Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms
Armstrong, Gregory S. J.; Colgan, James Patrick; Pindzola, M. S.; ...
2015-09-11
Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this paper we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. Finally, we demonstrate that this is a general feature of ionization from p-state targets by additional studies of ionizationmore » from excited Ca and Na atoms.« less
Parity and Time-Reversal Violation in Atomic Systems
NASA Astrophysics Data System (ADS)
Roberts, B. M.; Dzuba, V. A.; Flambaum, V. V.
2015-10-01
Studying the violation of parity and time-reversal invariance in atomic systems has proven to be a very effective means of testing the electroweak theory at low energy and searching for physics beyond it. Recent developments in both atomic theory and experimental methods have led to the ability to make extremely precise theoretical calculations and experimental measurements of these effects. Such studies are complementary to direct high-energy searches, and can be performed for only a fraction of the cost. We review the recent progress in the field of parity and time-reversal violation in atoms, molecules, and nuclei, and examine the implications for physics beyond the Standard Model, with an emphasis on possible areas for development in the near future.
Demonstration of a Sensitive Method to Measure Nuclear-Spin-Dependent Parity Violation
NASA Astrophysics Data System (ADS)
Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David
2018-04-01
Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus, and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. We demonstrate measurements of NSD-PV that use an enhancement of the effect in diatomic molecules, here using the test system 138Ba 19. Our sensitivity surpasses that of any previous atomic parity violation measurement. We show that systematic errors can be suppressed to at least the level of the present statistical sensitivity. We measure the matrix element W of the NSD-PV interaction with total uncertainty δ W /(2 π )<0.7 Hz , for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei including 137Ba in 137BaF, where |W |/(2 π )≈5 Hz is expected.
An exacting transition probability measurement - a direct test of atomic many-body theories.
Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas
2016-07-19
A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties.
Deterministic entanglement of superconducting qubits by parity measurement and feedback.
Ristè, D; Dukalski, M; Watson, C A; de Lange, G; Tiggelman, M J; Blanter, Ya M; Lehnert, K W; Schouten, R N; DiCarlo, L
2013-10-17
The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.
Testing the Standard Model by precision measurement of the weak charges of quarks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross Young; Roger Carlini; Anthony Thomas
In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low-energy. The precision of this new result, combined with earlier atomic parity-violation measurements, limits the magnitude of possible contributions from physics beyond the Standard Model - setting a model-independent, lower-bound on the scale of new physics at ~1 TeV.
Testing the standard model by precision measurement of the weak charges of quarks.
Young, R D; Carlini, R D; Thomas, A W; Roche, J
2007-09-21
In a global analysis of the latest parity-violating electron scattering measurements on nuclear targets, we demonstrate a significant improvement in the experimental knowledge of the weak neutral-current lepton-quark interactions at low energy. The precision of this new result, combined with earlier atomic parity-violation measurements, places tight constraints on the size of possible contributions from physics beyond the standard model. Consequently, this result improves the lower-bound on the scale of relevant new physics to approximately 1 TeV.
Limit on the temporal variation of the fine-structure constant using atomic dysprosium.
Cingöz, A; Lapierre, A; Nguyen, A-T; Leefer, N; Budker, D; Lamoreaux, S K; Torgerson, J R
2007-01-26
Over 8 months, we monitored transition frequencies between nearly degenerate, opposite-parity levels in two isotopes of atomic dysprosium (Dy). These frequencies are sensitive to variation of the fine-structure constant (alpha) due to relativistic corrections of opposite sign for the opposite-parity levels. In this unique system, in contrast to atomic-clock comparisons, the difference of the electronic energies of the opposite-parity levels can be monitored directly utilizing a rf electric-dipole transition between them. Our measurements show that the frequency variation of the 3.1-MHz transition in (163)Dy and the 235-MHz transition in (162)Dy are 9.0+/-6.7 Hz/yr and -0.6+/-6.5 Hz/yr, respectively. These results provide a rate of fractional variation of alpha of (-2.7+/-2.6) x 10(-15) yr(-1) (1 sigma) without assumptions on constancy of other fundamental constants, indicating absence of significant variation at the present level of sensitivity.
Nuclear Spin Dependent Parity Violation in Diatomic Molecules
NASA Astrophysics Data System (ADS)
Cahn, Sidney; Altuntas, Emine; Ammon, Jeffrey; Demille, David
2015-10-01
Nuclear spin-dependent parity violation (NSD-PV) effects arise from the exchange of the Z0 boson between electrons and the nucleus and from the interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The anapole moment grows as A2/3 of the nucleus,while the Z0 coupling is independent of A. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. Using a Stark-interference technique, we measure the NSD-PV interaction matrix element. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138Ba19F. We also discuss improvements on investigations of systematics due to non-reversing stray E-fields, Enr together with B-field inhomogeneities, and short-term prospects for measuring the nuclear anapole moment of 137Ba. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.
Cao, Cong; Wang, Chuan; He, Ling-Yan; Zhang, Ru
2013-02-25
We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.
Precise Measurement of Parity Nonconserving Optical Rotation in Atomic Thallium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, N.H.; Phipp, S.J.; Baird, P.E.G.
1995-04-03
We report a new measurement of parity nonconserving (PNC) optical rotation on the 6{ital p}{sub 1/2}-6{ital p}{sub 3/2} transition in atomic thallium near 1283 nm. The result expressed in terms of the quantity R=Im{l_brace}{ital E}1{sup PNC}/{ital M}1{r_brace} is {minus}(15.68{plus_minus}0.45){times}10{sup {minus}8}, and is consistent with current calculations based on the standard model. In addition, limits have been set on the much smaller nuclear spin-dependent rotation amplitude at R{sub {ital S}}=(0.04{plus_minus}0.20){times}10{sup {minus}8}; this is consistent with theoretical estimates which include a nuclear anapole contribution.
Even-parity resonances with synchrotron radiation from Laser Excited Lithium at 1s^22p State
NASA Astrophysics Data System (ADS)
Huang, Ming-Tie; Wehlitz, Ralf
2010-03-01
Correlated many-body dynamics is still one of the unsolved fundamental problems in physics. Such correlation effects can be most clearly studied in processes involving single atoms for their simplicity.Lithium, being the simplest open shell atom, has been under a lot of study. Most of the studies focused on ground state lithium. However, only odd parity resonances can be populated through single photon (synchrotron radiation) absorption from ground state lithium (1s^22s). Lithium atoms, after being laser excited to the 1s^22p state, allow the study of even parity resonances. We have measured some of the even parity resonances of lithium for resonant energies below 64 eV. A single-mode diode laser is used to excite lithium from 1s^22s ground state to 1s^22p (^2P3/2) state. Photoions resulting from the interaction between the excited lithium and synchrotron radiation were analyzed and collected by an ion time-of-flight (TOF) spectrometer with a Z- stack channel plate detector. The Li^+ ion yield was recorded while scanning the undulator along with the monochromator. The energy scans have been analyzed regarding resonance energies and parameters of the Fano profiles. Our results for the observed resonances will be presented.
Nuclear Spin Dependent Parity Violation in Diatomic Molecules
NASA Astrophysics Data System (ADS)
Altuntas, Emine; Cahn, Sidney; Demille, David; Kozlov, Mikhail
2016-05-01
Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A 2 / 3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. The NSD-PV interaction matrix element is measured using a Stark-interference technique. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138 Ba19 F. We report our progress on measuring and cancelling systematic effects due to combination of non-reversing stray E-fields, Enr with B-field inhomogeneities. Short-term prospects for measuring the nuclear anapole moment of 137 Ba19 F are discussed. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.
Nuclear Spin Dependent Parity Violation in Diatomic Molecules
NASA Astrophysics Data System (ADS)
Altuntas, Emine; Cahn, Sidney; Demille, David
2016-09-01
Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A2/3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20 . We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. The NSD-PV interaction matrix element is measured using a Stark-interference technique. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138Ba19F. We report our progress on measuring and cancelling systematic effects due to combination of non-reversing stray E-fields, Enr with B-field inhomogeneities. Short-term prospects for measuring the nuclear anapole moment of 137Ba19F are discussed. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.
Fine- and hyperfine structure investigations of even configuration system of atomic terbium
NASA Astrophysics Data System (ADS)
Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.
2017-03-01
In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).
Nucleon measurements at the precision frontier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Carl E.
We comment on nucleon measurements at the precision frontier. As examples of what can be learned, we concentrate on three topics, which are parity violating scattering experiments, the proton radius puzzle, and the symbiosis between nuclear and atomic physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Valerie M.
The Q weak experiment has tested the Standard Model through making a precise measurement of the weak charge of the proton (more » $$Q^p_W$$). This was done through measuring the parity-violating asymmetry for polarized electrons scattering off of unpolarized protons. The parity-violating asymmetry measured is directly proportional to the four-momentum transfer ($Q^2$) from the electron to the proton. The extraction of $$Q^p_W$$ from the measured asymmetry requires a precise $Q^2$ determination. The Q weak experiment had a $Q^2$ = 24.8 ± 0.1 m(GeV 2) which achieved the goal of an uncertainty of <= 0.5%. From the measured asymmetry and $Q^2$, $$Q^p_W$$ was determined to be 0.0719 ± 0.0045, which is in good agreement with the Standard Model prediction. This puts a 7.5 TeV lower limit on possible "new physics". This dissertation describes the analysis of Q^2 for the Q weak experiment. Future parity-violating electron scattering experiments similar to the Q weak experiment will measure asymmetries to high precision in order to test the Standard Model. These measurements will require the beam polarization to be measured to sub-0.5% precision. Presently the electron beam polarization is measured through Moller scattering off of a ferromagnetic foil or through using Compton scattering, both of which can have issues reaching this precision. A novel Atomic Hydrogen Moller Polarimeter has been proposed as a non-invasive way to measure the polarization of an electron beam via Moller scattering off of polarized monatomic hydrogen gas. This dissertation describes the development and initial analysis of a Monte Carlo simulation of an Atomic Hydrogen Moller Polarimeter.« less
First Measurement of the Atomic Electric Dipole Moment of (225)Ra.
Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T
2015-06-12
The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22) e cm (95% confidence).
Improved limit on the Ra 225 electric dipole moment
Bishof, Michael; Parker, Richard H.; Bailey, Kevin G.; ...
2016-08-03
In this study, octupole-deformed nuclei, such as that of 225Ra, are expected to amplify observable atomic electric dipole moments (EDMs) that arise from time-reversal and parity-violating interactions in the nuclear medium. In 2015 we reported the first “proof-of-principle” measurement of the 225Ra atomic EDM.
Improved limit on the Ra 225 electric dipole moment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishof, Michael; Parker, Richard H.; Bailey, Kevin G.
In this study, octupole-deformed nuclei, such as that of 225Ra, are expected to amplify observable atomic electric dipole moments (EDMs) that arise from time-reversal and parity-violating interactions in the nuclear medium. In 2015 we reported the first “proof-of-principle” measurement of the 225Ra atomic EDM.
Nuclear Spin Dependent Parity Violation in Diatomic Molecules
NASA Astrophysics Data System (ADS)
Altuntas, Emine; Ammon, Jeffrey; Cahn, Sidney; Demille, David; Kozlov, Mikhail; Paolino, Richard
2015-05-01
Nuclear spin-dependent parity violation (NSD-PV) effects arise from exchange of the Z0 boson between electrons and the nucleus, and from interaction of electrons with the nuclear anapole moment, a parity-odd magnetic moment. The latter scales with nucleon number of the nucleus A as A 2 / 3 , whereas the Z0 coupling is independent of A. Thus the former is the dominant source of NSD-PV for nuclei with A >= 20. We study NSD-PV effects using diatomic molecules, where signals are dramatically amplified by bringing rotational levels of opposite parity close to degeneracy in a strong magnetic field. Using a Stark-interference technique we measure the NSD-PV interaction matrix element. We present results that demonstrate statistical sensitivity to NSD-PV effects surpassing that of any previous atomic parity violation measurement, using the test system 138Ba19F. We also discuss investigations of systematics due to non-reversing stray E-fields, Enr together with B-field inhomogeneities, and short-term prospects for measuring the nuclear anapole moment of 137Ba. In the long term, our technique is sufficiently general and sensitive to enable measurements across a broad range of nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco, Luis A
This is a report of the construction of a Francium Trapping Facility (FTF) at the Isotope Separator and Accelerator (ISAC) of TRIUMF in Vancouver, Canada, where the Francium Parity Non Conservation (FrPNC) international collaboration has its home. This facility will be used to study fundamental symmetries with high-resolution atomic spectroscopy. The primary scientific objective of the program is a measurement of the anapole moment of francium in a chain of isotopes by observing the parity violation induced by the weak interaction. The anapole moment of francium and associated signal are expected to be ten times larger than in cesium, themore » only element in which an anapole moment has been observed. The measurement will provide crucial information for better understanding weak hadronic interactions in the context of Quantum Chromodynamics (QCD). The methodology combines nuclear and particle physics techniques for the production of francium with precision measurements based on laser cooling and trapping and microwave spectroscopy. The program builds on an initial series of atomic spectroscopy measurements of the nuclear structure of francium, based on isotope shifts and hyperfine anomalies, before conducting the anapole moment measurements, these measurements performed during commissioning runs help understand the atomic and nuclear structure of Fr.« less
NASA Astrophysics Data System (ADS)
Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.
2018-04-01
In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.
First Measurement of the Atomic Electric Dipole Moment of Ra 225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, R. H.; Dietrich, M. R.; Kalita, M. R.
The radioactive radium-225 (Ra-225) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, Ra-225 is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of Ra-225 atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of vertical bar d(Ra-225)vertical bar < 5.0 x 10(-22) e cm (95% confidence).
Lande gJ factors for even-parity electronic levels in the holmium atom
NASA Astrophysics Data System (ADS)
Stefanska, D.; Werbowy, S.; Krzykowski, A.; Furmann, B.
2018-05-01
In this work the hyperfine structure of the Zeeman splitting for 18 even-parity levels in the holmium atom was investigated. The experimental method applied was laser induced fluorescence in a hollow cathode discharge lamp. 20 spectral lines were investigated involving odd-parity levels from the ground multiplet, for which Lande gJ factors are known with high precision, as the lower levels; this greatly facilitated the evaluation of gJ factors for the upper levels. The gJ values for the even-parity levels considered are reported for the first time. They proved to compare fairly well with the values obtained recently in a semi-empirical analysis for the even-parity level system of Ho I.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saenboonruang, Kiadtisak
In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, R n, of a heavy nucleus and the proton radius, R p, to be in the order of several percent. To accurately obtain the difference, R n-R p, which is essentially a neutron skin, the Jefferson Lab Lead ( 208Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 208Pb at an energy of 1.06 GeV and a scatteringmore » angle of 5° . Since Z 0 boson couples mainly to neutrons, this asymmetry provides a clean measurement of R n with respect to R p. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x 10 7 helicity-window quadruplets. The measured parity-violating electroweak asymmetry A PV = 0.656 ± 0.060 (stat) ± 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, R n-R p = 0.33 +0.16 -0.18 fm and provides the first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of 208Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.« less
NASA Astrophysics Data System (ADS)
Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David
2018-04-01
Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. It has been proposed to study NSD-PV effects using an enhancement of the observable effect in diatomic molecules [D. DeMille et al., Phys. Rev. Lett. 100, 023003 (2008), 10.1103/PhysRevLett.100.023003]. Here we demonstrate highly sensitive measurements of this type, using the test system 138Ba19F. We show that systematic errors associated with our technique can be suppressed to at least the level of the present statistical sensitivity. With ˜170 h of data, we measure the matrix element W of the NSD-PV interaction with uncertainty δ W /(2 π )<0.7 Hz for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei.
NASA Astrophysics Data System (ADS)
Majumder, Tiku
2017-04-01
In recent decades, substantial experimental effort has centered on heavy (high-Z) atomic and molecular systems for atomic-physics-based tests of standard model physics, through (for example) measurements of atomic parity nonconservation and searches for permanent electric dipole moments. In all of this work, a crucial role is played by atomic theorists, whose accurate wave function calculations are essential in connecting experimental observables to tests of relevant fundamental physics parameters. At Williams College, with essential contributions from dozens of undergraduate students, we have pursued a series of precise atomic structure measurements in heavy metal atoms such as thallium, indium, and lead. These include measurements of hyperfine structure, transition amplitudes, and atomic polarizability. This work, involving diode lasers, heated vapor cells, and an atomic beam apparatus, has both tested the accuracy and helped guide the refinement of new atomic theory calculations. I will discuss a number of our recent experimental results, emphasizing the role played by students and the opportunities that have been afforded for research-training in this undergraduate environment. Work supported by Research Corporation, the NIST Precision Measurement Grants program, and the National Science Foundation.
NASA Astrophysics Data System (ADS)
Guéna, J.; Lintz, M.; Bouchiat, M. A.
2005-04-01
We exploit the process of asymmetry amplification by stimulated emission which provides an original method for parity violation (PV) measurements in a highly forbidden atomic transition. The method involves measurements of a chiral, transient, optical gain of a cesium vapor on the 7S-6P3/2 transition, probed after it is excited by an intense, linearly polarized, collinear laser, tuned to resonance for one hyperfine line of the forbidden 6S-7S transition in a longitudinal electric field. We report here a 3.5-fold increase of the one-second-measurement sensitivity and subsequent reduction by a factor of 3.5 of the statistical accuracy compared with our previous result [J. Guéna , Phys. Rev. Lett. 90, 143001 (2003)]. Decisive improvements to the setup include an increased repetition rate, better extinction of the probe beam at the end of the probe pulse, and, for the first time to our knowledge, the following: a polarization-tilt magnifier, quasisuppression of beam reflections at the cell windows, and a Cs cell with electrically conductive windows. We also present real-time tests of systematic effects and consistency checks on the data, as well as a 1% accurate measurement of the electric field seen by the atoms, from atomic signals. PV measurements performed in seven different vapor cells agree within the statistical error. Our present result is compatible with the more precise result of Wood within our present relative statistical accuracy of 2.6%, corresponding to a 2×10-13 atomic-unit uncertainty in E1pv . Theoretical motivations for further measurements are emphasized and we give a brief overview of a recent proposal that would allow the uncertainty to be reduced to the 0.1% level by creating conditions where asymmetry amplification is much greater.
Laser spectroscopic study of the Rydberg state structure of atomic lithium
NASA Astrophysics Data System (ADS)
Ballard, M. Kent
1998-07-01
Pulsed laser induced fluorescence spectroscopy was performed on both isotopic species of atomic lithium. Nonresonant multiphoton excitation spectra were recorded. The laser induced fluorescence of the lithium vapor was measured following excitation with a tunable, pulsed, nanosecond laser. Both two- and three-photon allowed transitions were observed resulting in four different transition series originating from the 22S and 22P levels, the latter likely originating from photodissociation products of the lithium dimer, Li2. Forty-seven identifiable transitions were assigned for 6Li. Evidence for a parity forbidden multiphoton transition is also present. For 7Li, fifty-three identifiable transitions were assigned including an additional series of parity forbidden multiphoton transitions. Laser polarization and power dependencies were measured and found to be consistent with the multiphoton transition probabilities. Due to the intense laser fields needed to produce the nonresonant multiphoton excitations, the lithium vapor was subjected to the laser induced ac Stark effect. The Autler-Townes doublets observed for the nF gets 2P transition series were found to exhibit normal asymmetry. The observed asymmetrical Autler-Townes profiles are explained in terms of the two-level and the three-level atomic systems which are based on different excitation schemes. A new computerized data acquisition system was developed as well as associated computer programs needed to analyze spectra.
Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Kurylov; G. C. McLaughlin; M.J. Ramsey-Musolf
2001-03-01
We construct the relationship between nonrenormalizable,effective, time-reversal violating (TV) parity-conserving (PC) interactions of quarks and gauge bosons and various low-energy TVPC and TV parity-violating (PV) observables. Using effective field theory methods, we delineate the scenarios under which experimental limits on permanent electric dipole moments (EDM's) of the electron, neutron, and neutral atoms as well as limits on TVPC observables provide the most stringent bounds on new TVPC interactions. Under scenarios in which parity invariance is restored at short distances, the one-loop EDM of elementary fermions generate the most severe constraints. The limits derived from the atomic EDM of {sup 199}Hgmore » are considerably weaker. When parity symmetry remains broken at short distances, direct TVPC search limits provide the least ambiguous bounds. The direct limits follow from TVPC interactions between two quarks.« less
NASA Astrophysics Data System (ADS)
Dzuba, V. A.; Flambaum, V. V.; Stadnik, Y. V.
2017-12-01
In the presence of P -violating interactions, the exchange of vector bosons between electrons and nucleons induces parity-nonconserving (PNC) effects in atoms and molecules, while the exchange of vector bosons between nucleons induces anapole moments of nuclei. We perform calculations of such vector-mediated PNC effects in Cs, Ba+ , Yb, Tl, Fr, and Ra+ using the same relativistic many-body approaches as in earlier calculations of standard-model PNC effects, but with the long-range operator of the weak interaction. We calculate nuclear anapole moments due to vector-boson exchange using a simple nuclear model. From measured and predicted (within the standard model) values for the PNC amplitudes in Cs, Yb, and Tl, as well as the nuclear anapole moment of 133Cs, we constrain the P -violating vector-pseudovector nucleon-electron and nucleon-proton interactions mediated by a generic vector boson of arbitrary mass. Our limits improve on existing bounds from other experiments by many orders of magnitude over a very large range of vector-boson masses.
NASA Astrophysics Data System (ADS)
Yi-Xiang, Yu; Ye, Jinwu; Zhang, CunLin
2016-08-01
Four standard quantum optics models, that is, the Rabi, Dicke, Jaynes-Cummings, and Tavis-Cummings models, were proposed by physicists many decades ago. Despite their relative simple forms and many previous theoretical works, their physics at a finite N , especially inside the superradiant regime, remain unknown. In this work, by using the strong-coupling expansion and exact diagonalization (ED), we study the Z2-U(1 ) Dicke model with independent rotating-wave coupling g and counterrotating-wave coupling g' at a finite N . This model includes the four standard quantum optics models as its various special limits. We show that in the superradiant phase, the system's energy levels are grouped into doublets with even and odd parity. Any anisotropy β =g'/g ≠1 leads to the oscillation of parities in both the ground and excited doublets as the atom-photon coupling strength increases. The oscillations will be pushed to the infinite coupling strength in the isotropic Z2 limit β =1 . We find nearly perfect agreement between the strong-coupling expansion and the ED in the superradiant regime when β is not too small. We also compute the photon correlation functions, squeezing spectrum, and number correlation functions that can be measured by various standard optical techniques.
NASA Astrophysics Data System (ADS)
Kounalakis, M.; Langford, N. K.; Sagastizabal, R.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.
The field dipole coupling of quantum light and matter, described by the quantum Rabi model, leads to exotic phenomena when the coupling strength g becomes comparable or larger than the atom and photon frequencies ωq , r. In this ultra-strong coupling regime, excitations are not conserved, leading to collapse-revival dynamics in atom and photon parity and Schrödinger-cat-like atom-photon entanglement. We realize a quantum simulation of the Rabi model using a transmon qubit coupled to a resonator. In this first part, we describe our analog-digital approach to implement up to 90 symmetric Trotter steps, combining single-qubit gates with the Jaynes-Cummings interaction naturally present in our circuit QED system. Controlling the phase of microwave pulses defines a rotating frame and enables simulation of arbitrary parameter regimes of the Rabi model. We demonstrate measurements of qubit parity dynamics showing revivals at g /ωr > 0 . 8 for ωq = 0 and characteristic dynamics for nondegenerate ωq from g / 4 to g. Funding from the EU FP7 Project ScaleQIT, an ERC Grant, the Dutch Research Organization NWO, and Microsoft Research.
New limits on variation of the fine-structure constant using atomic dysprosium.
Leefer, N; Weber, C T M; Cingöz, A; Torgerson, J R; Budker, D
2013-08-09
We report on the spectroscopy of radio-frequency transitions between nearly degenerate, opposite-parity excited states in atomic dysprosium (Dy). Theoretical calculations predict that these states are very sensitive to variation of the fine-structure constant α owing to large relativistic corrections of opposite sign for the opposite-parity levels. The near degeneracy reduces the relative precision necessary to place constraints on variation of α, competitive with results obtained from the best atomic clocks in the world. Additionally, the existence of several abundant isotopes of Dy allows isotopic comparisons that suppress common-mode systematic errors. The frequencies of the 754-MHz transition in 164Dy and 235-MHz transition in 162Dy are measured over the span of two years. The linear variation of α is α·/α=(-5.8±6.9([1σ]))×10(-17) yr(-1), consistent with zero. The same data are used to constrain the dimensionless parameter kα characterizing a possible coupling of α to a changing gravitational potential. We find that kα=(-5.5±5.2([1σ]))×10(-7), essentially consistent with zero and the best constraint to date.
Experimental Tests of the Algebraic Cluster Model
NASA Astrophysics Data System (ADS)
Gai, Moshe
2018-02-01
The Algebraic Cluster Model (ACM) of Bijker and Iachello that was proposed already in 2000 has been recently applied to 12C and 16O with much success. We review the current status in 12C with the outstanding observation of the ground state rotational band composed of the spin-parity states of: 0+, 2+, 3-, 4± and 5-. The observation of the 4± parity doublet is a characteristic of (tri-atomic) molecular configuration where the three alpha- particles are arranged in an equilateral triangular configuration of a symmetric spinning top. We discuss future measurement with electron scattering, 12C(e,e’) to test the predicted B(Eλ) of the ACM.
Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering
NASA Astrophysics Data System (ADS)
Gray, Valerie M.
2013-10-01
Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.
Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes
NASA Astrophysics Data System (ADS)
Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.
2018-02-01
The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.
Atomic spectroscopy with twisted photons: Separation of M 1 -E 2 mixed multipoles
NASA Astrophysics Data System (ADS)
Afanasev, Andrei; Carlson, Carl E.; Solyanik, Maria
2018-02-01
We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted-photon photoexcitation amplitudes to their plane-wave analogs, independently of the details of the atomic wave functions. We analyze the photoabsorption cross sections of mixed-multipolarity E 2 -M 1 transitions in ionized atoms and found fundamental differences coming from the photon topology. Our theoretical analysis demonstrates that it is possible to extract the relative transition rates of different multipolar contributions by measuring the photoexcitation rate as a function of the atom's position (or impact parameter) with respect to the optical vortex center. The proposed technique for separation of multipoles can be implemented if the target's atom position is resolved with subwavelength accuracy; for example, with Paul traps. Numerical examples are presented for Boron-like highly charged ions.
Non-local order in Mott insulators, duality and Wilson loops
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rath, Steffen Patrick, E-mail: steffen.rath@ph.tum.de; Simeth, Wolfgang; Endres, Manuel
2013-07-15
It is shown that the Mott insulating and superfluid phases of bosons in an optical lattice may be distinguished by a non-local ‘parity order parameter’ which is directly accessible via single site resolution imaging. In one dimension, the lattice Bose model is dual to a classical interface roughening problem. We use known exact results from the latter to prove that the parity order parameter exhibits long range order in the Mott insulating phase, consistent with recent experiments by Endres et al. [M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, M.C. Bañuls, L. Pollet, I.more » Bloch, et al., Science 334 (2011) 200]. In two spatial dimensions, the parity order parameter can be expressed in terms of an equal time Wilson loop of a non-trivial U(1) gauge theory in 2+1 dimensions which exhibits a transition between a Coulomb and a confining phase. The negative logarithm of the parity order parameter obeys a perimeter law in the Mott insulator and is enhanced by a logarithmic factor in the superfluid. -- Highlights: •Number statistics of cold atoms in optical lattices show non-local correlations. •These correlations are measurable via single site resolution imaging. •Incompressible phases exhibit an area law in particle number fluctuations. •This leads to long-range parity order of Mott-insulators in one dimension. •Parity order in 2d is connected with a Wilson-loop in a lattice gauge theory.« less
Parity Deformed Jaynes-Cummings Model: “Robust Maximally Entangled States”
Dehghani, A.; Mojaveri, B.; Shirin, S.; Faseghandis, S. Amiri
2016-01-01
The parity-deformations of the quantum harmonic oscillator are used to describe the generalized Jaynes-Cummings model based on the λ-analog of the Heisenberg algebra. The behavior is interestingly that of a coupled system comprising a two-level atom and a cavity field assisted by a continuous external classical field. The dynamical characters of the system is explored under the influence of the external field. In particular, we analytically study the generation of robust and maximally entangled states formed by a two-level atom trapped in a lossy cavity interacting with an external centrifugal field. We investigate the influence of deformation and detuning parameters on the degree of the quantum entanglement and the atomic population inversion. Under the condition of a linear interaction controlled by an external field, the maximally entangled states may emerge periodically along with time evolution. In the dissipation regime, the entanglement of the parity deformed JCM are preserved more with the increase of the deformation parameter, i.e. the stronger external field induces better degree of entanglement. PMID:27917882
NASA Astrophysics Data System (ADS)
Toh, George; Jaramillo-Villegas, Jose A.; Glotzbach, Nathan; Quirk, Jonah; Stevenson, Ian C.; Choi, J.; Weiner, Andrew M.; Elliott, D. S.
2018-05-01
We report a measurement of the lifetime of the cesium 7 s 1/2 2S state using time-correlated single-photon counting spectroscopy in a vapor cell. We excite the atoms using a Doppler-free two-photon transition from the 6 s 1/2 2S ground state, and detect the 1.47 -μ m photons from the spontaneous decay of the 7 s 1/2 2S to the 6 p 3/2 2P state. We use a gated single-photon detector in an asynchronous mode, allowing us to capture the fluorescence profile for a window much larger than the detector gate length. Analysis of the exponential decay of the photon count yields a 7 s 1/2 2S lifetime of 48.28 ±0.07 ns, an uncertainty of 0.14%. These measurements provide sensitive tests of theoretical models of the Cs atom, which play a central role in parity violation measurements.
Radiative lifetimes in B I using ultraviolet and vacuum-ultraviolet laser-induced fluorescence
NASA Technical Reports Server (NTRS)
O'Brian, T. R.; Lawler, J. E.
1992-01-01
Radiative lifetimes of the eight lowest even parity levels in the doublet system of B I are measured using time-resolved laser-induced fluorescence in the UV and VUV on an atomic beam of boron. The accurate lifetimes provide a base for improved determination of absolute transition probabilities in B I. The techniques described are broadly applicable to measurement of lifetimes of levels with transitions in the visible, UV, and VUV in almost any element.
Hyperfine structure investigations for the odd-parity configuration system in atomic holmium
NASA Astrophysics Data System (ADS)
Stefanska, D.; Furmann, B.
2018-02-01
In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.
NASA Technical Reports Server (NTRS)
Perger, W. F.; Das, B. P.
1987-01-01
The parity-nonconserving electric-dipole-transition amplitudes for the 6s1/2-7s1/2 transition in cesium and the 6p1/2-7p1/2 transition in thallium have been calculated by the Dirac-Hartree-Fock method. The effects of using different Dirac-Hartree-Fock atomic core potentials are examined and the transition amplitudes for both the length and velocity gauges are given. It is found that the parity-nonconserving transition amplitudes exhibit a greater dependence on the starting potential for thallium than for cesium.
Ugwuja, Emmanuel I; Nnabu, Richard C; Ezeonu, Paul O; Uro-Chukwu, Henry
2015-09-01
Adverse pregnancy outcome is an important public health problem that has been partly associated with increasing maternal parity. To determine the effect of parity on maternal body mass index (BMI), mineral element status and newborn anthropometrics. Data for 349 pregnant women previously studied for the impacts of maternal plasma mineral element status on pregnancy and its outcomes was analysed. Obstetric and demographic data and 5mls of blood samples were obtained from each subject. Blood lead, plasma copper, iron and zinc were determined using atomic absorption spectrophotometer. Maternal BMI increases with parity. Women with parity two had significantly higher plasma zinc but lower plasma copper with comparable levels of the elements in nulliparous and higher parity groups. Although plasma iron was comparable among the groups, blood lead was significantly higher in parity > three. Newborn birth length increases with parity with a positive correlation between parity and maternal BMI (r = 0.221; p = 0.001) and newborn birth length (r = 0.170; p = 0.002) while plasma copper was negatively correlated with newborn's head circumference (r = -0.115; p = 0.040). It is plausible that parity affects maternal BMI and newborn anthropometrics through alterations in maternal plasma mineral element levels. While further studies are desired to confirm the present findings, there is need for pregnant and would-be pregnant women to diversify their diet to optimize their mineral element status.
Atomic parity violation as a probe of new physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marciano, W.J.; Rosner, J.L.
Effects of physics beyond the standard model on electroweak observables ares studied using the Peskin-Takeuchi isospin-conserving, {ital S}, and -breaking, {ital T}, parametrization of new'' quantum loop corrections. Experimental constraints on {ital S} and {ital T} are presented. Atomic parity-violating experiments are shown to be particularly sensitive to {ital S} with existing data giving {ital S}={minus}2.7{plus minus}2.0{plus minus}1.1. That constraint has important implications for generic technicolor models which predict {ital S}{approx equal}0.1{ital N}{sub {ital T}}{ital N}{sub {ital D}} ({ital N}{sub {ital T}} is the number of technicolors, {ital N}{sub {ital D}} is the number of technidoublets).
Lifetimes of excited states in triaxially deformed 107Tc and 109,111,113Rh
NASA Astrophysics Data System (ADS)
Hagen, T. W.; Görgen, A.; Korten, W.; Grente, L.; Salsac, M.-D.; Farget, F.; Braunroth, T.; Bruyneel, B.; Celikovic, I.; Clément, E.; de France, G.; Delaune, O.; Dewald, A.; Dijon, A.; Hackstein, M.; Jacquot, B.; Litzinger, J.; Ljungvall, J.; Louchart, C.; Michelagnoli, C.; Napoli, D. R.; Recchia, F.; Rother, W.; Sahin, E.; Siem, S.; Sulignano, B.; Theisen, Ch.; Valiente-Dobon, J. J.
2018-03-01
Lifetimes of excited states in 107Tc, 109Rh, 111Rh, and 113Rh were measured at GANIL using the Recoil-Distance Doppler Shift method. The neutron-rich nuclei were produced in fission reactions in inverse kinematics with a 238U beam impinging on a 9Be target. Fission fragments were identified event-by-event in the ray-tracing spectrometer VAMOS++ and correlated with prompt γ rays observed around the target position with the EXOGAM Ge detector array. Several lifetimes were obtained for states in the positive-parity yrast bands in the four nuclei and compared to triaxial particle-rotor calculations. The results clarify the configuration for the strongest positive-parity band in 107Tc and suggest a gradual increase of triaxial deformation with atomic number Z, reaching almost maximum triaxiality for the neutron-rich Rh nuclei.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, Ralph H.
1994-01-01
In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.
NASA Astrophysics Data System (ADS)
Hartman, H.; Engström, L.; Lundberg, H.; Nilsson, H.; Quinet, P.; Fivet, V.; Palmeri, P.; Malcheva, G.; Blagoev, K.
2017-04-01
Aims: This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions from 3d84d levels of astrophysical interest in singly ionized nickel. Methods: Radiative lifetimes of seven high-lying levels of even parity in Ni II (98 400-100 600 cm-1) have been measured using the time-resolved laser-induced fluorescence method. Two-step photon excitation of ions produced by laser ablation has been utilized to populate the levels. Theoretical calculations of the radiative lifetimes of the measured levels and transition probabilities from these levels are reported. The calculations have been performed using a pseudo-relativistic Hartree-Fock method, taking into account core polarization effects. Results: A new set of transition probabilities and oscillator strengths has been deduced for 477 Ni II transitions of astrophysical interest in the spectral range 194-520 nm depopulating even parity 3d84d levels. The new calculated gf-values are, on the average, about 20% higher than a previous calculation and yield lifetimes within 5% of the experimental values.
Parity-violating electric-dipole transitions in helium
NASA Technical Reports Server (NTRS)
Hiller, J.; Sucher, J.; Bhatia, A. K.; Feinberg, G.
1980-01-01
The paper examines parity-violating electric-dipole transitions in He in order to gain insight into the reliability of approximate calculations which are carried out for transitions in many-electron atoms. The contributions of the nearest-lying states are computed with a variety of wave functions, including very simple product wave functions, Hartree-Fock functions and Hylleraas-type wave functions with up to 84 parameters. It is found that values of the matrix elements of the parity-violating interaction can differ considerably from the values obtained from the good wave functions, even when these simple wave functions give accurate values for the matrix elements in question
Entangling two transportable neutral atoms via local spin exchange.
Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A
2015-11-12
To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.
Steven Chu: Laser Cooling and Trapping of Atoms
biophysics. His thesis and postdoctoral work at Berkeley ... was the observation of parity non-conservation Physical Review Letters, Vol. 55, Issue 1; July 1985 Experimental Observation of Optically Trapped Atoms page may take you to non-federal websites. Their policies may differ from this site. Website Policies
NASA Astrophysics Data System (ADS)
Kobayashi, Shinji; Nishimiya, Nobuo; Suzuki, Masao
2017-10-01
The saturated absorption lines of neutral titanium were measured in the region of 9950-14380 cm-1 using a Ti:sapphire ring laser. A facing target sputtering system was used to obtain the gaseous state of a Ti I atom. The Zeeman splitting of 38 transitions was observed under the condition that the electric field component of a linearly polarized laser beam was parallel to the magnetic field. The gJ factors of the odd parity states were determined for 28 states belonging to 3d24s4p and 3d34p using those of the even parity states reported by Stachowska in 1997. The gJ factors of z5P1,2,3 levels were newly determined. gJ of y3F2, y3D2, z3P2, and z5S2 levels were refined.
NASA Astrophysics Data System (ADS)
Rojas, Eduardo; Erler, Jens
2015-10-01
We classify the quantum numbers of the extra U(1)' symmetries contained in E 6. In particular, we categorize the cases with rational charges and present the full list of models which arise from the chains of the maximal subgroups of E 6. As an application, the classification allows us to determine all embeddings of the Standard Model fermions in all possible decompositions of the fundamental representation of E 6 under its maximal subgroups. From this we find alternative chains of subgroups for Grand Unified Theories. We show how many of the known models including some new ones appear in alternative breaking patterns. We also use low energy constraints coming from parity-violating asymmetry measurements and atomic parity non-conservation to set limits on the E 6 motivated parameter space for a Z ' boson mass of 1.2 TeV. We include projected limits for the present and upcoming QWEAK, MOLLER and SOLID experiments.
Resonant quantum transitions in trapped antihydrogen atoms.
Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S
2012-03-07
The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.
Efficient mass-selective three-photon ionization of zirconium atoms
Page, R.H.
1994-12-27
In an AVLIS process, [sup 91]Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength [lambda][sub 1], selectively raising [sup 91]Zr atoms to an odd-parity E[sub 1] energy level in the range of 16000--19000 cm[sup [minus]1], are irradiated by a laser beam having a wavelength [lambda][sub 2] to raise the atoms from an E[sub l] level to an even-parity E[sub 2] energy level in the range of 35000--37000 cm[sup [minus]1] and are irradiated by a laser beam having a wavelength [lambda][sub 3] to cause a resonant transition of atoms from an E[sub 2] level to an autoionizing level above 53506 cm[sup [minus]1][lambda][sub 3] wavelengths of 5607, 6511 or 5756 [angstrom] will excite a zirconium atom from an E[sub 2] energy state of 36344 cm[sup [minus]1] to an autoionizing level; a [lambda][sub 3] wavelength of 5666 [angstrom] will cause an autoionizing transition from an E[sub 2] level of 36068 cm[sup [minus]1]; and a [lambda][sub 3] wavelength of 5662 [angstrom] will cause an ionizing resonance of an atom at an E[sub 2] level of 35904 cm[sup [minus]1]. 4 figures.
Computational estimation of parity violation effects in a metal-organic framework containing DABCO
NASA Astrophysics Data System (ADS)
Mirzaeva, Irina V.; Kozlova, Svetlana G.
2017-11-01
It was previously suggested that a metal-organic framework [Zn2(C8H4O4)2·C6H12N2] could be a possible candidate for observation of parity violation effects related to tunneling of C6H12N2 (DABCO) fragment between chiral twisted states. We have performed relativistic four-component and two-component calculations of parity violating energy (PVE) term for twisted isomers of isolated DABCO molecule and [Zn2DABCO]4+ cation. We also discuss the nature of PVE in these systems with the help of analysis of individual atomic contributions to PVE and visualization of electron chirality density.
Controlled parity switch of persistent currents in quantum ladders
NASA Astrophysics Data System (ADS)
Filippone, Michele; Bardyn, Charles-Edouard; Giamarchi, Thierry
2018-05-01
We investigate the behavior of persistent currents for a fixed number of noninteracting fermions in a periodic quantum ladder threaded by Aharonov-Bohm and transverse magnetic fluxes Φ and χ . We show that the coupling between ladder legs provides a way to effectively change the ground-state fermion-number parity, by varying χ . Specifically, we demonstrate that varying χ by 2 π (one flux quantum) leads to an apparent fermion-number parity switch. We find that persistent currents exhibit a robust 4 π periodicity as a function of χ , despite the fact that χ →χ +2 π leads to modifications of order 1 /N of the energy spectrum, where N is the number of sites in each ladder leg. We show that these parity-switch and 4 π periodicity effects are robust with respect to temperature and disorder, and outline potential physical realizations using cold atomic gases and photonic lattices, for bosonic analogs of the effects.
Towards a heralded eigenstate-preserving measurement of multi-qubit parity in circuit QED
NASA Astrophysics Data System (ADS)
Huembeli, Patrick; Nigg, Simon E.
2017-07-01
Eigenstate-preserving multi-qubit parity measurements lie at the heart of stabilizer quantum error correction, which is a promising approach to mitigate the problem of decoherence in quantum computers. In this work we explore a high-fidelity, eigenstate-preserving parity readout for superconducting qubits dispersively coupled to a microwave resonator, where the parity bit is encoded in the amplitude of a coherent state of the resonator. Detecting photons emitted by the resonator via a current biased Josephson junction yields information about the parity bit. We analyze theoretically the measurement back action in the limit of a strongly coupled fast detector and show that in general such a parity measurement, while approximately quantum nondemolition is not eigenstate preserving. To remediate this shortcoming we propose a simple dynamical decoupling technique during photon detection, which greatly reduces decoherence within a given parity subspace. Furthermore, by applying a sequence of fast displacement operations interleaved with the dynamical decoupling pulses, the natural bias of this binary detector can be efficiently suppressed. Finally, we introduce the concept of a heralded parity measurement, where a detector click guarantees successful multi-qubit parity detection even for finite detection efficiency.
A circularly polarized optical dipole trap and other developments in laser trapping of atoms
NASA Astrophysics Data System (ADS)
Corwin, Kristan Lee
Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.
Geant4 Simulations for the Radon Electric Dipole Moment Search at TRIUMF
NASA Astrophysics Data System (ADS)
Rand, Evan; Bangay, Jack; Bianco, Laura; Dunlop, Ryan; Finlay, Paul; Garrett, Paul; Leach, Kyle; Phillips, Andrew; Svensson, Carl; Sumithrarachchi, Chandana; Wong, James
2010-11-01
The existence of a permanent electric dipole moment (EDM) requires the violation of time-reversal symmetry (T) or, equivalently, the violation of charge conjugation C and parity P (CP). Although no particle EDM has yet been found, current theories beyond the Standard Model, e.g. multiple-Higgs theories, left-right symmetry, and supersymmetry, predict EDMs within current experimental reach. In fact, present limits on the EDMs of the neutron, electron and ^199Hg atom have significantly reduced the parameter spaces of these models. The measurement of a non-zero EDM would be a direct measurement of the violation of time-reversal symmetry, and would represent a clear signal of new physics beyond the Standard Model. Recent theoretical calculations predict large enhancements in the atomic EDMs for atoms with octupole-deformed nuclei, making odd-A Rn isotopes prime candidates for the EDM search. The Geant4 simulations presented here are essential for the development towards an EDM measurement. They provide an accurate description of γ-ray scattering and backgrounds in the experimental apparatus, and are being used to study the overall sensitivity of the RnEDM experiment at TRIUMF in Vancouver, B.C.
Test of time-reversal invariance at COSY (TRIC)
NASA Astrophysics Data System (ADS)
Eversheim, D.; Valdau, Yu.; Lorentz, B.
2013-03-01
At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10 - 6 is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry Ay,xz. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be measured by means of an integrating beam current transformer. Thus, in this experiment the cooler synchroton ring serves as ideal forward spectrometer, as a detector, and an accelerator.
Investigation of the 6 p 2(3 P 0) n p Rydberg series of bismuth by multiphoton excitation
NASA Astrophysics Data System (ADS)
Bühler, B.; Cremer, C.; Gerber, G.
1985-03-01
Rydberg states of the odd-parity series 6 p 2(3 p 0) n p of BiI are excited by a three-photon process. A two-photon dissociation of Bi2 into excited atomic states followed by a one-photon absorption leads to highly excited atomic Rydberg states up to n = 32. States of the even-parity Rydberg series 6 p 2(3 p 0) nsJ=1/2, ndJ=3/2 and ndJ=5/2 are also observed. In order to avoid the background caused by ionization of the bismuth molecules we performed a two-color excitation with pulsed dye lasers. With this experiment the 6 p 2(3 p 0) npJ=3/2 Rydberg series could be resolved up to n=75. The increasing quantum defect of this series is due to a perturbing state close to the first ionization limit. By a MQDT analysis we obtain the energy of the perturbing state and a value of 58,761.68±0.1 cm-1 for the first ionization limit of atomic bismuth.
NASA Astrophysics Data System (ADS)
Sahoo, B. K.; Das, B. P.
2018-05-01
Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P ,T -odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P ,T -odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to 199Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.
Sahoo, B K; Das, B P
2018-05-18
Recent relativistic coupled-cluster (RCC) calculations of electric dipole moments (EDMs) of diamagnetic atoms due to parity and time-reversal violating (P,T-odd) interactions, which are essential ingredients for probing new physics beyond the standard model of particle interactions, differ substantially from the previous theoretical results. It is therefore necessary to perform an independent test of the validity of these results. In view of this, the normal coupled-cluster method has been extended to the relativistic regime [relativistic normal coupled-cluster (RNCC) method] to calculate the EDMs of atoms by simultaneously incorporating the electrostatic and P,T-odd interactions in order to overcome the shortcomings of the ordinary RCC method. This new relativistic method has been applied to ^{199}Hg, which currently has a lower EDM limit than that of any other system. The results of our RNCC and self-consistent RCC calculations of the EDM of this atom are found to be close. The discrepancies between these two results on the one hand and those of previous calculations on the other are elucidated. Furthermore, the electric dipole polarizability of this atom, which has computational similarities with the EDM, is evaluated and it is in very good agreement with its measured value.
Measurement of the Weak Mixing Angle in Moller Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klejda, B.
2005-01-28
The weak mixing parameter, sin{sup 2} {theta}{sub w}, is one of the fundamental parameters of the Standard Model. Its tree-level value has been measured with high precision at energies near the Z{sup 0} pole; however, due to radiative corrections at the one-loop level, the value of sin{sup 2} {theta}{sub w} is expected to change with the interaction energy. As a result, a measurement of sin{sup 2} {theta}{sub w} at low energy (Q{sup 2} << m{sub Z}, where Q{sup 2} is the momentum transfer and m{sub Z} is the Z boson mass), provides a test of the Standard Model at themore » one-loop level, and a probe for new physics beyond the Standard Model. One way of obtaining sin{sup 2} {theta}{sub w} at low energy is from measuring the left-right, parity-violating asymmetry in electron-electron (Moeller) scattering: A{sub PV} = {sigma}{sub R}-{sigma}{sub L}/{sigma}{sub R}+{sigma}{sub L}, where {sigma}{sub R} and {sigma}{sub L} are the cross sections for right- and left-handed incident electrons, respectively. The parity violating asymmetry is proportional to the pseudo-scalar weak neutral current coupling in Moeller scattering, g{sub ee}. At tree level g{sub ee} = (1/4 -sin{sup 2} {theta}{sub w}). A precision measurement of the parity-violating asymmetry in Moeller scattering was performed by Experiment E158 at the Stanford Linear Accelerator Center (SLAC). During the experiment, {approx}50 GeV longitudinally polarized electrons scattered off unpolarized atomic electrons in a liquid hydrogen target, corresponding to an average momentum transfer Q{sup 2} {approx} 0.03 (GeV/c){sup 2}. The tree-level prediction for A{sub PV} at such energy is {approx}300 ppb. However one-loop radiative corrections reduce its value by {approx}40%. This document reports the E158 results from the 2002 data collection period. The parity-violating asymmetry was found to be A{sub PV} = -160 {+-} 21 (stat.) {+-} 17 (syst.) ppb, which represents the first observation of a parity-violating asymmetry in Moeller scattering. This value corresponds to a weak mixing angle at Q{sup 2} = 0.026 (GeV/c){sup 2} of sin{sup 2} {theta}{sub w{ovr MS}} = 0.2379 {+-} 0.0016 (stat.) {+-} 0.0013 (syst.), which is -0.3 standard deviations away from the Standard Model prediction: sin{sup 2} {theta}{sub w{ovr MS}}{sup predicted} = 0.2385 {+-} 0.0006 (theory). The E158 measurement of sin{sup 2} {theta}{sub w} at a precision of {delta}(sin{sup 2} {theta}{sub w}) = 0.0020 provides new physics sensitivity at the TeV scale.« less
Laurent, G; Cao, W; Li, H; Wang, Z; Ben-Itzhak, I; Cocke, C L
2012-08-24
We experimentally demonstrate that atomic orbital parity mix interferences can be temporally controlled on an attosecond time scale. Electron wave packets are formed by ionizing argon gas with a comb of odd and even high-order harmonics, in the presence of a weak infrared field. Consequently, a mix of energy-degenerate even and odd parity states is fed in the continuum by one- and two-photon transitions. These interfere, leading to an asymmetric electron emission along the polarization vector. The direction of the emission can be controlled by varying the time delay between the comb and infrared field pulses. We show that such asymmetric emission provides information on the relative phase of consecutive odd and even order harmonics in the attosecond pulse train.
Stochastic-master-equation analysis of optimized three-qubit nondemolition parity measurements
NASA Astrophysics Data System (ADS)
Tornberg, L.; Barzanjeh, Sh.; DiVincenzo, David P.
2014-03-01
We analyzea direct parity measurement of the state of three superconducting qubits in circuit quantum electrodynamics. The parity is inferred from a homodyne measurement of the reflected and transmitted microwave radiation, and the measurement is direct in the sense that the parity is measured without the need for any quantum circuit operations or for ancilla qubits. Qubits are coupled to two resonant-cavity modes, allowing the steady state of the emitted radiation to satisfy the necessary conditions to act as a pointer state for the parity. However, the transient dynamics violates these conditions, and we analyze this detrimental effect and show that it can be overcome in the limit of a weak measurement signal. Our analysis shows that, with a moderate degree of postselection, it is possible to achieve postmeasurement states with fidelity of order 95%. We believe that this type of measurement could serve as a benchmark for future error correction protocols in a scalable architecture.
Wang, Diancheng; Pan, Kai; Subedi, Ramesh R.; ...
2013-08-22
We report on parity-violating asymmetries in the nucleon resonance region measured using 5 - 6 GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232), and provide a verification of quark-hadron duality in the nucleon electroweak γ Z interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the γ Z box-diagram corrections to elastic parity-violating electron scattering measurements.
Characterization of the 1S-2S transition in antihydrogen.
Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Johnson, M A; Jones, J M; Jones, S A; Jonsell, S; Khramov, A; Knapp, P; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Momose, T; Munich, J J; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stutter, G; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S
2018-05-01
In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter 3-7 , including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 10 15 hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 × 10 -12 -two orders of magnitude more precise than the previous determination 8 -corresponding to an absolute energy sensitivity of 2 × 10 -20 GeV.
An improved limit on the charge of antihydrogen from stochastic acceleration.
Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I
2016-01-21
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.
Test of Time-Reversal Invariance at COSY (TRIC)
NASA Astrophysics Data System (ADS)
Eversheim, D.; Valdau, Yu.; Lorentz, B.
2016-02-01
At the Cooler Synchrotron COSY a novel (P-even, T-odd) null test of time-reversal invariance to an accuracy of 10-6 is planned as an internal target transmission experiment. The parity conserving time-reversal violating observable is the total cross-section asymmetry Ay,xz. This quantity is measured using a polarized proton beam with an energy of 135 MeV and an internal tensor polarized deuteron target from the PAX atomic beam source. The reaction rate will be determined by the lifetime of the beam. Consequently, the accuracy of the current measurement of the circulating proton beam is crucial for this experiment. Thus, the cooler synchroton ring serves as an ideal forward spectrometer, as a detector, and an accelerator.
Demonstration of Weight-Four Parity Measurements in the Surface Code Architecture.
Takita, Maika; Córcoles, A D; Magesan, Easwar; Abdo, Baleegh; Brink, Markus; Cross, Andrew; Chow, Jerry M; Gambetta, Jay M
2016-11-18
We present parity measurements on a five-qubit lattice with connectivity amenable to the surface code quantum error correction architecture. Using all-microwave controls of superconducting qubits coupled via resonators, we encode the parities of four data qubit states in either the X or the Z basis. Given the connectivity of the lattice, we perform a full characterization of the static Z interactions within the set of five qubits, as well as dynamical Z interactions brought along by single- and two-qubit microwave drives. The parity measurements are significantly improved by modifying the microwave two-qubit gates to dynamically remove nonideal Z errors.
Radio frequency charge parity meter.
Schroer, M D; Jung, M; Petersson, K D; Petta, J R
2012-10-19
We demonstrate a total charge parity measurement by detecting the radio frequency signal that is reflected by a lumped-element resonator coupled to a single InAs nanowire double quantum dot. The high frequency response of the circuit is used to probe the effects of the Pauli exclusion principle at interdot charge transitions. Even parity charge transitions show a striking magnetic field dependence that is due to a singlet-triplet transition, while odd parity transitions are relatively insensitive to a magnetic field. The measured response agrees well with cavity input-output theory, allowing accurate measurements of the interdot tunnel coupling and the resonator-charge coupling rate g(c)/2π~17 MHz.
Measurement of parity-violating asymmetry in electron-deuteron inelastic scattering
Wang, D.; Pan, K.; Subedi, R.; ...
2015-04-01
The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were publishedmore » earlier, but are presented here in more detail.« less
Cadmium contamination of early human milk.
Sikorski, R; Paszkowski, T; Radomański, T; Szkoda, J
1989-01-01
The concentration of cadmium was measured by flame atomic absorption spectrometry in colostrum samples obtained from 110 women on the 4th postpartum day. Detectable amounts of cadmium were found in 95% of the examined samples and the geometric mean of the determined values was 0.002 mg/kg. In 3 cases (2.7%, the examined neonates received via mother's milk an amount of cadmium exceeding the maximum daily intake level for this metal. Maternal age, parity and place of residence did not affect the determined cadmium levels of milk. Cadmium content in the early human milk of current smokers did not differ significantly from that of nonsmoking mothers.
NASA Astrophysics Data System (ADS)
Pan, Y.; Nikitin, A. M.; Araizi, G. K.; Huang, Y. K.; Matsushita, Y.; Naka, T.; de Visser, A.
2016-06-01
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.
Pan, Y; Nikitin, A M; Araizi, G K; Huang, Y K; Matsushita, Y; Naka, T; de Visser, A
2016-06-28
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms.
Pan, Y.; Nikitin, A. M.; Araizi, G. K.; Huang, Y. K.; Matsushita, Y.; Naka, T.; de Visser, A.
2016-01-01
Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms. PMID:27350295
Measurement of parity violation in electron-quark scattering.
2014-02-06
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u - C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.
New energy levels of atomic niobium (Nb I) discovered by laser-spectroscopic investigations
NASA Astrophysics Data System (ADS)
Kröger, S.; Windholz, L.; Başar, Gü.; Başar, Gö.
2018-06-01
We report the discovery of 9 previously unknown energy levels of the atomic niobium, all having even parity. Two levels have energies below 19,500 cm-1 and angular momentum J = 3/2, while the energies of the others are located between 39,700 and 43,420 cm-1. The levels were discovered by laser excitation of several unclassified spectral lines in the wavelength range between 554 nm and 650 nm and detection of laser-induced fluorescence with a monochromator.
Non-Hermitian optics in atomic systems
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Ma, Danmeng; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-04-01
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Recently, this family of non-Hermitian systems has attracted considerable attention in diverse areas of physics due to their extraordinary properties, especially in optical systems based on solid-state materials, such as coupled gain-loss waveguides and microcavities. Considering the desired refractive index can be effectively manipulated through atomic coherence, it is important to realize such non-Hermitian optical potentials and further investigate their distinct properties in atomic systems. In this paper, we review the recent theoretical and experimental progress of non-Hermitian optics with coherently prepared multi-level atomic configurations. The realizations of (anti-) PT symmetry with different schemes have extensively demonstrated the special optical properties of non-Hermitian optical systems with atomic coherence.
Weight-4 Parity Checks on a Surface Code Sublattice with Superconducting Qubits
NASA Astrophysics Data System (ADS)
Takita, Maika; Corcoles, Antonio; Magesan, Easwar; Bronn, Nicholas; Hertzberg, Jared; Gambetta, Jay; Steffen, Matthias; Chow, Jerry
We present a superconducting qubit quantum processor design amenable to the surface code architecture. In such architecture, parity checks on the data qubits, performed by measuring their X- and Z- syndrome qubits, constitute a critical aspect. Here we show fidelities and outcomes of X- and Z-parity measurements done on a syndrome qubit in a full plaquette consisting of one syndrome qubit coupled via bus resonators to four code qubits. Parities are measured after four code qubits are prepared into sixteen initial states in each basis. Results show strong dependence on ZZ between qubits on the same bus resonators. This work is supported by IARPA under Contract W911NF-10-1-0324.
Berger, Robert
2008-10-21
The importance of the Breit interaction for an accurate prediction of parity violating energy differences between enantiomers is studied within electroweak quantum chemical frameworks. Besides two-electron orbit-orbit and spin-spin coupling contributions, the Breit interaction gives rise to the spin-other-orbit coupling term of the Breit-Pauli Hamiltonian. The present numerical study demonstrates that neglect of this latter term leads in hydrogen peroxide (H(2)O(2)) to relative deviations in the parity violating potential (V(pv)) by about 10%, whereas further relativistic corrections accounted for within a four-component Dirac-Hartree-Fock-Coulomb (DHFC) framework remain smaller, below 5%. Thus, the main source of discrepancy between previous one-component based (coupled perturbed) Hartree-Fock (HF) and four-component Dirac-Hartree-Fock results for parity violating potentials in H(2)O(2) is the neglect of the Breit contribution in DHFC. In heavier homologs of hydrogen peroxide the relative contribution of the spin-other-orbit coupling term to V(pv) decreases with increasing nuclear charge, whereas other relativistic effects become increasingly important. As shown for the H(2)X(2) (X = O,S,Se,Te,Po) series of molecules and for CHBrClF, to a good approximation these other relativistic influences on V(pv) can be accounted for in one-component based HF calculations with the help of relativistic enhancement factors proposed earlier in the theory of atomic parity violation.
NASA Astrophysics Data System (ADS)
Fomin, Nadia
2012-03-01
The NPDGamma experiment aims to measure the parity-odd correlation between the neutron spin and the direction of the emitted photon in neutron-proton capture. A parity violating asymmetry (to be measured to 10-8) from this process can be directly related to the strength of the hadronic weak interaction between nucleons. As part of the commissioning runs on the Fundamental Neutron Physics beamline at the Spallation Neutron Source at ORNL, the gamma-ray asymmetry from the parity-violating capture of cold neutrons on ^35Cl was measured, primarily to check for systematic effects and false asymmtries. The current precision from existing world measurements on this asymmetry is at the level of 10-6 and we believe we can improve it. The analysis methodology as well as preliminary results will be presented.
First measurement of coherent ϕ -meson photoproduction from 4He near threshold
NASA Astrophysics Data System (ADS)
Hiraiwa, T.; Yosoi, M.; Niiyama, M.; Morino, Y.; Nakatsugawa, Y.; Sumihama, M.; Ahn, D. S.; Ahn, J. K.; Chang, W. C.; Chen, J. Y.; Daté, S.; Fujimura, H.; Fukui, S.; Hicks, K.; Hotta, T.; Hwang, S. H.; Ishikawa, T.; Kato, Y.; Kawai, H.; Kohri, H.; Kon, Y.; Lin, P. J.; Maeda, Y.; Miyabe, M.; Mizutani, K.; Muramatsu, N.; Nakano, T.; Nozawa, Y.; Ohashi, Y.; Ohta, T.; Oka, M.; Rangacharyulu, C.; Ryu, S. Y.; Saito, T.; Sawada, T.; Shimizu, H.; Strokovsky, E. A.; Sugaya, Y.; Suzuki, K.; Tokiyasu, A. O.; Tomioka, T.; Tsunemi, T.; Uchida, M.; Yorita, T.; LEPS Collaboration
2018-03-01
The differential cross sections and decay angular distributions for coherent ϕ -meson photoproduction from helium-4 are measured for the first time at forward angles with linearly polarized photons in the energy range Eγ=1.685 -2.385 GeV . Thanks to the target with spin-parity JP=0+ , unnatural-parity exchanges are absent, and thus natural-parity exchanges can be investigated clearly. The decay asymmetry with respect to photon polarization is shown to be very close to the maximal value. This ensures the strong dominance (>94 %) of natural-parity exchanges in this reaction. To evaluate the contribution from natural-parity exchanges to the forward cross section (θ =0∘ ) for the γ p →ϕ p reaction near threshold, the energy dependence of the forward cross section (θ =0∘ ) for the γ 4He →ϕ 4He reaction is analyzed. The comparison to γ p →ϕ p data suggests that enhancement of the forward cross section arising from natural-parity exchanges and/or destructive interference between natural-parity and unnatural-parity exchanges is needed in the γ p →ϕ p reaction near threshold.
NASA Astrophysics Data System (ADS)
Liu, A.-Peng; Cheng, Liu-Yong; Guo, Qi; Zhang, Shou
2018-02-01
We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.
NASA Astrophysics Data System (ADS)
Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy
2017-11-01
A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.
Improved experimental limit on the EDM of 225Ra
NASA Astrophysics Data System (ADS)
Bishof, Michael; Bailey, Kevin; Dietrich, Matthew R.; Greene, John P.; Holt, Roy J.; Kalita, Mukut R.; Korsch, Wolfgang; Lemke, Nathan D.; Lu, Zheng-Tian; Mueller, Peter; O'Connor, Tom P.; Parker, Richard H.; Rabga, Tenzin; Singh, Jaideep T.
2015-10-01
Searches for permanent electric dipole moments (EDMs) in fundamental and composite particles are sensitive probes of beyond-standard-model symmetry violation that could explain the dominance of matter over anti-matter. The 225Ra (t1/2 = 15d, I = 1/2) atom is a particularly attractive system to use for an EDM measurement because its large nuclear octupole deformation, closely spaced ground-state parity doublet, and large atomic mass make 225Ra uniquely sensitive to symmetry-violating interactions in the nuclear medium. We have developed an experiment to measure the EDM of 225Ra and demonstrated the first ``proof-of-principle'' measurement, giving a 95% confidence upper limit of 5E-22 e-cm. After implementing a vacuum upgrade, we have observed nuclear spin coherence after 20 s of free evolution - a factor of ten improvement over our earlier results - and have lowered the 225Ra EDM limit by over an order of magnitude. Upcoming experimental upgrades have the potential to further improve our EDM sensitivity by many orders of magnitude, allowing us to test symmetry violation at an unprecedented level. This work is supported by U.S. DOE, Office of Science, Office of Nuclear Physics, under Contract DE-AC02-06CH11357.
Measurement of parity violation in electron–quark scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, D.; Pan, K.; Subedi, R.
2014-02-05
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks chirality preference when participating in the weak force,more » which have been measured directly3, 4 only once in the past 40?years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u???C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.« less
Measurement of parity violation in electron–quark scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, D.; Pan, K.; Subedi, R.
2014-02-05
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not1, 2. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks’ chirality preference when participating in the weakmore » force, which have been measured directly3, 4 only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron–quark scattering, which yields a determination of 2C2u-C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.« less
NASA Astrophysics Data System (ADS)
Lackenby, B. G. C.; Flambaum, V. V.
2018-07-01
We introduce the weak quadrupole moment (WQM) of nuclei, related to the quadrupole distribution of the weak charge in the nucleus. The WQM produces a tensor weak interaction between the nucleus and electrons and can be observed in atomic and molecular experiments measuring parity nonconservation. The dominating contribution to the weak quadrupole is given by the quadrupole moment of the neutron distribution, therefore, corresponding experiments should allow one to measure the neutron quadrupoles. Using the deformed oscillator model and the Schmidt model we calculate the quadrupole distributions of neutrons, Q n , the WQMs, {Q}W(2), and the Lorentz invariance violating energy shifts in 9Be, 21Ne, 27Al, 131Xe, 133Cs, 151Eu, 153Eu, 163Dy, 167Er, 173Yb, 177Hf, 179Hf, 181Ta, 201Hg and 229Th.
Continuously monitoring the parity of superconducting qubits in a 2D cQED architecture
NASA Astrophysics Data System (ADS)
Blok, Machiel; Flurin, Emmanuel; Livingston, William; Colless, James; Dove, Allison; Siddiqi, Irfan
Continuous measurements of joint qubit properties such as their parity can reveal insight into the collapse dynamics of entangled states and are a prerequisite for implementing continuous quantum error correction. Here it is crucial that the measurement collects no information other than the parity to avoid measurement induced dephasing. In a cQED architecture, a full-parity measurement can be implemented by strongly coupling two transmon qubits to a single high-Q planar resonator (χ >> κ). We will discuss the experimental implementation of this on-chip technique and the prospects to extend it to more qubits. This will allow us to monitor, in real-time, the projection into multi-partite entangled states and continuously detect errors on a logical qubit encoded in an entangled subspace. This work was supported by Army Research Office.
Nonlinear parity readout with a microwave photodetector
NASA Astrophysics Data System (ADS)
Schöndorf, M.; Wilhelm, F. K.
2018-04-01
Robust high-fidelity parity measurement is an important operation in many applications of quantum computing. In this work we show how in a circuit QED architecture, one can measure parity in a single shot at very high contrast by taking advantage of the nonlinear behavior of a strongly driven microwave cavity coupled to one or multiple qubits. We work in a nonlinear dispersive regime treated in an exact dispersive transformation. We show that appropriate tuning of experimental parameters leads to very high contrast in the cavity and therefore to a high-efficiency parity readout with a microwave photon counter or another amplitude detector. These tuning conditions are based on nonlinearity and are hence more robust than previously described linear tuning schemes. In the first part of the paper we show in detail how to achieve this for two-qubit parity measurements and extend this to N qubits in the second part of the paper. We also study the quantum nondemolition character of the protocol.
What is the optimal way to prepare a Bell state using measurement and feedback?
NASA Astrophysics Data System (ADS)
Martin, Leigh; Sayrafi, Mahrud; Whaley, K. Birgitta
2017-12-01
Recent work has shown that the use of quantum feedback can significantly enhance both the speed and success rate of measurement-based remote entanglement generation, but it is generally unknown what feedback protocols are optimal for these tasks. Here we consider two common measurements that are capable of projecting into pairwise entangled states, namely half- and full-parity measurements of two qubits, and determine in each case a globally optimal protocol for generation of entanglement. For the half-parity measurement, we rederive a previously described protocol using more general methods and prove that it is globally optimal for several figures of merit, including maximal concurrence or fidelity and minimal time to reach a specified concurrence or fidelity. For the full-parity measurement, we derive a protocol for rapid entanglement generation related to that of (Hill, Ralph, Phys. Rev. A 77, 014305), and then map the dynamics of the concurrence of the state to the Bloch vector length of an effective qubit. This mapping allows us to prove several optimality results for feedback protocols with full-parity measurements. We further show that our full-parity protocol transfers entanglement optimally from one qubit to the other amongst all measurement-based schemes. The methods developed here will be useful for deriving feedback protocols and determining their optimality properties in many other quantum systems subject to measurement and unitary operations.
Implementing a strand of a scalable fault-tolerant quantum computing fabric.
Chow, Jerry M; Gambetta, Jay M; Magesan, Easwar; Abraham, David W; Cross, Andrew W; Johnson, B R; Masluk, Nicholas A; Ryan, Colm A; Smolin, John A; Srinivasan, Srikanth J; Steffen, M
2014-06-24
With favourable error thresholds and requiring only nearest-neighbour interactions on a lattice, the surface code is an error-correcting code that has garnered considerable attention. At the heart of this code is the ability to perform a low-weight parity measurement of local code qubits. Here we demonstrate high-fidelity parity detection of two code qubits via measurement of a third syndrome qubit. With high-fidelity gates, we generate entanglement distributed across three superconducting qubits in a lattice where each code qubit is coupled to two bus resonators. Via high-fidelity measurement of the syndrome qubit, we deterministically entangle the code qubits in either an even or odd parity Bell state, conditioned on the syndrome qubit state. Finally, to fully characterize this parity readout, we develop a measurement tomography protocol. The lattice presented naturally extends to larger networks of qubits, outlining a path towards fault-tolerant quantum computing.
First Observation of the Parity Violating Asymmetry in Moller Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younus, Imran; /Syracuse U.
This thesis reports on the E158 experiment at Stanford Linear Accelerator Center (SLAC), which has made the first observation of the parity non-conserving asymmetry in Moller scattering. Longitudinally polarized 48 GeV electrons are scattered off unpolarized (atomic) electrons in a liquid hydrogen target with an average Q{sup 2} of 0.027 GeV{sup 2}. The asymmetry in this process is proportional to (1/4 - sin{sup 2}{theta}{sub W}), where sin{sup 2} {theta}{sub W} gives the weak mixing angle. The thesis describes the experiment in detail, with a particular focus on the design and construction of the electromagnetic calorimeter. This calorimeter was the primarymore » detector in the experiment used to measure the flux of the scattered Moller electrons and eP electrons. It employed the quartz fiber calorimetry technique, and was built at Syracuse University. The preliminary results from the first experimental data taken in spring 2002 give A{sub PV} = -151.9 {+-} 29.0(stat) {+-} 32.5(syst) parts per billion. This in turn gives sin{sup 2} {theta}{sub W} = 0.2371 {+-} 0.0025 {+-} 0.0027, which is consistent with the Standard Model prediction (0.2386 {+-} 0.0006).« less
Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases
Huang, Xu-Guang
2016-01-01
The chiral magnetic and chiral separation effects—quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma—have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084
Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cingoez, A.; Lapierre, Alain; Nguyen, A.-T.
2005-12-15
We have studied collisional perturbations of radio-frequency (rf) electric-dipole (E1) transitions between the nearly degenerate opposite-parity levels in atomic dysprosium (Dy) in the presence of 10 to 80 {mu}Torr of H{sub 2}, N{sub 2}, He, Ar, Ne, Kr, and Xe. Collisional broadening and shift of the resonance, as well as the attenuation of the signal amplitude are observed to be proportional to the foreign-gas density with the exception of H{sub 2} and Ne, for which no shifts were observed. Corresponding rates and cross sections are presented. In addition, rates and cross sections for O{sub 2} are extracted from measurements usingmore » air as foreign gas. The primary motivation for this study is the need for accurate determination of the shift rates, which are needed in a laboratory search for the temporal variation of the fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R. Torgerson, Phys. Rev. A 69, 22105 (2004)].« less
Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
NASA Astrophysics Data System (ADS)
Robicheaux, F.; Booth, D. W.; Saffman, M.
2018-02-01
The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).
Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jonsell, S; Jørgensen, L V; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; el Nasr, S Seif; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y
2010-12-02
Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.
Koketsu, Yuzo
2005-03-15
This study investigated relationships between herd age structure and herd productivity in breeding herds; it also investigated a pattern in parity proportions of females over 2 years and its relationship with herd productivity in commercial swine herds. This study was based on data from 148 commercial farms in North America stored in the swine database program at the University of Minnesota. The primary selection criterion was fluctuations in breeding-female pig (female) inventories over a 2-year interval. Productivity measurements and parity proportions of females were extracted from the database. A 24-month time-plot in proportions of Parity 0 and Parities 3-5 females (mid-parity) was charted for each farm. Using these charts, a change in proportions of Parity 0 and mid-parity for each farm was categorized into patterns: FLUCTUATE (Parity 0 and mid-parity proportion lines crossed) or STABLE (the two proportion lines never crossed). Higher proportions of mid-parity sows were correlated with greater pigs weaned per female per year (PWFY; P < 0.01). Farms with a FLUCTUATE (73% of the 148 farms) pattern had lower PWFY than those with a STABLE pattern (P < 0.01). The STABLE farms had higher proportions of mid-parity sows, higher parity at culling, higher frequency of gilt deliveries per year, and lower replacement rate than the FLUCTUATE farms (P < 0.01). In conclusion, maintaining stable subpopulations with mid-parity and Parity 0 are recommended to optimize herd productivity.
Entanglement distillation for quantum communication network with atomic-ensemble memories.
Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo
2014-10-06
Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.
Observation of the 1S-2S transition in trapped antihydrogen.
Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S
2017-01-26
The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hänsch to a precision of a few parts in 10 15 . Recent technological advances have allowed us to focus on antihydrogen-the antimatter equivalent of hydrogen. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today's Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10 -10 .
Observation of the 1S-2S transition in trapped antihydrogen
NASA Astrophysics Data System (ADS)
Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.
2017-02-01
The spectrum of the hydrogen atom has played a central part in fundamental physics over the past 200 years. Historical examples of its importance include the wavelength measurements of absorption lines in the solar spectrum by Fraunhofer, the identification of transition lines by Balmer, Lyman and others, the empirical description of allowed wavelengths by Rydberg, the quantum model of Bohr, the capability of quantum electrodynamics to precisely predict transition frequencies, and modern measurements of the 1S-2S transition by Hänsch to a precision of a few parts in 1015. Recent technological advances have allowed us to focus on antihydrogen—the antimatter equivalent of hydrogen. The Standard Model predicts that there should have been equal amounts of matter and antimatter in the primordial Universe after the Big Bang, but today’s Universe is observed to consist almost entirely of ordinary matter. This motivates the study of antimatter, to see if there is a small asymmetry in the laws of physics that govern the two types of matter. In particular, the CPT (charge conjugation, parity reversal and time reversal) theorem, a cornerstone of the Standard Model, requires that hydrogen and antihydrogen have the same spectrum. Here we report the observation of the 1S-2S transition in magnetically trapped atoms of antihydrogen. We determine that the frequency of the transition, which is driven by two photons from a laser at 243 nanometres, is consistent with that expected for hydrogen in the same environment. This laser excitation of a quantum state of an atom of antimatter represents the most precise measurement performed on an anti-atom. Our result is consistent with CPT invariance at a relative precision of about 2 × 10-10.
Experimental and theoretical oscillator strengths of Mg I for accurate abundance analysis
NASA Astrophysics Data System (ADS)
Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P.
2017-02-01
Context. With the aid of stellar abundance analysis, it is possible to study the galactic formation and evolution. Magnesium is an important element to trace the α-element evolution in our Galaxy. For chemical abundance analysis, such as magnesium abundance, accurate and complete atomic data are essential. Inaccurate atomic data lead to uncertain abundances and prevent discrimination between different evolution models. Aims: We study the spectrum of neutral magnesium from laboratory measurements and theoretical calculations. Our aim is to improve the oscillator strengths (f-values) of Mg I lines and to create a complete set of accurate atomic data, particularly for the near-IR region. Methods: We derived oscillator strengths by combining the experimental branching fractions with radiative lifetimes reported in the literature and computed in this work. A hollow cathode discharge lamp was used to produce free atoms in the plasma and a Fourier transform spectrometer recorded the intensity-calibrated high-resolution spectra. In addition, we performed theoretical calculations using the multiconfiguration Hartree-Fock program ATSP2K. Results: This project provides a set of experimental and theoretical oscillator strengths. We derived 34 experimental oscillator strengths. Except from the Mg I optical triplet lines (3p 3P°0,1,2-4s 3S1), these oscillator strengths are measured for the first time. The theoretical oscillator strengths are in very good agreement with the experimental data and complement the missing transitions of the experimental data up to n = 7 from even and odd parity terms. We present an evaluated set of oscillator strengths, gf, with uncertainties as small as 5%. The new values of the Mg I optical triplet line (3p 3P°0,1,2-4s 3S1) oscillator strength values are 0.08 dex larger than the previous measurements.
Koch, E; Bogado, M; Araya, F; Romero, T; Díaz, C; Manriquez, L; Paredes, M; Román, C; Taylor, A; Kirschbaum, A
2008-05-01
To find out whether there is an association between parity and obesity, evaluated through body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR) in Chilean women after controlling for sociodemographic characteristics, health risk and gynaeco-obstetric factors. Cross-sectional study, using baseline data of the San Francisco Project. San Francisco de Mostazal, located in the central region of Chile, 6512 Chilean-Hispanic women (Spanish heritage with a variable indigenous component). A weighted random sample of 508 women who had their first pregnancy inside the primary child-bearing ages. Data were collected between 1997 and 1999. Statistical associations between parity and different anthropometric measurements of adiposity in multiple linear (MLnR) and logistic regression models (MLtR) were evaluated. In MLnR a modest parity-related increment in BMI and practically null increment in WC, WHR and WHtR was observed. Covariates that showed a statistically significant association with anthropometric measures of adiposity were age, low education, marital status, employment, smoking, smoking cessation, hypertension, diabetes, dyslipidaemia, parent's obesity, menarche and fetal macrosomia. Crude odds ratio (OR) showed a strong association between parity and anthropometric markers of obesity. Nevertheless, after adjustments in MLtR models, the association remained only for BMI. All the measures of abdominal obesity related to parous women showed OR smaller than 1 (95% confidence intervals 0.57 to 0.96). Parity modestly influences BMI, but does not seem to be related to WC, WHR and WHtR after controlling by confounders. Parity can increase adiposity but not necessarily following an abdominal pattern.
Busch, Alisa B; Huskamp, Haiden A; Normand, Sharon-Lise T; Young, Alexander S; Goldman, Howard; Frank, Richard G
2006-06-01
Since the 1990s, parity laws have been implemented to reduce inequities in mental health coverage compared with that for general medical conditions. It is unclear if parity under managed care is associated with improvements in mental health treatment quality. Major depressive disorder (MDD) is a prevalent but often undetected and undertreated and thus could potentially benefit from parity implementation. The objective of this study was to examine the association between parity implementation and changes in MDD treatment quality in the Federal Employees' Health Benefits (FEHB) Program. We conducted retrospective analyses of insurance claims data. Logistic regression models estimated quality changes for MDD-diagnosed enrollees from pre- to postparity. Subjects included MDD-diagnosed FEHB insured enrollees, aged 18-64, across multiple states and 6 FEHB plans before (1999-2000) and after (2001-2002) parity implementation. Measures included receipt of any antidepressant or psychotherapy within a given calendar year of diagnosis; receipt of appropriate psychotherapy frequency/intensity and duration; and pharmacotherapy duration during acute-phase treatment episodes. Postparity, several plans improved significantly in the likelihood of receiving antidepressant medication. In the acute-phase episodes, the greatest improvement was seen in the likelihood of follow up >or=4 months. Few or no other changes were observed in the acute-phase treatment intensity or duration quality measures. Parity under managed care was associated with modest improvements. The observed improvements were consistent with secular trends in MDD treatment. Whereas mental health parity is an important policy goal, these results highlight its limitations: improving the financing of care may not be sufficient to improve quality.
Measurements of multipolarities in 225Ra
NASA Astrophysics Data System (ADS)
Andersen, E.; Borge, M. J. G.; Burke, D. G.; Gietz, H.; Hill, P.; Kaffrell, N.; Kurcewicz, W.; Løvhøiden, G.; Mattsson, S.; Naumann, R. A.; Nybø, K.; Nyman, G.; Thorsteinsen, T. F.; Isolde Collaboration
1989-01-01
Multipolarities of 45 transitions in 225Ra have been established by investigating the radiations associated with the β - decay of 225Fr. The study includes β -, e - and γ-singles spectra, e -γ- and γγ-coincidence measurements. The conversion electrons were measured with a mini-orange electron spectrometer, and the γ-spectra with Ge detectors. The multipolarities obtained from the measured conversion coefficients support the assignments of spin-parity doublets thus giving evidence for a stable octupole deformation of this nucleus. The negative parity of the 394.2 keV level established in the present work indicates that this level is a candidate for the parity-doublet partner of the {5}/{2}+ state at 236.3 keV.
Peterson, Emma; Busch, Susan
2018-04-01
The Mental Health Parity and Addiction Equity Act (MHPAEA) of 2008 changed the landscape of mental health and substance use disorder coverage in the United States. The MHPAEA's comprehensiveness compared with past parity laws, including its extension of parity to plan management strategies, the so-called nonquantitative treatment limitations (NQTL), led to significant improvements in mental health care coverage. In this article, we review the history of this landmark legislation and its recent expansions to new populations, describe past research on the effects of this and other mental health/substance use disorder parity laws, and describe some directions for future research, including NQTL compliance issues, effects of parity on individuals with severe mental illness, and measurement of benefits other than mental health care use.
NASA Astrophysics Data System (ADS)
Moskal, P.; Alfs, D.; Bednarski, T.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Gupta-Sharma, N.; Gorgol, M.; Hiesmayr, B. C.; Jasińska, B.; Kamińska, D.; Khreptak, O.; Korcyl, G.; Kowalski, P.; Krzemień, W.; Krawczyk, N.; Kubicz, E.; Mohammed, M.; Niedźwiecki, Sz.; Pawlik-Niedńwiecka, M.; Raczyński, L.; Rudy, Z.; Silarski, M.; Smyrski, J.; Wieczorek, A.; Wiślicki, W.; Zgardzińska, B.; Zieliński, M.
2016-11-01
Discrete symmetries such as parity (P), charge-conjugation (C) and time reversal (T) are of fundamental importance in physics and cosmology. Breaking of charge conjugation symmetry (C) and its combination with parity (CP) constitute necessary conditions for the existence of the asymmetry between matter and antimatter in the observed Universe. The presently known sources of discrete symmetries violations can account for only a tiny fraction of the excess of matter over antimatter. So far CP and T symmetries violations were observed only for systems involving quarks and they were never reported for the purely leptonic objects. In this article we describe briefly an experimental proposal for the test of discrete symmetries in the decays of positronium atom which is made exclusively of leptons. The experiments are conducted by means of the Jagiellonian Positron Emission Tomograph (J-PET) which is constructed from strips of plastic scintillators enabling registration of photons from the positronium annihilation. J-PET tomograph together with the positronium target system enable to measure expectation values for the discrete symmetries odd operators constructed from (i) spin vector of the ortho-positronium atom, (ii) momentum vectors of photons originating from the decay of positronium, and (iii) linear polarization direction of annihilation photons. Linearly polarized positronium will be produced in the highly porous aerogel or polymer targets, exploiting longitudinally polarized positrons emitted by the sodium 22Na isotope. Information about the polarization vector of orthopositronium will be available on the event by event basis and will be reconstructed from the known position of the positron source and the reconstructed position of the orthopositronium annihilation. In 2016 the first tests and calibration runs are planned, and the data collection with high statistics will commence in the year 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waidyawansa, Dinayadura Buddhini
2013-08-01
The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least threemore » orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.« less
Stock, J D; Calderón Díaz, J A; Rothschild, M F; Mote, B E; Stalder, K J
2018-06-09
Feet and legs of replacement females were objectively evaluated at selection, i.e. approximately 150 days of age (n=319) and post first parity, i.e. any time after weaning of first litter and before 2nd parturition (n=277) to 1) compare feet and leg joint angle ranges between selection and post first parity; 2) identify feet and leg joint angle differences between selection and first three weeks of second gestation; 3) identify feet and leg join angle differences between farms and gestation days during second gestation; and 4) obtain genetic variance components for conformation angles for the two time points measured. Angles for carpal joint (knee), metacarpophalangeal joint (front pastern), metatarsophalangeal joint (rear pastern), tarsal joint (hock), and rear stance were measured using image analysis software. Between selection and post first parity significant differences were observed for all joints measured (P < 0.05). Knee, front and rear pastern angles were less (more flexion), and hock angles were greater (less flexion) as age progressed (P < 0.05), while the rear stance pattern was less (feet further under center) at selection than post first parity (only including measures during first three weeks of second gestation). Only using post first parity leg conformation information, farm was a significant source of variation for front and rear pasterns and rear stance angle measurements (P < 0.05). Knee angle was less (more flexion) (P < 0.05) as gestation age progressed. Heritability estimates were low to moderate (0.04 - 0.35) for all traits measured across time points. Genetic correlations between the same joints at different time points were high (> 0.8) between the front leg joints and low (<0.2) between the rear leg joints. High genetic correlations between time points indicate that the trait can be considered the same at either time point, and low genetic correlations indicate that the trait at different time points should be considered as two separate traits. Minimal change in the front leg suggests conformation traits that remain between selection and post first parity, while larger changes in rear leg indicate that rear leg conformation traits should be evaluated at multiple time periods.
Observation of the hyperfine spectrum of antihydrogen.
Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S
2017-08-02
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
Observation of the hyperfine spectrum of antihydrogen
NASA Astrophysics Data System (ADS)
Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.
2017-08-01
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
Full-Counting Many-Particle Dynamics: Nonlocal and Chiral Propagation of Correlations
NASA Astrophysics Data System (ADS)
Ashida, Yuto; Ueda, Masahito
2018-05-01
The ability to measure single quanta allows the complete characterization of small quantum systems known as full-counting statistics. Quantum gas microscopy enables one to observe many-body systems at the single-atom precision. We extend the idea of full-counting statistics to nonequilibrium open many-particle dynamics and apply it to discuss the quench dynamics. By way of illustration, we consider an exactly solvable model to demonstrate the emergence of unique phenomena such as nonlocal and chiral propagation of correlations, leading to a concomitant oscillatory entanglement growth. We find that correlations can propagate beyond the conventional maximal speed, known as the Lieb-Robinson bound, at the cost of probabilistic nature of quantum measurement. These features become most prominent at the real-to-complex spectrum transition point of an underlying parity-time-symmetric effective non-Hermitian Hamiltonian. A possible experimental situation with quantum gas microscopy is discussed.
Observation of new even-parity states of Sm I by resonance ionization mass spectrometry
NASA Astrophysics Data System (ADS)
Jayasekharan, T.; Razvi, M. A. N.; Bhale, G. L.
1996-04-01
Resonance ionization mass spectrometry is applied to investigate high-lying even-parity states of Sm I. Eighty-six even-parity states of Sm I are discovered in the region 32950-36000 cm -1 . Absolute energies of these states are measured with an uncertainty of +/- 0.3 cm -1 , and total angular momenta are uniquely assigned for most of them.
Final Results from the Jefferson Lab Qweak Experiment
NASA Astrophysics Data System (ADS)
Smith, Gregory
2017-09-01
The Qweak collaboration has unblinded our final result. We briefly describe the e-> p elastic scattering experiment used to extract the asymmetries measured in the two distinct running periods which constituted the experiment. The precision obtained on the final combined asymmetry is +/- 9.3 ppb. Some of the backgrounds and corrections applied in the experiment will be explained and quantified. We then provide the results of several methods we have used to extract consistent values of the proton's weak charge QWp from our asymmetry measurements. We also present results for the strange and axial form factors obtained from a fit to existing parity-violating electron scattering data. In conjunction with existing atomic parity violation results on 133Cs we extract the vector weak quark couplings C1u and C1d. The latter are combined to obtain the neutron's weak charge. From the proton's weak charge we obtain a result for sin2θW at the energy scale of our experiment, a sensitive SM test of the running of sin2θW . We also show the mass reach for new beyond-the-Standard-Model physics obtained from our determination of the proton's weak charge and its uncertainty, and discuss sensitivity to specific models. This work was supported by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-06OR23177, the Natural Sciences and Engineering Research Council of Canada (NSERC), and the National Science Foundation (NSF).
Wen, Hefei; Cummings, Janet R.; Hockenberry, Jason M.; Gaydos, Laura M.; Druss, Benjamin G.
2014-01-01
Context The passage of the 2008 Mental Health Parity and Addiction Equity Act (MHPAEA) and the 2010 Affordable Care Act (ACA) incorporated parity for substance use disorder (SUD) into federal legislation. Yet prior research provides us with scant evidence as to whether federal parity legislation will hold the potential for improving access to SUD treatment. Objective This study examined the effect of state-level SUD parity laws on state-aggregate SUD treatment rates from 2000 to 2008, to shed light on the impact of the recent federal-level SUD parity legislation. Design A quasi-experimental study design using a two-way (state and year) fixed-effect method Setting and Participants All known specialty SUD treatment facilities in the United States Interventions State-level SUD parity laws between 2000 and 2008 Main Outcome Measures State-aggregate SUD treatment rates in: (1) all specialty SUD treatment facilities, and (2) specialty SUD treatment facilities accepting private insurance Results The implementation of any SUD parity law increased the treatment rate by 9 percent (p<0.01) in all specialty SUD treatment facilities and by 15 percent (p<0.05) in facilities accepting private insurance. Full parity and parity-if-offered (i.e., parity only if SUD coverage is offered) increased SUD treatment rate by 13 percent (p<0.05) and 8 percent (p<0.05) in all facilities, and by 21 percent (p<0.05) and 10 percent (p<0.05) in those accepting private insurance. Conclusions We found a positive effect of the implementation of state SUD parity legislation on access to specialty SUD treatment. Furthermore, the positive association was more pronounced in states with more comprehensive parity laws. Our findings suggest that federal parity legislation holds the potential to improve access to SUD treatment. PMID:24154931
Pedestal-to-Wall 3D Fluid Transport Simulations on DIII-D
Lore, Jeremy D.; Wolfmeister, Alexis Briesemeister; Ferraro, Nathaniel M.; ...
2017-03-30
The 3D fluid-plasma edge transport code EMC3-EIRENE is used to test several magnetic field models with and without plasma response against DIII-D experimental data for even and odd-parity n=3 magnetic field perturbations. The field models include ideal and extended MHD equilibria, and the vacuum approximation. Plasma response is required to reduce the stochasticity in the pedestal region for even-parity fields, however too much screening suppresses the measured splitting of the downstream T e profile. Odd-parity perturbations result in weak tearing and only small additional peaks in the downstream measurements. In this case plasma response is required to increase the sizemore » of the lobe structure. Finally, no single model is able to simultaneously reproduce the upstream and downstream characteristics for both odd and even-parity perturbations.« less
Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Diancheng
2013-12-01
The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q 2 values of 1.1 and 1.9 (GeV/c) 2. The asymmetry at Q 2=1.9 (GeV/c) 2 can be used to extract the weak coupling combinationmore » 2C 2u - C 2d, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q 2 values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first A PV data in the resonance region beyond the Δ (1232). They provide evidence that the quark hadron duality works for A PV at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.« less
Van Hooydonk, G
2000-11-01
Following recent work in search for a universal function (Van Hooydonk, Eur. J. Inorg. Chem., (1999), 1617), we test four symmetric +/- a(n)Rn potentials for reproducing molecular potential energy curves (PECs). Classical gauge symmetry for 1/R-potentials results in generic left right asymmetric PECs. A pair of symmetric perturbed Coulomb potentials is quantitatively in accordance with observed PECs. For a bond, a four-particle system, charge inversion (a parity effect, atom chirality) is the key to explain this shape generically. A parity adapted Hamiltonian reduces from ten to two terms and to a soluble Bohr-like formula, a Kratzer (1 - Re/R)2 potential. The result is similar to the combined action of spin and wave function symmetry upon the Hamiltonian in Heitler-London theory. Analytical perturbed Coulomb functions varying with (1 - Re/R) scale attractive and repulsive branches of PECs for 13 bonds H2, HF, LiH, KH, AuH, Li2, LiF, KLi, NaCs, Rb2, RbCs, Cs2 and I2 in a single straight line. The 400 turning points for 13 bonds are reproduced with a deviation of 0.007 A at both branches. For 230 points at the repulsive side, the deviation is 0.003 A. The perturbed electrostatic Coulomb law is a universal molecular function. Ab initio zero molecular parameter functions give PECs of acceptable quality, just using atomic ionisation energies. The function can be used as a model potential for inverting levels and gives a first principle's comparison of short- and long-range interactions, important for the study of cold atoms. Wave-packet dynamics, femto-chemistry applied to the crossing of covalent and ionic curves, can provide evidence for this theory. We anticipate this scale/shape invariant scheme applies to smaller scales in nuclear and high-energy particle physics. For larger gravitational scales (Newton 1/R potentials), problems with super-unification are discussed. Reactions between hydrogen and antihydrogen, feasible in the near future, will probably produce normal H2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyler, Kyle L.; Zhong, Ding; Klein, Dahlia R.
Bulk chromium tri-iodide (CrI 3) has long been known as a layered van der Waals ferromagnet. However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet, providing a new platform for investigating light–matter interactions and magneto-optical phenomena in the atomically thin limit. Here in this paper, we report spontaneous circularly polarized photoluminescence in monolayer CrI 3 under linearly polarized excitation, with helicity determined by the monolayer magnetization direction. In contrast, the bilayer CrI 3 photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI 3 bilayers. Distinct frommore » the Wannier–Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors, our absorption and layer-dependent photoluminescence measurements reveal the importance of ligand-field and charge-transfer transitions to the optoelectronic response of atomically thin CrI 3. We attribute the photoluminescence to a parity-forbidden d–d transition characteristic of Cr 3+ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature.« less
NASA Astrophysics Data System (ADS)
Sagastizabal, R.; Langford, N. K.; Kounalakis, M.; Dickel, C.; Bruno, A.; Luthi, F.; Thoen, D. J.; Endo, A.; Dicarlo, L.
Light-matter interaction can lead to large photon build-up and hybrid atom-photon entanglement in the ultrastrong coupling (USC) regime, where the coupling strength becomes comparable to the eigenenergies of the system. Accessing the cavity degree of freedom, however, is an outstanding challenge in natural USC systems. In this talk, we directly probe light field dynamics in the USC regime using a digital simulation of the quantum Rabi model in a planar circuit QED chip with a transmon moderately coupled to a resonator. We produce high-accuracy USC light-matter dynamics, using second-order Trotterisation and up to 90 Trotter steps. We probe the average photon number, photon parity and perform Wigner tomography of the simulated field. Finally, we combine tomography of the resonator with qubit measurements to evidence the Schrödinger-cat-like atom-photon entanglement which is a key signature of light-matter dynamics in the USC regime. Funding from the EU FP7 Project ScaleQIT, the ERC Synergy Grant QC-lab, the Netherlands Organization of Scientic Research (NWO), and Microsoft Research.
Future DUNE constraints on EFT
NASA Astrophysics Data System (ADS)
Falkowski, Adam; Grilli di Cortona, Giovanni; Tabrizi, Zahra
2018-04-01
In the near future, fundamental interactions at high-energy scales may be most efficiently studied via precision measurements at low energies. A universal language to assemble and interpret precision measurements is the so-called SMEFT, which is an effective field theory (EFT) where the Standard Model (SM) Lagrangian is extended by higher-dimensional operators. In this paper we investigate the possible impact of the DUNE neutrino experiment on constraining the SMEFT. The unprecedented neutrino flux offers an opportunity to greatly improve the current limits via precision measurements of the trident production and neutrino scattering off electrons and nuclei in the DUNE near detector. We quantify the DUNE sensitivity to dimension-6 operators in the SMEFT Lagrangian, and find that in some cases operators suppressed by an O(30) TeV scale can be probed. We also compare the DUNE reach to that of future experiments involving atomic parity violation and polarization asymmetry in electron scattering, which are sensitive to an overlapping set of SMEFT parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magee, Joshua Allen
2016-05-01
The Q_weak experiment, which ran at the Thomas Jefferson National Accelerator Facility, made a precision measurement of the proton's weak charge, Q^p_W. The weak charge is extracted via a measurement of the parity-violating asymmetry in elastic electron-proton scattering from hydrogen at low momentum transfer (Q^2=0.025 GeV^2). This result is directly related to the electroweak mixing angle, sin^2(Theta_W), a fundamental parameter in the Standard Model of particle physics. This provides a precision test sensitive to new, as yet unknown, fundamental physics. This dissertation focuses on two central corrections to the Q_weak measurement: the target window contribution and sub-percent determination of themore » electron beam polarization. The aluminum target windows contribute approximately 30% of the measured asymmetry. Removal of this background requires precise measurements of both the elastic electron-aluminum scattering rate and its parity-violating asymmetry. The results reported here are the most precise measurement of the Q_weak target dilution and asymmetry to date. The parity-violating asymmetry for the aluminum alloy was found to be 1.6174 +/- 0.0704 (stat.) +/- 0.0113 (sys.) parts-per-million. The first sub-percent precision polarization measurements made from the Hall C Moller polarimeter are also reported, with systematic uncertainties of 0.84%.« less
Fábri, Csaba; Horný, Ľuboš; Quack, Martin
2015-12-01
Measuring the parity-violating energy difference Δpv E between the enantiomers of chiral molecules is a major challenge of current physical-chemical stereochemistry. An important step towards this goal is to identify suitable molecules for such experiments by means of theory. This step has been made by calculations for the complex dynamics of tunneling and electroweak quantum chemistry of parity violation in the "classic" molecule trisulfane, HSSSH, which satisfies the relevant conditions for experiments almost ideally, as the molecule is comparatively simple and parity violation clearly dominates over tunneling in the ground state. At the same time, the barrier for stereomutation is easily overcome by the S-H infrared chromophore. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantum theory of an atom in proximity to a superconductor
NASA Astrophysics Data System (ADS)
Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério
2018-02-01
The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.
Sposato, Luciano A; Saposnik, Gustavo
2012-01-01
Differences in definitions of socioeconomic status and between study designs hinder their comparability across countries. We aimed to analyze the correlation between 3 widely used macrosocioeconomic status indicators and clinical outcomes. We selected population-based studies reporting incident stroke risk and/or 30-day case-fatality according to prespecified criteria. We used 3 macrosocioeconomic status indicators that are consistently defined by international agencies: per capita gross domestic product adjusted for purchasing power parity, total health expenditures per capita at purchasing power parity, and unemployment rate. We examined the correlation of each macrosocioeconomic status indicator with incident risk of stroke, 30-day case-fatality, proportion of hemorrhagic strokes, and age at stroke onset. Twenty-three articles comprising 30 population-based studies fulfilled the eligibility criteria. Age-adjusted incident risk of stroke using the standardized World Health Organization World population was associated to lower per capita gross domestic product adjusted for purchasing power parity (ρ=-0.661, P=0.027, R(2)=0.32) and total health expenditures per capita at purchasing power parity (ρ=-0.623, P=0.040, R(2)=0.26). Thirty-day case-fatality rates and proportion of hemorrhagic strokes were also related to lower per capita gross domestic product adjusted for purchasing power parity and total health expenditures per capita at purchasing power parity. Moreover, stroke occurred at a younger age in populations with low per capita gross domestic product adjusted for purchasing power parity and total health expenditures per capita at purchasing power parity. There was no correlation between unemployment rates and outcome measures. Lower per capita gross domestic product adjusted for purchasing power parity and total health expenditures per capita at purchasing power parity were associated with higher incident risk of stroke, higher case-fatality, a greater proportion of hemorrhagic strokes, and lower age at stroke onset. As a result, these macrosocioeconomic status indicators may be used as proxy measures of quality of primary prevention and acute care and considered as important factors for developing strategies aimed at improving worldwide stroke care.
Faust, M A; Robison, O W; Tess, M W
1992-07-01
A stochastic life-cycle swine production model was used to study the effect of female replacement rates in the dam-daughter pathway for a tiered breeding structure on genetic change and returns to the breeder. Genetic, environmental, and economic parameters were used to simulate characteristics of individual pigs in a system producing F1 female replacements. Evaluated were maximum culling ages for nucleus and multiplier tier sows. System combinations included one- and five-parity alternatives for both levels and 10-parity options for the multiplier tier. Yearly changes and average phenotypic levels were computed for performance and economic measures. Generally, at the nucleus level, responses to 10 yr of selection for sow and pig performance in five-parity herds were 70 to 85% of response in one-parity herds. Similarly, the highest selection responses in multiplier herds were from systems with one-parity nucleus tiers. Responses in these were typically greater than 115% of the response for systems with the smallest yearly change, namely, the five-parity nucleus and five- and 10-parity multiplier levels. In contrast, the most profitable multiplier tiers (10-parity) had the lowest replacement costs. Within a multiplier culling strategy, rapid genetic change was desirable. Differences between systems that culled after five or 10 parities were smaller than differences between five- and one-parity multiplier options. To recover production costs, systems with the lowest returns required 140% of market hog value for gilts available to commercial tiers, whereas more economically efficient systems required no premium.
6-minute walk distance in healthy North Africans older than 40 years: influence of parity.
Ben Saad, Helmi; Prefaut, Christian; Tabka, Zouhair; Mtir, Abdelaziz Hadj; Chemit, Mohamed; Hassaoune, Rym; Ben Abid, Tarek; Zara, Khelifa; Mercier, Grégoire; Zbidi, Abdelkrim; Hayot, Maurice
2009-01-01
The need for a 6-min walk distance (6-MWD) reference equation for healthy North African adults older than 40 years was assessed in a prospective cross-sectional study. Anthropometric data and 6-MWD were measured in 229 healthy Tunisian adults (125 women) over 40 years old. Two subgroups of 38 women were identified according to the parity (low
Ghi, Tullio; Cariello, Luisa; Rizzo, Ludovica; Ferrazzi, Enrico; Periti, Enrico; Prefumo, Federico; Stampalija, Tamara; Viora, Elsa; Verrotti, Carla; Rizzo, Giuseppe
2016-01-01
The purpose of this study was to construct fetal biometric charts between 16 and 40 weeks' gestation that were customized for parental characteristics, race, and parity, using quantile regression analysis. In a multicenter cross-sectional study, 8070 sonographic examinations from low-risk pregnancies between 16 and 40 weeks' gestation were analyzed. The fetal measurements obtained were biparietal diameter, head circumference, abdominal circumference, and femur diaphysis length. Quantile regression was used to examine the impact of parental height and weight, parity, and race across biometric percentiles for the fetal measurements considered. Paternal and maternal height were significant covariates for all of the measurements considered (P < .05). Maternal weight significantly influenced head circumference, abdominal circumference, and femur diaphysis length. Parity was significantly associated with biparietal diameter and head circumference. Central African race was associated with head circumference and femur diaphysis length, whereas North African race was only associated with femur diaphysis length. In this study we constructed customized biometric growth charts using quantile regression in a large cohort of low-risk pregnancies. These charts offer the advantage of defining individualized normal ranges of fetal biometric parameters at each specific percentile corrected for parental height and weight, parity, and race. This study supports the importance of including these variables in routine sonographic screening for fetal growth abnormalities.
Measurement of the Parity Violating Asymmetry in Elastic Electron Scattering off 208Pb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wexler, Jonathan
2014-09-01
The Lead Radius Experiment (PREX) was carried out in order to provide a model-independent measurement of the RMS radius √
Komives, A; Sint, A K; Bowers, M; Snow, M
2005-01-01
A measurement of the parity-violating gamma asymmetry in n-D capture would yield information on N-N parity violation independent of the n-p system. Since cold neutrons will depolarize in a liquid deuterium target in which the scattering cross section is much larger than the absorption cross section, it will be necessary to quantify the loss of polarization before capture. One way to do this is to use the large circular polarization of the gamma from n-D capture and analyze the circular polarization of the gamma in a gamma polarimeter. We describe the design of this polarimeter.
Dai, Li; Kuo, Watson; Chung, Ming-Chiang
2015-01-01
We propose a scheme for extracting entangled charge qubits from quantum-dot chains that support zero-energy edge modes. The edge mode is composed of Majorana fermions localized at the ends of each chain. The qubit, logically encoded in double quantum dots, can be manipulated through tunneling and pairing interactions between them. The detailed form of the entangled state depends on both the parity measurement (an even or odd number) of the boundary-site electrons in each chain and the teleportation between the chains. The parity measurement is realized through the dispersive coupling of coherent-state microwave photons to the boundary sites, while the teleportation is performed via Bell measurements. Our scheme illustrates localizable entanglement in a fermionic system, which serves feasibly as a quantum repeater under realistic experimental conditions, as it allows for finite temperature effect and is robust against disorders, decoherence and quasi-particle poisoning. PMID:26062033
Correcting for time-dependent field inhomogeneities in a time orbiting potential magnetic trap
NASA Astrophysics Data System (ADS)
Fallon, Adam; Berl, Seth; Sackett, Charles
2017-04-01
Many experiments use a Time Orbiting Potential (TOP) magnetic trap to confine a Bose-condensate. An advantage of the TOP trap is that it is relatively insensitive to deviations and errors in the magnetic field. However, precision experiments using the trapped atoms often do require the rotating field to be well characterized. For instance, precision spectroscopy requires accurate knowledge of both the field magnitude and field direction relative to the polarization of a probe laser beam. We have developed an RF spectroscopic technique to measure the magnitude of the field at arbitrary times within the TOP trap rotation period. From the time-variation mapped out, various imperfections can be isolated and measured, including asymmetries in the applied trap field and static environmental fields. By compensating for these imperfections, field control at the 10 mG level or better is achievable, for a bias field of 10 G or more. This should help enable more precision experiments using trapped condensates, including precision measurements of tune-out wavelengths and possibly parity-violation measurements. Supported by the National Science Foundation, the Jefferson Scholars Foundation, and NASA.
Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+
NASA Astrophysics Data System (ADS)
Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.
2017-12-01
We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.
Parity Violation in Proton-Proton Scattering at Intermediate Energies
DOE R&D Accomplishments Database
Yuan, V.; Frauenfelder, H.; Harper, R. W.; Bowman, J. D.; Carlini, R.; MacArthur, D. W.; Mischke, R. E.; Nagle, D. E.; Talaga, R. L.; McDonald, A. B.
1986-05-01
Results of a measurement of parity nonconservation in the anti p-p total cross sections at 800-MeV are presented. The dependence of transmission on beam properties and correction for systematic errors are discussed. The measured longitudinal asymmetry is A{sub L} = (+2.4 +- 1.1(statistical) +- 0.1(systematic)) x 10{sup -7}. A proposed experiment at 230 MeV is discussed.
Metabolomic differences in early and late lactation first-parity gilts
USDA-ARS?s Scientific Manuscript database
Investigating the metabolome provides the evaluation of all cellular processes occuring while accounting for environmental influence and may provide additional information for selection criteria to fully evolve. Blood samples and body condition measurements were acquired from 68, first-parity gilts ...
Measurement of parity-violating asymmetry in deep inelastic scattering at Jefferson Lab
NASA Astrophysics Data System (ADS)
Zheng, Xiaochao
2015-04-01
Symmetry permeates nature and is fundamental to all laws of physics. One example is mirror symmetry, also called ``parity symmetry''. It implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering played a key role in establishing, and now testing, the Standard Model of particle physics. One particular set of the quantities accessible through measurements of parity-violating electron scattering are the vector-electron axial-vector-quark weak couplings, called C2 q's, measured directly only once in the past 40 years. We report here on a new measurement of the parity-violating asymmetry in electron-quark scattering, that has yielded a specific combination 2C2 u -C2 d five times more precise than the earlier result. (Here u and d stand respectively for the up and the down quarks.) These results are the first evidence, at more than the 95% confidence level, that the C2 q's are non-zero as predicted by the electroweak theory. They lead to constraints on new interactions beyond the Standard Model, particularly on those whose laws change when the quark chirality is flipped between left and right. In today's particle physics research that is focused on colliders such as the LHC, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. In addition to deep inelastic scattering, we will report on measurement of the asymmetry in the nucleon resonance region. These data exhibit for the first time that the quark-hadron duality may work for electroweak observables at the (10--15)% level throughout the whole resonance region. At the end I will give a brief outlook on the future PVDIS program using the Jefferson Lab 12 GeV beam, which will not only provide more precise measurement of C2 q, but also for sin2 θW and for studying unique features of the nucleon structure and that of the strong interaction. for the Jefferson Lab PVDIS Collaboration.
Experimental realization of Bloch oscillations in a parity-time synthetic silicon photonic lattice
Xu, Ye-Long; Fegadolli, William S.; Gan, Lin; Lu, Ming-Hui; Liu, Xiao-Ping; Li, Zhi-Yuan; Scherer, Axel; Chen, Yan-Feng
2016-01-01
As an important electron transportation phenomenon, Bloch oscillations have been extensively studied in condensed matter. Due to the similarity in wave properties between electrons and other quantum particles, Bloch oscillations have been observed in atom lattices, photonic lattices, and so on. One of the many distinct advantages for choosing these systems over the regular electronic systems is the versatility in engineering artificial potentials. Here by utilizing dissipative elements in a CMOS-compatible photonic platform to create a periodic complex potential and by exploiting the emerging concept of parity-time synthetic photonics, we experimentally realize spatial Bloch oscillations in a non-Hermitian photonic system on a chip level. Our demonstration may have significant impact in the field of quantum simulation by following the recent trend of moving complicated table-top quantum optics experiments onto the fully integrated CMOS-compatible silicon platform. PMID:27095533
Bounds on Time Reversal Violation From Polarized Neutron Capture With Unpolarized Targets.
Davis, E D; Gould, C R; Mitchell, G E; Sharapov, E I
2005-01-01
We have analyzed constraints on parity-odd time-reversal noninvariant interactions derived from measurements of the energy dependence of parity-violating polarized neutron capture on unpolarized targets. As previous authors found, a perturbation in energy dependence due to a parity (P)-odd time (T)-odd interaction is present. However, the perturbation competes with T-even terms which can obscure the T-odd signature. We estimate the magnitudes of these competing terms and suggest strategies for a practicable experiment.
Parity-Doublet Structure in the $$147\\atop{57}$$La 90 nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wisniewski, J.; Urban, W.; Rzaca-Urban, T.
Excited states in 147La, populated in spontaneous fission of 252Cf have been reinvestigated by means of γ spectroscopy, using high-fold γ coincidences measured with Gammasphere array of Ge detectors. The 229.5-keV level, which has been assigned spin-parity 9/2 - in a recent evaluation, is shown to have spin-parity 11/2 -. Consequently, the ground state has spin-parity 5/2 +. Excited levels in 147La have been arranged into a parity-doublet structure, showing that at medium excitation energy the 147La nucleus may have octupole deformation. In conclusion, the B( E1) rates in 147La, which are factor four lower than in 145La, suggest thatmore » the electric dipole moment in 147La is depresses by an extra mechanism, probably connected with the population of particular neutron orbitals.« less
Parity-Doublet Structure in the $$147\\atop{57}$$La 90 nucleus
Wisniewski, J.; Urban, W.; Rzaca-Urban, T.; ...
2017-12-01
Excited states in 147La, populated in spontaneous fission of 252Cf have been reinvestigated by means of γ spectroscopy, using high-fold γ coincidences measured with Gammasphere array of Ge detectors. The 229.5-keV level, which has been assigned spin-parity 9/2 - in a recent evaluation, is shown to have spin-parity 11/2 -. Consequently, the ground state has spin-parity 5/2 +. Excited levels in 147La have been arranged into a parity-doublet structure, showing that at medium excitation energy the 147La nucleus may have octupole deformation. In conclusion, the B( E1) rates in 147La, which are factor four lower than in 145La, suggest thatmore » the electric dipole moment in 147La is depresses by an extra mechanism, probably connected with the population of particular neutron orbitals.« less
Noise-tolerant parity learning with one quantum bit
NASA Astrophysics Data System (ADS)
Park, Daniel K.; Rhee, June-Koo K.; Lee, Soonchil
2018-03-01
Demonstrating quantum advantage with less powerful but more realistic devices is of great importance in modern quantum information science. Recently, a significant quantum speedup was achieved in the problem of learning a hidden parity function with noise. However, if all data qubits at the query output are completely depolarized, the algorithm fails. In this work, we present a quantum parity learning algorithm that exhibits quantum advantage as long as one qubit is provided with nonzero polarization in each query. In this scenario, the quantum parity learning naturally becomes deterministic quantum computation with one qubit. Then the hidden parity function can be revealed by performing a set of operations that can be interpreted as measuring nonlocal observables on the auxiliary result qubit having nonzero polarization and each data qubit. We also discuss the source of the quantum advantage in our algorithm from the resource-theoretic point of view.
Analysis tools for discovering strong parity violation at hadron colliders
NASA Astrophysics Data System (ADS)
Backović, Mihailo; Ralston, John P.
2011-07-01
Several arguments suggest parity violation may be observable in high energy strong interactions. We introduce new analysis tools to describe the azimuthal dependence of multiparticle distributions, or “azimuthal flow.” Analysis uses the representations of the orthogonal group O(2) and dihedral groups DN necessary to define parity completely in two dimensions. Classification finds that collective angles used in event-by-event statistics represent inequivalent tensor observables that cannot generally be represented by a single “reaction plane.” Many new parity-violating observables exist that have never been measured, while many parity-conserving observables formerly lumped together are now distinguished. We use the concept of “event-shape sorting” to suggest separating right- and left-handed events, and we discuss the effects of transverse and longitudinal spin. The analysis tools are statistically robust, and can be applied equally to low or high multiplicity events at the Tevatron, RHIC or RHIC Spin, and the LHC.
Tunnel ionization of highly excited atoms in a noncoherent laser radiation field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krainov, V.P.; Todirashku, S.S.
1982-10-01
A theory is developed of the ionization of highly excited atomic states by a low-frequency field of noncoherent laser radiation with a large number of modes. Analytic formulas are obtained for the probability of the tunnel ionization in such a field. An analysis is made of the case of the hydrogen atom when the parabolic quantum numbers are sufficiently good in the low-frequency limit, as well as of the case of highly excited states of complex atoms when these states are characterized by a definite orbital momentum and parity. It is concluded that the statistical factor representing the ratio ofmore » the probability in a stochastic field to the probability in a monochromatic field decreases, compared with the case of a short-range potential, if the ''Coulomb tail'' is included. It is shown that at a given field intensity the statistical factor decreases on increase in the principal quantum number of the state being ionized.« less
FROM THE HISTORY OF PHYSICS: The development of the first Soviet atomic bomb
NASA Astrophysics Data System (ADS)
Goncharov, German A.; Ryabev, Lev D.
2001-01-01
In the late 1930s and early 1940s, two remarkable physical phenomena — the fission of heavy nuclei and the chain fission reaction — were discovered, implying that a new powerful source of energy (nuclear fission energy) might become a practical possibility for mankind. At that time, however, the political situation in the world made the development of the atomic bomb the main objective of nuclear energy research in the countries involved. The first atomic bombs, notoriously used in the war against Japan, were produced by the United States of America only six and a half years after the discovery of fission. Four years later, the first Soviet atomic bomb was tested. This was a major step toward the establishment of nuclear parity which led to stability and global peace and thus greatly influenced the destiny of human kind. Based on documentary materials covering the period from 1939 to 1949, this paper traces the origin and evolution of the physical ideas behind the first Soviet atomic bomb and discusses the most important events associated with the project.
Circular dichroism of magnetically induced transitions for D2 lines of alkali atoms
NASA Astrophysics Data System (ADS)
Tonoyan, A.; Sargsyan, A.; Klinger, E.; Hakhumyan, G.; Leroy, C.; Auzinsh, M.; Papoyan, A.; Sarkisyan, D.
2018-03-01
In this letter we study magnetic circular dichroism in alkali atoms exhibiting asymmetric behaviour of magnetically induced transitions. The magnetic field \\textbf{B}\\parallel\\textbf{k} induces transitions between Δ F = +/-2 hyperfine levels of alkali atoms and in the range of ∼0.1{\\text{--}}3 \\text{kG} magnetic field, the intensities of these transitions experience significant enhancement. We have inferred a general rule applicable for the D 2 lines of all alkali atoms, that is the transition intensity enhancement is around four times larger for the case of σ+ than for σ- excitation for Δ F = +2 , whereas it is several hundreds of thousand times larger in the case of σ- than that for σ+ polarization for Δ F = -2 . This asymmetric behaviour results in circular dichroism. For experimental verification we employed half-wavelength-thick atomic vapor nanocells using a derivative of the selective reflection technique, which provides a sub-Doppler spectroscopic linewidth (∼50 \\text{MHz} ). The presented theoretical curves well describe the experimental results. This effect can find applications particularly in parity violation experiments.
The Large Scale Structure of the Galactic Magnetic Field and High Energy Cosmic Ray Anisotropy
NASA Astrophysics Data System (ADS)
Alvarez-Muñiz, Jaime; Stanev, Todor
2006-10-01
Measurements of the magnetic field in our Galaxy are complex and usually difficult to interpret. A spiral regular field in the disk is favored by observations, however the number of field reversals is still under debate. Measurements of the parity of the field across the Galactic plane are also very difficult due to the presence of the disk field itself. In this work we demonstrate that cosmic ray protons in the energy range 1018 to 1019eV, if accelerated near the center of the Galaxy, are sensitive to the large scale structure of the Galactic Magnetic Field (GMF). In particular if the field is of even parity, and the spiral field is bi-symmetric (BSS), ultra high energy protons will predominantly come from the Southern Galactic hemisphere, and predominantly from the Northern Galactic hemisphere if the field is of even parity and axi-symmetric (ASS). There is no sensitivity to the BSS or ASS configurations if the field is of odd parity.
Probing non-Hermitian physics with flying atoms
NASA Astrophysics Data System (ADS)
Wen, Jianming; Xiao, Yanhong; Peng, Peng; Cao, Wanxia; Shen, Ce; Qu, Weizhi; Jiang, Liang
2016-05-01
Non-Hermtian optical systems with parity-time (PT) symmetry provide new means for light manipulation and control. To date, most of experimental demonstrations on PT symmetry rely on advanced nanotechnologies and sophisticated fabrication techniques to manmade solid-state materials. Here, we report the first experimental realization of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, we observe essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold. Moreover, our system allows nonlocal interference of two spatially-separated fields as well as anti-PT assisted four-wave mixing. Besides, another intriguing feature offered by the system is refractionless (or unit-refraction) light propagation. Our results thus represent a significant advance in non-Hermitian physics by bridging a firm connection with the AMO field, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry can be anticipated.
NASA Astrophysics Data System (ADS)
Hays, M.; de Lange, G.; Serniak, K.; van Woerkom, D. J.; Väyrynen, J. I.; van Heck, B.; Vool, U.; Krogstrup, P.; Nygård, J.; Frunzio, L.; Geresdi, A.; Glazman, L. I.; Devoret, M. H.
Proximitized semiconducting nanowires subject to magnetic field should display topological superconductivity and support Majorana zero modes which have non-Abelian braiding statistics. The conventional Andreev levels formed in such wires in the absence of field are a precursor to these exotic zero modes. The fermion-parity switching time of Andreev levels sets a lower bound on the bandwidth required for experiments aimed at harnessing non-Abelian braiding statistics. We demonstrate the observation of quantum jumps between even and odd-parity states of an individual Andreev bound state in a non-topological junction, providing a direct measurement of the state populations and the parity lifetime. Work supported by: ARO, ONR, AFOSR, EU Marie Curie and YINQE.
Multiparity evaluation of calving ease and stillbirth with separate genetic effects by parity.
Wiggans, G R; Cole, J B; Thornton, L L M
2008-08-01
Evaluations that analyze first and later parities as correlated traits were developed separately for calving ease (CE) from over 15 million calving records of Holsteins, Brown Swiss, and Holstein-Brown Swiss crossbreds and for stillbirth (SB) from 7.4 million of the Holstein CE records. Calving ease was measured on a scale of 1 (no difficulty) to 5 (difficult birth); SB status was designated as live or dead within 48 h. Scores for CE and SB were transformed separately for each trait by parity (first or later) and calf sex (male or female) and converted to a unit standard deviation scale. For variance component estimation, Holstein data were selected for the 2,968 bulls with the most records as sire or maternal grandsire (MGS). Six samples were selected by herd; samples ranged in size from 97,756 to 146,138 records. A multiparity sire-MGS model was used to calculate evaluations separately for CE and for SB with first and later parities as correlated traits. Fixed effects were year-season, calf sex, and sire and MGS birth years; random effects were herd-year interaction, sire, and MGS. For later parities, sex effects were separated by parity. The genetic correlation between first and later parities was 0.79 for sire and 0.81 for MGS for CE, and 0.83 for sire and 0.74 for MGS for SB. For national CE evaluations, which also include Brown Swiss, a fixed effect for breed was added to the model. Correlations between solutions on the underlying scale from the January 2008 USDA CE evaluation with those from the multiparity analysis for CE were 0.89 and 0.91 for first- and later-parity sire effects and 0.71 and 0.88 for first- and later-parity MGS effects; the larger value for later parity reflects that later parities comprised 64% of the data. Corresponding correlations for SB were 0.81 and 0.82 for first- and later-parity sire effects and 0.46 and 0.83 for first- and later-parity MGS effects, respectively. Correlations were higher when only bulls with a multiparity reliability of >65% were included. The multiparity analysis accounted for genetic differences in calving performance between first and later parities. Evaluations should become more stable as the portion of a bull's observations from different parities changes over his lifetime. Accuracy of the net merit index can be improved by adjusting weights to use evaluations for separate parities optimally.
NASA Astrophysics Data System (ADS)
Kawaguchi, Mamiya; Harada, Masayasu; Matsuzaki, Shinya; Ouyang, Ruiwen
2017-06-01
It is expected that in a hot QCD system, a local parity-odd domain can be produced due to nonzero chirality, which is induced from the difference of winding numbers carried by the gluon topological configuration (QCD sphaleron). This local domain is called the chiral-imbalance medium, characterized by nonzero chiral chemical potential, which can be interpreted as the time variation of the strong C P phase. We find that the chiral chemical potential generates the parity breaking term in the electromagnetic form factor of charged pions. Heavy ion collision experiments could observe the phenomenological consequence of this parity-odd form factor through the elastic scattering of a pion and a photon in the medium. Then we quantify the asymmetry rate of the parity violation by measuring the polarization of the photon associated with the pion, and discuss how it could be measured in a definite laboratory frame. We roughly estimate the typical size of the asymmetry, just by picking up the pion resonant process, and find that the signal can be sufficiently larger than possible background events from parity-breaking electroweak process. Our findings might provide a novel possibility to make a manifest detection for the remnant of the strong C P violation.
NASA Astrophysics Data System (ADS)
Siddiqui, Jawad M.
Grid parity for alternative energy resources occurs when the cost of electricity generated from the source is lower than or equal to the purchasing price of power from the electricity grid. This thesis aims to quantitatively analyze the evolution of hybrid stand-alone microgrids in the US, Germany, Pakistan and South Africa to determine grid parity for a solar PV/Diesel/Battery hybrid system. The Energy System Model (ESM) and NREL's Hybrid Optimization of Multiple Energy Resources (HOMER) software are used to simulate the microgrid operation and determine a Levelized Cost of Electricity (LCOE) figure for each location. This cost per kWh is then compared with two distinct estimates of future retail electricity prices at each location to determine grid parity points. Analysis results reveal that future estimates of LCOE for such hybrid stand-alone microgrids range within the 35-55 cents/kWh over the 25 year study period. Grid parity occurs earlier in locations with higher power prices or unreliable grids. For Pakistan grid parity is already here, while Germany hits parity between the years 2023-2029. Results for South Africa suggest a parity time range of the years 2040-2045. In the US, places with low grid prices do not hit parity during the study period. Sensitivity analysis results reveal the significant impact of financing and the cost of capital on these grid parity points, particularly in developing markets of Pakistan and South Africa. Overall, the study helps conclude that variations in energy markets may determine the fate of emerging energy technologies like microgrids. However, policy interventions have a significant impact on the final outcome, such as the grid parity in this case. Measures such as eliminating uncertainty in policies and improving financing can help these grids overcome barriers in developing economies, where they may find a greater use much earlier in time.
Ligand-field helical luminescence in a 2D ferromagnetic insulator
Seyler, Kyle L.; Zhong, Ding; Klein, Dahlia R.; ...
2017-12-04
Bulk chromium tri-iodide (CrI 3) has long been known as a layered van der Waals ferromagnet. However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet, providing a new platform for investigating light–matter interactions and magneto-optical phenomena in the atomically thin limit. Here in this paper, we report spontaneous circularly polarized photoluminescence in monolayer CrI 3 under linearly polarized excitation, with helicity determined by the monolayer magnetization direction. In contrast, the bilayer CrI 3 photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI 3 bilayers. Distinct frommore » the Wannier–Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors, our absorption and layer-dependent photoluminescence measurements reveal the importance of ligand-field and charge-transfer transitions to the optoelectronic response of atomically thin CrI 3. We attribute the photoluminescence to a parity-forbidden d–d transition characteristic of Cr 3+ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature.« less
Coherent and incoherent dipole-dipole interactions between atoms
NASA Astrophysics Data System (ADS)
Robicheaux, Francis
2016-05-01
Results will be presented on the collective interaction between atoms due to the electric dipole-dipole coupling between states of different parity on two different atoms. A canonical example of this effect is when the electronic state of one atom has S-character and the state of another atom has P-character. The energy difference between the two states plays an important role in the interaction since the change in energy determines the wave number of a photon that would cause a transition between the states. If the atoms are much closer than the wave length of this photon, then the dipole-dipole interaction is in the near field and has a 1 /r3 dependence on atomic separation. If the atoms are farther apart than the wave length, then the interaction is in the far field and has a 1 / r dependence. When many atoms interact, collective effects can dominate the system with the character of the collective effect depending on whether the atomic separation leads to near field or far field coupling. As an example of the case where the atoms are in the far field, the line broadening of transitions and strong deviations from the Beer-Lambert law in a diffuse gas will be presented. As an example of near field collective behavior, the radiative properties of a Rydberg gas will be presented. Based upon work supported by the National Science Foundation under Grant No. 1404419-PHY in collaboration with R.T. Sutherland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, U.; Space Science Division, Naval Research Laboratory, Washington, DC 20375-5320; Doschek, G.A.
We list observed parity-forbidden and spin-forbidden lines in the 500-1600 A range emitted by solar coronal plasmas and derive improved energy levels from their wavelengths. The lines, emitted by astrophysical abundant elements, belong to transitions within the ground configurations of the type ns{sup 2} np {sup k}, for n = 2, 3 and k = 0-5, and between the lowest term of the first excited configuration 2s2p {sup k+1} and the 2s{sup 2}2p {sup k} ground configurations for k = 0, 1, 2. For each line we give the newly measured wavelength, and the measured or predicted wavelength from themore » NIST Atomic Spectra Database (ASD) (which except for a few cases includes the previously reported compilation of Kaufman and Sugar [J. Phys. Chem. Ref. Data 15 (1986) 321]), and the values of the transition probability taken from the ASD and CHIANTI database. The list contains measured wavelengths of 136 lines of which over 100 were not available for the Kaufman and Sugar compilation. In addition we provide energy levels that were derived from the reported lines.« less
The grasp2K relativistic atomic structure package
NASA Astrophysics Data System (ADS)
Jönsson, P.; He, X.; Froese Fischer, C.; Grant, I. P.
2007-10-01
This paper describes grasp2K, a general-purpose relativistic atomic structure package. It is a modification and extension of the GRASP92 package by [F.A. Parpia, C. Froese Fischer, I.P. Grant, Comput. Phys. Comm. 94 (1996) 249]. For the sake of continuity, two versions are included. Version 1 retains the GRASP92 formats for wave functions and expansion coefficients, but no longer requires preprocessing and more default options have been introduced. Modifications have eliminated some errors, improved the stability, and simplified interactive use. The transition code has been extended to cases where the initial and final states have different orbital sets. Several utility programs have been added. Whereas Version 1 constructs a single interaction matrix for all the J's and parities, Version 2 treats each J and parity as a separate matrix. This block structure results in a reduction of memory use and considerably shorter eigenvectors. Additional tools have been developed for this format. The CPU intensive parts of Version 2 have been parallelized using MPI. The package includes a "make" facility that relies on environment variables. These make it easier to port the application to different platforms. The present version supports the 32-bit Linux and ibmSP environments where the former is compatible with many Unix systems. Descriptions of the features and the program/data flow of the package will be given in some detail in this report. Program summaryProgram title: grasp2K Catalogue identifier: ADZL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 213 524 No. of bytes in distributed program, including test data, etc.: 1 328 588 Distribution format: tar.gz Programming language: Fortran and C Computer: Intel Xeon, 3.06 GHz Operating system: Suse LINUX RAM: 500 MB or more Classification: 2.1 Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a 'fully relativistic' approach. Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator, j=l+s, and the parity operator Π=βπ. Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator, J, and the atomic parity operator, P. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average energy level (EAL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number of CSFs. Extended optimal level (EOL) functionals are weighted sums of energies of some subset of ASFs. Radial functions may be determined by numerically solving the multiconfiguration Dirac-Hartree-Fock (MCDHF) equations that define an extremum of the variational functional by the self-consistent-field (SCF) method. Lists of CSFs are generated from a set of reference CSFs and rules for deriving other CSFs from these. Expansion coefficients are obtained using sparse-matrix methods for solving the relativistic configuration interaction (CI) problem. Transition properties for pairs of ASFs are computed from matrix elements of multipole operators of the electromagnetic field. Biorthogonal transformation methods are employed so that all matrix elements between CSFs can be evaluated using Racah algebra. Restrictions: The maximum number of radial orbitals is limited to 120 by the packing algorithm used for 32-bit integers. The maximum size of a multiconfiguration (MC) calculation, as measured by the length of the configuration state function (CSF) list, is limited by numerical stability, processing time, or storage which may be either in memory or on disk. Numerical stability is the same as GRASP92 [F.A. Parpia, C. Froese Fischer, I.P. Grant, Comput. Phys. Comm. 94 (1996) 249] with a slight improvement in memory management for Version 2 codes. Sufficient disk space is needed to store angular data. In configuration interaction calculations the matrix may be either in memory or on disk. The tables of coefficients of fractional parentage, as in GRASP92, are limited to subshells with j⩽7/2; occupied subshells with j=9/2 are, therefore, restricted to a maximum of two electrons. Unusual features: The installation process has been simplified so that pre-processing of the raw code needed with GRASP92 can be eliminated. Dynamic memory allocation reduces the number of parameters needed to define fixed array dimensions to nine. The corrections discussed in [C. Froese Fischer, G. Gaigalas, Y. Ralchenko, Comput. Phys. Comm. 175 (2006) 739] have also been implemented. Environment variables are used to facilitate the compilation of the libraries, applications, and tools with different compilers on different platforms. Computationally intensive applications have been parallelized using the message passing interface (MPI). When standard output is redirected, prompts and critical information about the progress of a calculation or convergence are still directed to the screen through the standard error output unit. Running time: CPU time required to execute test cases: 5 min ( n=4 calculation with 2190 CSFs) and 52.7 minutes ( n=5 calculation with 6752 CSFs)
Heidari, Behzad; Heidari, Parnaz; Nourooddini, Haj Ghorban; Hajian-Tilaki, Karim Ollah
2013-01-01
To investigate the impact of multiple pregnancies on postmenopausal bone mineral density (BMD). BMD at the femoral neck (FN) and lumbar spine (LS) was measured by dual energy X-ray absorptiometry (DXA) method. Diagnosis of osteoporosis (OP) was confirmed by World Health Organization criteria. Women were stratified according to number of parity as < 3, 4-7, and > 7 parity groups as well as in age groups of < 65 and 65 in age groups of < 65 and > or = 65 years. BMD values and frequency of OP were compared across the groups according to age. Multiple logistic regression analysis with calculation of adjusted odds ratio (OR) was used for association. A total of 264 women with mean age of 63 +/- 8.7 and mean menopausal duration of 15.8 +/- 10.2 years were studied. LS-OP and FN-OP were observed in 28% and 58.3% of women, respectively. There were significant differences in BMD values across different parity groups at both sites of LS and FN (p = 0.011 and p = 0.036, respectively). Parity 4-7 (vs. < or = 3) increased BMD nonsignificantly, but > 7 significantly decreased LS-BMD and FN-BMD as compared with 0-7 parity (p = 0.006 and p = 0.009, respectively). Parity > 7 increased the risk of LS-OP by OR = 1.81 (95% CI 1.03-3.1, p = 0.037) and FN-OP by OR = 1.67 (95% CI 0.97-2.8, p = 0.063). In addition, women with high parity had lower BMD decline at LS and FN by age (> or = 65 vs. < 65 years) by 1.3% (p = 0.77) and -10.1% (p = 0.009) as compared with 0-7 parity group by -9.5% (p = 0.001) and -15% (p = 0.0001), respectively. Parity > 7 is associated with spinal trabecular bone loss in younger postmenopausal women as well as an osteoprotective effect against age-related bone loss, which counteracts the early negative effect. Therefore, parity should not be considered as a risk factor for postmenopausal osteoporosis.
Chip-to-chip entanglement of transmon qubits using engineered measurement fields
NASA Astrophysics Data System (ADS)
Dickel, C.; Wesdorp, J. J.; Langford, N. K.; Peiter, S.; Sagastizabal, R.; Bruno, A.; Criger, B.; Motzoi, F.; DiCarlo, L.
2018-02-01
While the on-chip processing power in circuit QED devices is growing rapidly, an open challenge is to establish high-fidelity quantum links between qubits on different chips. Here, we show entanglement between transmon qubits on different cQED chips with 49 % concurrence and 73 % Bell-state fidelity. We engineer a half-parity measurement by successively reflecting a coherent microwave field off two nearly identical transmon-resonator systems. By ensuring the measured output field does not distinguish |01 > from |10 > , unentangled superposition states are probabilistically projected onto entangled states in the odd-parity subspace. We use in situ tunability and an additional weakly coupled driving field on the second resonator to overcome imperfect matching due to fabrication variations. To demonstrate the flexibility of this approach, we also produce an even-parity entangled state of similar quality, by engineering the matching of outputs for the |00 > and |11 > states. The protocol is characterized over a range of measurement strengths using quantum state tomography showing good agreement with a comprehensive theoretical model.
Quantum computing with Majorana fermion codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2018-05-01
We establish a unified framework for Majorana-based fault-tolerant quantum computation with Majorana surface codes and Majorana color codes. All logical Clifford gates are implemented with zero-time overhead. This is done by introducing a protocol for Pauli product measurements with tetrons and hexons which only requires local 4-Majorana parity measurements. An analogous protocol is used in the fault-tolerant setting, where tetrons and hexons are replaced by Majorana surface code patches, and parity measurements are replaced by lattice surgery, still only requiring local few-Majorana parity measurements. To this end, we discuss twist defects in Majorana fermion surface codes and adapt the technique of twist-based lattice surgery to fermionic codes. Moreover, we propose a family of codes that we refer to as Majorana color codes, which are obtained by concatenating Majorana surface codes with small Majorana fermion codes. Majorana surface and color codes can be used to decrease the space overhead and stabilizer weight compared to their bosonic counterparts.
Alignments of parity even/odd-only multipoles in CMB
NASA Astrophysics Data System (ADS)
Aluri, Pavan K.; Ralston, John P.; Weltman, Amanda
2017-12-01
We compare the statistics of parity even and odd multipoles of the cosmic microwave background (CMB) sky from Planck full mission temperature measurements. An excess power in odd multipoles compared to even multipoles has previously been found on large angular scales. Motivated by this apparent parity asymmetry, we evaluate directional statistics associated with even compared to odd multipoles, along with their significances. Primary tools are the Power tensor and Alignment tensor statistics. We limit our analysis to the first 60 multipoles i.e. l = [2, 61]. We find no evidence for statistically unusual alignments of even parity multipoles. More than one independent statistic finds evidence for alignments of anisotropy axes of odd multipoles, with a significance equivalent to ∼2σ or more. The robustness of alignment axes is tested by making Galactic cuts and varying the multipole range. Very interestingly, the region spanned by the (a)symmetry axes is found to broadly contain other parity (a)symmetry axes previously observed in the literature.
Evidence for Multiple Negative-Parity Band Structure in ^71Se
NASA Astrophysics Data System (ADS)
Baker, N. R.; Kaye, R. A.; Arora, S. R.; Bruckman, J.; Tabor, S. L.; Hinners, T. A.; Hoffman, C. R.; Lee, S.; Doring, J.
2008-10-01
The negative-parity bands of ^69Se and ^73Se indicate a stark contrast between strong single-particle (^69Se) and collective (^73Se) behavior over a wide range of spins. However, only one negative-parity band has been observed so far in ^71Se, making it difficult to see where it lies between these two very different cases. Thus, the goal of the present work was to extend the level scheme of ^71Se as much as possible, with an emphasis on finding new negative-parity states. ^71Se nuclei were produced at high spin following the 80-MeV ^54Fe (^23Na, αpn) reaction at Florida State University. γ-γ coincidences were measured using an array of 10 Compton-suppressed Ge detectors which included three Clover detectors. From the coincidence relationships, new states were found that formed candidates for perhaps two new negative-parity bands. Cranked-shell model calculations indicate that one new band is associated with rigid-body rotation at high spin.
Evidence for Multiple Negative-Parity Band Structure in ^71Se
NASA Astrophysics Data System (ADS)
Baker, N. R.; Kaye, R. A.; Arora, S. R.; Bruckman, J. K.; Tabor, S. L.; Hinners, T. A.; Hoffman, C. R.; Lee, S.; Döring, J.
2008-10-01
The negative-parity bands of ^69Se and ^73Se indicate a stark contrast between strong single-particle (^69Se) and collective (^73Se) behavior over a wide range of spins. However, only one negative-parity band has been observed so far in ^71Se, making it difficult to see where it lies between these two very different cases. Thus, the goal of the present work was to extend the level scheme of ^71Se as much as possible, with an emphasis on finding new negative-parity states. ^71Se nuclei were produced at high spin following the 80-MeV ^54Fe (^23Na, αpn) reaction at Florida State University. γ-γ coincidences were measured using an array of 10 Compton-suppressed Ge detectors which included three Clover detectors. From the coincidence relationships, new states were found that formed candidates for perhaps two new negative-parity bands. Cranked-shell model calculations indicate that one new band is associated with rigid- body rotation at high spin.
Kim, Jin Hwi; Lee, Sung Jong
2017-07-01
The objective of this study was to assess the association between parity and insulin resistance in nondiabetic, postmenopausal women. This cross-sectional study was conducted using data from the 2010 Korean National Health and Nutrition Examination Survey administered by the Korean Ministry of Health and Welfare. A total of 1,243 nondiabetic postmenopausal women were included in this study and subdivided into three groups according to parity (1-2, 3-4, and ≥5 live births). Insulin resistance was measured using the homeostasis model assessment of insulin resistance (HOMA-IR) index. The relationship between parity and insulin resistance was investigated using analysis of covariance. HOMA-IR showed a positive relationship with parity. Mean HOMA-IR (geometric mean and 95% CI) increased according to increasing parity group (1-2, 3-4, and ≥5 live births) after adjustment for age, smoking, alcohol consumption, exercise, education, income, and body mass index as follows: 2.1 (2.0-2.2) < 2.2 (2.1-2.3) < 2.5 (2.2-2.8) (P = 0.040 and P for trend = 0.012). In addition, this positive association was more apparent when insulin resistance was accompanied by obesity. The mean parity of the obese and insulin-resistant group was significantly higher than that of the nonobese insulin-sensitive group (3.6 ± 0.1 vs 3.2 ± 0.1, P = 0.047). Our study provides the first evidence that parity is significantly associated with insulin resistance in nondiabetic postmenopausal women. Further prospective longitudinal studies are needed to confirm the impact of parity on insulin resistance.
Whipps, Mackenzie D M
2017-02-01
Prior research in high-income countries finds that young mothers tend to breastfeed their infants for shorter durations than older mothers; however, there are gaps in our understanding of the processes by which age influences breastfeeding. Research aim: The primary objective of this study was to test the mediating effects of parity and education attainment on the association between maternal age and two breastfeeding outcomes: total duration and duration of exclusive breastfeeding. This study was a secondary data analysis of the IFPS II, a prospective, longitudinal study of ~ 4,900 American mothers. Robust and bias-corrected regression analyses tested the direct effect of age and the indirect effects of age through parity and education for each outcome of interest. Parity and education attainment together explain nearly all of the association between maternal age and both measures of breastfeeding duration. The mediating role of education is significantly larger than parity for both outcomes. These findings indicate that maternal age primarily indexes parity and education but contributes minimally to breastfeeding duration via a direct effect. The findings have implications for intervention development and targeting strategies.
Parity Effects on Maternal Attitudes During Pregnancy.
ERIC Educational Resources Information Center
Fuchs, Karen D.; Self, Patricia A.
In this study, which investigates the association of parity and maternal attitudes during pregnancy, a 30-item questionnaire was completed by 17 primiparous and 33 multiparous mothers in their 8th month of pregnancy at the Obstetrics-Gynocology Clinic at a university medical center. Measures were obtained on five scales: quality of available…
Relativistic calculations of atomic properties
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Sahoo, B. K.; Arora, Bindiya
2017-04-01
Singly charged ions are engaging candidates in many areas of Physics. They are especially important in astrophysics for evaluating the radiative properties of stellar objects, in optical frequency standards and for fundamental physics studies such as searches for permanent electric dipole moments and atomic parity violation. Interpretation of these experiments often requires a knowledge of their transition wavelengths and electric dipole amplitudes. In this work, we discuss the calculation of various properties of alkaline earth ions. The relativistic all-order SD method in which all single and double excitations of the Dirac-Fock wave function are included, is used to calculate these atomic properties. We use this method for evaluation of electric dipole matrix elements of alkaline earth ions. Combination of these matrix elements with experimental energies allow to obtain the polarizabilities of ground and excited states of ions. We discuss the applications of estimated polarizabiities as a function of imaginary frequencies in the calculations of long-range atom-ion interactions. We have also located the magic wavelengths for nS1 / 2 - nD3 / 2 , 5 / 2 transitions of alkaline earth ions. These calculated properties will be highly valuable to atomic and astrophysics community. UGC-BSR Grant No. F.7-273/2009/BSR.
Impact of maternal smoking on birth size: effect of parity and sex dimorphism.
Varvarigou, Anastasia A; Asimakopoulou, Aspasia; Beratis, Nicholas G
2009-01-01
Maternal smoking during pregnancy causes a delay of intrauterine growth. To examine the effect of maternal smoking during pregnancy on fetal growth in relationship to maternal parity, age and number of cigarettes smoked/day, and offspring's gender. We studied 2,108 term newborns (1,102 male, 1,006 female) delivered at the General University Hospital of Patras from 1994 to 2004. The 1,443 were born to mothers who did not smoke and 665 to mothers who smoked during pregnancy. Birth weight, length and head circumference were measured prospectively in all newborns. Also, maternal smoking status and number of cigarettes smoked per day, age, and parity were recorded. For the analysis, t test, one-way ANOVA, Mann-Whitney U test, Spearman rank correlation, and factorial MANOVA with covariates were used. With increasing parity, in the neonates of nonsmoking mothers there was a gradual increase of growth, whereas in neonates of smoking mothers there was a gradual decrease of growth. This effect was more pronounced in males. A significant negative main effect on growth resulted from the interaction of smoking with parity (p = 0.013), and with gender and parity (p = 0.001). There was a significant negative correlation between number of cigarettes smoked per day and growth, the strength of which increased with parity, mainly in males. Maternal smoking during pregnancy causes a delay in fetal growth, which is greater in male offspring, an effect that is enhanced with parity but is independent of maternal age. (c) 2008 S. Karger AG, Basel.
McConnell, K John; Ridgely, M Susan; McCarty, Dennis
2012-08-01
The Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity Act of 2008 (MHPAEA) requires commercial group health plans offering coverage for mental health and substance abuse services to offer those services at a level that is no more restrictive than for medical-surgical services. The MHPAEA is notable in restricting the extent to which health plans can use managed care tools on the behavioral health benefit. The only precedent for this approach is Oregon's 2007 state parity law. This study aims to provide evidence on the effect of comprehensive parity on utilization and expenditures for substance abuse treatment services. A difference-in-difference analysis compared individuals in five Oregon commercial plans (n=103,820) from 2005 to 2008 to comparison groups exempt from parity in Oregon (n=19,633) and Washington (n=39,447). The primary outcome measures were annual use and total expenditures. Spending for alcohol treatment services demonstrated statistically significant increase in comparison to the Oregon and Washington comparison groups. Spending on other drug abuse treatment services was not associated with statistically significant spending increases, and the effect of parity on overall spending (alcohol plus other drug abuse treatment services) was positive but not statistically significant from zero. Oregon's experience suggests that behavioral health insurance parity that places restrictions on how plans manage the benefit may lead to increases in expenditures for alcohol treatment services but is unlikely to lead to increases in spending for other drug abuse treatment services. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Spin and parity measurement of the Λ(1405) baryon
NASA Astrophysics Data System (ADS)
Moriya, K.; Schumacher, R. A.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bellis, M.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Dey, B.; Djalali, C.; Dugger, M.; Dupré, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Griffioen, K. A.; Hafidi, K.; Hakobyan, H.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, W.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McCracken, M.; McKinnon, B.; Mestayer, M. D.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Seder, E.; Senderovich, I.; Smith, E. S.; Sokhan, D.; Smith, G. D.; Stepanyan, S.; Strauch, S.; Tang, W.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Williams, M.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Ziegler, V.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2014-02-01
A determination of the spin and parity of the Λ(1405) is presented using photoproduction data from the CLAS detector at Jefferson Lab. The reaction γ+p→K++Λ(1405) is analyzed in the decay channel Λ(1405)→Σ ++π-, where the decay distribution to Σ+π- and the variation of the Σ+ polarization with respect to the Λ(1405) polarization direction determines the parity. The Λ(1405) is produced, in the energy range 2.55
Absence of paired crossing in the positive parity bands of 124Cs
NASA Astrophysics Data System (ADS)
Singh, A. K.; Basu, A.; Nag, Somnath; Hübel, H.; Domscheit, J.; Ragnarsson, I.; Al-Khatib, A.; Hagemann, G. B.; Herskind, B.; Elema, D. R.; Wilson, J. N.; Clark, R. M.; Cromaz, M.; Fallon, P.; Görgen, A.; Lee, I.-Y.; Ward, D.; Ma, W. C.
2018-02-01
High-spin states in 124Cs were populated in the 64Ni(64Ni,p 3 n ) reaction and the Gammasphere detector array was used to measure γ -ray coincidences. Both positive- and negative-parity bands, including bands with chiral configurations, have been extended to higher spin, where a shape change has been observed. The configurations of the bands before and after the alignment are discussed within the framework of the cranked Nilsson-Strutinsky model. The calculations suggest that the nucleus undergoes a shape transition from triaxial to prolate around spin I ≃22 of the positive-parity states. The alignment gain of 8 ℏ , observed in the positive-parity bands, is due to partial alignment of several valence nucleons. This indicates the absence of band crossing due to paired nucleons in the bands.
Level energies, lifetimes and radiative rates in the 4p44d configurations of bromine-like ions
NASA Astrophysics Data System (ADS)
Singh, A. K.; Aggarwal, Sunny; Mohan, Man
2013-09-01
Energy levels, lifetimes and wavefunction compositions have been computed for all levels of odd parity 4s24p5 ground configuration as well as 4s4p6 and 4s24p44d even parity excited configurations in Br-like Sr IV, Y V, Zr VI, Nb VII and Mo VIII. Transition probabilities, oscillator strengths and line strengths for the electric dipole (E1) transition from the 4s24p5 configuration have been obtained using the multiconfiguration Dirac-Fock approach. Correlations within the n = 4 complex, Breit and quantum electrodynamics effects have been included. We make a detailed comparison of our results with those of other numerical methods and experiments to assess the quality of our results. Good agreement is observed between our results and those obtained using different approaches confirm the quality of our results. Further, we have also predicted new atomic data that were not available so far and are yet to be observed.
Parity-violating electroweak asymmetry in e→ p scattering
NASA Astrophysics Data System (ADS)
Aniol, K. A.; Armstrong, D. S.; Averett, T.; Baylac, M.; Burtin, E.; Calarco, J.; Cates, G. D.; Cavata, C.; Chai, Z.; Chang, C. C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Coman, M.; Dale, D.; Deur, A.; Djawotho, P.; Epstein, M. B.; Escoffier, S.; Ewell, L.; Falletto, N.; Finn, J. M.; Fissum, K.; Fleck, A.; Frois, B.; Frullani, S.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gerstner, G. M.; Gilman, R.; Glamazdin, A.; Gomez, J.; Gorbenko, V.; Hansen, O.; Hersman, F.; Higinbotham, D. W.; Holmes, R.; Holtrop, M.; Humensky, T. B.; Incerti, S.; Iodice, M.; de Jager, C. W.; Jardillier, J.; Jiang, X.; Jones, M. K.; Jorda, J.; Jutier, C.; Kahl, W.; Kelly, J. J.; Kim, D. H.; Kim, M.-J.; Kim, M. S.; Kominis, I.; Kooijman, E.; Kramer, K.; Kumar, K. S.; Kuss, M.; Lerose, J.; de Leo, R.; Leuschner, M.; Lhuillier, D.; Liang, M.; Liyanage, N.; Lourie, R.; Madey, R.; Malov, S.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; Martino, J.; Mastromarino, P.; McCormick, K.; McIntyre, J.; Meziani, Z.-E.; Michaels, R.; Milbrath, B.; Miller, G. W.; Mitchell, J.; Morand, L.; Neyret, D.; Pedrisat, C.; Petratos, G. G.; Pomatsalyuk, R.; Price, J. S.; Prout, D.; Punjabi, V.; Pussieux, T.; Quéméner, G.; Ransome, R. D.; Relyea, D.; Roblin, Y.; Roche, J.; Rutledge, G. A.; Rutt, P. M.; Rvachev, M.; Sabatie, F.; Saha, A.; Souder, P. A.; Spradlin, M.; Strauch, S.; Suleiman, R.; Templon, J.; Teresawa, T.; Thompson, J.; Tieulent, R.; Todor, L.; Tonguc, B. T.; Ulmer, P. E.; Urciuoli, G. M.; Vlahovic, B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B.; Woo, R.; Xu, W.; Younus, I.; Zhang, C.
2004-06-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A= -15.05±0.98 (stat) ±0.56 (syst) ppm at the kinematic point < θlab > =12.3° and < Q2 > =0.477 (GeV/c)2 . Based on these data as well as data on electromagnetic form factors, we extract the linear combination of strange form factors GsE +0.392 GsM = 0.014±0.020±0.010 , where the first error arises from this experiment and the second arises from the electromagnetic form factor data. This paper provides a full description of the special experimental techniques employed for precisely measuring the small asymmetry, including the first use of a strained GaAs crystal and a laser-Compton polarimeter in a fixed target parity-violation experiment.
Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime
NASA Astrophysics Data System (ADS)
Shui, Tao; Yang, Wen-Xing; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose and analyze an efficient scheme for the lopsided Raman-Nath diffraction of one-dimensional (1 D ) and two-dimensional (2 D ) atomic gratings with periodic parity-time (PT )-symmetric refractive index. The atomic grating is constructed by the cold-atomic vapor with two isotopes of rubidium, which is driven by weak probe field and space-dependent control field. Using experimentally achievable parameters, we identify the conditions under which PT -symmetric refractive index allows us to observe the lopsided Raman-Nath diffraction phenomenon and improve the diffraction efficiencies beyond what is achievable in a conventional atomic grating. The nontrivial atomic grating is a superposition of an amplitude grating and a phase grating. It is found that the lopsided Raman-Nath diffraction at the exceptional point (EP) of PT -symmetric grating originates from constructive and destructive interferences between the amplitude and phase gratings. Furthermore, we show that the PT -phase transition from unbroken to broken PT -symmetric regimes can modify the asymmetric distribution of the diffraction spectrum and that the diffraction efficiencies in the non-negative diffraction orders can be significantly enhanced when the atomic grating is pushed into a broken PT -symmetric phase. In addition, we also analyze the influence of the grating thickness on the diffraction spectrum. Our scheme may provide the possibility to design a gain-beam splitter with tunable splitting ratio and other optical components in integrated optics.
NASA Astrophysics Data System (ADS)
Matter, John; Gnanvo, Kondo; Liyanage, Nilanga; Solid Collaboration; Moller Collaboration
2017-09-01
The JLab Parity Violation In Deep Inelastic Scattering (PVDIS) experiment will use the upgraded 12 GeV beam and proposed Solenoidal Large Intensity Device (SoLID) to measure the parity-violating electroweak asymmetry in DIS of polarized electrons with high precision in order to search for physics beyond the Standard Model. Unlike many prior Parity-Violating Electron Scattering (PVES) experiments, PVDIS is a single-particle tracking experiment. Furthermore the experiment's high luminosity combined with the SoLID spectrometer's open configuration creates high-background conditions. As such, the PVDIS experiment has the most demanding tracking detector needs of any PVES experiment to date, requiring precision detectors capable of operating at high-rate conditions in PVDIS's full production luminosity. Developments in large-area GEM detector R&D and SoLID simulations have demonstrated that GEMs provide a cost-effective solution for PVDIS's tracking needs. The integrating-detector-based JLab Measurement Of Lepton Lepton Electroweak Reaction (MOLLER) experiment requires high-precision tracking for acceptance calibration. Large-area GEMs will be used as tracking detectors for MOLLER as well. The conceptual designs of GEM detectors for the PVDIS and MOLLER experiments will be presented.
Light Stops at Exceptional Points
NASA Astrophysics Data System (ADS)
Goldzak, Tamar; Mailybaev, Alexei A.; Moiseyev, Nimrod
2018-01-01
Almost twenty years ago, light was slowed down to less than 10-7 of its vacuum speed in a cloud of ultracold atoms of sodium. Upon a sudden turn-off of the coupling laser, a slow light pulse can be imprinted on cold atoms such that it can be read out and converted into a photon again. In this process, the light is stopped by absorbing it and storing its shape within the atomic ensemble. Alternatively, the light can be stopped at the band edge in photonic-crystal waveguides, where the group speed vanishes. Here, we extend the phenomenon of stopped light to the new field of parity-time (P T ) symmetric systems. We show that zero group speed in P T symmetric optical waveguides can be achieved if the system is prepared at an exceptional point, where two optical modes coalesce. This effect can be tuned for optical pulses in a wide range of frequencies and bandwidths, as we demonstrate in a system of coupled waveguides with gain and loss.
Ueno, Masayuki; Ohara, Satoko; Inoue, Manami; Tsugane, Shoichiro; Kawaguchi, Yoko
2013-10-22
Several studies have shown that parity is associated with oral health problems such as tooth loss and dental caries. In Japan, however, no studies have examined the association. The purpose of this study was to determine whether parity is related to dentition status, including the number of teeth present, dental caries and filled teeth, and the posterior occlusion, in a Japanese population by comparing women with men. A total of 1,211 subjects, who participated both in the Japan Public Health Center-Based (JPHC) Study Cohort I in 1990 and the dental survey in 2005, were used for the study. Information on parity or number of children was collected from a self-completed questionnaire administered in 1990 for the JPHC Study Cohort I, and health behaviors and clinical dentition status were obtained from the dental survey in 2005. The association between parity or number of children and dentition status was analyzed, by both unadjusted-for and adjusted-for socio-demographic and health behavioral factors, using a generalized linear regression model. Parity is significantly related to the number of teeth present and n-FTUs (Functional Tooth Units of natural teeth), regardless of socio-demographic and health behavioral factors, in female subjects. The values of these variables had a significantly decreasing trend with the rise of parity: numbers of teeth present (p for trend = 0.046) and n-FTUs (p for trend = 0.026). No relationships between the number of children and dentition status were found in male subjects. Higher-parity women are more likely to lose teeth, especially posterior occluding relations. These results suggest that measures to narrow the discrepancy by parity should be taken for promoting women's oral health. Delivery of appropriate information and messages to pregnant women as well as enlightenment of oral health professionals about dental management of pregnant women may be an effective strategy.
The Weak Charge of the Proton. A Search For Physics Beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacEwan, Scott J.
2015-05-01
The Q weak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q 2 =0.025 (GeV/c) 2 in order to provide the first direct measurement of the proton's weak charge, Q W p. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eightmore » fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q 2 enables a theoretically clean measurement; the higher-order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.« less
NASA Astrophysics Data System (ADS)
Palmeri, P.; Quinet, P.; Lundberg, H.; Engström, L.; Nilsson, H.; Hartman, H.
2017-10-01
We report new time-resolved laser-induced fluorescence lifetime measurements for 22 highly excited even-parity levels in singly ionized yttrium (Y II). To populate these levels belonging to the configurations 4d6s, 5s6s 4d5d, 5p2, 4d7s and 4d6d, a two-step laser excitation technique was used. Our previous pseudo-relativistic Hartree-Fock model (Biémont et al. 2011) was improved by extending the configuration interaction up to n = 10 to reproduce the new experimental lifetimes. A set of semi-empirical oscillator strengths extended to transitions falling in the spectral range λλ194-3995 nm, depopulating these 22 even-parity levels in Y II, is presented and compared to the values found in the Kurucz's data base (Kurucz 2011).
NASA Astrophysics Data System (ADS)
Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun
2016-07-01
Employing a polarization-entangled χ state, which is a four-photon genuine entangled state, we propose a protocol teleporting a general two-photon polarization state. Firstly, the sender needs to perform one Controlled-NOT gate, one Hadamard gate, and one Controlled-NOT gate on the state to be teleported in succession. Secondly, the sender performs local nondemolition parity analyses based on cross-Kerr nonlinearities and publicizes the achieved outcomes. Finally, conditioned on the sender's analysis outcomes, the receiver executes the single-photon unitary transformation operations on his own photons to obtain the state originally sit in the sender's location. Due to the employment of nondemolition parity analyses rather than four-qubit joint measurement, it can be realized more feasible with currently available technologies. Moreover, the resources of Bell states can be achieved because the nondestructive measurement is exploited, which facilitates other potential tasks of quantum information processing.
NASA Astrophysics Data System (ADS)
Stohner, J.; Quack, M.
2009-06-01
Are findings in high-energy physics of any importance in molecular spectroscopy ? The answer is clearly `yes'. Energies of enantiomers were considered as exactly equal in an achiral environment, e.g. the gas phase. Today, however, it is well known that this is not valid. The violation of mirror-image symmetry (suggested theoretically and confirmed experimentally in 1956/57) was established in the field of nuclear, high-energy, and atomic physics since then, and it is also the cause for a non-zero energy difference between enantiomers. We expect today that the violation of mirror-image symmetry (parity violation) influences chemistry of chiral molecules as well as their spectroscopy. Progress has been made in the quantitative theoretical prediction of possible spectroscopic signatures of molecular parity violation. The experimental confirmation of parity violation in chiral molecules is, however, still open. Theoretical studies are helpful for the planning and important for a detailed analysis of rovibrational and tunneling spectra of chiral molecules. We report results on frequency shifts in rotational, vibrational and tunneling spectra of some selected chiral molecules which are studied in our group. If time permits, we shall also discuss critically some recent claims of experimental observations of molecular parity violation in condensed phase systems. T. D. Lee, C. N. Yang, Phys. Rev., 104, 254 (1956) C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson, Phys. Rev., 105, 1413 (1957) M. Quack, Angew. Chem. Intl. Ed., 28, 571 (1989) Angew. Chem. Intl. Ed., 41, 4618 (2002) M. Quack, J. Stohner, Chimia, 59, 530 (2005) M. Quack, J. Stohner, M. Willeke, Ann Rev. Phys. Chem. 59, 741 (2008) M. Quack, J. Stohner, Phys. Rev. Lett., 84, 3807 (2000) M. Quack, J. Stohner, J. Chem. Phys., 119, 11228 (2003) J. Stohner, Int. J. Mass Spectrometry 233, 385 (2004) M. Gottselig, M. Quack, J. Stohner, M. Willeke, Int. J. Mass Spectrometry 233, 373 (2004) R. Berger, G. Laubender, M. Quack, A. Sieben, J. Stohner, M. Willeke, Angew. Chem. Intl. Ed., 44, 3623 (2005) J. Stohner, M. Quack, to be published
Parity violation in electron scattering
Souder, P.; Paschke, K. D.
2015-12-22
By comparing the cross sections for left- and right-handed electrons scattered from various unpolarized nuclear targets, the small parity-violating asymmetry can be measured. These asymmetry data probe a wide variety of important topics, including searches for new fundamental interactions and important features of nuclear structure that cannot be studied with other probes. A special feature of these experiments is that the results are interpreted with remarkably few theoretical uncertainties, which justifies pushing the experiments to the highest possible precision. To measure the small asymmetries accurately, a number of novel experimental techniques have been developed.
NASA Astrophysics Data System (ADS)
Yagi, Kent; Yang, Huan
2018-05-01
The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have such information beforehand, approximate bounds can be derived if the regular parity-insensitive mode is detected and the peak redshift of the merger-rate history is known theoretically. Since gravitational-wave observations probe either the difference in parity violation between the source and the detector (with individual sources) or the line-of-sight cosmological integration of the scalar field (with gravitational-wave backgrounds), such bounds are complementary to local measurements from solar system experiments and binary pulsar observations.
A magnetic field compatible graphene transmon
NASA Astrophysics Data System (ADS)
Kroll, James G.; Uilhoorn, Willemijn; de Jong, Damaz; Borsoi, Francesco; van der Enden, Kian; Goswami, Srijit; Cassidy, Maja; Kouwenhoven, Leo. P.
Hybrid circuit QED is a key tool for readout and scaling of both semiconductor-based spin and topological quantum computing schemes. However, traditional approaches to circuit QED are incompatible with the strong external magnetic fields required for these qubits. Here we present measurements of a hybrid graphene-based transmon operating at 1 T. The device consists of coplanar waveguide resonators where the NbTiN thin film is patterned with a dense anti-dot lattice to trap Abriskov vortices, resulting in internal quality factors Qi >10^5 up to 6 T. Furthermore, the atomically thin nature of graphene in combination with the high critical field of its superconducting contacts makes it an ideal system for tolerating strong parallel magnetic fields. We combine these circuit elements to realize a magnetic field compatible transmon qubit. An external gate allows us to change the Josephson energy, and study the corresponding change in the resonator-qubit interaction in the dispersive regime. Two tone spectroscopy reveals a gate-tunable qubit peak at 1T. These experiments open up the possibility of fast charge parity measurements in high magnetic fields for readout of Majorana qubits..
Rocca, Corinne H.; Krishnan, Suneeta; Barrett, Geraldine; Wilson, Mark
2010-01-01
We evaluated the psychometric properties of the London Measure of Unplanned Pregnancy among Indian women using classical methods and Item Response Modeling. The scale exhibited good internal consistency and internal structure, with overall scores correlating well with each item’s response categories. Items performed similarly for pregnant and non-pregnant women, and scores decreased with increasing parity, providing evidence for validity. Analyses also detected limitations, including infrequent selection of middle response categories and some evidence of differential item functioning by parity. We conclude that the LMUP represents an improvement over existing measures but recommend steps for enhancing scale performance for this cultural context. PMID:21170147
A slow neutron polarimeter for the measurement of parity-odd neutron rotary power.
Snow, W M; Anderson, E; Barrón-Palos, L; Bass, C D; Bass, T D; Crawford, B E; Crawford, C; Dawkins, J M; Esposito, D; Fry, J; Gardiner, H; Gan, K; Haddock, C; Heckel, B R; Holley, A T; Horton, J C; Huffer, C; Lieffers, J; Luo, D; Maldonado-Velázquez, M; Markoff, D M; Micherdzinska, A M; Mumm, H P; Nico, J S; Sarsour, M; Santra, S; Sharapov, E I; Swanson, H E; Walbridge, S B; Zhumabekova, V
2015-05-01
We present the design, description, calibration procedure, and an analysis of systematic effects for an apparatus designed to measure the rotation of the plane of polarization of a transversely polarized slow neutron beam as it passes through unpolarized matter. This device is the neutron optical equivalent of a crossed polarizer/analyzer pair familiar from light optics. This apparatus has been used to search for parity violation in the interaction of polarized slow neutrons in matter. Given the brightness of existing slow neutron sources, this apparatus is capable of measuring a neutron rotary power of dϕ/dz = 1 × 10(-7) rad/m.
Effect of parity on bone mineral density: A systematic review and meta-analysis.
Song, Seung Yeon; Kim, Yejee; Park, Hyunmin; Kim, Yun Joo; Kang, Wonku; Kim, Eun Young
2017-08-01
Parity has been suggested as a possible factor affecting bone health in women. However, study results on its association with bone mineral density are conflicting. PubMed, EMBASE, the Cochrane Library, and Korean online databases were searched using the terms "parity" and "bone mineral density", in May 2016. Two independent reviewers extracted the mean and standard deviation of bone mineral density measurements of the femoral neck, spine, and total hip in nulliparous and parous healthy women. Among the initial 10,146 studies, 10 articles comprising 24,771 women met the inclusion criteria. The overall effect of parity on bone mineral density was positive (mean difference=5.97mg/cm 2 ; 95% CI 2.37 to 9.57; P=0.001). The effect appears site-specific as parity was not significantly associated with the bone mineral density of the femoral neck (P=0.09) and lumbar spine (P=0.17), but parous women had significantly higher bone mineral density of the total hip compared to nulliparous women (mean difference=5.98mg/cm 2 ; 95% CI 1.72 to 10.24; P=0.006). No obvious heterogeneity existed among the included studies (femoral neck I 2 =0%; spine I 2 =31%; total hip I 2 =0%). Parity has a positive effect on bone in healthy, community-dwelling women and its effect appears site-specific. Copyright © 2017 Elsevier Inc. All rights reserved.
Pregnancy loss history at first parity and selected adverse pregnancy outcomes.
Ahrens, Katherine A; Rossen, Lauren M; Branum, Amy M
2016-07-01
To evaluate the association between pregnancy loss history and adverse pregnancy outcomes. Pregnancy history was captured during a computer-assisted personal interview for 21,277 women surveyed in the National Survey of Family Growth (1995-2013). History of pregnancy loss (<20 weeks) at first parity was categorized in three ways: number of losses, maximum gestational age of loss(es), and recency of last pregnancy loss. We estimated risk ratios for a composite measure of selected adverse pregnancy outcomes (preterm, stillbirth, or low birthweight) at first parity and in any future pregnancy, separately, using predicted margins from adjusted logistic regression models. At first parity, compared with having no loss, having 3+ previous pregnancy losses (adjusted risk ratio (aRR) = 1.66 [95% CI = 1.13, 2.43]), a maximum gestational age of loss(es) at ≥10 weeks (aRR = 1.28 [1.04, 1.56]) or having experienced a loss 24+ months ago (aRR = 1.36 [1.10, 1.68]) were associated with increased risks of adverse pregnancy outcomes. For future pregnancies, only having a history of 3+ previous pregnancy losses at first parity was associated with increased risks (aRR = 1.97 [1.08, 3.60]). Number, gestational age, and recency of pregnancy loss at first parity were associated with adverse pregnancy outcomes in U.S. women. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Dietiker, P.; Miloglyadov, E.; Quack, M.; Schneider, A.; Seyfang, G.
2015-12-01
We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of 14NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, 14N quadrupole coupling constants for all fundamentals and some overtones of 14NH3 are known and can be used for further theoretical analysis.
Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G
2015-12-28
We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for further theoretical analysis.
Structure of the Odd-Odd Nucleus {sup 188}Re
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balodis, M.; Berzins, J.; Simonova, L.
2009-01-28
Thermal neutron capture gamma-ray spectra for {sup 187}Re(n,{gamma}){sup 188}Re reaction were measured. Singles and coincidence spectra were detected in order to develop the level scheme. The evaluation is in progress, of which the first results are obtained from the analysis of coincidence spectra, allowing to check the level scheme below 500 keV excitation energy. Seven low-energy negative parity bands are developed in order to find better energies for rotational levels. With a good confidence, a few positive parity bands are developed as well. Rotor plus two quasiparticle model calculations, employing effective matrix element method are performed for the system ofmore » six negative parity rotational bands.« less
Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Donald C.
2015-10-01
The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton Q p W via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013more » [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be p W = 0.064 ± 0.012, in good agreement with the Standard Model prediction of p W(SM) = 0.0708 ± 0.0003[2].« less
NASA Astrophysics Data System (ADS)
Li, Tao; Deng, Fu-Guo
2015-10-01
Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.
Li, Tao; Deng, Fu-Guo
2015-10-27
Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.
Li, Tao; Deng, Fu-Guo
2015-01-01
Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993
NASA Astrophysics Data System (ADS)
Bondarevskaya, A.; Prozorov, A.; Labzowsky, L.; Plunien, G.; Liesen, D.; Bosch, F.
2011-10-01
Theoretical concepts for the production, preservation and control of polarized highly charged ion beams in storage rings are investigated. It is argued that hydrogen-like ions can be polarized efficiently by optical pumping of the Zeeman sublevels of ground state hyperfine levels and that the maximum achievable nuclear polarization exceeds 90%. In order to study the preservation of the polarization during the ion motion through the magnetic system of the ring, the concept of the instantaneous quantization axis is introduced. It is suggested that the employment of “Siberian snakes” may help to preserve the ion beam polarization in the ring. The control of the beam polarization can be achieved by different methods: by measuring the Stokes parameters for the emitted photons or by observing the angular dependence of the transition rates for polarized ions. The important motivation for the production of polarized ion beams is the possibility to observe parity nonconservation effects in the hyperfine-quenched transitions in helium-like highly charged ions, where these effects can reach an unprecedented high value for atomic physics. The possible observation of parity nonconservation effects connected with the nuclear anapole moment is also discussed. A method for the observation of the electric dipole moment of an electron in a storage ring with a polarized highly charged ion beam is proposed. This method allows, in principle, to improve the existing boundaries for the electric dipole moment of an electron. However, the requirements of the corresponding experiment are very stringent.
Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering
Abrahamyan, Sergey; Albataineh, Hisham; Aniol, Konrad; ...
2012-03-15
We report the first measurement of the parity-violating asymmetry A PV in the elastic scattering of polarized electrons from 208Pb. A PV is sensitive to the radius of the neutron distribution (R n). The result A PV = 0.656 ± 0.060 (stat) ± 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions R n-R p = 0.33 -0.18 +0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.
Measurement of the neutron radius of 208Pb through parity violation in electron scattering.
Abrahamyan, S; Ahmed, Z; Albataineh, H; Aniol, K; Armstrong, D S; Armstrong, W; Averett, T; Babineau, B; Barbieri, A; Bellini, V; Beminiwattha, R; Benesch, J; Benmokhtar, F; Bielarski, T; Boeglin, W; Camsonne, A; Canan, M; Carter, P; Cates, G D; Chen, C; Chen, J-P; Hen, O; Cusanno, F; Dalton, M M; De Leo, R; de Jager, K; Deconinck, W; Decowski, P; Deng, X; Deur, A; Dutta, D; Etile, A; Flay, D; Franklin, G B; Friend, M; Frullani, S; Fuchey, E; Garibaldi, F; Gasser, E; Gilman, R; Giusa, A; Glamazdin, A; Gomez, J; Grames, J; Gu, C; Hansen, O; Hansknecht, J; Higinbotham, D W; Holmes, R S; Holmstrom, T; Horowitz, C J; Hoskins, J; Huang, J; Hyde, C E; Itard, F; Jen, C-M; Jensen, E; Jin, G; Johnston, S; Kelleher, A; Kliakhandler, K; King, P M; Kowalski, S; Kumar, K S; Leacock, J; Leckey, J; Lee, J H; LeRose, J J; Lindgren, R; Liyanage, N; Lubinsky, N; Mammei, J; Mammoliti, F; Margaziotis, D J; Markowitz, P; McCreary, A; McNulty, D; Mercado, L; Meziani, Z-E; Michaels, R W; Mihovilovic, M; Muangma, N; Muñoz-Camacho, C; Nanda, S; Nelyubin, V; Nuruzzaman, N; Oh, Y; Palmer, A; Parno, D; Paschke, K D; Phillips, S K; Poelker, B; Pomatsalyuk, R; Posik, M; Puckett, A J R; Quinn, B; Rakhman, A; Reimer, P E; Riordan, S; Rogan, P; Ron, G; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Sirca, S; Slifer, K; Solvignon, P; Souder, P A; Sperduto, M L; Subedi, R; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Troth, W; Urciuoli, G M; Waidyawansa, B; Wang, D; Wexler, J; Wilson, R; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yim, V; Zana, L; Zhan, X; Zhang, J; Zhang, Y; Zheng, X; Zhu, P
2012-03-16
We report the first measurement of the parity-violating asymmetry A(PV) in the elastic scattering of polarized electrons from 208Pb. A(PV) is sensitive to the radius of the neutron distribution (R(n)). The result A(PV)=0.656±0.060(stat)±0.014(syst) ppm corresponds to a difference between the radii of the neutron and proton distributions R(n)-R(p)=0.33(-0.18)(+0.16) fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.
Mediation of deet repellency in mosquitoes (Diptera: Culicidae) by species, age, and parity.
Barnard, D R
1998-05-01
Laboratory bioassays assessed differences in the protection time provided by the repellent deet (N,N-diethyl-3-methylbenzamide) against 5-d-old nulliparous and 10-, 15-, and 20-d-old nulliparous and parous female Aedes aegypti (L.), Anopheles albimanus (Weidemann), and Anopheles quadrimaculatus Say sensu lato. Mean protection time was shortest against An. albimanus (1.6 h) and An. quadrimaculatus (1.5 h) and longest against Ae. aegypti (6.5 h), but was not significantly influenced by mosquito age or parity. Mean percentage of biting at repellent failure time was highest in An. albimanus (14.2%), followed by An. quadrimaculatus (7.0%) and Ae. aegypti (2.9%), was higher in parous females (10.8%) than in nulliparous females (5.9%), and was highest overall (35%) in 20-d-old parous An. albimanus. Interaction between mosquito species and parity and between parity and age factors, respectively, resulted from a significant decrease in percentage of biting by parous An. quadrimaculatus compared with other females, and a significant increase in biting by 20-d-old parous females compared with other females. The main finding of this study is that repellent protection time is unaffected by parity; this is important because parous mosquitoes are the primary target of personal-protection measures in disease-endemic areas. When repellent failure did occur, there was a higher risk of bite by old, parous An. albimanus than for any other species, age, or parity grouping of females.
Measuring molecular parity nonconservation using nuclear-magnetic-resonance spectroscopy
Eills, J.; Blanchard, J. W.; Bougas, L.; ...
2017-10-30
Here, the weak interaction does not conserve parity and therefore induces energy shifts in chiral enantiomers that should in principle be detectable in molecular spectra. Unfortunately, the magnitude of the expected shifts are small and in spectra of a mixture of enantiomers, the energy shifts are not resolvable. We propose a nuclear-magnetic-resonance (NMR) experiment in which we titrate the chirality (enantiomeric excess) of a solvent and measure the diasteriomeric splitting in the spectra of a chiral solute in order to search for an anomalous offset due to parity nonconservation (PNC). We present a proof-of-principle experiment in which we search formore » PNC in the 13C resonances of small molecules, and use the 1H resonances, which are insensitive to PNC, as an internal reference. We set a constraint on molecular PNC in 13C chemical shifts at a level of 10 –5 ppm, and provide a discussion of important considerations in the search for molecular PNC using NMR spectroscopy.« less
Adare, A.
2016-03-23
In this article, we present midrapidity measurements from the PHENIX experiment of large parity-violating single-spin asymmetries of high transverse momentum electrons and positrons from W ±/Z decays, produced in longitudinally polarized p+p collisions at center of mass energies of √s=500 and 510 GeV. These asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-violating nature of the W-boson coupling to quarks and antiquarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb -1, which exceeds previous PHENIX published results by a factor of moremore » than 27. In addition, these high Q 2 data probe the parton structure of the proton at W mass scale and provide an important addition to our understanding of the antiquark parton helicity distribution functions at an intermediate Bjorken x value of roughly M W/√s=0.16.« less
Measuring molecular parity nonconservation using nuclear-magnetic-resonance spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eills, J.; Blanchard, J. W.; Bougas, L.
Here, the weak interaction does not conserve parity and therefore induces energy shifts in chiral enantiomers that should in principle be detectable in molecular spectra. Unfortunately, the magnitude of the expected shifts are small and in spectra of a mixture of enantiomers, the energy shifts are not resolvable. We propose a nuclear-magnetic-resonance (NMR) experiment in which we titrate the chirality (enantiomeric excess) of a solvent and measure the diasteriomeric splitting in the spectra of a chiral solute in order to search for an anomalous offset due to parity nonconservation (PNC). We present a proof-of-principle experiment in which we search formore » PNC in the 13C resonances of small molecules, and use the 1H resonances, which are insensitive to PNC, as an internal reference. We set a constraint on molecular PNC in 13C chemical shifts at a level of 10 –5 ppm, and provide a discussion of important considerations in the search for molecular PNC using NMR spectroscopy.« less
NASA Astrophysics Data System (ADS)
Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration
2016-03-01
We present midrapidity measurements from the PHENIX experiment of large parity-violating single-spin asymmetries of high transverse momentum electrons and positrons from W±/Z decays, produced in longitudinally polarized p +p collisions at center of mass energies of √{s }=500 and 510 GeV. These asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-violating nature of the W -boson coupling to quarks and antiquarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb-1 , which exceeds previous PHENIX published results by a factor of more than 27. These high Q2 data probe the parton structure of the proton at W mass scale and provide an important addition to our understanding of the antiquark parton helicity distribution functions at an intermediate Bjorken x value of roughly MW/√{s }=0.16 .
A prospective study of maternal carboxyhemoglobin and preeclampsia risk
Rudra, Carole B.; Williams, Michelle A.; Schiff, Melissa A.; Koenig, Jane Q.; Dills, Russell; Yu, Jianbo
2009-01-01
Summary We aimed to measure the relation between early-pregnancy maternal carboxyhemoglobin and subsequent preeclampsia risk. We conducted a nested case-control analysis using data from a western Washington State cohort study (1996–2004). We measured maternal whole blood carboxyhemoglobin in 128 women who developed preeclampsia and 419 normotensive controls (mean gestational age at blood draw, 14.8 weeks). After adjustment for confounders, high (≥1%) versus low (<0.7%) carboxyhemoglobin odds ratios [OR] and 95% confidence intervals [CI] were 4.09 [1.30, 12.9] in parous women, 0.53 [0.23, 1.26] in nulliparous women, and 1.11 [0.55, 2.25] in the overall study population (parity interaction p=0.01). The influence of parity on the association was unexpected. The association between high carboxyhemoglobin and preeclampsia risk in parous women implicates hypoxia at the fetal-maternal interface as a pathogenic mechanism. These results also suggest that the etiology of the disease may differ according to parity. PMID:20078828
A prospective study of maternal carboxyhaemoglobin and pre-eclampsia risk.
Rudra, Carole B; Williams, Michelle A; Schiff, Melissa A; Koenig, Jane Q; Dills, Russell; Yu, Jianbo
2010-01-01
We aimed to measure the relationship between early-pregnancy maternal carboxyhaemoglobin and subsequent pre-eclampsia risk. A nested case-control analysis was conducted using data from a western Washington State cohort study (1996-2004). We measured maternal whole blood carboxyhaemoglobin in 128 women who developed pre-eclampsia and 419 normotensive controls (mean gestational age at blood draw, 14.8 weeks). After adjustment for confounders, high (>/=1%) vs. low (<0.7%) carboxyhaemoglobin odds ratios [OR] and 95% confidence intervals [CI] were 4.09 [1.30, 12.9] in multiparous women, 0.53 [0.23, 1.26] in primiparae and 1.11 [0.55, 2.25] in the overall study population (parity interaction P = 0.01). The influence of parity on the association was unexpected. The association between high carboxyhaemoglobin and pre-eclampsia risk in multiparae implicates hypoxia at the fetal-maternal interface as a pathogenic mechanism. These results also suggest that the aetiology of the disease may differ according to parity.
Residual confounding explains the association between high parity and child mortality.
Kozuki, Naoko; Sonneveldt, Emily; Walker, Neff
2013-01-01
This study used data from recent Demographic and Health Surveys (DHS) to examine the impact of high parity on under-five and neonatal mortality. The analyses used various techniques to attempt eliminating selection issues, including stratification of analyses by mothers' completed fertility. We analyzed DHS datasets from 47 low- and middle-income countries. We only used data from women who were age 35 or older at the time of survey to have a measure of their completed fertility. We ran log-binominal regression by country to calculate relative risk between parity and both under-five and neonatal mortality, controlled for wealth quintile, maternal education, urban versus rural residence, maternal age at first birth, calendar year (to control for possible time trends), and birth interval. We then controlled for maternal background characteristics even further by using mothers' completed fertility as a proxy measure. We found a statistically significant association between high parity and child mortality. However, this association is most likely not physiological, and can be largely attributed to the difference in background characteristics of mothers who complete reproduction with high fertility versus low fertility. Children of high completed fertility mothers have statistically significantly increased risk of death compared to children of low completed fertility mothers at every birth order, even after controlling for available confounders (i.e. among children of birth order 1, adjusted RR of under-five mortality 1.58, 95% CI: 1.42, 1.76). There appears to be residual confounders that put children of high completed fertility mothers at higher risk, regardless of birth order. When we examined the association between parity and under-five mortality among mothers with high completed fertility, it remained statistically significant, but negligible in magnitude (i.e. adjusted RR of under-five mortality 1.03, 95% CI: 1.02-1.05). Our analyses strongly suggest that the observed increased risk of mortality associated with high parity births is not driven by a physiological link between parity and mortality. We found that at each birth order, children born to women who have high fertility at the end of their reproductive period are at significantly higher mortality risk than children of mothers who have low fertility, even after adjusting for available confounders. With each unit increase in birth order, a larger proportion of births at the population level belongs to mothers with these adverse characteristics correlated with high fertility. Hence it appears as if mortality rates go up with increasing parity, but not for physiological reasons.
Wider stall space affects behavior, lesion scores, and productivity of gestating sows.
Salak-Johnson, J L; DeDecker, A E; Levitin, H A; McGarry, B M
2015-10-01
Limited space allowance within the standard gestation stall is an important welfare concern because it restricts the ability of the sow to make postural adjustments and hinders her ability to perform natural behaviors. Therefore, we evaluated the impacts of increasing stall space and/or providing sows the freedom to access a small pen area on sow well-being using multiple welfare metrics. A total of 96 primi- and multiparous crossbred sows were randomly assigned in groups of 4 sows/treatment across 8 replicates to 1 of 3 stall treatments (TRT): standard stall (CTL; dimensions: 61 by 216 cm), width-adjustable stall (flex stall [FLX]; dimensions: adjustable width of 56 to 79 cm by 216 cm), or an individual walk-in/lock-in stall with access to a small communal open-pen area at the rear of the stall (free-access stall [FAS]; dimensions: 69 by 226 cm). Lesion scores, behavior, and immune and productivity traits were measured at various gestational days throughout the study. Total lesion scores were greatest for sows in FAS and least for sows in FLX ( < 0.001). Higher-parity sows in FAS had the most severe lesion scores (TRT × parity, < 0.0001) and scores were greatest at all gestational days (TRT × day, < 0.05). Regardless of parity, sows in FLX had the least severe scores ( < 0.0001). As pregnancy progressed, lesion scores increased among sows in CTL ( < 0.05). Sow BW and backfat (BF) were greater for sows in FLX and FAS ( < 0.05), and BCS and BF were greater for parity 1 and 2 sows in FAS than the same parity sows in CTL (TRT × parity, < 0.05). Duration and frequency of some postural behaviors and sham chew behavior were affected by TRT ( < 0.05) and time of day (TRT × day, < 0.05). These data indicate that adequate stall space, especially late in gestation, may improve the well-being of higher-parity and heavier-bodied gestating sows as assessed by changes in postural behaviors, lesion severity scores, and other sow traits. Moreover, compromised welfare measures found among sows in various stall environments may be partly attributed to the specific constraints of each stall system such as restricted stall space in CTL, insufficient floor space in the open-pen area of the FAS system, and gate design of the FLX (e.g., direction of bars and feeder space). These results also indicate that parity and gestational day are additional factors that may exacerbate the effects of restricted stall space or insufficient pen space, further compromising sow well-being.
An experimental limit on the charge of antihydrogen
Amole, C.; Ashkezari, M. D.; Baquero-Ruiz, M.; Bertsche, W.; Butler, E.; Capra, A.; Cesar, C. L.; Charlton, M.; Eriksson, S.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Jonsell, S.; Kurchaninov, L.; Little, A.; Madsen, N.; McKenna, J. T. K.; Menary, S.; Napoli, S. C.; Nolan, P.; Olchanski, K.; Olin, A.; Povilus, A.; Pusa, P.; Rasmussen, C.Ø.; Robicheaux, F.; Sarid, E.; Silveira, D. M.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Vendeiro, Z.; Wurtele, J. S.; Zhmoginov, A. I.; Charman, A. E.
2014-01-01
The properties of antihydrogen are expected to be identical to those of hydrogen, and any differences would constitute a profound challenge to the fundamental theories of physics. The most commonly discussed antiatom-based tests of these theories are searches for antihydrogen-hydrogen spectral differences (tests of CPT (charge-parity-time) invariance) or gravitational differences (tests of the weak equivalence principle). Here we, the ALPHA Collaboration, report a different and somewhat unusual test of CPT and of quantum anomaly cancellation. A retrospective analysis of the influence of electric fields on antihydrogen atoms released from the ALPHA trap finds a mean axial deflection of 4.1±3.4 mm for an average axial electric field of 0.51 V mm−1. Combined with extensive numerical modelling, this measurement leads to a bound on the charge Qe of antihydrogen of Q=(−1.3±1.1±0.4) × 10−8. Here, e is the unit charge, and the errors are from statistics and systematic effects. PMID:24892800
High-Dimensional Single-Photon Quantum Gates: Concepts and Experiments.
Babazadeh, Amin; Erhard, Manuel; Wang, Feiran; Malik, Mehul; Nouroozi, Rahman; Krenn, Mario; Zeilinger, Anton
2017-11-03
Transformations on quantum states form a basic building block of every quantum information system. From photonic polarization to two-level atoms, complete sets of quantum gates for a variety of qubit systems are well known. For multilevel quantum systems beyond qubits, the situation is more challenging. The orbital angular momentum modes of photons comprise one such high-dimensional system for which generation and measurement techniques are well studied. However, arbitrary transformations for such quantum states are not known. Here we experimentally demonstrate a four-dimensional generalization of the Pauli X gate and all of its integer powers on single photons carrying orbital angular momentum. Together with the well-known Z gate, this forms the first complete set of high-dimensional quantum gates implemented experimentally. The concept of the X gate is based on independent access to quantum states with different parities and can thus be generalized to other photonic degrees of freedom and potentially also to other quantum systems.
The search for permanent electric dipole moments, in particular for the one of the neutron
Kirch, Klaus
2018-05-04
Nonzero permanent electric dipole moments (EDM) of fundamental systems like particles, nuclei, atoms or molecules violate parity and time reversal invariance. Invoking the CPT theorem, time reversal violation implies CP violation. Although CP-violation is implemented in the standard electro-weak theory, EDM generated this way remain undetectably small. However, this CP-violation also appears to fail explaining the observed baryon asymmetry of our universe. Extensions of the standard theory usually include new CP violating phases which often lead to the prediciton of larger EDM. EDM searches in different systems are complementary and various efforts worldwide are underway, but no finite value could be established yet. An improved search for the EDM of the neutron requires, among other things, much better statistics. At PSI, we are presently commissioning a new high intensity source of ultracold neutrons. At the same time, with an international collaboration, we are setting up for a new measurement of the neutron EDM which is starting this year.
Rapid onset of decoherence in driven-dissipative Rydberg systems
NASA Astrophysics Data System (ADS)
Magnan, Eric; Boulier, Thomas; Bracamontes, Carlos; Maslek, James; Young, Jeremy; Gorshkov, Alexei; Porto, Trey; Rolston, Steven; JQI-Rubidium One Team
2017-04-01
Rydberg atoms have been strong candidates for the realization of quantum information processing and quantum simulation. Recently, however, there has been concerns about this approach due to the observation of a rapid onset of decoherence in large ensembles. In we provide experimental support for the hypothesis that this is due to the avalanche-like onset of exchange dipole interactions, fueled by blackbody transitions to nearby Rydberg states of opposite parity. Making a fully microscopic model has proven difficult as it requires beyond mean-field arguments, but the ubiquitousness of Rydberg-Rydberg blackbody transitions at room temperature and the always-resonant nature of dipole exchange interactions make it an interesting challenge, and argues for deeper study into the matter. In this poster, we present complementary measurements and analysis that confirm this mechanism. We also discuss several possibilities to reduce its impact on the system's coherence. This work was partially supported by NSF PIF, AFOSR, ARO, ARL-CDQI, and NSF PFC at JQI.
Shortcut loading a Bose–Einstein condensate into an optical lattice
NASA Astrophysics Data System (ADS)
Zhou, Xiaoji; Jin, Shengjie; Schmiedmayer, Jörg
2018-05-01
We present an effective and fast (few microseconds) procedure for transferring a Bose–Einstein condensate from the ground state in a harmonic trap into the desired bands of an optical lattice. Our shortcut method is a designed pulse sequence where the time duration and the interval in each step are fully optimized in order to maximize robustness and fidelity of the final state with respect to the target state. The atoms can be prepared in a single band with even or odd parity, and superposition states of different bands can be prepared and manipulated. Furthermore, we extend this idea to the case of two-dimensional or three-dimensional optical lattices where the energies of excited states are degenerate. We experimentally demonstrate various examples and show very good agreement with the theoretical model. Efficient shortcut methods will find applications in the preparation of quantum systems, in quantum information processing, in precise measurement and as a starting point to investigate dynamics in excited bands.
Technology and techniques for parity experiments at Mainz: Past, Present and Future
NASA Astrophysics Data System (ADS)
Diefenbach, Juergen
2016-03-01
For almost 20 years the Mainz accelerator facility MAMI delivered polarized electron beam to the parity violation experiment A4 that measured the contributions of strange sea quarks to the proton electromagnetic factors. Parity violation asymmetries were of the order of A ~5 ppm. Currently the A1 collaboration carries out single spin asymmetry measurements at MAMI (A ~20 ppm) to prepare for a measurement of neutron skin depth on lead (A ~1 ppm). For such high precision experiments active stabilization and precise determination of beam parameters like current, energy, position, and angle are essential requirements in addition to precision electron beam polarimetry. For the future P2 experiment at the planned superconducting accelerator MESA in Mainz the requirements for beam quality will be even higher. P2 will measure the weak mixing angle with 0.15 percent total uncertainty and, in addition, the neutron skin depth of lead as well as parity violation in electron scattering off 12C. A tiny asymmetry of only -0.03 ppm creates the needs to combine digital feedback with feedforward stabilizations along with new polarimetry developments like a hydro-Moller and a double-Mott polarimeter to meet the goals for systematic uncertainty. This talk gives an overview of our experience with polarimetry, analog feedbacks and compensation techniques for apparative asymmetries at the A4 experiment. It finally leads to the requirements and new techniques for the pioneering P2 experiment at MESA. First results from beam tests currently carried out at the existing MAMI accelerator, employing high speed analog/digital conversion and FPGAs for control of beam parameters, will be presented. Supported by the cluster of excellence PRISMA and the Deutsche Forschungsgemeinschaft in the framework of the SFB1044.
Androic, D.; Armstrong, D. S.; Bailey, S. L.; ...
2012-03-20
The parity-violating (PV) asymmetry of inclusive π - production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasi-free photoproduction off the neutron via the Δ 0 resonance. In the context of heavy-baryon chiral perturbation theory (HBχPT), this asymmetry is related to a low energy constant d Δ - that characterizes the parity-violating γNΔ coupling. Zhu et al. calculated d Δ - in a model benchmarked by themore » large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from A γ - = -5.2 to +5.2 ppm. The measurement performed in this work leads to A γ - = -0.36 ± 1.06 ± 0.37 ± 0.03 ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfavor enchancements considered by Zhu et al. proportional to V ud/V us. The measurement is part of a program of inelastic scattering measurements that were conducted by the G0 experiment, seeking to determine the N-Δ axial transition form-factors using PV electron scattering.« less
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-05-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.
Parity Violation in Deep Inelastic Scattering in Hall C at JLab
NASA Astrophysics Data System (ADS)
Dalton, Mark Macrae; Keppel, Cynthia; Paschke, Kent
2017-09-01
The measurement of parity-violation in inclusive electron deep inelastic scattering (DIS) from a proton or deuteron target can be used to study the flavor structure of the nucleon. While valence quark parton distribution functions (PDF) can be probed in high- x measurements such as with the proposed SoLID spectrometer, complementary measurements are possible at moderate x 0.1 where the sea quarks may still play a significant role. In particular, such measurements would provide a cleanly interpretable measurement of the strange quark PDF. These measurements are possible with the upgraded CEBAF accelerator at JLab and do not require significant new experimental hardware. The prospects and potential impacts of such a measurement will be presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177 and DE-FG02-07ER41522.
Khalid, Mohammed E.M.
2006-01-01
Objective: To assess the effect of age, body mass index (BMI) and parity on systolic and diastolic blood pressures (BPs) and hypertension. Subjects and Methods: A cross-sectional prospective study of 441 non-pregnant married women ranging in age from 15-60 years. For each woman selected, a detailed questionnaire dealing with sociodemographic profile including reproductive data was completed. Systolic and 5th phase diastolic BPs were measured using a standard mercury sphygmomanometer. Body weight and height were measured using an Avery Beam weighing scale and a stadiometer respectively. Results: In this study sample, the overall prevalence of hypertension was 4.3%. Statistical analysis showed that age and BMI were positively and significantly associated with BPs (p<0.0001 for systolic BP & <0.002 for diastolic BP and p<0.0001 for systolic BP & <0.005 for diastolic BP respectively) and positively and significantly (p<0.0001 & <0.003 respectively) associated with an increase in the risk of hypertension (Odds ratio, 95% confidence interval: 1.53 (1.1-1.2) and 1.11 (1.04-1.19) respectively) while parity was negatively and insignificantly associated with BPs (p<0.4 and <0.1 for systolic and diastolic BPs respectively) and negatively and insignificantly (P<0.1) associated with an increase in the risk of hypertension (Odds ratio, 95% confidence interval: 0.87 (0.74-1.03). Conclusion: Age and BMI were significant contributors to BPs and hypertension rather than parity. The negative association between parity and hypertension, although insignificant, implies that nulliparity rather than multiparity imposed an important effect on hypertension. PMID:23012128
GRASP92: a package for large-scale relativistic atomic structure calculations
NASA Astrophysics Data System (ADS)
Parpia, F. A.; Froese Fischer, C.; Grant, I. P.
2006-12-01
Program summaryTitle of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstation 320H Operating system: IBM AIX 3.2.5+ RAM: 64M words No. of lines in distributed program, including test data, etc.: 65 224 No of bytes in distributed program, including test data, etc.: 409 198 Distribution format: tar.gz Catalogue identifier of previous version: ADCU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a 'fully relativistic' approach. Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator, j=l+s, and the parity operator Π=βπ. Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator, J, and the atomic parity operator, P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number, n, of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms of CSFs sharing the same quantum numbers is determined using the configuration-interaction (CI) procedure that results upon varying the expansion coefficients to determine the extremum of a variational functional. Radial functions may be determined by numerically solving the multiconfiguration Dirac-Fock (MCDF) equations that result upon varying the orbital radial functions or some subset thereof so as to obtain an extremum of the variational functional. Radial wavefunctions may also be determined using a screened hydrogenic or Thomas-Fermi model, although these schemes generally provide initial estimates for MCDF self-consistent-field (SCF) calculations. Transition properties for pairs of ASFs are computed from matrix elements of multipole operators of the electromagnetic field. All matrix elements of CSFs are evaluated using the Racah algebra. Reasons for the new version: During recent studies using the general relativistic atomic structure package (GRASP92), several errors were found, some of which might have been present already in the earlier GRASP92 version (program ABJN_v1_0, Comput. Phys. Comm. 55 (1989) 425). These errors were reported and discussed by Froese Fischer, Gaigalas, and Ralchenko in a separate publication [C. Froese Fischer, G. Gaigalas, Y. Ralchenko, Comput. Phys. Comm. 175 (2006) 738-744. [7
NASA Astrophysics Data System (ADS)
Rath, Asawari D.; Kundu, S.; Ray, A. K.
2018-02-01
Laser induced photoionization of atoms shows significant dependence on the choice of polarizations of lasers. In multi-step, multi-photon excitation and subsequent ionization of atoms different polarization combinations of the exciting lasers lead to distinctly different ion yields. This fact is exploited in this work to determine total angular momenta of odd-parity energy levels of U I lying at ∼ 4 eV from its ground level using resonance ionization laser polarization spectroscopy in time of flight mass spectrometer. These levels are populated by two-step resonant excitation using two pulsed dye lasers with preset polarizations of choice followed by nonresonant ionization by third laser. The dependence of ionization yield on specific polarizations of the first two lasers is studied experimentally for each level under consideration. This dependence when compared to simulations makes possible unambiguous assignment of J angular momenta to these levels.
NASA Astrophysics Data System (ADS)
Kerbstadt, S.; Pengel, D.; Englert, L.; Bayer, T.; Wollenhaupt, M.
2018-06-01
We report on bichromatic multiphoton ionization of xenon atoms (Xe) to demonstrate carrier-envelope-phase (CEP) control of lateral asymmetries in the photoelectron momentum distribution. In the experiments, we employ a 4 f polarization pulse shaper to sculpture bichromatic fields with commensurable center frequencies ω1:ω2=7 :8 from an over-octave-spanning CEP-stable white light supercontinuum by spectral amplitude and phase modulation. The bichromatic fields are spectrally tailored to induce controlled interferences of 7- vs 8-photon quantum pathways in the 5 P3 /2 ionization continuum of Xe. The CEP sensitivity of the asymmetric final-state wave function arises from coherent superposition of continuum states with opposite parity. Our results demonstrate that shaper-generated bichromatic fields with tailored center frequency ratio are a suitable tool to localize CEP-sensitive asymmetries in a specific photoelectron kinetic-energy window.
Measuring the charged pion polarizability in the gamma gamma -> pi+pi- reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, David W.; Miskimen, Rory A.; Mushkarenkov, Alexander Nikolaevich
2013-08-01
Development has begun of a new experiment to measure the charged pion polarizabilitymore » $$\\alpha_{\\pi}-\\beta_{\\pi}$$. The charged pion polarizability ranks among the most important tests of low-energy QCD presently unresolved by experiment. Analogous to precision measurements of $$\\pi^{\\circ}\\rightarrow\\gamma\\gamma$$ that test the intrinsic odd-parity (anomalous) sector of QCD, the pion polarizability tests the intrinsic even-parity sector of QCD. The measurement will be performed using the $$\\gamma\\gamma\\rightarrow\\pi^{+{}}\\pi^{-{}}$$ cross section accessed via the Primakoff mechanism on nuclear targets using the GlueX detector in Hall D at Jefferson Lab. The linearly polarized photon source in Hall-D will be utilized to separate the Primakoff cross-section from coherent $$\\rho^{\\circ}$$ production.« less
Anwar, M M; Ramadan, T A; Taha, T A
2012-12-01
This study was carried out to determine the level of certain biochemical variables reflecting the energy metabolic statuses during the first week of lactation in goats. A total of 120 Anglo-Nubian, Angora, Baladi, and Damascus does (30 does per breed) were used throughout 5 consecutive parities (30 does per parity) to investigate the effect of breed, parity, day of lactation, and their interaction on serum metabolites including total protein, albumin, globulin, glucose, total lipids, cholesterol, and transaminases. Blood samples were collected every other day during the first week of lactation. Baladi does had the greatest (P < 0.001) values in all measured biochemical variables followed by Anglo-Nubian [in total protein, globulin, and aminotransferase (AST)] and Damascus (in globulin and AST) and then Angora, which had the lowest (P < 0.001) values for all variables. Fifth parity exhibited the greatest (P < 0.001) values in all serum metabolites compared with other parities except for alanine transaminase (ALT) enzyme activity in which the greatest (P = 0.046) values were observed in the first and fourth parties. Serum concentrations of the measured variables increased gradually throughout the first day after kidding until the seventh day for total protein (P < 0.001), albumin (P = 0.013), globulin (P = 0.017), and cholesterol (P = 0.028) whereas serum glucose concentration exhibited an opposite trend. Serum concentrations of total lipids and enzyme activities of AST and ALT were not affected by day (P > 0.05) after kidding. Baladi goats had the least (P < 0.001) serum insulin concentration, which was associated (P < 0.001) with greatest serum glucose concentration. Serum triiodothyronine (T(3)) was inversely correlated (P = 0.032) with milk yield whereas greatest (P = 0.003) T(3) concentrations were associated with least (P < 0.001) milk yield recorded in Angora goats. Animal physiological responses and their indices were not affected (P > 0.05) by breed whereas both rectal temperature and coefficient of heat tolerance were affected (P < 0.001) by parity in an opposite direction. Baladi goats expressed an aspect of adaptability where their rectal temperature decreased and coefficient of heat tolerance increased with increasing parity number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietiker, P.; Miloglyadov, E.; Quack, M., E-mail: Martin@Quack.ch
We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference Δ{sub pv}E between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for eachmore » step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν{sub 1} and ν{sub 3} fundamentals as well as the 2ν{sub 4} overtone of {sup 14}NH{sub 3}, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν{sub 1}, ν{sub 3}, and 2ν{sub 4} levels in the context of previously known data for ν{sub 2} and its overtone, as well as ν{sub 4}, and the ground state. Thus, now, {sup 14}N quadrupole coupling constants for all fundamentals and some overtones of {sup 14}NH{sub 3} are known and can be used for further theoretical analysis.« less
Contaminant-State Broadening Mechanism in a Driven Dissipative Rydberg System
NASA Astrophysics Data System (ADS)
Porto, J. V.
2017-04-01
The strong interactions in Rydberg atoms make them an ideal system for the study of correlated many-body physics, both in the presence and absence of dissipation. Using such highly excited atomic states requires addressing challenges posed by the dense spectrum of Rydberg levels, the detrimental effects of spontaneous emission, and strong interactions. A full understanding of the scope and limitations of many Rydberg-based proposals requires simultaneously including these effects, which typically cannot be described by a mean-field treatment due to correlations in the quantum coherent and dissipative processes. We study a driven, dissipative system of Rydberg atoms in a 3D optical lattice, and observe substantial deviation from single-particle excitation rates, both on and off resonance. The observed broadened spectra cannot be explained by van der Waals interactions or a mean-field treatment of the system. Based on the magnitude of the broadening and the scaling with density and two-photon Rabi frequency, we attribute these effects to unavoidable blackbody-induced transitions to nearby Rydberg states of opposite parity, which have large, resonant dipole-dipole interactions with the state of interest. Even at low densities of Rydberg atoms, uncontrolled production of atoms in other states significantly modifies the energy levels of the remaining atoms. These off-diagonal exchange interactions result in complex many-body states of the system and have implications for off-resonant Rydberg dressing proposals. This work was partially supported by the ARL-CDQI program.
Observation of parity violation in the Ω→ΛK decay
NASA Astrophysics Data System (ADS)
Hypercp Collaboration; Lu, L. C.; Burnstein, R. A.; Chakravorty, A.; Chen, Y. C.; Choong, W.-S.; Clark, K.; Dukes, E. C.; Durandet, C.; Felix, J.; Fu, Y.; Gidal, G.; Gustafson, H. R.; Holmstrom, T.; Huang, M.; James, C.; Jenkins, C. M.; Jones, T. D.; Kaplan, D. M.; Longo, M. J.; Luebke, W.; Luk, K.-B.; Nelson, K. S.; Park, H. K.; Perroud, J.-P.; Rajaram, D.; Rubin, H. A.; Volk, J.; White, C. G.; White, S. L.; Zyla, P.
2005-06-01
The α decay parameter in the process Ω→ΛK has been measured from a sample of 4.50 million unpolarized Ω decays recorded by the HyperCP (E871) experiment at Fermilab and found to be [1.78±0.19(stat)±0.16(syst)]×10. This is the first unambiguous evidence for a nonzero α decay parameter, and hence parity violation, in the Ω→ΛK decay.
The calculation of neutron capture gamma-ray yields for space shielding applications
NASA Technical Reports Server (NTRS)
Yost, K. J.
1972-01-01
The application of nuclear models to the calculation of neutron capture and inelastic scattering gamma yields is discussed. The gamma ray cascade model describes the cascade process in terms of parameters which either: (1) embody statistical assumptions regarding electric and magnetic multipole transition strengths, level densities, and spin and parity distributions or (2) are fixed by experiment such as measured energies, spin and parity values, and transition probabilities for low lying states.
The ASACUSA Micromegas Tracker: A cylindrical, bulk Micromegas detector for antimatter research.
Radics, B; Nagata, Y; Yamazaki, Y; Ishikawa, S; Kuroda, N; Matsuda, Y; Anfreville, M; Aune, S; Boyer, M; Chateau, F; Combet, M; Granelli, R; Legou, P; Mandjavidze, I; Procureur, S; Riallot, M; Vallage, B; Vandenbroucke, M
2015-08-01
The ASACUSA Micromegas Tracker (AMT; ASACUSA: Atomic Spectroscopy and Collisions Using Slow Antiprotons) was designed to be able to reconstruct antiproton-nucleon annihilation vertices in three dimensions. The goal of this device is to study antihydrogen formation processes in the ASACUSA cusp trap, which was designed to synthesise a spin-polarised antihydrogen beam for precise tests of Charge, Parity, and Time (CPT) symmetry invariance. This paper discusses the structure and technical details of an AMT detector built into such an environment, its data acquisition system and the first performance with cosmic rays.
The ASACUSA Micromegas Tracker: A cylindrical, bulk Micromegas detector for antimatter research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radics, B., E-mail: balint.radics@riken.jp; Nagata, Y.; Yamazaki, Y.
2015-08-15
The ASACUSA Micromegas Tracker (AMT; ASACUSA: Atomic Spectroscopy and Collisions Using Slow Antiprotons) was designed to be able to reconstruct antiproton-nucleon annihilation vertices in three dimensions. The goal of this device is to study antihydrogen formation processes in the ASACUSA cusp trap, which was designed to synthesise a spin-polarised antihydrogen beam for precise tests of Charge, Parity, and Time (CPT) symmetry invariance. This paper discusses the structure and technical details of an AMT detector built into such an environment, its data acquisition system and the first performance with cosmic rays.
NASA Astrophysics Data System (ADS)
Bonderson, Parsa; Lutchyn, Roman M.
2011-04-01
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.
Wu, E Y S; Ade, P; Bock, J; Bowden, M; Brown, M L; Cahill, G; Castro, P G; Church, S; Culverhouse, T; Friedman, R B; Ganga, K; Gear, W K; Gupta, S; Hinderks, J; Kovac, J; Lange, A E; Leitch, E; Melhuish, S J; Memari, Y; Murphy, J A; Orlando, A; Piccirillo, L; Pryke, C; Rajguru, N; Rusholme, B; Schwarz, R; O'Sullivan, C; Taylor, A N; Thompson, K L; Turner, A H; Zemcov, M
2009-04-24
We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiment's second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of cosmic microwave background photons. We measure the rotation angle due to such a possible "cosmological birefringence" to be 0.55 degrees +/-0.82 degrees (random) +/-0.5 degrees (systematic) using QUaD's 100 and 150 GHz temperature-curl and gradient-curl spectra over the spectra over the multipole range 200
Bamberg, Christian; Fotopoulou, Christina; Linder, Mattea; Roehr, Charles Christoph; Dudenhausen, Joachim W; Henrich, Wolfgang; Kalache, Karim
2011-07-01
To assess mid-trimester amniotic fluid concentrations of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, and lipopolysaccharide binding protein (LBP) in pregnancies with normal outcome and correlate them with gestational week (GW), parity, and fetal gender. Cytokine concentrations were measured within a week of amniocentesis during GW 15+0 to 20+6 and correlated with GW at birth, parity, and fetal gender. After exclusion of women with an adverse pregnancy outcome or those lost to follow-up, 273 consecutive patients were evaluated (median parity: 1; range: 0-5). Ranges for IL-6, IL-8, TNF-α, and LBP were 4.9-2620 pg/mL, 36.2-5843 pg/mL, 8.0-28.2 pg/mL, and 0.06-1.9 μg/mL, respectively. IL-6, IL-8, and LBP values did not respectively differ among time points, but TNF-α values did between the 15(th) and 16(th) and the 15(th) and 18(th) weeks of gestation (P<0.05). No significant correlations between cytokine levels and parity or fetal gender were identified. Cytokine concentrations in amniotic fluid during the mid-trimester did not differ with parity or fetal gender. IL-6, IL-8, and LBP levels appeared stable with GW, whereas GW significantly influenced TNF-α concentrations. Further analyses are warranted to establish the role of cytokines in predicting adverse pregnancy outcomes.
The role of social support and parity in contraceptive use in Cambodia.
Samandari, Ghazaleh; Speizer, Ilene S; O'Connell, Kathryn
2010-09-01
In Cambodia, unmet need for contraception is high. Studies suggest that social support and parity each play a role in contraceptive decision making. A representative sample of 706 married women aged 15-49 from two rural provinces in Cambodia who wished to delay childbirth were interviewed about their contraceptive use and their perceptions of their husband's, peers' and elders' support of contraception. Multivariate analyses examined associations between support measures and women's current use of modern methods, among all women and by parity. Overall, 43% of women were currently using a modern method. Women who believed that their husband had a positive attitude toward contraception were more likely than those who did not to use a method (odds ratio, 3.4), whereas women who were nervous about talking with their husband about contraception were less likely than others to use a method (0.6); these associations remained in analyses by parity. Among all women and high-parity women, those whose husband made the final decision about contraception were less likely than other women to use a method (0.6 and 0.4, respectively). Perceiving that most of one's peers practice contraception was strongly associated with method use among low-parity women (4.4). Among all groups, women who agreed that one should not practice contraception if an elder says not to had decreased odds of method use (0.5 each). To promote contraceptive use, family planning programs should focus on increasing men's approval of contraception, improving partner communication around family planning and bolstering women's confidence in their reproductive decision making.
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Chanderkanta; Amphawan, Angela
2016-04-01
Parity is an extra bit which is used to add in digital information to detect error at the receiver end. It can be even and odd parity. In case of even parity, the number of one's will be even included the parity and reverse in the case of odd parity. The circuit which is used to generate the parity at the transmitter side, called the parity generator and the circuit which is used to detect the parity at receiver side is called as parity checker. In this paper, an even and odd parity generator and checker circuits are designed using electro-optic effect inside lithium niobate based Mach-Zehnder Interferometers (MZIs). The MZIs structures collectively show powerful capability in switching an input optical signal to a desired output port from a collection of output ports. The paper constitutes a mathematical description of the proposed device and thereafter simulation using MATLAB. The study is verified using beam propagation method (BPM).
Fourier-transform MW spectroscopy of the SH({sup 2}{Pi}{sub i})-Ar and SD-Ar radical complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sumiyoshi, Yoshihiro; Endo, Yasuki; Ohshima, Yasuhiro
1996-12-31
The authors have studied the SH({sup 2}{Pi}{sub i})-Ar and SD-Ar radical complexes with FTMW spectroscopy. The complexes were produced in a supersonic free jet by a pulsed discharge of H{sub 2}S or D{sub 2}S, which was diluted to 0.35% in Ar with a stagnation pressure of 2 atm. R-branch transitions in the lower spin-orbit component ({Omega}=3/2) for the linear {sup 2}{Pi}{sub i} radicals were observed for J{double_prime} = 3/2 to J{double_prime} = 15/2 in the 8-26 GHz region. The transitions were split into two parity components owing to the parity doubling. Each parity component was split further due to themore » magnetic hyperfine interaction associated with the H/D nucleus. Rotational constants for SH-Ar and SD-Ar were determined to be 1569.656(2) and 1567.707(2)MHz respectively. The value for SH-Ar agrees well with that of a previous LIF study. From the SH/SD data, it was confirmed that the argon atom is located at the hydrogen side of the SH radical. With an assumption that the S-H bond length is equal to that in the monomer, the H-Ar distance is calculated to be 2.900 {Angstrom}, which is about 0.1 {Angstrom} longer than that in OH-Ar. The effective D{sub J} constants of SH-Ar and SD-Ar were found to have negative values of -58.4(7) and -50.7(6), kHz respectively.« less
A photonic link for donor spin qubits in silicon
NASA Astrophysics Data System (ADS)
Simmons, Stephanie
Atomically identical donor spin qubits in silicon offer excellent native quantum properties, which match or outperform many qubit rivals. To scale up such systems it would be advantageous to connect silicon donor spin qubits in a cavity-QED architecture. Many proposals in this direction introduce strong electric dipole interactions to the otherwise largely isolated spin qubit ground state in order to couple to superconducting cavities. Here I present an alternative approach, which uses the built-in strong electric dipole (optical) transitions of singly-ionized double donors in silicon. These donors, such as chalcogen donors S +, Se + and Te +, have the same ground-state spin Hamiltonians as shallow donors yet offer mid-gap binding energies and mid-IR optical access to excited orbital states. This photonic link is spin-selective which could be harnessed to measure and couple donor qubits using photonic cavity-QED. This approach should be robust to device environments with variable strains and electric fields, and will allow for CMOS- compatible, bulk-like, spatially separated donor qubit placement, optical parity measurements, and 4.2K operation. I will present preliminary data in support of this approach, including 4.2K optical initialization/readout in Earth's magnetic field, where long T1 and T2 times have been measured.
Obesity and weight change related to parity and breast-feeding among parous women in Brazil.
Coitinho, D C; Sichieri, R; D'Aquino Benício, M H
2001-08-01
Studies on the independent role of parity in long-term body weight change in economically developing countries are scarce and inconclusive, and only a few studies have taken into account patterns of breast-feeding. This association was examined in a national cross-sectional survey representative of Brazilian parous women. The survey conducted in 1996 measured women's height and weight in the household and data on weight prior to the first pregnancy, parity and breast-feeding were recalled. A sample of 2338 parous women, 15 to 49 years of age, 29 months after last delivery on average, had current body mass index (BMI, in kg m(-2)) modelled through hierarchical multiple linear regression analysis. Explanatory variables included parity, days of predominant breast-feeding, BMI pre-pregnancy, socio-economic, geographic, demographic and other reproductive variables. Prevalences of overweight (BMI = 25.0-29.9 kg m(-2)) and obesity (BMI > or = 30.0 kg m(-2)) were 25.2% and 9.3%. The overall mean weight gain per year after the first pregnancy was 0.90 kg for an average time since first pregnancy of eight years. BMI pre-pregnancy modified the association between current BMI and parity. Therefore, weight change attributed to parity calculated for a woman of average height (1.56 m) was 0.60 kg greater for primiparous women with a BMI pre-pregnancy of 30 kg m(-2), compared with women with BMI pre-pregnancy of 25 kg m(-2). This greater weight retention among obese women was 1.21 kg for women with two children and 1.82 kg for women with three or more children. Parity reduced the effect of weight loss associated with lactation (1.75 kg for six months of lactation among primiparous women and 0.87 kg among women with three or more children). For the sub-sample of 793 primiparous women, a weight decrease of 300 g was associated with each month of predominant breast-feeding for all prior BMI levels. In this study, weight change associated to reproduction was highly dependent on BMI previous to pregnancy and the effects of parity and lactation were small.
Singh, Rekha; Gupta, Sushil; Awasthi, Ashish
2015-01-01
Osteoporosis is an important health problem in postmenopausal women. Lactation duration (LD), parity, menopause duration (MD), and body mass index (BMI) are important predictors of bone mineral density (BMD) and osteoporotic fractures in them. In addition, they have site-specific effects on BMD. Osteoporosis is especially prevalent in postmenopausal women. The aim of the study was to determine the effects of age, parity, LD, MD, and BMI on BMD at different sites and hip geometry in postmenopausal women. In this cross-sectional study, 87 women (45 years and above and at least 5 years postmenopausal) were enrolled. Subjects were divided into three parity groups (group 1: ≤ 2 children, group: 3-4 children, and group 3: > 4 children) and three LD groups (group 1: < 4 years, group 2: 4-8 years, and group 3: > 8 years). BMD was measured at neck of femur (BMD-NF), trochanter (BMD-TR), inter-trochanter (BMD-IT), spine (BMD-LS), and forearm (BMD-FA). Hip geometry was analyzed based on dual energy X-ray absorptiometry. One way ANOVA was used for comparisons of groups, and Bonferroni correction was used as post-hoc test. p value < 0.05 was considered significant. A significant difference in mean BMD was found between parity groups 1 and 3 at BMD-NF, BMD-TR, and BMD-LS, and between LD groups 1 and 3 at BMD-NF, BMD-TR, BMD-IT, and BMD-LS. Mean buckling ratio (BR) at IT was significantly different between parity groups 1 and 3, and LD groups 1 and 3. In multivariate regression analysis, BMI, age, and parity were significant predictors for BMD-NF; parity, BMI, and MD for BMD-TR; BMI, MD, and LD for BMD-IT; BMI and LD for BMD-LS; and age, LD, and BMI for BMD-FA. BMI and LD were significant predictors of IT-BR, while MD and BMI of narrow neck BR. MD, LD, parity, BMI, and age are important factors influencing BMD at hip and spine in postmenopausal women, and have site-specific effects on BMD.
NASA Astrophysics Data System (ADS)
Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi
2018-01-01
We report our theoretical predictions on the linear magnetoelectric (ME) effects originating from odd-parity multipoles associated with spontaneous spin and orbital ordering on a diamond structure. We derive a two-orbital model for d electrons in eg orbitals by including the effective spin-orbit coupling which arises from the mixing between eg and t2 g orbitals. We show that the model acquires a net antisymmetric spin-orbit coupling once staggered spin and orbital orders occur spontaneously. The staggered orders are accompanied by odd-parity multipoles: magnetic monopole, quadrupoles, and toroidal dipoles. We classify the types of the odd-parity multipoles according to the symmetry of the spin and orbital orders. Furthermore, by computing the ME tensor using the linear response theory, we show that the staggered orders induce a variety of the linear ME responses. We elaborate all possible ME responses for each staggered order, which are useful to identify the order parameter and to detect the odd-parity multipoles by measuring the ME effects. We also elucidate the effect of lowering symmetry by a tetragonal distortion, which leads to richer ME responses. The implications of our results are discussed for the 5 d transition metal oxides, A OsO4 (A =K,Rb, and Cs) , in which the order parameters are not fully identified.
Angulo, Joaquin; Gómez, Luis Miguel; Mahecha, Liliana; Mejía, Estefanía; Henao, Javier; Mesa, Carolina
2015-04-01
High-quality colostrum is an important factor influencing neonatal calf health, and quality assessment is essential to obtain good health results. This research evaluated the effects of the calf's sex, the parity of the cow and the hour of colostrum harvest after parity on the fat, nonfat solids, protein and Ig contents in Holstein colostrum for cows under high grazing conditions in the tropics. The effects of the calf's sex and parity on somatic cell count (SCC) at the first milking postpartum were determined. A comparison was made between a laboratory method and a farm method for the estimation of the fat and protein content of colostrum. Thirty-three cows were sampled in the study. The calf's sex was shown to have an effect on the amount of colostrum, on the concentration of fat, and on the amount of milk produced by lactating Holstein cows; all were higher in cows that gave birth to a female calf. Colostrum protein decreased after the first hour postpartum, and the Ig concentration had a tendency to decrease after 4 h. The cows that had parity 1-2 had lower Ig concentrations and total production of Igs, and higher SCC at the first milking postpartum. Ekomilk was a reliable method to measure the colostrum fat on the farm.
Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N → Δ Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leacock, John D.
2012-10-16
Qweak will determine the weak charge of the proton, Q p{sub W}, via an asymmetry measurement of parity-violating elastic electron-proton scattering at low four momentum transfer to a precision of 4%. Q p W has a firm Standard Model prediction and is related to the weak mixing angle, sin 2 Φ W, a well-defined Standard Model parameter. Qweak will probe a subset of new physics to the TeV mass scale and test the Standard Model. The details of how this measurement was performed and the analysis of the 25% elastic dataset will be presented in this thesis. Also, an analysismore » of an auxiliary measurement of the parity-violating asymmetry in the N → Δ transition is presented. It is used as a systematic inelastic background correction in the elastic analysis and to extract information about the hadronic parity violation through the low energy constant, d Δ. The elastic asymmetry at Q 2 = 0.0252 ± 0.0007 GeV 2 was measured to be A ep = -265 ± 40 ± 22 ± 68 ppb (stat., sys., and blinding). Extrapolated to Q 2 = 0, the value of the proton's weak charge was measured to be Q p W = 0.077 ± 0.019 (stat. and sys.) ± 0.026 (blinding). This is within 1 σ of the Standard Model prediction of Q p W = 0.0705 ± 0.0008. The N → Δ inelastic asymmetry at Q 2 = 0.02078 ± 0.0005 GeV 2 and W = 1205 MeV was measured to be A inel = -3.03 ± 0.65 ± 0.73 ± 0.07 ppm (stat., sys., and blinding). This result constrains the low energy constant to be d Δ = 5.8 ± 22g π, and, if the result of the G0 experiment is included, d Δ = 5.8 ± 17g π. This result rules out suggested large values of d Δ motivated by radiative hyperon decays. The elastic measurement is the first direct measurement of the weak charge of the proton while the inelastic measurement is only the second measurement of the neutral current excitation of the Δresonance. It is currently the best constraint for the low energy constant, d Δ.« less
Krause, Malwina; Foks, Henryk; Augustynowicz-Kopeć, Ewa; Napiórkowska, Agnieszka; Szczesio, Małgorzata; Gobis, Katarzyna
2018-04-23
Compounds possessing benzimidazole system exhibit significant antituberculous activity. In order to examine how structure modifications affect tuberculostatic activity, a series of benzazole derivatives were synthesized and screened for their antitubercular activity. The compounds 1 ⁻ 20 were obtained by the reaction between o -diamine, o -aminophenol, or o -aminothiophenol with carboxylic acids or thioamides. The newly synthesized compounds were characterized by IR, ¹H-NMR, 13 C-NMR spectra, and elemental analysis. Synthesized benzazoles were evaluated for their tuberculostatic activity toward Mycobacterium tuberculosis strains. Quantum chemical calculations were performed to study the molecular geometry and the electronic structure of benzimidazoles GK-151B, 4 , 6 , and benzoxazole 11 , using the Gaussian 03W software (Gaussian, Inc., Wallingford, CT, USA). Three-dimensional structure of benzimidazoles 1 ⁻ 3 , MC-9, and GK-151B was determined by ab initio calculation using Gamess-US software. The activity of the received benzimidazoles was moderate or good. All of the benzoxazoles and benzothiazoles demonstrated much lower activity. Benzoxazoles were less active by about 50 times, and benzothiazole by 100 times than the benzimidazole analogs. Quantum chemical calculations showed differences in the distribution of electrostatic potential in the benzazole system of benzimidazoles and benzoxazoles. Three-dimensional structure calculations revealed how the parity of the alkyl substituent at the C2 position impacts the activity. Benzimidazole system is essential for the antituberculosis activity that is associated with the presence of the imine nitrogen atom in N-1 position. Its replacement by an oxygen or sulfur atom results in a decrease of the activity. The parity of the alkyl substituent at the C-2 position also modifies the activity.
Bonderson, Parsa; Lutchyn, Roman M
2011-04-01
We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems. © 2011 American Physical Society
Can Ab Initio Theory Explain the Phenomenon of Parity Inversion in Be 11 ?
Calci, Angelo; Navratil, Petr; Roth, Robert; ...
2016-12-09
The weakly bound exotic 11Be nucleus, famous for its ground-state parity inversion and distinct n + 10Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces. An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the 11Be spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are capable of reproducing the parity inversion. With such interactions, the extremely large E1 transition between the bound states is reproduced. We compare our photodisintegration calculations to conflicting experimental data and predict a distinct dip around themore » 3/2 – 1 resonance energy. Finally, we predict low-lying 3/2 + and 9/2 + resonances that are not or not sufficiently measured in experiments.« less
The nuclear structure of 223Fr
NASA Astrophysics Data System (ADS)
Kurcewicz, W.; Løvhøiden, G.; Thorsteinsen, T. F.; Borge, M. J. G.; Burke, D. G.; Cronqvist, M.; Gabelmann, H.; Gietz, H.; Hill, P.; Kaffrell, N.; Naumann, R. A.; Nybø, K.; Nyman, G.; Rogowski, J.; Isolde Collaboration
1992-03-01
The γ-rays following the β- decay of 223Rn have been investigated by means of γ-ray singles including multispectrum analysis, and γγ-coincidence measurements using Ge detectors. Multipolarities of 38 transitions in 223Fr have been established by measuring conversion electrons with a mini-orange electron spectrometer. Most of the observed transitions could be placed in a level scheme comprising 53 excited states of 223Fr. The level structure is interpreted in terms of K π = {3}/{2}± and {1}/{2}± parity doublet bands, and a second K π = {3}/{2}± higher-lying parity doublet. The experimental data are compared with the theoretical predictions of the reflection-asymmetric rotor model.
First Direct Measurement of the Parity-Violating Coupling of the Z0 to the s Quark
NASA Astrophysics Data System (ADS)
Abe, Koya; Abe, Kenji; Abe, T.; Adam, I.; Akimoto, H.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barklow, T. L.; Bauer, J. M.; Bellodi, G.; Berger, R.; Blaylock, G.; Bogart, J. R.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Calcaterra, A.; Cassell, R.; Chou, A.; Cohn, H. O.; Coller, J. A.; Convery, M. R.; Cook, V.; Cowan, R. F.; Crawford, G.; Damerell, C. J.; Daoudi, M.; de Groot, N.; de Sangro, R.; Dong, D. N.; Doser, M.; Dubois, R.; Erofeeva, I.; Eschenburg, V.; Etzion, E.; Fahey, S.; Falciai, D.; Fernandez, J. P.; Flood, K.; Frey, R.; Hart, E. L.; Hasuko, K.; Hertzbach, S. S.; Huffer, M. E.; Huynh, X.; Iwasaki, M.; Jackson, D. J.; Jacques, P.; Jaros, J. A.; Jiang, Z. Y.; Johnson, A. S.; Johnson, J. R.; Kajikawa, R.; Kalelkar, M.; Kang, H. J.; Kofler, R. R.; Kroeger, R. S.; Langston, M.; Leith, D. W.; Lia, V.; Lin, C.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; McKemey, A. K.; Messner, R.; Moffeit, K. C.; Moore, T. B.; Morii, M.; Muller, D.; Murzin, V.; Narita, S.; Nauenberg, U.; Neal, H.; Nesom, G.; Oishi, N.; Onoprienko, D.; Osborne, L. S.; Panvini, R. S.; Park, C. H.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Ratcliff, B. N.; Reidy, J.; Reinertsen, P. L.; Rochester, L. S.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schalk, T.; Schumm, B. A.; Schwiening, J.; Serbo, V. V.; Shapiro, G.; Sinev, N. B.; Snyder, J. A.; Staengle, H.; Stahl, A.; Stamer, P.; Steiner, H.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, A.; Swartz, M.; Taylor, F. E.; Thom, J.; Torrence, E.; Usher, T.; Va'Vra, J.; Verdier, R.; Wagner, D. L.; Waite, A. P.; Walston, S.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Wittlin, J. L.; Woods, M.; Wright, T. R.; Yamamoto, R. K.; Yashima, J.; Yellin, S. J.; Young, C. C.; Yuta, H.
2000-12-01
We present the first direct measurement of As, the parity-violating coupling of the Z0 boson to the strange quark, using ~550 000 e+e--->Z0-->hadrons events recorded by the SLC Large Detector with a polarized e- beam. We tagged Z0-->ss¯ events by the absence of B or D hadrons and the presence in each hemisphere of a high momentum K+/- or K0s. Fitting the polar angle distributions of the strangeness-signed thrust axis gave As = 0.895+/-0.066\\(stat\\)+/-0.062\\(syst\\). The analyzing power and uu¯+dd¯ background were constrained using the data, greatly reducing any model dependence.
Caixeta, L S; Ospina, P A; Capel, M B; Nydam, D V
2017-05-01
The objective of this study was to determine the effects of subclinical hypocalcemia on reproductive performance in dairy cows. In a prospective cohort study, 97 cows on 2 dairy farms with automatic milking systems were monitored for subclinical hypocalcemia. Animals were enrolled 7 ± 3 days prior to estimated calving date and three parity groups were defined based on the lactation that the animals were going to start: lactation = 1, lactation = 2, and lactation ≥3. Serum calcium concentration (Ca) was measured in all animals in the first 3 DIM and subclinical hypocalcemia (SCH) was defined as Ca ≤ 8.6 mg/dL; animals that presented a low Ca level during all 3 days were classified as chronic SCH (cSCH). Return to cyclicity during the voluntary waiting period was analyzed based on weekly progesterone concentrations measured in serum. Information on reproductive outcomes (i.e., number of breedings, pregnancy status, days open, etc.), were collected from on-farm software after all study cows had completed their study period. Chronic SCH was present in all parity groups with higher incidence in multiparous animals (20% of parity = 1, 32% of parity = 2; and 46% of parity ≥ 3 animals). The cSCH animals took longer to show active ovaries when compared to eucalcemic and SCH animals. In a multivariable Cox's Proportional Hazard model animals with normal Ca were 1.8 times more likely to return to cyclicity by the end of the voluntary waiting period when compared to cSCH animals. Animals with cSCH also had 0.27 odds of being pregnant at first service compared to eucalcemic cows when analyzed by multivariable logistic regression. Subclinical hypocalcemia had a negative effect on return of ovarian function during the voluntary waiting period and decreased the odds of pregnancy at first service. Those cows with cSCH had an even more pronounced impaired reproductive function than those with one subclinical measurement. Copyright © 2017 Elsevier Inc. All rights reserved.
Parity & Untreated Dental Caries in US Women
Russell, S.L.; Ickovics, J.R.; Yaffee, R.A.
2010-01-01
While parity (number of children) reportedly is related to tooth loss, the relationship between parity and dental caries has not been extensively investigated. We used path analysis to test a theoretical model that specified that parity influences dental caries levels through dental care, psycho- social factors, and dental health damaging behaviors in 2635 women selected from the NHANES III dataset. We found that while increased parity was not associated with a greater level of total caries (DFS), parity was related to untreated dental caries (DS). The mechanisms by which parity is related to caries, however, remain undefined. Further investigation is warranted to determine if disparities in dental caries among women are due to differences in parity and the likely changes that parallel these reproductive choices. PMID:20631092
Parity & untreated dental caries in US women.
Russell, S L; Ickovics, J R; Yaffee, R A
2010-10-01
While parity (number of children) reportedly is related to tooth loss, the relationship between parity and dental caries has not been extensively investigated. We used path analysis to test a theoretical model that specified that parity influences dental caries levels through dental care, psycho- social factors, and dental health damaging behaviors in 2635 women selected from the NHANES III dataset. We found that while increased parity was not associated with a greater level of total caries (DFS), parity was related to untreated dental caries (DS). The mechanisms by which parity is related to caries, however, remain undefined. Further investigation is warranted to determine if disparities in dental caries among women are due to differences in parity and the likely changes that parallel these reproductive choices.
Separation of the 1+ /1- parity doublet in 20Ne
NASA Astrophysics Data System (ADS)
Beller, J.; Stumpf, C.; Scheck, M.; Pietralla, N.; Deleanu, D.; Filipescu, D. M.; Glodariu, T.; Haxton, W.; Idini, A.; Kelley, J. H.; Kwan, E.; Martinez-Pinedo, G.; Raut, R.; Romig, C.; Roth, R.; Rusev, G.; Savran, D.; Tonchev, A. P.; Tornow, W.; Wagner, J.; Weller, H. R.; Zamfir, N.-V.; Zweidinger, M.
2015-02-01
The (J , T) = (1 , 1) parity doublet in 20Ne at 11.26 MeV is a good candidate to study parity violation in nuclei. However, its energy splitting is known with insufficient accuracy for quantitative estimates of parity violating effects. To improve on this unsatisfactory situation, nuclear resonance fluorescence experiments using linearly and circularly polarized γ-ray beams were used to determine the energy difference of the parity doublet ΔE = E (1-) - E (1+) = - 3.2(± 0.7) stat(-1.2+0.6)sys keV and the ratio of their integrated cross sections Is,0(+) /Is,0(-) = 29(± 3) stat(-7+14)sys. Shell-model calculations predict a parity-violating matrix element having a value in the range 0.46-0.83 eV for the parity doublet. The small energy difference of the parity doublet makes 20Ne an excellent candidate to study parity violation in nuclear excitations.
Concurrent Mass Measurement and Laser Spectroscopy for Unambiguous Isomeric State Assignment
NASA Astrophysics Data System (ADS)
Lascar, Daniel; Babcock, Carla; Henderson, Jack; Pearson, Matt
2017-09-01
Recent work by the TITAN group at TRIUMF on isomeric state mass measurements of odd-A, neutron-rich cadmium nuclei has shown a disconnect between experiment and theory in 127 g , mCd. The spin and parity assignments of the ground and isomeric states are assigned as 3/2+ and 11/2-, respectively, primarily via systematic arguments. Conversely, state of the art shell model and ab initio calculations show a reversal of the states, predicting a ground state of 11/2- and a 3/2+ isomer. Penning Trap Mass Spectrometry (PTMS) can measure the energy separation between the ground state and the isomer without ambiguity but cannot, on its own, comment on the spin and parity. Collinear Laser Spectroscopy (CLS) experiments have been performed on 127Cd and have elegantly demonstrated the existence of both 3/2+ and 11/2- states. What CLS cannot do, on its own, is assign an ordering to those states. If, however, a PTMS and CLS experiment could be performed concurrently using identical beams from the same facility then there exists sufficient information shared between both experiments that a definitive assignment can be made. We present a concept for a new slate of measurements using existing experimental facilities simultaneously, with shared resources, to definitively assign spin and parity for ground and isomeric states in short-lived nuclei.
NASA Astrophysics Data System (ADS)
Petrenko, A.; Ofek, N.; Vlastakis, B.; Sun, L.; Leghtas, Z.; Heeres, R.; Sliwa, K. M.; Mirrahimi, M.; Jiang, L.; Devoret, M. H.; Schoelkopf, R. J.
2015-03-01
Realizing a working quantum computer requires overcoming the many challenges that come with coupling large numbers of qubits to perform logical operations. These include improving coherence times, achieving high gate fidelities, and correcting for the inevitable errors that will occur throughout the duration of an algorithm. While impressive progress has been made in all of these areas, the difficulty of combining these ingredients to demonstrate an error-protected logical qubit, comprised of many physical qubits, still remains formidable. With its large Hilbert space, superior coherence properties, and single dominant error channel (single photon loss), a superconducting 3D resonator acting as a resource for a quantum memory offers a hardware-efficient alternative to multi-qubit codes [Leghtas et.al. PRL 2013]. Here we build upon recent work on cat-state encoding [Vlastakis et.al. Science 2013] and photon-parity jumps [Sun et.al. 2014] by exploring the effects of sequential measurements on a cavity state. Employing a transmon qubit dispersively coupled to two superconducting resonators in a cQED architecture, we explore further the application of parity measurements to characterizing such a hybrid qubit/cat state architecture. In so doing, we demonstrate the promise of integrating cat states as central constituents of future quantum codes.
Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercado, Luis
2012-05-01
This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z 0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q 2 = 0.62 GeV 2. The measured asymmetry was used to set newmore » constraints on the contribution of strange quark form factors (G s E,M ) to the nucleon electromagnetic form factors. A value of A PV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in G s E + 0.517G s M = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q 2 = 0.009 GeV 2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z 0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.« less
NASA Astrophysics Data System (ADS)
Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmad, A.; Ahmadov, F.; Aielli, G.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Ammosov, V. V.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, S.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belloni, A.; Beloborodova, O. L.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertolucci, F.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bolnet, N. M.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Branchini, P.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, G.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chan, K.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Christidi, I. A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collins-Tooth, C.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Crispin Ortuzar, M.; Cristinziani, M.; Crosetti, G.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darlea, G. L.; Darmora, S.; Dassoulas, J. A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lorenzi, F.; de Nooij, L.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Degenhardt, J.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobos, D.; Dobson, E.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, J.; Fisher, M. J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gandrajula, R. P.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godfrey, J.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; González de La Hoz, S.; Gonzalez Parra, G.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Grybel, K.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageboeck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Heisterkamp, S.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Ideal, E.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javå¯Rek, T.; Jeanty, L.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kama, S.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Karnevskiy, M.; Karpov, S. N.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Keller, J. S.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kitamura, T.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lassnig, M.; Laurelli, P.; Lavorini, V.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le, B. T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, J. P.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mättig, P.; Mättig, S.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McHedlidze, G.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Meera-Lebbai, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano Moya, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Moeller, V.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morange, N.; Morel, J.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newcomer, F. M.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novakova, J.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'Grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Ohshima, T.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petteni, M.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piec, S. M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pizio, C.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospelov, G. E.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Prabhu, R.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qin, G.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reinsch, A.; Reisin, H.; Relich, M.; Rembser, C.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romeo, G.; Romero Adam, E.; Rompotis, N.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaelicke, A.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Sherwood, P.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snow, J.; Snyder, S.; Sobie, R.; Socher, F.; Sodomka, J.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopko, V.; Sopko, B.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spighi, R.; Spigo, G.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steele, G.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoerig, K.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramania, Hs.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tamsett, M. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tani, K.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thoma, S.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, W.; Wagner, P.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watanabe, I.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zaytsev, A.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi Della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zitoun, R.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration
2014-05-01
A measurement of the parity-violating decay asymmetry parameter, αb, and the helicity amplitudes for the decay Λb0→J/ψ(μ+μ-)Λ0(pπ-) is reported. The analysis is based on 1400 Λb0 and Λ ¯b0 baryons selected in 4.6 fb-1 of proton-proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. By combining the Λb0 and Λ ¯b0 samples under the assumption of CP conservation, the value of αb is measured to be 0.30±0.16(stat)±0.06(syst). This measurement provides a test of theoretical models based on perturbative QCD or heavy-quark effective theory.
Rydberg Atoms in Strong Fields: a Testing Ground for Quantum Chaos.
NASA Astrophysics Data System (ADS)
Courtney, Michael
1995-01-01
Rydberg atoms in strong static electric and magnetic fields provide experimentally accessible systems for studying the connections between classical chaos and quantum mechanics in the semiclassical limit. This experimental accessibility has motivated the development of reliable quantum mechanical solutions. This thesis uses both experimental and computed quantum spectra to test the central approaches to quantum chaos. These central approaches consist mainly of developing methods to compute the spectra of quantum systems in non -perturbative regimes, correlating statistical descriptions of eigenvalues with the classical behavior of the same Hamiltonian, and the development of semiclassical methods such as periodic-orbit theory. Particular emphasis is given to identifying the spectral signature of recurrences --quantum wave packets which follow classical orbits. The new findings include: the breakdown of the connection between energy-level statistics and classical chaos in odd-parity diamagnetic lithium, the discovery of the signature of very long period orbits in atomic spectra, quantitative evidence for the scattering of recurrences by the alkali -metal core, quantitative description of the behavior of recurrences near bifurcations, and a semiclassical interpretation of the evolution of continuum Stark spectra. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Comment on "Calculations for the one-dimensional soft Coulomb problem and the hard Coulomb limit".
Carrillo-Bernal, M A; Núñez-Yépez, H N; Salas-Brito, A L; Solis, Didier A
2015-02-01
In the referred paper, the authors use a numerical method for solving ordinary differential equations and a softened Coulomb potential -1/√[x(2)+β(2)] to study the one-dimensional Coulomb problem by approaching the parameter β to zero. We note that even though their numerical findings in the soft potential scenario are correct, their conclusions do not extend to the one-dimensional Coulomb problem (β=0). Their claims regarding the possible existence of an even ground state with energy -∞ with a Dirac-δ eigenfunction and of well-defined parity eigenfunctions in the one-dimensional hydrogen atom are questioned.
Octupole Deformation Bands of πh11/2 in Neutron-Rich 145,147La Nuclei
NASA Astrophysics Data System (ADS)
Zhu, Sheng-jiang; S, Zhu J.; Wang, Mu-ge; J, Hamilton H.; A, Ramayya V.; B, Babu R. S.; W, Ma C.; Long, Gui-lu; Zhu, Ling-yan; Li, Ming; A, Sakhaee; Gan, Cui-yun; Yang, Li-ming; J, Komicki; J, Cole D.; R, Aryaeinejad; M, Drigert W.; J, Rasmussen O.; M, Stoyer A.; S, Chu Y.; K, Gregorich E.; M, Mohar F.; S, Prussin G.; I, Lee Y.; Yu, Oganessian Ts; G, Ter-Akopian M.; A, Daniel V.
1999-03-01
Octupole deformation bands built on πh11/2 orbital in neutron-rich odd-Z 145,147La nuclei have been investigated by measuring the prompt γ-rays emitted from the 252Cf source. The alternating parity band structures and strong E1 transitions observed between negative- and positive-parity bands in both nuclei indicate the octupole deformation enhanced by the h11/2 single proton coupling. According to observed energy displacements the octupole deformation becomes stable at the intermediate spin states.
NASA Astrophysics Data System (ADS)
Kessel, Pan; Mkrtchyan, Karapet
2018-05-01
This work completes the classification of the cubic vertices for arbitrary-spin massless bosons in three dimensions started in a previous companion paper by constructing parity-odd vertices. Similarly to the parity-even case, there is a unique parity-odd vertex for any given triple s1≥s2≥s3≥2 of massless bosons if the triangle inequalities are satisfied (s1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heusler, A.; Graw, G.; Hertenberger, R.
2010-07-15
With the Q3D magnetic spectrograph of the Maier-Leibnitz-Laboratorium at Muenchen at a resolution of about 3 keV, angular distributions and excitation functions of the reaction {sup 208}Pb(p,p{sup '}) were measured at some scattering angles 20 deg. - 138 deg. for several proton energies 14.8-18.1 MeV. All seven known isobaric analog resonances in {sup 209}Bi are covered. By the excitation near the j{sub 15/2} intruder resonance in {sup 209}Bi, several new positive parity states in {sup 208}Pb with excitation energies 4.6-6.2 MeV are identified by comparison of the mean cross section to the known single particle widths. The dominant configuration formore » 27 positive parity states is determined and compared to the schematic shell model.« less
Single event upset protection circuit and method
Wallner, John; Gorder, Michael
2016-03-22
An SEU protection circuit comprises first and second storage means for receiving primary and redundant versions, respectively, of an n-bit wide data value that is to be corrected in case of an SEU occurrence; the correction circuit requires that the data value be a 1-hot encoded value. A parity engine performs a parity operation on the n bits of the primary data value. A multiplexer receives the primary and redundant data values and the parity engine output at respective inputs, and is arranged to pass the primary data value to an output when the parity engine output indicates `odd` parity, and to pass the redundant data value to the output when the parity engine output indicates `even` parity. The primary and redundant data values are suitably state variables, and the parity engine is preferably an n-bit wide XOR or XNOR gate.
Psychosocial Stress and Preterm Birth: The Impact of Parity and Race.
Wheeler, Sarahn; Maxson, Pamela; Truong, Tracy; Swamy, Geeta
2018-03-29
Objectives Studies examining risk factors for preterm birth (PTB) such as psychosocial stress are often focused on women with a history of PTB; however, most preterm babies are born to women with no history of preterm birth. Our objective was to determine if the relationship between psychosocial stress and PTB is altered by parity. Non-Hispanic black (NHB) women have increased psychosocial stress and PTB; therefore, we further aimed to determine if race alters the relationship between psychosocial stress, parity, and PTB. Methods We performed a secondary analysis of the Healthy Pregnancy, Healthy Baby Study comparing pregnant women who were primiparous (first pregnancy), multiparous with history of preterm birth, or multiparous with history of term birth. Perceived stress, perceived racism, interpersonal support, John Henryism and self-efficacy were measured using validated instruments. Logistic regression was used to model the effect of psychosocial stress on PTB stratified by parity and race. Results The analysis entire cohort included 1606 subjects, 426 were primiparous, 268 had a history of presterm birth, and 912 had a history of term birth. In women with a history of term birth, higher self-efficacy was associated with lower odds of spontaneous PTB, and this association was amplified in NHB women. In women with a history of spontaneous PTB, John Henryism Active Coping was associated with lower odds of spontaneous PTB in the index pregnancy. Conclusions for Practice The relationship between psychosocial stress and PTB may be mediated by parity and race.
High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules
NASA Astrophysics Data System (ADS)
Tokunaga, S. K.; Hendricks, R. J.; Tarbutt, M. R.; Darquié, B.
2017-05-01
We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers is measurable. The molecules are produced with a rotational temperature of approximately 6 K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2 μm antisymmetric Re=O stretching mode of MTO with a resolution of 8 MHz and a frequency accuracy of 30 MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state. Our ability to produce dense samples of complex molecules of this type at low temperatures represents a key step towards a precision measurement of parity violation in a chiral species.
Wen, Hefei; Cummings, Janet R; Hockenberry, Jason M; Gaydos, Laura M; Druss, Benjamin G
2013-12-01
The passage of the 2008 Mental Health Parity and Addiction Equity Act and the 2010 Affordable Care Act incorporated parity for substance use disorder (SUD) treatment into federal legislation. However, prior research provides us with scant evidence as to whether federal parity legislation will hold the potential for improving access to SUD treatment. To examine the effect of state-level SUD parity laws on state-aggregate SUD treatment rates and to shed light on the impact of the recent federal SUD parity legislation. We conducted a quasi-experimental study using a 2-way (state and year) fixed-effect method. We included all known specialty SUD treatment facilities in the United States and examined treatment rates from October 1, 2000, through March 31, 2008. Our main source of data was the National Survey of Substance Abuse Treatment Services, which provides facility-level information on specialty SUD treatment. State-level SUD parity laws during the study period. State-aggregate SUD treatment rates in (1) all specialty SUD treatment facilities and (2) specialty SUD treatment facilities accepting private insurance. The implementation of any SUD parity law increased the treatment rate by 9% (P < .001) in all specialty SUD treatment facilities and by 15% (P = .02) in facilities accepting private insurance. Full parity and parity only if SUD coverage is offered increased the SUD treatment rate by 13% (P = .02) and 8% (P = .04), respectively, in all facilities and by 21% (P = .03) and 10% (P = .04), respectively, in facilities accepting private insurance. We found a positive effect of the implementation of state SUD parity legislation on access to specialty SUD treatment. Furthermore, the positive association is more pronounced in states with more comprehensive parity laws. Our findings suggest that federal parity legislation holds the potential to improve access to SUD treatment.
Akter, Shamima; Jesmin, Subrina; Rahman, Md Mizanur; Islam, Md Majedul; Khatun, Most Tanzila; Yamaguchi, Naoto; Akashi, Hidechika; Mizutani, Taro
2013-01-01
Parity increases the risk for coronary heart disease; however, its association with metabolic syndrome among women in low-income countries is still unknown. This study investigates the association between parity or gravidity and metabolic syndrome in rural Bangladeshi women. A cross-sectional study was conducted in 1,219 women aged 15-75 years from rural Bangladesh. Metabolic syndrome was defined according to the standard NCEP-ATP III criteria. Logistic regression was used to estimate the association between parity and gravidity and metabolic syndrome, with adjustment of potential confounding variables. Subjects with the highest gravidity (> = 4) had 1.66 times higher odds of having metabolic syndrome compared to those in the lowest gravidity (0-1) (P trend = 0.02). A similar association was found between parity and metabolic syndrome (P(trend) = 0.04), i.e., subjects in the highest parity (> = 4) had 1.65 times higher odds of having metabolic syndrome compared to those in the lowest parity (0-1). This positive association of parity and gravidity with metabolic syndrome was confined to pre-menopausal women (P(trend) <0.01). Among the components of metabolic syndrome only high blood pressure showed positive association with parity and gravidity (P(trend) = 0.01 and <0.001). Neither Parity nor gravidity was appreciably associated with other components of metabolic syndrome. Multi parity or gravidity may be a risk factor for metabolic syndrome.
Hyperfine Structure Constants of Energetically High-lying Levels of Odd Parity of Atomic Vanadium
NASA Astrophysics Data System (ADS)
Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü.
2014-09-01
High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm-1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d 34s4p and 55 to the configuration 3d 44p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d 34s4p and 44 to 3d 44p.
Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming
2016-01-01
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634
Permutation parity machines for neural cryptography.
Reyes, Oscar Mauricio; Zimmermann, Karl-Heinz
2010-06-01
Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.
Permutation parity machines for neural cryptography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reyes, Oscar Mauricio; Escuela de Ingenieria Electrica, Electronica y Telecomunicaciones, Universidad Industrial de Santander, Bucaramanga; Zimmermann, Karl-Heinz
2010-06-15
Recently, synchronization was proved for permutation parity machines, multilayer feed-forward neural networks proposed as a binary variant of the tree parity machines. This ability was already used in the case of tree parity machines to introduce a key-exchange protocol. In this paper, a protocol based on permutation parity machines is proposed and its performance against common attacks (simple, geometric, majority and genetic) is studied.
The effect of fetal sex on customized fetal growth charts.
Rizzo, Giuseppe; Prefumo, Federico; Ferrazzi, Enrico; Zanardini, Cristina; Di Martino, Daniela; Boito, Simona; Aiello, Elisa; Ghi, Tullio
2016-12-01
To evaluate the effect of fetal sex on singleton pregnancy growth charts customized for parental characteristics, race, and parity Methods: In a multicentric cross-sectional study, 8070 ultrasonographic examinations from low-risk singleton pregnancies between 16 and 40 weeks of gestation were considered. The fetal measurements obtained were biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length (FL). Quantile regression was used to examine the impact of fetal sex across the biometric percentiles of the fetal measurements considered together with parents' height, weight, parity, and race. Fetal gender resulted to be a significant covariate for BDP, HC, and AC with higher values for male fetuses (p ≤ 0.0009). Minimal differences were found among sexes for FL. Parity, maternal race, paternal height and maternal height, and weight resulted significantly related to the fetal biometric parameters considered independently from fetal gender. In this study, we constructed customized biometric growth charts for fetal sex, parental, and obstetrical characteristics using quantile regression. The use of gender-specific charts offers the advantage to define individualized normal ranges of fetal biometric parameters at each specific centile. This approach may improve the antenatal identification of abnormal fetal growth.
Sonneveldt, Emily; DeCormier Plosky, Willyanne; Stover, John
2013-01-01
A number of data sets show that high parity births are associated with higher child mortality than low parity births. The reasons for this relationship are not clear. In this paper we investigate whether high parity is associated with lower coverage of key health interventions that might lead to increased mortality. We used DHS data from 10 high fertility countries to examine the relationship between parity and coverage for 8 child health intervention and 9 maternal health interventions. We also used the LiST model to estimate the effect on maternal and child mortality of the lower coverage associated with high parity births. Our results show a significant relationship between coverage of maternal and child health services and birth order, even when controlling for poverty. The association between coverage and parity for maternal health interventions was more consistently significant across countries all countries, while for child health interventions there were fewer overall significant relationships and more variation both between and within countries. The differences in coverage between children of parity 3 and those of parity 6 are large enough to account for a 12% difference in the under-five mortality rate and a 22% difference in maternal mortality ratio in the countries studied. This study shows that coverage of key health interventions is lower for high parity children and the pattern is consistent across countries. This could be a partial explanation for the higher mortality rates associated with high parity. Actions to address this gap could help reduce the higher mortality experienced by high parity birth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Stephanie L.
The goal of Experiment E04-115 (the G0 backward angle measurement) at Jefferson Lab is to investigate the contributions of strange quarks to the fundamental properties of the nucleon. The experiment measures parity-violating asymmetries in elastic electron scattering off hydrogen and quasielastic electron scattering off deuterium at backward angles at Q 2 = 0.631 (GeV/c) 2 and Q 2 = 0.232 (GeV/c) 2. The backward angle measurement represents the second phase of the G0 experiment. The first phase, Experiment E00-006 (the G0 forward angle experiment), measured parity-violating asymmetries in elastic electron scattering off hydrogen at forward angles over a Q 2more » range of 0.1-1.0 (GeV/c) 2. The experiments used a polarized electron beam and unpolarized hydrogen and deuterium liquid targets. From these measurements, along with the electromagnetic form factors, one can extract the contribution of the strange quark to the proton's charge and magnetization distributions. This thesis represents a fi« less
Akter, Shamima; Jesmin, Subrina; Rahman, Md. Mizanur; Islam, Md. Majedul; Khatun, Most. Tanzila; Yamaguchi, Naoto; Akashi, Hidechika; Mizutani, Taro
2013-01-01
Background Parity increases the risk for coronary heart disease; however, its association with metabolic syndrome among women in low-income countries is still unknown. Objective This study investigates the association between parity or gravidity and metabolic syndrome in rural Bangladeshi women. Methods A cross-sectional study was conducted in 1,219 women aged 15–75 years from rural Bangladesh. Metabolic syndrome was defined according to the standard NCEP-ATP III criteria. Logistic regression was used to estimate the association between parity and gravidity and metabolic syndrome, with adjustment of potential confounding variables. Results Subjects with the highest gravidity (> = 4) had 1.66 times higher odds of having metabolic syndrome compared to those in the lowest gravidity (0-1) (P trend = 0.02). A similar association was found between parity and metabolic syndrome (P trend = 0.04), i.e., subjects in the highest parity (> = 4) had 1.65 times higher odds of having metabolic syndrome compared to those in the lowest parity (0-1). This positive association of parity and gravidity with metabolic syndrome was confined to pre-menopausal women (P trend <0.01). Among the components of metabolic syndrome only high blood pressure showed positive association with parity and gravidity (P trend = 0.01 and <0.001). Neither Parity nor gravidity was appreciably associated with other components of metabolic syndrome. Conclusions Multi parity or gravidity may be a risk factor for metabolic syndrome. PMID:23936302
Kim, Sonia A; Yount, Kathryn M; Ramakrishnan, Usha; Martorell, Reynaldo
2007-02-01
Recent studies support a positive relationship between parity and overweight among women of developing countries; however, it is unclear whether these effects vary by household wealth and national development. Our objective was to determine whether the association between parity and overweight [body mass index (BMI) > or =25 kg/m(2)] in women living in developing countries varies with levels of national human development and/or household wealth. We used data from 28 nationally representative, cross-sectional surveys conducted between 1996 and 2003 (n = 275 704 women, 15-49 years). The relationship between parity and overweight was modelled using logistic regression, controlling for several biological and sociodemographic factors and national development, as reflected by the United Nations' Human Development Index. We also modelled the interaction between parity and national development, and the three-way interaction between parity, household wealth and national development. Parity had a weak, positive association with overweight, which varied by household wealth and national development. Among the poorest women and women in the second tertile of household wealth, parity was positively related to overweight only in the most developed countries. Among the wealthiest women, parity was positively related to overweight regardless of the level of national development. As development increases, the burden of parity-related overweight shifts to include poor as well as wealthy women. In the least-developed countries, programmes to prevent parity-related overweight should target wealthy women, whereas such programmes should be provided to all women in more developed countries.
Nuclear Structure of 97Mo from the (d, p) Reaction
NASA Astrophysics Data System (ADS)
Chowdhury, M. S.; Booth, W.
The reaction 96Mo(d, p)97Mo has been studied at 12 MeV using the tandem Van de Graaff accelerator and a multi-channel magnetic spectrograph at the Atomic Weapon Research Establishment, Aldermaston, England. Angular distributions of protons are measured at 12 different angles from 5° to 87.5° at an interval of 7.5° and the reaction products are detected in nuclear emulsion plates. Thirty levels in the energy range from 0.000 to 2.458 MeV have been observed and absolute differential cross-sections for these levels have been measured. The data are analyzed in terms of the distorted-wave Born approximation (DWBA) theory of the direct reactions, and spins, parities and spectroscopic factors are deduced for various levels. Ambiguity in the spin assignments of d5/2 and d3/2 which is allowed in ln = 2(d, p) transition is removed by using the corresponding L-value of the 95 Mo(t, p)97Mo reaction at Et = 12 MeV. Determined value of the sum of spectroscopic factors for transfers of d5/2 neutrons suggests configuration mixing in the ground state of 96Mo. The properties of the levels in 97Mo are compared with previous experimental results and theoretical predictions.
Characterizing Properties and Performance of 3D Printed Plastic Scintillators
NASA Astrophysics Data System (ADS)
McCormick, Jacob
2015-10-01
We are determining various characteristics of the performance of 3D printed scintillators. A scintillator luminesces when an energetic particle raises electrons to an excited state by depositing some of its energy in the atom. When these excited electrons fall back down to their stable states, they emit the excess energy as light. We have characterized the transmission spectrum, emission spectrum, and relative intensity of light produced by 3D printed scintillators. We are also determining mechanical properties such as tensile strength and compressibility, and the refractive index. The emission and transmission spectra were measured using a monochromator. By observing the transmission spectrum, we can see which optical wavelengths are absorbed by the scintillator. This is then used to correct the emission spectrum, since this absorption is present in the emission spectrum. Using photomultiplier tubes in conjunction with integration hardware (QDC) to measure the intensity of light emitted by 3D printed scintillators, we compare with commercial plastic scintillators. We are using the characterizations to determine if 3D printed scintillators are a viable alternative to commercial scintillators for use at Jefferson Lab in nuclear and accelerated physics detectors. I would like to thank Wouter Deconinck, as well as the Parity group at the College of William and Mary for all advice and assistance with my research.
Optical Parametric Amplification of Single Photon: Statistical Properties and Quantum Interference
NASA Astrophysics Data System (ADS)
Xu, Xue-Xiang; Yuan, Hong-Chun
2014-05-01
By using phase space method, we theoretically investigate the quantum statistical properties and quantum interference of optical parametric amplification of single photon. The statistical properties, such as the Wigner function (WF), average photon number, photon number distribution and parity, are derived analytically for the fields of the two output ports. The results indicate that the fields in the output ports are multiphoton states rather than single photon state due to the amplification of the optical parametric amplifiers (OPA). In addition, the phase sensitivity is also examined by using the detection scheme of parity measurement.
González-García, E; Tesniere, A; Camous, S; Bocquier, F; Barillet, F; Hassoun, P
2015-01-01
Effects of parity (primiparous, PRIM vs multiparous, MULT) and litter size (singletons, SING vs twins, TWIN) on metabolic profiles from 1 wk before lambing to the end of lactation were studied in 48 Lacaune dairy ewes reared in confinement during most of the year and grazed on improved pastures at the end of lactation (summer). Another group of 48 ewes was incorporated during the milking period (ie, from 1 wk after weaning), to measure the effects of milking frequency (1 vs 2 milkings per day) on intake, milk production and composition, and body energy usage. Thus, in a 2 × 2 × 2 factorial design, ewes (n = 96) were allocated to homogeneous groups according to body weight (BW) and body condition score (BCS) and were monitored from late pregnancy to late lactation as a function of parity (PRIM, n = 48; MULT, n = 48), litter size (LSi) (SING, n = 40; TWIN, n = 56) and daily milking frequency (FREQ; milked once, ONE; n = 48; or twice, TWO; n = 48). Individual BW, BCS, plasma metabolites, and metabolic hormones were measured regularly (ie, 9 consecutive sampling dates). The BW was higher in MULT but no differences because of LSi or FREQ were detected at the intra-parity group level. The BCS was higher in MULT and in ewes with SING throughout the experiment. The latter was related to the demands for body reserves mobilization, as expressed by higher nonesterified fatty acids and β-hydroxybutyrate concentrations in ewes with TWIN from late pregnancy to weaning (35 d postpartum) in both PRIM and MULT ewes. This was consistent with higher insulin in MULT and higher triiodothyronine, leptin and insulin-like growth factor 1 in ewes with SING during this period. Differences in energy balance because of FREQ were evident after interpretation of plasma nonesterified fatty acids, glucose, insulin, and leptin concentration during the milking period. At similar feed intakes, ewes in ONE were in positive balance with regard to TWO. Overall, clear effects of parity, LSi, physiological states, and FREQ on metabolic profiles were found because of differences in nutrient partitioning when combining these experimental factors. Without considering FREQ, changes in metabolic measures in milking period were marginal compared with the periparturient adjustments performed until weaning to compensate energy deficiencies. Copyright © 2015 Elsevier Inc. All rights reserved.
Impact of parity on ewe vaginal mechanical properties relative to the nonhuman primate and rodent.
Knight, Katrina M; Moalli, Pamela A; Nolfi, Alexis; Palcsey, Stacy; Barone, William R; Abramowitch, Steven D
2016-08-01
Parity is the leading risk factor for the development of pelvic organ prolapse. To assess the impact of pregnancy and delivery on vaginal tissue, researchers commonly use nonhuman primate (NHP) and rodent models. The purpose of this study was to evaluate the ewe as an alternative model by investigating the impact of parity on the ewe vaginal mechanical properties and collagen structure. Mechanical properties of 15 nulliparous and parous ewe vaginas were determined via uniaxial tensile tests. Collagen content was determined by hydroxyproline assay and collagen fiber thickness was analyzed using picrosirius red staining. Outcome measures were compared using Independent samples t or Mann-Whitney U tests. ANOVA (Gabriel's pairwise post-hoc test) or the Welch Alternative for the F-ratio (Games Howell post-hoc test) was used to compare data with previously published NHP and rodent data. Vaginal tissue from the nulliparous ewe had a higher tangent modulus and tensile strength compared with the parous ewe (p < 0.025). The parous ewe vagina elongated 42 % more than the nulliparous ewe vagina (p = 0.015). No significant differences were observed in collagen structure among ewe vaginas. The tangent modulus of the nulliparous ewe vagina was not different from that of the NHP or rodent (p = 0.290). Additionally, the tangent moduli of the parous ewe and NHP vaginas did not differ (p = 0.773). Parity has a negative impact on the mechanical properties of the ewe vagina, as also observed in the NHP. The ewe may serve as an alternative model for studying parity and ultimately prolapse development.
Mori, Takahiro; Ishii, Shinya; Greendale, Gail A.; Cauley, Jane A.; Ruppert, Kristine; Crandall, Carolyn J.; Karlamangla, Arun S.
2015-01-01
Our objective was to examine the associations of lifetime parity and accumulated length of lactation with bone strength in women prior to the menopause transition and fracture risk during and after the transition. Participants were 2239 pre- or early perimenopausal women from the Study of Women's Health Across the Nation (SWAN), ages 42–53 at baseline, who had no childbirths after age 42. Bone mineral density (BMD) was measured in the femoral neck and the lumbar spine at the baseline SWAN visit using dual-energy x-ray absorptiometry, and composite indices of femoral neck strength relative to load (in three failure modes: compression, bending, and impact) were calculated from femoral neck BMD, femoral neck size, and body size. Data on fractures after age 42 were collected for a median follow-up of 15.7 years (interquartile range, 11.4 –18.5 years). In multiple linear regression adjusted for covariates, lifetime parity was associated positively with femoral neck strength relative to load (0.024 standard deviation (SD) increment in impact strength index per childbirth, p= 0.049), but accumulated length of lactation was associated negatively with lumbar spine BMD (0.018 SD decrement per every additional 6 months of lactation p=0.040). In Cox proportional hazards regression adjusted for covariates, neither parity nor lactation was associated with fracture hazard after age 42. In conclusion, parity and lactation have little impact on peak bone strength prior to menopause, and do not affect fracture risk after age 42 over 16-year follow-up. PMID:25528102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beminiwattha, Rakitha
2013-08-01
After a decade of preparations, the Qweak experiment at Jefferson Lab is making the first direct measurement of the weak charge of the proton, Q^p_W. This quantity is suppressed in the Standard Model making a good candidate for search for new physics beyond the SM at the TeV scale. Operationally, we measure a small (about -0.200 ppm) parity-violating asymmetry in elastic electron-proton scattering in integrating mode while flipping the helicity of the electrons 1000 times per second. Commissioning took place Fall 2010, and we finished taking data in early summer 2012. This dissertation is based on the data taken onmore » an initial two weeks period (Wien0). It will provide an overview of the Qweak apparatus, description of the data acquisition and analysis software systems, and final analysis and results from the Wien0 data set. The result is a 16% measurement of the parity violating electron-proton scattering asymmetry, A = -0.2788 +/- 0.0348 (stat.) +/- 0.0290 (syst.) ppm at Q^2 = 0.0250 +/- 0.0006 (GeV)^2. From this a 21% measurement of the weak charge of the proton, Q_w^p(msr)= +0.0952 +/- 0.0155 (stat.) +/- 0.0131 (syst.) +/- 0.0015 (theory) is extracted. From this a 2% measurement of the weak mixing angle, sin^2theta_W(msr)= +0.2328 +/- 0.0039 (stat.) +/- 0.0033 (syst.) +/- 0.0004 (theory) and improved constraints on isoscalar/isovector effective coupling constants of the weak neutral hadronic currents are extracted. These results deviate from the Standard Model by one standard deviation. The Wien0 results are a proof of principle of the Qweak data analysis and a highlight of the road ahead for obtaining full results.« less
Iida, R; Piñeiro, C; Koketsu, Y
2015-05-01
Our objectives were 1) to compare reproductive performance across parity and lifetime performance in sow groups categorized by the number of pigs born alive (PBA) in parity 1 and 2) to examine the factors associated with more PBA in parity 1. We analyzed 476,816 parity records and 109,373 lifetime records of sows entered into 125 herds from 2008 to 2010. Sows were categorized into 4 groups based on the 10th, 50th, and 90th percentiles of PBA in parity 1 as follows: 7 pigs or fewer, 8 to 11 pigs, 12 to 14 pigs, and 15 pigs or more. Generalized linear models were applied to the data. For reproductive performance across parity, sows that had 15 or more PBA in parity 1 had 0.5 to 1.8 more PBA in any subsequent parity than the other 3 PBA groups ( P< 0.05). In addition, they had 2.8 to 5.4% higher farrowing rates in parities 1 through 3 than sows that had 7 or fewer PBA (P < 0.05). However, there were no differences between the sow PBA groups for weaning-to-first-mating interval in any parity (P ≥ 0.37). For lifetime performance, sows that had 15 or more PBA in parity 1 had 4.4 to 26.1 more lifetime PBA than sows that had 14 or fewer PBA (P < 0.05). Also, for sows that had 14 or fewer PBA in parity 1, those that were first mated at 229 d old (25th percentile) or earlier had 2.9 to 3.3 more lifetime PBA than those first mated at 278 d old (75th percentile) or later (P < 0.05). Factors associated with fewer PBA in parity 1 were summer mating and lower age of gilts at first mating (AFM; P < 0.05) but not reservice occurrences (P = 0.34). Additionally, there was a 2-way interaction between mated month groups and AFM for PBA in parity 1 (P < 0.05); PBA in parity 1 sows mated from July to December increased nonlinearly by 0.3 to 0.4 pigs when AFM increased from 200 to 310 d old (P < 0.05). However, the same rise in AFM had no significant effect on the PBA of sows mated between January and June (P ≥ 0.17). In conclusion, high PBA in parity 1 can be used to predict that a sow will have high reproductive performance and lifetime performance. Also, the data indicate that the upper limit of AFM for mating between July and December should be 278 d old.
Short interpregnancy interval and low birth weight: A role of parity.
Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria
2015-01-01
Short interpregnancy intervals (IPI) and high parity may be synergistically associated with the risk of unfavorable pregnancy outcomes. This study tests if the effect of short IPI on the odds ratio for low birth weight (LBW, <2,500 g) differs across parity status. The study was carried out on the birth registry sample of almost 40,000 singleton, live-born infants who were delivered between the years 1995 and 2009 to multiparous mothers whose residence at the time of infant's birth was the city of Krakow. Multiple logistic regression analyses were used for testing the effect of IPI on the odds ratio (OR) for LBW, after controlling for employment, educational and marital status, parity, sex of the child, maternal and gestational age. Stratified analyses (according to parity) and tests for interaction were performed. Very short IPI (0-5 months) was associated with an increased OR for LBW, but only among high parity mothers with three or more births (OR = 2.64; 95% CI 1.45-4.80). The test for interaction between very short IPI and parity on the OR for LBW was statistically significant after adjustment for multiple comparisons (P = 0.04). Among low parity mothers (two births) no statistically significant associations were found between IPI and LBW after standardization. Parity may modify the association between short birth spacing and LBW. Women with very short IPI and high parity may have a higher risk of having LBW infants than those with very short IPI but low parity. © 2015 Wiley Periodicals, Inc.
47 CFR 51.215 - Dialing parity: Cost recovery.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (CONTINUED) INTERCONNECTION Obligations of All Local Exchange Carriers § 51.215 Dialing parity: Cost recovery. (a) A LEC may recover the incremental costs necessary for the implementation of toll dialing parity... 47 Telecommunication 3 2010-10-01 2010-10-01 false Dialing parity: Cost recovery. 51.215 Section...
NASA Astrophysics Data System (ADS)
Günther, Uwe; Kuzhel, Sergii
2010-10-01
Gauged \\ {P}\\ {T} quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity inversions compact and noncompact Lie group components are analyzed via Cartan decompositions. A Lie-triple structure is found and an interpretation as \\ {P}\\ {T}-symmetrically generalized Jaynes-Cummings model is possible with close relation to recently studied cavity QED setups with transmon states in multilevel artificial atoms. For models with Abelian gauge potentials a hidden Clifford algebra structure is found and used to obtain the fundamental symmetry of Krein space-related J-self-adjoint extensions for PTQM setups with ultra-localized potentials.
Coherent perfect absorption in one-sided reflectionless media
Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.
2016-01-01
In optical experiments one-sided reflectionless (ORL) and coherent perfect absorption (CPA) are unusual scattering properties yet fascinating for their fundamental aspects and for their practical interest. Although these two concepts have so far remained separated from each other, we prove that the two phenomena are indeed strictly connected. We show that a CPA–ORL connection exists between pairs of points lying along lines close to each other in the 3D space-parameters of a realistic lossy atomic photonic crystal. The connection is expected to be a generic feature of wave scattering in non-Hermitian optical media encompassing, as a particular case, wave scattering in parity-time (PT) symmetric media. PMID:27759020
Parity partners in the baryon resonance spectrum
Lu, Ya; Chen, Chen; Roberts, Craig D.; ...
2017-07-28
Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less
Parity partners in the baryon resonance spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Ya; Chen, Chen; Roberts, Craig D.
Here, we describe a calculation of the spectrum of flavor-SU(3) octet and decuplet baryons, their parity partners, and the radial excitations of these systems, made using a symmetry-preserving treatment of a vector x vector contact interaction as the foundation for the relevant few-body equations. Dynamical chiral symmetry breaking generates nonpointlike diquarks within these baryons and hence, using the contact interaction, flavor-antitriplet scalar, pseudoscalar, vector, and flavor-sextet axial-vector quark-quark correlations can all play active roles. The model yields reasonable masses for all systems studied and Faddeev amplitudes for ground states and associated parity partners that sketch a realistic picture of theirmore » internal structure: ground-state, even-parity baryons are constituted, almost exclusively, from like-parity diquark correlations, but orbital angular momentum plays an important role in the rest-frame wave functions of odd-parity baryons, whose Faddeev amplitudes are dominated by odd-parity diquarks.« less
Goldman, Howard H; Barry, Colleen L; Normand, Sharon-Lise T; Azzone, Vanessa; Busch, Alisa B; Huskamp, Haiden A
2012-02-01
The impact of parity coverage on the quantity of behavioral health services used by enrollees and on the prices of these services was examined in a set of Federal Employees Health Benefit (FEHB) Program plans. After parity implementation, the quantity of services used in the FEHB plans declined in five service categories, compared with plans that did not have parity coverage. The decline was significant for all service types except inpatient care. Because a previous study of the FEHB Program found that total spending on behavioral health services did not increase after parity implementation, it can be inferred that average prices must have increased over the period. The finding of a decline in service use and increase in prices provides an empirical window on what might be expected after implementation of the federal parity law and the parity requirement under the health care reform law.
What Does Mental Health Parity Really Mean for the Care of People with Serious Mental Illness?
Bartlett, John; Manderscheid, Ron
2016-06-01
Parity of mental health and substance abuse insurance benefits with medical care benefits, as well as parity in their management, are major ongoing concerns for adults with serious mental illness (SMI). The Mental Health Parity and Addiction Equity Act of 2008 guaranteed this parity of benefits and management in large private insurance plans and privately managed state Medicaid plans, but only if the benefits were offered at all. The Patient Protection and Affordable Care Act of 2010 extended parity to all persons receiving insurance through the state health insurance marketplaces, through the state Medicaid Expansions, and through new individual and small group plans. This article presents an analysis of how accessible parity has become for adults with SMI at both the system and personal levels several years after these legislative changes have been implemented. Copyright © 2016 Elsevier Inc. All rights reserved.
Can R-parity violation hide vanilla supersymmetry at the LHC?
NASA Astrophysics Data System (ADS)
Asano, Masaki; Rolbiecki, Krzysztof; Sakurai, Kazuki
2013-01-01
Current experimental constraints on a large parameter space in supersymmetric models rely on the large missing energy signature. This is usually provided by the lightest neutralino which stability is ensured by R-parity. However, if R-parity is violated, the lightest neutralino decays into the standard model particles and the missing energy cut is not efficient anymore. In particular, the U DD type R-parity violation induces the neutralino decay to three quarks which potentially leads to the most difficult signal to be searched at hadron colliders. In this paper, we study the constraints on R-parity violating supersymmetric models using a same-sign dilepton and a multijet signatures. We show that the gluino and squarks lighter than TeV are already excluded in the constrained minimal supersymmetric standard model with the R-parity violation if their masses are approximately equal. We also analyze constraints in a simplified model with the R-parity violation. We compare how the R-parity violation changes some of the observables typically used to distinguish a supersymmetric signal from standard model backgrounds.
Gestational age, sex and maternal parity correlate with bone turnover in premature infants.
Aly, Hany; Moustafa, Mohamed F; Amer, Hanna A; Hassanein, Sahar; Keeves, Christine; Patel, Kantilal
2005-05-01
Factors affecting bone turnover in premature infants are not entirely clear but certainly are different from those influencing bones of adults and children. To identify fetal and maternal factors that might influence bone turnover, we prospectively studied 50 infants (30 preterm and 20 full-term) born at Ain Shams University Obstetric Hospital in Cairo, Egypt. Maternal parity and medical history and infant's weight, gestational age, gender and anthropometrical measurements were recorded. Cord blood samples were collected and serum type I collagen C-terminal propeptide (PICP) was assessed as a marker for fetal bone formation. First morning urine samples were collected and pyridinoline cross-links of collagen (Pyd) were measured as an index for bone resorption. Serum PICP was higher in premature infants when compared with full-term infants (73.30 +/- 15.1 versus 64.3 +/- 14.7, p = 0.022) and was higher in male premature infants when compared with females (81.64 +/- 9.06 versus 66.0 +/- 15.7, p = 0.018). In a multiple regression model using PICP as the dependent variable and controlling for different infant and maternal conditions, PICP significantly correlated with infant gender (r = 8.26 +/- 4.1, p = 0.05) maternal parity (r = -2.106 +/- 0.99, p = 0.041) and diabetes (r = 22.488 +/- 8.73, p = 0.041). Urine Pyd tended to increase in premature infants (612 +/- 308 versus 434 +/- 146, p = 0.057) and correlated significantly with gestational age (r = -63.93 +/- 19.55, p = 0.002). Therefore, bone formation (PICP) is influenced by fetal age and gender, as well as maternal parity and diabetes. Bone resorption (Pyd) is mostly dependent on gestational age only. Further in-depth studies are needed to enrich management of this vulnerable population.
Improved classical and quantum random access codes
NASA Astrophysics Data System (ADS)
Liabøtrø, O.
2017-05-01
A (quantum) random access code ((Q)RAC) is a scheme that encodes n bits into m (qu)bits such that any of the n bits can be recovered with a worst case probability p >1/2 . We generalize (Q)RACs to a scheme encoding n d -levels into m (quantum) d -levels such that any d -level can be recovered with the probability for every wrong outcome value being less than 1/d . We construct explicit solutions for all n ≤d/2m-1 d -1 . For d =2 , the constructions coincide with those previously known. We show that the (Q)RACs are d -parity oblivious, generalizing ordinary parity obliviousness. We further investigate optimization of the success probabilities. For d =2 , we use the measure operators of the previously best-known solutions, but improve the encoding states to give a higher success probability. We conjecture that for maximal (n =4m-1 ,m ,p ) QRACs, p =1/2 {1 +[(√{3}+1)m-1 ] -1} is possible, and show that it is an upper bound for the measure operators that we use. We then compare (n ,m ,pq) QRACs with classical (n ,2 m ,pc) RACs. We can always find pq≥pc , but the classical code gives information about every input bit simultaneously, while the QRAC only gives information about a subset. For several different (n ,2 ,p ) QRACs, we see the same trade-off, as the best p values are obtained when the number of bits that can be obtained simultaneously is as small as possible. The trade-off is connected to parity obliviousness, since high certainty information about several bits can be used to calculate probabilities for parities of subsets.
A demographic explanation for the recent rise in European fertility.
Bongaarts, John; Sobotka, Tomáš
2012-01-01
Between 1998 and 2008 European countries experienced the first continent-wide increase in the period total fertility rate (TFR) since the 1960s. After discussing period and cohort influences on fertility trends, we examine the role of tempo distortions of period fertility and different methods for removing them. We highlight the usefulness of a new indicator: the tempo- and parity-adjusted total fertility rate (TFRp*). This variant of the adjusted total fertility rate proposed by Bongaarts and Feeney also controls for the parity composition of the female population and provides more stable values than the indicators proposed in the past. Finally, we estimate levels and trends in tempo and parity distribution distortions in selected countries in Europe. Our analysis of period and cohort fertility indicators in the Czech Republic, Netherlands, Spain, and Sweden shows that the new adjusted measure gives a remarkable fit with the completed fertility of women in prime childbearing years in a given period, which suggests that it provides an accurate adjustment for tempo and parity composition distortions. Using an expanded dataset for ten countries, we demonstrate that adjusted fertility as measured by TFRp* remained nearly stable since the late 1990s. This finding implies that the recent upturns in the period TFR in Europe are largely explained by a decline in the pace of fertility postponement. Other tempo-adjusted fertility indicators have not indicated such a large role for the diminishing tempo effect in these TFR upturns. As countries proceed through their postponement transitions, tempo effects will decline further and eventually disappear, thus putting continued upward pressure on period fertility. However, such an upward trend may be obscured for a few years by the effects of economic recession.
The effect of parity on expenditures for individuals with severe mental illness.
McConnell, K John
2013-10-01
To determine whether comprehensive behavioral health parity leads to changes in expenditures for individuals with severe mental illness (SMI), who are likely to be in greatest need for services that could be outside of health plans' traditional limitations on behavioral health care. We studied the effects of a comprehensive parity law enacted by Oregon in 2007. Using claims data, we compared expenditures for individuals in four Oregon commercial plans from 2005 through 2008 to a group of commercially insured individuals in Oregon who were exempt from parity. We used difference-in-differences and difference-in-difference-in-differences analyses to estimate changes in spending, and quantile regression methods to assess changes in the distribution of expenditures associated with parity. Among 2,195 individuals with SMI, parity was associated with increased expenditures for behavioral health services of $333 (95 percent CI $67, $615), without corresponding increases in out-of-pocket spending. The increase in expenditures was primarily attributable to shifts in the right tail of the distribution. Oregon's parity law led to higher average expenditures for individuals with SMI. Parity may allow individuals with high mental health needs to receive services that may have been limited without parity regulations. © Health Research and Educational Trust.
Neutron Capture Measurements on 97Mo with the DANCE Array
NASA Astrophysics Data System (ADS)
Walker, Carrie L.
Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.
The association between parity and birthweight in a longitudinal consecutive pregnancy cohort.
Hinkle, Stefanie N; Albert, Paul S; Mendola, Pauline; Sjaarda, Lindsey A; Yeung, Edwina; Boghossian, Nansi S; Laughon, S Katherine
2014-03-01
Nulliparity is associated with lower birthweight, but few studies have examined how within-mother changes in risk factors impact this association. We used longitudinal electronic medical record data from a hospital-based cohort of consecutive singleton live births from 2002-2010 in Utah. To reduce bias from unobserved pregnancies, primary analyses were limited to 9484 women who entered nulliparous from 2002-2004, with 23,380 pregnancies up to parity 3. Unrestricted secondary analyses used 101,225 pregnancies from 45,212 women with pregnancies up to parity 7. We calculated gestational age and sex-specific birthweight z-scores with nulliparas as the reference. Using linear mixed models, we estimated birthweight z-score by parity adjusting for pregnancy-specific sociodemographics, smoking, alcohol, prepregnancy body mass index, gestational weight gain, and medical conditions. Compared with nulliparas', infants of primiparas were larger by 0.20 unadjusted z-score units [95% confidence interval (CI) 0.18, 0.22]; the adjusted increase was similar at 0.18 z-score units [95% CI 0.15, 0.20]. Birthweight continued to increase up to parity 3, but with a smaller difference (parity 3 vs. 0 β = 0.27 [95% CI 0.20, 0.34]). In the unrestricted secondary sample, there was significant departure in linearity from parity 1 to 7 (P < 0.001); birthweight increased only up to parity 4 (parity 4 vs. 0 β = 0.34 [95% CI 0.31, 0.37]). The association between parity and birthweight was non-linear with the greatest increase observed between first- and second-born infants of the same mother. Adjustment for changes in weight or chronic diseases did not change the relationship between parity and birthweight. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Allali, Fadoua; Maaroufi, Houda; Aichaoui, Siham El; Khazani, Hamza; Saoud, Bouchra; Benyahya, Boubker; Abouqal, Redouane; Hajjaj-Hassouni, Najia
2007-08-20
The aims of the study were to determine: (1) the relationship between parity and bone mineral density (BMD); (2) the relationship between parity and osteoporotic peripheral fractures. The group studied included 730 postmenopausal women. Patients were separated into four groups according to the number of fullterm pregnancies, group 1: nulliparae, group 2: one to three pregnancies, group 3: four to five pregnancies, and group 4: six and more pregnancies. Additionally, patients were separated into three groups according to their ages, as <50 years, 50-59 years and >or=60 years. The median parity was 4 [0-20]. All the patients with parity greater than six had spine and hip BMD values significantly lower than values in the other groups (p<0.001). After adjustment for age and body mass index (BMI), decreased lumbar and total hip BMD were still associated to increased parity (analysis of covariance (ANCOVA), p=0.04 and 0.023, respectively). The relation between parity and lumbar BMD was highly significant among women aged <50 years (age-adjusted p=0.022), while there was no parity-spine BMD association in the other age groups. The relation between parity and hip BMD was seen only in the group 50-59 years (age-adjusted p=0.042). A positive history for peripheral fractures was present in 170 (23%) patients. There was relationship between parity and peripheral fractures neither in the whole population nor in the sub-groups according to age. The present study suggests that the BMD of the spine and hip decreases with an increasing number of pregnancies, and this situation shows variations in different age groups. However, there was no correlation between parity level and peripheral fractures.
Rajan, Sowmya; Nanda, Priya; Calhoun, Lisa M; Speizer, Ilene S
2018-02-27
The sex composition of existing children has been shown to influence childbearing decision-making and behaviors of women and couples. One aspect of this influence is the preference for sons. In India, where son preference is deeply entrenched, research has normally focused on rural areas using cross-sectional data. However, urban areas in India are rapidly changing, with profound implications for childbearing patterns. Yet, evidence on the effect of the sex composition of current children on subsequent childbearing intentions and behavior in urban areas is scant. In this study, we analyze the impact of sex composition of children on subsequent (1) parity progression, (2) contraceptive use, and (3) desire for another child. We analyze prospective data from women over a four year period in urban Uttar Pradesh using discrete-time event history logistic regression models to analyze parity progression from the first to second parity, second to third parity, and third to fourth parity. We also use logistic regression models to analyze contraceptive use and desire for another child. Relative to women with no daughters, women with no sons had significantly higher odds of progressing to the next birth (parity 1 - aOR: 1.31; CI: 1.04-1.66; parity 2 - aOR: 4.65; CI: 3.11-6.93; parity 3 - aOR:3.45; CI: 1.83-6.52), as well as reduced odds of using contraception (parity 2 - aOR:.58; CI: .44-.76; parity 3 - aOR: .58; CI: .35-.98). Relative to women with two or more sons, women with two or more daughters had significantly higher odds of wanting to have another child (parity 1 - aOR: 1.33; CI: 1.06-1.67; parity 2 - aOR: 3.96; CI: 2.45-6.41; parity 3-4.89; CI: 2.22-10.77). Our study demonstrates the pervasiveness of son preference in urban areas of Uttar Pradesh. We discuss these findings for future programmatic strategies to mitigate son preference in urban settings.
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-09-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.
Togashi, K; Lin, C Y
2008-07-01
The objective of this study was to compare 6 selection criteria in terms of 3-parity total milk yield and 9 selection criteria in terms of total net merit (H) comprising 3-parity total milk yield and total lactation persistency. The 6 selection criteria compared were as follows: first-parity milk estimated breeding value (EBV; M1), first 2-parity milk EBV (M2), first 3-parity milk EBV (M3), first-parity eigen index (EI(1)), first 2-parity eigen index (EI(2)), and first 3-parity eigen index (EI(3)). The 9 selection criteria compared in terms of H were M1, M2, M3, EI(1), EI(2), EI(3), and first-parity, first 2-parity, and first 3-parity selection indices (I(1), I(2), and I(3), respectively). In terms of total milk yield, selection on M3 or EI(3) achieved the greatest genetic response, whereas selection on EI(1) produced the largest genetic progress per day. In terms of total net merit, selection on I(3) brought the largest response, whereas selection EI(1) yielded the greatest genetic progress per day. A multiple-lactation random regression test-day model simultaneously yields the EBV of the 3 lactations for all animals included in the analysis even though the younger animals do not have the opportunity to complete the first 3 lactations. It is important to use the first 3 lactation EBV for selection decision rather than only the first lactation EBV in spite of the fact that the first-parity selection criteria achieved a faster genetic progress per day than the 3-parity selection criteria. Under a multiple-lactation random regression animal model analysis, the use of the first 3 lactation EBV for selection decision does not prolong the generation interval as compared with the use of only the first lactation EBV. Thus, it is justified to compare genetic response on a lifetime basis rather than on a per-day basis. The results suggest the use of M3 or EI(3) for genetic improvement of total milk yield and the use of I(3) for genetic improvement of total net merit H. Although this study deals with selection for 3-parity milk production, the same principle applies to selection for lifetime milk production.
Conde, Ana; Figueiredo, Bárbara
2014-12-01
Pregnancy and postpartum have been associated to several physiological changes; however, empirical evidence was almost exclusively obtained in primiparous women and few studies focus on hormonal changes in men and second-time parents. The main aim of this study is to examine 24-h urinary free cortisol from mid-pregnancy to 3-months postpartum, comparing women/men and first/second-time parents. Twenty-six women and 22 men (N=48) were recruited from an antenatal obstetric unit in Porto, Portugal. 24-h urinary free cortisol was measured at the 2nd and 3rd trimester and at 3-months postpartum. Repeated measures analyses of variance were conducted, in order to analyze 24-h urinary free cortisol patterns of change over this period. Gender and parity were included in the analyses as potential modifiers, in order to compare women and men, and first- and second-time parents. An increase from the 2nd to the 3rd trimester (p=.006) and a decrease from the 3rd trimester to 3-months postpartum (p=.005) were reported in all parents' 24-h urinary free cortisol. The interaction effects for Time*Gender (p=.03) and Time*Parity (p=.02) were found. Women and first-time parents revealed higher levels, while men and second-time parents showed lower 24-h urinary free cortisol levels at the 2nd trimester than at 3-months postpartum. Findings appear to clarify the direction, as well as, the timing, gender and parity extension of 24-h urinary free cortisol changes from mid-pregnancy to 3-months postpartum. The same pattern of change in all parents' 24-h urinary free cortisol from mid-pregnancy to 3-months postpartum is consistent with the proposed role of hormones in preparation to parenting. Gender and parity differences and effects on 24-h urinary free cortisol are also consistent with cortisol as a stress biomarker for higher challenges associated to pregnancy and childbirth in women and first-time parents versus higher demands related to after childbirth parenting in men and second-time parents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mann, S; Urh, C; Sauerwein, H; Wakshlag, J J; Yepes, F A Leal; Overton, T R; Nydam, D V
2018-01-01
Adipokines-hormones produced by adipose tissue-have important regulatory functions, and their concentrations can change around the time of calving when energy balance rapidly decreases. Hence, energy balance may be an important factor in determining the circulating concentrations of adipokines, particularly adiponectin and leptin. The objective of our study was to investigate the association between the level of energy fed to prepartum Holstein cows and circulating concentrations of adiponectin and leptin before and after calving. Holstein dairy cows entering second or greater lactation were fed either a controlled-energy diet formulated to supply approximately 100% of energy requirements (n = 28) or a high-energy diet formulated to supply approximately 150% of energy requirements throughout the entire dry period (n = 28). Serum samples were analyzed for adiponectin and leptin concentrations at 56, 28, 10, and 1 d prepartum as well as on d 1, 10, 21, and 42 postpartum using ELISA. Parity was dichotomized into cows entering second versus higher parity. Average peripartum body condition score (BCS) was computed from weekly measurements and dichotomized into animals with an average BCS of ≤3.25 and >3.25. In addition, cows were classified according to the occurrence of hyperketonemia (β-hydroxybutyrate concentrations ≥1.2 mmol/L at any time between 3 and 21 d in milk). Data were analyzed using repeated-measures ANOVA. Serum leptin but not adiponectin concentrations were associated with prepartum feeding level such that leptin concentrations increased transiently during the dry period in cows overfed energy, but concentrations were not different postpartum. Cows entering second parity had higher adiponectin and lower leptin concentrations compared with cows in higher parities. Cows that developed hyperketonemia postpartum had consistently lower adiponectin concentrations during the study period. Cows with average BCS >3.25 had higher leptin concentrations during the dry period only, but adiponectin concentrations were not associated with BCS. In conclusion, prepartum energy level had only transient effects on leptin concentrations and did not lead to changes in adiponectin concentrations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
7 CFR 5.5 - Publication of season average, calendar year, and parity price data.
Code of Federal Regulations, 2010 CFR
2010-01-01
... cases where preliminary marketing season average price data are used in estimating the adjusted base... parity price data. 5.5 Section 5.5 Agriculture Office of the Secretary of Agriculture DETERMINATION OF PARITY PRICES § 5.5 Publication of season average, calendar year, and parity price data. (a) New adjusted...
ERIC Educational Resources Information Center
Bozalek, Vivienne
2011-01-01
This article proposes a model for judging children's participatory parity in different social spaces. The notion of participatory parity originates in Nancy Fraser's normative theory for social justice, where it concerns the participatory status of adults. What, then, constitutes participatory parity for children? How should we judge the extent to…
Long-lived stop at the LHC with or without R-parity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covi, L.; Dradi, F., E-mail: laura.covi@theorie.physik.uni-goettingen.de, E-mail: federico.dradi@theorie.physik.uni-goettingen.de
2014-10-01
We consider scenarios of gravitino LSP and DM with stop NLSP both within R-parity conserving and R-parity violating supersymmetry (RPC and RPV SUSY, respectively). We discuss cosmological bounds from Big Bang Nucleosynthesis (BBN) and the gravitino abundance and then concentrate on the signals of long-lived stops at the LHC as displaced vertices or metastable particles. Finally we discuss how to distinguish R-parity conserving and R-parity breaking stop decays if they happen within the detector and how to suppress SM backgrounds.
Carrington, E V; Brokjaer, A; Craven, H; Zarate, N; Horrocks, E J; Palit, S; Jackson, W; Duthie, G S; Knowles, C H; Lunniss, P J; Scott, S M
2014-05-01
High-resolution anorectal manometry (HRAM) is a relatively new method for collection and interpretation of data relevant to sphincteric function, and for the first time allows a global appreciation of the anorectum as a functional unit. Historically, traditional anal manometry has been plagued by lack of standardization and healthy volunteer data of variable quality. The aims of this study were: (i) to obtain normative data sets for traditional measures of anorectal function using HRAM in healthy subjects and; (ii) to qualitatively describe novel physiological phenomena, which may be of future relevance when this method is applied to patients. 115 healthy subjects (96 female) underwent HRAM using a 10 channel, 12F solid-state catheter. Measurements were performed during rest, squeeze, cough, and simulated defecation (push). Data were displayed as color contour plots and analysed using a commercially available manometric system (Solar GI HRM v9.1, Medical Measurement Systems). Associations between age, gender and parity were subsequently explored. HRAM color contour plots provided clear delineation of the high-pressure zone within the anal canal and showed recruitment during maneuvers that altered intra-anal pressures. Automated analysis produced quantitative data, which have been presented on the basis of gender and parity due to the effect of these covariates on some sphincter functions. In line with traditional manometry, some age and gender differences were seen. Males had a greater functional anal canal length and anal pressures during the cough maneuver. Parity in females was associated with reduced squeeze increments. The study provides a large healthy volunteer dataset and parameters of traditional measures of anorectal function. A number of novel phenomena are appreciated, the significance of which will require further analysis and comparisons with patient populations. © 2014 John Wiley & Sons Ltd.
Berinder, Katarina; Hulting, Anna-Lena; Granath, Fredrik; Hirschberg, Angelica Lindén; Akre, Olof
2007-09-01
Infertility is a common problem in women with hyperprolactinaemia. There are limited data on the fertility and pregnancy course among these women. The objective was to study parity, pregnancy and neonatal outcomes in women with hyperprolactinaemia as compared with a control group. Register study. Two hundred and seventy-one female patients treated for primary hyperprolactinaemia were identified in the hospital record archives between 1974 and 2002. For each patient four comparison subjects, matched by sex, birth year and county of residence were identified in the Register of Population. Data were retrieved from the Swedish medical birth register and were analysed using logistic regression and analysis of variance. Measurements Parity, maternal age at first delivery, weeks of gestation, induction of labour, caesarean delivery, multiple birth, Apgar score, birth weight, length, sex, congenital malformations, neonatal care. One hundred and sixty-two deliveries in the hyperprolactinaemia group and 1220 deliveries in the control group were analysed. with hyperprolactinaemia were significantly older at their first pregnancy than their controls: 29.0 (+/- 4.4) and 27.2 (+/- 4.8) years, respectively (P = 0.0002). Furthermore, parity was inversely associated with hyperprolactinaemia status (P for trend = 0.0009). The odds of having three or more children were threefold lower among the patients (OR 0.31 (95% CI 0.16, 0.60)). There were no differences between patients and controls with respect to pregnancy complications, delivery or neonatal outcome variables. We found no evidence of increased risk of pregnancy complications or adverse pregnancy outcomes in women with treated hyperprolactinaemia. However, the patients were older at their first pregnancy and had a reduced overall parity.
Impact of parity on ewe vaginal mechanical properties relative to the nonhuman primate and rodent
Knight, Katrina M.; Moalli, Pamela A.; Nolfi, Alexis; Palcsey, Stacy; Barone, William R.
2016-01-01
Introduction and hypothesis Parity is the leading risk factor for the development of pelvic organ prolapse. To assess the impact of pregnancy and delivery on vaginal tissue, researchers commonly use nonhuman primate (NHP) and rodent models. The purpose of this study was to evaluate the ewe as an alternative model by investigating the impact of parity on the ewe vaginal mechanical properties and collagen structure. Methods Mechanical properties of 15 nulliparous and parous ewe vaginas were determined via uniaxial tensile tests. Collagen content was determined by hydroxyproline assay and collagen fiber thickness was analyzed using picrosirius red staining. Outcome measures were compared using Independent samples t or Mann–Whitney U tests. ANOVA (Gabriel’s pairwise post-hoc test) or the Welch Alternative for the F-ratio (Games Howell post-hoc test) was used to compare data with previously published NHP and rodent data. Results Vaginal tissue from the nulliparous ewe had a higher tangent modulus and tensile strength compared with the parous ewe (p < 0.025). The parous ewe vagina elongated 42 % more than the nulliparous ewe vagina (p = 0.015). No significant differences were observed in collagen structure among ewe vaginas. The tangent modulus of the nulliparous ewe vagina was not different from that of the NHP or rodent (p = 0.290). Additionally, the tangent moduli of the parous ewe and NHP vaginas did not differ (p = 0.773). Conclusions Parity has a negative impact on the mechanical properties of the ewe vagina, as also observed in the NHP. The ewe may serve as an alternative model for studying parity and ultimately prolapse development. PMID:26872644
Wallace, Neal T; McConnell, K John
2013-10-01
This study assessed the impact of Oregon's 2007 parity law, which required behavioral health insurance parity, on rates of follow-up care provided within 30 days of psychiatric inpatient care. Data sources were claims (2005-2008) for 737 individuals with inpatient stays for a mental disorder who were continuously enrolled in insurance plans affected by the parity law (intervention group) or in commercial, self-insured plans that were not affected by the law (control group). A difference-in-difference analysis was used to compare rates of follow-up care before and after the parity law between discharges of individuals in the intervention group and the control group and between discharges of individuals in the intervention group who had or had not met preparity quantitative coverage limits during a coverage year. Estimates of the marginal effects of the parity law were adjusted for gender, discharge diagnosis, relationship to policy holder, and calendar quarter of discharge. The study included 353 discharges in the intervention group and 535 discharges in the control group. After the parity law, follow-up rates increased by 11% (p=.042) overall and by 20% for discharges of individuals who had met coverage limits (p=.028). The Oregon parity law was associated with a large increase in the rate of follow-up care, predominantly for discharges of individuals who had met preparity quantitative coverage limits. Given similarities between the law and the 2008 Mental Health Parity and Addiction Equity Act, the results may portend a national effect of more comprehensive parity laws.
Parity-violating hybridization in heavy Weyl semimetals
NASA Astrophysics Data System (ADS)
Chang, Po-Yao; Coleman, Piers
2018-04-01
We introduce a simple model to describe the formation of heavy Weyl semimetals in noncentrosymmetric heavy fermion compounds under the influence of a parity-mixing, onsite hybridization. A key aspect of interaction-driven heavy Weyl semimetals is the development of surface Kondo breakdown, which is expected to give rise to a temperature-dependent reconfiguration of the Fermi arcs and the Weyl cyclotron orbits which connect them via the chiral bulk states. Our theory predicts a strong temperature-dependent transformation in the quantum oscillations at low temperatures. In addition to the effects of surface Kondo breakdown, the renormalization effects in heavy Weyl semimetals will appear in a variety of thermodynamic and transport measurements.
1987-02-27
35 AVERAGE OF WORDS 31 - 34 ’KPAVG’ 36 37 J77 MODEL DENSITY 38 MEASURED/J77 RATIO 39 EMPIRICAL MODEL RATIO 40...CONTINUE STOP PARITY ERROR. 9999 STOP ’PARITY’ END *" 35 I! , " €’ V4 ’... wV...%._ * [’’’ J 4* **" * .’ ’ ’".. ...... . "" *T* Figure 1.16 PACKLIB...to sun to ecliptic (Keplerian orbit) Solar Magnetospheric x5 M: towards sun, Z,,: North in plane (SM) of xS, Zd Note: zSm rocks Ii1.20 daily about
Analysis of the quantum numbers J(PC) of the X(3872) particle.
Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; Daronco, S; Datta, M; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-03-30
We present an analysis of angular distributions and correlations of the X(3872) particle in the exclusive decay mode X(3872)-->J/psipi+ pi- with J/psi-->mu+ mu-. We use 780 pb-1 of data from pp[over ] collisions at sqrt[s]=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We derive constraints on spin, parity, and charge conjugation parity of the X(3872) particle by comparing measured angular distributions of the decay products with predictions for different J(PC) hypotheses. The assignments J(PC)=1++ and 2-+ are the only ones consistent with the data.
Foam model of planetary formation
NASA Astrophysics Data System (ADS)
Andreev, Y.; Potashko, O.
The Analysis of 2637 terrestrial minerals shows presence of characteristic element and isotope structure for each ore irrespective of its site. The model of processes geo-nuclear syntheses elements is offered due to avalanche merge of nucleus which simply explains these laws. Main assumption: nucleus, atoms, connections, ores and minerals were formed in volume of the modern Earth at an early stage of its evolution from uniform proto-substance. Substantive provisions of the model: 1)The most part of nucleus of atoms of all chemical elements of the Earth's crust were formed on the mechanism of avalanche chain merge practically in one stage (in geological scales) in a course of correlated(in scales of a planet) process with allocation of a plenty of heat. 2) Atoms of chemical elements were generated during cooling a planet with preservation of a relative spatial arrangement of nucleus. 3) Chemical compounds have arisen at cooling a surface of a planet and were accompanied by reorganizations (hashing) macro- and geo-scale. 4) Mineral formations are consequence of correlated behaviour of chemical compounds on microscopic scales during phase transition from gaseous or liquid to a firm condition. 5) Synthesis of chemical elements in deep layers of the Earth occurs till now. "Foaming'' instead of "Big Bang" The physical space is continual gas-fluid environment consist of super fluid foam. The continuity, keeping and uniqueness of proto-substance are postulated. Scenario: primary singularity-> droplets(proto-galaxies) droplets(proto-stars)-> droplets(proto-planets)-> droplets(proto- satellites)-> droplets. Proto-planet substance->proton+electron as 1st generation disintegration result of primary foam. Nuclei or nucleonic crystals are the 2nd generation in result of cascade merge of protons into conglomerates. The theory has applied to the analysis of samples of native copper deposit from Rafalovka's ore deposit in Ukraine. The abundance of elements by use of the roentgen fluorescent microanalysis has been made. Changes of a parity of elements are described by nuclear synthesis reactions: 16O+47Ti, 23Na+40Ca, 24Mg+39K, 31P+32S-> 63Cu; 16O+49Ti, 23Na+42Ca, 26Mg+39K, 31P+34S-> 65Cu Dramatical change of isotope parities of 56Fe and 57Fe in the sites of space carried on 3 millimetres. The content of 57Fe is greater then 56Fe in Cu granule.
7 CFR 5.1 - Parity index and index of prices received by farmers.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 1 2010-01-01 2010-01-01 false Parity index and index of prices received by farmers... § 5.1 Parity index and index of prices received by farmers. (a) The parity index and related indices... farmers, interest, taxes, and farm wage rates, as revised May 1976 and published in the May 28, 1976, and...
McGinty, Emma E; Busch, Susan H; Stuart, Elizabeth A; Huskamp, Haiden A; Gibson, Teresa B; Goldman, Howard H; Barry, Colleen L
2015-08-01
The Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity Act of 2008 requires commercial insurers providing group coverage for substance use disorder services to offer benefits for those services at a level equal to those for medical or surgical benefits. Unlike previous parity policies instituted for federal employees and in individual states, the law extends parity to out-of-network services. We conducted an interrupted time-series analysis using insurance claims from large self-insured employers to evaluate whether federal parity was associated with changes in out-of-network treatment for 525,620 users of substance use disorder services. Federal parity was associated with an increased probability of using out-of-network services, an increased average number of out-of-network outpatient visits, and increased average total spending on out-of-network services among users of those services. Our findings were broadly consistent with the contention of federal parity proponents that extending parity to out-of-network services would broaden access to substance use disorder care obtained outside of plan networks. Project HOPE—The People-to-People Health Foundation, Inc.
Rotem, Avital; Henik, Avishai
2013-02-01
Parity helps us determine whether an arithmetic equation is true or false. The current research examines the development of sensitivity to parity cues in multiplication in typically achieving (TA) children (grades 2, 3, 4 and 6) and in children with mathematics learning disabilities (MLD, grades 6 and 8), via a verification task. In TA children the onset of parity sensitivity was observed at the beginning of 3rd grade, whereas in children with MLD it was documented only in 8th grade. These results suggest that children with MLD develop parity aspects of number sense, though later than TA children. To check the plausibility of equations, children used mainly the multiplication parity rule rather than familiarity with even products. Similar to observations in adults, parity sensitivity was largest for problems with two even operands, moderate for problems with one even and one odd operand, and smallest for problems with two odd operands. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Tuo; Zhu, Xuefeng; Chen, Fei; Liang, Shanjun; Zhu, Jie
2018-03-01
Exploring the concept of non-Hermitian Hamiltonians respecting parity-time symmetry with classical wave systems is of great interest as it enables the experimental investigation of parity-time-symmetric systems through the quantum-classical analogue. Here, we demonstrate unidirectional wave vector manipulation in two-dimensional space, with an all passive acoustic parity-time-symmetric metamaterials crystal. The metamaterials crystal is constructed through interleaving groove- and holey-structured acoustic metamaterials to provide an intrinsic parity-time-symmetric potential that is two-dimensionally extended and curved, which allows the flexible manipulation of unpaired wave vectors. At the transition point from the unbroken to broken parity-time symmetry phase, the unidirectional sound focusing effect (along with reflectionless acoustic transparency in the opposite direction) is experimentally realized over the spectrum. This demonstration confirms the capability of passive acoustic systems to carry the experimental studies on general parity-time symmetry physics and further reveals the unique functionalities enabled by the judiciously tailored unidirectional wave vectors in space.
NASA Astrophysics Data System (ADS)
Yamazaki, Yasunori; Doser, Michael; Pérez, Patrice
2018-03-01
Why does our universe consist purely of matter, even though the same amount of antimatter and matter should have been produced at the moment of the Big Bang 13.8 billion years ago? One of the most potentially fruitful approaches to address the mystery is to study the properties of antihydrogen and antiprotons. Because they are both stable, we can in principle make measurement precision as high as we need to see differences between these antimatter systems and their matter counterparts, i.e. hydrogen and protons. This is the goal of cold antihydrogen research. To study a fundamental symmetry-charge, parity, and time reversal (CPT) symmetry-which should lead to identical spectra in hydrogen and antihydrogen, as well as the weak equivalence principle (WEP), cold antihydrogen research seeks any discrepancies between matter and antimatter, which might also offer clues to the missing antimatter mystery. Precision tests of CPT have already been carried out in other systems, but antihydrogen spectroscopy offers the hope of reaching even higher sensitivity to violations of CPT. Meanwhile, utilizing the Earth and antihydrogen atoms as an experimental system, the WEP predicts a gravitational interaction between matter and antimatter that is identical to that between any two matter objects. The WEP has been tested to very high precision for a range of material compositions, but no such precision test using antimatter has yet been carried out, offering hope of a telltale inconsistency between matter and antimatter. In this Discovery book, we invite you to visit the frontiers of cold antimatter research, focusing on new technologies to form beams of antihydrogen atoms and antihydrogen ions, and new ways of interrogating the properties of antimatter.
Precision measurement of the weak charge of the proton.
2018-05-01
Large experimental programmes in the fields of nuclear and particle physics search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson completed the set of particles predicted by the standard model, which currently provides the best description of fundamental particles and forces. However, this theory's limitations include a failure to predict fundamental parameters, such as the mass of the Higgs boson, and the inability to account for dark matter and energy, gravity, and the matter-antimatter asymmetry in the Universe, among other phenomena. These limitations have inspired searches for physics beyond the standard model in the post-Higgs era through the direct production of additional particles at high-energy accelerators, which have so far been unsuccessful. Examples include searches for supersymmetric particles, which connect bosons (integer-spin particles) with fermions (half-integer-spin particles), and for leptoquarks, which mix the fundamental quarks with leptons. Alternatively, indirect searches using precise measurements of well predicted standard-model observables allow highly targeted alternative tests for physics beyond the standard model because they can reach mass and energy scales beyond those directly accessible by today's high-energy accelerators. Such an indirect search aims to determine the weak charge of the proton, which defines the strength of the proton's interaction with other particles via the well known neutral electroweak force. Because parity symmetry (invariance under the spatial inversion (x, y, z) → (-x, -y, -z)) is violated only in the weak interaction, it provides a tool with which to isolate the weak interaction and thus to measure the proton's weak charge 1 . Here we report the value 0.0719 ± 0.0045, where the uncertainty is one standard deviation, derived from our measured parity-violating asymmetry in the scattering of polarized electrons on protons, which is -226.5 ± 9.3 parts per billion (the uncertainty is one standard deviation). Our value for the proton's weak charge is in excellent agreement with the standard model 2 and sets multi-teraelectronvolt-scale constraints on any semi-leptonic parity-violating physics not described within the standard model. Our results show that precision parity-violating measurements enable searches for physics beyond the standard model that can compete with direct searches at high-energy accelerators and, together with astronomical observations, can provide fertile approaches to probing higher mass scales.
Normand, V; Perrin, H; Auvigne, V; Robert, N; Laval, A
2012-10-06
The aim of this study was to conduct a descriptive study of haemoglobin concentration found on high-prolificacy sows, to study the relationship between the concentration of haemoglobin and body reserves, and to determine whether anaemia is a risk factor for reproductive performance. A cohort of 308 sows from seven farms was followed from the last third of gestation to the confirmation of the following gestation. Haemoglobin concentration was assessed at four stages of the reproductive cycle: seven and four weeks before farrowing, a few days and three weeks after farrowing. Backfat thickness (BFT) was measured at parturition. The results were analysed using linear mixed-effect models. The mean haemoglobin concentration was 108.4 g/l. The mean modellised haemoglobin concentration of parity 1 sows with a BFT of 16 mm, sampled seven weeks before farrowing, was 118 g/l. Haemoglobin concentration of sows of parity 6 or higher was 8.0 g/l lower than those of parity 1 sows (95% confidence interval -11.0 to -5.1). Haemoglobin concentration is lower in sows with a lower BFT, whatever parity rank. There is no evidence of a relation between haemoglobin concentration and the number of total born, stillborn or number of piglets alive at three weeks and the next breeding performance.
Implementation of mental health parity: lessons from california.
Rosenbach, Margo L; Lake, Timothy K; Williams, Susan R; Buck, Jeffrey A
2009-12-01
This article reports the experiences of health plans, providers, and consumers with California's mental health parity law and discusses implications for implementation of the 2008 federal parity law. This study used a multimodal data collection approach to assess the first five years of California's parity implementation (from 2000 to 2005). Telephone interviews were conducted with 68 state-level stakeholders, and in-person interviews were conducted with 77 community-based stakeholders. Six focus groups included 52 providers, and six included 32 consumers. A semistructured interview protocol was used. Interview notes and transcripts were coded to facilitate analysis. Health plans eliminated differential benefit limits and cost-sharing requirements for certain mental disorders to comply with the law, and they used managed care to control costs. In response to concerns about access to and quality of care, the state expanded oversight of health plans, issuing access-to-care regulations and conducting focused studies. California's parity law applied to a limited list of psychiatric diagnoses. Health plan executives said they spent considerable resources clarifying which diagnoses were covered at parity levels and concluded that the limited diagnosis list was unnecessary with managed care. Providers indicated that the diagnosis list had unintended consequences, including incentives to assign a more severe diagnosis that would be covered at parity levels, rather than a less severe diagnosis that would not be covered at such levels. The lack of consumer knowledge about parity was widely acknowledged, and consumers in the focus groups requested additional information about parity. Experiences in California suggest that implementation of the 2008 federal parity law should include monitoring health plan performance related to access and quality, in addition to monitoring coverage and costs; examining the breadth of diagnoses covered by health plans; and mounting a campaign to educate consumers about their insurance benefits.
NASA Astrophysics Data System (ADS)
Diaconescu, Bogdan; Padilha, Lazaro A.; Nagpal, Prashant; Swartzentruber, Brian S.; Klimov, Victor I.
2013-03-01
We study the structure of electronic states in individual PbS nanocrystal quantum dots by scanning tunneling spectroscopy (STS) using one-to-two monolayer nanocrystal films treated with 1, 2-ethanedithiols (EDT). Up to six individual valence and conduction band states are resolved for a range of quantum dot sizes. The measured states’ energies are in good agreement with calculations using the k·p four-band envelope function formalism. A comparison of STS and optical absorption spectra indicates that some of the absorption features can only be explained by asymmetric transitions involving the states of different symmetries (e.g., S and P or P and D), which points towards the relaxation of the parity selection rules in these nanostructures. STS measurements also reveal a midgap feature, which is likely similar to one observed in previous charge transport studies of EDT-treated quantum dot films.
NASA Astrophysics Data System (ADS)
Moffit, Bryan
2006-11-01
The quark-antiquark pairs that form the sea within the nucleon are well established within quantum chromodynamics. Several recent and ongoing experiments are motivated by determining how this sea, containing contributions from all quark flavors, plays a role in affecting the nucleon's overall properties. Of particular interest is the possible strange quark contribution to the nucleon's electric and magnetic form factors. The recently completed HAPPEX asymmetry measurements take advantage of parity violation in elastic electron scattering to probe the strange quark effects. The measurement using a hydrogen target is sensitive to a linear combination of GE^s and GM^s, the contribution to the electric and magnetic form factors due to strange quarks, respectively, whereas scattering from a spinless helium target cleanly isolates GE^s. The combination of the two measurements therefore allows these form factors to be separately determined. Final results will be presented from the complete data set, obtained in runs in 2004 and 2005, yielding results of unprecedented precision.
Kim, Jin Soo; Yang, Xiaojian; Baidoo, Samuel Kofi
2016-01-01
The present study investigated the impact of parity 1 gilt body weight during late gestation (d 109) on subsequent reproductive performance of sows and performance of suckling pigs. A total of 2,404 farrowing records over 6 parities were divided into six groups on the basis of body weight (190, 200, 210, 220, 230, and 240 kg) at d 109 of gestation of 585 gilts. Significant effects (p< 0.05) of body weight on sow retention rate was noticed, with the 210 kg group having the lowest culling rate and highest total number of piglets born alive over the 6 parities. With increase of body weight, a linear increase (p<0.05) in losses of body weight and backfat during the lactation period of parity 1 and a linear decrease (p<0.05) in backfat loss for parities 4 and 6 were found. Compared with light sows, heavy sows had higher (p<0.05) litter weight at birth for parities 1 and 2 and at weaning in parity 1. Sow weaning-to-estrus interval of sows was not influenced (p>0.05) by body weight. In conclusion, maintaining optimal body weight during gestation would be beneficial to sows and suckling piglets. PMID:26954198
Phenomenology of the littlest Higgs model with T-parity
NASA Astrophysics Data System (ADS)
Hubisz, Jay; Meade, Patrick
2005-02-01
Little Higgs models offer an interesting approach to weakly coupled electroweak symmetry breaking without fine-tuning. The original little Higgs models were plagued by strong constraints from electroweak precision data which required a fine-tuning to be reintroduced. An economical solution to this problem is to introduce a discrete symmetry (analogous to R-parity of SUSY) called T-parity. T-parity not only eliminates most constraints from electroweak precision data, but it also leads to a promising dark matter candidate. In this paper we investigate the dark matter candidate in the littlest Higgs model with T-parity. An upper bound on the symmetry breaking scale f≲1.8 TeV naturally arises from calculating the relic density. We begin the study of the LHC phenomenology of the littlest Higgs model with T-parity. We find that the model offers an interesting collider signature that has a generic missing energy signal which could “fake” SUSY at the LHC. We also investigate the properties of the heavy partner of the top quark which is common to all littlest Higgs models, and how its properties are modified with the introduction of T-parity. We include an appendix with a list of Feynman rules specific to the littlest Higgs with T-parity to facilitate further study.
[Rare earth elements contents and distribution characteristics in nasopharyngeal carcinoma tissue].
Zhang, Xiangmin; Lan, Xiaolin; Zhang, Lingzhen; Xiao, Fufu; Zhong, Zhaoming; Ye, Guilin; Li, Zong; Li, Shaojin
2016-03-01
To investigate the rare earth elements(REEs) contents and distribution characteristics in nasopharyngeal carcinoma( NPC) tissue in Gannan region. Thirty patients of NPC in Gannan region were included in this study. The REEs contents were measured by tandem mass spectrometer inductively coupled plasma(ICP-MS/MS) in 30 patients, and the REEs contents and distribution were analyzed. The average standard deviation value of REEs in lung cancer and normal lung tissues was the minimum mostly. Light REEs content was higher than the medium REEs, and medium REEs content was higher than the heavy REEs content. REEs contents changes in nasopharyngeal carcinoma were variable obviously, the absolute value of Nd, Ce, Pr, Gd and other light rare earth elements were variable widely. The degree of changes on Yb, Tb, Ho and other heavy rare earth elements were variable widely, and there was presence of Eu, Ce negative anomaly(δEu=0. 385 5, δCe= 0. 523 4). The distribution characteristic of REEs contents in NPC patients is consistent with the parity distribution. With increasing atomic sequence, the content is decline wavy. Their distribution patterns were a lack of heavy REEs and enrichment of light REEs, and there was Eu , Ce negative anomaly.
Syntheses of Eu-Activated Alkaline Earth Fluoride MF2 (M=Ca, Sr) Nanoparticles
NASA Astrophysics Data System (ADS)
Hong, Byung-Chul; Kawano, Katsuyasu
2007-09-01
The Eu2+ ion-activated CaF2 and SrF2 nanoparticles were prepared by the sol-gel technique assisted with the trifluoro-acetic acid (TFA), and were evaluated by X-ray diffraction (XRD), photoluminescence (PL), photoluminescence excitation (PLE) measurements and atomic force microscopy (AFM) observation. A modified reducing method based on the thermal-carbon reducing atmosphere (TCRA) treatment using activated carbon was proposed to realize the effective reduction from Eu3+ to Eu2+ ions, in which the nanoparticles showed a strong and broad luminescence due to the parity allowed 4f7-4f65d1 transition. From the XRD results, it was found that the average particle size proportionally increased in the range of 15 to 120 nm and 10 to 100 nm for CaF2 and SrF2, respectively, with increasing sintering temperatures 300-700 °C. The surface images of nanoparticles obtained by the AFM revealed that the grains with high uniformity grew with increasing TCRA temperatures. It was confirmed that the reduced Eu2+ ions were homogeneously dispersed with the critical distance 16-17 Å in the fluoride nanoparticles from the concentration quenching results.
NASA Astrophysics Data System (ADS)
Martin, Jeffery W.
2002-04-01
Recent calculations of parity-violating (PV) electroproduction asymmetries for the NarrowΔ transition and for quasi-elastic electron scattering on the deuteron have led theorists to consider the photoproduction limit of these processes. In the case of the NarrowΔ transition, it has been proposed that the PV π^± photoproduction asymmetry A_γ^± might be of order 10-6, from a model based on hyperon weak radiative decays. An accurate measurement of A_γ^± would tightly constrain that model, at the same time reducing the dominant theoretical uncertainty in calculations of the PV NarrowΔ asymmetry at non-zero Q^2. Estimates for the G^0 experiment at Jefferson Lab for a measurement of A_γ^± will be presented. A measurement of π^- production from deuterium should yield a 47% measurement of A_γ^±, assuming the best theory estimate for A_γ^±. This measurement would be parasitic to a low-energy run that is already planned. Improvements to this accuracy would require tuning the spectrometer for maximum acceptance of pions and/or luminosity upgrades for photoproduction. Possibilities for such improvements will be discussed.
Two- and Three-Dimensional Probes of Parity in Primordial Gravity Waves.
Masui, Kiyoshi Wesley; Pen, Ue-Li; Turok, Neil
2017-06-02
We show that three-dimensional information is critical to discerning the effects of parity violation in the primordial gravity-wave background. If present, helical gravity waves induce parity-violating correlations in the cosmic microwave background (CMB) between parity-odd polarization B modes and parity-even temperature anisotropies (T) or polarization E modes. Unfortunately, EB correlations are much weaker than would be naively expected, which we show is due to an approximate symmetry resulting from the two-dimensional nature of the CMB. The detectability of parity-violating correlations is exacerbated by the fact that the handedness of individual modes cannot be discerned in the two-dimensional CMB, leading to a noise contribution from scalar matter perturbations. In contrast, the tidal imprints of primordial gravity waves fossilized into the large-scale structure of the Universe are a three-dimensional probe of parity violation. Using such fossils the handedness of gravity waves may be determined on a mode-by-mode basis, permitting future surveys to probe helicity at the percent level if the amplitude of primordial gravity waves is near current observational upper limits.
Parity and the medicalization of addiction treatment.
Roy, Ken; Miller, Michael
2010-06-01
Parity, the idea that insurance coverage for the treatment of addiction should be on a par with insurance coverage for the treatment of other medical illnesses, is not a new idea, but the path to achieving "real parity" has been a long, hard and complex journey. Action by Congress to pass major parity legislation in 2008 was a huge step forward, but does not mean that parity has been achieved. Parity has required a paradigm shift in the understanding of addiction as a biological illness: many developments of science and policy changes by professional organizations and governmental entities have contributed to that paradigm shift. Access to adequate treatment for patients must acknowledge the paradigm shift reflected in parity as it has evolved to the current point: that this biological illness is widespread, that it is important that it be treated effectively, that appropriate third party payment for physician-provided or physician-supervised addiction treatment is critical for addiction medicine to become a part of the mainstream of our nation's healthcare delivery system, and that medical specialty care provides the most effective and cost effective benefit to patients and therefore to our society.
NASA Astrophysics Data System (ADS)
Henry, William; Jefferson Lab Hall A Collaboration
2017-09-01
Jefferson Lab's cutting-edge parity-violating electron scattering program has increasingly stringent requirements for systematic errors. Beam polarimetry is often one of the dominant systematic errors in these experiments. A new Møller Polarimeter in Hall A of Jefferson Lab (JLab) was installed in 2015 and has taken first measurements for a polarized scattering experiment. Upcoming parity violation experiments in Hall A include CREX, PREX-II, MOLLER and SOLID with the latter two requiring <0.5% precision on beam polarization measurements. The polarimeter measures the Møller scattering rates of the polarized electron beam incident upon an iron target placed in a saturating magnetic field. The spectrometer consists of four focusing quadrapoles and one momentum selection dipole. The detector is designed to measure the scattered and knock out target electrons in coincidence. Beam polarization is extracted by constructing an asymmetry from the scattering rates when the incident electron spin is parallel and anti-parallel to the target electron spin. Initial data will be presented. Sources of systematic errors include target magnetization, spectrometer acceptance, the Levchuk effect, and radiative corrections which will be discussed. National Science Foundation.
NASA Astrophysics Data System (ADS)
Cornejo, Juan Carlos
The Standard Model has been a theory with the greatest success in describing the fundamental interactions of particles. As of the writing of this dissertation, the Standard Model has not been shown to make a false prediction. However, the limitations of the Standard Model have long been suspected by its lack of a description of gravity, nor dark matter. Its largest challenge to date, has been the observation of neutrino oscillations, and the implication that they may not be massless, as required by the Standard Model. The growing consensus is that the Standard Model is simply a lower energy effective field theory, and that new physics lies at much higher energies. The Qweak Experiment is testing the Electroweak theory of the Standard Model by making a precise determination of the weak charge of the proton (Qpw). Any signs of "new physics" will appear as a deviation to the Standard Model prediction. The weak charge is determined via a precise measurement of the parity-violating asymmetry of the electron-proton interaction via elastic scattering of a longitudinally polarized electron beam of an un-polarized proton target. The experiment required that the electron beam polarization be measured to an absolute uncertainty of 1 %. At this level the electron beam polarization was projected to contribute the single largest experimental uncertainty to the parity-violating asymmetry measurement. This dissertation will detail the use of Compton scattering to determine the electron beam polarization via the detection of the scattered photon. I will conclude the remainder of the dissertation with an independent analysis of the blinded Qweak.
NASA Astrophysics Data System (ADS)
Li, Jie; Zhu, Shi-Yao
2017-12-01
We investigate under which conditions quantum nonlocal manifestations such as Einstein-Podolsky-Rosen steering or Bell nonlocality can manifest themselves even at the macroscopic level of two mechanical resonators in optomechanical systems. We adopt the powerful scheme of reservoir engineering, implemented by driving a cavity mode with a properly chosen two-tone field, to prepare two mechanical oscillators in an entangled state. We show that large and robust (both one-way and two-way) steering could be achieved in the steady state with realistic parameters. We analyze the mechanism of the asymmetric nature of steering in our system of a two-mode Gaussian state. However, unlike steering, a Bell nonlocality is present under much more stringent conditions. We consider two types of measurements, displaced parity and on-off detection, respectively. We show that for both the measurements the Bell violation requires very low environmental temperature. For the parity detection, a large Bell violation is observed only in the transient state when the mechanical modes decouple from the optical mode and with extremely small cavity losses and mechanical damping. However, for the on-off detection, a moderate Bell violation is found in the steady state and is robust against cavity losses and mechanical damping. Although a Bell violation with parity detection seems extremely challenging to demonstrate experimentally, the conditions required for violating Bell inequalities with the on-off detection are much less demanding.
Momeni, Ali; Rouhi, Kasra; Rajabalipanah, Hamid; Abdolali, Ali
2018-04-18
Inspired by the information theory, a new concept of re-programmable encrypted graphene-based coding metasurfaces was investigated at terahertz frequencies. A channel-coding function was proposed to convolutionally record an arbitrary information message onto unrecognizable but recoverable parity beams generated by a phase-encrypted coding metasurface. A single graphene-based reflective cell with dual-mode biasing voltages was designed to act as "0" and "1" meta-atoms, providing broadband opposite reflection phases. By exploiting graphene tunability, the proposed scheme enabled an unprecedented degree of freedom in the real-time mapping of information messages onto multiple parity beams which could not be damaged, altered, and reverse-engineered. Various encryption types such as mirroring, anomalous reflection, multi-beam generation, and scattering diffusion can be dynamically attained via our multifunctional metasurface. Besides, contrary to conventional time-consuming and optimization-based methods, this paper convincingly offers a fast, straightforward, and efficient design of diffusion metasurfaces of arbitrarily large size. Rigorous full-wave simulations corroborated the results where the phase-encrypted metasurfaces exhibited a polarization-insensitive reflectivity less than -10 dB over a broadband frequency range from 1 THz to 1.7 THz. This work reveals new opportunities for the extension of re-programmable THz-coding metasurfaces and may be of interest for reflection-type security systems, computational imaging, and camouflage technology.
NASA Astrophysics Data System (ADS)
Ferreira, Paulo; Kristoufek, Ladislav
2017-11-01
We analyse the covered interest parity (CIP) using two novel regression frameworks based on cross-correlation analysis (detrended cross-correlation analysis and detrending moving-average cross-correlation analysis), which allow for studying the relationships at different scales and work well under non-stationarity and heavy tails. CIP is a measure of capital mobility commonly used to analyse financial integration, which remains an interesting feature of study in the context of the European Union. The importance of this features is related to the fact that the adoption of a common currency is associated with some benefits for countries, but also involves some risks such as the loss of economic instruments to face possible asymmetric shocks. While studying the Eurozone members could explain some problems in the common currency, studying the non-Euro countries is important to analyse if they are fit to take the possible benefits. Our results point to the CIP verification mainly in the Central European countries while in the remaining countries, the verification of the parity is only residual.
First spin-parity constraint of the 306 keV resonance in Cl 35 for nova nucleosynthesis
Chipps, K. A.; Rutgers Univ., New Brunswick, NJ; Pain, S. D.; ...
2017-04-28
Something of particular interest in astrophysics is the 34 S ( p , γ ) 35 Cl reaction, which serves as a stepping stone in thermonuclear runaway reaction chains during a nova explosion. Although the isotopes involved are all stable, the reaction rate of this significant step is not well known, due to a lack of experimental spectroscopic information on states within the Gamow window above the proton separation threshold of 35 Cl . Furthermore, measurements of level spins and parities provide input for the calculation of resonance strengths, which ultimately determine the astrophysical reaction rate of the 34 Smore » ( p , γ ) 35 Cl proton capture reaction. By performing the 37 Cl ( p , t ) 35 Cl reaction in normal kinematics at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory, we have conducted a study of the region of astrophysical interest in 35 Cl , and have made the first-ever constraint on the spin and parity assignment for a level at 6677 ± 15 keV ( E r = 306 keV), inside the Gamow window for novae.« less
First spin-parity constraint of the 306 keV resonance in 35Cl for nova nucleosynthesis
NASA Astrophysics Data System (ADS)
Chipps, K. A.; Pain, S. D.; Kozub, R. L.; Bardayan, D. W.; Cizewski, J. A.; Chae, K. Y.; Liang, J. F.; Matei, C.; Moazen, B. H.; Nesaraja, C. D.; O'Malley, P. D.; Peters, W. A.; Pittman, S. T.; Schmitt, K. T.; Smith, M. S.
2017-04-01
Of particular interest in astrophysics is the 34S(p ,γ )35Cl reaction, which serves as a stepping stone in thermonuclear runaway reaction chains during a nova explosion. Though the isotopes involved are all stable, the reaction rate of this significant step is not well known, due to a lack of experimental spectroscopic information on states within the Gamow window above the proton separation threshold of 35Cl. Measurements of level spins and parities provide input for the calculation of resonance strengths, which ultimately determine the astrophysical reaction rate of the 34S(p ,γ )35Cl proton capture reaction. By performing the 37Cl(p ,t )35Cl reaction in normal kinematics at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory, we have conducted a study of the region of astrophysical interest in 35Cl, and have made the first-ever constraint on the spin and parity assignment for a level at 6677 ±15 keV (Er=306 keV), inside the Gamow window for novae.
Yrare low-spin positive-parity states in N = 88 66 154 Dy
NASA Astrophysics Data System (ADS)
Zimba, G. L.; Bvumbi, S. P.; Masiteng, L. P.; Jones, P.; Sharpey-Schafer, J. F.; Majola, S. N. T.; Dinoko, T. S.; Shirinda, O.; Lawrie, J. J.; Easton, J. E.; Khumalo, N. A.; Msebi, L.; Mashita, P. I.; Papka, P.; Roux, D. G.; Negi, D.
2018-04-01
Low-spin positive-parity yrare states of 66 154 Dy88 were established using the 155Gd(3He,4n) reaction at a beam energy of E_{lab} = 37.5 MeV. The AFRODITE spectrometer array at iThemba LABS was used to record γγ coincidences and measure DCO ratios and polarisation asymmetries. The K^{π}=2+ γ band has been observed up to spin 13+ in the odd spins and to 12+ in the even spins. The staggering parameter S( I) of the γ band is compared to that found in other N = 88 isotones. Different behaviour of S( I) with increasing spin is observed for each of the isotones. We conjecture that the variation in S( I) is mainly due to mixing of the even-spin states with the same spin and parity states in neighbouring rotational bands. A second K^{π}=2+ band has been established up to a spin of 12+ in the even spins. We suggest that this is a γ band based on the J^{π} = 0+ state at Ex = 660.6 keV.
Description of alternating-parity bands within the dinuclear-system model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneidman, T. M.; Adamian, G. G., E-mail: adamian@theor.jinr.ru; Antonenko, N. V.
2016-11-15
A cluster approach is used to describe ground-state-based alternating-parity bands in even–even nuclei and to study the band-termination mechanism. A method is proposed for testing the cluster nature of alternating-parity bands.
Behavioral health benefits for public employees: effect of mental health parity legislation.
Borzi, P C; Rosenbaum, S
2001-04-01
With the passage of the Mental Health Parity Act of 1996 (MHPA), Congress took an important first step toward equalizing treatment under medical plans between physical and mental illnesses by requiring parity in annual and lifetime dollar limits between physical and mental illness. But the Act was limited in scope: it did not mandate mental health benefits nor prohibit other common types of differentials between physical and mental illnesses, such as higher cost-sharing or lower limits on outpatient visits or inpatient treatments. Before Congress' action in 1996, a few of the states had adopted some type of parity requirement. Since 1996, state parity activity has accelerated.Recently, the Center for Health Services Research and Policy through a grant from the Substance Abuse and Mental Health Services Administration of the U.S. Department of Health and Human Services, examined contracts providing for mental health benefits for state employees in eight states to assess whether legislative attempts to require parity between physical and mental illnesses resulted in noticeable differences in behavioral health benefits for state employees. We concluded that, except in states that have mandated full parity for some or all types of mental illnesses, behavioral health benefits for state employees have not changed significantly as a result of the state parity laws, since they still remain subject to traditional restrictions, such as higher cost-sharing and greater limitations on outpatient visits and inpatient treatment days, than those imposed on physical illnesses. Thus the considerable state activity surrounding mental health parity may have little effect on state employees' access to mental health services, since although state laws required parity in dollar limitations, they generally permitted the continuation of other plan design features that are more restrictive for mental health coverage. However, many of the contracts we examined were multi-year contract and may not have fully reflected recent state activity. Moreover, if Congress renews the Mental Health Parity Act when it expires in September, 2001, and expands the scope of the Act to cover some of these other plan design features, states with more limited parity laws are likely to follow. In that case, perhaps state employees with mental illnesses may see significant change in the future.
Mapfumo, Lizwell; Muchenje, Voster; Mupangwa, John F; Scholtz, Michiel M
2017-10-01
The objective of this study was to determine the changes in biochemical indicators for nutritional stress from a herd of Boran and Nguni cows. A total of 40 cows (20 from each herd) were randomly selected for the study. The animals were identified according to their parities as follows: parity 1 (n = 8), parity 2 (n = 16), parity 3 (n = 8) and parity 4 (n = 8). Serum chemistry levels of glucose, total cholesterol, urea, creatinine, albumin, globulin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutylaminotransferase (GGT), leukocytes, erythrocytes, haemoglobin, packed cell volume (PCV) and platelet counts were determined for 12 consecutive months spanning across the wet and dry seasons. The Boran cows had different creatinine concentration levels at different parities. The Boran cows in parity 1 had the highest (P < 0.05) concentration of creatinine 87.2 ± 5.17 μmol/L than other cows in different parities within the herd. There were significant differences in enzymes such as AST, ALP and ALT among the herd and parities. Boran cows in parity 3 had the lowest (P < 0.05) AST concentration levels of 52.6 ± 3.48 U/L, Nguni cows in parity 4 had the highest concentration of ALP of 161.3 ± 8.10 U/L while Nguni cows in parity 1 had the highest concentration level of ALT 55.1 ± 1.56 U/L than all the cows within the same herd. The Nguni herd had significantly higher (P < 0.05) levels of creatinine in both the wet (97.8 ± 3.27 μmol/L) and dry seasons (108.7 ± 3.29 μmol/L) compared with the Boran herd. Cows from the Nguni herd maintained significantly higher amount of urea, creatinine, albumin and total protein in both the wet and dry seasons as compared with cows from the Boran herd. Cows from the Nguni herd maintained significantly higher amount of urea, creatinine, albumin and total protein in both the wet and dry seasons as compared with those from the Boran herd.
Alpha decay hindrance factors and reflection asymmetry in nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheline, R.K.; Bossinga, B.B.
1991-07-01
All available hindrance factors of alpha transitions to low-lying negative-parity states in doubly even nuclei, to odd-{ital A} parity doublets and to doubly odd parity doublet bands, are used to study the systematics of reflection asymmetry in the {ital A}{similar to}218--230 region. Special attention is given to the polarization effect of the odd particle in increasing reflection asymmetry and therefore decreasing hindrance factors to the opposite parity states of octupole bands.
Fault-tolerant corrector/detector chip for high-speed data processing
Andaleon, David D.; Napolitano, Jr., Leonard M.; Redinbo, G. Robert; Shreeve, William O.
1994-01-01
An internally fault-tolerant data error detection and correction integrated circuit device (10) and a method of operating same. The device functions as a bidirectional data buffer between a 32-bit data processor and the remainder of a data processing system and provides a 32-bit datum is provided with a relatively short eight bits of data-protecting parity. The 32-bits of data by eight bits of parity is partitioned into eight 4-bit nibbles and two 4-bit nibbles, respectively. For data flowing towards the processor the data and parity nibbles are checked in parallel and in a single operation employing a dual orthogonal basis technique. The dual orthogonal basis increase the efficiency of the implementation. Any one of ten (eight data, two parity) nibbles are correctable if erroneous, or two different erroneous nibbles are detectable. For data flowing away from the processor the appropriate parity nibble values are calculated and transmitted to the system along with the data. The device regenerates parity values for data flowing in either direction and compares regenerated to generated parity with a totally self-checking equality checker. As such, the device is self-validating and enabled to both detect and indicate an occurrence of an internal failure. A generalization of the device to protect 64-bit data with 16-bit parity to protect against byte-wide errors is also presented.
Parity and Overweight/Obesity in Peruvian Women.
Huayanay-Espinoza, Carlos A; Quispe, Renato; Poterico, Julio A; Carrillo-Larco, Rodrigo M; Bazo-Alvarez, Juan Carlos; Miranda, J Jaime
2017-10-19
The rise in noncommunicable diseases and their risk factors in developing countries may have changed or intensified the effect of parity on obesity. We aimed to assess this association in Peruvian women using data from a nationally representative survey. We used data from Peru's Demographic and Health Survey, 2012. Parity was defined as the number of children ever born to a woman. We defined overweight as having a body mass index (BMI, kg/m 2 ) of 25.0 to 29.9 and obesity as a BMI ≥30.0. Generalized linear models were used to evaluate the association between parity and BMI and BMI categories, by area of residence and age, adjusting for confounders. Data from 16,082 women were analyzed. Mean parity was 2.25 (95% confidence interval [CI], 2.17-2.33) among rural women and 1.40 (95% CI, 1.36-1.43) among urban women. Mean BMI was 26.0 (standard deviation, 4.6). We found evidence of an association between parity and BMI, particularly in younger women; BMI was up to 4 units higher in rural areas and 2 units higher in urban areas. An association between parity and BMI categories was observed in rural areas as a gradient, being highest in younger women. We found a positive association between parity and overweight/obesity. This relationship was stronger in rural areas and among younger mothers.
Fault-tolerant corrector/detector chip for high-speed data processing
Andaleon, D.D.; Napolitano, L.M. Jr.; Redinbo, G.R.; Shreeve, W.O.
1994-03-01
An internally fault-tolerant data error detection and correction integrated circuit device and a method of operating same is described. The device functions as a bidirectional data buffer between a 32-bit data processor and the remainder of a data processing system and provides a 32-bit datum with a relatively short eight bits of data-protecting parity. The 32-bits of data by eight bits of parity is partitioned into eight 4-bit nibbles and two 4-bit nibbles, respectively. For data flowing towards the processor the data and parity nibbles are checked in parallel and in a single operation employing a dual orthogonal basis technique. The dual orthogonal basis increase the efficiency of the implementation. Any one of ten (eight data, two parity) nibbles are correctable if erroneous, or two different erroneous nibbles are detectable. For data flowing away from the processor the appropriate parity nibble values are calculated and transmitted to the system along with the data. The device regenerates parity values for data flowing in either direction and compares regenerated to generated parity with a totally self-checking equality checker. As such, the device is self-validating and enabled to both detect and indicate an occurrence of an internal failure. A generalization of the device to protect 64-bit data with 16-bit parity to protect against byte-wide errors is also presented. 8 figures.
2013-01-01
Background Previous studies have reported on adverse neonatal outcomes associated with parity and maternal age. Many of these studies have relied on cross-sectional data, from which drawing causal inference is complex. We explore the associations between parity/maternal age and adverse neonatal outcomes using data from cohort studies conducted in low- and middle-income countries (LMIC). Methods Data from 14 cohort studies were included. Parity (nulliparous, parity 1-2, parity ≥3) and maternal age (<18 years, 18-<35 years, ≥35 years) categories were matched with each other to create exposure categories, with those who are parity 1-2 and age 18-<35 years as the reference. Outcomes included small-for-gestational-age (SGA), preterm, neonatal and infant mortality. Adjusted odds ratios (aOR) were calculated per study and meta-analyzed. Results Nulliparous, age <18 year women, compared with women who were parity 1-2 and age 18-<35 years had the highest odds of SGA (pooled adjusted OR: 1.80), preterm (pooled aOR: 1.52), neonatal mortality (pooled aOR: 2.07), and infant mortality (pooled aOR: 1.49). Increased odds were also noted for SGA and neonatal mortality for nulliparous/age 18-<35 years, preterm, neonatal, and infant mortality for parity ≥3/age 18-<35 years, and preterm and neonatal mortality for parity ≥3/≥35 years. Conclusions Nulliparous women <18 years of age have the highest odds of adverse neonatal outcomes. Family planning has traditionally been the least successful in addressing young age as a risk factor; a renewed focus must be placed on finding effective interventions that delay age at first birth. Higher odds of adverse outcomes are also seen among parity ≥3 / age ≥35 mothers, suggesting that reproductive health interventions need to address the entirety of a woman’s reproductive period. Funding Funding was provided by the Bill & Melinda Gates Foundation (810-2054) by a grant to the US Fund for UNICEF to support the activities of the Child Health Epidemiology Reference Group. PMID:24564800
Jin, S S; Jin, Y H; Jang, J C; Hong, J S; Jung, S W; Kim, Y Y
2018-03-01
This experiment was to evaluate the effects of the dietary energy levels on the physiological parameters and reproductive performance during gestation over three parities in sows. A total of 52 F1 gilts (Yorkshire×Landrace) were allotted to one of four dietary treatments using a completely randomized design. The treatments contained 3,100, 3,200, 3,300, or 3,400 kcal of metabolizable energy (ME)/kg diet but feed was provided at 2.0, 2.2, and 2.4 kg/d in the first, second and third parity, respectively. The body weight and body weight gain during gestation increased as the dietary energy level increased (p<0.05, and p<0.01) in the first parity. In the second parity, the body weight of sows was the lowest (p<0.05) when 3,100 kcal of ME/kg treatment diet was provided. The body weight was higher as the dietary energy level increased (p<0.05) during the gestation period in the third parity. During lactation, the voluntary feed intake of lactating sows tended to decrease when gilts were fed higher energy treatment diet (p = 0.08) and the body weight, body weight gain were increased by dietary energy level during gestation (p< 0.05). Backfat thickness was not affected by dietary treatment during the gestation period in three parities, interestingly backfat change from breeding to d 110 of gestation was higher as the dietary energy level increased at the first parity (p<0.05). When gilts were fed 3,400 kcal of ME/kg treatment diet a higher number of weaning piglets was observed in the first parity (p<0.05). The highest culling rate (69%) was seen when gestating sows were fed 3,100 kcal/kg ME treatment diet during three parities. In conclusion, the adequate energy intake of gestating sows should be 6,400 or 6,600 kcal of ME/d, 7,040 or 7,260 kcal of ME/d, and 7,680 or 7,920 kcal of ME/d for parity 1, 2, and 3, respectively.
David, Ingrid; Garreau, Hervé; Balmisse, Elodie; Billon, Yvon; Canario, Laurianne
2017-01-20
Some genetic studies need to take into account correlations between traits that are repeatedly measured over time. Multiple-trait random regression models are commonly used to analyze repeated traits but suffer from several major drawbacks. In the present study, we developed a multiple-trait extension of the structured antedependence model (SAD) to overcome this issue and validated its usefulness by modeling the association between litter size (LS) and average birth weight (ABW) over parities in pigs and rabbits. The single-trait SAD model assumes that a random effect at time [Formula: see text] can be explained by the previous values of the random effect (i.e. at previous times). The proposed multiple-trait extension of the SAD model consists in adding a cross-antedependence parameter to the single-trait SAD model. This model can be easily fitted using ASReml and the OWN Fortran program that we have developed. In comparison with the random regression model, we used our multiple-trait SAD model to analyze the LS and ABW of 4345 litters from 1817 Large White sows and 8706 litters from 2286 L-1777 does over a maximum of five successive parities. For both species, the multiple-trait SAD fitted the data better than the random regression model. The difference between AIC of the two models (AIC_random regression-AIC_SAD) were equal to 7 and 227 for pigs and rabbits, respectively. A similar pattern of heritability and correlation estimates was obtained for both species. Heritabilities were lower for LS (ranging from 0.09 to 0.29) than for ABW (ranging from 0.23 to 0.39). The general trend was a decrease of the genetic correlation for a given trait between more distant parities. Estimates of genetic correlations between LS and ABW were negative and ranged from -0.03 to -0.52 across parities. No correlation was observed between the permanent environmental effects, except between the permanent environmental effects of LS and ABW of the same parity, for which the estimate of the correlation was strongly negative (ranging from -0.57 to -0.67). We demonstrated that application of our multiple-trait SAD model is feasible for studying several traits with repeated measurements and showed that it provided a better fit to the data than the random regression model.
Salem, Anas A; Gomaa, Yasmin A
2014-11-10
Vitamin E (Vit. E) is needed for young rabbits to prevent reproductive abnormalities, abortion and poor survivability of kits. Also, exogenous progesterone (P4) is needed for rabbits to enhance early embryonic development because of inadequate corpus luteum (CL) development at this age. Hence, the aim of this study was to investigate the effect of injecting Vit. E and the combination Vit. E+P4 in young does on live body weight (LBW) gain, gestation length (GL), numbers of services/conception (NS), conception rate (CR), abortion rate (AR), litter size (LS), kit weight (KW), total litter weight (TLW), mortality rate (MR) and progesterone (P4) concentration. The group treated with Vit. E+P4 had a greater LBW gain and lesser AR at first and second pregnancy. Treatments did not have significant impact on GL and LS in the first two parities. Treatments resulted in a significantly lesser MR and greater TLW at the second parity. The Vit. E+P4 treatment resulted in a significantly lesser NS at the first parity, while Vit. E alone resulted in a significant reduction in NS at the second parity. Vit. E+P4 had a positive effect on CR at the first parity compared with controls. Vit. E alone increased CR at the second parity compared with that of the control group. The mean P4 concentration from mating to mid-pregnancy at first parity was significantly greater in the Vit. E+P4 than Vit. E and control groups. In conclusion, treatment with Vit. E+P4 at the first parity may be economically applied on rabbit farms because this treatment resulted in a greater maintenance of the first pregnancy and improved reproductive performance at the second parity as compared with results from the Vit. E treated and control groups. Copyright © 2014 Elsevier B.V. All rights reserved.
Relationships between milk culture results and milk yield in Norwegian dairy cattle.
Reksen, O; Sølverød, L; Østerås, O
2007-10-01
Associations between test-day milk yield and positive milk cultures for Staphylococcus aureus, Streptococcus spp., and other mastitis pathogens or a negative milk culture for mastitis pathogens were assessed in quarter milk samples from randomly sampled cows selected without regard to current or previous udder health status. Staphylococcus aureus was dichotomized according to sparse (< or =1,500 cfu/mL of milk) or rich (>1,500 cfu/mL of milk) growth of the bacteria. Quarter milk samples were obtained on 1 to 4 occasions from 2,740 cows in 354 Norwegian dairy herds, resulting in a total of 3,430 samplings. Measures of test-day milk yield were obtained monthly and related to 3,547 microbiological diagnoses at the cow level. Mixed model linear regression models incorporating an autoregressive covariance structure accounting for repeated test-day milk yields within cow and random effects at the herd and sample level were used to quantify the effect of positive milk cultures on test-day milk yields. Identical models were run separately for first-parity, second-parity, and third-parity or older cows. Fixed effects were days in milk, the natural logarithm of days in milk, sparse and rich growth of Staph. aureus (1/0), Streptococcus spp. (1/0), other mastitis pathogens (1/0), calving season, time of test-day milk yields relative to time of microbiological diagnosis (test day relative to time of diagnosis), and the interaction terms between microbiological diagnosis and test day relative to time of diagnosis. The models were run with the logarithmically transformed composite milk somatic cell count excluded and included. Rich growth of Staph. aureus was associated with decreased production levels in first-parity cows. An interaction between rich growth of Staph. aureus and test day relative to time of diagnosis also predicted a decline in milk production in third-parity or older cows. Interaction between sparse growth of Staph. aureus and test day relative to time of diagnosis predicted declining test-day milk yields in first-parity cows. Sparse growth of Staph. aureus was associated with high milk yields in third-parity or older cows after including the logarithmically transformed composite milk somatic cell count in the model, which illustrates that lower production levels are related to elevated somatic cell counts in high-producing cows. The same association with test-day milk yield was found among Streptococcus spp.-positive pluriparous cows.
Schell, Christopher J; Young, Julie K; Lonsdorf, Elizabeth V; Mateo, Jill M; Santymire, Rachel M
2016-10-15
Hormones are fundamental mediators of personality traits intimately linked with reproductive success. Hence, alterations to endocrine factors may dramatically affect individual behavior that has subsequent fitness consequences. Yet it is unclear how hormonal or behavioral traits change with environmental stressors or over multiple reproductive opportunities, particularly for biparental fauna. To simulate an environmental stressor, we exposed captive coyote (Canis latrans) pairs to novel coyote odor attractants (i.e. commercial scent lures) mid-gestation to influence territorial behaviors, fecal glucocorticoid (FGMs) and fecal androgen metabolites (FAMs). In addition, we observed coyote pairs as first-time and experienced breeders to assess the influence of parity on our measures. Treatment pairs received the odors four times over a 20-day period, while control pairs received water. Odor-treated pairs scent-marked (e.g. urinated, ground scratched) and investigated odors more frequently than control pairs, and had higher FAMs when odors were provided. Pairs had higher FAMs as first-time versus experienced breeders, indicating that parity also affected androgen production during gestation. Moreover, repeatability in scent-marking behaviors corresponded with FGMs and FAMs, implying that coyote territoriality during gestation is underpinned by individually-specific hormone profiles. Our results suggest coyote androgens during gestation are sensitive to conspecific olfactory stimuli and prior breeding experience. Consequently, fluctuations in social or other environmental stimuli as well as increasing parity may acutely affect coyote traits essential to reproductive success. Copyright © 2016 Elsevier Inc. All rights reserved.
Yan, H; Snow, W M
2013-02-22
Various theories beyond the standard model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter. A parity-odd interaction between polarized nucleons and unpolarized matter proportional to g(V)g(A)s · p is one such possibility, where s[over →] and p[over →] are the spin and the momentum of the polarized nucleon, and g(V) and g(A) are the vector and axial vector couplings of an interaction induced by the exchange of a new light vector boson. We report a new experimental upper bound on such possible long-range parity-odd interactions of the neutron with nucleons and electrons from a recent search for parity violation in neutron spin rotation in liquid ^{4}He. Our constraint on the product of vector and axial vector couplings of a possible new light vector boson is g(V) g(A)(n) ≤ 10(-32) for an interaction range of 1 m. This upper bound is more than 7 orders of magnitude more stringent than the existing laboratory constraints for interaction ranges below 1 m, corresponding to a broad range of vector boson masses above 10(-6) eV. More sensitive searches for a g(V) g(A)(n) coupling could be performed using neutron spin rotation measurements in heavy nuclei or through analysis of experiments conducted to search for nucleon-nucleon weak interactions and nuclear anapole moments.
NASA Astrophysics Data System (ADS)
Ghosh, Amal K.
2010-09-01
The parity generators and the checkers are the most important circuits in communication systems. With the development of multi-valued logic (MVL), the proposed system with parity generators and checkers is the most required using the recently developed optoelectronic technology in the modified trinary number (MTN) system. This system also meets up the tremendous needs of speeds by exploiting the savart plates and spatial light modulators (SLM) in the optical tree architecture (OTA).
ERIC Educational Resources Information Center
Lasonen, Johanna, Ed.
This book contains the following papers on the Leonardo da Vinci project: "Looking for Post-16 Education Strategies for Parity of Esteem in Europe" (Lasonen); "Improving Parity of Esteem as a Policy Goal" (Makinen, Volanen); "Alternative Strategies for Parity of Esteem between General/Academic and Vocational Education in…
Association of secondary sex ratio with smoking and parity.
Beratis, Nicholas G; Asimacopoulou, Aspasia; Varvarigou, Anastasia
2008-03-01
To assess the sex ratio in offspring of smoking and nonsmoking mothers in relationship to parity. Prospective study. University hospital. The authors studied 2,108 term singleton neonates born between 1993 and 2002, 665 from smoking mothers and 1,443 from nonsmoking mothers. A prospective recording of maternal age, parity and smoking status, and gender of neonates delivered over a 10-year period. Secondary sex ratio in regard to maternal smoking and parity. The offspring sex ratio in the total sample studied was 1.09; in the offspring of smoking and nonsmoking mothers, it was 1.26 and 1.03, respectively, a statistically significant difference. In the offspring of smoking women who had parity 1, 2, and >or=3, it was 1.47, 1.35, and 0.92, whereas in those of nonsmoking women, it was 1.04, 1.00, and 1.03, respectively (the differences of the parity 1 and 2 groups between the offspring of smoking and nonsmoking mothers were statistically significant). Logistic regression analysis showed that the possibility of a boy being delivered by a mother who smoked was significantly greater in primiparous women than in women who had parity >or=3, independent of the maternal age. Conversely, parity did not affect significantly the sex ratio in the offspring of nonsmoking women. The findings suggest that among women who smoked, significantly more male than female offspring are born from primiparous women, whereas women who had parity >or=3 gave birth to more female offspring; biparous women give birth to significantly more male offspring, but the offspring sex ratio declined with the number of cigarettes when the mothers smoked >or=10 cigarettes per day.
Co-variables in first trimester maternal serum screening.
de Graaf, I M; Cuckle, H S; Pajkrt, E; Leschot, N J; Bleker, O P; van Lith, J M
2000-03-01
The objective of this study was to determined the influence of maternal weight, maternal smoking habits, gravidity, parity and fetal gender on the level of maternal serum marker used in first trimester screening for Down syndrome. A total of 2449 singleton unaffected pregnancies from two centres were studied. Maternal serum free beta-human chorionic gonadotrophin (hCG) and alpha-fetoprotein (AFP) concentrations had been measured in all pregnancies, and pregnancy associated plasma protein (PAPP)-A levels had been measured in 924. All results were expressed as multiples of the gestation specific median (MoM) values after regression, using each centre's own medians. Information on maternal weight was available in 2259 pregnancies, on self-reported current cigarette smoking in 1364 (of whom 117 (8.6%) were smokers), on gravidity in 1371, parity in 1303 and fetal gender in 253. All three markers showed a statistically significant negative association with maternal weight (p<0.0005) and in the subsequent analyses MoM values were weight adjusted using standard methods. The median PAPP-A level in smokers was 0.81 MoM, a significant reduction (p<0.005); free beta-hCG was also reduced (median 0.89 MoM) but not significantly (p=0.17), and AFP was unaltered. The median AFP level in primagravidas was highly significantly greater than that in gravid women (p<0.0005). In PAPP-A the reverse effect was seen but it did not reach statistical significance (p=0.15) and there was no effect for free beta-hCG. Results of a similar magnitude and direction were found for parity. The median level of free beta-hCG was higher (p=0.0005), and the median AFP lower in female pregnancies. Maternal weight and, for PAPP-A, maternal smoking are important first trimester screening co-variables. Gravidity, parity and fetal gender also seem to influence one or more first trimester markers. Copyright 2000 John Wiley & Sons, Ltd.
Apparatus And Method For Reconstructing Data Using Cross-Parity Stripes On Storage Media
Hughes, James Prescott
2003-06-17
An apparatus and method for reconstructing missing data using cross-parity stripes on a storage medium is provided. The apparatus and method may operate on data symbols having sizes greater than a data bit. The apparatus and method makes use of a plurality of parity stripes for reconstructing missing data stripes. The parity symbol values in the parity stripes are used as a basis for determining the value of the missing data symbol in a data stripe. A correction matrix is shifted along the data stripes, correcting missing data symbols as it is shifted. The correction is performed from the outside data stripes towards the inner data stripes to thereby use previously reconstructed data symbols to reconstruct other missing data symbols.
Effects of loss on the phase sensitivity with parity detection in an SU(1,1) interferometer
NASA Astrophysics Data System (ADS)
Li, Dong; Yuan, Chun-Hua; Yao, Yao; Jiang, Wei; Li, Mo; Zhang, Weiping
2018-05-01
We theoretically study the effects of loss on the phase sensitivity of an SU(1,1) interferometer with parity detection with various input states. We show that although the sensitivity of phase estimation decreases in the presence of loss, it can still beat the shot-noise limit with small loss. To examine the performance of parity detection, the comparison is performed among homodyne detection, intensity detection, and parity detection. Compared with homodyne detection and intensity detection, parity detection has a slight better optimal phase sensitivity in the absence of loss, but has a worse optimal phase sensitivity with a significant amount of loss with one-coherent state or coherent $\\otimes$ squeezed state input.
Nematic and chiral superconductivity induced by odd-parity fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Fengcheng; Martin, Ivar
Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less
Nematic and chiral superconductivity induced by odd-parity fluctuations
Wu, Fengcheng; Martin, Ivar
2017-10-09
Recent experiments indicate that superconductivity in Bi 2Se 3 intercalated with Cu, Nb, or Sr is nematic with rotational symmetry breaking. Motivated by this observation, we present a model study of nematic and chiral superconductivity induced by odd-parity fluctuations. Additionally, we show that odd-parity fluctuations in the two-component E u representation of D 3d crystal point group can generate attractive interaction in both the even-parity s-wave and odd-parity E-u pairing channels, but repulsive interaction in other odd-parity pairing channels. Coulomb repulsion can suppress s-wave pairing relative to E u pairing, and thus the latter can have a higher critical temperature.more » E u pairing has two distinct phases: a nematic phase and a chiral phase, both of which can be realized in our model. Finally, when s-wave and E u pairings have similar instability temperature, we find an intermediate phase in which both types of pairing coexist.« less
Sex, Parity, and Scars: A Meta-analytic Review.
McFadden, Clare; Oxenham, Marc F
2018-01-01
The ability to identify whether a female has been pregnant or has given birth has significant implications for forensic investigations and bioarcheological research. The meaning of "scars of parturition," their causes, and their significance are a matter of contention, with a substantial literature of re-evaluations and tests of the relationship between pelvic scarring and parity. The aim of this study was to use meta-analytic techniques (the methodological approach) to test whether pelvic scarring, namely dorsal pubic pitting and the preauricular groove, is a predictor of parity and sex. Meta-analyses indicated that neither dorsal pubic pitting nor the preauricular groove are predictors of parity status, while dorsal pubic pitting is a moderate predictor of sex. A weak relationship between dorsal pubic pitting and parity was identified, but this is believed to be a product of the moderate relationship with sex. This calls into question whether any causal relationship between parity and pelvic scarring exists. © 2017 American Academy of Forensic Sciences.
Nguyen, V Hung; Niquet, Y-M; Dollfus, P
2014-05-21
We report on a numerical study of the Aharonov-Bohm (AB) effect and parity selective tunneling in pn junctions based on rectangular graphene rings where the contacts and ring arms are all made of zigzag nanoribbons. We find that when applying a magnetic field to the ring, the AB interference can reverse the parity symmetry of incoming waves and hence can strongly modulate the parity selective transmission through the system. Therefore, the transmission between two states of different parity exhibits the AB oscillations with a π-phase shift, compared to the case of states of the same parity. On this basis, it is shown that interesting effects, such as giant (both positive and negative) magnetoresistance and strong negative differential conductance, can be achieved in this structure. Our study thus presents a new property of the AB interference in graphene nanorings, which could be helpful for further understanding the transport properties of graphene mesoscopic systems.
Effect of parity on healthy promotion lifestyle behavior in women.
Nazik, Hakan; Nazik, Evşen; Özdemir, Funda; Gül, Şule; Tezel, Ayfer; Narin, Raziye
2015-01-01
Health-promoting lifestyle behaviors are not only for the prevention of a disease or discomfort, but are also behaviors that aim to improve the individual's general health and well-being. Nurses have an important position in the development of healthy lifestyle behaviors in women. The aim of this study was to assess the effect of parity on health-promoting lifestyle behaviors in women. This descriptive and cross-sectional survey was performed in Adana, Turkey. This study was conducted with 352 women. The questionnaire consisted of two parts; the first part consisted of questions that assessed the socio-demographic and obstetric characteristics, and the second part employed the "Health Promotion Lifestyle Profile Scale" (HPLP). Data analysis included percentage, arithmetic average, and ANOVA tests. The results revealed that 24.1% of the women had no parity, 13.6% had one parity, 30.7% had two parities, 14.6% had three parities, and 17% had four and above parities. The mean total HPLP was 126.66±18.12 (interpersonal support subscale, 24.46±4.02; nutrition subscale, 21.59±3.92; self-actualization subscale, 24.42±4.30; stress management subscale, 18.73±3.81; health responsibility subscale, 21.75±4.31; and exercise subscale, 15.71±4.22). The health behavior of women was moderate. A statistically significant correlation was found between the number of parities and the Health Responsibility, Nutrition, Interpersonal Support, which is the subscale of the HPLP Scale.
The desire for sons and excess fertility: a household-level analysis of parity progression in India.
Chaudhuri, Sanjukta
2012-12-01
The desire for sons often influences fertility behavior in India. Women with a small number or low proportion of sons may be more likely than other women to continue childbearing. Data from India's 2005-2006 National Family Health Survey were used to examine several hypotheses regarding the association between sex composition of children and parity progression among parous women aged 35-49. Descriptive analyses and multivariate logistic regression analysis that controlled for possible confounders were performed separately by parity. Women with more sons than daughters were generally less likely than those with more daughters than sons to continue childbearing; parity progression driven by the desire for sons accounted for 7% of births. At any given parity, the last-born child of women who had stopped childbearing was more likely to be a son than a daughter (sex ratios, 133-157). In multivariate analyses, women without any sons were more likely than women without any daughters to continue childbearing at parities 1-4 (odds ratios, 1.4-4.5). At most or all parities, continued childbearing was positively associated with having had a child who died, and negatively associated with levels of women's education and media exposure and with household wealth. The desire for sons appears to be a significant motivation for parity progression. Although population policies that reduce family size are essential, also imperative are policies that reduce desire for sons by challenging the perception that sons are more valuable than daughters.
Yasukawa, Sumiyo; Eguchi, Eri; Ogino, Keiki; Tamakoshi, Akiko; Iso, Hiroyasu
2018-04-25
Nulliparity is associated with an excess risk of cardiovascular disease (CVD). "Ikigai", subjective wellbeing in Japan, is associated with reduced risk of CVD. The impact of ikigai on the association between parity and the risk of CVD, however, has not been reported.Methods and Results:A total of 39,870 Japanese women aged 40-79 years without a history of CVD, cancer or insufficient information at baseline in 1988-1990, were enrolled and followed until the end of 2009. They were categorized into 7 groups according to parity number 0-≥6. Using Cox regression hazard modeling, the associations between parity and mortality from stroke, coronary artery disease, and total CVD were investigated. During the follow-up period, 2,121 total CVD deaths were documented. No association was observed between parity and stroke and CVD mortality in women with ikigai, but there was an association in those without ikigai. The multivariable hazard ratios of stroke and total CVD mortality for nulliparous women without ikigai vs. those with 1 child were 1.87 (95% CI: 1.15-3.05) and 1.46 (95% CI: 1.07-2.01), respectively, and that for stroke mortality in high parity women without ikigai was 1.56 (95% CI: 1.00-2.45). Nulliparous or high parity women without ikigai had higher mortality from stroke and/or total CVD, suggesting that ikigai attenuated the association between parity and CVD mortality in Japanese women.
NASA Astrophysics Data System (ADS)
Gal, Ciprian
Since the 1980s the spin puzzle has been at the heart of many experimental measurements. The initial discovery that only ~30% of the spin of the proton comes from quarks and anti-quarks has been refined and cross checked by several other deep inelastic scattering (DIS) and semi inclusive DIS (SIDIS) experiments. Through measurements of polarized parton distribution functions (PDFs) the individual contributions of the u, d, u, d, quarks have been measured. The flavor separation done in SIDIS experiments requires knowledge of fragmentation functions (FFs). However, due to the higher uncertainty of the anti-quark FFs compared to the quark FFs, the quark polarized PDFs (Deltau(x), Delta d(x)) are significantly better constrained than the anti-quark distributions (Deltau( x), Deltad(x). By accessing the anti-quarks directly through W boson production in polarized proton-proton collisions (ud → W+ → e+/mu+ and du→ W- → e-/mu-), the large FF uncertainties are avoided and a cleaner measurement can be done. The parity violating single spin asymmetry of the W decay leptons can be directly related to the polarized PDFs of the anti-quarks. The W+/- → e+/- measurement has been performed with the PHENIX central arm detectors at √s=510 GeV at the Relativistic Heavy Ion Collider (RHIC) and is presented in this thesis. Approximately 40 pb-1 of data from the 2011 and 2012 was analyzed and a large parity violating single spin asymmetry for W+/- has been measured. The combined data for 2011 and 2012 provide a single spin asymmetry for both charges: W+: -0.27 +/- 0.10(stat) +/- 0.01(syst) W -: 0.28 +/- 0.16(stat) +/- 0.02(syst) These results are consistent with the different theoretical predictions at the 1sigma level. The increased statistical precision enabled and required a more careful analysis of the background contamination for the this measurement. A method based on Gaussian Processes for Regression has been employed to determine this background contribution. This thesis contains a detailed description of the analysis together with the asymmetry results and future prospects.
The MØLLER experiment at Jefferson Lab: search for physics beyond the Standard Model
NASA Astrophysics Data System (ADS)
van Oers, Willem T. H.
2010-07-01
The MO/LLER experiment at Jefferson Lab will measure the parity-violating analyzing power Az in the scattering of 11 GeV longitudinally polarized electrons from the atomic electrons in a liquid hydrogen target (Mo/ller scattering). In the Standard Model a non-zero Az is due to the interference of the electromagnetic amplitude and the weak neutral current amplitude, the latter mediated by the Z0 boson. Az is predicted to be 35.6 parts per billion (ppb) at the kinematics of the experiment. It is the objective of the experiment to measure Az to a precision of 0.73 ppb. This result would yield a measurement of the weak charge of the electron QWe to a fractional error of 2.3% at an average value Q2 of 0.0056 (GeV/c)2. This in turn will yield a determination of the weak mixing angle sin2θw with an uncertainty of ±0.00026(stat) ±0.00013(syst), comparable to the accuracy of the two best determinations at high energy colliders (at the Z0 pole). Consequently, the result could potentially influence the central value of this fundamental electroweak parameter, which is of critical importance in deciphering any signal of new physics that might be observed at the Large Hadron Collider (LHC). The measurement is sensitive to the interference of the electromagnetic amplitude with new neutral current amplitudes as weak as 10-3 GF from as yet unknown high energy dynamics, a level of sensitivity unlikely to be matched in any experiment measuring a flavor and CP conserving process in the next decade. This provides indirect access to new physics at multi-TeV scales in a manner complementary to direct searches at the LHC.
Is Gender Parity Imminent in the Professoriate? Lessons from One Canadian University
ERIC Educational Resources Information Center
Wilson, Marnie; Gadbois, Shannon; Nichol, Kathleen
2008-01-01
This article examined issues and implications associated with gender parity in the professoriate. The findings, based on the results from one Canadian institution's most recent women's committee report, emphasize the importance of monitoring progress toward gender parity by examining potential indicators of gender imbalances such as gender…
NASA Astrophysics Data System (ADS)
Forman, Paul
1982-05-01
The historical background behind the discovery of the violation of parity by T. D. Lee and [N. Yand is described. The experimental techniques used by Chien-Shiung Wu, Ernst Ambler, and their collaborators at the Cryogenic Physics Laboratory of the NBS to first demonstrate the violation of parity are also described. (AIP)
Parity in Designing, Conducting, and Evaluating Teacher Education Programs: A Conceptual Definition.
ERIC Educational Resources Information Center
Caruso, Joseph J.
Individuals, agencies, and institutions involved in the education and employment of teachers conceptually defined parity relevant to the decision-making process in planning, conducting, and evaluating teacher education programs and translated the conceptual definition into an instrument for describing parity in consortium-centered teacher…
Gravitational wave probes of parity violation in compact binary coalescences
NASA Astrophysics Data System (ADS)
Alexander, Stephon H.; Yunes, Nicolás
2018-03-01
Is gravity parity violating? Given the recent observations of gravitational waves from coalescing compact binaries, we develop a strategy to find an answer with current and future detectors. We identify the key signatures of parity violation in gravitational waves: amplitude birefringence in their propagation and a modified chirping rate in their generation. We then determine the optimal binaries to test the existence of parity violation in gravity, and prioritize the research in modeling that will be required to carry out such tests before detectors reach their design sensitivity.
Short communication: Effect of heat stress on nonreturn rate of Italian Holstein cows.
Biffani, S; Bernabucci, U; Vitali, A; Lacetera, N; Nardone, A
2016-07-01
The data set consisted of 1,016,856 inseminations of 191,012 first, second, and third parity Holstein cows from 484 farms. Data were collected from year 2001 through 2007 and included meteorological data from 35 weather stations. Nonreturn rate at 56 d after first insemination (NR56) was considered. A logit model was used to estimate the effect of temperature-humidity index (THI) on reproduction across parities. Then, least squares means were used to detect the THI breakpoints using a 2-phase linear regression procedure. Finally, a multiple-trait threshold model was used to estimate variance components for NR56 in first and second parity cows. A dummy regression variable (t) was used to estimate NR56 decline due to heat stress. The NR56, both for first and second parity cows, was significantly (unfavorable) affected by THI from 4 d before 5 d after the insemination date. Additive genetic variances for NR56 increased from first to second parity both for general and heat stress effect. Genetic correlations between general and heat stress effects were -0.31 for first parity and -0.45 for second parity cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang
2016-01-01
The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications. PMID:27073154
Wang, Feifan; Gong, Zibo; Hu, Xiaoyong; Yang, Xiaoyu; Yang, Hong; Gong, Qihuang
2016-04-13
The nanoscale chip-integrated all-optical logic parity checker is an essential core component for optical computing systems and ultrahigh-speed ultrawide-band information processing chips. Unfortunately, little experimental progress has been made in development of these devices to date because of material bottleneck limitations and a lack of effective realization mechanisms. Here, we report a simple and efficient strategy for direct realization of nanoscale chip-integrated all-optical logic parity checkers in integrated plasmonic circuits in the optical communication range. The proposed parity checker consists of two-level cascaded exclusive-OR (XOR) logic gates that are realized based on the linear interference of surface plasmon polaritons propagating in the plasmonic waveguides. The parity of the number of logic 1s in the incident four-bit logic signals is determined, and the output signal is given the logic state 0 for even parity (and 1 for odd parity). Compared with previous reports, the overall device feature size is reduced by more than two orders of magnitude, while ultralow energy consumption is maintained. This work raises the possibility of realization of large-scale integrated information processing chips based on integrated plasmonic circuits, and also provides a way to overcome the intrinsic limitations of serious surface plasmon polariton losses for on-chip integration applications.
Six-quark decays of the Higgs boson in supersymmetry with R-parity violation.
Carpenter, Linda M; Kaplan, David E; Rhee, Eun-Jung
2007-11-23
Both electroweak precision measurements and simple supersymmetric extensions of the standard model prefer a mass of the Higgs boson less than the experimental lower limit (on a standard-model-like Higgs boson) of 114 GeV. We show that supersymmetric models with R parity violation and baryon-number violation have a significant range of parameter space in which the Higgs boson dominantly decays to six jets. These decays are much more weakly constrained by current CERN LEP analyses and would allow for a Higgs boson mass near that of the Z. In general, lighter scalar quark and other superpartner masses are allowed. The Higgs boson would potentially be discovered at hadron colliders via the appearance of new displaced vertices.
Mesoscopic pairing without superconductivity
NASA Astrophysics Data System (ADS)
Hofmann, Johannes
2017-12-01
We discuss pairing signatures in mesoscopic nanowires with a variable attractive pairing interaction. Depending on the wire length, density, and interaction strength, these systems realize a simultaneous bulk-to-mesoscopic and BCS-BEC crossover, which we describe in terms of the parity parameter that quantifies the odd-even energy difference and generalizes the bulk Cooper pair binding energy to mesoscopic systems. We show that the parity parameter can be extracted from recent measurements of conductance oscillations in SrTiO3 nanowires by Cheng et al. [Nature (London) 521, 196 (2015), 10.1038/nature14398], where it marks the critical magnetic field that separates pair and single-particle currents. Our results place the experiment in the fluctuation-dominated mesoscopic regime on the BCS side of the crossover.
Dusetzina, Stacie B; Huskamp, Haiden A; Winn, Aaron N; Basch, Ethan; Keating, Nancy L
2017-11-09
Oral anticancer medications are increasingly important but costly treatment options for patients with cancer. By early 2017, 43 states and Washington, DC, had passed laws to ensure patients with private insurance enrolled in fully insured health plans pay no more for anticancer medications administered by mouth than anticancer medications administered by infusion. Federal legislation regarding this issue is currently pending. Despite their rapid acceptance, the changes associated with state adoption of oral chemotherapy parity laws have not been described. To estimate changes in oral anticancer medication use, out-of-pocket spending, and health plan spending associated with oral chemotherapy parity law adoption. Analysis of administrative health plan claims data from 2008-2012 for 3 large nationwide insurers aggregated by the Health Care Cost Institute. Data analysis was first completed in 2015 and updated in 2017. The study population included 63 780 adults living in 1 of 16 states that passed parity laws during the study period and who received anticancer drug treatment for which orally administered treatment options were available. Study analysis used a difference-in-differences approach. Time period before and after adoption of state parity laws, controlling for whether the patient was enrolled in a plan subject to parity (fully insured) or not (self-funded, exempt via the Employee Retirement Income Security Act). Oral anticancer medication use, out-of-pocket spending, and total health care spending. Of the 63 780 adults aged 18 through 64 years, 51.4% participated in fully insured plans and 48.6% in self-funded plans (57.2% were women; 76.8% were aged 45 to 64 years). The use of oral anticancer medication treatment as a proportion of all anticancer treatment increased from 18% to 22% (adjusted difference-in-differences risk ratio [aDDRR], 1.04; 95% CI, 0.96-1.13; P = .34) comparing months before vs after parity. In plans subject to parity laws, the proportion of prescription fills for orally administered therapy without copayment increased from 15.0% to 53.0%, more than double the increase (12.3%-18.0%) in plans not subject to parity (P < .001). The proportion of patients with out-of-pocket spending of more than $100 per month increased from 8.4% to 11.1% compared with a slight decline from 12.0% to 11.7% in plans not subject to parity (P = .004). In plans subject to parity laws, estimated monthly out-of-pocket spending decreased by $19.44 at the 25th percentile, by $32.13 at the 50th percentile, and by $10.83 at the 75th percentile but increased at the 90th ($37.19) and 95th ($143.25) percentiles after parity (all P < .001, controlling for changes in plans not subject to parity). Parity laws did not increase 6-month total spending for users of any anticancer therapy or for users of oral anticancer therapy alone. While oral chemotherapy parity laws modestly improved financial protection for many patients without increasing total health care spending, these laws alone may be insufficient to ensure that patients are protected from high out-of-pocket medication costs.
NASA Astrophysics Data System (ADS)
Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng
2014-04-01
We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.
Controlling electric, magnetic, and chiral dipolar emission with PT-symmetric potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alaeian, Hadiseh; Dionne, Jennifer A.
We investigate the effect of parity-time (PT) symmetric optical potentials on the radiation of achiral and chiral dipole sources. Two properties unique to PT-symmetric potentials are observed. First, the dipole can be tuned to behave as a strong optical emitter or absorber based on the non-Hermiticity parameter and the dipole location. Second, exceptional points give rise to new system resonances that lead to orders-of-magnitude enhancements in the dipolar emitted or absorbed power. Utilizing these properties, we show that enantiomers of chiral molecules near PT-symmetric metamaterials exhibit a 4.5-fold difference in their emitted power and decay rate. The results of thismore » work could enable new atom-cavity interactions for quantum optics, as well as all-optical enantioselective separation.« less
Scalable quantum memory in the ultrastrong coupling regime.
Kyaw, T H; Felicetti, S; Romero, G; Solano, E; Kwek, L-C
2015-03-02
Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z2 parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.
Scalable quantum memory in the ultrastrong coupling regime
Kyaw, T. H.; Felicetti, S.; Romero, G.; Solano, E.; Kwek, L.-C.
2015-01-01
Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z2 parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances. PMID:25727251
Lifetime measurement of high spin states in (75) Kr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, Javid; Trivedi, T.; Maurya, K.
2010-01-01
The lifetimes of high spin states of {sup 75}Kr have been determined via {sup 50}Cr ({sup 28}Si, 2pn) {sup 75}Kr reaction in positive parity band using the Doppler-shift attenuation method. The transition quadrupole moments Q deduced from lifetime measurements have been compared with {sup 75}Br. Experimental results obtained from lifetime measurement are interpreted in the framework of projected shell model.
Tsiamadis, V; Banos, G; Panousis, N; Kritsepi-Konstantinou, M; Arsenos, G; Valergakis, G E
2016-07-01
Calcium, Mg, P, and K are of great importance for the health and productivity of dairy cows after calving. So far genetic studies have focused on clinical hypocalcemia, leaving the genetic parameters of these macroelements unstudied. Our objective was to estimate the genetic parameters of Ca, Mg, P, and K serum concentrations and their changes during the first 8d after calving. The study was conducted in 9 herds located in northern Greece, with 1,021 Holstein cows enrolled from November 2010 until November 2012. No herd used any kind of preventive measures for hypocalcemia. Pedigree information for all cows was available. A total of 35 cows were diagnosed and treated for periparturient paresis and, therefore, excluded from the study. The remaining 986 cows were included in genetic analysis. The distribution of cows across parities was 459 (parity 1), 234 (parity 2), 158 (parity 3), and 135 (parity ≥4). A sample of blood was taken from each cow on d1, 2, 4, and 8 after calving and serum concentrations of Ca, P, Mg, and K were measured in each sample. A final data set of 15,390 biochemical records was created consisting of 3,903 Ca, 3,902 P, 3,903Mg, and 3,682K measurements. Moreover, changes of these concentrations between d1 and 4 as well as 1 and 8 after calving were calculated and treated as different traits. Random regression models were used to analyze the data. Results showed that daily heritabilities of Ca, P, and Mg concentrations traits were moderate to high (0.20-0.43), whereas those of K were low to moderate (0.12-0.23). Regarding concentration changes, only Mg change between d1 and 8 after calving had a significant heritability of 0.18. Genetic correlations between Ca, P, Mg, and K concentrations and their concentration changes from d1 to 4 and 1 to 8 after calving were not significantly different from zero. Most phenotypic correlations among Ca, P, Mg, and K concentrations were positive and low (0.09-0.16), whereas the correlation between P and Mg was negative and low (-0.16). Phenotypic correlations among macromineral concentrations on d1 and their changes from d1 to 4 and 1 to 8 after calving varied for each macromineral. This study revealed that genetic selection for normal Ca, P, Mg, and K concentrations in the first week of lactation is possible and could facilitate the management of their deficiencies during the early stages of lactation. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A new method of identifying target groups for pronatalist policy applied to Australia.
Chen, Mengni; Lloyd, Chris J; Yip, Paul S F
2018-01-01
A country's total fertility rate (TFR) depends on many factors. Attributing changes in TFR to changes of policy is difficult, as they could easily be correlated with changes in the unmeasured drivers of TFR. A case in point is Australia where both pronatalist effort and TFR increased in lock step from 2001 to 2008 and then decreased. The global financial crisis or other unobserved confounders might explain both the reducing TFR and pronatalist incentives after 2008. Therefore, it is difficult to estimate causal effects of policy using econometric techniques. The aim of this study is to instead look at the structure of the population to identify which subgroups most influence TFR. Specifically, we build a stochastic model relating TFR to the fertility rates of various subgroups and calculate elasticity of TFR with respect to each rate. For each subgroup, the ratio of its elasticity to its group size is used to evaluate the subgroup's potential cost effectiveness as a pronatalist target. In addition, we measure the historical stability of group fertility rates, which measures propensity to change. Groups with a high effectiveness ratio and also high propensity to change are natural policy targets. We applied this new method to Australian data on fertility rates broken down by parity, age and marital status. The results show that targeting parity 3+ is more cost-effective than lower parities. This study contributes to the literature on pronatalist policies by investigating the targeting of policies, and generates important implications for formulating cost-effective policies.
Storing Data from Qweak--A Precision Measurement of the Proton's Weak Charge
NASA Astrophysics Data System (ADS)
Pote, Timothy
2008-10-01
The Qweak experiment will perform a precision measurement of the proton's parity violating weak charge at low Q-squared. The experiment will do so by measuring the asymmetry in parity-violating electron scattering. The proton's weak charge is directly related to the value of the weak mixing angle--a fundamental quantity in the Standard Model. The Standard Model makes a firm prediction for the value of the weak mixing angle and thus Qweak may provide insight into shortcomings in the SM. The Qweak experiment will run at Thomas Jefferson National Accelerator Facility in Newport News, VA. A database was designed to hold data directly related to the measurement of the proton's weak charge such as detector and beam monitor yield, asymmetry, and error as well as control structures such as the voltage across photomultiplier tubes and the temperature of the liquid hydrogen target. In order to test the database for speed and stability, it was filled with fake data that mimicked the data that Qweak is expected to collect. I will give a brief overview of the Qweak experiment and database design, and present data collected during these tests.
A Quantum Non-Demolition Parity measurement in a mixed-species trapped-ion quantum processor
NASA Astrophysics Data System (ADS)
Marinelli, Matteo; Negnevitsky, Vlad; Lo, Hsiang-Yu; Flühmann, Christa; Mehta, Karan; Home, Jonathan
2017-04-01
Quantum non-demolition measurements of multi-qubit systems are an important tool in quantum information processing, in particular for syndrome extraction in quantum error correction. We have recently demonstrated a protocol for quantum non-demolition measurement of the parity of two beryllium ions by detection of a co-trapped calcium ion. The measurement requires a sequence of quantum gates between the three ions, using mixed-species gates between beryllium hyperfine qubits and a calcium optical qubit. Our work takes place in a multi-zone segmented trap setup in which we have demonstrated high fidelity control of both species and multi-well ion shuttling. The advantage of using two species of ion is that we can individually manipulate and read out the state of each ion species without disturbing the internal state of the other. The methods demonstrated here can be used for quantum error correcting codes as well as quantum metrology and are key ingredients for realizing a hybrid universal quantum computer based on trapped ions. Mixed-species control may also enable the investigation of new avenues in quantum simulation and quantum state control. left the group and working in a company now.
NASA Astrophysics Data System (ADS)
Beminiwattha, Rakitha; Moller Collaboration
2017-09-01
Parity Violating Electron Scattering (PVES) is an extremely successful precision frontier tool that has been used for testing the Standard Model (SM) and understanding nucleon structure. Several generations of highly successful PVES programs at SLAC, MIT-Bates, MAMI-Mainz, and Jefferson Lab have contributed to the understanding of nucleon structure and testing the SM. But missing phenomena like matter-antimatter asymmetry, neutrino flavor oscillations, and dark matter and energy suggest that the SM is only a `low energy' effective theory. The MOLLER experiment at Jefferson Lab will measure the weak charge of the electron, QWe = 1 - 4sin2θW , with a precision of 2.4 % by measuring the parity violating asymmetry in electron-electron () scattering and will be sensitive to subtle but measurable deviations from precisely calculable predictions from the SM. The MOLLER experiment will provide the best contact interaction search for leptons at low OR high energy makes it a probe of physics beyond the Standard Model with sensitivities to mass-scales of new PV physics up to 7.5 TeV. Overview of the experiment and recent pre-R&D progress will be reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velas, K. M.; Milroy, R. D.
A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure B{sub r}, B{sub θ}, and B{sub z} at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter usedmore » in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.« less
Parity and risk of hemorrhagic strokes.
Jung, Sun-Young; Bae, Hee-Joon; Park, Byung-Joo; Yoon, Byung-Woo
2010-05-04
The association between parity and risk of hemorrhagic stroke (HS) remains to be clarified. This study assessed the association of parity with the overall risk of HS and compared its contribution to intracerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH). We used a database from a nationwide multicenter case-control study, in which 471 female cases with incident HS were matched at 1:2 with 942 community or hospital controls. A total of 459 HS cases and 918 controls with information on parity were included. Parity was categorized as 0-1, 2, 3, and >or=4. Adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated by conditional logistic regression. As potential confounders, age, history of hypertension, history of diabetes, family history of stroke, smoking status, alcohol consumption, educational status, age at menarche, and use of oral contraceptives were included in the models. Compared with nullipara and unipara, women with parity of 2, 3, and >or=4 had significantly higher risk for total HS, ICH, and SAH, respectively. Each additional parity increased the ORs of HS (adjusted OR for total HS = 1.27 [95% CI 1.14-1.41]; adjusted OR for SAH = 1.34 [95% CI 1.13-1.58]; adjusted OR for ICH = 1.27 [95% CI 1.08-1.48]). Likelihood ratio test for trends showed a significantly increased risk with increasing parity for total HS and for both types of HS (p(trend) < 0.05 in all analyses). Increased number of childbirths may be related to an increased risk of both intracerebral hemorrhage and subarachnoid hemorrhage.
Ziomkiewicz, Anna; Frumkin, Amara; Zhang, Yawei; Sancilio, Amelia; Bribiescas, Richard G
2018-01-01
Life history theory predicts a trade-off between female investment in reproduction and somatic maintenance, which can result in accelerated senescence. Oxidative stress has been shown to be a causal physiological mechanism for accelerated aging and a possible contributor to this trade-off. We aimed to test the hypothesis for the existence of significant associations between measures of reproductive effort and the level of oxidative stress biomarkers in premenopausal and postmenopausal American women. Serum samples and questionnaire data were collected from 63 premenopausal and postmenopausal women (mean age 53.4 years), controls in the Connecticut Thyroid Health Study, between May 2010 and December 2013. Samples were analyzed for levels of 8-OHdG and Cu/Zn-SOD using immunoassay method. Levels of oxidative damage (8-OHdG) but not oxidative defense (Cu/Zn-SOD) were negatively associated with parity and number of sons in premenopausal women (r = -0.52 for parity, r = -0.52 for number of sons, P < .01). Together, measures of reproductive effort, women's BMI, age, and menopausal status explained around 15% of variance in level of 8-OHdG. No association between reproductive effort characteristics and oxidative damage was found for postmenopausal women. We found no evidence of a trade-off between somatic maintenance as measured by 8-OHdG and reproductive effort in women from this American population. On the contrary, higher gravidity and parity in premenopausal women was associated with lower damage to cellular DNA caused by oxidative stress. These results highlight the importance of population variation and environmental conditions when testing the occurrence of life-history trade-offs. © 2017 Wiley Periodicals, Inc.
POLARBEAR constraints on cosmic birefringence and primordial magnetic fields
Ade, Peter A. R.; Arnold, Kam; Atlas, Matt; ...
2015-12-08
Here, we constrain anisotropic cosmic birefringence using four-point correlations of even-parity E-mode and odd-parity B-mode polarization in the cosmic microwave background measurements made by the POLARization of the Background Radiation (POLARBEAR) experiment in its first season of observations. We find that the anisotropic cosmic birefringence signal from any parity-violating processes is consistent with zero. The Faraday rotation from anisotropic cosmic birefringence can be compared with the equivalent quantity generated by primordial magnetic fields if they existed. The POLARBEAR nondetection translates into a 95% confidence level (C.L.) upper limit of 93 nanogauss (nG) on the amplitude of an equivalent primordial magneticmore » field inclusive of systematic uncertainties. This four-point correlation constraint on Faraday rotation is about 15 times tighter than the upper limit of 1380 nG inferred from constraining the contribution of Faraday rotation to two-point correlations of B-modes measured by Planck in 2015. Metric perturbations sourced by primordial magnetic fields would also contribute to the B-mode power spectrum. Using the POLARBEAR measurements of the B-mode power spectrum (two-point correlation), we set a 95% C.L. upper limit of 3.9 nG on primordial magnetic fields assuming a flat prior on the field amplitude. This limit is comparable to what was found in the Planck 2015 two-point correlation analysis with both temperature and polarization. Finally, we perform a set of systematic error tests and find no evidence for contamination. This work marks the first time that anisotropic cosmic birefringence or primordial magnetic fields have been constrained from the ground at subdegree scales.« less
A symmetry breaking mechanism by parity assignment in the noncommutative Higgs model
NASA Astrophysics Data System (ADS)
Yang, Masaki J. S.
2017-12-01
We apply the orbifold grand unified theory (GUT) mechanism to the noncommutative Higgs model. An assignment of Z2 parity to the “constituent fields” induces parity assignments of both the gauge and Higgs bosons, because these bosons are treated as some kind of composite fields in this formalism.
Parents' Child Care Experience: Effects of Sex and Parity.
ERIC Educational Resources Information Center
Gilpin, Andrew R.; Glanville, Bradley B.
1985-01-01
Surveyed 94 couples to determine effects on child care experience associated with gender, parity, and various other demographic variables. As expected, women had higher scores than men. Experience was a linear function of parity for men, but not for women, and was unrelated to attitudes toward women. Implications for child care responsibility are…
47 CFR 51.207 - Local dialing parity.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 3 2013-10-01 2013-10-01 false Local dialing parity. 51.207 Section 51.207... Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit telephone exchange service customers within a local calling area to dial the same number of digits to make a local...
47 CFR 51.207 - Local dialing parity.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Local dialing parity. 51.207 Section 51.207... Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit telephone exchange service customers within a local calling area to dial the same number of digits to make a local...
47 CFR 51.207 - Local dialing parity.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 3 2011-10-01 2011-10-01 false Local dialing parity. 51.207 Section 51.207... Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit telephone exchange service customers within a local calling area to dial the same number of digits to make a local...
47 CFR 51.207 - Local dialing parity.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 3 2014-10-01 2014-10-01 false Local dialing parity. 51.207 Section 51.207... Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit telephone exchange service customers within a local calling area to dial the same number of digits to make a local...
47 CFR 51.207 - Local dialing parity.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 3 2012-10-01 2012-10-01 false Local dialing parity. 51.207 Section 51.207... Obligations of All Local Exchange Carriers § 51.207 Local dialing parity. A LEC shall permit telephone exchange service customers within a local calling area to dial the same number of digits to make a local...
ERIC Educational Resources Information Center
Smith, Michael D.
2016-01-01
The Parity Theorem states that any permutation can be written as a product of transpositions, but no permutation can be written as a product of both an even number and an odd number of transpositions. Most proofs of the Parity Theorem take several pages of mathematical formalism to complete. This article presents an alternative but equivalent…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manturov, Vassily O
2010-06-29
In this work we study knot theories with a parity property for crossings: every crossing is declared to be even or odd according to a certain preassigned rule. If this rule satisfies a set of simple axioms related to the Reidemeister moves, then certain simple invariants solving the minimality problem can be defined, and invariant maps on the set of knots can be constructed. The most important example of a knot theory with parity is the theory of virtual knots. Using the parity property arising from Gauss diagrams we show that even a gross simplification of the theory of virtualmore » knots, namely, the theory of free knots, admits simple and highly nontrivial invariants. This gives a solution to a problem of Turaev, who conjectured that all free knots are trivial. In this work we show that free knots are generally not invertible, and provide invariants which detect the invertibility of free knots. The passage to ordinary virtual knots allows us to strengthen known invariants (such as the Kauffman bracket) using parity considerations. We also discuss other examples of knot theories with parity. Bibliography: 27 items.« less
Novel Soft-Pion Theorem for Long-Range Nuclear Parity Violation.
Feng, Xu; Guo, Feng-Kun; Seng, Chien-Yeah
2018-05-04
The parity-odd effect in the standard model weak neutral current reveals itself in the long-range parity-violating nuclear potential generated by the pion exchanges in the ΔI=1 channel with the parity-odd pion-nucleon coupling constant h_{π}^{1}. Despite decades of experimental and theoretical efforts, the size of this coupling constant is still not well understood. In this Letter, we derive a soft-pion theorem relating h_{π}^{1} and the neutron-proton mass splitting induced by an artificial parity-even counterpart of the ΔI=1 weak Lagrangian and demonstrate that the theorem still holds exact at the next-to-leading order in the chiral perturbation theory. A considerable amount of simplification is expected in the study of h_{π}^{1} by using either lattice or other QCD models following its reduction from a parity-odd proton-neutron-pion matrix element to a simpler spectroscopic quantity. The theorem paves the way to much more precise calculations of h_{π}^{1}, and thus a quantitative test of the strangeness-conserving neutral current interaction of the standard model is foreseen.
Novel Soft-Pion Theorem for Long-Range Nuclear Parity Violation
NASA Astrophysics Data System (ADS)
Feng, Xu; Guo, Feng-Kun; Seng, Chien-Yeah
2018-05-01
The parity-odd effect in the standard model weak neutral current reveals itself in the long-range parity-violating nuclear potential generated by the pion exchanges in the Δ I =1 channel with the parity-odd pion-nucleon coupling constant hπ1 . Despite decades of experimental and theoretical efforts, the size of this coupling constant is still not well understood. In this Letter, we derive a soft-pion theorem relating hπ1 and the neutron-proton mass splitting induced by an artificial parity-even counterpart of the Δ I =1 weak Lagrangian and demonstrate that the theorem still holds exact at the next-to-leading order in the chiral perturbation theory. A considerable amount of simplification is expected in the study of hπ1 by using either lattice or other QCD models following its reduction from a parity-odd proton-neutron-pion matrix element to a simpler spectroscopic quantity. The theorem paves the way to much more precise calculations of hπ1, and thus a quantitative test of the strangeness-conserving neutral current interaction of the standard model is foreseen.
K-mixing in the doubly mid-shell nuclide 170Dy and the role of vibrational degeneracy
NASA Astrophysics Data System (ADS)
Söderström, P.-A.; Walker, P. M.; Wu, J.; Liu, H. L.; Regan, P. H.; Watanabe, H.; Doornenbal, P.; Korkulu, Z.; Lee, P.; Liu, J. J.; Lorusso, G.; Nishimura, S.; Phong, V. H.; Sumikama, T.; Xu, F. R.; Yagi, A.; Zhang, G. X.; Ahn, D. S.; Alharbi, T.; Baba, H.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Estrade, A.; Fukuda, N.; Griffin, C. J.; Ideguchi, E.; Inabe, N.; Isobe, T.; Kanaoka, H.; Kanaya, S.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lane, G. J.; Lee, E. J.; Lee, C. S.; Lotay, G.; Moon, C.-B.; Nishizuka, I.; Niţă, C. R.; Odahara, A.; Patel, Z.; Podolyák, Zs.; Roberts, O. J.; Sakurai, H.; Schaffner, H.; Shand, C. M.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Valiente-Dòbon, J. J.; Xu, Z. Y.
2016-11-01
A detailed study of the structure of the doubly mid-shell nucleus 104 1 66 170 Dy has been carried out, following isomeric and β decay. We have measured the yrast band up to the spin-parity Jπ =6+ state, the K = 2γ-vibration band up to the 5+ state, a low-lying negative-parity band based on a 2- state that could be a candidate for the lowest energy octupole vibration state within this nucleus, and a candidate for the Kπ =6+ two quasi-particle isomer. This state was determined to have an excitation energy of 1643.91(23) keV and a half life of 0.99(4) μs, with a reduced hindrance for its decay to the ground-state band an order of magnitude lower than predicted by NpNn systematics. This is interpreted as being due to γ-vibrational mixing from a near degeneracy of the isomer and the 6+ state of the γ band. Furthermore, the parent nucleus 170Tb has been determined to have a half-life of 0.91 (+18-13) s with a possible spin-parity of 2-.
Structure of positive parity bands and observation of magnetic rotation in 108Ag
NASA Astrophysics Data System (ADS)
Sethi, Jasmine; Palit, R.
2015-10-01
The interplay of nuclear forces among the neutron particles (holes) and proton holes (particles) in the odd-odd nuclei gives rise to a variety of shapes and hence novel modes of excitations. The odd-odd nuclei in the A ~ 110 region have proton holes in the g9/2 orbital and the neutron particles in the h11/2 orbitals. A systematic study of shears mechanism in A ~ 110 region indicates the presence of magnetic rotation (MR) phenomenon in Ag and In isotopes. Therefore, the structure of doubly odd 108Ag nucleus was probed in two different reactions, i.e, 100Mo(11B, 4n)108Ag at 39 MeV and 94Zr(18O, p3n)108Ag at 72 MeV beam energies. The emitted γ-rays were detected using the Indian National Gamma Array (INGA) at TIFR, Mumbai. A significant number of new transitions and energy levels were identified. Lifetime measurements, using the Doppler shift attenuation method, have been carried out for a positive parity dipole band. Tilted Axis Cranking (TAC) calculations have been performed for two positive parity dipole bands.
Phase transition of light in cavity QED lattices.
Schiró, M; Bordyuh, M; Oztop, B; Türeci, H E
2012-08-03
Systems of strongly interacting atoms and photons, which can be realized wiring up individual cavity QED systems into lattices, are perceived as a new platform for quantum simulation. While sharing important properties with other systems of interacting quantum particles, here we argue that the nature of light-matter interaction gives rise to unique features with no analogs in condensed matter or atomic physics setups. By discussing the physics of a lattice model of delocalized photons coupled locally with two-level systems through the elementary light-matter interaction described by the Rabi model, we argue that the inclusion of counterrotating terms, so far neglected, is crucial to stabilize finite-density quantum phases of correlated photons out of the vacuum, with no need for an artificially engineered chemical potential. We show that the competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z(2) parity symmetry-breaking quantum criticality between two gapped phases that share similarities with the Dicke transition of quantum optics and the Ising critical point of quantum magnetism. We discuss the phase diagram as well as the low-energy excitation spectrum and present analytic estimates for critical quantities.
NASA Astrophysics Data System (ADS)
Kwapiński, Tomasz
2017-03-01
The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin-orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.
NASA Astrophysics Data System (ADS)
Arzano, Michele; Gubitosi, Giulia; Magueijo, João
2018-06-01
We explore the possibility that well known properties of the parity operator, such as its idempotency and unitarity, might break down at the Planck scale. Parity might then do more than just swap right and left polarized states and reverse the sign of spatial momentum k: it might generate superpositions of right and left handed states, as well as mix momenta of different magnitudes. We lay down the general formalism, but also consider the concrete case of the Planck scale kinematics governed by κ-Poincaré symmetries, where some of the general features highlighted appear explicitly. We explore some of the observational implications for cosmological fluctuations. Different power spectra for right handed and left handed tensor modes might actually be a manifestation of deformed parity symmetry at the Planck scale. Moreover, scale-invariance and parity symmetry appear deeply interconnected.
Garn, Joshua V; Greene, Leslie E; Dreibelbis, Robert; Saboori, Shadi; Rheingans, Richard D; Freeman, Matthew C
2013-10-01
We employed a cluster randomized trial design to measure the impact of a school based water, sanitation, and hygiene (WASH) improvement on pupil enrollment and on gender parity in enrollment, in primary schools in Nyanza Province, Kenya (2007-2009). Among schools with poor water access during the dry season, those that received a water supply, hygiene promotion and water treatment (HP&WT) and sanitation improvement, demonstrated increased enrollment (β=0.091 [0.009, 0.173] p=0.03), which translates to 26 additional pupils per school on average. The proportion of girls enrolled in school also increased by 4% (prevalence ratio (PR)=1.04 [1.00, 1.07] p=0.02). Among schools with better baseline water access during the dry season (schools that didn't receive a water source), we found no evidence of increased enrollment in schools that received a HP&WT intervention (β=0.016 [-0.039, 0.072] p=0.56) or the HP&WT and sanitation intervention (β=0.027 [-0.028, 0.082]p=0.34), and there was no evidence of improved gender parity (PR=0.99 [0.96, 1.02] p=0.59, PR=1.00 [0.97, 1.02] p=0.75, respectively). Our findings suggest that increased school enrollment and improved gender parity may be influenced by a comprehensive WASH program that includes an improved water source; schools with poor water access during the dry season may benefit most from these interventions.
Gravidity, Parity and Vertebral Dimensions in the Northern Finland Birth Cohort 1966.
Oura, Petteri; Paananen, Markus; Auvinen, Juha; Niinimäki, Jaakko; Niinimäki, Maarit; Karppinen, Jaro; Junno, Juho-Antti
2018-03-15
A population-based birth cohort study. To investigate the association between gravidity, parity and vertebral geometry among middle-aged women. Vertebral size is a recognized determinant of vertebral fracture risk. Yet only a few lifestyle factors that influence vertebral size are known. Pregnancy is a labile period which may affect the maternal vertebral size or shape. The lumbar lordosis angle is permanently deepened by pregnancy, but it remains unclear whether vertebral shape or size contribute to this deepened angle. We aimed to investigate whether gravidity and parity were associated with vertebral cross-sectional area (CSA) and height ratio (anterior height: posterior height) among 705 middle-aged women from the Northern Finland Birth Cohort 1966. We measured the corpus of their fourth lumbar vertebra using magnetic resonance imaging of the lumbar spine at the age of 46. Gravidity and parity were elicited using a questionnaire also at the age of 46. Linear regression analysis was used with adjustments for body mass index, vertebral CSA (height ratio models), and vertebral height (CSA models). We also ran a subgroup analysis which did not include nulliparous women, and we compared nulliparous women with grand multiparous women. The models found no statistically significant associations between the predictors and outcomes. Crude and adjusted results were highly similar, and the subgroup analyses provided analogous results. Pregnancy, or even multiple pregnancies, do not seem to have long-term effects on vertebral geometry. In order to enhance the prevention of vertebral fractures, future studies should aim to reveal more lifestyle determinants of vertebral size. 3.
The influence of smoking and parity on serum markers for Down's syndrome screening.
Tislarić, Dubravka; Brajenović-Milić, Bojana; Ristić, Smiljana; Latin, Visnja; Zuvić-Butorac, Marta; Bacić, Josip; Petek, Marijan; Kapović, Miljenko
2002-01-01
To evaluate the impact of smoking and number of previous births on maternal serum levels of alpha-fetoprotein and free beta-subunit of human chorionic gonadotropin (free beta-hCG). The study included 3,252 completed unaffected singleton pregnancies that proceeded beyond 37 weeks' gestation and resulted with a birth of healthy child. Smoking status of mothers and data concerning gravidity and parity were collected at the sampling date. Serum markers were measured between 13 and 22 gestational weeks, corrected for maternal weight, and converted to multiples of median (MoM) for unaffected pregnancy of the corresponding gestational age. Median MoM values for both markers were examined in relation to both: smoking habits and number of previous births. Smokers had significantly decreased free beta-hCG MoM values compared to nonsmokers (p < 0.001). The median levels showed a negative relationship with the number of previous births. The significance of a decreasing trend was proved, both in smokers (p < 0.001) and nonsmokers (p < 0.001). The median maternal serum alpha-fetoprotein MoM values did not show any significant dependence, neither with regard to smoking (p = 0.65) nor with regard to parity (p = 0.07). The recommendable adjustment of serum markers to smoking habits, especially concerning the free beta-hCG levels, would be worthwhile. The evidence of the coexisting influence of parity on serum levels of free beta-hCG, both in smokers and nonsmokers, should perhaps be a stimulus for reconsideration of which corrections the screening performance is dependent on. Copyright 2002 S. Karger AG, Basel
Parity for mental health and substance abuse care under managed care.
Frank, Richard G.; McGuire, Thomas G.
1998-12-01
BACKGROUND: Parity in insurance coverage for mental health and substance abuse has been a key goal of mental health and substance abuse care advocates in the United States during most of the past 20 years. The push for parity began during the era of indemnity insurance and fee for service payment when benefit design was the main rationing device in health care. The central economic argument for enacting legislation aimed at regulating the insurance benefit was to address market failure stemming from adverse selection. The case against parity was based on inefficiency related to moral hazard. Empirical analyses provided evidence that ambulatory mental health services were considerably more responsive to the terms of insurance than were ambulatory medical services. AIMS: Our goal in this research is to reexamine the economics of parity in the light of recent changes in the delivery of health care in the United States. Specifically managed care has fundamentally altered the way in which health services are rationed. Benefit design is now only one mechanism among many that are used to allocate health care resources and control costs. We examine the implication of these changes for policies aimed at achieving parity in insurance coverage. METHOD: We develop a theoretical approach to characterizing rationing under managed care. We then analyze the traditional efficiency concerns in insurance, adverse selection and moral hazard in the context of policy aimed at regulating health and mental health benefits under private insurance. RESULTS: We show that since managed care controls costs and utilization in new ways parity in benefit design no longer implies equal access to and quality of mental health and substance abuse care. Because costs are controlled by management under managed care and not primarily by out of pocket prices paid by consumers, demand response recedes as an efficiency argument against parity. At the same time parity in benefit design may accomplish less with respect to providing a remedy to problems related to adverse selection.
Yang, L; Yang, Q; Yi, M; Pang, Z H; Xiong, B H
2013-01-01
This study was to investigate the effects of seasonal change and parity on milk composition and related indices, and to analyze the relationships among milk indices in Chinese Holstein cows from an intensive dairy farm in northern China. The 6,520 sets of complete Dairy Herd Improvement data were obtained and grouped by natural month and parity. The data included daily milk yield (DMY), milk solids percentage (MSP), milk fat percentage (MFP), milk protein percentage (MPP), milk lactose percentage (MLP), somatic cell count (SCC), somatic cell score (SCS), milk production loss (MPL), and fat-to-protein ratio (FPR). Data analysis showed that the above 9 indices were affected by both seasonal change and parity. However, the interaction between parity and seasonal change showed effects on MLP, SCS, MPL, and DMY, but no effects on MFP, MPP, MSP, and FPR. Duncan's multiple comparison on seasonal change showed that DMY (23.58 kg/d), MSP (12.35%), MPP (3.02%), and MFP (3.81%) were the lowest in June, but SCC (288.7 × 10(3)/mL) and MPL (0.69 kg/d) were the lowest in January; FPR (1.32) was the highest in February. Meanwhile, Duncan's multiple comparison on parities showed that MSP, MPP, and MLP were reduced rapidly in the fourth lactation, but SCC and MPL increased with increasing parities. The canonical correlation analysis for indices showed that SCS had high positive correlation with MPL (0.8360). Therefore, a few models were developed to quantify the effects of seasonal change and parity on raw milk composition using the Wood model. The changing patterns of milk composition and related indices in different months and parities could provide scientific evidence for improving feeding management and nutritional supplementation of Chinese Holstein cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Busch, Alisa B; Yoon, Frank; Barry, Colleen L; Azzone, Vanessa; Normand, Sharon-Lise T; Goldman, Howard H; Huskamp, Haiden A
2013-02-01
The Mental Health Parity and Addiction Equity Act requires insurance parity for mental health/substance use disorder and general medical services. Previous research found that parity did not increase mental health/substance use disorder spending and lowered out-of-pocket spending. Whether parity's effects differ by diagnosis is unknown. The authors examined this question in the context of parity implementation in the Federal Employees Health Benefits (FEHB) Program. The authors compared mental health/substance use disorder treatment use and spending before and after parity (2000 and 2002, respectively) for two groups: FEHB enrollees diagnosed in 1999 with bipolar disorder, major depression, or adjustment disorder (N=19,094) and privately insured enrollees unaffected by the policy in a comparison national sample (N=10,521). Separate models were fitted for each diagnostic group. A difference-in-difference design was used to control for secular time trends and to better reflect the specific impact of parity on spending and utilization. Total spending was unchanged among enrollees with bipolar disorder and major depression but decreased for those with adjustment disorder (-$62, 99.2% CI=-$133, -$11). Out-of-pocket spending decreased for all three groups (bipolar disorder: -$148, 99.2% CI=-$217, -$85; major depression: -$100, 99.2% CI=-$123, -$77; adjustment disorder: -$68, 99.2% CI=-$84, -$54). Total annual utilization (e.g., medication management visits, psychotropic prescriptions, and mental health/substance use disorder hospitalization bed days) remained unchanged across all diagnoses. Annual psychotherapy visits decreased significantly only for individuals with adjustment disorders (-12%, 99.2% CI=-19%, -4%). Parity implemented under managed care improved financial protection and differentially affected spending and psychotherapy utilization across groups. There was some evidence that resources were preferentially preserved for diagnoses that are typically more severe or chronic and reduced for diagnoses expected to be less so.
Mental Health Insurance Parity and Provider Wages.
Golberstein, Ezra; Busch, Susan H
2017-06-01
Policymakers frequently mandate that employers or insurers provide insurance benefits deemed to be critical to individuals' well-being. However, in the presence of private market imperfections, mandates that increase demand for a service can lead to price increases for that service, without necessarily affecting the quantity being supplied. We test this idea empirically by looking at mental health parity mandates. This study evaluated whether implementation of parity laws was associated with changes in mental health provider wages. Quasi-experimental analysis of average wages by state and year for six mental health care-related occupations were considered: Clinical, Counseling, and School Psychologists; Substance Abuse and Behavioral Disorder Counselors; Marriage and Family Therapists; Mental Health Counselors; Mental Health and Substance Abuse Social Workers; and Psychiatrists. Data from 1999-2013 were used to estimate the association between the implementation of state mental health parity laws and the Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity Act and average mental health provider wages. Mental health parity laws were associated with a significant increase in mental health care provider wages controlling for changes in mental health provider wages in states not exposed to parity (3.5 percent [95% CI: 0.3%, 6.6%]; p<.05). Mental health parity laws were associated with statistically significant but modest increases in mental health provider wages. Health insurance benefit expansions may lead to increased prices for health services when the private market that supplies the service is imperfect or constrained. In the context of mental health parity, this work suggests that part of the value of expanding insurance benefits for mental health coverage was captured by providers. Given historically low wage levels of mental health providers, this increase may be a first step in bringing mental health provider wages in line with parallel health professions, potentially reducing turnover rates and improving treatment quality.
Negative refraction and planar focusing based on parity-time symmetric metasurfaces.
Fleury, Romain; Sounas, Dimitrios L; Alù, Andrea
2014-07-11
We introduce a new mechanism to realize negative refraction and planar focusing using a pair of parity-time symmetric metasurfaces. In contrast to existing solutions that achieve these effects with negative-index metamaterials or phase conjugating surfaces, the proposed parity-time symmetric lens enables loss-free, all-angle negative refraction and planar focusing in free space, without relying on bulk metamaterials or nonlinear effects. This concept may represent a pivotal step towards loss-free negative refraction and highly efficient planar focusing by exploiting the largely uncharted scattering properties of parity-time symmetric systems.
Parity-expanded variational analysis for nonzero momentum
NASA Astrophysics Data System (ADS)
Stokes, Finn M.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. Selim; Menadue, Benjamin J.; Owen, Benjamin J.
2015-12-01
In recent years, the use of variational analysis techniques in lattice QCD has been demonstrated to be successful in the investigation of the rest-mass spectrum of many hadrons. However, due to parity mixing, more care must be taken for investigations of boosted states to ensure that the projected correlation functions provided by the variational analysis correspond to the same states at zero momentum. In this paper we present the parity-expanded variational analysis (PEVA) technique, a novel method for ensuring the successful and consistent isolation of boosted baryons through a parity expansion of the operator basis used to construct the correlation matrix.
High spin states in {sup 151,153}Pr, {sup 157}Sm, and {sup 93}Kr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, J. K.; Ramayya, A. V.; Hamilton, J. H.
2010-09-15
High spin states are observed for the first time in the neutron-rich nuclei {sup 151,153}Pr, {sup 157}Sm, and {sup 93}Kr from the spontaneous fission of {sup 252}Cf. Twenty new transitions in {sup 151}Pr, twelve in {sup 153}Pr, five in {sup 157}Sm, and four in {sup 93}Kr were identified by using x-ray(Pr/Sm)-{gamma}-{gamma} and {gamma}-{gamma}-{gamma} triple coincidences. From the measured total internal conversion coefficients {alpha}{sub T} of four low-energy transitions in {sup 151,153}Pr, we determine that two bands in each nucleus have opposite parity. The interlacing E1 transitions between the bands suggest a form of parity doubling in {sup 151,153}Pr. New bandsmore » in {sup 157}Sm and {sup 93}Kr are reported. The half-life of the 354.8 keV state in {sup 93}Kr is measured to be 10(2) ns.« less
Spatial durbin error model for human development index in Province of Central Java.
NASA Astrophysics Data System (ADS)
Septiawan, A. R.; Handajani, S. S.; Martini, T. S.
2018-05-01
The Human Development Index (HDI) is an indicator used to measure success in building the quality of human life, explaining how people access development outcomes when earning income, health and education. Every year HDI in Central Java has improved to a better direction. In 2016, HDI in Central Java was 69.98 %, an increase of 0.49 % over the previous year. The objective of this study was to apply the spatial Durbin error model using angle weights queen contiguity to measure HDI in Central Java Province. Spatial Durbin error model is used because the model overcomes the spatial effect of errors and the effects of spatial depedency on the independent variable. Factors there use is life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity. Based on the result of research, we get spatial Durbin error model for HDI in Central Java with influencing factors are life expectancy, mean years of schooling, expected years of schooling, and purchasing power parity.
[Obesity in Brazilian women: association with parity and socioeconomic status].
Ferreira, Regicely Aline Brandão; Benicio, Maria Helena D'Aquino
2015-05-01
To determine the influence of reproductive history on the prevalence of obesity in Brazilian women and the possible modifying effect of socioeconomic variables on the association between parity and excess weight. A retrospective analysis of complex sample data collected as part of the 2006 Brazilian National Survey on Demography and Health, which included a group representative of women of childbearing age in Brazil was conducted. The study included 11 961 women aged 20 to 49 years. The association between the study factor (parity) and the outcome of interest (obesity) was tested using logistic regression analysis. The adjusted effect of parity on obesity was assessed in a multiple regression model containing control variables: age, family purchasing power, as defined by the Brazilian Association of Research Enterprises (ABEP), schooling, and health care. Significance level was set at below 0.05. The prevalence of obesity in the study population was 18.6%. The effect of parity on obesity was significant (P for trend < 0.001). Unadjusted analysis showed a positive association of obesity with parity and age. Family purchase power had a significant odds ratio for obesity only in the unadjusted analysis. In the adjusted model, this variable did not explain obesity. The present findings suggest that parity has an influence on obesity in Brazilian women of childbearing age, with higher prevalence in women vs. without children.
NASA Astrophysics Data System (ADS)
Yu, Qi; Wang, Xinghao; Li, Qiu; Gong, Yimin; Dai, Zhenwen
2018-06-01
Natural radiative lifetimes for five even-parity levels of Tm III were measured by time-resolved laser-induced fluorescence method. The branching fraction measurements were performed based on the emission spectra of a hollow cathode lamp. By combining the measured branching fractions and the lifetime values reported in this work and in literature, experimental transition probabilities and oscillator strengths for 11 transitions were derived for the first time.
Chen Ning Yang, Weak Interactions, and Parity Violation
absolute law of parity conservation had been violated." 2 "Yang overturned Paul ... Dirac's explained that symmetry laws generate the law of conservation. The law of right-left symmetry contributed to the formulation of the law of conservation of parity in 1924. Eventually, this law of conservation was
45 CFR 147.160 - Parity in mental health and substance use disorder benefits.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Parity in mental health and substance use disorder benefits. 147.160 Section 147.160 Public Welfare Department of Health and Human Services REQUIREMENTS... INSURANCE MARKETS § 147.160 Parity in mental health and substance use disorder benefits. (a) In general. The...
Genetic effects of heat stress on milk yield of Thai Holstein crossbreds.
Boonkum, W; Misztal, I; Duangjinda, M; Pattarajinda, V; Tumwasorn, S; Sanpote, J
2011-01-01
The threshold for heat stress on milk yield of Holstein crossbreds under climatic conditions in Thailand was investigated, and genetic effects of heat stress on milk yield were estimated. Data included 400,738 test-day milk yield records for the first 3 parities from 25,609 Thai crossbred Holsteins between 1990 and 2008. Mean test-day milk yield ranged from 12.6 kg for cows with <87.5% Holstein genetics to 14.4 kg for cows with ≥93.7% Holstein genetics. Daily temperature and humidity data from 26 provincial weather stations were used to calculate a temperature-humidity index (THI). Test-day milk yield varied little with THI for first parity except above a THI of 82 for cows with ≥93.7% Holstein genetics. For third parity, test-day milk yield started to decline after a THI of 74 for cows with ≥87.5% Holstein genetics and declined more rapidly after a THI of 82. A repeatability test-day model with parities as correlated traits was used to estimate heat stress parameters; fixed effects included herd-test month-test year and breed groups, days in milk, calving age, and parity; random effects included 2 additive genetic effects, regular and heat stress, and 2 permanent environment, regular and heat stress. The threshold for effect of heat stress on test-day milk yield was set to a THI of 80. All variance component estimates increased with parity; the largest increases were found for effects associated with heat stress. In particular, genetic variance associated with heat stress quadrupled from first to third parity, whereas permanent environmental variance only doubled. However, permanent environmental variance for heat stress was at least 10 times larger than genetic variance. Genetic correlations among parities for additive effects without heat stress considered ranged from 0.88 to 0.96. Genetic correlations among parities for additive effects of heat stress ranged from 0.08 to 0.22, and genetic correlations between effects regular and heat stress effects ranged from -0.21 to -0.33 for individual parities. Effect of heat stress on Thai Holstein crossbreds increased greatly with parity and was especially large after a THI of 80 for cows with a high percentage of Holstein genetics (≥93.7%). Individual sensitivity to heat stress was more environmental than genetic for Thai Holstein crossbreds. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A political history of federal mental health and addiction insurance parity.
Barry, Colleen L; Huskamp, Haiden A; Goldman, Howard H
2010-09-01
This article chronicles the political history of efforts by the U.S. Congress to enact a law requiring "parity" for mental health and addiction benefits and medical/surgical benefits in private health insurance. The goal of the Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity (MHPAE) Act of 2008 is to eliminate differences in insurance coverage for behavioral health. Mental health and addiction treatment advocates have long viewed parity as a means of increasing fairness in the insurance market, whereas employers and insurers have opposed it because of concerns about its cost. The passage of this law is viewed as a legislative success by both consumer and provider advocates and the employer and insurance groups that fought against it for decades. Twenty-nine structured interviews were conducted with key informants in the federal parity debate, including members of Congress and their staff; lobbyists for consumer, provider, employer, and insurance groups; and other key contacts. Historical documentation, academic research on the effects of parity regulations, and public comment letters submitted to the U.S. Departments of Labor, Health and Human Services, and Treasury before the release of federal guidance also were examined. Three factors were instrumental to the passage of this law: the emergence of new evidence regarding the costs of parity, personal experience with mental illness and addiction, and the political strategies adopted by congressional champions in the Senate and House of Representatives. Challenges to implementing the federal parity policy warrant further consideration. This law raises new questions about the future direction of federal policymaking on behavioral health. © 2010 Milbank Memorial Fund. Published by Wiley Periodicals Inc.
Moosavi, Maede; Mirzaei, Abdolah; Ghavami, Mohsen; Tamadon, Amin
2014-01-01
The aim of the present study was to compare the occurrence and duration of clinical mastitis in different seasons, stages of lactation period and parities in a Holstein dairy farm in Iran. A retrospective epidemiological survey from April 2005 to March 2008 was conducted on 884 clinical mastitis cases of 7437 lactations. Data of each case including calendar-date of mastitis onset, days in milk (DIM) of mastitis onset (early: 0-74 DIM; middle: 75-150 DIM, and late ≥ 150 DIM), duration of mastitis, and parity (1, 2, and ≥ 3) were recorded. Based on date of mastitis onset, cases were classified into stages of lactation. Moreover, beginning of mastitis was seasonally categorized. Duration of clinical mastitis after treatment in early lactation was less than late lactation in the first-parity cows (p = 0.005). In early lactation period, the first-parity cows suffered clinical mastitis in days earlier than two other parity groups (p < 0.001). Moreover, in late lactation period, the first-parity cows had clinical mastitis in days later than cows in the third and more parities (p = 0.002). Occurrence of clinical mastitis in summer increased in late lactation period but in winter increased in early lactation period (p = 0.001). In addition, occurrence time of clinical mastitis in summer were in days later than in spring (p = 0.02) and winter (p = 0.03) in early lactation period. In conclusion, occurrence of mastitis in winter and spring during early lactation and in summer during late lactation period were more prevalent especially in lower parities.
Moosavi, Maede; Mirzaei, Abdolah; Ghavami, Mohsen; Tamadon, Amin
2014-01-01
The aim of the present study was to compare the occurrence and duration of clinical mastitis in different seasons, stages of lactation period and parities in a Holstein dairy farm in Iran. A retrospective epidemiological survey from April 2005 to March 2008 was conducted on 884 clinical mastitis cases of 7437 lactations. Data of each case including calendar-date of mastitis onset, days in milk (DIM) of mastitis onset (early: 0-74 DIM; middle: 75-150 DIM, and late ≥ 150 DIM), duration of mastitis, and parity (1, 2, and ≥ 3) were recorded. Based on date of mastitis onset, cases were classified into stages of lactation. Moreover, beginning of mastitis was seasonally categorized. Duration of clinical mastitis after treatment in early lactation was less than late lactation in the first-parity cows (p = 0.005). In early lactation period, the first-parity cows suffered clinical mastitis in days earlier than two other parity groups (p < 0.001). Moreover, in late lactation period, the first-parity cows had clinical mastitis in days later than cows in the third and more parities (p = 0.002). Occurrence of clinical mastitis in summer increased in late lactation period but in winter increased in early lactation period (p = 0.001). In addition, occurrence time of clinical mastitis in summer were in days later than in spring (p = 0.02) and winter (p = 0.03) in early lactation period. In conclusion, occurrence of mastitis in winter and spring during early lactation and in summer during late lactation period were more prevalent especially in lower parities. PMID:25568687
The particle spectrum of parity-violating Poincaré gravitational theory
NASA Astrophysics Data System (ADS)
Karananas, Georgios K.
2015-03-01
In this paper we investigate the physical spectrum of the gravitational theory based on the Poincaré group with terms that are at most quadratic in tetrad and spin connection, allowing for the presence of parity-even as well as parity-odd invariants. We determine restrictions on the parameters of the action so that all degrees of freedom propagate and are neither ghosts nor tachyons. We show that the addition of parity non-conserving invariants extends the healthy parameter space of the theory. To accomplish our goal, we apply the weak field approximation around flat spacetime and in order to facilitate the analysis, we separate the bilinear action for the excitations into completely independent spin sectors. For this purpose, we employ the spin-projection operator formalism and extend the original basis built previously, to be able to handle the parity-odd pieces.
Positive parity low spin states of odd-mass tellurium isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazar, Harun Resit
2006-11-15
In this work, we analyse the positive parity of states of odd-mass nucleus within the framework of interacting boson fermion model. The result of an IBFM-1 multilevel calculation with the lg{sub 9/2}, 2d{sub 5/2}, 2d{sub 3/2}, 3s{sub 1/2} and one level, 1h{sub 11/2} with negative parity, single particle orbits is reported for the positive parity states of the odd mass nucleus {sup 123-125}Te. Also, an IBM-1 calculation is presented for the low-lying states in the even-even {sup 124-126}Te core nucleus. The energy levels and B (E2) transition probabilities were calculated and compared with the experimental data. It was found thatmore » the calculated positive parity low spin state energy spectra of the odd-mass {sup 123-125}Te isotopes agree quite well with the experimental data.« less
A new phenomenological /τ-/α interaction
NASA Astrophysics Data System (ADS)
Heiberg-Andersen, H.; Mackintosh, R. S.; Vaagen, J. S.
2003-01-01
We present a potential model, with distinctive features, reproducing angular distributions and analyzing power data for τ- α scattering from 20 to 30 MeV τ energy with regular variation of the parameters. The distinctive features are: (1) a spin-orbit term which incorporates the influence of central depression in the α nucleus, and, (2) central terms which are strongly parity dependent. The parity dependence of the real central term is such that the odd-parity component has both a greater rms radius and greater volume integral than the even-parity component. These parity dependence characteristics had been predicted by the inversion of the RGM S-matrix. Our result supports a considerable contribution from three-nucleon exchange processes. The predicted 1/2 - level of 7Be is shifted 3 MeV relative to a previous one-level R-matrix formula fit, and depends strongly on the geometry of the spin-orbit potential.
Precision measurement of the weak charge of the proton
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The weak charge of the proton Q_W^p sets the strength of the proton's interaction with other particles via the neutral electroweak force, just as the electric charge sets the strength of the purely electromagnetic (EM) interaction. The standard model (SM) of electroweak particle physics predicts that Q_W^p is suppressed, due to a near-cancellation between the weak charges of the proton's three constituent quarks. This small SM "background" makes Q_W^p especially sensitive to potential new parity-violating (PV) interactions beyond those of the SM. Parity symmetry (invariance under spatial inversion (x,y,z) --> (-x,-y,-z)) is violated in the weak interaction, but not inmore » the other three forces of nature. Therefore PV provides a unique tool to isolate the weak interaction in order to observe the proton's weak charge1. Earlier experiments2 have measured parity-violating electron-scattering (PVES) asymmetries in kinematic regimes that are more sensitive to the proton's extended structure than to its weak charge. Here we report the most precise measurement of the PV electron-proton scattering asymmetry (A_ep = -226.5 ± 9.3 ppb, 1 ppb=10-9), in a kinematic regime where the theoretical uncertainties involved in determining Q_W^p are small. We use this measurement of A_ep to determine Q_W^p, obtaining consistent results using several methods which vary the degree of experimental and theoretical input. Our result for Q_W^p (0.0719 ± 0.0045) is in excellent agreement with the SM3. We employ energy-scale-dependent quantum corrections to relate Q_W^p to the electroweak mixing angle sin^2 theta_W, a fundamental SM parameter with which we are also in good agreement. In addition, we use our precise Q_W^p result to set TeV-scale constraints on potential new semi-leptonic PV physics not described by the SM.« less
Precision determination of weak charge of {sup 133}Cs from atomic parity violation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porsev, S. G.; School of Physics, University of New South Wales, Sydney, New South Wales 2052; Petersburg Nuclear Physics Institute, Gatchina, Leningrad District 188300
2010-08-01
We discuss results of the most accurate to-date test of the low-energy electroweak sector of the standard model of elementary particles. Combining previous measurements with our high-precision calculations we extracted the weak charge of the {sup 133}Cs nucleus, Q{sub W}=-73.16(29){sub exp}(20){sub th}[S. G. Porsev, K. Beloy, and A. Derevianko, Phys. Rev. Lett. 102, 181601 (2009)]. The result is in perfect agreement with Q{sub W}{sup SM} predicted by the standard model, Q{sub W}{sup SM}=-73.16(3), and confirms energy dependence (or running) of the electroweak interaction and places constraints on a variety of new physics scenarios beyond the standard model. In particular, wemore » increase the lower limit on the masses of extra Z-bosons predicted by models of grand unification and string theories. This paper provides additional details to the earlier paper. We discuss large-scale calculations in the framework of the coupled-cluster method, including full treatment of single, double, and valence triple excitations. To determine the accuracy of the calculations we computed energies, electric-dipole amplitudes, and hyperfine-structure constants. An extensive comparison with high-accuracy experimental data was carried out.« less
Intrinsic phonon bands in high quality monolayer T' molybdenum ditelluride
NASA Astrophysics Data System (ADS)
Chen, Shao-Yu; Naylor, Carl; Goldstein, Thomas; Johnson, Charlie; Yan, Jun
Distorted octahedral (T') transition metal dichalcogenide (TMDC) is a type of layered semimetal that has attracted significant recent attention because of its fascination physical, chemical and nontrivial topological properties. Unlike its hexagonal counterpart, monolayer (1L) T'-TMDC is challenging to work with due to rapid sample degradation in air. In this talk, I will discuss well-protected 1L-T' - MoTe2 that exhibits sharp and robust intrinsic Raman bands, with intensities about one order of magnitude stronger than those from bulk T'-MoTe2. The high quality samples enable us to reveal for the first time the set of all nine even-parity zone-center optical phonons. Crystal angle and light polarization resolved measurements further indicate that all the intrinsic Raman modes belong to either z-mode (vibrating along the zigzag Mo atomic chain) or m-modes (vibrating in the mirror plane). Moreover, with the knowledge of vibrational symmetry, we can effectively distinguish the intrinsic modes from Te-metalloid-like modes with energy around 122 and 141 cm-1 which are associated to the sample degradation. Our studies offer a powerful non-destructive method for assessing sample quality, providing the fingerprint as well as key insights in understanding the fundamental properties of 1L T'-TMDCs.
NASA Technical Reports Server (NTRS)
Bernath, Greg
1994-01-01
In order for a current satellite-based navigation system (such as the Global Positioning System, GPS) to meet integrity requirements, there must be a way of detecting erroneous measurements, without help from outside the system. This process is called Fault Detection and Isolation (FDI). Fault detection requires at least one redundant measurement, and can be done with a parity space algorithm. The best way around the fault isolation problem is not necessarily isolating the bad measurement, but finding a new combination of measurements which excludes it.
Low energy supergravity: R-parity breaking and the top quark mass
NASA Astrophysics Data System (ADS)
Carena, Marcela S.; Wagner, Carlos E. M.
1987-03-01
We study the process of spontaneous R-parity breaking in minimal low energy supergravity models. We show that it is very hard to obtain models with heavy top quarks if one wants to preserve the radiative breaking of SU(2)L⊗U(1)Y without breaking R-parity. Fellow of Consejo National de Investigaciones Cientificas y Tecnicas.
LETTER TO THE EDITOR: Parity-violating gravitational coupling of electromagnetic fields
NASA Astrophysics Data System (ADS)
Majumdar, Parthasarathi; Gupta, Soumitra Sen
1999-12-01
A manifestly gauge-invariant formulation of the coupling of the Maxwell theory with an Einstein-Cartan geometry is given, where the spacetime torsion originates from a massless Kalb-Ramond field augmented by suitable U(1) Chern-Simons terms. We focus on the situation where the torsion violates parity, and relate it to earlier proposals for gravitational parity violation.
Aperture Mask for Unambiguous Parity Determination in Long Wavelength Imagers
NASA Technical Reports Server (NTRS)
Bos, Brent
2011-01-01
A document discusses a new parity pupil mask design that allows users to unambiguously determine the image space coordinate system of all the James Webb Space Telescope (JWST) science instruments by using two out-of-focus images. This is an improvement over existing mask designs that could not completely eliminate the coordinate system parity ambiguity at a wavelength of 5.6 microns. To mitigate the problem of how the presence of diffraction artifacts can obscure the pupil mask detail, this innovation has been created with specifically designed edge features so that the image space coordinate system parity can be determined in the presence of diffraction, even at long wavelengths.
The influence of parity and gravidity on first trimester markers of chromosomal abnormality.
Spencer, K; Ong, C Y; Liao, A W; Nicolaides, K H
2000-10-01
We have studied changes in first trimester fetal nuchal translucency (NT) and maternal serum free beta-hCG and PAPP-A with gravidity and parity in 3252 singleton pregnancies unaffected by chromosomal abnormality or major pregnancy complications. We have shown that gravidity and parity is associated with a small but progressive decrease in fetal NT and a small but progressive increase in free beta-hCG and PAPP-A. None of these small changes with increasing gravidity or parity are statistically significant and hence correction for these variables is not necessary when considering first trimester screening for chromosomal abnormalities. Copyright 2000 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Pan, Xiaolong; Liu, Bo; Zheng, Jianglong; Tian, Qinghua
2016-08-01
We propose and demonstrate a low complexity Reed-Solomon-based low-density parity-check (RS-LDPC) code with adaptive puncturing decoding algorithm for elastic optical transmission system. Partial received codes and the relevant column in parity-check matrix can be punctured to reduce the calculation complexity by adaptive parity-check matrix during decoding process. The results show that the complexity of the proposed decoding algorithm is reduced by 30% compared with the regular RS-LDPC system. The optimized code rate of the RS-LDPC code can be obtained after five times iteration.
DOE R&D Accomplishments Database
Feinberg, G.; Weinberg, S.
1961-02-01
A multiplicative selection rule for mu meson-electron transitions is proposed. A "muon parity" = -1 is considered for the muon and its neutrino, while the "muon parity" for all other particles is +1. The selection rule then states that (-1) exp(no. of initial (-1) parity particles) = (-1) exp(no. of final (-1) parity particles). Several reactions that are forbidden by an additive law but allowed by the multiplicative law are suggested; these reactions include mu{sup +} .> e{sup +} + nu{sub mu} + {ovr nu}{sub e}, e{sup -} + e{sup -} .> mu{sup -} + mu{sup -}, and muonium .> antimuonium (mu{sup +} + e{sup -} .> mu{sup -} + e{sup +}). An intermediate-boson hypothesis is suggested. (T.F.H.)
Hybrid RAID With Dual Control Architecture for SSD Reliability
NASA Astrophysics Data System (ADS)
Chatterjee, Santanu
2010-10-01
The Solid State Devices (SSD) which are increasingly being adopted in today's data storage Systems, have higher capacity and performance but lower reliability, which leads to more frequent rebuilds and to a higher risk. Although SSD is very energy efficient compared to Hard Disk Drives but Bit Error Rate (BER) of an SSD require expensive erase operations between successive writes. Parity based RAID (for Example RAID4,5,6)provides data integrity using parity information and supports losing of any one (RAID4, 5)or two drives(RAID6), but the parity blocks are updated more often than the data blocks due to random access pattern so SSD devices holding more parity receive more writes and consequently age faster. To address this problem, in this paper we propose a Model based System of hybrid disk array architecture in which we plan to use RAID 4(Stripping with Parity) technique and SSD drives as Data drives while any fastest Hard disk drives of same capacity can be used as dedicated parity drives. By this proposed architecture we can open the door to using commodity SSD's past their erasure limit and it can also reduce the need for expensive hardware Error Correction Code (ECC) in the devices.
Association of Parity and Time since Last Birth with Breast Cancer Prognosis by Intrinsic Subtype
Sun, Xuezheng; Nichols, Hazel B.; Tse, Chiu-Kit; Bell, Mary B.; Robinson, Whitney R.; Sherman, Mark E.; Olshan, Andrew F.; Troester, Melissa A.
2015-01-01
Background Parity and time since last birth influence breast cancer risk and vary by intrinsic tumor subtype, but the independent effects of these factors on prognosis has received limited attention. Methods Study participants were 1,140 invasive breast cancer patients from Phases I and II of the population-based Carolina Breast Cancer Study, with tissue blocks available for subtyping using immunohistochemical markers. Breast cancer risk factors, including pregnancy history, were collected via in-person interviews administered shortly after diagnosis. Vital status was determined using the National Death Index. The association of parity and birth recency with breast cancer (BC)-specific and overall survival was assessed using Cox proportional hazards models. Results During follow-up (median =13.5 years), 450 patients died, 61% due to breast cancer (n=276). High parity (3+ births) and recent birth (< 5 years before diagnosis) were positively associated with BC-specific mortality, independent of age, race, and selected socioeconomic factors (parity, reference=nulliparous, adjusted hazard ratio [HR]=1.76, 95% confidence interval [CI]=1.13-2.73; birth recency, reference=10+ years, adjusted HR=1.29, 95% CI=0.79, 2.11). The associations were stronger among patients with luminal tumors and those surviving longer than 5 years. Conclusions Parity and recent birth are associated with worse survival among breast cancer patients, particularly among luminal breast cancers and long-term survivors. Impact The biological effects of parity and birth recency may extend from etiology to tumor promotion and progression. PMID:26545404
Ioscovich, Alexander; Fadeev, Angelika; Rivilis, Alina; Elstein, Deborah
2011-11-01
Epidural analgesia in older and multiparous women has been associated with risks. The aim of this study was to compare epidural analgesia use for labor/delivery in grand-grand multiparous women (GGMP; ≥10 births) relative to that in similar-aged women with lesser parity. This was a prospective observational study of advanced age gravida. All laboring women in a six-month period admitted to a tertiary Israeli center were included if they were advanced age (≥36 years old) with one to two previous births (Low parity; n=128) or four to five previous births (Medium parity; n=181), and all GGMP (any age; n=187). Primary outcome was comparison of requests for and use of epidural analgesia for labor/delivery. There were no significant differences across parity groups in percent of gravida requesting or receiving epidural analgesia (46.5-59.4%). Time from admission to epidural administration (range mean times: 168-187 min) and from advent of epidural to delivery (range mean times: 155-160 min) were comparable across parity groups. Use of other analgesia (5.8-8%) was not significantly different. Requests for and use of epidural analgesia was comparable in older gravida and was not correlated with parity. Mean times from presentation to epidural administration, mean cervical dilatation at epidural initiation, and mean time from performing of epidural to delivery were comparable across groups.
Effects of Parity on Blood Pressure among African-American Women
Taylor, Jacquelyn Y.; Chambers, Angelina N.; Funnell, Beth; Wu, Chun Yi
2010-01-01
It has been well established that age, ethnicity, weight, and lifestyle behaviors can affect blood pressure (BP). Co-morbid conditions such as HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets), pre-eclampsia, and previous hypertension diagnosis might also be risks for chronic hypertension among women who have had children. Although parity has been linked to changes in blood pressure in White women, these findings have not been replicated among African-American women. The purpose of this study was to determine if the number of pregnancies urban African-American women have effects BMI and blood pressure readings later in life. Results indicated that women with a previous diagnosis of hypertension had higher SBP and DBP, and a slightly higher BMI than women who had never been diagnosed. Additionally, women with a prior history of hypertension had more children than those without a diagnosis of hypertension. As parity increased, SBP increased. However, DBP decreased after 3 to 4 children, even with increases in BMI. This study shows that parity may increase African-American women’s risk for hypertension in terms of increased SBP and BMI with increased parity. However, increased parity and BMI may also serve as protective factors in lowering DBP. Further studies, with larger samples followed throughout their pregnancies, is needed before more definitive statements may be drawn about the effects of parity on BMI and blood pressure readings among African-American women can be made. PMID:19397049
Bastin, C; Soyeurt, H; Gengler, N
2013-04-01
The objective of this study was to estimate genetic parameters of milk, fat, and protein yields, fat and protein contents, somatic cell count, and 17 groups and individual milk fatty acid (FA) contents predicted by mid-infrared spectrometry for first-, second- and third-parity Holstein cows. Edited data included records collected in the Walloon region of Belgium from 37,768 cows in parity 1,22,566 cows in parity 2 and 8221 in parity 3. A total of 69 (23 traits for three parities) single-trait random regression animal test-day models were run. Approximate genetic correlations among traits were inferred from pairwise regressions among estimated breeding values of cow having observations. Heritability and genetic correlation estimates from this study reflected the origins of FA: de novo synthetized or originating from the diet and the body fat mobilization. Averaged daily heritabilities of FA contents in milk ranged between 0.18 and 0.47. Average daily genetic correlations (averaged across days in milk and parities) among groups and individual FA contents in milk ranged between 0.31 and 0.99. The genetic variability of FAs in combination with the moderate to high heritabilities indicated that FA contents in milk could be changed by genetic selection; however, desirable direction of change in these traits remains unclear and should be defined with respect to all issues of importance related to milk FA. © 2012 Blackwell Verlag GmbH.
Phenomenology of the SU(3)_c⊗ SU(3)_L⊗ U(1)_X model with right-handed neutrinos
NASA Astrophysics Data System (ADS)
Gutiérrez, D. A.; Ponce, W. A.; Sánchez, L. A.
2006-05-01
A phenomenological analysis of the three-family model based on the local gauge group SU(3)_c⊗ SU(3)_L⊗ U(1)_X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.
Phenomenology of the SU(3)c⊗SU(3)L⊗U(1)X model with exotic charged leptons
NASA Astrophysics Data System (ADS)
Salazar, Juan C.; Ponce, William A.; Gutiérrez, Diego A.
2007-04-01
A phenomenological analysis of the three-family model based on the local gauge group SU(3)c⊗SU(3)L⊗U(1)X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model.
NASA Astrophysics Data System (ADS)
Chandra, Premala; Coleman, Piers; Flint, Rebecca
2012-02-01
The hidden order that develops below 17.5K in URu2Si2 has eluded identification for twenty-five years. Here we show that the recent observation of Ising quasiparticles in URu2Si2 suggests a novel ``hastatic order'' (Latin:spear),with a two-component order parameter describing hybridization between electrons and the Ising 5f^2 states of the uranium atoms. Hastatic order breaks time-reversal symmetry by mixing states of different Kramers parity; this accounts for the magnetic anomalies observed in torque magnetometry and the pseudo-Goldstone mode observed in neutron scattering. Hastatic order is predicted to induce a basal-plane magnetic moment of order 0.01μB, a gap to longitudinal spin fluctuations that vanishes continuously at the first-order antiferromagnetic transition and a narrow resonant nematic feature in the scanning tunneling spectra.
Gender Equality in Education: Definitions and Measurements
ERIC Educational Resources Information Center
Subrahmanian, R.
2005-01-01
International consensus on education priorities accords an important place to achieving gender justice in the educational sphere. Both the Dakar 'Education for All' goals and the Millennium Development goals emphasise two goals, in this regard. These two goals are distinguished as gender parity goals [achieving equal participation of girls and…
A new method of identifying target groups for pronatalist policy applied to Australia
Chen, Mengni; Lloyd, Chris J.
2018-01-01
A country’s total fertility rate (TFR) depends on many factors. Attributing changes in TFR to changes of policy is difficult, as they could easily be correlated with changes in the unmeasured drivers of TFR. A case in point is Australia where both pronatalist effort and TFR increased in lock step from 2001 to 2008 and then decreased. The global financial crisis or other unobserved confounders might explain both the reducing TFR and pronatalist incentives after 2008. Therefore, it is difficult to estimate causal effects of policy using econometric techniques. The aim of this study is to instead look at the structure of the population to identify which subgroups most influence TFR. Specifically, we build a stochastic model relating TFR to the fertility rates of various subgroups and calculate elasticity of TFR with respect to each rate. For each subgroup, the ratio of its elasticity to its group size is used to evaluate the subgroup’s potential cost effectiveness as a pronatalist target. In addition, we measure the historical stability of group fertility rates, which measures propensity to change. Groups with a high effectiveness ratio and also high propensity to change are natural policy targets. We applied this new method to Australian data on fertility rates broken down by parity, age and marital status. The results show that targeting parity 3+ is more cost-effective than lower parities. This study contributes to the literature on pronatalist policies by investigating the targeting of policies, and generates important implications for formulating cost-effective policies. PMID:29425220
Reynolds, R M; Osmond, C; Phillips, D I W; Godfrey, K M
2010-12-01
The prevalence of obesity among women of childbearing age is increasing. Emerging evidence suggests that this has long-term adverse influences on offspring health. The aim was to examine whether maternal body composition and gestational weight gain have persisting effects on offspring adiposity in early adulthood. The Motherwell birth cohort study was conducted in a general community in Scotland, United Kingdom. We studied 276 men and women whose mothers' nutritional status had been characterized in pregnancy. Four-site skinfold thicknesses, waist circumference, and body mass index (BMI), were measured at age 30 yr; sex-adjusted percentage body fat and fat mass index were calculated. Indices of offspring adiposity at age 30 yr were measured. Percentage body fat was greater in offspring of mothers with a higher BMI at the first antenatal visit (rising by 0.35%/kg/m2; P<0.001) and in offspring whose mothers were primiparous (difference, 1.5% in primiparous vs. multiparous; P=0.03). Higher offspring percentage body fat was also independently associated with higher pregnancy weight gain (7.4%/kg/wk; P=0.002). There were similar significant associations of increased maternal BMI, greater pregnancy weight gain, and parity with greater offspring waist circumference, BMI, and fat mass index. Adiposity in early adulthood is influenced by prenatal influences independently of current lifestyle factors. Maternal adiposity, greater gestational weight, and parity all impact on offspring adiposity. Strategies to reduce the impact of maternal obesity and greater pregnancy weight gain on offspring future health are required.
Method of Error Floor Mitigation in Low-Density Parity-Check Codes
NASA Technical Reports Server (NTRS)
Hamkins, Jon (Inventor)
2014-01-01
A digital communication decoding method for low-density parity-check coded messages. The decoding method decodes the low-density parity-check coded messages within a bipartite graph having check nodes and variable nodes. Messages from check nodes are partially hard limited, so that every message which would otherwise have a magnitude at or above a certain level is re-assigned to a maximum magnitude.
Parity-Induced Protection Against Breast Cancer
2000-07-01
of epidermal growth factor and estrogen receptor expression in the parous mammary epithelium (Musey et al., ; Thordarson et al., 1995). Similar to...hormone and growth factor receptor levels are decreased as a result of parity has been previously proposed ( Thordarson et al., 1995). In support of...consequence of parity ( Thordarson et al., 1995). The identification of IGF-1, PTN, Ob and TSHR, however, are novel mitogenic pathways, whose association
Tirumanisetty, P; Prichard, D; Fletcher, J G; Chakraborty, S; Zinsmeister, A R; Bharucha, A E
2018-07-01
Endoanal MRI and MR defecography are used to identify anal sphincter injury and disordered defecation. However, few studies have evaluated findings in asymptomatic healthy people. The effects of BMI and parity on rectoanal motion and evacuation are unknown. In 113 asymptomatic females (age 50 ± 17 years, Mean ± SD) without risk factors for anorectal trauma, anal sphincter appearance, anorectal motion, and pelvic organ prolapse were evaluated with MRI. The relationship between age, BMI, and parity and structural findings were evaluated with parametric and non-parametric tests. The anal sphincters and puborectalis appeared normal in over 90% of women. During dynamic MRI, the anorectal angle was 100 ± 1º (Mean ± SEM) at rest, 70 ± 2° at squeeze, and 120 ± 2° during defecation. The change in anorectal angle during squeeze (r = -.25, P < .005), but not during evacuation (r = .13, P = .25) was associated with age. In the multivariable models, BMI (P < .01) and parity (P < .01) were, respectively, independently associated with the intersubject variation in the anorectal angle at rest and the angle change during squeeze. Ten percent or fewer women had had descent of the bladder base or uterus 4 cm or more below the pubococcygeal line or a rectocele measuring 4 cm or larger. Only 5% had a patulous anal canal. In addition to age, BMI and parity also affect anorectal motion in asymptomatic women. These findings provide age-adjusted normal values for rectoanal anatomy and pelvic floor motion. © 2018 John Wiley & Sons Ltd.
Institutions, Politics, and Mental Health Parity
Hernandez, Elaine M.; Uggen, Christopher
2013-01-01
Mental health parity laws require insurers to extend comparable benefits for mental and physical health care. Proponents argue that by placing mental health services alongside physical health services, such laws can help ensure needed treatment and destigmatize mental illness. Opponents counter that such mandates are costly or unnecessary. The authors offer a sociological account of the diffusion and spatial distribution of state mental health parity laws. An event history analysis identifies four factors as especially important: diffusion of law, political ideology, the stability of mental health advocacy organizations and the relative health of state economies. Mental health parity is least likely to be established during times of high state unemployment and under the leadership of conservative state legislatures. PMID:24353902
Parity-Violation Energy of Biomolecules - IV: Protein Secondary Structure
NASA Astrophysics Data System (ADS)
Faglioni, Francesco; Cuesta, Inmaculada García
2011-06-01
The parity-violation energy difference between enantiomeric forms of the same amino acid sequence, from the amyloid β-peptide involved in Alzheimer's desease, in both α-helix and β-sheet configurations, is investigated with ab-initio techniques. To this end, we develop an extension of the N2 computational scheme that selectively includes neighboring amino acids to preserve the relevant H-bonds. In agreement with previous speculations, it is found that the helical α structure is associated with larger parity-violation energy differences than the corresponding β form. Implications for the evolution of biological homochirality are discussed as well as the relative importance of various effects in determining the parity-violation energy.
The paradox of parity: limitations in the breakthrough law for mental health equality.
Dowches, Jessica; West, Daniel J
2013-01-01
The intent of parity laws is to improve equity in private insurance coverage for mental health care. The groundbreaking legislation of the 1996 Mental Health Parity Act (MHPA) was initially hailed as a major achievement in improving mental health coverage. However, research suggests that because of political compromises and employer exemptions, the potential impact of the MHPA was weakened. This paper summarizes the extent and scope of the MHPA and the 2008 Mental Health Parity and Addiction Equity Act, highlighting the goals and accomplishments of each; examines limitations of the legislation, explicitly accounting for exemptions, uninsured Americans, and access to care; and provides recommendations for further improvement and implementation of mental health coverage.
Ayas, Selçuk; Bayraktar, Mesut; Gürbüz, Ayşe; Alkan, Akif; Eren, Sadiye
2012-01-01
Objective: We aimed to evaluate uterine junctional zone thickness, cervical length and bioelectrical impedance analysis of body composition in women with endometriosis. Material and Methods: This is a prospective study conducted in a tertiary teaching hospital. A total of 73 patients were included in the study. Endometriosis was surgically diagnosed in 36 patients (study group). The control group included 37 patients. Main outcome measure(s): Bioelectrical impedance analysis was used to measure body composition. Uterine junctional zone thickness and cervical length were measured by transvaginal ultrasonography. Results: Patients’ characteristics (age, gravida, parity, live baby, age of menarche, lengths of menstrual cycle, percentage of patients with dysmenorrhea, positive family history), body mass index (BMI) (kg/m2), amount of body fat (kg), percentage of body fat were not statistically different between the two groups (p>0.05). The length of menstruation and cervical length were longer in women with endometriosis. Similarly, the inner myometrium was thicker in women with endometriosis than the control group. Conclusion: The relation between endometriosis and demographic features such as age, gravida, parity, gravida, BMI, lengths of the menstrual cycle, age of menarche are controversial. Longer cervical length and thicker inner myometrial layer may be important in the etiopathogenesis of endometriosis. PMID:25207044
Measurement of the Parity-Violating Neutron Spin Rotation in 4He
Bass, C. D.; Dawkins, J. M.; Luo, D.; Micherdzinska, A.; Sarsour, M.; Snow, W. M.; Mumm, H. P.; Nico, J. S.; Huffman, P. R.; Markoff, D. M.; Heckel, B. R.; Swanson, H. E.
2005-01-01
In the meson exchange model of weak nucleon-nucleon (NN) interactions, the exchange of virtual mesons between the nucleons is parameterized by a set of weak meson exchange amplitudes. The strengths of these amplitudes from theoretical calculations are not well known, and experimental measurements of parity-violating (PV) observables in different nuclear systems have not constrained their values. Transversely polarized cold neutrons traveling through liquid helium experience a PV spin rotation due to the weak interaction with an angle proportional to a linear combination of these weak meson exchange amplitudes. A measurement of the PV neutron spin rotation in helium (φPV (n,α)) would provide information about the relative strengths of the weak meson exchange amplitudes, and with the longitudinal analyzing power measurement in the p + α system, allow the first comparison between isospin mirror systems in weak NN interaction. An earlier experiment performed at NIST obtained a result consistent with zero: φPV (n,α) = (8.0 ±14(stat) ±2.2(syst)) ×10−7 rad / m[1]. We describe a modified apparatus using a superfluid helium target to increase statistics and reduce systematic effects in an effort to reach a sensitivity goal of 10−7 rad/m. PMID:27308122
Emmerson, Stuart; Young, Natharnia; Rosamilia, Anna; Parkinson, Luke; Edwards, Sharon L.; Vashi, Aditya V.; Davies-Tuck, Miranda; White, Jacinta; Elgass, Kirstin; Lo, Camden; Arkwright, John; Werkmeister, Jerome A.; Gargett, Caroline E.
2017-01-01
Pelvic Organ Prolapse (POP) is a major clinical burden affecting 25% of women, with vaginal delivery a major contributing factor. We hypothesised that increasing parity weakens the vagina by altering the extracellular matrix proteins and smooth muscle thereby leading to POP vulnerability. We used a modified POP-quantification (POP-Q) system and a novel pressure sensor to measure vaginal wall weakness in nulliparous, primiparous and multiparous ewes. These measurements were correlated with histological, biochemical and biomechanical properties of the ovine vagina. Primiparous and multiparous ewes had greater displacement of vaginal tissue compared to nulliparous at points Aa, Ap and Ba and lower pressure sensor measurements at points equivalent to Ap and Ba. Vaginal wall muscularis of multiparous ewes was thinner than nulliparous and had greater elastic fibre content. Collagen content was lower in primiparous than nulliparous ewes, but collagen organisation did not differ. Biomechanically, multiparous vaginal tissue was weaker and less stiff than nulliparous. Parity had a significant impact on the structure and function of the ovine vaginal wall, as the multiparous vaginal wall was weaker and had a thinner muscularis than nulliparous ewes. This correlated with “POP-Q” and pressure sensor measurements showing greater tissue laxity in multiparous compared to nulliparous ewes. PMID:28374826
Federal Parity In The Evolving Mental Health And Addiction Care Landscape.
Barry, Colleen L; Goldman, Howard H; Huskamp, Haiden A
2016-06-01
The intent of the Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity Act of 2008 is to eliminate differences between health insurance coverage of mental health and substance use disorder benefits and coverage of medical or surgical benefits. The Affordable Care Act significantly extended the reach of the Wellstone-Domenici law by applying it to new insurance markets. We summarize the evolution of legislative and regulatory actions to bring about federal insurance parity. We also summarize available evidence on how the Wellstone-Domenici law has contributed to addressing insurance discrimination; rectifying market inefficiencies due to adverse selection; and altering utilization, spending, and health outcomes for people with mental health and substance use disorders. In addition, we highlight important gaps in knowledge about how parity has been implemented, describe the groups still lacking parity-level coverage, and make recommendations on steps to improve the likelihood that the Wellstone-Domenici law will fulfill the aims of its architects. Project HOPE—The People-to-People Health Foundation, Inc.
Medium effects and parity doubling of hyperons across the deconfinement phase transition
NASA Astrophysics Data System (ADS)
Aarts, Gert; Allton, Chris; Boni, Davide De; Hands, Simon; Jäger, Benjamin; Praki, Chrisanthi; Skullerud, Jon-Ivar
2018-03-01
We analyse the behaviour of hyperons with strangeness S = -1,-2,-3 in the hadronic and quark gluon plasma phases, with particular interest in parity doubling and its emergence as the temperature grows. This study uses our FASTSUM anisotropic Nf = 2+1 ensembles, with four temperatures below and four above the deconfinement transition temperature, Tc. The positive-parity groundstate masses are found to be largely temperature independent below Tc, whereas the negative-parity ones decrease considerably as the temperature increases. Close to the transition, the masses are almost degenerate, in line with the expectation from chiral symmetry restoration. This may be of interest for heavy-ion phenomenology. In particular we show an application of this effect to the Hadron Resonance Gas model. A clear signal of parity doubling is found above Tc in all hyperon channels, with the strength of the effect depending on the number of s-quarks in the baryons. Presented at 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spain
Pearson's random walk in the space of the CMB phases: Evidence for parity asymmetry
NASA Astrophysics Data System (ADS)
Hansen, M.; Frejsel, A. M.; Kim, J.; Naselsky, P.; Nesti, F.
2011-05-01
The temperature fluctuations of the cosmic microwave background (CMB) are supposed to be distributed randomly in both magnitude and phase, following to the simplest model of inflation. In this paper, we look at the odd and even multipoles of the spherical harmonic decomposition of the CMB, and the different characteristics of these, giving rise to a parity asymmetry. We compare the even and odd multipoles in the CMB power spectrum, and also the even and odd mean angles. We find for the multipoles of the power spectrum that there is power excess in odd multipoles, compared to even ones, meaning that we have a parity asymmetry. Further, for the phases, we present a random walk for the mean angles, and find a significant separation for even/odd mean angles, especially so for galactic coordinates. This is further tested and confirmed with a directional parity test, comparing the parity asymmetry in galactic and ecliptic coordinates.
Beronio, Kirsten; Glied, Sherry; Frank, Richard
2014-10-01
The Patient Protection and Affordable Care Act (ACA) will expand coverage of mental health and substance use disorder benefits and federal parity protections to over 60 million Americans. The key to this expansion is the essential health benefit provision in the ACA that requires coverage of mental health and substance use disorder services at parity with general medical benefits. Other ACA provisions that should improve access to treatment include requirements on network adequacy, dependent coverage up to age 26, preventive services, and prohibitions on annual and lifetime limits and preexisting exclusions. The ACA offers states flexibility in expanding Medicaid (primarily to childless adults, not generally eligible previously) to cover supportive services needed by those with significant behavioral health conditions in addition to basic benefits at parity. Through these various new requirements, the ACA in conjunction with Mental Health Parity and Addiction Equity Act (MHPAEA) will expand coverage of behavioral health care by historic proportions.
NASA Technical Reports Server (NTRS)
Morrell, Frederick R.; Bailey, Melvin L.
1987-01-01
A vector-based failure detection and isolation technique for a skewed array of two degree-of-freedom inertial sensors is developed. Failure detection is based on comparison of parity equations with a threshold, and isolation is based on comparison of logic variables which are keyed to pass/fail results of the parity test. A multi-level approach to failure detection is used to ensure adequate coverage for the flight control, display, and navigation avionics functions. Sensor error models are introduced to expose the susceptibility of the parity equations to sensor errors and physical separation effects. The algorithm is evaluated in a simulation of a commercial transport operating in a range of light to severe turbulence environments. A bias-jump failure level of 0.2 deg/hr was detected and isolated properly in the light and moderate turbulence environments, but not detected in the extreme turbulence environment. An accelerometer bias-jump failure level of 1.5 milli-g was detected over all turbulence environments. For both types of inertial sensor, hard-over, and null type failures were detected in all environments without incident. The algorithm functioned without false alarm or isolation over all turbulence environments for the runs tested.
K-mixing in the doubly mid-shell nuclide 170Dy and the role of vibrational degeneracy
Soderstrom, P. -A.; Walker, P. M.; Wu, J.; ...
2016-10-04
Here, a detailed study of the structure of the doubly mid-shell nucleus 170 66Dy 104 has been carried out, following isomeric and β decay. We have measured the yrast band up to the spin-parity J π = 6 + state, the K = 2 γ -vibration band up to the 5 + state, a low-lying negative-parity band based on a 2¯ state that could be a candidate for the lowest energy octupole vibration state within this nucleus, and a candidate for the K π = 6+ two quasi-particle isomer. This state was determined to have an excitation energy of 1643.91(23)more » keV and a half life of 0.99(4) μs, with a reduced hindrance for its decay to the groundstate band an order of magnitude lower than predicted by N pN n systematics. This is interpreted as being due to γ -vibrational mixing from a near degeneracy of the isomer and the 6 + state of the γ band. Furthermore, the parent nucleus 170Tb has been determined to have a half-life of 0.91( +18 –13) s with a possible spin-parity of 2¯.« less
Barry, Colleen L; Ridgely, M Susan
2008-01-01
A fundamental concern with competitive health insurance markets is that they will not supply efficient levels of coverage for treatment of costly, chronic, and predictable illnesses, such as mental illness. Since the inception of employer-based health insurance, coverage for mental health services has been offered on a more limited basis than coverage for general medical services. While mental health advocates view insurance limits as evidence of discrimination, adverse selection and moral hazard can also explain these differences in coverage. The intent of parity regulation is to equalize private insurance coverage for mental and physical illness (an equity concern) and to eliminate wasteful forms of competition due to adverse selection (an efficiency concern). In 2001, a presidential directive requiring comprehensive parity was implemented in the Federal Employees Health Benefits (FEHB) Program. In this study, we examine how health plans responded to the parity directive. Results show that in comparison with a set of unaffected health plans, federal employee plans were significantly more likely to augment managed care through contracts with managed behavioral health "carve-out" firms after parity. This finding helps to explain the absence of an effect of the FEHB Program directive on total spending, and is relevant to the policy debate in Congress over federal parity.
The associations between parity, other reproductive factors and cartilage in women aged 50-80 years.
Wei, S; Venn, A; Ding, C; Martel-Pelletier, J; Pelletier, J-P; Abram, F; Cicuttini, F; Jones, G
2011-11-01
Sex hormones and reproductive factors may be important for osteoarthritis (OA). The aim of this study was to describe the associations of parity, use of hormone replacement therapy (HRT) and oral contraceptives (OCs) with cartilage volume, cartilage defects and radiographic OA in a population-based sample of older women. Cross-sectional study of 489 women aged 50-80 years. Parity, use of HRT and OC was assessed by questionnaire; knee cartilage volume and defects by magnetic resonance imaging and knee joint space narrowing (JSN) and osteophytes by X-ray. Parity was associated with a deficit in total knee cartilage volume [adjusted β=-0.69 ml, 95% confidence interval (CI) -1.34, -0.04]. Increasing parity was associated with decreasing cartilage volume in both the tibial compartment and total knee (both P trend <0.05). Parity was also associated with greater cartilage defects in the patella compartment [adjusted odds ratio (OR)=2.87, 95% CI=1.39, 5.93] but not other sites. There was a consistent but non-significant increase in knee JSN (OR=2.78, 95% CI=0.75, 10.31) and osteophytes (OR=1.69, 95% CI=0.59, 4.82) for parous women. Use of HRT and/or OC was not associated with cartilage volume, cartilage defects or radiographic change. Parity (but not use of HRT or OC) is independently associated with lower cartilage volume primarily in the tibial compartment and higher cartilage defects in the patella compartment in this population-based sample of older women. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Vanschalkwyk, Christiaan M.
1992-01-01
We discuss the application of Generalized Parity Relations to two experimental flexible space structures, the NASA Langley Mini-Mast and Marshall Space Flight Center ACES mast. We concentrate on the generation of residuals and make no attempt to implement the Decision Function. It should be clear from the examples that are presented whether it would be possible to detect the failure of a specific component. We derive the equations from Generalized Parity Relations. Two special cases are treated: namely, Single Sensor Parity Relations (SSPR) and Double Sensor Parity Relations (DSPR). Generalized Parity Relations for actuators are also derived. The NASA Langley Mini-Mast and the application of SSPR and DSPR to a set of displacement sensors located at the tip of the Mini-Mast are discussed. The performance of a reduced order model that includes the first five models of the mast is compared to a set of parity relations that was identified on a set of input-output data. Both time domain and frequency domain comparisons are made. The effect of the sampling period and model order on the performance of the Residual Generators are also discussed. Failure detection experiments where the sensor set consisted of two gyros and an accelerometer are presented. The effects of model order and sampling frequency are again illustrated. The detection of actuator failures is discussed. We use Generalized Parity Relations to monitor control system component failures on the ACES mast. An overview is given of the Failure Detection Filter and experimental results are discussed. Conclusions and directions for future research are given.
A Political History of Federal Mental Health and Addiction Insurance Parity
Barry, Colleen L; Huskamp, Haiden A; Goldman, Howard H
2010-01-01
Context: This article chronicles the political history of efforts by the U.S. Congress to enact a law requiring “parity” for mental health and addiction benefits and medical/surgical benefits in private health insurance. The goal of the Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity (MHPAE) Act of 2008 is to eliminate differences in insurance coverage for behavioral health. Mental health and addiction treatment advocates have long viewed parity as a means of increasing fairness in the insurance market, whereas employers and insurers have opposed it because of concerns about its cost. The passage of this law is viewed as a legislative success by both consumer and provider advocates and the employer and insurance groups that fought against it for decades. Methods: Twenty-nine structured interviews were conducted with key informants in the federal parity debate, including members of Congress and their staff; lobbyists for consumer, provider, employer, and insurance groups; and other key contacts. Historical documentation, academic research on the effects of parity regulations, and public comment letters submitted to the U.S. Departments of Labor, Health and Human Services, and Treasury before the release of federal guidance also were examined. Findings: Three factors were instrumental to the passage of this law: the emergence of new evidence regarding the costs of parity, personal experience with mental illness and addiction, and the political strategies adopted by congressional champions in the Senate and House of Representatives. Conclusions: Challenges to implementing the federal parity policy warrant further consideration. This law raises new questions about the future direction of federal policymaking on behavioral health. PMID:20860577
Holdcroft, Anita; Snidvongs, Saowarat; Cason, Angie; Doré, Caroline J; Berkley, Karen J
2003-08-01
Previous research has shown that post-partum abdominal pain is greater in multiparous than primiparous women (Murray and Holdcroft, 1989). Although breast feeding in the immediate post-partum period induces uterine contractions and abdominal pain, it is unknown how parity influences the contractions. Here, a structured questionnaire that included the McGill Pain Questionnaire (total pain intensity index, TPI) and visual analog scales (VAS) was used to evaluate the intensity, location, referred tenderness (hyperalgesia), descriptor, and temporal characteristics of pain during breast feeding up to three days after uncomplicated vaginal delivery. Three groups of women were studied: primiparous (n=25); low parity (1-2 prior births; n=14); high parity (3-5 prior births; n=11). Uterine contractions during breast feeding were recorded using tocodynamometry in some women from each group (n=17, 6, 7, respectively). For comparison, an identical questionnaire was used to evaluate pains the women remembered experiencing during menstruation in the year immediately preceding the current pregnancy. During breast feeding, nearly all women (96%) reported deep pain primarily at three sites: lower abdomen, low back, and breast, with associated referred hyperalgesia in 62% of them. The intensity of these pains increased significantly with parity (P<0.001), along with an increase in the number of pain sites (P=0.03), mainly in lower abdomen and back, but not breast. Similarly, both the mean duration and number of uterine contractions increased significantly with parity (P<0.001). Furthermore, the mean duration of contractions correlated significantly with the pain scores (P=0.03 [VAS] and P=0.006 [TPI]). In contrast with pain during breast feeding, the intensity of pain during menstruation did not change with parity. These results demonstrate that pain, referred pain, and uterine contractions during breast feeding in the immediate post-partum period increase with parity, suggesting that childbirth can induce central neural changes that increase predisposition for pain during the post-partum period.
Azrin, Susan T; Huskamp, Haiden A; Azzone, Vanessa; Goldman, Howard H; Frank, Richard G; Burnam, M Audrey; Normand, Sharon-Lise T; Ridgely, M Susan; Young, Alexander S; Barry, Colleen L; Busch, Alisa B; Moran, Garrett
2007-02-01
The Federal Employees Health Benefits Program implemented full mental health and substance abuse parity in January 2001. Evaluation of this policy revealed that parity increased adult beneficiaries' financial protection by lowering mental health and substance abuse out-of-pocket costs for service users in most plans studied but did not increase rates of service use or spending among adult service users. This study examined the effects of full mental health and substance abuse parity for children. Employing a quasiexperimental design, we compared children in 7 Federal Employees Health Benefits plans from 1999 to 2002 with children in a matched set of plans that did not have a comparable change in mental health and substance abuse coverage. Using a difference-in-differences analysis, we examined the likelihood of child mental health and substance abuse service use, total spending among child service users, and out-of-pocket spending. The apparent increase in the rate of children's mental health and substance abuse service use after implementation of parity was almost entirely due to secular trends of increased service utilization. Estimates for children's mental health and substance abuse spending conditional on this service use showed significant decreases in spending per user attributable to parity for 2 plans; spending estimates for the other plans were not statistically significant. Children using these services in 3 of 7 plans experienced statistically significant reductions in out-of-pocket spending attributable to the parity policy, and the average dollar savings was sizeable for users in those 3 plans. In the remaining 4 plans, out-of-pocket spending also decreased, but these decreases were not statistically significant. Full mental health and substance abuse parity for children, within the context of managed care, can achieve equivalence of benefits in health insurance coverage and improve financial protection without adversely affecting health care costs but may not expand access for children who need these services.
Studies of positive-parity low-spin states in the A = 150 region
NASA Astrophysics Data System (ADS)
Bark, Robert; Li, Zhipan; Majola, Siyabonga; Sharpey-Schafer, John; Shi, Zhi; Zhang, Shuangquan
2018-05-01
A systematic investigation of low-lying levels of nuclides in the mass 150 region has been undertaken at iThemba LABS. An extensive set of data on the low-lying, positive-parity bands in the nuclides between N = 88 and 92 and Sm to Yb has been obtained from γ-γ coincidence measurements following fusion-evaporation reactions optimized of the population of low-spin states. The energies and electromagnetic properties of the so-called β- and γ-bands of nuclei in this region have been compared with the solutions of a five dimensional collective Hamiltonian for quadrupole vibrational and rotational degrees of freedom, with moments-of-inertia and mass parameters determined by constrained self-consistent relativistic mean-field calculations using the PC-F1 relativistic functional. Some of the results of this comparison are presented here.
Measurements of quasiparticle tunneling dynamics in a band-gap-engineered transmon qubit.
Sun, L; DiCarlo, L; Reed, M D; Catelani, G; Bishop, Lev S; Schuster, D I; Johnson, B R; Yang, Ge A; Frunzio, L; Glazman, L; Devoret, M H; Schoelkopf, R J
2012-06-08
We have engineered the band gap profile of transmon qubits by combining oxygen-doped Al for tunnel junction electrodes and clean Al as quasiparticle traps to investigate energy relaxation due to quasiparticle tunneling. The relaxation time T1 of the qubits is shown to be insensitive to this band gap engineering. Operating at relatively low-E(J)/E(C) makes the transmon transition frequency distinctly dependent on the charge parity, allowing us to detect the quasiparticles tunneling across the qubit junction. Quasiparticle kinetics have been studied by monitoring the frequency switching due to even-odd parity change in real time. It shows the switching time is faster than 10 μs, indicating quasiparticle-induced relaxation has to be reduced to achieve T1 much longer than 100 μs.
17 CFR 240.11a1-1(T) - Transactions yielding priority, parity, and precedence.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., parity, and precedence. 240.11a1-1(T) Section 240.11a1-1(T) Commodity and Securities Exchanges SECURITIES... (rule 11a-1) § 240.11a1-1(T) Transactions yielding priority, parity, and precedence. (a) A transaction... section 11(a)(1) of the Act or specified in 17 CFR 240.11a1-4(T) shall be deemed to be revenue derived...
17 CFR 240.11a1-1(T) - Transactions yielding priority, parity, and precedence.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., parity, and precedence. 240.11a1-1(T) Section 240.11a1-1(T) Commodity and Securities Exchanges SECURITIES... (rule 11a-1) § 240.11a1-1(T) Transactions yielding priority, parity, and precedence. (a) A transaction... section 11(a)(1) of the Act or specified in 17 CFR 240.11a1-4(T) shall be deemed to be revenue derived...
Testing R-parity with geometry
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Jejjala, Vishnu; Matti, Cyril; Nelson, Brent D.
2016-03-01
We present a complete classification of the vacuum geometries of all renormalizable superpotentials built from the fields of the electroweak sector of the MSSM. In addition to the Severi and affine Calabi-Yau varieties previously found, new vacuum manifolds are identified; we thereby investigate the geometrical implication of theories which display a manifest matter parity (or R-parity) via the distinction between leptonic and Higgs doublets, and of the lepton number assignment of the right-handed neutrino fields.
A principal components approach to parent-to-newborn body composition associations in South India
Veena, Sargoor R; Krishnaveni, Ghattu V; Wills, Andrew K; Hill, Jacqueline C; Fall, Caroline HD
2009-01-01
Background Size at birth is influenced by environmental factors, like maternal nutrition and parity, and by genes. Birth weight is a composite measure, encompassing bone, fat and lean mass. These may have different determinants. The main purpose of this paper was to use anthropometry and principal components analysis (PCA) to describe maternal and newborn body composition, and associations between them, in an Indian population. We also compared maternal and paternal measurements (body mass index (BMI) and height) as predictors of newborn body composition. Methods Weight, height, head and mid-arm circumferences, skinfold thicknesses and external pelvic diameters were measured at 30 ± 2 weeks gestation in 571 pregnant women attending the antenatal clinic of the Holdsworth Memorial Hospital, Mysore, India. Paternal height and weight were also measured. At birth, detailed neonatal anthropometry was performed. Unrotated and varimax rotated PCA was applied to the maternal and neonatal measurements. Results Rotated PCA reduced maternal measurements to 4 independent components (fat, pelvis, height and muscle) and neonatal measurements to 3 components (trunk+head, fat, and leg length). An SD increase in maternal fat was associated with a 0.16 SD increase (β) in neonatal fat (p < 0.001, adjusted for gestation, maternal parity, newborn sex and socio-economic status). Maternal pelvis, height and (for male babies) muscle predicted neonatal trunk+head (β = 0. 09 SD; p = 0.017, β = 0.12 SD; p = 0.006 and β = 0.27 SD; p < 0.001). In the mother-baby and father-baby comparison, maternal BMI predicted neonatal fat (β = 0.20 SD; p < 0.001) and neonatal trunk+head (β = 0.15 SD; p = 0.001). Both maternal (β = 0.12 SD; p = 0.002) and paternal height (β = 0.09 SD; p = 0.030) predicted neonatal trunk+head but the associations became weak and statistically non-significant in multivariate analysis. Only paternal height predicted neonatal leg length (β = 0.15 SD; p = 0.003). Conclusion Principal components analysis is a useful method to describe neonatal body composition and its determinants. Newborn adiposity is related to maternal nutritional status and parity, while newborn length is genetically determined. Further research is needed to understand mechanisms linking maternal pelvic size to fetal growth and the determinants and implications of the components (trunk v leg length) of fetal skeletal growth. PMID:19236724
Optical Characterization and 2,525 micron Lasing of Cr(2+):Cd(0.85)Mn(0.15)Te
NASA Technical Reports Server (NTRS)
Davis, V. R.; Wu, X.; Hoemmerich, U.; Trivedi, S. B.; Grasza, K.; Yu, Z.
1997-01-01
Transition metal doped solids are of significant current interest for the development of tunable solid-state lasers for the near and mid-infrared (1-4 pm) spectral region. Applications of these lasers include basic research in atomic, molecular, and solid-state physics, optical communication, medicine, and environmental studies of the atmosphere. In transition metal based laser materials, absorption and emission of light arises from electronic transitions between crystal field split energy levels of 3d transition metal ions. The optical spectra generally exhibit broad bands due to the strong interaction between dopant and host (electron-phonon coupling). Broad emission bands offer the prospect of tunable laser activity over a wide wavelength range, e.g. the tuning range of Ti:Sapphire extends from 700-1100 run. The only current transition metal laser operating in the mid-infrared wavelength region (1.8-2.4 micro-m) is CO(2+):MgF2, but its performance is severely limited due to strong nonradiative decay at room temperature. Based on lifetime data, the quantum efficiency is estimated to be less than 3 deg/0 11,21. In general, the probability for non-radiative decay via multi-phonon relaxation increases with decreasing energy gap between ground and excited state. Therefore, efficient transition metal lasers beyond -1.6 micro-m are rare. Recently, tunable laser activity around 2.3 micro-m was observed from Cr doped ZnS and ZnSe. The new lasing center in these materials was identified as Cr(2+) occupying the tetrahedral Zn site. Tetrahedrally coordinated optical centers are rather unusual among transition metal lasers. Their potential usefulness, however, has been demonstrated by the recent development of near infrared laser materials such as Cr:forsterite and Cr:YAG, which are based on tetrahedrally coordinated Cr(4+) ions. According to the Laporte selection rule, electric-dipole transition within the optically active 3d-electron shells are parity forbidden. However, a static acentric electric crystal field or the coupling of asymmetric phonons can force electric-dipole transitions by the admixture of wave functions with opposite parity. Tetrahedral sites lack inversion symmetry which provides the odd-parity field necessary to relax the parity selection rule. Therefore, high absorption and emission cross sections are observed. An enhanced radiative emission rate is also expected to reduce the detrimental effect of non-radiative decay. Motivated by the initial results on Cr doped ZnS and ZnSe, we have started a comprehensive effort to study Cr(2+) doped II-VI semiconductors for solid-state laser applications. In this paper we present the optical properties and the demonstration of mid-infrared lasing from Cr doped Cd(0.85)Mn(0.15)Te.
Super-sensitive phase estimation with coherent boosted light using parity measurements
NASA Astrophysics Data System (ADS)
Xu, Lan; Tan, Qing-Shou
2018-01-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11665010), the Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, China (Grant No. QSQC1414), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 17B055).
Scrutinizing R -parity violating interactions in light of RK(*) data
NASA Astrophysics Data System (ADS)
Das, Diganta; Hati, Chandan; Kumar, Girish; Mahajan, Namit
2017-11-01
The LHCb has measured the ratios of B →K*μ+μ- to B →K*e+e- branching fractions in two dilepton invariant mass squared bins, which deviate from the standard model predictions by approximately 2.5 σ . These new measurements strengthen the hint of lepton flavor universality breaking which was observed earlier in B →K ℓ+ℓ- decays. In this work we explore the possibility of explaining these anomalies within the framework of R -parity violating interactions. In this framework, b →s ℓ+ℓ- transitions are generated through tree and one loop diagrams involving exchange of down-type right-handed squarks, up-type left-handed squarks and left-handed sneutrinos. We find that the tree level contributions are not enough to explain the anomalies, but at one loop, simultaneous explanation of the deviations in B →K*ℓ+ ℓ- and B →K ℓ+ℓ- is feasible for a parameter space of the Yukawa couplings that is consistent with the bounds coming from B →K(*)ν ν ¯ and D0→μ+μ- decays and Bs-B¯s mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kankainen, A.; Woods, P. J.; Schatz, H.
2017-06-01
We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the P-30(p, gamma)S-31 reaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The P-30(d,n)S-31 reaction was studied in inverse kinematics using the GRETINA gamma-ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicatemore » the dominance of a single 3/2(-) resonance state at 196 keV in the region of nova burning T approximate to 0.10-0.17 GM, well within the region of interest for nova nucleosynthesis. Hydrodynamic simulations of nova explosions have been performed to demonstrate the effect on the composition of nova ejecta.« less
NASA Astrophysics Data System (ADS)
Kankainen, A.; Woods, P. J.; Schatz, H.; Poxon-Pearson, T.; Doherty, D. T.; Bader, V.; Baugher, T.; Bazin, D.; Brown, B. A.; Browne, J.; Estrade, A.; Gade, A.; José, J.; Kontos, A.; Langer, C.; Lotay, G.; Meisel, Z.; Montes, F.; Noji, S.; Nunes, F.; Perdikakis, G.; Pereira, J.; Recchia, F.; Redpath, T.; Stroberg, R.; Scott, M.; Seweryniak, D.; Stevens, J.; Weisshaar, D.; Wimmer, K.; Zegers, R.
2017-06-01
We report the first experimental constraints on spectroscopic factors and strengths of key resonances in the 30P (p , γ)31S reaction critical for determining the production of intermediate-mass elements up to Ca in nova ejecta. The 30P (d , n)31S reaction was studied in inverse kinematics using the GRETINA γ-ray array to measure the angle-integrated cross-sections of states above the proton threshold. In general, negative-parity states are found to be most strongly produced but the absolute values of spectroscopic factors are typically an order of magnitude lower than predicted by the shell-model calculations employing WBP Hamiltonian for the negative-parity states. The results clearly indicate the dominance of a single 3 /2- resonance state at 196 keV in the region of nova burning T ≈ 0.10- 0.17 GK, well within the region of interest for nova nucleosynthesis. Hydrodynamic simulations of nova explosions have been performed to demonstrate the effect on the composition of nova ejecta.
How would mental health parity affect the marginal price of care?
Zuvekas, S H; Banthin, J S; Selden, T M
2001-01-01
OBJECTIVE: To determine the impact of parity in mental health benefits on the marginal prices that consumers face for mental health treatment. DATA SOURCES/DATA COLLECTION: We used detailed information on health plan benefits for a nationally representative sample of the privately insured population under age 65 taken from the 1987 National Medical Expenditure Survey (Edwards and Berlin 1989). The survey was carefully aged and reweighted to represent 1995 population and coverage characteristics. STUDY DESIGN: We computed marginal out-of-pocket costs from the cost-sharing benefits described by policy booklets under current coverage and under parity for various mental health treatment expenditure levels using the MEDSIM health care microsimulation model developed by researchers at the Agency for Healthcare Research and Quality. Descriptive analyses and two-limit Tobit regression models are used to examine how insurance generosity varies across individuals by demographic and socioeconomic characteristics. Our analyses are limited to a description of how parity would change the marginal incentives faced by consumers under their existing plan's cost-sharing arrangements for mental and physical health care. We do not attempt to simulate how parity might affect the level of benefits, including whether benefits are offered at all, or the level of managed care that affects the actual benefits that plan members receive. Rather, we focus only on the nominal benefits described in their policy booklets. PRINCIPAL FINDINGS: Our results show that as of 1995 parity coverage would substantially reduce the share of mental health expenditures that consumers would pay at the margin under their existing plan's cost-sharing provisions, with larger changes for outpatient care than for inpatient care. Because current mental health coverage generally becomes less generous as expenditures rise, while coverage for other medical care becomes more generous (due to stop-loss provisions), the difference in incentives between current mental health coverage and the assumed parity coverage widens as total expenditure grows. We also find that the impact of parity on marginal incentives would vary greatly across the privately insured population. CONCLUSIONS: Based on the large variation in the impact of parity on marginal incentives across the population under current plan cost-sharing arrangements, changes in the demand for mental health treatment will likely also vary across the population. PMID:11221816
Effect of insurance parity on substance abuse treatment.
Azzone, Vanessa; Frank, Richard G; Normand, Sharon-Lise T; Burnam, M Audrey
2011-02-01
This study examined the impact of insurance parity on the use, cost, and quality of substance abuse treatment. The authors compared substance abuse treatment spending and utilization from 1999 to 2002 for continuously enrolled beneficiaries covered by Federal Employees Health Benefit (FEHB) plans, which require parity coverage of mental health and substance use disorders, with spending and utilization among beneficiaries in a matched set of health plans without parity coverage. Logistic regression models estimated the probability of any substance abuse service use. Conditional on use, linear models estimated total and out-of-pocket spending. Logistic regression models for three quality indicators for substance abuse treatment were also estimated: identification of adult enrollees with a new substance abuse diagnosis, treatment initiation, and treatment engagement. Difference-in-difference estimates were computed as (postparity - preparity) differences in outcomes in plans without parity subtracted from those in FEHB plans. There were no significant differences between FEHB and non-FEHB plans in rates of change in average utilization of substance abuse services. Conditional on service utilization, the rate of substance abuse treatment out-of-pocket spending declined significantly in the FEHB plans compared with the non-FEHB plans (mean difference=-$101.09, 95% confidence interval [CI]=-$198.06 to -$4.12), whereas changes in total plan spending per user did not differ significantly. With parity, more patients had new diagnoses of a substance use disorder (difference-in-difference risk=.10%, CI=.02% to .19%). No statistically significant differences were found for rates of initiation and engagement in substance abuse treatment. Findings suggest that for continuously enrolled populations, providing parity of substance abuse treatment coverage improved insurance protection but had little impact on utilization, costs for plans, or quality of care.
Parity Increases Insulin Requirements in Pregnant Women With Type 1 Diabetes.
Skajaa, Gitte Ø; Fuglsang, Jens; Kampmann, Ulla; Ovesen, Per G
2018-06-01
Tight glycemic control throughout pregnancy in women with type 1 diabetes is crucial, and knowledge about which factors that affect insulin sensitivity could improve the outcome for both mother and offspring. To evaluate insulin requirements in women with type 1 diabetes during pregnancy and test whether parity affects insulin requirements. Observational cohort study consisting of women with type 1 diabetes who gave birth at Aarhus University Hospital, Denmark, from 2004 to 2014. Daily insulin requirement (the hypothesis that parity could affect insulin resistance was formulated before data collection). A total of 380 women with a total of 536 pregnancies were included in the study. Mean age was 31.1 years, and prepregnancy hemoglobin A1c was 60 mmol/mol. Parity was as follows: P0, 43%; P1, 40%; P2, 14%; and P3+4, 3%. Insulin requirements from weeks 11 to 16 decreased significantly by 4% (P = 0.0004) and rose from week 19 to delivery with a peak of 70% (P < 0.0005) at weeks 33 to 36. Overall, insulin requirements increased significantly with parity. The unadjusted differences between P0 and P1, P2, and P3+4 were 9% (P < 0.0005), 12% (P < 0.0005), and 23% (P < 0.0011), respectively. After adjustment for confounders, differences were 13% (P < 0.0005), 20% (P < 0.0005), and 36% (P < 0.0005). We also observed an adjusted difference between P1 and P3+4 of 20% (P < 0.0012). The data show changes in insulin requirements from week to week in pregnancy and indicate that insulin requirements increase with parity. This suggests that the patient's parity probably should be considered in choosing insulin dosages for pregnant women with type 1 diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobottka, Marcelo, E-mail: sobottka@mtm.ufsc.br; Hart, Andrew G., E-mail: ahart@dim.uchile.cl
Highlights: {yields} We propose a simple stochastic model to construct primitive DNA sequences. {yields} The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. {yields} The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. {yields} We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. {yields} We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that themore » frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.« less
Loren, Alison W; Bunin, Greta R; Boudreau, Christian; Champlin, Richard E; Cnaan, Avital; Horowitz, Mary M; Loberiza, Fausto R; Porter, David L
2006-07-01
Allogeneic hematopoietic stem cell transplantation (SCT) may cure patients with hematologic malignancies, but it carries significant risks. Careful donor selection is an important component of the clinical transplantation decision-making process and includes evaluation of HLA typing and other criteria, the most controversial of which is parity. We examined the effect of donor sex and parity on outcomes of HLA-identical sibling SCT. Because the effect of recipient sex/parity has never been explicitly evaluated, we also analyzed the effect of recipient sex/parity on outcomes of transplantation. We found that (1) parous female donors result in an increased risk of chronic graft-versus-host disease (GVHD) in all recipients, (2) the magnitude of this increased risk is similar in male and female recipients, and (3) nulliparous female donors increase the risk of chronic GVHD in male recipients to a degree comparable to that from parous donors. A decrease in the risk of relapse was not observed, and there was no effect on overall survival, acute GVHD, or transplant-related mortality. Recipient parity had no independent effect on any endpoint. Until the effects of pregnancy on the maternal immune system are better understood, it is appropriate whenever possible to avoid parous female donors and to choose male donors for male recipients in HLA-identical related donor SCT.
The effect of parity on cause-specific mortality among married men and women.
Jaffe, Dena H; Eisenbach, Zvi; Manor, Orly
2011-04-01
The objective of this study was to examine mortality differentials among men and women by parity for deaths from cardio-vascular disease (CVD), cancer and other causes. The census-based Israel Longitudinal Mortality Study II (1995-2004) was used to identify 71,733 married men and 62,822 married women (45-89 years). During the 9-year follow-up period, 19,347 deaths were reported. Cox proportional hazard models adjusted for age, origin, and social class were used. A non-linear association between parity and CVD mortality was detected for men and women. Excess CVD mortality risks were observed among middle-aged women with no children (hazard ratio [HR] 2.43, 95% confidence interval [CI] 1.49, 3.96) and among middle-aged women and men with 8+ children (HR(women) 1.64, CI 1.02, 2.65; HR(men) 1.40, CI 1.01, 1.93) compared to those with two children. No clear pattern of association between cancer mortality and parity was apparent for men. Elderly women with 8+ children showed reduced mortality risks from reproductive cancers (HR 0.22, CI 0.05, 0.91). Similar parity-related mortality patterns were observed for men and women for deaths from CVD and other causes indicating biosocial pathways. The association between parity and cancer mortality differed by gender, age and type of cancer.
Lehmann, J O; Fadel, J G; Mogensen, L; Kristensen, T; Gaillard, C; Kebreab, E
2016-01-01
The idea of managing cows for extended lactations rather than lactations of the traditional length of 1 yr primarily arose from observations of increasing problems with infertility and cows being dried off with high milk yields. However, it is vital for the success of extended lactation practices that cows are able to maintain milk yield per feeding day when the length of the calving interval (CInt) is increased. Milk yield per feeding day is defined as the cumulated lactation milk yield divided by the sum of days between 2 consecutive calvings. The main objective of this study was to investigate the milk production of cows managed for lactations of different lengths, and the primary aim was to investigate the relationship between CInt, parity, and milk yield. Five measurements of milk yield were used: energy-corrected milk (ECM) yield per feeding day, ECM yield per lactating day, cumulative ECM yield during the first 305 d of lactation, as well as ECM yield per day during early and late lactation. The analyses were based on a total of 1,379 completed lactations from cows calving between January 2007 and May 2013 in 4 Danish commercial dairy herds managed for extended lactation for several years. Herd-average CInt length ranged from 414 to 521 d. The herds had Holstein, Jersey, or crosses between Holstein, Jersey, and Red Danish cows with average milk yields ranging from 7,644 to 11,286 kg of ECM per cow per year. A significant effect of the CInt was noted on all 5 measurements of milk yield, and this effect interacted with parity for ECM per feeding day, ECM per lactating day and ECM per day during late lactation. The results showed that cows were at least able to produce equivalent ECM per feeding day with increasing CInt, and that first- and second-parity cows maintained ECM per lactating day. Cows with a CInt between 17 and 19 mo produced 476 kg of ECM more during the first 305 d compared with cows with a CInt of less than 13 mo. Furthermore, early-lactation ECM yield was greater for all cows and late-lactation ECM yield was less for second-parity and older cows when undergoing an extended compared with a shorter lactation. Increasing CInt increased the dry period length with 3 to 5d. In conclusion, the group of cows with longer CInt were able to produce at least equivalent amounts of ECM per feeding day when the CInt was up to 17 to 19 mo on these 4 commercial dairy farms. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Chiral Sensitivity in Electron-Molecule Interactions
NASA Astrophysics Data System (ADS)
Dreiling, Joan
2015-09-01
All molecular forms of life possess a chiral asymmetry, with amino acids and sugars found respectively in L- and D-enantiomers only. The primordial origin of this enantiomeric excess is unknown. One possible explanation is given by the Vester- Ulbricht hypothesis, which suggests that left-handed electrons present in beta-radiation, produced by parity-violating weak decays, interacted with biological precursors and preferentially destroyed one of the two enantiomers. Experimental tests of this idea have thus far yielded inconclusive results. We show direct evidence for chirally-dependent bond breaking through a dissociative electron attachment (DEA) reaction when spin-polarized electrons are incident on gas-phase chiral molecules. This provides unambiguous evidence for a well-defined, chirally-sensitive destructive molecular process and, as such, circumstantial evidence for the Vester-Ulbricht hypothesis. I will also present the results of our systematic study of the DEA asymmetry for different chiral halocamphor molecules. Three halocamphor molecules were investigated: 3-bromocamphor (C10H15BrO), 3-iodocamphor(C10H15IO), and 10-iodocamphor. The DEA asymmetries collected for bromocamphor and iodocamphor are qualitatively different, suggesting that the atomic number of the heaviest atom in the molecule plays a crucial role in the asymmetric interactions. The DEA asymmetry data for 3- and 10-iodocamphor have the same qualitative behavior, but the 10-iodocamphor asymmetry is about twice as large at the lowest energies investigated, so the location of the heavy atom in the camphor molecule also affects the asymmetries. This work was performed at the University of Nebraska-Lincoln. This project is funded by NSF Grant PHY-1206067.
Rammsayer, Thomas H; Verner, Martin
2016-05-01
Perceived duration has been shown to be positively related to task-irrelevant, nontemporal stimulus magnitude. To account for this finding, Walsh's (2003) A Theory of Magnitude (ATOM) model suggests that magnitude of time is not differentiated from magnitude of other nontemporal stimulus characteristics and collectively processed by a generalized magnitude system. In Experiment 1, we investigated the combined effects of stimulus size and numerical quantity, as two nontemporal stimulus dimensions covered by the ATOM model, on duration judgments. Participants were required to reproduce the duration of target intervals marked by Arabic digits varying in physical size and numerical value. While the effect of stimulus size was effectively moderated by target duration, the effect of numerical value appeared to require attentional resources directed to the numerical value in order to become effective. Experiment 2 was designed to further elucidate the mediating influence of attention on the effect of numerical value on duration judgments. An effect of numerical value was only observed when participants' attention was directed to digit value, but not when participants were required to pay special attention to digit parity. While the ATOM model implies a common metrics and generalized magnitude processing for time, size, and quantity, the present findings provided converging evidence for the notion of two qualitatively different mechanisms underlying the effects of nontemporal stimulus size and numerical value on duration judgments. Furthermore, our data challenge the implicit common assumption that the effect of numerical value on duration judgments represents a continuously increasing function of digit magnitude.
KK parity in warped extra dimension
NASA Astrophysics Data System (ADS)
Agashe, Kaustubh; Falkowski, Adam; Low, Ian; Servant, Géraldine
2008-04-01
We construct models with a Kaluza-Klein (KK) parity in a five-dimensional warped geometry, in an attempt to address the little hierarchy problem present in setups with bulk Standard Model fields. The lightest KK particle (LKP) is stable and can play the role of dark matter. We consider the possibilities of gluing two identical slices of AdS5 in either the UV (IR-UV-IR model) or the IR region (UV-IR-UV model) and discuss the model-building issues as well as phenomenological properties in both cases. In particular, we find that the UV-IR-UV model is not gravitationally stable and that additional mechanisms might be required in the IR-UV-IR model to address flavor issues. Collider signals of the warped KK parity are different from either the conventional warped extra dimension without KK parity, in which the new particles are not necessarily pair-produced, or the KK parity in flat universal extra dimensions, where each KK level is nearly degenerate in mass. Dark matter and collider properties of a TeV mass KK Z gauge boson as the LKP are discussed.
Full hyperfine structure analysis of singly ionized molybdenum
NASA Astrophysics Data System (ADS)
Bouazza, Safa
2017-03-01
For a first time a parametric study of hyperfine structure of Mo II configuration levels is presented. The newly measured A and B hyperfine structure (hfs) constants values of Mo II 4d5, 4d45s and 4d35s2 configuration levels, for both 95 and 97 isotopes, using Fast-ion-beam laser-induced fluorescence spectroscopy [1] are gathered with other few data available in literature. A fitting procedure of an isolated set of these three lowest even-parity configuration levels has been performed by taking into account second-order of perturbation theory including the effects of closed shell-open shell excitations. Moreover the same study was done for Mo II odd-parity levels; for both parities two sets of fine structure parameters as well as the leading eigenvector percentages of levels and Landé-factor gJ, relevant for this paper are given. We present also predicted singlet, triplet and quintet positions of missing experimental levels up to 85000 cm-1. The single-electron hfs parameter values were extracted in their entirety for 97Mo II and for 95Mo II: for instance for 95Mo II, a4d 01 =-133.37 MHz and a5p 01 =-160.25 MHz for 4d45p; a4d 01 =-140.84 MHz, a5p 01 =-170.18 MHz and a5s 10 =-2898 MHz for 4d35s5p; a5s 10 =-2529 (2) MHz and a4d 01 =-135.17 (0.44) MHz for the 4d45s. These parameter values were analysed and compared with diverse ab-initio calculations. We closed this work with giving predicted values of magnetic dipole and electric quadrupole hfs constants of all known levels, whose splitting are not yet measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guler, Hayg
2003-12-17
In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrpounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In Go we using the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons andmore » for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the Go spectrometer. A complete calculation of radiative corrections has been clone and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model.« less
Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry
NASA Astrophysics Data System (ADS)
Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping
2018-05-01
We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.
Ranking Enzyme Structures in the PDB by Bound Ligand Similarity to Biological Substrates.
Tyzack, Jonathan D; Fernando, Laurent; Ribeiro, Antonio J M; Borkakoti, Neera; Thornton, Janet M
2018-04-03
There are numerous applications that use the structures of protein-ligand complexes from the PDB, such as 3D pharmacophore identification, virtual screening, and fragment-based drug design. The structures underlying these applications are potentially much more informative if they contain biologically relevant bound ligands, with high similarity to the cognate ligands. We present a study of ligand-enzyme complexes that compares the similarity of bound and cognate ligands, enabling the best matches to be identified. We calculate the molecular similarity scores using a method called PARITY (proportion of atoms residing in identical topology), which can conveniently be combined to give a similarity score for all cognate reactants or products in the reaction. Thus, we generate a rank-ordered list of related PDB structures, according to the biological similarity of the ligands bound in the structures. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Raman spectroscopy of magneto-phonon resonances in graphene and graphite
NASA Astrophysics Data System (ADS)
Goler, Sarah; Yan, Jun; Pellegrini, Vittorio; Pinczuk, Aron
2012-08-01
The magneto-phonon resonance or MPR occurs in semiconductor materials when the energy spacing between Landau levels is continuously tuned to cross the energy of an optical phonon mode. MPRs have been largely explored in bulk semiconductors, in two-dimensional systems and in quantum dots. Recently there has been significant interest in the MPR interactions of the Dirac fermion magneto-excitons in graphene, and a rich splitting and anti-crossing phenomena of the even parity E2g long wavelength optical phonon mode have been theoretically proposed and experimentally observed. The MPR has been found to crucially depend on disorder in the graphene layer. This is a feature that creates new venues for the study of interplays between disorder and interactions in the atomic layers. We review here the fundamentals of MRP in graphene and the experimental Raman scattering works that have led to the observation of these phenomena in graphene and graphite.
Studying fundamental physics using quantum enabled technologies with trapped molecular ions
NASA Astrophysics Data System (ADS)
Segal, D. M.; Lorent, V.; Dubessy, R.; Darquié, B.
2018-03-01
The text below was written during two visits that Daniel Segal made at Université Paris 13. Danny stayed at Laboratoire de Physique des Lasers the summers of 2008 and 2009 to participate in the exploration of a novel lead in the field of ultra-high resolution spectroscopy. Our idea was to probe trapped molecular ions using Quantum Logic Spectroscopy (QLS) in order to advance our understanding of a variety of fundamental processes in nature. At that time, QLS, a ground-breaking spectroscopic technique, had only been demonstrated with atomic ions. Our ultimate goals were new approaches to the observation of parity violation in chiral molecules and tests of time variations of the fundamental constants. This text is the original research proposal written eight years ago. We have added a series of notes to revisit it in the light of what has been since realized in the field.