assist decision-makers in evaluating the economic merits of solar energy projects are described and compared. An example is given to illustrate the economic evaluation measures and the results are applied to a solar industrial process heat project. Four widely used economic measures are: net present value, benefit-cost ratio, internal rate of return, and payback period. (MHR)

  12. The contribution of urbanization to recent extreme heat events and white roof mitigation strategy in the Beijing-Tianjin-Hebei metropolitan area

    NASA Astrophysics Data System (ADS)

    Wang, Mingna

    2015-04-01

    The UHI effect can aggravate summertime heat waves and strongly influence human comfort and health, leading to greater mortality in metropolitan areas. Many geo-engineering technological strategies have been proposed to mitigate climate warming, and for the UHI, increasing the albedo of artificial urban surfaces (rooftops or pavements) has been considered a lucrative and effective way to cool cities. The objective of this work is to quantify the contribution of urbanization to recent extreme heat events of the early 21st century in the Beijing-Tianjin-Hebei metropolitan area, using the mesoscale WRF model coupled with a single urban canopy model and actual urban land cover datasets. This work also investigates a simulation of the regional effects of white roof technology by increasing the albedo of urban areas in the urban canopy model to mitigate the urban heat island, especially in extreme heat waves. The results show that urban land use characteristics that have evolved over the past ~20 years in the Beijing-Tianjin-Hebei metropolitan area have had a significant impact on the extreme temperatures occurring during extreme heat events. Simulations show that new urban development has caused an intensification and expansion of the areas experiencing extreme heat waves with an average increase in temperature of approximately 0.60°C. This change is most obvious at night with an increase up to 0.95°C, for which the total contribution of anthropogenic heat is 34%. We also simulate the effects of geo-engineering strategies increasing the albedo of urban roofs. White roofs reflect a large fraction of incoming sunlight in the daytime, which reduced the net radiation so that the roof surface keep at a lower temperature than regular solar-absorptive roofs. Urban net radiation decreases by approximately 200 W m-2 at local noon because of high solar reflectance of white roofs, which cools the daytime urban temperature afer sunrise, with the largest decrease of almost -0.80

  13. Measurement of heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1983-01-01

    A series of experiments was performed in which a suitably tuned CO2 laser, frequency doubled by a Tl3AsSe37 crystal, was brought into resonance with a P-line or two R-lines in the fundamental vibration spectrum of CO. Cooling or heating produced by absorption in CO was measured in a gas-thermometer arrangement. P-line cooling and R-line heating could be demonstrated, measured, and compared. The experiments were continued with CO mixed with N2 added in partial pressures from 9 to 200 Torr. It was found that an efficient collisional resonance energy transfer from CO to N2 existed which increased the cooling effects by one to two orders of magnitude over those in pure CO. Temperature reductions in the order of tens of degrees Kelvin were obtained by a single pulse in the core of the irradiated volume. These measurements followed predicted values rather closely, and it is expected that increase of pulse energies and durations will enhance the heat pump effects. The experiments confirm the feasibility of quasi-isentropic engines which convert laser power into work without the need for heat rejection. Of more immediate potential interest is the possibility of remotely powered heat pumps for cryogenic use, such applications are discussed to the extent possible at the present stage.

  14. Simultaneous specific heat and thermal conductivity measurement of individual nanostructures

    NASA Astrophysics Data System (ADS)

    Zheng, Jianlin; Wingert, Matthew C.; Moon, Jaeyun; Chen, Renkun

    2016-08-01

    Fundamental phonon transport properties in semiconductor nanostructures are important for their applications in energy conversion and storage, such as thermoelectrics and photovoltaics. Thermal conductivity measurements of semiconductor nanostructures have been extensively pursued and have enhanced our understanding of phonon transport physics. Specific heat of individual nanostructures, despite being an important thermophysical parameter that reflects the thermodynamics of solids, has remained difficult to characterize. Prior measurements were limited to ensembles of nanostructures in which coupling and sample inhomogeneity could play a role. Herein we report the first simultaneous specific heat and thermal conductivity measurements of individual rod-like nanostructures such as nanowires and nanofibers. This technique is demonstrated by measuring the specific heat and thermal conductivity of single ˜600-700 nm diameter Nylon-11 nanofibers (NFs). The results show that the thermal conductivity of the NF is increased by 50% over the bulk value, while the specific heat of the NFs exhibits bulk-like behavior. We find that the thermal diffusivity obtained from the measurement, which is related to the phonon mean free path (MFP), decreases with temperature, indicating that the intrinsic phonon Umklapp scattering plays a role in the NFs. This platform can also be applied to one- and two- dimensional semiconductor nanostructures to probe size effects on the phonon spectra and other transport physics.

  15. Raman Measurement of Heat Transfer in Suspended Individual Carbon Nanotube.

    PubMed

    Wang, Hai-Dong; Liu, Jin-Hui; Zhang, Xing; Zhang, Ru-Fan; Wei, Fei

    2015-04-01

    The excellent thermal performance of carbon nanotube (CNT) has been noticed long ago and attracted much attention. In the experiments, the electrical and thermal contact resistances remain the unsolved key problems causing undesirable measurement uncertainty. Recently, a micro-Raman spectroscopy technique has been applied to perform non-contact measurement for individual CNT, thus the contact resistances during the measurement process can be avoided. In this method, the temperature rise of CNT is a function of laser absorption probability and thermal properties, these parameters are coupled together. In this work, the thermal conductivity and optical absorption of the same CNT sample are decoupled and determined simultaneously. The thermal conductivity is obtained by measuring the temperature rise caused by a direct current heating, where the laser heating effect can be eliminated. Then the optical absorption is obtained by solving the heat transfer equation considering the thermal conductivity as a known parameter. The CNT sample is 24.8 µm in length and 3 nm in diameter. The measured thermal conductivity is 2630 Wm(-1)K(-1) and the optical absorption is 0.194%. The heat transfer coefficient is evaluated using a kinetic two-layer model, which has been proven by the previous experiment. Because the length of CNT is much larger than the size of the focused laser spot, the experimental result is insensitive to the contact resistances at the ends of CNT.

  16. Heat Fluxes and Evaporation Measurements by Multi-Function Heat Pulse Probe: a Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Ciocca, F.; Hopmans, J. W.; Kamai, T.; Lunati, I.; Parlange, M. B.

    2012-04-01

    Multi Functional Heat Pulse Probes (MFHPP) are multi-needles probes developed in the last years able to measure temperature, thermal properties such as thermal diffusivity and volumetric heat capacity, from which soil moisture is directly retrieved, and electric conductivity (through a Wenner array). They allow the simultaneous measurement of coupled heat, water and solute transport in porous media, then. The use of only one instrument to estimate different quantities in the same volume and almost at the same time significantly reduces the need to interpolate different measurement types in space and time, increasing the ability to study the interdependencies characterizing the coupled transports, especially of water and heat, and water and solute. A three steps laboratory experiment is realized at EPFL to investigate the effectiveness and reliability of the MFHPP responses in a loamy soil from Conthey, Switzerland. In the first step specific calibration curves of volumetric heat capacity and thermal conductivity as function of known volumetric water content are obtained placing the MFHPP in small samplers filled with the soil homogeneously packed at different saturation degrees. The results are compared with literature values. In the second stage the ability of the MFHPP to measure heat fluxes is tested within a homemade thermally insulated calibration box and results are matched with those by two self-calibrating Heatflux plates (from Huxseflux), placed in the same box. In the last step the MFHPP are used to estimate the cumulative subsurface evaporation inside a small column (30 centimeters height per 8 centimeters inner diameter), placed on a scale, filled with the same loamy soil (homogeneously packed and then saturated) and equipped with a vertical array of four MFHPP inserted close to the surface. The subsurface evaporation is calculated from the difference between the net sensible heat and the net heat storage in the volume scanned by the probes, and the

  17. Measurement of flat-plate collector heat loss coefficients

    NASA Astrophysics Data System (ADS)

    Nahar, N. M.

    1981-04-01

    An indoor method for direct measurement of the overall heat loss coefficient is developed so that solar energy can be more efficiently trapped by optimized flat-plate solar collectors. A schematic diagram of the indoor test set-up is given, with liquid temperature controlled by an electrical contact thermometer, and relay circulated by a pump to maintain a constant flow rate. The overall heat loss coefficient is measured in a bond duct type collector with single and double glazings, and is found to vary from 3.5 to 4.7 per sq Wm-K with zero wind speed. The coefficient is also reported for controlled wind speeds, and heat losses are found to increase by 13.5 and 7.5% for single and double glazed collectors respectively. The coefficient is presented as a function of plate temperature, and results are compared with calculated values, demonstrating good agreement.

  18. Are changes in weather masking the efficacy of measures aimed at mitigating diffuse pollution?

    NASA Astrophysics Data System (ADS)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2016-04-01

    Interpretations of the efficacy of mitigation measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies are challenged by the temporal variability of air temperature and rainfall. Influences are different depending on flow controls, associated time lags and nutrient transformations that may occur along the pathways. In Europe weather patterns and trends are influenced by large-scale weather systems over the North Atlantic. One of the most prominent teleconnection patterns that affect the weather across all seasons is the North Atlantic Oscillation (NAO). In northwestern Europe a positive phase in the NAO index over the winter period is often associated with elevated air temperatures in summer and more frequent large rain events in winter than normal. The objective of this study was to investigate the catchment-scale influences and relationships of naturally altered hydro-meteorological processes on the diffuse N and P losses to waters, in order to distinguish natural climate effects from those caused by adaptive management (increased agricultural intensity, decreased nutrient use etc.). Here we present six years of monthly nitrate-N and total reactive P concentrations in stream water (aggregated from sub-hourly monitoring) in six, ca. 10 km2, Irish agricultural catchments with different hydrological flow controls and land use. The locations of the catchments make them susceptible to sudden and/or seasonal shifts in weather. Changes in long term air temperatures and rainfall were investigated and annual N and P concentrations were compared to the NAO. During the monitored period (2009-2015) there was a steady increase in wintertime NAO index, reaching positive values in recent years, resulting in higher air temperatures and more frequent large rain events in winter. In some settings annual N and/or P concentrations were positively correlated to the three-year moving average NAO index (R2 > 0.90). Catchments with free

  19. Characterisation of flooding in Alexandria in October 2015 and suggested mitigating measures

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Zevenbergen, Chris; Wahaab, R. A. Wahaab R. A.; Elbarki, W. A. I. Elbarki W. A. I.; Busker, T. Busker T.; Salinas Rodriguez, C. N. A. Salinas Rodriguez C. N. A.

    2017-04-01

    In October 2015 Alexandria (Egypt) experienced exceptional flooding. The flooding was caused by heavy rainfall in a short period of time in a city which normally does not receive a large amount of rainfall. The heavy rainfall caused a tremendous volume of runoff, which the city's drainage system was unable to drain off to the Mediterranean Sea. Seven people have died due to the flood, and there were huge direct and indirect damages. The city does not have a flood forecasting system. An analysis with rainfall forecast from the European Centre for Medium Range Weather Forecast (ECMWF) showed that the extreme rainfall could have been forecasted about a week back. Naturally, if a flood forecasting model was in place the flooding could have been predicted well in advance. Alexandria, along with several other Arab cities, are not prepared at all for natural hazards. Preparedness actions leading to improved adaptation and resilience are not in place. The situation is being further exacerbated with rapid urbanisation and climate change. The local authorities estimate that about 30000 new buildings have been (illegally) constructed during the last five years at a location near the main pumping station (Max Point). This issue may have a very serious adverse effect on hydrology and requires further study to estimate the additional runoff from the newly urbanised areas. The World Bank has listed Alexandria as one of the five coastal cities, which may have very significant risk of coastal flooding due to the climate change. Setting up of a flood forecasting model along with an evidence-based research on the drainage system's capacity is seen as immediate actions that can significantly improve the preparedness of the city towards flooding. Furthermore, the region has got a number of large lakes, which potentially can be used to store extra water as a flood mitigation measure. Two water bodies, namely the Maryot Lake and the Airport Lake, are identified from which water can be

  20. Initial Tile Temperature and Heat Flux Measurements in NSTX

    NASA Astrophysics Data System (ADS)

    Maingi, Rajesh; Kugel, Henry; Roquemore, Lane; Lasnier, Charles; Johnson, Dave

    1999-11-01

    Due to their compact nature, spherical tori are projected to experience higher peak heat flux than conventional aspect ratio tokamaks of comparable heating power. For NSTX, it has been predicted[1,2] that the peak heat flux in double-null divertor configuration could reach between 10-15 MW/m2, and single-null operation would result in even higher peak heat flux. To test these predictions and support physics operations, two infrared television cameras (Inframetrics 525) have been installed on NSTX to monitor real-time tile heating and surface heat flux. The data are analyzed in real-time with a frame grabber (IMAXX) and software, and these data are also archived on videotape for future analysis. The first set of measurements will focus on thermal emission from the RF antenna, the center stack, and divertor regions. Initial data and comparison with the earlier predictions will be presented. 1 R.Maingi, et. al., "Estimates of Scrape-Off Layer and Divertor Parameters in NSTX", Proc. 1996 Int’l Workshop on the Spherical Torus, Abingdon, U.K., Dec. 4-6, 1996. 2 R. Maingi, et. al., "2-D Edge Plasma Transport Calculations for NSTX", Proc. 1997 Int’l Workshop on the Spherical Torus, St. Petersburg, Russia, Sept. 3-5, 1997.

  1. Heat transfer measurements from a smooth NACA 0012 airfoil

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.; Van Fossen, G. J.; Newton, James E.; De Witt, Kenneth J.

    1991-01-01

    Local convective heat transfer coefficients were measured from a smooth NACA 0012 airfoil having a chord length of 0.533 m. Flight data were taken for the smooth airfoil at Reynolds numbers based on chord in the range 1.24 to 2.50 million and at various angles of attack up to 4 deg. During these flight tests, the freestream velocity turbulence intensity was found to be very low. Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.52 million and at angles of attack from -4 to +8 deg. The turbulence intensity in the IRT was 0.5-0.7 percent with the cloud-generating sprays off. A direct comparison between the results obtained in flight and in the IRT showed that the higher level of turbulence intensity in the IRT had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the higher Reynolds numbers. Turning on the cloud-generating spray nozzle atomizing air in the IRT did not alter the heat transfer. The present data were compared with leading-edge cylinder and flat plate heat transfer correlations that are often used to estimate airfoil heat transfer in computer codes.

  2. Glove thermal insulation: local heat transfer measures and relevance.

    PubMed

    Sari, Hayet; Gartner, Maurice; Hoeft, Alain; Candas, Victor

    2004-09-01

    When exposed to cold, the hands need to be protected against heat loss not only in order to reduce thermal discomfort, but also to keep their efficiency. Although gloves are usually the most common protection, their thermal insulation is generally unknown. The aim of this study was to measure the heat losses from a gloved hand with a special interest in local variations. Using a calorimetric hand placed in a cold box, several types of gloves were tested. The results indicated that depending on the glove and on the area covered the heat loss reduction may vary from almost 60% to 90%. When the least efficient pair of gloves was excluded, heat exchange coefficients varied from 1.8 to 4.8 W/m2 per degrees C for the palm and from 4.2 to 6.2 W/m2 per degrees C for the back of the hand. The three medium fingers seemed to be equally treated, with a heat exchange coefficient variation of 6.3-9.0 W/m2 per degrees C. The thumb and the little finger, which require better insulation, exhibited higher local heat transfer coefficients of 8.3-12.7 W/m2 per degrees C. Some practical aspects are evoked.

  3. Measurements of ocean surface kinematics and heat flux

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Melville, Ken

    2003-11-01

    The top few meters of the oceanic boundary layer play a critical role in the transfers of momentum, gas, mass and heat between the atmosphere and the ocean. These exchanges must necessarily transfer through the surface, and presumably, the rates at which they do are influence by the dynamics of the surface layer. Heat flux in particular is regulated by the thin surface thermal layer which, at most, is only a few millimeter thick. We are specifically interested in the structure of the thermal layer and the influence of the surface turbulence on the flux of heat through the air-sea boundary. Using active and passive infrared imaging, we were able to collect high temporal and spatial resolution images, yielding the Lagrangian surface velocity and temperature fields over small areas of a few square meters. We have applied cross-correlation techniques (typically used for Particle Image Velocimetry) on the passive infrared images and obtained high-resolution surface velocity fields. Using the displacement and the distortion of the actively laid down heat pattern, we also have been able to recover the surface velocity, shear strain, vorticity, and divergence. In addition, the data show that the heat flux appears to be correlated the surface vorticity. With the penetration depth of infrared radiation at these wavelengths being a few microns, these techniques appear to be extremely promising for measuring ocean surface turbulence confined within the thermal boundary layer. We will discuss the results in the context of air sea heat flux and ocean surface turbulence.

  4. Measurement of the Convective Heat-Transfer Coefficient

    ERIC Educational Resources Information Center

    Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2014-01-01

    We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…

  5. Measurement of the Convective Heat-Transfer Coefficient

    ERIC Educational Resources Information Center

    Conti, Rosaria; Gallitto, Aurelio Agliolo; Fiordilino, Emilio

    2014-01-01

    We propose an experiment for investigating how objects cool down toward the thermal equilibrium with their surroundings. We describe the time dependence of the temperature difference of the cooling objects and the environment with an exponential decay function. By measuring the thermal constant t, we determine the convective heat-transfer…

  6. Heat transport measurements in turbulent rotating Rayleigh-Benard convection

    SciTech Connect

    Ecke, Robert E; Liu, Yuanming

    2008-01-01

    We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.

  7. Calibration of Heat Stress Monitor and its Measurement Uncertainty

    NASA Astrophysics Data System (ADS)

    Ekici, Can

    2017-07-01

    Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.

  8. Commercial Instrument for Automated Specific Heat Measurements at Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Neils, W. K.; Martien, Dinesh; Bauer, E. D.; Mixson, D.; Hur, N.; Thompson, J. D.; Sarrao, J. L.

    2006-09-01

    The specific heat of CeRhIn5-xSnx was measured down to 55 mK using a novel, fully automated measurement system. The system consists of a dilution refrigerator designed to operate in a Quantum Design Physical Property Measurement System, a calorimeter optimized for millikelvin temperatures and very low addenda heat capacity, electronics to perform the measurement, and software to automate the measurement. The compound CeRhIn5 exhibits antiferromagnetism at a Neel temperature of TN = 3.8 K which is suppressed at a critical pressure Pc ˜ 25 kbar, indicating a quantum critical point (QCP). At pressures above ˜ 15 kbar, CeRhIn5 exhibits antiferromagnetism and superconductivity simultaneously. Measurement of the specific heat of CeRhIn5-xSnx in magnetic field offers an additional tool to probe the antiferromagnetic QCP. Preliminary measurements up to H = 3 T for CeRhIn4.77Sn0.23 are reported.

  9. Corrections for Heat Flux Measurements Taken on Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Reinarts, Thomas R.; Ford, Danielle M.

    2004-02-01

    Knowledge of aerothermally induced convective heat transfer and plume induced radiative heat transfer loads is essential to the design of thermal protection systems (TPS) for launch vehicles. Aerothermal and radiative models are typically calibrated via the data from cylindrical, in-flight, flush-mounted surface heat flux gauges that are exposed to the external thermal and velocity boundary layers as well as thermal radiation. Typically, Schmidt-Boelter gauges, taking advantage of the 1-Dimensional Fourier's law, measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has an exposed surface temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher (potentially by factors of 2 or more) than it would have been on the insulation had the calorimeter not been there. In addition, the gauge can receive energy radially from the hotter insulation, contributing to the increase of the indicated heat flux. This paper will present an overview of an effort to model the heat flux gauge under typical flight conditions that includes an installation surrounded by high temperature insulation. The goal is to correct the measurements to reflect the local heat flux on the insulation had the instrument not been present. The three major components of this effort include: 1) a three-dimensional computational thermal math model including the internal conduction heat transfer details of a Schmidt-Boelter gauge, 2) a two-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis to determine the effects on measurement of the rapidly changing thermal boundary layer over the near step changes in wall temperature, and 3) testing performed on flat plates exposed to an aerothermal environment in the Marshall Space Flight Center (MSFC) Improved Hot Gas Facility (IHGF). A brief summary of calibration issues

  10. Construction and measurements of an improved vacuum-swing-adsorption radon-mitigation system

    SciTech Connect

    Street, J. Bunker, R.; Dunagan, C.; Loose, X.; Schnee, R. W.; Stark, M.; Sundarnath, K.; Tronstad, D.

    2015-08-17

    In order to reduce backgrounds from radon-daughter plate-out onto detector surfaces, an ultra-low-radon cleanroom is being commissioned at the South Dakota School of Mines and Technology. An improved vacuum-swing-adsorption radon mitigation system and cleanroom build upon a previous design implemented at Syracuse University that achieved radon levels of ∼0.2 Bq m{sup −3}. This improved system will employ a better pump and larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit and aged water for humidification. With the rebuilt (original) radon mitigation system, the new low-radon cleanroom has already achieved a > 300× reduction from an input activity of 58.6 ± 0.7 Bq m{sup −3} to a cleanroom activity of 0.13 ± 0.06 Bq m{sup −3}.

  11. A differential heat-conduction microcalorimeter for heat-capacity measurements of fluids.

    PubMed

    Mudd, C P; Gershfeld, N L; Berger, R L; Tajima, K

    1993-05-01

    A heat-conduction calorimeter has been developed for measuring small changes in heat capacity of milligram samples of membrane lipid dispersed in water as a function of temperature. The operation of the instrument is based on the principle that the thermal response of the sample to a short (10 s), electrically generated heat burst is a function of the diffusivity of the sample. Modeling studies of the instrument's performance have revealed that the output response after the heat burst is a function of only the heat capacity, rho Cp. Calibration of the instrument experimentally confirmed this behavior. This feature obviated the need to measure the thermal conductivity in order to determine rho Cp from the diffusivity equation, eta = lambda/rho Cp. The calorimeter has the following characteristics: reproducibility of loading: +/- 400 microJ/C degrees.cm3; baseline stability: +/- 10 microJ/C degrees.cm3 per 36 h; resolution (+/- 1 S.D.): +/- 50 microJ/C degrees.cm3; sample size 600 microliters.

  12. Scanning measurement of Seebeck coefficient of a heated sample

    SciTech Connect

    Snyder, G. Jeffrey; Iwanaga, Shiho

    2016-04-19

    A novel scanning Seebeck coefficient measurement technique is disclosed utilizing a cold scanning thermocouple probe tip on heated bulk and thin film samples. The system measures variations in the Seebeck coefficient within the samples. The apparatus may be used for two dimensional mapping of the Seebeck coefficient on the bulk and thin film samples. This technique can be utilized for detection of defective regions, as well as phase separations in the sub-mm range of various thermoelectric materials.

  13. Measurement of a surface heat flux and temperature

    NASA Technical Reports Server (NTRS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-01-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  14. Measurement of a surface heat flux and temperature

    NASA Astrophysics Data System (ADS)

    Davis, R. M.; Antoine, G. J.; Diller, T. E.; Wicks, A. L.

    1994-04-01

    The Heat Flux Microsensor is a new sensor which was recently patented by Virginia Tech and is just starting to be marketed by Vatell Corp. The sensor is made using the thin-film microfabrication techniques directly on the material that is to be measured. It consists of several thin-film layers forming a differential thermopile across a thermal resistance layer. The measured heat flux q is proportional to the temperature difference across the resistance layer q= k(sub g)/delta(sub g) x (t(sub 1) - T(sub 2)), where k(sub g) is the thermal conductivity and delta (sub g) is the thickness of the thermal resistance layer. Because the gages are sputter coated directly onto the surface, their total thickness is less than 2 micrometers, which is two orders of magnitude thinner than previous gages. The resulting temperature difference across the thermal resistance layer (delta is less than 1 micrometer) is very small even at high heat fluxes. To generate a measurable signal many thermocouple pairs are put in series to form a differential thermopile. The combination of series thermocouple junctions and thin-film design creates a gage with very attractive characteristics. It is not only physically non-intrusive to the flow, but also causes minimal disruption of the surface temperature. Because it is so thin, the response time is less than 20 microsec. Consequently, the frequency response is flat from 0 to over 50 kHz. Moreover, the signal of the Heat Flux Microsensor is directly proportional to the heat flux. Therefore, it can easily be used in both steady and transient flows, and it measures both the steady and unsteady components of the surface heat flux. A version of the Heat Flux Microsensor has been developed to meet the harsh demands of combustion environments. These gages use platinum and platinum-10 percent rhodium as the thermoelectric materials. The thermal resistance layer is silicon monoxide and a protective coating of Al2O3 is deposited on top of the sensor. The

  15. A review of monitoring approaches and outcomes of surface water quality mitigation measures in meso-scale agricultural catchments

    NASA Astrophysics Data System (ADS)

    Melland, Alice; Jordan, Phil; Murphy, Paul; Mellander, Per-Erik; Shortle, Ger

    2013-04-01

    Critical for an informative feedback loop from scientific monitoring of biophysical change, to making and implementing suitable policy to effect the desired change, are both accurate measurement of biophysical change, and measurement or modelling of the causes of change. For example the European Environment Agency uses the DPSIR framework to assess change in the state (S) of natural resources due to changes in specific drivers (D) and pressures (P) that can have an impact (I) and are the focus of policy responses (R). This paper provides a review of meso-catchment scale studies worldwide that have measured the impacts of agricultural land management practice on surface water quality. Approaches for measuring water quality impacts of agricultural mitigation practices in meso-catchments (1-100 km2) ranged from measuring water quality over a time series, such as before and after a land management change, or over a spatial series such as in paired catchments with and without agricultural practice change (or over a gradient of practices or catchment types), and by cause and effect studies that measure sources, pathways and impacts of practices. Agricultural mitigation measures had no measurable effect, or positive, or negative effects on water quality over periods of 3 to 20 years. In most catchments where beneficial effects of mitigation measures were successfully measured, combinations of measures that address nutrient or pollutant sources, pathways, delivery and impact have been implemented. Successful farm measures included substantial reductions in the intensity of the farming systems, improved engineering and crop management to reduce runoff and drainage transport of nutrients and sediment, as well as high rates of implementation of measures across the catchments. In many cases, the potential to measure improvement in one or more water quality indicators was limited by the impact of a few management or weather events. Reasons that water quality did not improve in

  16. Heat-Pulse Measurements Reveal Fiber Volume Fractions

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.

    1994-01-01

    Measurements of thermal diffusivities by heat-pulse method constitutes basis of noncontact, nondestructive method of determining fiber volume fractions (FVFs) of samples of composite (matrix/fiber) materials. Modulated radiant heat applied to sample, while resulting modulated infrared emitted is monitored. Phase shift between two modulations indicative of thermal diffusivity and fiber volume fraction of sample. Testing method takes less time, provides data to characterize sample through its thickness, and amenable to scanning for global determination of gradual spatial variations in FVF along sample.

  17. Compressibility measurements of gases using externally heated pressure vessels.

    NASA Technical Reports Server (NTRS)

    Presnall, D. C.

    1971-01-01

    Most of the data collected under conditions of high temperature and pressure have been determined using a thick-walled bomb of carefully measured and fixed volume which is externally heated by an electric furnace or a thermostatically controlled bath. There are numerous variations on the basic method depending on the pressure-temperature range of interest, and the particular gas or gas mixture being studied. The construction and calibration of the apparatus is discussed, giving attention to the pressure vessel, the volume of the bomb, the measurement of pressure, the control and measurement of temperature, and the measurement of the amount and composition of gas in the bomb.

  18. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures.

    PubMed

    Anfoka, Ghandi; Moshe, Adi; Fridman, Lilia; Amrani, Linoy; Rotem, Or; Kolot, Mikhail; Zeidan, Mouhammad; Czosnek, Henryk; Gorovits, Rena

    2016-01-21

    Cultured tomatoes are often exposed to a combination of extreme heat and infection with Tomato yellow leaf curl virus (TYLCV). This stress combination leads to intense disease symptoms and yield losses. The response of TYLCV-susceptible and resistant tomatoes to heat stress together with viral infection was compared. The plant heat-stress response was undermined in TYLCV infected plants. The decline correlated with the down-regulation of heat shock transcription factors (HSFs) HSFA2 and HSFB1, and consequently, of HSF-regulated genes Hsp17, Apx1, Apx2 and Hsp90. We proposed that the weakened heat stress response was due to the decreased capacity of HSFA2 to translocate into the nuclei of infected cells. All the six TYLCV proteins were able to interact with tomato HSFA2 in vitro, moreover, coat protein developed complexes with HSFA2 in nuclei. Capturing of HSFA2 by viral proteins could suppress the transcriptional activation of heat stress response genes. Application of both heat and TYLCV stresses was accompanied by the development of intracellular large protein aggregates containing TYLCV proteins and DNA. The maintenance of cellular chaperones in the aggregated state, even after recovery from heat stress, prevents the circulation of free soluble chaperones, causing an additional decrease in stress response efficiency.

  19. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures

    PubMed Central

    Ghandi, Anfoka; Adi, Moshe; Lilia, Fridman; Linoy, Amrani; Or, Rotem; Mikhail, Kolot; Mouhammad, Zeidan; Henryk, Czosnek; Rena, Gorovits

    2016-01-01

    Cultured tomatoes are often exposed to a combination of extreme heat and infection with Tomato yellow leaf curl virus (TYLCV). This stress combination leads to intense disease symptoms and yield losses. The response of TYLCV-susceptible and resistant tomatoes to heat stress together with viral infection was compared. The plant heat-stress response was undermined in TYLCV infected plants. The decline correlated with the down-regulation of heat shock transcription factors (HSFs) HSFA2 and HSFB1, and consequently, of HSF-regulated genes Hsp17, Apx1, Apx2 and Hsp90. We proposed that the weakened heat stress response was due to the decreased capacity of HSFA2 to translocate into the nuclei of infected cells. All the six TYLCV proteins were able to interact with tomato HSFA2 in vitro, moreover, coat protein developed complexes with HSFA2 in nuclei. Capturing of HSFA2 by viral proteins could suppress the transcriptional activation of heat stress response genes. Application of both heat and TYLCV stresses was accompanied by the development of intracellular large protein aggregates containing TYLCV proteins and DNA. The maintenance of cellular chaperones in the aggregated state, even after recovery from heat stress, prevents the circulation of free soluble chaperones, causing an additional decrease in stress response efficiency. PMID:26792235

  20. Hypervelocity Heat-Transfer Measurements in an Expansion Tube

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Perkins, John N.

    1996-01-01

    A series of experiments has been conducted in the NASA HYPULSE Expansion Tube, in both CO2 and air test gases, in order to obtain data for comparison with computational results and to assess the capability for performing hypervelocity heat-transfer studies in this facility. Heat-transfer measurements were made in both test gases on 70 deg sphere-cone models and on hemisphere models of various radii. HYPULSE freestream flow conditions in these test gases were found to be repeatable to within 3-10%, and aerothermodynamic test times of 150 microsec in CO2 and 125 microsec in air were identified. Heat-transfer measurement uncertainty was estimated to be 10-15%. Comparisons were made with computational results from the non-equilibrium Navier-Stokes solver NEQ2D. Measured and computed heat-transfer rates agreed to within 10% on the hemispheres and on the sphere-cone forebodies, and to within 10% in CO2 and 25% in air on the afterbodies and stings of the sphere-cone models.

  1. Measurement-based formulation of quantum heat engines

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito; Tajima, Hiroyasu

    2017-03-01

    There exist two formulations for quantum heat engines that model energy transfer between two microscopic systems. One is the semiclassical scenario and the other is the full quantum scenario. The former is formulated as unitary evolution for the internal system and is adopted by the statistical mechanics community. In the latter, the whole process is formulated as unitary and is adopted by the quantum information community. This paper proposes a model for quantum heat engines that transfer energy from a collection of microscopic systems to a macroscopic system like a fuel cell. In such a situation, the amount of extracted work is visible for a human. For this purpose, we formulate a quantum heat engine as the measurement process whose measurement outcome is the amount of extracted work. Under this model, we derive a suitable energy-conservation law and propose a more concrete submodel. Then we derive a trade-off relation between the measurability of the amount of work extraction and the coherence of the internal system, which limits the applicability of the semiclassical scenario to a heat engine transferring energy from a collection of microscopic systems to a macroscopic system.

  2. Measurements of Ocean surface kinematics and heat transfer

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Melville, Ken

    2002-11-01

    The top few meters of the oceanic boundary layer play a critical role in the transfers of momentum, gas, mass and heat between the atmosphere and the ocean. These exchanges must necessarily transfer through the surface, and presumably, the rates at which they do are influence by the dynamics of the surface layer. Heat flux in particular is regulated by the thin surface thermal layer which, at most, is only a few millimeter thick. We are specifically interested in the influence of small coherent structures of the surface turbulence on the heat flux. Using active and passive infrared imaging, we were able to measure the evolution the surface velocity and temperature fields over small areas of a few square meters. Preliminary data show that it is possible to apply cross-correlation techniques (typically used for Particle Image Velocimetry) on the passive infrared images. This yields high-resolution surface velocity fields. Using active marking of the surface with an infrared CO2 laser, we have shown that it is possible to also directly recover the surface velocity, but also, by marking appropriate patterns on the surface we have been able to measure the shear strain, vorticity, and surface divergence. With the penetration depth of infrared radiation at these wavelengths being a few microns, these techniques appear to be extremely promising for measuring ocean surface turbulence confined within the thermal boundary layer. We will discuss the results in the context of air sea heat flux and ocean surface turbulence.

  3. Martian dust threshold measurements: Simulations under heated surface conditions

    NASA Technical Reports Server (NTRS)

    White, Bruce R.; Greeley, Ronald; Leach, Rodman N.

    1991-01-01

    Diurnal changes in solar radiation on Mars set up a cycle of cooling and heating of the planetary boundary layer, this effect strongly influences the wind field. The stratification of the air layer is stable in early morning since the ground is cooler than the air above it. When the ground is heated and becomes warmer than the air its heat is transferred to the air above it. The heated parcels of air near the surface will, in effect, increase the near surface wind speed or increase the aeolian surface stress the wind has upon the surface when compared to an unheated or cooled surface. This means that for the same wind speed at a fixed height above the surface, ground-level shear stress will be greater for the heated surface than an unheated surface. Thus, it is possible to obtain saltation threshold conditions at lower mean wind speeds when the surface is heated. Even though the mean wind speed is less when the surface is heated, the surface shear stress required to initiate particle movement remains the same in both cases. To investigate this phenomenon, low-density surface dust aeolian threshold measurements have been made in the MARSWIT wind tunnel located at NASA Ames Research Center, Moffett Field, California. The first series of tests examined threshold values of the 100 micron sand material. At 13 mb surface pressure the unheated surface had a threshold friction speed of 2.93 m/s (and approximately corresponded to a velocity of 41.4 m/s at a height of 1 meter) while the heated surface equivalent bulk Richardson number of -0.02, yielded a threshold friction speed of 2.67 m/s (and approximately corresponded to a velocity of 38.0 m/s at a height of 1 meter). This change represents an 8.8 percent decrease in threshold conditions for the heated case. The values of velocities are well within the threshold range as observed by Arvidson et al., 1983. As the surface was heated the threshold decreased. At a value of bulk Richardson number equal to -0.02 the threshold

  4. Method for Accurate Surface Temperature Measurements During Fast Induction Heating

    NASA Astrophysics Data System (ADS)

    Larregain, Benjamin; Vanderesse, Nicolas; Bridier, Florent; Bocher, Philippe; Arkinson, Patrick

    2013-07-01

    A robust method is proposed for the measurement of surface temperature fields during induction heating. It is based on the original coupling of temperature-indicating lacquers and a high-speed camera system. Image analysis tools have been implemented to automatically extract the temporal evolution of isotherms. This method was applied to the fast induction treatment of a 4340 steel spur gear, allowing the full history of surface isotherms to be accurately documented for a sequential heating, i.e., a medium frequency preheating followed by a high frequency final heating. Three isotherms, i.e., 704, 816, and 927°C, were acquired every 0.3 ms with a spatial resolution of 0.04 mm per pixel. The information provided by the method is described and discussed. Finally, the transformation temperature Ac1 is linked to the temperature on specific locations of the gear tooth.

  5. Erasure temperature measurements of heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Yang, H. Z.; Leong, S. H.; Cher, K. M.; Hu, J. F.; Sethi, P.; Lew, W. S.

    2015-05-01

    For heat assisted magnetic recording (HAMR) media development, measurement of erasure temperature (Te) is interesting and important for practical HAMR testing and applications. Here, we present an investigation on Te measurements of L10 ordered FePt granular HAMR media made using a Laser Heating (LH) method on a home-built HAMR write test system versus that from a bulk heating approach. The HAMR write test system provides HAMR writing, micro-MOKE (magneto-optical Kerr effect) signal detection, and MOKE imaging functions at the same testing spot in one single system. Magnetic force microscopy (MFM) and magnetic Kerr microscopy observations of the scanning laser induced degradation/erasure/demagnetization of the pre-recorded magnetic patterns on disk media (over a wide area of a few hundreds of μm2) show that the magnetic (MFM and Kerr signal) amplitude of the pre-recorded magnetic patterns decreases slowly with increasing laser power (Pw) (/temperature rise) for Pw ≲ 66 mW and then drops sharply to nearly zero for Pw ≥ ˜72 mW (the laser power corresponding to complete thermal erasure when the media temperature is ˜Te). It was further found that this trend of magnetic amplitude reduction with increased Pw is similar to that from magnetic amplitude decrease of pre-recorded magnetic patterns with increased bulk heating temperature. The temperature for complete erasure at laser power, Pw = 72 mW for the LH method, corresponds therefore to ˜650 K (≈Te) for the bulk heating methods. Besides fast measurement, LH (as a comparable and viable approach for erasure measurement) is dynamic, localized, and has time scales closer to practical HAMR situation.

  6. Directly Measured Heating Rates of a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Bucholtz, Anthongy; Hlavka, Dennis L.; McGill, Matthew J.; Schmidt, K. Sebastian; Pilewskie, Peter; Davis, Sean M.; Reid, Elizabeth A.; Walker, Annette L.

    2010-01-01

    We present the first direct measurements of the infrared and solar heating rates of a tropical subvisible cirrus (SVC) cloud sampled off the east coast of Nicaragua on 25 July 2007 by the NASA ER-2 aircraft during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4). On this day a persistent thin cirrus layer, with mostly clear skies underneath, was detected in real time by the cloud lidar on the ER-2, and the aircraft was directed to profile down through the SVC. Measurements of the net broadband infrared irradiance and spectrally integrated solar irradiance above, below, and through the SVC are used to determine the infrared and solar heating rates of the cloud. The lidar measurements show that the variable SVC layer was located between approximately 13 and 15 km. Its midvisible optical depth varied from 0.01 to 0.10 with a mean of 0.034 +/- 0.033. Its depolarization ratio was approximately 0.4, indicative of ice clouds. From the divergence of the measured net irradiances the infrared heating rate of the SVC was determined to be approximately 2.50 - 3.24 K/d and the solar heating rate was found to be negligible. These values are consistent with previous indirect observations of other SVC and with model-generated heating rates of SVC with similar optical depths. This study illustrates the utility and potential of the profiling sampling strategy employed here. A more fully instrumented high-altitude aircraft that also included in situ cloud and aerosol probes would provide a comprehensive data set for characterizing both the radiative and microphysical properties of these ubiquitous tropical clouds

  7. Measurement of the Specific Heat Using a Gravity Cancellation Approach

    NASA Technical Reports Server (NTRS)

    Zhong, Fang

    2003-01-01

    The specific heat at constant volume C(sob V) of a simple fluid diverges near its liquid-vapor critical point. However, gravity-induced density stratification due to the divergence of isothermal susceptibility hinders the direct comparison of the experimental data with the predictions of renormalization group theory. In the past, a microgravity environment has been considered essential to eliminate the density stratification. We propose to perform specific heat measurements of He-3 on the ground using a method to cancel the density stratification. A He-3 fluid layer will be heated from below, using the thermal expansion of the fluid to cancel the hydrostatic compression. A 6% density stratification at a reduced temperature of 10(exp -5) can be cancelled to better than 0.1% with a steady 1.7 micro K temperature difference across a 0.05 cm thick fluid layer. A conventional AC calorimetry technique will be used to determine the heat capacity. The minimized bulk density stratification with a relaxation time 6500 sec at a reduced temperature of 10(exp -5) will stay unchanged during 1 Hz AC heating. The smear of the specific heat divergence due to the temperature difference across the cell is about 0.1% at a reduced temperature of 10(exp -6). The combination of using High Resolution Thermometry with a 0.5 n K temperature resolution in the AC technique and the cancellation of the density stratification will enable C(sub V) to be measured down to a reduced temperature of 10(exp -6) with less than a 1% systematic error.

  8. Measurement of the Specific Heat Using a Gravity Cancellation Approach

    NASA Technical Reports Server (NTRS)

    Zhong, Fang

    2003-01-01

    The specific heat at constant volume C(sob V) of a simple fluid diverges near its liquid-vapor critical point. However, gravity-induced density stratification due to the divergence of isothermal susceptibility hinders the direct comparison of the experimental data with the predictions of renormalization group theory. In the past, a microgravity environment has been considered essential to eliminate the density stratification. We propose to perform specific heat measurements of He-3 on the ground using a method to cancel the density stratification. A He-3 fluid layer will be heated from below, using the thermal expansion of the fluid to cancel the hydrostatic compression. A 6% density stratification at a reduced temperature of 10(exp -5) can be cancelled to better than 0.1% with a steady 1.7 micro K temperature difference across a 0.05 cm thick fluid layer. A conventional AC calorimetry technique will be used to determine the heat capacity. The minimized bulk density stratification with a relaxation time 6500 sec at a reduced temperature of 10(exp -5) will stay unchanged during 1 Hz AC heating. The smear of the specific heat divergence due to the temperature difference across the cell is about 0.1% at a reduced temperature of 10(exp -6). The combination of using High Resolution Thermometry with a 0.5 n K temperature resolution in the AC technique and the cancellation of the density stratification will enable C(sub V) to be measured down to a reduced temperature of 10(exp -6) with less than a 1% systematic error.

  9. DIRECT MEASUREMENT OF HEAT FLUX FROM COOLING LAKE THERMAL IMAGERY

    SciTech Connect

    Garrett, A; Eliel Villa-Aleman, E; Robert Kurzeja, R; Malcolm Pendergast, M; Timothy Brown, T; Saleem Salaymeh, S

    2007-12-19

    Laboratory experiments show a linear relationship between the total heat flux from a water surface to air and the standard deviation of the surface temperature field, {sigma}, derived from thermal images of the water surface over a range of heat fluxes from 400 to 1800 Wm{sup -2}. Thermal imagery and surface data were collected at two power plant cooling lakes to determine if the laboratory relationship between heat flux and {sigma} exists in large heated bodies of water. The heat fluxes computed from the cooling lake data range from 200 to 1400 Wm{sup -2}. The linear relationship between {sigma} and Q is evident in the cooling lake data, but it is necessary to apply band pass filtering to the thermal imagery to remove camera artifacts and non-convective thermal gradients. The correlation between {sigma} and Q is improved if a correction to the measured {sigma} is made that accounts for wind speed effects on the thermal convection. Based on more than a thousand cooling lake images, the correlation coefficients between {sigma} and Q ranged from about 0.8 to 0.9.

  10. Temperature measurements using multicolor pyrometry in thermal radiation heating environments

    SciTech Connect

    Fu, Tairan; Liu, Jiangfan; Duan, Minghao; Zong, Anzhou

    2014-04-15

    Temperature measurements are important for thermal-structural experiments in the thermal radiation heating environments such as used for thermal-structural stress analyses. This paper describes the use of multicolor pyrometry for the measurements of diffuse surfaces in thermal radiation environments that eliminates the effects of background radiation reflections and unknown emissivities based on a least-squares algorithm. The near-infrared multicolor pyrometer had a spectral range of 1100–2400 nm, spectrum resolution of 6 nm, maximum sampling frequency of 2 kHz, working distance of 0.6 m to infinity, temperature range of 700–1700 K. The pyrometer wavelength response, nonlinear intensity response, and spectral response were all calibrated. The temperature of a graphite sample irradiated by quartz lamps was then measured during heating and cooling using the least-squares algorithm based on the calibrated irradiation data. The experiments show that higher temperatures and longer wavelengths are more suitable for the thermal measurements in the quartz lamp radiation heating system. This analysis provides a valuable method for temperature measurements of diffuse surfaces in thermal radiation environments.

  11. Modeling the relative roles of the foehn wind and urban expansion in the 2002 Beijing heat wave and possible mitigation by high reflective roofs

    NASA Astrophysics Data System (ADS)

    Ma, Hongyun; Shao, Haiyan; Song, Jie

    2014-02-01

    Rapid urbanization has intensified summer heat waves in recent decades in Beijing, China. In this study, effectiveness of applying high-reflectance roofs on mitigating the warming effects caused by urban expansion and foehn wind was simulated for a record-breaking heat wave occurred in Beijing during July 13-15, 2002. Simulation experiments were performed using the Weather Research and Forecast (WRF version 3.0) model coupled with an urban canopy model. The modeled diurnal air temperatures were compared well with station observations in the city and the wind convergence caused by urban heat island (UHI) effect could be simulated clearly. By increasing urban roof albedo, the simulated UHI effect was reduced due to decreased net radiation, and the simulated wind convergence in the urban area was weakened. Using WRF3.0 model, the warming effects caused by urban expansion and foehn wind were quantified separately, and were compared with the cooling effect due to the increased roof albedo. Results illustrated that the foehn warming effect under the northwesterly wind contributed greatly to this heat wave event in Beijing, while contribution from urban expansion accompanied by anthropogenic heating was secondary, and was mostly evident at night. Increasing roof albedo could reduce air temperature both in the day and at night, and could more than offset the urban expansion effect. The combined warming caused by the urban expansion and the foehn wind could be potentially offset with high-reflectance roofs by 58.8 % or cooled by 1.4 °C in the early afternoon on July 14, 2002, the hottest day during the heat wave.

  12. Adiabatic Heat of Hydration Calorimetric Measurements for Reference Saltstone Waste

    SciTech Connect

    Bollinger, James

    2006-01-12

    The production of nuclear materials for weapons, medical, and space applications from the mid-1950's through the late-1980's at the Savannah River Site (SRS) generated approximately 35 million gallons of liquid high-level radioactive waste, which is currently being processed into vitrified glass for long-term storage. Upstream of the vitrification process, the waste is separated into three components: high activity insoluble sludge, high activity insoluble salt, and very low activity soluble salts. The soluble salt represents 90% of the 35 million gallons of overall waste and is processed at the SRS Saltstone Facility, where it mixed with cement, blast furnace slag, and flyash, creating a grout-like mixture. The resulting grout is pumped into aboveground storage vaults, where it hydrates into concrete monoliths, called saltstone, thus immobilizing the low-level radioactive salt waste. As the saltstone hydrates, it generates heat that slowly diffuses out of the poured material. To ensure acceptable grout properties for disposal and immobilization of the salt waste, the grout temperature must not exceed 95 C during hydration. Adiabatic calorimetric measurements of the heat generated for a representative sample of saltstone were made to determine the time-dependent heat source term. These measurements subsequently were utilized as input to a numerical conjugate heat transfer model to determine the expected peak temperatures for the saltstone vaults.

  13. High temperature thermographic measurements of laser heated silica

    SciTech Connect

    Elhadj, S; Yang, S T; Matthews, M J; Cooke, D J; Bude, J D; Johnson, M; Feit, M; Draggoo, V; Bisson, S E

    2009-11-02

    In situ spatial and temporal surface temperature profiles of CO{sub 2} laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  14. High temperature thermographic measurements of laser heated silica

    NASA Astrophysics Data System (ADS)

    Elhadj, Selim; Yang, Steven T.; Matthews, Manyalibo J.; Cooke, Diane J.; Bude, Jeffrey D.; Johnson, Michael; Feit, Michael; Draggoo, Vaughn; Bisson, Scott E.

    2009-10-01

    In situ spatial and temporal surface temperature profiles of CO2 laser-heated silica were obtained using a long wave infrared (LWIR) HgCdTe camera. Solutions to the linear diffusion equation with volumetric and surface heating are shown to describe the temperature evolution for a range of beam powers, over which the peak surface temperature scales linearly with power. These solutions were used with on-axis steady state and transient experimental temperatures to extract thermal diffusivity and conductivity for a variety of materials, including silica, spinel, sapphire, and lithium fluoride. Experimentally-derived thermal properties agreed well with reported values and, for silica, thermal conductivity and diffusivity are shown to be approximately independent of temperature between 300 and 2800K. While for silica our analysis based on a temperature independent thermal conductivity is shown to be accurate, for other materials studied this treatment yields effective thermal properties that represent reasonable approximations for laser heating. Implementation of a single-wavelength radiation measurement in the semi-transparent regime is generally discussed, and estimates of the apparent temperature deviation from the actual outer surface temperature are also presented. The experimental approach and the simple analysis presented yield surface temperature measurements that can be used to validate more complex physical models, help discriminate dominant heat transport mechanisms, and to predict temperature distribution and evolution during laser-based material processing.

  15. Coupling Vector-host Dynamics with Weather Geography and Mitigation Measures to Model Rift Valley Fever in Africa

    PubMed Central

    McMahon, B.H.; Manore, C.A.; Hyman, J.M.; LaBute, M.X.; Fair, J.M.

    2015-01-01

    We present and characterize a multi-host epidemic model of Rift Valley fever (RVF) virus in East Africa with geographic spread on a network, rule-based mitigation measures, and mosquito infection and population dynamics. Susceptible populations are depleted by disease and vaccination and are replenished with the birth of new animals. We observe that the severity of the epidemics is strongly correlated with the duration of the rainy season and that even severe epidemics are abruptly terminated when the rain stops. Because naturally acquired herd immunity is established, total mortality across 25 years is relatively insensitive to many mitigation approaches. Strong reductions in cattle mortality are expected, however, with sufficient reduction in population densities of either vectors or susceptible (ie. unvaccinated) hosts. A better understanding of RVF epidemiology would result from serology surveys to quantify the importance of herd immunity in epidemic control, and sequencing of virus from representative animals to quantify the realative importance of transportation and local reservoirs in nucleating yearly epidemics. Our results suggest that an effective multi-layered mitigation strategy would include vector control, movement control, and vaccination of young animals yearly, even in the absence of expected rainfall. PMID:25892858

  16. Measuring fluid flow and heat output in seafloor hydrothermal environments

    NASA Astrophysics Data System (ADS)

    Germanovich, Leonid N.; Hurt, Robert S.; Smith, Joshua E.; Genc, Gence; Lowell, Robert P.

    2015-12-01

    We review techniques for measuring fluid flow and advective heat output from seafloor hydrothermal systems and describe new anemometer and turbine flowmeter devices we have designed, built, calibrated, and tested. These devices allow measuring fluid velocity at high- and low-temperature focused and diffuse discharge sites at oceanic spreading centers. The devices perform at ocean floor depths and black smoker temperatures and can be used to measure flow rates ranging over 2 orders of magnitude. Flow velocity is determined from the rotation rate of the rotor blades or paddle assembly. These devices have an open bearing design that eliminates clogging by particles or chemical precipitates as the fluid passes by the rotors. The devices are compact and lightweight enough for deployment from either an occupied or remotely operated submersible. The measured flow rates can be used in conjunction with vent temperature or geochemical measurements to obtain heat outputs or geochemical fluxes from both vent chimneys and diffuse flow regions. The devices have been tested on 30 Alvin dives on the Juan de Fuca Ridge and 3 Jason dives on the East Pacific Rise (EPR). We measured an anomalously low entrainment coefficient (0.064) and report 104 new measurements over a wide range of discharge temperatures (5°-363°C), velocities (2-199 cm/s), and depths (1517-2511 m). These include the first advective heat output measurements at the High Rise vent field and the first direct fluid flow measurement at Middle Valley. Our data suggest that black smoker heat output at the Main Endeavour vent field may have declined since 1994 and that after the 2005-2006 eruption, the high-temperature advective flow at the EPR 9°50'N field may have become more channelized, predominately discharging through the Bio 9 structure. We also report 16 measurements on 10 Alvin dives and 2 Jason dives with flow meters that predate devices described in this work and were used in the process of their development

  17. Remote Sensing of the Urban Heat Island Effect: Assessment of Risks to Human Health and Development of Mitigation Strategies for Sustainable Cities

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Estes, Maurice G., Jr.; Laymon, Charles A.; Crosson, William; Howell, Burgess F.; Gillani, Noor V.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The growth of cities, both in population and in areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80% of the world's population will live in cities. One of the more egregious side effects of urbanization is the deterioration in air quality as a result of increased vehicular traffic, industrialization and related activities. In the United States alone, under the more stringent air quality guidelines established by the U.S. Environmental Protection Agency (EPA) in 1997, nearly 300 counties in 34 states will not meet the new air quality standards for ground level ozone. The mitigation of one the physical/environmental characteristics of urbanization known as the urban heat island (UHI) effect, is now being looked at more closely as a possible way to bring down ground level ozone levels in cities and assist states in improving air quality. The UHI results from the replacement of "natural" land covers (e.g., trees, grass) with urban land surface types, such as pavement and buildings. Heat stored in these surfaces is released into the air and results in a "dome" of elevated air temperatures that presides over cities. The effect of this dome of elevated air temperatures is known as the UHI, which is most prevalent about 2-3 hours after sunset on days with intense solar radiation and calm winds. Given the local and regional impacts of the UHI, there are significant potential affects on human health, particularly as related to heat stress and ozone on body temperature regulation and on the cardiovascular and respiratory systems. In this study we are using airborne and satellite remote sensing data to analyze how differences in the urban landscape influence or drive the development of the UHI over four U.S. cities. Additionally, we are assessing what the potential impact is on risks to human health, and developing mitigation strategies to make urban areas more environmentally sustainable.

  18. High Spatial Resolution Thermal Remote Sensing of the Urban Heat Island Effect: Assessment of Risks to Human Health and Development of Mitigation Strategies for Sustainable Cities

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Estes, Maurice G., Jr.; Laymon, Charles A.; Crosson, William; Howell, Burgess F.; Gillani, Noor V.; Arnold, James E. (Technical Monitor)

    2002-01-01

    The growth of cities, both in population and in areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80% of the world's population will live in cities. One of the more egregious side effects of urbanization is the deterioration in air quality as a result of increased vehicular traffic, industrialization and related activities. In the United States alone, under the more stringent air quality guidelines established by the U.S. Environmental Protection Agency (EPA) in 1997, nearly 300 counties in 34 states will not meet the new air quality standards for ground level ozone. The mitigation of one the physical/environmental characteristics of urbanization known as the urban heat island (UHI) effect, is now being looked at more closely as a possible way to bring down ground level ozone levels in cities and assist states in improving air quality. The UHI results from the replacement of "natural" land covers (e.g., trees, grass) with urban land surface types, such as pavement and buildings. Heat stored in these surfaces is released into the air and results in a "dome" of elevated air temperatures that presides over cities. The effect of this dome of elevated air temperatures is known as the UHI, which is most prevalent about 2-3 hours after sunset on days with intense solar radiation and calm winds. Given the local and regional impacts of the UHI, there are significant potential affects on human health, particularly as related to heat stress and ozone on body temperature regulation and on the cardiovascular and respiratory systems. In this study we are using airborne and satellite remote sensing data to analyze how differences in the urban landscape influence or drive the development of the UHI over four U.S. cities. Additionally, we are assessing what the potential impact is on risks to human health, and developing mitigation strategies to make urban areas more environmentally sustainable.

  19. Remote Sensing of the Urban Heat Island Effect: Assessment of Risks to Human Health and Development of Mitigation Strategies for Sustainable Cities

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Estes, Maurice G., Jr.; Laymon, Charles A.; Crosson, William; Howell, Burgess F.; Gillani, Noor V.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The growth of cities, both in population and in areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80% of the world's population will live in cities. One of the more egregious side effects of urbanization is the deterioration in air quality as a result of increased vehicular traffic, industrialization and related activities. In the United States alone, under the more stringent air quality guidelines established by the U.S. Environmental Protection Agency (EPA) in 1997, nearly 300 counties in 34 states will not meet the new air quality standards for ground level ozone. The mitigation of one the physical/environmental characteristics of urbanization known as the urban heat island (UHI) effect, is now being looked at more closely as a possible way to bring down ground level ozone levels in cities and assist states in improving air quality. The UHI results from the replacement of "natural" land covers (e.g., trees, grass) with urban land surface types, such as pavement and buildings. Heat stored in these surfaces is released into the air and results in a "dome" of elevated air temperatures that presides over cities. The effect of this dome of elevated air temperatures is known as the UHI, which is most prevalent about 2-3 hours after sunset on days with intense solar radiation and calm winds. Given the local and regional impacts of the UHI, there are significant potential affects on human health, particularly as related to heat stress and ozone on body temperature regulation and on the cardiovascular and respiratory systems. In this study we are using airborne and satellite remote sensing data to analyze how differences in the urban landscape influence or drive the development of the UHI over four U.S. cities. Additionally, we are assessing what the potential impact is on risks to human health, and developing mitigation strategies to make urban areas more environmentally sustainable.

  20. High Spatial Resolution Thermal Remote Sensing of the Urban Heat Island Effect: Assessment of Risks to Human Health and Development of Mitigation Strategies for Sustainable Cities

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Estes, Maurice G., Jr.; Laymon, Charles A.; Crosson, William; Howell, Burgess F.; Gillani, Noor V.; Arnold, James E. (Technical Monitor)

    2002-01-01

    The growth of cities, both in population and in areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80% of the world's population will live in cities. One of the more egregious side effects of urbanization is the deterioration in air quality as a result of increased vehicular traffic, industrialization and related activities. In the United States alone, under the more stringent air quality guidelines established by the U.S. Environmental Protection Agency (EPA) in 1997, nearly 300 counties in 34 states will not meet the new air quality standards for ground level ozone. The mitigation of one the physical/environmental characteristics of urbanization known as the urban heat island (UHI) effect, is now being looked at more closely as a possible way to bring down ground level ozone levels in cities and assist states in improving air quality. The UHI results from the replacement of "natural" land covers (e.g., trees, grass) with urban land surface types, such as pavement and buildings. Heat stored in these surfaces is released into the air and results in a "dome" of elevated air temperatures that presides over cities. The effect of this dome of elevated air temperatures is known as the UHI, which is most prevalent about 2-3 hours after sunset on days with intense solar radiation and calm winds. Given the local and regional impacts of the UHI, there are significant potential affects on human health, particularly as related to heat stress and ozone on body temperature regulation and on the cardiovascular and respiratory systems. In this study we are using airborne and satellite remote sensing data to analyze how differences in the urban landscape influence or drive the development of the UHI over four U.S. cities. Additionally, we are assessing what the potential impact is on risks to human health, and developing mitigation strategies to make urban areas more environmentally sustainable.

  1. Heat Transfer Measurements during DC Casting of Aluminium Part I: Measurement Technique

    NASA Astrophysics Data System (ADS)

    Bakken, J. A.; Bergström, T.

    A method for determination of surface heat transfer to the cooling water and mould based on in-situ temperature measurements in the DC cast ingot has been developed. Three or more steel mantled coaxial thermocouples (0.5 mm diam.) are mounted on a wire frame called a "harp". Allowing the "harp" to freeze into the solid ingots during the casting time-temperature plots T1 (t), T2(t), T3 (t) are obtained for three moving points positioned typically 3, 7 and 11 mm from the ingot surface. From these measurements surface temperature, heat flux and heat transfer coefficients are computed as functions of vertical distance. The computer program is based on steady-state two-dimensional heat balances with convective terms for two fixed volume elements: one around thermocouple T1 and one surface element. A special numerical smoothing procedure is incorporated. The heat of solidification is taken into account.

  2. Pulse Mitigation and Heat Transfer Enhancement Techniques. Volume 2. Effect of Surface Wettability and Roughness in Evaporative Spray Cooling

    DTIC Science & Technology

    1992-08-01

    below the Leidenfrost point. In this region, heat is removed predominantly due to liquid/vapor phase change where the liquid is supplied to the heated... Leidenfrost point resulting in a nonwetting condition. This research effort is directed towards developing an understanding of the basic phenomena... Leidenfrost point and was nonwetting. The rest of the surface was still in the wetting range because the spray characteristics were good. This caused the

  3. Global surface temperature/heat transfer measurements using infrared imaging

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1992-01-01

    A series of studies were conducted to evaluate the use of scanning radiometric infrared imaging systems for providing global surface temperature/heat transfer measurements in support of hypersonic wind tunnel testing. The in situ precision of the technique with narrow temperature span setting over the temperature range of 20 to 200 C was investigated. The precision of the technique over wider temperature span settings was also determined. The accuracy of technique for providing aerodynamic heating rates was investigated by performing measurements on a 10.2-centimeter hemisphere model in the Langley 31-inch Mach 10 tunnel, and comparing the results with theoretical predictions. Data from tests conducted on a generic orbiter model in this tunnel are also presented.

  4. Heat of reaction measurements for hydrothermal carbonization of biomass.

    PubMed

    Funke, Axel; Ziegler, Felix

    2011-08-01

    This paper presents a set of calorimetric measurements with the aim of better understanding the calorific nature of hydrothermal carbonization. Presented values so far show an inadequately high scatter to do so, preventing a well funded assessment of the energetic feasibility of this process. The heat released during hydrothermal carbonization at 240°C measured with the applied differential calorimetry setup is -1.06MJ/kg(glucose,daf) with a standard deviation of 14%, -1.07MJ/kg(cellulose,daf) with a standard deviation of 9%, and -0.76MJ/kg(wood,daf) with a standard deviation of 32%. These results are in good agreement with the theoretically derived maximum heat release. Despite the comparably high experimental standard deviation of these results, their accuracy is considerably higher than previously published results.

  5. Infrared Low Temperature Turbine Vane Rough Surface Heat Transfer Measurements

    NASA Technical Reports Server (NTRS)

    Boyle, R. J.; Spuckler, C. M.; Lucci, B. L.; Camperchioli, W. P.

    2000-01-01

    Turbine vane heat transfer distributions obtained using an infrared camera technique are described. Infrared thermography was used because noncontact surface temperature measurements were desired. Surface temperatures were 80 C or less. Tests were conducted in a three vane linear cascade, with inlet pressures between 0.14 and 1.02 atm., and exit Mach numbers of 0.3, 0.7, and 0.9, for turbulence intensities of approximately 1 and 10%. Measurements were taken on the vane suction side, and on the pressure side leading edge region. The designs for both the vane and test facility are discussed. The approach used to account for conduction within the vane is described. Midspan heat transfer distributions are given for the range of test conditions.

  6. Preliminary measurements on heat balance in pneumatic tires

    NASA Technical Reports Server (NTRS)

    Nybakken, G. H.; Collart, D. Y.; Staples, R. J.; Lackey, J. I.; Clark, S. K.; Dodge, R. N.

    1973-01-01

    A variety of tests was undertaken to determine the nature of heat generation associated with a pneumatic tire operating under various conditions. Tests were conducted to determine the magnitude and distribution of internally generated heat caused by hysteresis in the rubber and ply fabric in an automobile tire operating under conditions of load, pressure, and velocity representative of normal operating conditions. These included tests at various yaw angles and tests with braking applied. In other tests, temperature sensors were mounted on a road to measure the effect of a tire rolling over and an attempt was made to deduce the magnitude and nature of interfacial friction from the resulting information. In addition, tests were performed using the scratch plate technique to determine the nature of the motion between the tire and road. Finally, a model tire was tested on a roadwheel, the surface covering which could be changed, and an optical pyrometer was used to measure rubber surface temperatures.

  7. Laser-heated X-ray flashlamp brightness measurements

    SciTech Connect

    Matthews, D.L.; Campbell, E.M.; Hagelstein, P.; Halsey, W.; Kauffman, R.L.; Koppel, L.; Phillion, D.; Price, R.; Toor, A.

    1983-12-01

    The authors present measurements of the X-ray emission characteristics of laser-irradiated flashlamp foils which are candidates to produce by resonant photoexcitation a population inversion in either a neon or fluorine lasant gas. Using the Shiva 1.06 ..mu.. laser, the authors heated Fe, Cr, and Ni foils to study the brightness and centroid energies of X-ray lines stemming from L-M transitions. Results indicate that appropriately bright and uniform sources can be produced.

  8. Distributed Sensible Heat Flux Measurements for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huwald, H.; Brauchli, T.; Lehning, M.; Higgins, C. W.

    2015-12-01

    The sensible heat flux component of the surface energy balance is typically computed using eddy covariance or two point profile measurements while alternative approaches such as the flux variance method based on convective scaling has been much less explored and applied. Flux variance (FV) certainly has a few limitations and constraints but may be an interesting and competitive method in low-cost and power limited wireless sensor networks (WSN) with the advantage of providing spatio-temporal sensible heat flux over the domain of the network. In a first step, parameters such as sampling frequency, sensor response time, and averaging interval are investigated. Then we explore the applicability and the potential of the FV method for use in WSN in a field experiment. Low-cost sensor systems are tested and compared against reference instruments (3D sonic anemometers) to evaluate the performance and limitations of the sensors as well as the method with respect to the standard calculations. Comparison experiments were carried out at several sites to gauge the flux measurements over different surface types (gravel, grass, water) from the low-cost systems. This study should also serve as an example of spatially distributed sensible heat flux measurements.

  9. The Next Generation Heated Halo for Blackbody Emissivity Measurement

    NASA Astrophysics Data System (ADS)

    Gero, P.; Taylor, J. K.; Best, F. A.; Revercomb, H. E.; Knuteson, R. O.; Tobin, D. C.; Adler, D. P.; Ciganovich, N. N.; Dutcher, S. T.; Garcia, R. K.

    2011-12-01

    The accuracy of radiance measurements from space-based infrared spectrometers is contingent on the quality of the calibration subsystem, as well as knowledge of its uncertainty. Future climate benchmarking missions call for measurement uncertainties better than 0.1 K (k=3) in radiance temperature for the detection of spectral climate signatures. Blackbody cavities impart the most accurate calibration for spaceborne infrared sensors, provided that their temperature and emissivity is traceably determined on-orbit. The On-Orbit Absolute Radiance Standard (OARS) has been developed at the University of Wisconsin to meet the stringent requirements of the next generation of infrared remote sensing instruments. It provides on-orbit determination of both traceable temperature and emissivity for calibration blackbodies. The Heated Halo is the component of the OARS that provides a robust and compact method to measure the spectral emissivity of a blackbody in situ. A carefully baffled thermal source is placed in front of a blackbody in an infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. We present the results from the Heated Halo methodology implemented with a new Absolute Radiance Interferometer (ARI), which is a prototype space-based infrared spectrometer designed for climate benchmarking that was developed under the NASA Instrument Incubator Program (IIP). We compare our findings to models and other experimental methods of emissivity determination.

  10. Dust Mitigation Vehicle

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.

    2011-01-01

    A document describes the development and demonstration of an apparatus, called a dust mitigation vehicle, for reducing the amount of free dust on the surface of the Moon. The dust mitigation vehicle would be used to pave surfaces on the Moon to prevent the dust from levitating or adhering to surfaces. The basic principle of operation of these apparatuses is to use a lens or a dish mirror to concentrate solar thermal radiation onto a small spot to heat lunar regolith. In the case of the prototype dust mitigation vehicle, a Fresnel lens was used to heat a surface layer of regolith sufficiently to sinter or melt dust grains into a solid mass. The prototype vehicle has demonstrated paving rates up to 1.8 square meters per day. The proposed flight design of the dust mitigation vehicle is also described.

  11. Heat tolerance testing: association between heat intolerance and anthropometric and fitness measurements.

    PubMed

    Lisman, Peter; Kazman, Josh B; O'Connor, Francis G; Heled, Yuval; Deuster, Patricia A

    2014-11-01

    This study investigated associations between heat intolerance, as determined by performance on a heat tolerance test (HTT), and anthropometric measurements (body surface-to-mass ratio, percent body fat, body mass index, and waist circumference) and cardiorespiratory fitness (maximal oxygen uptake [VO2max]). Relationships between predictive variables and specific physiological measurements recorded during the HTT were examined. A total of 34 male and 12 female participants, recruited from the military community, underwent anthropometric measurements, a maximal aerobic exercise test, and a standardized HTT, which consisted of walking on a treadmill at 5 km/h at 2% grade for 120 minutes at 40°C and 40% relative humidity. VO2max negatively correlated with maximum core temperature (r = -0.30, p < 0.05) and heart rate (HR) (r = -0.48, p < 0.01) although percent body fat showed a positive correlation with maximum HR (r = 0.36, p < 0.05). VO2max was the only independent attribute that significantly influenced both the maximum HR and core temperature attained during HTT. Logistic regression analyses indicated that VO2max was the only independent parameter (OR = 0.89, p = 0.026) that significantly contributed to overall HTT performance. Low cardiorespiratory fitness was associated with heat intolerance, as defined by HTT performance, and can be addressed as a preventative measure for exertional heat illness. This study provides further evidence that the HTT can be an effective tool for assessment of thermoregulatory patterns. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  12. Longitudinal assessment of hydropeaking impacts on various scales for an improved process understanding and the design of mitigation measures.

    PubMed

    Hauer, C; Holzapfel, P; Leitner, P; Graf, W

    2017-01-01

    Hydropeaking is one of the main pressures on the aquatic ecology in alpine rivers. Beside studies on abiotic process and biotic response on the local scale there is a lack in process understanding on the reach scale. Especially longitudinal changes of hydropeaking impacts based on retention processes have not been studied yet. Thus, based on unsteady one-dimensional and two-dimensional depth averaged modelling it was targeted to investigate possible changes in vertical ramping velocity for the discussion of possible mitigation measures at the local scale. Here, we compared artificial and natural sheltering habitats in terms of peak flow. Additionally, the hydropeaking assessment on various river scales was supported by an evaluation of tributaries in an alpine river system. Based on the modelling results and the discussion of the impact assessment of hydropeaking in different case studies we state, that on the first 5km downstream of the turbine outlet a significant decrease in vertical ramping velocity occurs. In this reach, habitat improvements should focus on increasing retention processes considering the higher risk of stranding for juvenile fish and macroinvertebrates. For morphological mitigation measures at the local scale, it turned out that self-formed, near-natural morphology should be targeted in terms of mitigation measure design compared to artificial sheltering habitats. Abundance and biomass of macroinvertebrates are directly linked to substrate variability in self-formed sheltering habitats downstream of gravel bars. Moreover, we ascertained that tributaries are able to contribute to the 'ecological potential' in multi-stressed hydropeaking rivers by providing spawning and rearing habitats for fish. However, for a sustainable improvement of the aquatic environment on all relevant scales, both sediment and flood dynamics have to be considered as important drivers to establish self-formed sheltering habitats in terms of hydropeaking. Copyright © 2016

  13. Thermal conductivity measurements of proton-heated warm dense aluminum

    DOE PAGES

    McKelvey, A.; Kemp, G. E.; Sterne, P. A.; ...

    2017-08-01

    Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5–2.7 g/cc and 2–10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rearmore » surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0–15 ps, likely due to non-equilibrium conditions.« less

  14. Recovery Temperature, Transition, and Heat Transfer Measurements at Mach 5

    NASA Technical Reports Server (NTRS)

    Brinich, Paul F.

    1961-01-01

    Schlieren, recovery temperature, and heat-transfer measurements were made on a hollow cylinder and a cone with axes alined parallel to the stream. Both the cone and cylinder were equipped with various bluntnesses, and the tests covered a Reynolds number range up to 20 x 10(exp 6) at a free-stream Mach number of 4.95 and wall to free-stream temperature ratios from 1.8 to 5.2 (adiabatic). A substantial transition delay due to bluntness was found for both the cylinder and the cone. For the present tests (Mach 4.95), transition was delayed by a factor of 3 on the cylinder and about 2 on the cone, these delays being somewhat larger than those observed in earlier tests at Mach 3.1. Heat-transfer tests on the cylinder showed only slight effects of wall temperature level on transition location; this is to be contrasted to the large transition delays observed on conical-type bodies at low surface temperatures at Mach 3.1. The schlieren and the peak-recovery-temperature methods of detecting transition were compared with the heat-transfer results. The comparison showed that the first two methods identified a transition point which occurred just beyond the end of the laminar run as seen in the heat-transfer data.

  15. Soil heat flux measurements in an open forest

    NASA Astrophysics Data System (ADS)

    van der Meulen, M. W. J.; Klaassen, W.

    1996-05-01

    The soil surface heat flux in an open oak forest was determined at four locations to account for the heterogeneity of the forest. Soil temperatures and soil water content were measured at several depths and an integration method with three layers was used. The thickness of the bottom layer was determined with a spectral method. The soil surface heat flux was compared with the net radiation above the canopy for four typical days in 1995. These data were fitted linearly. The slope of this parameterisation was 0.092, with a leaf area index of 2.5 (fully-leafed canopy). This result was compared with four other studies. To produce an exponential fit of the slope against the leaf area index the Beer-Bouguer law for radiation extinction in canopies and a soil surface heat flux proportional to the net radiation at the forest floor was used. An extinction coefficient of 0.36 was found. This result is recommended for future studies, if soil surface heat flux is requested and net radiation data above the canopy as well as leaf area index are available.

  16. Heat Transfer Measurements for a Film Cooled Turbine Vane Cascade

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip E.; Heidmann, James D.; Thurman, Douglas R.

    2008-01-01

    Experimental heat transfer and pressure measurements were obtained on a large scale film cooled turbine vane cascade. The objective was to investigate heat transfer on a commercial high pressure first stage turbine vane at near engine Mach and Reynolds number conditions. Additionally blowing ratios and coolant density were also matched. Numerical computations were made with the Glenn-HT code of the same geometry and compared with the experimental results. A transient thermochromic liquid crystal technique was used to obtain steady state heat transfer data on the mid-span geometry of an instrumented vane with 12 rows of circular and shaped film cooling holes. A mixture of SF6 and Argon gases was used for film coolant to match the coolant-to-gas density ratio of a real engine. The exit Mach number and Reynolds number were 0.725 and 2.7 million respectively. Trends from the experimental heat transfer data matched well with the computational prediction, particularly for the film cooled case.

  17. Thermal conductivity measurements of proton-heated warm dense aluminum.

    PubMed

    McKelvey, A; Kemp, G E; Sterne, P A; Fernandez-Panella, A; Shepherd, R; Marinak, M; Link, A; Collins, G W; Sio, H; King, J; Freeman, R R; Hua, R; McGuffey, C; Kim, J; Beg, F N; Ping, Y

    2017-08-01

    Thermal conductivity is one of the most crucial physical properties of matter when it comes to understanding heat transport, hydrodynamic evolution, and energy balance in systems ranging from astrophysical objects to fusion plasmas. In the warm dense matter regime, experimental data are very scarce so that many theoretical models remain untested. Here we present the first thermal conductivity measurements of aluminum at 0.5-2.7 g/cc and 2-10 eV, using a recently developed platform of differential heating. A temperature gradient is induced in a Au/Al dual-layer target by proton heating, and subsequent heat flow from the hotter Au to the Al rear surface is detected by two simultaneous time-resolved diagnostics. A systematic data set allows for constraining both thermal conductivity and equation-of-state models. Simulations using Purgatorio model or Sesame S27314 for Al thermal conductivity and LEOS for Au/Al release equation-of-state show good agreement with data after 15 ps. Discrepancy still exists at early time 0-15 ps, likely due to non-equilibrium conditions.

  18. Measurement of the SOC State Specific Heat in 4He

    NASA Astrophysics Data System (ADS)

    Chatto, A. R.; Lee, R. A. M.; Duncan, R. V.; Day, P. K.; Goodstein, D. L.

    2006-09-01

    When a heat flux Q is applied downward through a sample of liquid 4He near the lambda transition, the helium self organizes such that the gradient in temperature matches the gravity induced gradient in Tλ. All the helium in the sample is then at the same reduced temperature tSOC = TSOC-Tλ/Tλ and the helium is said to be in the Self-Organized Critical (SOC) state. We have made preliminary measurements of the 4He SOC state specific heat, C∇T(T(Q)). Despite having a cell height of 2.54 cm, our results show no difference between C∇T and the zero-gravity 4He specific heat results of the Lambda Point Experiment (LPE) [J.A. Lipa et al., Phys. Rev. B, 68, 174518 (2003)] over the range 250 to 450 nK below the transition. There is no gravity rounding because the entire sample is at the same reduced temperature tSOC(Q). Closer to Tλ the SOC specific heat falls slightly below LPE, reaching a maximum at approximately 50 nK below Tλ, in agreement with theoretical predictions [R. Haussmann, Phys. Rev. B, 60, 12349 (1999)].

  19. Simulation of Urban Heat Island Mitigation Strategies in Atlanta, GA Using High-Resolution Land Use/Land Cover Data Set to Enhance Meteorological Modeling

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.

  20. Simulation of Urban Heat Island Mitigation Strategies in Atlanta, GA Using High-Resolution Land Use/Land Cover Data Set to Enhance Meteorological Modeling

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.

  1. In vivo measurement of swine endocardial convective heat transfer coefficient.

    PubMed

    Tangwongsan, Chanchana; Will, James A; Webster, John G; Meredith, Kenneth L; Mahvi, David M

    2004-08-01

    We measured the endocardial convective heat transfer coefficient h at 22 locations in the cardiac chambers of 15 pigs in vivo. A thin-film Pt catheter tip sensor in a Wheatstone-bridge circuit, similar to a hot wire/film anemometer, measured h. Using fluoroscopy, we could precisely locate the steerable catheter sensor tip and sensor orientation in pigs' cardiac chambers. With flows, h varies from 2500 to 9500 W/m2 x K. With zero flow, h is approximately 2400 W/m2 x K. These values of h can be used for the finite element method modeling of radiofrequency cardiac catheter ablation.

  2. Construction and measurements of a vacuum-swing-adsorption radon-mitigation system

    SciTech Connect

    Schnee, R. W.; Bunker, R.; Ghulam, G.; Jardin, D.; Kos, M.; Tenney, A. S.

    2013-08-08

    Long-lived alpha and beta emitters in the {sup 222}Rn decay chain on (and near) detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay, and in screening detectors. In order to reduce backgrounds from radon-daughter plate-out onto the wires of the Beta Cage during its assembly, an ultra-low-radon cleanroom is being commissioned at Syracuse University using a vacuum-swing-adsorption radon-mitigation system. The radon filter shows ∼20× reduction at its output, from 7.47±0.56 to 0.37±0.12 Bq/m{sup 3}, and the cleanroom radon activity meets project requirements, with a lowest achieved value consistent with that of the filter, and levels consistently < 2 Bq/m{sup 3}.

  3. Mitigation measures to contain the environmental impact of urban areas: a bibliographic review moving from the life cycle approach.

    PubMed

    Belussi, Lorenzo; Barozzi, Benedetta

    2015-12-01

    The global environmental impact of urban areas has greatly increased over the years, due to the growth of urbanisation and the associated increase in management costs. There are several measures aimed at mitigating this impact that affect in different ways the environmental, economic and societal spheres. This article has analysed a selection of different mitigation measures, related to the built environment, according to the life cycle approach, aimed at identifying the procedural features chosen by the different authors and defining a common way to deal with this issue. In particular, all the individual single steps of a Life Cycle Assessment/Life Cycle Costing of the different studies are analysed and the results of the individual measures are highlighted. The analysis has shown how the scientific literature is mainly focused on the evaluation of the impact of technological solutions related to individual buildings (cool/green roof). Less interest is shown in the solutions for urban areas, while, as far as the impact on greenhouse gas emissions is concerned, some studies are shifting the target to a global scale. Due to the accuracy whereby the calculation of the impact indicators deals with and structures the life cycle methods, opportunities to compare studies developed by different authors are quite rare and hard to find. Hence the need to find a simple, intuitive and flexible scheme to combine some of the most useful results of the bibliographical studies, in a comparative outline of different technological solutions, which can support the decision-making phase through a rough assessment.

  4. Investigation of radon entry and effectiveness of mitigation measures in seven houses in New Jersey: Midproject report

    SciTech Connect

    Matthews, T.G.; Dudney, C.S.; Monar, K.P.; Landguth, D.C.; Wilson, D.L.; Hawthorne, A.R.; Hubbard, L.M.; Gadsby, K.J.; Bohac, D.L.; Decker, C.A.

    1987-12-01

    A detailed radon mitigation study is in progress in 14 homes in the New Jersey Piedmont area. The principal goals are the refinement of diagnostic measurements for selection and implementation of mitigation systems, and the reduction of radon concentrations to acceptable levels inside the study houses. Monitoring stations were installed in each home in October, 1986. Instrumented measurements included: basement and upstairs radon; differential pressures across the basement/subslag, basement/upstairs and basement/outdoor interfaces; temperatures at basement, upstairs and outdoor locations; and central air handler usage. A weather station was located at one house, monitoring wind speed and direction; barometric pressure; precipitation; soil temperature; and outdoor temperature and relative humidity. A time-averaged value of all of the above parameters was recorded every 30 min. Several additional parameters were monitored on an intermittent basis in all or selected homes. These include multizone air infiltration rates which have been measured in all homes using passive perfluorocarbon tracers (PFT) and in two homes using a constant concentration tracer gas system (CCTG). Total radon progeny, soil gas radon concentration and permeability characteristics, and gamma radiation levels were also monitored periodically in all study homes. 10 refs., 53 figs.

  5. Local Heat Flux Measurements with Single Element Coaxial Injectors

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James

    2006-01-01

    To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.

  6. Current status of decay heat measurements, evaluations, and needs

    SciTech Connect

    Dickens, J.K.

    1986-07-01

    Over a decade ago serious concern over possible consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support of several experiments designed specifically to measure the latent energy of beta-ray and gamma-ray emanations from fission products for thermal reactors. This latent energy was termed Decay Heat. At about the same time the American Nuclear Society convened a working group to develop a standard for use in computing decay heat in real reactor environs primarily for regulatory requirements. This working group combined the new experimental results and best evaluated data into a standard which was approved by the ANS and by the ANSI. The primary work since then has been: (a) on improvements to computational efforts and (b) experimental measurements for fast reactors. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident; new concerns involve, for example, away-from-reactor shipments and storage. The efficacy of the ANS standard for these longer time regimes has been a subject of study with generally positive results. However, a specific problem, namely, the consequences of fission-product neutron capture, remains contentious. Satisfactory resolution of this problem merits a high priority. 31 refs., 4 figs., 1 tab.

  7. Particle and heat flux measurements in PDX edge plasmas

    SciTech Connect

    Budny, R.; Manos, D.

    1983-12-01

    This paper describes the use of novel combined Langmuir-calorimeter probes to measure edge plasma conditions near the midplane in PDX. The probes consisted of up to five Langmuir probes and up to two calorimeters. Single and double probe characteristics yield n/sub e/ and T/sub e/ which are compared with that derived from a triple probe analysis. The calorimeters measure heat flux in the electron and ion drift directions. This paper presents time-resolved radial profiles of n/sub e/, T/sub e/, V/sub F/ (floating potential), and P (heat flux) during high power neutral beam-heated, single-null discharges and circular scoop limiter discharges. The temporal dependence of these quantities displays the previous observed behavior with respect to gross discharge characteristics; however, an additional dependence on confinement mode has been observed. During the H-mode of energy confinement, a transient depression of n/sub e/, T/sub e/, and P occurs in the scrape-off plasma.

  8. Current status of decay heat measurements, evaluations, and needs

    SciTech Connect

    Dickens, J.K.

    1986-01-01

    Over a decade ago serious concern over possible consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support of several experiments designed specifically to measure the latent energy of beta-ray and gamma-ray emanations from fission products for thermal reactors. This latent energy was termed Decay Heat. At about the same time the American Nuclear Society convened a working group to develop a standard for use in computing decay heat in real reactor environs primarily for regulatory requirements. This working group combined the new experimental results and best evaluated data into a standard which was approved by the ANS and by the ANSI. The primary work since then has been (a) on improvements to computational efforts and (b) experimental measurements for fast reactors. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident; new concerns involve, for example, away-from-reactor shipments and storage. The efficacy of the ANS standard for these longer time regimes has been a subject of study with generally positive results. However, a specific problem, namely, the consequences of fission-product neutron capture, remains contentious. Satisfactory resolution of this problem merits a high priority. 31 refs.

  9. Economic aspects of hydro geological risk mitigation measures management in Italy: the ReNDiS project experience

    NASA Astrophysics Data System (ADS)

    Spizzichino, D.; Campobasso, C.; Gallozzi, P. L.; Dessi', B.; Traversa, F.

    2009-04-01

    ReNDiS project is a useful tool for monitoring, analysis and management of information data on mitigation measures and restoration works of soil protection at national scale. The main scope of the project, and related monitoring activities, is to improve the knowledge about the use of national funds and efforts against floods and landslides risk and, as a consequence, to better address the preventive policies in future. Since 1999 after the disastrous mudflow event occurred in Sarno in 1998, which caused the loss of 160 human lives, an extraordinary effort was conducted by the Italian Government in order to promote preventive measures against the hydro geological risk over the entire Italian territory. The Italian Ministry for the Environment promoted several and annual soil protection programmes. The ReNDiS project (Repertory of mitigation measures for National Soil Protection) is carried out by ISPRA - Institute for Environmental protection and Research, with the aim of improving the knowledge about the results of preventive policies against floods and landslides in order to better address national funds as requested by the Minister itself. The repertory is composed by a main archive and two secondary interface, the first for direct data management (ReNDiS-ist) and the latter (ReNDiS-web) for the on-line access and public consultation. At present, ReNDiS database contains about 3000 records concerning those programmes, focused on restoration works but including also information on landslide typologies and processes. The monitoring project is developed taking into account all the information about each step of every mitigation measure from the initial funding phase until the end of the work. During present work, we have statistically analyzed the ReNDiS database in order to highlight the conformity between the characteristic and type of the hazard (identified in a specific area) and the corresponding mitigation measures adopted for risk reduction. Through specific

  10. CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.

    2009-01-01

    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.

  11. Heat conduction nanocalorimeter for pl-scale single cell measurements

    NASA Astrophysics Data System (ADS)

    Johannessen, E. A.; Weaver, J. M. R.; Cobbold, P. H.; Cooper, J. M.

    2002-03-01

    An ultrasensitive nanocalorimeter for use with pl-scale biological samples using silicon microfabrication technology has been developed in which a 720 pl reaction vessel, a calibration heater, and a thermoelectric transducer of 125 μK sensitivity were integrated into a single multilayer thin-film configuration. The resolution of the system ranged from 10 to 25 nW depending on the heat capacity, conductance and power density of the samples studied. The device has been used in heat conduction measurements of the energy released from the enzyme catalyzed hydrolysis of hydrogen peroxide using purified catalase, and for the determination of the catalase activity within a single mouse hepatocyte. The nanocalorimeter has the potential for integration in a high-density array format, where the change in temperature from ultralow volume cellular assays could be used as a generic analytical tool for high throughput screening of bioactive compounds.

  12. Heat generation rate measurement in a Li-ion cell at large C-rates through temperature and heat flux measurements

    NASA Astrophysics Data System (ADS)

    Drake, S. J.; Martin, M.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2015-07-01

    Understanding the rate of heat generation in a Li-ion cell is critical for safety and performance of Li-ion cells and systems. Cell performance, cycle life, and system safety all depend on temperature distribution in the cell, which, in turn, depends on heat generation rate within the cell and on heat removal rate at the cell surface. Despite the existence of a number of theoretical models to predict heat generation rate, there is not much literature on experimental measurement at high C-rates. This paper reports measurement of heat generation rate from a Li-ion cell at high discharge rates, up to 9.6C, using measurements of cell temperature and surface heat flux. As opposed to calorimetry-based approaches, this method can be applied in situ to yield measurements of heat generation rate in laboratory or field use provided that at least one a priori test is performed to measure the temperature gradient within a cell in the same ambient condition. This method is based on simultaneous determination of heat stored and heat lost from the cell through heat flux and temperature measurements. A novel method is established for measurement of the internal temperature of the cell. Heat generation measurements are shown to agree with well-established theoretical models. The effect of actively cooling the cell is briefly discussed.

  13. The biophysical and physiological basis for mitigated elevations in heart rate with electric fan use in extreme heat and humidity

    NASA Astrophysics Data System (ADS)

    Ravanelli, Nicholas M.; Gagnon, Daniel; Hodder, Simon G.; Havenith, George; Jay, Ollie

    2017-02-01

    Electric fan use in extreme heat wave conditions has been thought to be disadvantageous because it might accelerate heat gain to the body via convection. However, it has been recently shown that fan use delays increases in heart rate even at high temperatures (42 °C) in young adults. We here assess the biophysical and physiological mechanisms underlying the apparently beneficial effects of fan use. Eight males (24 ± 3 y; 80.7 ± 11.7 kg; 2.0 ± 0.1 m2) rested at either 36 °C or 42 °C, with (F) or without (NF) electric fan use (4.2 m/s) for 120 min while humidity increased every 7.5 min by 0.3 kPa from a baseline value of 1.6 kPa. Heart rate (HR), local sweat rate (LSR), cutaneous vascular conductance (CVC), core and mean skin temperatures, and the combined convective/radiative heat loss (C+R), evaporative heat balance requirements (Ereq) and maximum evaporative potential (Emax) were assessed. C+R was greater with fan use at 36 °C (F 8 ± 6, NF 2 ± 2 W/m2; P = 0.04) and more negative (greater dry heat gain) with fan use at 42 °C (F -78 ± 4, NF -27 ± 2 W/m2; P < 0.01). Consequently, Ereq was lower at 36 °C (F 38 ± 16, NF 45 ± 3 W/m2; P = 0.04) and greater at 42 °C (F 125 ± 1, NF 74 ± 3 W/m2; P < 0.01) with fan use. However, fan use resulted in a greater Emax at baseline humidity at both 36 °C (F 343 ± 10, NF 153 ± 5 W/m2; P < 0.01) and 42 °C (F 376 ± 13, NF 161 ± 4 W/m2; P < 0.01) and throughout the incremental increases in humidity. Within the humidity range that a rise in HR was prevented by fan use but not without a fan, LSR was higher in NF at both 36 °C ( P = 0.04) and 42 °C ( P = 0.05), and skin temperature was higher in NF at 42 °C ( P = 0.05), but no differences in CVC or core temperatures were observed (all P > 0.05). These results suggest that the delayed increase in heart rate with fan use during extreme heat and humidity is associated with improved evaporative efficiency.

  14. The biophysical and physiological basis for mitigated elevations in heart rate with electric fan use in extreme heat and humidity

    NASA Astrophysics Data System (ADS)

    Ravanelli, Nicholas M.; Gagnon, Daniel; Hodder, Simon G.; Havenith, George; Jay, Ollie

    2016-07-01

    Electric fan use in extreme heat wave conditions has been thought to be disadvantageous because it might accelerate heat gain to the body via convection. However, it has been recently shown that fan use delays increases in heart rate even at high temperatures (42 °C) in young adults. We here assess the biophysical and physiological mechanisms underlying the apparently beneficial effects of fan use. Eight males (24 ± 3 y; 80.7 ± 11.7 kg; 2.0 ± 0.1 m2) rested at either 36 °C or 42 °C, with (F) or without (NF) electric fan use (4.2 m/s) for 120 min while humidity increased every 7.5 min by 0.3 kPa from a baseline value of 1.6 kPa. Heart rate (HR), local sweat rate (LSR), cutaneous vascular conductance (CVC), core and mean skin temperatures, and the combined convective/radiative heat loss (C+R), evaporative heat balance requirements (Ereq) and maximum evaporative potential (Emax) were assessed. C+R was greater with fan use at 36 °C (F 8 ± 6, NF 2 ± 2 W/m2; P = 0.04) and more negative (greater dry heat gain) with fan use at 42 °C (F -78 ± 4, NF -27 ± 2 W/m2; P < 0.01). Consequently, Ereq was lower at 36 °C (F 38 ± 16, NF 45 ± 3 W/m2; P = 0.04) and greater at 42 °C (F 125 ± 1, NF 74 ± 3 W/m2; P < 0.01) with fan use. However, fan use resulted in a greater Emax at baseline humidity at both 36 °C (F 343 ± 10, NF 153 ± 5 W/m2; P < 0.01) and 42 °C (F 376 ± 13, NF 161 ± 4 W/m2; P < 0.01) and throughout the incremental increases in humidity. Within the humidity range that a rise in HR was prevented by fan use but not without a fan, LSR was higher in NF at both 36 °C (P = 0.04) and 42 °C (P = 0.05), and skin temperature was higher in NF at 42 °C (P = 0.05), but no differences in CVC or core temperatures were observed (all P > 0.05). These results suggest that the delayed increase in heart rate with fan use during extreme heat and humidity is associated with improved evaporative efficiency.

  15. Analysis, diagnosis and proposal of protection measures to mitigate hydrological alterations in the basin "Rio Calandaima" derived from climate change

    NASA Astrophysics Data System (ADS)

    Guerrero, Marcela B.; Corzo, Gerald; Varouchakis, Emmanouil; Taguas, Encarnación V.

    2017-04-01

    Climate change and its effects represent a challenge for decision makers and for scientific communities, given the complexity and uncertainty associated. Rainfall reduction and evapotranspiration increase are expected phenomena associated to the climate change which will affect water resources of Calandaima River Basin (Colombia), which implies the need of designing suitable mitigation measures based on the qualitative and quantitative diagnosis of water resources. The objectives of this work were: 1) hydrological characterization of the catchment to carry out a diagnosis of rainfall-runoff current patterns and availability of water resources; 2) to implement a water balance model to complete dataseries gaps as well as modeling future climate change scenarios; 3) risk assessment based on guarantee indicators to propose mitigation measures. Firstly, detailing characteristics such as climatic zonification, slope range, drainage network and land use were described. A simple water balance model was calibrated though the adjustment of 4 parameters with an efficiency coefficient of 0.51. The indicators of supply guarantee (demand-supply analyses) determined a high risk of water deficit in the catchment for the current conditions and for the studied scenarios. A dramatic rise in costs to provide water may be envisaged, given the reduction in supply associated with climatic scenarios where the phenomenon "El Niño" takes place. Thus, not only is more investment needed to monitor the dynamics of the alterations but it is also essential to promote, among farmers and owners, incentives to apply water harvesting techniques and at the same time, to control floods.

  16. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  17. Renewable Energies and Enhanced Energy Efficiencies: Mitigation/Adaptation Measures to Climate Change Impacts on Cyprus and in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lange, Manfred

    2010-05-01

    The Eastern Mediterranean in general and Cyprus in particular are considered "hot spots" of future climate change. This will become manifest through an increase in the number and duration of drought events and extended hot-spells. The need to cope with the impacts of climate change will lead to enhanced requirements for cooling of private and public housing and growing demands for potable water derived from seawater desalination. This in turn will cause increasing pressures on electricity production and will result in additional strain on the energy sector in the region. For Cyprus, the current electricity production is entirely based on fossil-fuel fired power plants. However, the use of conventional energy sources is clearly an undesirable option. It enhances the economic burden on energy consumers and at the same time increases Cyprus' dependency on external providers of petroleum products. Moreover, it leads to growing emissions of carbon dioxide and thereby worsens Cyprus' already challenged greenhouse gas emission budget. While current emissions amount to about 9.9 Mill. t of CO2, the total allowance according to EU regulations lies at 5.5 Mill. t. The current building stock on Cyprus lacks basic measures for energy efficiency. This is particularly noteworthy with regard to insufficient insulation of buildings, which causes significant amounts of energy to be expanded for cooling. In light of these facts, an increased use of renewable energies and measures to enhance energy efficiencies in the built environment constitute important elements of a stringent and effective mitigation/adaptation strategy to climate change. The Eastern Mediterranean is among the most suitable location for the utilization of solar energy in Europe. A global direct normal irradiance of more than 1 800 kWh/m2 on Cyprus offers a renewable electricity potential of app. 20 to 23 TWh/yr when concentrated solar power (CSP) technology is employed. With regard to enhanced energy efficiency

  18. Zebra mussel mitigation; overview

    SciTech Connect

    Claudi, R.

    1995-06-01

    Zebra mussels cause a number of problems to industrial raw water users as well as having serious impact on civil structures exposed to mussel infested waters. The largest volume of water (up to 90% of the total) drawn into most industrial and power generating plants, is for cooling and heat transfer. The rest of the volume is used for other plant processes, such as make-up in steam systems, and service systems used for cleaning, air conditions, fire protection and human consumption. All raw water systems are vulnerable to zebra mussel infestation to greater or lesser degree. To-date, many different chemical and non-chemical techniques for zebra mussel control have been investigated. However, the treatment of choice for most facilities is based on chemical control. This has been the common practice in Europe and so far it has been the case in North America. This is likely to change as the environmental constraints on release of chemicals into natural water bodies continue to increase. This paper deals with the different steps raw water users should take when deciding on a mitigation strategy, the mitigation measures available to-date and those that have been proposed for the control of zebra mussels in industrial systems.

  19. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices.

  20. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  1. Equal graph partitioning on estimated infection network as an effective epidemic mitigation measure.

    PubMed

    Hadidjojo, Jeremy; Cheong, Siew Ann

    2011-01-01

    Controlling severe outbreaks remains the most important problem in infectious disease area. With time, this problem will only become more severe as population density in urban centers grows. Social interactions play a very important role in determining how infectious diseases spread, and organization of people along social lines gives rise to non-spatial networks in which the infections spread. Infection networks are different for diseases with different transmission modes, but are likely to be identical or highly similar for diseases that spread the same way. Hence, infection networks estimated from common infections can be useful to contain epidemics of a more severe disease with the same transmission mode. Here we present a proof-of-concept study demonstrating the effectiveness of epidemic mitigation based on such estimated infection networks. We first generate artificial social networks of different sizes and average degrees, but with roughly the same clustering characteristic. We then start SIR epidemics on these networks, censor the simulated incidences, and use them to reconstruct the infection network. We then efficiently fragment the estimated network by removing the smallest number of nodes identified by a graph partitioning algorithm. Finally, we demonstrate the effectiveness of this targeted strategy, by comparing it against traditional untargeted strategies, in slowing down and reducing the size of advancing epidemics.

  2. Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure

    PubMed Central

    Hadidjojo, Jeremy; Cheong, Siew Ann

    2011-01-01

    Controlling severe outbreaks remains the most important problem in infectious disease area. With time, this problem will only become more severe as population density in urban centers grows. Social interactions play a very important role in determining how infectious diseases spread, and organization of people along social lines gives rise to non-spatial networks in which the infections spread. Infection networks are different for diseases with different transmission modes, but are likely to be identical or highly similar for diseases that spread the same way. Hence, infection networks estimated from common infections can be useful to contain epidemics of a more severe disease with the same transmission mode. Here we present a proof-of-concept study demonstrating the effectiveness of epidemic mitigation based on such estimated infection networks. We first generate artificial social networks of different sizes and average degrees, but with roughly the same clustering characteristic. We then start SIR epidemics on these networks, censor the simulated incidences, and use them to reconstruct the infection network. We then efficiently fragment the estimated network by removing the smallest number of nodes identified by a graph partitioning algorithm. Finally, we demonstrate the effectiveness of this targeted strategy, by comparing it against traditional untargeted strategies, in slowing down and reducing the size of advancing epidemics. PMID:21799777

  3. Continuous regional blood flow measurement during environmental heating in rats

    SciTech Connect

    Kregel, K.C.; Wall, P.T.; Gisolfi, C.V.

    1986-03-05

    With prolonged exposure to high ambient temperatures, shifting regional blood flows reflect the dominance of cardiovascular over thermoregulatory requirements. Hypotension and decreased cardiac output contribute to the circulatory failure noted in heat stroke. The purpose of this study was to investigate changes in regional blood flows during prolonged exposure (50-70 min) to 45/sup 0/C heat. Sprague-Dawley rats (250-450 g) were implanted with pulsed Doppler flow probes on the superior mesenteric, caudal, and left iliac arteries. Measurements included blood flows in kHz Doppler shift, colonic (T/sub c/) and tail-skin temperatures, and mean arterial blood pressure (MABP). As T/sub c/ rose from 37/sup 0/ to 42/sup 0/C, iliac flow remained relatively constant, caudal flow rose to peak values of 257-600%, and mesenteric flow declined 60-88% relative to baseline. The rise in caudal blood flow occurred within the first 5 min of exposure whereas the decline in mesenteric flow was progressive; MABP rose to peak levels of 180 mm Hg. Heart rate rose to 500-630 bpm. At T/sub c/ above 42/sup 0/C, mesenteric flow increased in several animals (36-75%) and MABP began to fall. The authors hypothesize that the hypotension observed with prolonged heat exposure in the rat is in part attributed to the inability of the animal to sustain splanchnic vasoconstriction.

  4. The Heated Halo for Space-Based Blackbody Emissivity Measurement

    NASA Astrophysics Data System (ADS)

    Gero, P.; Taylor, J. K.; Best, F. A.; Revercomb, H. E.; Garcia, R. K.; Adler, D. P.; Ciganovich, N. N.; Knuteson, R. O.; Tobin, D. C.

    2012-12-01

    The accuracy of radiance measurements with space-based infrared spectrometers is contingent on the quality of the calibration subsystem, as well as knowledge of its uncertainty. Upcoming climate benchmark missions call for measurement uncertainties better than 0.1 K (k=3) in radiance temperature for the detection of spectral climate signatures. Blackbody cavities impart the most accurate calibration for spaceborne infrared sensors, provided that their temperature and emissivity is traceably determined on-orbit. The On-Orbit Absolute Radiance Standard (OARS) has been developed at the University of Wisconsin and has undergone further refinement under the NASA Instrument Incubator Program (IIP) to meet the stringent requirements of the next generation of infrared remote sensing instruments. It provides on-orbit determination of both traceable temperature and emissivity for calibration blackbodies. The Heated Halo is the component of the OARS that provides a robust and compact method to measure the spectral emissivity of a blackbody in situ. A carefully baffled thermal source is placed in front of a blackbody in an infrared spectrometer system, and the combined radiance of the blackbody and Heated Halo reflection is observed. Knowledge of key temperatures and the viewing geometry allow the blackbody cavity spectral emissivity to be calculated. We present the results from the Heated Halo methodology implemented with a new Absolute Radiance Interferometer (ARI), which is a prototype space-based infrared spectrometer designed for climate benchmarking. We show the evolution of the technical readiness level of this technology and we compare our findings to models and other experimental methods of emissivity determination.

  5. Recent Applications of Heat Capacity Measurement in Physicochemical Investigations

    NASA Astrophysics Data System (ADS)

    Lakshmikumar, S. T.; Gopal, E. S. R.

    This review discusses the recent experimental heat capacity measurements which have been very useful in physicochemical investigations. Areas reviewed include critical point phenomena in systems such as fluids, magnetic systems, liquid crystals, co-operative Jahn-Teller transitions, etc. The uses of Cp measurements in the study of discrete energy levels in solids, in glasses at very low temperatures, in thin films and at high pressures are discussed. Calorimetric investigations in A-15 and other superconducting materials and applications of Cp measurements for evaluation of thermodynamic parameters in several new classes of materials are then briefly described. Finally, examples of applications of calorimetry in areas of biophysics, biological sciences and clinical medicine are cited. Two hundred and seventy references are cited and 25 figures are used for illustration.

  6. Measuring the heat exchange of a quantum process.

    PubMed

    Goold, John; Poschinger, Ulrich; Modi, Kavan

    2014-08-01

    Very recently, interferometric methods have been proposed to measure the full statistics of work performed on a driven quantum system [Dorner et al., Phys. Rev. Lett. 110, 230601 (2013) and Mazzola et al., Phys. Rev. Lett. 110, 230602 (2013)]. The advantage of such schemes is that they replace the necessity to make projective measurements by performing phase estimation on an appropriately coupled ancilla qubit. These proposals are one possible route to the tangible experimental exploration of quantum thermodynamics, a subject which is the center of much current attention due to the current control of mesoscopic quantum systems. In this Rapid Communication we demonstrate that a modification of the phase estimation protocols can be used in order to measure the heat distribution of a quantum process. In addition, we demonstrate how our scheme maybe implemented using ion trap technology. Our scheme should pave the way for experimental explorations of the Landauer principle and hence the intricate energy to information conversion in mesoscopic quantum systems.

  7. An anatomically realistic temperature phantom for radiofrequency heating measurements.

    PubMed

    Graedel, Nadine N; Polimeni, Jonathan R; Guerin, Bastien; Gagoski, Borjan; Wald, Lawrence L

    2015-01-01

    An anthropomorphic phantom with realistic electrical properties allows for a more accurate reproduction of tissue current patterns during excitation. A temperature map can then probe the worst-case heating expected in the unperfused case. We describe an anatomically realistic human head phantom that allows rapid three-dimensional (3D) temperature mapping at 7T. The phantom was based on hand-labeled anatomical imaging data and consists of four compartments matching the corresponding human tissues in geometry and electrical properties. The increases in temperature resulting from radiofrequency excitation were measured with MR thermometry using a temperature-sensitive contrast agent (TmDOTMA(-)) validated by direct fiber optic temperature measurements. Acquisition of 3D temperature maps of the full phantom with a temperature accuracy better than 0.1°C was achieved with an isotropic resolution of 5 mm and acquisition times of 2-4 minutes. Our results demonstrate the feasibility of constructing anatomically realistic phantoms with complex geometries incorporating the ability to measure accurate temperature maps in the phantom. The anthropomorphic temperature phantom is expected to provide a useful tool for the evaluation of the heating effects of both conventional and parallel transmit pulses and help validate electromagnetic and temperature simulations. © 2014 Wiley Periodicals, Inc.

  8. An anatomically realistic temperature phantom for radiofrequency heating measurements

    PubMed Central

    Graedel, Nadine N.; Polimeni, Jonathan R.; Guerin, Bastien; Gagoski, Borjan; Wald, Lawrence L.

    2014-01-01

    Purpose An anthropomorphic phantom with realistic electrical properties allows for a more accurate reproduction of tissue current patterns during excitation. A temperature map can then probe the worst-case heating expected in the un-perfused case. We describe an anatomically realistic human head phantom that allows rapid 3D temperature mapping at 7 T. Methods The phantom was based on hand-labeled anatomical imaging data and consists of four compartments matching the corresponding human tissues in geometry and electrical properties. The increases in temperature resulting from radiofrequency excitation were measured with MR thermometry using a temperature sensitive contrast agent (TmDOTMA−) validated by direct fiber optic temperature measurements. Results Acquisition of 3D temperature maps of the full phantom with a temperature accuracy better than 0.1°C was achieved with an isotropic resolution of 5 mm and acquisition times of 2–4 minutes. Conclusion Our results demonstrate the feasibility of constructing anatomically realistic phantoms with complex geometries incorporating the ability to measure accurate temperature maps in the phantom. The anthropomorphic temperature phantom is expected to provide a useful tool for the evaluation of the heating effects of both conventional and parallel transmit pulses and help validate electromagnetic and temperature simulations. PMID:24549755

  9. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  10. A method of heat capacity measurement without thermometer calibration

    NASA Astrophysics Data System (ADS)

    Fominaya, Fernando; Chaussy, Jacques; Gandit, Philippe

    1998-01-01

    A new method for measuring heat capacities that makes the calibration of thermometers obsolete is presented. The particularity of the principle, based on the ac steady-state method, is the insertion of a reference mass with a heater between the ensemble substrate+sample+thermometer+heater, and the bath. The method could find a broad application in calorimetric devices where the thermometer must often be recalibrated due to, e.g., a drift of the thermometer's characteristics with thermal cycles or magnetic field.

  11. Measurement of Specific Heat Capacity Using Differential Scanning Calorimeter

    SciTech Connect

    J. E. Daw

    2008-11-01

    This document describes the process used at the Idaho National Laboratory’s (INL) High Temperature Test Laboratory (HTTL) for measuring specific heat capacity using a differential scanning calorimeter (DSC). The document is divided into four sections: Approach, in which the technique is described; Setup, in which the physical system is described; Procedure, in which the testing steps are listed and detailed; and Example Test, in which a typical test is outlined following the steps listed in the Procedure section. Example data, results, photos, and curves are provided throughout the document to assist other users of this system.

  12. The biophysical and physiological basis for mitigated elevations in heart rate with electric fan use in extreme heat and humidity.

    PubMed

    Ravanelli, Nicholas M; Gagnon, Daniel; Hodder, Simon G; Havenith, George; Jay, Ollie

    2017-02-01

    Electric fan use in extreme heat wave conditions has been thought to be disadvantageous because it might accelerate heat gain to the body via convection. However, it has been recently shown that fan use delays increases in heart rate even at high temperatures (42 °C) in young adults. We here assess the biophysical and physiological mechanisms underlying the apparently beneficial effects of fan use. Eight males (24 ± 3 y; 80.7 ± 11.7 kg; 2.0 ± 0.1 m(2)) rested at either 36 °C or 42 °C, with (F) or without (NF) electric fan use (4.2 m/s) for 120 min while humidity increased every 7.5 min by 0.3 kPa from a baseline value of 1.6 kPa. Heart rate (HR), local sweat rate (LSR), cutaneous vascular conductance (CVC), core and mean skin temperatures, and the combined convective/radiative heat loss (C+R), evaporative heat balance requirements (Ereq) and maximum evaporative potential (Emax) were assessed. C+R was greater with fan use at 36 °C (F 8 ± 6, NF 2 ± 2 W/m(2); P = 0.04) and more negative (greater dry heat gain) with fan use at 42 °C (F -78 ± 4, NF -27 ± 2 W/m(2); P < 0.01). Consequently, Ereq was lower at 36 °C (F 38 ± 16, NF 45 ± 3 W/m(2); P = 0.04) and greater at 42 °C (F 125 ± 1, NF 74 ± 3 W/m(2); P < 0.01) with fan use. However, fan use resulted in a greater Emax at baseline humidity at both 36 °C (F 343 ± 10, NF 153 ± 5 W/m(2); P < 0.01) and 42 °C (F 376 ± 13, NF 161 ± 4 W/m(2); P < 0.01) and throughout the incremental increases in humidity. Within the humidity range that a rise in HR was prevented by fan use but not without a fan, LSR was higher in NF at both 36 °C (P = 0.04) and 42 °C (P = 0.05), and skin temperature was higher in NF at 42 °C (P = 0.05), but no differences in CVC or core temperatures were observed (all P > 0.05). These results suggest that the delayed increase in heart rate with fan use during extreme heat and humidity is associated with improved

  13. How to mitigate impacts of wind farms on bats? A review of potential conservation measures in the European context

    SciTech Connect

    Peste, Filipa; Paula, Anabela; Silva, Luís P. da; Bernardino, Joana; Pereira, Pedro; Mascarenhas, Miguel; Costa, Hugo; Vieira, José; Bastos, Carlos; Pereira, Maria João Ramos

    2015-02-15

    Wind energy is growing worldwide as a source of power generation. Bat assemblages may be negatively affected by wind farms due to the fatality of a significant number of individuals after colliding with the moving turbines or experiencing barotrauma. The implementation of wind farms should follow standard procedures to prevent such negative impacts: avoid, reduce and offset, in what is known as the mitigation hierarchy. According to this approach avoiding impacts is the priority, followed by the minimisation of the identified impacts, and finally, when residual negative impacts still remain, those must be offset or at least compensated. This paper presents a review on conservation measures for bats and presents some guidelines within the compensation scenario, focusing on negative impacts that remain after avoidance and minimisation measures. The conservation strategies presented aim at the improvement of the ecological conditions for the bat assemblage as a whole. While developed under the European context, the proposed measures are potentially applicable elsewhere, taking into consideration the specificity of each region in terms of bat assemblages present, landscape features and policy context regarding nature and biodiversity conservation and management. An analysis of potential opportunities and constraints arising from the implementation of offset/compensation programmes and gaps in the current knowledge is also considered. - Highlights: • Wind energy impacts bat populations in ways not yet fully understood. • As the use of windfarms is growing worldwide greater impacts on bat populations are also expected. • Mitigation hierarchy provides a way to reduce impacts from new wind farm facilities. • Compensation measures may be used to reduce the residual effects on bat populations. • Identify bats ecological needs and compensate according to the existing surroundings.

  14. Assessing the effect of nutrient mitigation measures in the watersheds of the Southern Bight of the North Sea.

    PubMed

    Thieu, Vincent; Garnier, Josette; Billen, Gilles

    2010-02-15

    The Seine, Somme, and Scheldt Rivers (France, Belgium, and Netherlands) are the major delivering rivers flowing into the continental coastal zone of the Southern Bight of the North Sea, an area regularly affected by eutrophication problems. In the present work, the Seneque-Riverstrahler model was implemented in a multi-regional case study in order to test several planned mitigation measures aimed at limiting stream nutrient contamination and restoring balanced nutrient ratios at the coastal zone. This modeling approach, which is spatially distributed at the basin scale, allows assessing the impact of any change in human activities, which widely differ over the three basins. Here, we define realistic scenarios based on currently proposed measures to reduce point and non-point sources, such as the upgrading of wastewater treatment, the introduction of catch crops, and the development of extensive farming. An analysis of the current situation showed that a 47-72% reduction in P point-source emissions within the three basins could be reached if the intended P treatment was generalized to the largest treatment plants. However, only an overall 14-23% reduction in N could be achieved at the outlet of the three basins, by combining improved wastewater treatment and land use with management measures aimed at regulating agricultural practices. Nonetheless, in spite of these efforts, N will still be exported in large excess with respect to the equilibrium defined by the Redfield ratios, even in the most optimistic hypothesis describing the long-term response of groundwater nitrate concentrations. A comprehensive assessment of these mitigation measures supports the need for additional reductions of nutrient losses from agriculture to control harmful algae development. It also stresses the relevance of this mechanistic approach, in which nutrient transfers from land to sea can be calculated, as an integrated strategy to test policy recommendations.

  15. Evaluation of the varying Naturally Occurring Asbestos mitigation measures at School and Commercial construction projects in California

    NASA Astrophysics Data System (ADS)

    Kalika, S.

    2012-12-01

    In commercial development or K-12 school construction, project sites are often purchased and much of the planning process completed prior to an assessment of the soils proposed for excavation or potential offhaul. Geologic maps, while initially helpful for identifying potential hazards such as landslides and earthquake faults, are less helpful in the identification of naturally occurring hazardous minerals, such as the seven regulated minerals currently classified as asbestos. Geologic maps identify mafic and ultramafic bedrock zones; however, a skilled geologist with knowledge of asbestos hazards will further visualize the earth-shaping processes that may have resulted in the deposition of naturally occurring asbestos in locations outside mapped ultramafic zones including the base of an alluvial fan or within streambed channels. When sampled as an afterthought prior to disposal, property owners are surprised by the budget-crippling costs of waste handling and disposal of NOA, as well as mitigations required to protect the health of construction workers, the public, and future site occupants. The California Air Resources Board (CARB) continues to lead the way in evaluation and regulation of NOA, through development of the CARB 435 preparation and laboratory analytical method, local enforcement of the Asbestos Airborne Toxic Control Measure for Construction, Grading, Quarrying, and Surface Mining Operations (ATCM), and implementation of dust control measures to protect public health. A thorough site evaluation and construction design includes utilization of the sampling methods developed by the California Geological Survey, laboratory analytical methods within CARB 435, and mitigation measures required by CARB, DTSC, and OSHA for the protection of worker and public health after NOA is discovered. The site evaluation should additionally include an assessment of the future site usage, as regulations differ based on potential health affects to future occupants

  16. The Pepcon Disaster-Causative Factors and potential Preventive and Mitigative Measures

    SciTech Connect

    Lambert, H E; Alvares, N J

    2003-07-25

    On May 4, 1988, the PEPCON plant experienced three major and several smaller explosions that caused over $70 million in property damage and caused two deaths. The PEPCON plant produced Ammonium Perchlorate (AP), a major ingredient for rocket fuel. The PEPCON plant and the nearby Kidd Marshmallow plant were totally destroyed by the detonations. The initiating event for the explosions was a fire that originated in the Batch Dryer Building and spread to adjacent storage. Several factors combined to cause the AP in the major storage fields to detonate, the most important being lack of adequate separation between storage units. Welding and flame cutting procedure with poor fire watch protocol was the prime candidate for fire ignition. There were no automatic fire suppression systems at the plant. Buildings including the Batch Dryer Building were made of combustible building material (fiberglass). There was poor housekeeping and no control of AP dust generation. AP was stored in combustible polyethylene drums, aluminum tote bins, 30-gallon steel storage drums and fiber reinforced tote bags. There were high-density storage practices. In addition, a contributing factor to the rapid fire-spread was that the wind that day was blowing directly from the batch dryer building to the storage areas. This paper claims that if codes, standards, and well-known hazard identification safety techniques were implemented at PEPCON, then the disaster would have been averted. A limited scope probabilistic risk assessment was conducted to establish the effectiveness of various preventive and mitigative features that could have been deployed to avert the disaster. The major hazard at the PEPCON site was fire and explosion involving the processing, production and storage of AP, which was then and is currently stored as a class 4 oxidizer. Since minute quantities of contamination can cause AP to be detonable by shock, there has been an ongoing debate concerning its reclassification to a class

  17. A methodological frame for assessing benzene induced leukemia risk mitigation due to policy measures.

    PubMed

    Karakitsios, Spyros P; Sarigiannis, Dimosthenis Α; Gotti, Alberto; Kassomenos, Pavlos A; Pilidis, Georgios A

    2013-01-15

    The study relies on the development of a methodology for assessing the determinants that comprise the overall leukemia risk due to benzene exposure and how these are affected by outdoor and indoor air quality regulation. An integrated modeling environment was constructed comprising traffic emissions, dispersion models, human exposure models and a coupled internal dose/biology-based dose-response risk assessment model, in order to assess the benzene imposed leukemia risk, as much as the impact of traffic fleet renewal and smoking banning to these levels. Regarding traffic fleet renewal, several "what if" scenarios were tested. The detailed full-chain methodology was applied in a South-Eastern European urban setting in Greece and a limited version of the methodology in Helsinki. Non-smoking population runs an average risk equal to 4.1·10(-5) compared to 23.4·10(-5) for smokers. The estimated lifetime risk for the examined occupational groups was higher than the one estimated for the general public by 10-20%. Active smoking constitutes a dominant parameter for benzene-attributable leukemia risk, much stronger than any related activity, occupational or not. From the assessment of mitigation policies it was found that the associated leukemia risk in the optimum traffic fleet scenario could be reduced by up to 85% for non-smokers and up to 8% for smokers. On the contrary, smoking banning provided smaller gains for (7% for non-smokers, 1% for smokers), while for Helsinki, smoking policies were found to be more efficient than traffic fleet renewal. The methodology proposed above provides a general framework for assessing aggregated exposure and the consequent leukemia risk from benzene (incorporating mechanistic data), capturing exposure and internal dosimetry dynamics, translating changes in exposure determinants to actual changes in population risk, providing a valuable tool for risk management evaluation and consequently to policy support.

  18. Effects of heat stress on some reproductive parameters of male cavie (Cavia porcellus) and mitigation strategies using guava (Psidium guajava) leaves essential oil.

    PubMed

    Ngoula, Ferdinand; Guemdjo Tekam, Maryvonne; Kenfack, Augustave; Tadondjou Tchingo, Cyrille D'Alex; Nouboudem, Sandrine; Ngoumtsop, Herman; Tsafack, Borice; Teguia, Alexis; Kamtchouing, Pierre; Galeotti, Marco; Tchoumboue, Joseph

    2017-02-01

    Climate changes, particularly the increase of temperature are among the main causes behind the decline of fertility in humans as well as animals. In this study, the effects of heat stress on some reproductive parameters of male cavies and mitigation strategies using guava leaves essential oil (GLEO) were studied. For this purpose, 40 male cavies aged 2.5-3 months and weighing between 348 and 446g were divided into 4 groups of 10 animals each and subjected to the following temperatures: Ambient temperature (20-25°C) for the control group, 35°C for group 1, 45°C for group 2 and 45°C+100µl GLEO/kg body weight, administered by gavage to animals for group 3. Exposure time of heat was 7h per day for 60 days. Results reveal that the relative weights of testes, epididymis, vas deferens and seminal vesicles were hardly affected by the temperature levels considered (P>0.05). The mass and individual sperm motility was significantly lower (P<0.05) in cavies exposed to the temperature of 35 and 45°C as compared with those which received GLEO and controls. The percentages of abnormal sperm and altered sperm DNA were higher in animals exposed to temperature of 35 and 45°C as compared with the controls. The activity of superoxide dismutase significantly increased (P<0.05) in animals exposed to temperature of 45°C and in those of 45°C and orally treated with GLEO, compared with cavies exposed to temperature of 45°C without receiving GLEO. The level of malondialdehyde was significantly increased (P<0.05) in animals exposed to temperature of 35 and 45°C, whereas the level of nitric oxide was significantly lower (P<0.05) in exposed animals as compared with controls. It was concluded that the exposure of male cavies at 35 and 45°C for 60 days induce heat stress that causes deterioration of sperm characteristics. These effects that can be mitigated by the administration of guava leaves essential oil.

  19. EMI Measurement and Mitigation Testing for the ARPA Hybrid Electric Vehicle Program

    DTIC Science & Technology

    1996-08-27

    communication range is reduced, computers malfunction, or monitoring systems fail. Various electric vehicles (EVs) were measured to evaluate their...were measured in a screen room using a dynamometer. Correlation in the measurements taken from the electric vehicles in both testing scenarios was

  20. Analysis of a heat transfer device for measuring film coefficients

    NASA Technical Reports Server (NTRS)

    Medrow, R. A.; Johnson, R. L.; Loomis, W. R.; Wedeven, L. D.

    1975-01-01

    A heat transfer device consisting of a heated rotating cylinder in a bath was analyzed for its effectiveness to determine heat transfer coefficient of fluids. A time dependent analysis shows that the performance is insensitive to the value of heat transfer coefficient with the given rig configuration.

  1. Endwall Heat Transfer Measurements in a Transonic Turbine Cascade

    NASA Technical Reports Server (NTRS)

    Giel, P. W.; Thurman, D. R.; VanFossen, G. J.; Hippensteele, S. A.; Boyle, R. J.

    1996-01-01

    Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 106, for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136' of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for computational fluid dynamics (CFD) code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.

  2. Imaging Thomson scattering measurements of radiatively heated Xe

    SciTech Connect

    Pollock, B; Meinecke, J; Kuschel, S; Ross, J S; Divol, L; Glenzer, S H; Tynan, G R

    2012-05-01

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {micro}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {micro}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {micro}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {micro}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20 {+-} 4 at up to 200 eV electron temperatures.

  3. Thermal conductivity measurements of proton-heated warm dense matter

    NASA Astrophysics Data System (ADS)

    McKelvey, A.; Fernandez-Panella, A.; Hua, R.; Kim, J.; King, J.; Sio, H.; McGuffey, C.; Kemp, G. E.; Freeman, R. R.; Beg, F. N.; Shepherd, R.; Ping, Y.

    2015-06-01

    Accurate knowledge of conductivity characteristics in the strongly coupled plasma regime is extremely important for ICF processes such as the onset of hydrodynamic instabilities, thermonuclear burn propagation waves, shell mixing, and efficient x-ray conversion of indirect drive schemes. Recently, an experiment was performed on the Titan laser platform at the Jupiter Laser Facility to measure the thermal conductivity of proton-heated warm dense matter. In the experiment, proton beams generated via target normal sheath acceleration were used to heat bi-layer targets with high-Z front layers and lower-Z back layers. The stopping power of a material is approximately proportional to Z2 so a sharp temperature gradient is established between the two materials. The subsequent thermal conduction from the higher-Z material to the lower-Z was measured with time resolved streaked optical pyrometry (SOP) and Fourier domain interferometry (FDI) of the rear surface. Results will be used to compare predictions from the thermal conduction equation and the Wiedemann-Franz Law in the warm dense matter regime. Data from the time resolved diagnostics for Au/Al and Au/C Targets of 20-200 nm thickness will be presented.

  4. Assessing the effectiveness and feasibility of implementing mitigation measures for an influenza pandemic in remote and isolated First Nations communities: a qualitative community-based participatory research approach.

    PubMed

    Charania, Nadia A; Tsuji, Leonard Js

    2013-01-01

    The next influenza pandemic is predicted to disproportionately impact marginalized populations, such as those living in geographically remote Aboriginal communities, and there remains a paucity of scientific literature regarding effective and feasible community mitigation strategies. In Canada, current pandemic plans may not have been developed with adequate First Nations consultation and recommended measures may not be effective in remote and isolated First Nations communities. This study employed a community-based participatory research approach. Retrospective opinions were elicited via interview questionnaires with adult key healthcare informants (n=9) regarding the effectiveness and feasibility of implementing 41 interventions to mitigate an influenza pandemic in remote and isolated First Nations communities of sub-Arctic Ontario, Canada. Qualitative data were manually transcribed and deductively coded following a template organizing approach. The results indicated that most mitigation measures could potentially be effective if modified to address the unique characteristics of these communities. Participants also offered innovative alternatives to mitigation measures that were community-specific and culturally sensitive. Mitigation measures were generally considered to be effective if the measure could aid in decreasing virus transmission, protecting their immunocompromised population, and increasing community awareness about influenza pandemics. Participants reported that lack of resources (eg supplies, monies, trained personnel), poor community awareness, overcrowding in homes, and inadequate healthcare infrastructure presented barriers to the implementation of mitigation measures. This study highlights the importance of engaging local key informants in pandemic planning in order to gain valuable community-specific insight regarding the design and implementation of more effective and feasible mitigation strategies. As it is ethically important to address the

  5. Heterogeneity in individually experienced temperatures (IETs) within an urban neighborhood: insights from a new approach to measuring heat exposure

    NASA Astrophysics Data System (ADS)

    Kuras, E. R.; Hondula, D. M.; Brown-Saracino, J.

    2015-10-01

    Urban environmental health hazards, including exposure to extreme heat, have become increasingly important to understand in light of ongoing climate change and urbanization. In cities, neighborhoods are often considered a homogenous and appropriate unit with which to assess heat risk. This manuscript presents results from a pilot study examining the variability of individually experienced temperatures (IETs) within a single urban neighborhood. In July 2013, 23 research participants were recruited from the South End neighborhood of Boston and equipped with Thermochron iButtons that measured the air temperatures surrounding individuals as they went about their daily lives. IETs were measured during a heat wave period (July 17-20), which included 2 days with excessive heat warnings and 1 day with a heat advisory, as well as a reference period (July 20-23) in which temperatures were below seasonal averages. IETs were not homogeneous during the heat wave period; mean IETs were significantly different between participants ( p < 0.001). The majority of participants recorded IETs significantly lower than outdoor ambient temperatures (OATs), and on average, the mean IET was 3.7 °C below the mean OAT. Compared with IETs during the reference period, IETs during the heat wave period were 1.0 °C higher. More than half of participants did not experience statistically different temperatures between the two test periods, despite the fact that the mean OAT was 6.5 °C higher during the heat wave period. The IET data collected for this sample and study period suggest that (1) heterogeneity in individual heat exposure exists within this neighborhood and that (2) outdoor temperatures misrepresent the mean experienced temperatures during a heat wave period. Individual differences in attributes (gender, race, socioeconomic status, etc.), behaviors (schedules, preferences, lifestyle, etc.), and access to resources are overlooked determinants of heat exposure and should be better

  6. Bubbly flow velocity measurements near a heated cylindrical conductor

    SciTech Connect

    Canaan, R.E.; Hassan, Y.A. )

    1990-01-01

    The objective of this study is to apply recent advances and improvements in the digital pulsed laser velocimetry (DPLV) technique to the analysis of two-phase bubbly flow about a cylindrical conductor emitting a constant heat flux within a transparent rectangular enclosure. Pulsed laser velocimetry is a rapidly advancing fluid flow visualization technique that determines full-field instantaneous velocity vectors of a quantitative nature such that the flow field remains undisturbed by the measurement. The DPLV method offers several significant advantages over more traditional fluid velocity measurement techniques such as hot wire/film anemometry and laser Doppler anemometry because reliable instantaneous velocity data may be acquired over substantial flow areas in a single experiment.

  7. Importation of beef from countries infected with foot and mouth disease: a review of risk mitigation measures.

    PubMed

    Sutmoller, P

    2001-12-01

    Risk mitigation measures to reduce the risks associated with importing beef from countries affected by foot and mouth disease (FMD) consist of controls at the farm of origin, inspection of slaughterhouses and maturation and deboning of carcasses. This assessment evaluates the effect of these measures on the mitigation of the risks presented by meat from cattle with FMD, for each of the different stages of the disease. The four disease stages considered are the incubation period, the period of clinical signs, convalescence and the carrier stage. Efficient animal health systems, disease surveillance, and ante-mortem and post-mortem inspection of all cattle effectively reduce the risk of FMD transmission from cattle slaughtered during the period of clinical signs or convalescence. These measures fail if the cattle are slaughtered during the incubation period, because of the absence of clinical signs. Cattle in this stage of the infection are likely to be viraemic, with FMD virus present in the skeletal muscles. Maturation of the carcasses of viraemic cattle reduces the risk of virus presence in the beef. In addition, deboning and removal of the principal lymph nodes and large blood vessels eliminate a source of FMD contamination of the beef. However, the slaughter of viraemic cattle creates an additional hazard of gross environmental viral contamination of the slaughterhouse facilities. Therefore, the maturation process may create a false sense of security, and the emphasis should instead be placed on disease surveillance within the infected zone and on the farms of origin, to prevent the slaughter of herds that are incubating FMD. Cattle slaughtered during the carrier stage do not pose a risk for the international beef trade.

  8. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  9. A novel client service quality measuring model and an eHealthcare mitigating approach.

    PubMed

    Cheng, L M; Choi, Wai Ping Choi; Wong, Anita Yiu Ming

    2016-07-01

    Facing population ageing in Hong Kong, the demand of long-term elderly health care services is increasing. The challenge is to support a good quality service under the constraints faced by recent shortage of nursing and care services professionals without redesigning the work flow operated in the existing elderly health care industries. the existing elderly health care industries. The Total QoS measure based on Finite Capacity Queuing Model is a reliable method and an effective measurement for Quality of services. The value is good for measuring the staffing level and offers a measurement for efficiency enhancement when incorporate new technologies like ICT. The implemented system has improved the Quality of Service by more than 14% and the extra released manpower resource will allow clinical care provider to offer further value added services without actually increasing head count. We have developed a novel Quality of Service measurement for Clinical Care services based on multi-queue using finite capacity queue model M/M/c/K/n and the measurement is useful for estimating the shortage of staff resource in a caring institution. It is essential for future integration with the existing widely used assessment model to develop reliable measuring limits which allow an effective measurement of public fund used in health care industries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Precise Measurement of the Reionization Optical Depth from the Global 21 cm Signal Accounting for Cosmic Heating

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-04-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  11. PRECISE MEASUREMENT OF THE REIONIZATION OPTICAL DEPTH FROM THE GLOBAL 21 cm SIGNAL ACCOUNTING FOR COSMIC HEATING

    SciTech Connect

    Fialkov, Anastasia; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2016-04-10

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  12. The measurement of heat flux from initiators in solid propellant rocket igniters

    NASA Astrophysics Data System (ADS)

    Subba Rao, S. V.; Ramesh, N.; Pillai, B. C.

    The use of ribbon thermocouples to measure the heat flux from the initiator jet of a solid propellant rocket igniter and received by the booster charge is reported. Heat flux histories are given. All the heat flux curves showed a sharp peak within a short operation of 1 ms. Peak heat flux values extended up to 16,000 W/sq cm.

  13. Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    NASA Technical Reports Server (NTRS)

    Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.

  14. Mitigation Action Plan

    SciTech Connect

    Not Available

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  15. Measurement and mitigation of methane emissions from beef cattle in tropical grazing systems: a perspective from Australia and Brazil.

    PubMed

    Berndt, A; Tomkins, N W

    2013-06-01

    The growing global demand for food of animal origin will be the incentive for countries such as Australia and Brazil to increase their beef production and international exports. This increased supply of beef is expected to occur primarily through on-farm productivity increases. The strategies for reducing resultant greenhouse gas (GHG) emissions should be evaluated in the context of the production system and should encompass a broader analysis, which would include the emissions of methane (CH4) and nitrous oxide (N2O) and carbon sequestration. This paper provides an insight into CH4 measurement techniques applicable to grazing environments and proposed mitigation strategies, with relevance to the production systems that are predominant in grazing systems of Australia and Brazil. Research and technology investment in both Australia and Brazil is aimed at developing measurement techniques and increasing the efficiency of cattle production by improving herd genetics, utilization of the seasonal feed-base and reducing the proportion of metabolizable energy lost as CH4. Concerted efforts in these areas can be expected to reduce the number of unproductive animals, reduce age at slaughter and inevitably reduce emission intensity (EI) from beef production systems. Improving efficiency of livestock production systems in tropical grazing systems for Australia and Brazil will be based on cultivated and existing native pastures and the use of additives and by-products from other agricultural sectors. This approach spares grain-based feed reserves typically used for human consumption, but potentially incurs a heavier EI than current intensive feeding systems. The determination of GHG emissions and the value of mitigation outcomes for entire beef production systems in the extensive grazing systems is complex and require a multidisciplinary approach. It is fortunate that governments in both Australia and Brazil are supporting ongoing research activities. Nevertheless, to achieve

  16. Remote Measurement of Heat Flux from Power Plant Cooling Lakes

    SciTech Connect

    Garrett, Alfred J.; Kurzeja, Robert J.; Villa-Aleman, Eliel; Bollinger, James S.; Pendergast, Malcolm M.

    2013-06-01

    Laboratory experiments have demonstrated a correlation between the rate of heat loss q" from an experimental fluid to the air above and the standard deviation σ of the thermal variability in images of the fluid surface. These experimental results imply that q" can be derived directly from thermal imagery by computing σ. This paper analyses thermal imagery collected over two power plant cooling lakes to determine if the same relationship exists. Turbulent boundary layer theory predicts a linear relationship between q" and σ when both forced (wind driven) and free (buoyancy driven) convection are present. Datasets derived from ground- and helicopter-based imagery collections had correlation coefficients between σ and q" of 0.45 and 0.76, respectively. Values of q" computed from a function of σ and friction velocity u* derived from turbulent boundary layer theory had higher correlations with measured values of q" (0.84 and 0.89). Finally, this research may be applicable to the problem of calculating losses of heat from the ocean to the atmosphere during high-latitude cold-air outbreaks because it does not require the information typically needed to compute sensible, evaporative, and thermal radiation energy losses to the atmosphere.

  17. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    DOE PAGES

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; ...

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  18. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    NASA Astrophysics Data System (ADS)

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Boehly, T. R.; Collins, G. W.

    2015-09-01

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  19. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    SciTech Connect

    Ping, Y.; Fernandez-Panella, A.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Collins, G. W.; Sio, H.; Boehly, T. R.

    2015-09-15

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  20. Measurement of natural convective heat transfer coefficient along the surface of a heated wire using digital holographic interferometry.

    PubMed

    Kumar, Varun; Kumar, Manoj; Shakher, Chandra

    2014-09-20

    In this paper, the local convective heat transfer coefficient (h) is measured along the surface of an electrically heated vertical wire using digital holographic interferometry (DHI). Experiments are conducted on wires of different diameters. The experimentally measured values are within the range as given in the literature. DHI is expected to provide a more accurate local convective heat transfer coefficient (h) as the value of the temperature gradient required for the calculation of "h" can be obtained more accurately than by other existing optical interferometric techniques without the use of a phase shifting technique. This is because in digital holography phase measurement accuracy is expected to be higher.

  1. Film-Cooling Heat-Transfer Measurements Using Liquid Crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.

    1997-01-01

    The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.

  2. 49 CFR 192.935 - What additional preventive and mitigative measures must an operator take?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accordance with one of the risk assessment approaches in ASME/ANSI B31.8S (incorporated by reference, see § 192.7), section 5, a risk analysis of its pipeline to identify additional measures to protect the high.... (2) Outside force damage. If an operator determines that outside force (e.g., earth movement,...

  3. 49 CFR 192.935 - What additional preventive and mitigative measures must an operator take?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accordance with one of the risk assessment approaches in ASME/ANSI B31.8S (incorporated by reference, see § 192.7), section 5, a risk analysis of its pipeline to identify additional measures to protect the high.... (2) Outside force damage. If an operator determines that outside force (e.g., earth movement,...

  4. Dynamical properties measurements for asteroid, comet and meteorite material applicable to impact modeling and mitigation calculations

    SciTech Connect

    Furnish, M.D.; Boslough, M.B.; Gray, G.T. III; Remo, J.L.

    1994-07-01

    We describe methods for measuring dynamical properties for two material categories of interest in understanding large-scale extraterrestrial impacts: iron-nickel and underdense materials (e.g. snow). Particular material properties measured by the present methods include Hugoniot release paths and constitutive properties (stress vs. strain). The iron-nickel materials lend themselves well to conventional shock and quasi-static experiments. As examples, a suite of experiments is described including six impact tests (wave profile compression/release) over the stress range 2--20 GPa, metallography, quasi-static and split Hopkinson pressure bar (SHPB) mechanical testing, and ultrasonic mapping and sound velocity measurements. Temperature sensitivity of the dynamic behavior was measured at high and low strain rates. Among the iron-nickel materials tested, an octahedrite was found to have behavior close to that of Armco iron under shock and quasi-static conditions, while an ataxite exhibited a significantly larger quasi-static yield strength than did the octahedrite or a hexahedrite. The underdense materials pose three primary experimental difficulties. First, the samples are friable; they can melt or sublimate during storage, preparation and testing. Second, they are brittle and crushable; they cannot withstand such treatment as traditional machining or launch in a gun system. Third, with increasing porosity the calculated Hugoniot density becomes rapidly more sensitive to errors in wave time-of-arrival measurements. Carefully chosen simulants eliminate preservation (friability) difficulties, but the other difficulties remain. A family of 36 impact tests was conducted on snow and snow simulants at Sandia, yielding reliable Hugoniot and reshock states, but limited release property information. Other methods for characterizing these materials are discussed.

  5. Measuring the clustering of photometric quasars through blind mitigation of systematics

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Peiris, Hiranya V.; Roth, Nina

    2014-05-01

    We present accurate measurements of the large-scale clustering of photometric quasars from the Sloan Digital Sky Survey. These results, detailed in Leistedt & Peiris (2014), rely on a novel technique to identify and treat systematics when measuring angular power spectra, using null-tests and analytical marginalisation. This approach can be used to maximise the extraction of information from current and future galaxy or quasar surveys. For example, it enables to robustly constrain primordial non-Gaussianity (PNG), which modifies the bias of galaxies and quasars on large scales - the most sensitive to observational systematics. The constraints on PNG obtained with the quasar power spectra are detailed in Leistedt, Peiris & Roth (2014); these are the most stringent constraints to date obtained with a single tracer of the large-scale structure.

  6. Mitigation Monitoring Plan

    SciTech Connect

    Not Available

    1992-09-01

    The Final Supplemental Environmental Impact Report (SEIR) (September 1992) for the Proposed Renewal of the Contract between the United States Department of Energy and The Regents of the University of California for the Operation and Management of the Lawrence Berkeley Laboratory identifies the environmental impacts associated with renewing the contract and specifies a series of measures designed to mitigate adverse impacts to the environment. This Mitigation Monitoring Plan describes the procedures the University will use to implement the mitigation measures adopted in connection with the approval of the Contract.

  7. Comparison of measured and predicted sensible heating and cooling loads for six test buildings

    SciTech Connect

    Burch, D.M.; Walton, G.N.; Licitra, B.A.; Cavanaugh, K.

    1986-06-01

    Hourly sensible heating and cooling loads for six test buildings were predicted using two computer programs, called TARP and EMPS. The predicted loads were compared to corresponding measured loads for winter heating, spring heating, and summer cooling periods. Both computer programs predicted the general trends of the measured data.

  8. Formaldehyde and acetaldehyde exposure mitigation in US residences: in-home measurements of ventilation control and source control.

    PubMed

    Hult, E L; Willem, H; Price, P N; Hotchi, T; Russell, M L; Singer, B C

    2015-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h(-1), increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED)-certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h(-1), and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration was 33 μg/m(3) and 22 μg/m(3) for low-VOC homes and 45 μg/m(3) and 30 μg/m(3) for conventional.

  9. Formaldehyde and acetaldehyde exposure mitigation in US residences: In-home measurements of ventilation control and source control

    SciTech Connect

    Hult, Erin L.; Willem, Henry; Price, Phillip N.; Hotchi, Toshifumi; Russell, Marion L.; Singer, Brett C.

    2014-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h-1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED) certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h-1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration were 33 μg m-3 and 22 μg m-3 for low-VOC homes and 45 μg m-3 and 30 μg m-3 for conventional.

  10. Mitigation measures of electromagnetic field exposure in the vicinity of high frequency welders.

    PubMed

    Zubrzak, Bartłomiej; Bieńkowski, Pawel; Cała, Pawel

    2017-09-20

    Presented information about the welding process and equipment, focusing on the emission of electromagnetic field (EMF) with levels significant in terms of the labor safety regulations in force in Poland - the ordinances of the Minister of Family, Labour and Social Policy that came into force on June 27, 2016 and June 29, 2016 - emerged due to harmonization with EU directive 2013/35/EU of 26 June 2013 of the European Parliament and the Council. They presented methods of determination of the EMF distribution in the welding machine surroundings and analyzed the background knowledge from the available literature. The subject of the analysis included popular high frequency welders widely used in the industry. Electromagnetic field measurements were performed in the welder operating place (in situ) during machine normal operations, using measurement methods accordant with labor safety regulations in force in Poland and according to the same guidelines, the EMF distributions and parameters having been described. They presented various scenarios of particular, real examples of excessive exposure to EMF in the dielectric welder surroundings and showed solutions, ranging from simple and costless and ending on dedicated electromagnetic shielding systems, which allowed to reduce EMF exposure in some cases of more than 80% (protection zone ranges) or eliminate dangerous zone presence. It has shown that in the dielectric welders surrounding, significant EMF strength levels may be the result of errors or omissions which often occur during development, installation, operation or modification of welding machines. It has allowed to present the measures that may significantly reduce the exposure to EMF of workers in the welder surroundings. The role of accredited laboratories in helping in such cases was underlined. Med Pr 2017;68(6).

  11. Correlation of Nonlinear Distortion in Digital Phased Arrays: Measurement and Mitigation

    DTIC Science & Technology

    2010-08-26

    c o CD CD CD « 8 & co a: .2 1 1 o o o c gp -1 0 E 0 E CO a) CÜ 75 𔃿> Q ^ ps < CO l-Q Q ^ a: <>- «§ hi < CO...M ^te CM a> co F= b 3 ’ a- CM *-• 0) X o U- CM E "" 4P " CO 3 o J F— c...describes the results of recent experiments involving a four -channel digital receiver system. The system was used to measure the correlation (between

  12. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    PubMed Central

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-01-01

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system. PMID:27589761

  13. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations.

    PubMed

    Cosci, Alessandro; Berneschi, Simone; Giannetti, Ambra; Farnesi, Daniele; Cosi, Franco; Baldini, Francesco; Nunzi Conti, Gualtiero; Soria, Silvia; Barucci, Andrea; Righini, Giancarlo; Pelli, Stefano

    2016-08-31

    This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate) (PMMA) box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

  14. Major transport mechanisms of pyrethroids in residential settings and effects of mitigation measures.

    PubMed

    Davidson, Paul C; Jones, Russell L; Harbourt, Christopher M; Hendley, Paul; Goodwin, Gregory E; Slizy, Bradley A

    2014-01-01

    The major pathways for transport of pyrethroids were determined in runoff studies conducted at a full-scale test facility in central California, USA. The 6 replicate house lots were typical of front lawns and house fronts of California residential developments and consisted of stucco walls, garage doors, driveways, and residential lawn irrigation sprinkler systems. Each of the 6 lots also included a rainfall simulator to generate artificial rainfall events. Different pyrethroids were applied to 5 surfaces—driveway, garage door and adjacent walls, lawn, lawn perimeter (grass near the house walls), and house walls above grass. The volume of runoff water from each house lot was measured, sampled, and analyzed to determine the amount of pyrethroid mass lost from each surface. Applications to 3 of the house lots were made using the application practices typically used prior to recent label changes, and applications were made to the other 3 house lots according to the revised application procedures. Results from the house lots using the historic application procedures showed that losses of the compounds applied to the driveway and garage door (including the adjacent walls) were 99.75% of total measured runoff losses. The greatest losses were associated with significant rainfall events rather than lawn irrigation events. However, runoff losses were 40 times less using the revised application procedures recently specified on pyrethroid labels.

  15. Mitigation measures for chromium-VI contaminated groundwater - The role of endophytic bacteria in rhizofiltration.

    PubMed

    Dimitroula, Helen; Syranidou, Evdokia; Manousaki, Eleni; Nikolaidis, Nikolaos P; Karatzas, George P; Kalogerakis, Nicolas

    2015-01-08

    A constructed wetland pilot with Juncus acutus L. plants was investigated for its rhizofiltration efficiency in treating Cr(VI)-contaminated groundwater. Measurements of Cr(VI) and total Cr were performed to estimate the rate of removal. In addition, Cr concentration in plant tissues was measured and the role of endophytic bacteria on plant's tolerance to Cr(VI) toxicity was investigated. The results support that J. acutus is able to rhizofiltrate Cr(VI) from contaminated water with up to 140μg/L while Cr content analysis in plant tissues revealed that the majority of Cr was accumulated by the plants. Moreover, two leaf (Acidovorax sp. strain U3 and Ralstonia sp. strain U36) isolated endophytic bacteria were found to tolerated 100mg/L Cr(VI) while nine root isolates showed resistance to 500mg/L Cr(VI). The endophytic bacteria Pseudomonas sp. strain R16 and Ochrobactrum sp. strain R24 were chosen for Cr(VI) reduction assays. All four strains exhibited a strong potential to reduce Cr(VI) to Cr(III) aerobically. Among them Pseudomonas sp. strain R16 was found able to completely reduced 100mg/L Cr(VI) after 150h of incubation. These results suggest that J. acutus is an excellent choice for CWs whose function is the removal of Cr(VI) from contaminated groundwater for subsequent use in crop irrigation.

  16. Wide-angle sensor measures radiant heat energy in corrosive atmospheres

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Ellipsoidal cavity device measures radiant heat energy over wide incident angles in corrosive atmospheres. The instrument consists of a cavity in copper heat sink sealed with sapphire window to protect thermocouple.

  17. A transient liquid crystal thermography technique for gas turbine heat transfer measurements

    NASA Astrophysics Data System (ADS)

    Ekkad, Srinath V.; Han, Je-Chin

    2000-07-01

    This paper presents in detail the transient liquid crystal technique for convective heat transfer measurements. A historical perspective on the active development of liquid crystal techniques for convective heat transfer measurement is also presented. The experimental technique involves using a thermochromic liquid crystal coating on the test surface. The colour change time of the coating at every pixel location on the heat transfer surface during a transient test is measured using an image processing system. The heat transfer coefficients are calculated from the measured time responses of these thermochromic coatings. This technique has been used for turbine blade internal coolant passage heat transfer measurements as well as turbine blade film cooling heat transfer measurements. Results can be obtained on complex geometry surfaces if visually accessible. Some heat transfer results for experiments with jet impingement, internal cooling channels with ribs, flow over simulated TBC spallation, flat plate film cooling, cylindrical leading edge and turbine blade film cooling are presented for demonstration.

  18. Isothermal heat measurements of TBP-nitric acid solutions

    SciTech Connect

    Smith, J.R.; Cavin, W.S.

    1994-12-16

    Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min{sup {minus}1} at 110 C for an open ``vented`` system as compared to 1.33 E-3 min{sup {minus}1} in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols` (1.33E-3 min{sup {minus}1}) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ``reacting`` 14.3M HNO{sub 3} aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO{sub 3} reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk.

  19. Estimation of Surface Temperature and Heat Flux by Inverse Heat Transfer Methods Using Internal Temperatures Measured While Radiantly Heating a Carbon/Carbon Specimen up to 1920 F

    NASA Technical Reports Server (NTRS)

    Pizzo, Michelle; Daryabeigi, Kamran; Glass, David

    2015-01-01

    The ability to solve the heat conduction equation is needed when designing materials to be used on vehicles exposed to extremely high temperatures; e.g. vehicles used for atmospheric entry or hypersonic flight. When using test and flight data, computational methods such as finite difference schemes may be used to solve for both the direct heat conduction problem, i.e., solving between internal temperature measurements, and the inverse heat conduction problem, i.e., using the direct solution to march forward in space to the surface of the material to estimate both surface temperature and heat flux. The completed research first discusses the methods used in developing a computational code to solve both the direct and inverse heat transfer problems using one dimensional, centered, implicit finite volume schemes and one dimensional, centered, explicit space marching techniques. The developed code assumed the boundary conditions to be specified time varying temperatures and also considered temperature dependent thermal properties. The completed research then discusses the results of analyzing temperature data measured while radiantly heating a carbon/carbon specimen up to 1920 F. The temperature was measured using thermocouple (TC) plugs (small carbon/carbon material specimens) with four embedded TC plugs inserted into the larger carbon/carbon specimen. The purpose of analyzing the test data was to estimate the surface heat flux and temperature values from the internal temperature measurements using direct and inverse heat transfer methods, thus aiding in the thermal and structural design and analysis of high temperature vehicles.

  20. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Brunner, D.; Burke, W.; Kuang, A. Q.; LaBombard, B.; Lipschultz, B.; Wolfe, S.

    2016-02-01

    Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

  1. Feedback system for divertor impurity seeding based on real-time measurements of surface heat flux in the Alcator C-Mod tokamak.

    PubMed

    Brunner, D; Burke, W; Kuang, A Q; LaBombard, B; Lipschultz, B; Wolfe, S

    2016-02-01

    Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

  2. Wind field measurements for the mitigation of airborne health threats in a complex urban environment

    NASA Astrophysics Data System (ADS)

    Arend, Mark; Santoro, David; Abdelazim, Sameh; Moshary, Fred; Ahmed, Sam

    2009-05-01

    The Department of Homeland Security (DHS) sponsored Urban Dispersion Program (UDP) resulted in the strategic placement of weather instruments in New York City (NYC) and the transition of some instruments to the City College of New York (CCNY) operated NYC MetNet to provide timely and accurate information on "skimming field" winds above city building tops. In order to extend the observational capabilities of the NYC MetNet, a cost effective portable eye safe fiber optic based coherent wind lidar system is currently under development in CCNY laboratories. Wind lidar measurements, coupled with the continuous observations from the NYC MetNet, should support the initialization, feedback and development of plume models that would be used after an initial detection of airborne toxins. An overview of the lidar system design and the NYC MetNet will be given.

  3. MAJOR TRANSPORT MECHANISMS OF PYRETHROIDS IN RESIDENTIAL SETTINGS AND EFFECTS OF MITIGATION MEASURES

    PubMed Central

    Davidson, Paul C; Jones, Russell L; Harbourt, Christopher M; Hendley, Paul; Goodwin, Gregory E; Sliz, Bradley A

    2014-01-01

    The major pathways for transport of pyrethroids were determined in runoff studies conducted at a full-scale test facility in central California, USA. The 6 replicate house lots were typical of front lawns and house fronts of California residential developments and consisted of stucco walls, garage doors, driveways, and residential lawn irrigation sprinkler systems. Each of the 6 lots also included a rainfall simulator to generate artificial rainfall events. Different pyrethroids were applied to 5 surfaces—driveway, garage door and adjacent walls, lawn, lawn perimeter (grass near the house walls), and house walls above grass. The volume of runoff water from each house lot was measured, sampled, and analyzed to determine the amount of pyrethroid mass lost from each surface. Applications to 3 of the house lots were made using the application practices typically used prior to recent label changes, and applications were made to the other 3 house lots according to the revised application procedures. Results from the house lots using the historic application procedures showed that losses of the compounds applied to the driveway and garage door (including the adjacent walls) were 99.75% of total measured runoff losses. The greatest losses were associated with significant rainfall events rather than lawn irrigation events. However, runoff losses were 40 times less using the revised application procedures recently specified on pyrethroid labels. Environ Toxicol Chem 2014;33:52–60. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:24105831

  4. Active Region Emission Measure Distributions and Implications for Nanoflare Heating

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.

    2014-03-01

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ~ Ta below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (TN ) and the distribution of nanoflare energies. If TN is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, TN must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  5. Active region emission measure distributions and implications for nanoflare heating

    SciTech Connect

    Cargill, P. J.

    2014-03-20

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ∼ T{sup a} below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (T{sub N} ) and the distribution of nanoflare energies. If T{sub N} is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, T{sub N} must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  6. Soil erosion and mitigation measures on rented and owned fields in Uruguay: the impact of transgenic soya and foreign investors

    NASA Astrophysics Data System (ADS)

    Caon, Lucrezia; Kessler, Aad; Keesstra, Saskia; Cruze, Rick

    2014-05-01

    Governments, companies and individuals with financial capital to invest, are worldwide buying or renting land in developing or third world countries. Uruguay is a developing country whose economy is mainly based on agriculture. Since 2000 many foreigners started to invest in the Uruguayan agricultural sector and to practice intensive large-scale agriculture. The significant presence of foreigners in the country is proven by the fact that almost 360 000 ha out of the 500 000 ha forming the study area were managed by foreigners in 2012. Nowadays farmers have abandoned the traditional crop rotation plan that included pasture to produce grain for export, and transgenic soya (soya RR) became the main crop planted by both foreigners and locals. Besides the high soil erosion rates related to having soya as main crop, planting soya implies the use of glyphosate, a broad-spectrum systemic herbicide leading to important environmental impacts. It is commonly said that foreigners investing in poor countries are exploiting the local natural resources aiming to get the highest possible profit from them. Is this a valid assumption in Uruguay? The purpose of this study was to compare the land management style of foreign and local farmers and to relate it to the soil erosion occurring in the study area. The land tenure (rented or owned fields) and the type of farmer interviewed ("individual farmer" equivalent to L.L.C. or "anonymous society" equivalent to P.L.C.) were taken into consideration during the analysis. Based on what stated by the farmers interviewed, the soil erosion simulations considered the seven most popular crop rotation plans on rented and owned fields, three ideals crop rotation plans, the application of no mitigation measures, and the construction of terraces and conservation buffers. Depending on the crop rotation plan, soils characterized by slope gradients higher than 2 resulted in soil erosion rates higher than the 7 ton/ha/year allowed by law. The highest

  7. Applying quality status criteria to a temperate estuary before and after the mitigation measures to reduce eutrophication symptoms

    NASA Astrophysics Data System (ADS)

    Lillebø, A. I.; Teixeira, H.; Pardal, M. A.; Marques, J. C.

    2007-03-01

    The Mondego estuary is a well-described polyhaline type of transitional water located at the North Atlantic Ocean Ecoregion, where cultural eutrophication progressed over the last decades of the 20th century. Consequently, and due to huge productivity of Ulva spp. Zostera noltii meadows were severely reduced causing the whole ecosystem to become impoverished in terms of macrofaunal abundance, biomass and species richness with a concomitant lowering of secondary production. In 1998, experimental mitigation measures were implemented, via changes in hydrology to increase circulation and diversion of nutrient rich freshwater inflow, to reverse the process in the most affected area of the estuary - its south arm. Thus, the system quality status was assessed before and after 1998, over a ten year period. The OSPAR comprehensive procedure, the first phase of the US-NEEA procedure and the proposed EU-WFD physicochemical status criteria were applied to the data before and after the modifications and all show that the system health has improved. Nonetheless, the annual means of the oxidised forms of nitrogen and of phosphate were not reduced. In fact, applying criteria used in classifying the nutrient levels in transitional waters and the Baltic sea trophic condition, the system has not improved. Meaning that, to look forward to a "higher" quality status, future measures should also consider longer term solutions such as improved agriculture practices in the Mondego River valley through environmental friendly technological solutions that will reduce the nutrient loads to this system.

  8. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response.

    PubMed

    Gao, Jinghong; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Xu, Lei; Li, Jing; Yang, Jun; Li, Jing; Cao, Lina; Liu, Xiaobo; Wu, Haixia; Liu, Qiyong

    2017-02-01

    With rapid economic development, China has been plagued by choking air pollution in recent years, and the frequent occurrence of haze episodes has caused widespread public concern. The purpose of this study is to describe the sources and formation of haze, summarize the mitigation measures in force, review the relationship between haze pollution and public health, and to discuss the challenges, potential research directions and policy options. Haze pollution has both natural and man-made causes, though it is anthropogenic sources that are the major contributors. Accumulation of air pollutants, secondary formation of aerosols, stagnant meteorological conditions, and trans-boundary transportation of pollutants are the principal causes driving the formation and evolution of haze. In China, haze includes gaseous pollutants and fine particles, of which PM2.5 is the dominant component. Short and long-term exposure to haze pollution are associated with a range of negative health outcomes, including respiratory diseases, cardiovascular and cerebrovascular diseases, mental health problems, lung cancer and premature death. China has paid increasing attention to the improvement of air quality, and has introduced action plans and policies to tackle pollution, but many interventions have only temporary effects. There may be fierce resistance from industry groups and some government agencies, and often it is challenging to enforce relevant control measures and laws. We discuss the potential policy options for prevention, the need for wider public dialogue and the implications for scientific research.

  9. Optical cell with periodic resistive heating for the measurement of heat, mass, and thermal diffusions in liquid mixtures.

    PubMed

    Hartung, M; Köhler, W

    2007-08-01

    A new technique for the measurement of heat, mass, and thermal diffusions in liquids has been developed. Similar to laser induced dynamic gratings, a temperature grating is created in the sample. Thermal expansion transforms the temperature into a refractive-index grating, which is read by diffraction of a readout laser beam. In a multicomponent mixture an additional concentration grating is formed by thermal diffusion driven by the temperature gradients of the temperature grating. Differently to laser induced dynamic grating experiments we use Joule heating instead of optical heating. For that purpose we have built cuvettes which have a grating of transparent conducting strips on the inner side of one of their windows. If heated by an electric current a temperature grating will build up in the sample. Both the heat equation and the extended diffusion equation have been solved in two dimensions to allow for quantitative data analysis. Our apparatus and method of analysis have been validated by measurements of heat, mass, and thermal diffusions in pure and binary liquids. Heat diffusion can be correctly determined as was shown for pure toluene, pure dodecane, and the symmetric mixture of isobutylbenzene dodecane. Mass and thermal diffusions were studied in the three symmetric mixtures of dodecane, isobutylbenzene, and tetralin. The obtained diffusion and Soret coefficients agree with the literature values within the experimental errors. Uncompensated transient heating effects limit the resolution of the experimental technique.

  10. Address to the international workshop on greenhouse gas mitigation, technologies and measures

    SciTech Connect

    Kant, A.

    1996-12-31

    The Netherlands has a long history in combatting natural forces for it`s mere survival and even creation. Around half of the country was not Yet existent around 2000 years ago: it was still below sea level that time. Building dikes and the discovery of eolic energy applied in windmills, allowing to pump water from one side of the dike to the other, are technologies that gradually shaped the country into its current form, a process that continues to materialize till the present day. Water has not always been an enemy of the country. In the Hundred Year War with Spain, during which the country was occupied territory for most of the time, the water was used to drive the Spanish armies from the country. As large parts are well below sea level breaking the dikes resulted in flooding the country which made the armoury of the Spanish army useless. In this way they had to give up the siege of several major Dutch cities that time. These events marked the gradual liberation of the Dutch territory. Consequently, in the discussion on adaption and prevention of the greenhouse effect the Netherlands has a clear stand. The greenhouse effect will occur anyway, even if countries deploy all possible counter measures at once. So their aim is to prevent the occurrence of the greenhouse effect to the highest extent possible, and to protect the most vulnerable areas meanwhile, especially the coastal zones. In order to reach these goals the Dutch government has established a Joint Implementation Experimental Programme in accordance with the provisions made by the Conference of Parties in Berlin (1995).

  11. Differential Light Scattering Measurements of Heat-Treated Bacteria

    PubMed Central

    Berkman, Richard M.; Wyatt, Philip J.

    1970-01-01

    Effects of heat on diameter, size distribution, and refractive index of Staphylococcus epidermidis suspensions were determined accurately by computer analysis of differential light scattering data. PMID:5485733

  12. qEMF3, a novel QTL for the early-morning flowering trait from wild rice, Oryza officinalis, to mitigate heat stress damage at flowering in rice, O. sativa

    PubMed Central

    Hirabayashi, Hideyuki; Sasaki, Kazuhiro; Kambe, Takashi; Gannaban, Ritchel B.; Miras,