An experimental abdominal pressure measurement device for child ATDs.
DOT National Transportation Integrated Search
1995-12-01
An experimental device to measure the abdominal pressure in child-size Anthropomorphic Test Dummies (ATDs) during dynamic tests was developed. A description is provided of the two ATDs in which the device was installed, the CRABI six-month-old and th...
Experimental Measurement-Device-Independent Entanglement Detection
NASA Astrophysics Data System (ADS)
Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed
2015-02-01
Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.
Experimental Measurement-Device-Independent Entanglement Detection
Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed
2015-01-01
Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols. PMID:25649664
Computational and experimental studies of LEBUs at high device Reynolds numbers
NASA Technical Reports Server (NTRS)
Bertelrud, Arild; Watson, R. D.
1988-01-01
The present paper summarizes computational and experimental studies for large-eddy breakup devices (LEBUs). LEBU optimization (using a computational approach considering compressibility, Reynolds number, and the unsteadiness of the flow) and experiments with LEBUs at high Reynolds numbers in flight are discussed. The measurements include streamwise as well as spanwise distributions of local skin friction. The unsteady flows around the LEBU devices and far downstream are characterized by strain-gage measurements on the devices and hot-wire readings downstream. Computations are made with available time-averaged and quasi-stationary techniques to find suitable device profiles with minimum drag.
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2018-06-01
This work deal with experimental measurement and calculation cooling efficiency of the cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description, working principle and construction of cooling device. The main factor affected the dissipation of high heat flux from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. Experimental part describe the measuring method cooling efficiency of the cooling device depending on ambient temperature in range -20 to 40°C and at heat load of electronic components 750 W. Measured results are compared with results calculation based on physical phenomena of boiling, condensation and natural convection heat transfer.
Device-Independent Certification of a Nonprojective Qubit Measurement
NASA Astrophysics Data System (ADS)
Gómez, Esteban S.; Gómez, Santiago; González, Pablo; Cañas, Gustavo; Barra, Johanna F.; Delgado, Aldo; Xavier, Guilherme B.; Cabello, Adán; Kleinmann, Matthias; Vértesi, Tamás; Lima, Gustavo
2016-12-01
Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.
Experimental evaluation of cooling efficiency of the high performance cooling device
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan
2016-06-01
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.
NASA Astrophysics Data System (ADS)
Kokhanenko, Grigorii P.; Tarashchansky, Boris A.; Budnev, Nikolai M.; Mirgazov, Rashid R.
2006-02-01
Operation of the device ASP-15 is analyzed in the paper. The device is arranged in the south part of Lake Baikal, and it is capable of all-the-year-round measurements of hydro-optical characteristics at the depths down to 1300 m. The method for determining the absorption coefficient is based on measurement of the rate of decrease of the irradiance from an isotropic source with the distance between the source and the receiver. Possible reasons of appearance of anomalous dependences of the irradiance with the distance are revealed on the basis of numerical simulation, and the errors of the applied method are estimated. The experimental data obtained by means of the device ASP-15 last years are presented.
Resource-Efficient Measurement-Device-Independent Entanglement Witness
Verbanis, E.; Martin, A.; Rosset, D.; ...
2016-05-09
Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less
Experimental measurement-device-independent verification of quantum steering
NASA Astrophysics Data System (ADS)
Kocsis, Sacha; Hall, Michael J. W.; Bennet, Adam J.; Saunders, Dylan J.; Pryde, Geoff J.
2015-01-01
Bell non-locality between distant quantum systems—that is, joint correlations which violate a Bell inequality—can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
Experimental measurement-device-independent verification of quantum steering.
Kocsis, Sacha; Hall, Michael J W; Bennet, Adam J; Saunders, Dylan J; Pryde, Geoff J
2015-01-07
Bell non-locality between distant quantum systems--that is, joint correlations which violate a Bell inequality--can be verified without trusting the measurement devices used, nor those performing the measurements. This leads to unconditionally secure protocols for quantum information tasks such as cryptographic key distribution. However, complete verification of Bell non-locality requires high detection efficiencies, and is not robust to typical transmission losses over long distances. In contrast, quantum or Einstein-Podolsky-Rosen steering, a weaker form of quantum correlation, can be verified for arbitrarily low detection efficiencies and high losses. The cost is that current steering-verification protocols require complete trust in one of the measurement devices and its operator, allowing only one-sided secure key distribution. Here we present measurement-device-independent steering protocols that remove this need for trust, even when Bell non-locality is not present. We experimentally demonstrate this principle for singlet states and states that do not violate a Bell inequality.
A new device-independent dimension witness and its experimental implementation
NASA Astrophysics Data System (ADS)
Cai, Yu; Bancal, Jean-Daniel; Romero, Jacquiline; Scarani, Valerio
2016-07-01
A dimension witness is a criterion that sets a lower bound on the dimension needed to reproduce the observed data. Three types of dimension witnesses can be found in the literature: device-dependent ones, in which the bound is obtained assuming some knowledge on the state and the measurements; device-independent prepare-and-measure ones, that can be applied to any system including classical ones; and device-independent Bell-based ones, that certify the minimal dimension of some entangled systems. Here we consider the Collins-Gisin-Linden-Massar-Popescu Bell-type inequality for four outcomes. We show that a sufficiently high violation of this inequality witnesses d≥slant 4 and present a proof-of-principle experimental observation of such a violation. This presents a first experimental violation of the third type of dimension witness beyond qutrits.
SHORT COMMUNICATION: Time measurement device with four femtosecond stability
NASA Astrophysics Data System (ADS)
Panek, Petr; Prochazka, Ivan; Kodet, Jan
2010-10-01
We present the experimental results of extremely precise timing in the sense of time-of-arrival measurements in a local time scale. The timing device designed and constructed in our laboratory is based on a new concept using a surface acoustic wave filter as a time interpolator. Construction of the device is briefly described. The experiments described were focused on evaluating the timing precision and stability. Low-jitter test pulses with a repetition frequency of 763 Hz were generated synchronously to the local time base and their times of arrival were measured. The resulting precision of a single measurement was typically 900 fs RMS, and a timing stability TDEV of 4 fs was achieved for time intervals in the range from 300 s to 2 h. To our knowledge this is the best value reported to date for the stability of a timing device. The experimental results are discussed and possible improvements are proposed.
Survey and Experimental Testing of Nongravimetric Mass Measurement Devices
NASA Technical Reports Server (NTRS)
Oakey, W. E.; Lorenz, R.
1977-01-01
Documentation presented describes the design, testing, and evaluation of an accelerated gravimetric balance, a low mass air bearing oscillator of the spring-mass type, and a centrifugal device for liquid mass measurement. A direct mass readout method was developed to replace the oscillation period readout method which required manual calculations to determine mass. A protoype 25 gram capacity micro mass measurement device was developed and tested.
Experimental equipment for measuring of rotary air motors parameters
NASA Astrophysics Data System (ADS)
Dvořák, Lukáš; Fojtášek, Kamil; Řeháček, Vojtěch
In the article the construction of an experimental device for measuring the parameters of small rotary air motors is described. Further a measurement methodology and measured data processing are described. At the end of the article characteristics of the chosen air motor are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemec, Patrik, E-mail: patrik.nemec@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heatmore » of electronic components in range from 250 to 740 W.« less
A Method for Response Time Measurement of Electrosensitive Protective Devices.
Dźwiarek, Marek
1996-01-01
A great step toward the improvement of safety at work was made when electrosensitive protective devices (ESPDs) were applied to the protection of press and robot-assisted manufacturing system operators. The way the device is mounted is crucial. The parameters of ESPD mounting that ensure safe distance from the controlled dangerous zone are response time, sensitivity, and the dimensions of the detection zone. The proposed experimental procedure of response time measurement is realized in two steps, with a test piece penetrating the detection zone twice. In the first step, low-speed penetration (at a speed v m ) enables the detection zone border to be localized. In the second step of measurement, the probe is injected at a high speed V d . The actuator rod position is measured and when it is equal to the value L registered by the earlier measurements, counting time begins as well as the monitoring of the state of the equipment under test (EUT) output relays. After the state changes, time tp is registered. The experimental procedure is realized on a special experimental stand. Because the stand has been constructed for certification purposes, the design satisfies the requirements imposed by Polski Komitet Normalizacyjny (PKN, 1995). The experimental results prove the measurement error to be smaller than ± 0.6 ms.
Device-independent randomness generation from several Bell estimators
NASA Astrophysics Data System (ADS)
Nieto-Silleras, Olmo; Bamps, Cédric; Silman, Jonathan; Pironio, Stefano
2018-02-01
Device-independent randomness generation and quantum key distribution protocols rely on a fundamental relation between the non-locality of quantum theory and its random character. This relation is usually expressed in terms of a trade-off between the probability of guessing correctly the outcomes of measurements performed on quantum systems and the amount of violation of a given Bell inequality. However, a more accurate assessment of the randomness produced in Bell experiments can be obtained if the value of several Bell expressions is simultaneously taken into account, or if the full set of probabilities characterizing the behavior of the device is considered. We introduce protocols for device-independent randomness generation secure against classical side information, that rely on the estimation of an arbitrary number of Bell expressions or even directly on the experimental frequencies of measurement outcomes. Asymptotically, this results in an optimal generation of randomness from experimental data (as measured by the min-entropy), without having to assume beforehand that the devices violate a specific Bell inequality.
Laser pulse coded signal frequency measuring device based on DSP and CPLD
NASA Astrophysics Data System (ADS)
Zhang, Hai-bo; Cao, Li-hua; Geng, Ai-hui; Li, Yan; Guo, Ru-hai; Wang, Ting-feng
2011-06-01
Laser pulse code is an anti-jamming measures used in semi-active laser guided weapons. On account of the laser-guided signals adopting pulse coding mode and the weak signal processing, it need complex calculations in the frequency measurement process according to the laser pulse code signal time correlation to meet the request in optoelectronic countermeasures in semi-active laser guided weapons. To ensure accurately completing frequency measurement in a short time, it needed to carry out self-related process with the pulse arrival time series composed of pulse arrival time, calculate the signal repetition period, and then identify the letter type to achieve signal decoding from determining the time value, number and rank number in a signal cycle by Using CPLD and DSP for signal processing chip, designing a laser-guided signal frequency measurement in the pulse frequency measurement device, improving the signal processing capability through the appropriate software algorithms. In this article, we introduced the principle of frequency measurement of the device, described the hardware components of the device, the system works and software, analyzed the impact of some system factors on the accuracy of the measurement. The experimental results indicated that this system improve the accuracy of the measurement under the premise of volume, real-time, anti-interference, low power of the laser pulse frequency measuring device. The practicality of the design, reliability has been demonstrated from the experimental point of view.
2017-10-16
DARPA) or the U.S. Government. Report contains color. 14. ABSTRACT The objective of this project is to experimentally study the transient non ...the Metal Thin Film in TDTR ........................................ 14 4.3 Experimental Observation of the Frequency Filtering Effect...scale of the device layers and the high density of interfaces, non -diffusive heat conduction plays a critical role in thermal transport of GaN devices
Finite element analysis of a percussion device for pulmonary diagnostics
NASA Astrophysics Data System (ADS)
Dhar, Aneesh
A pneumothorax is a medical condition where one or both lungs are unable to remain expanded due to air in the pleural space. Finite Element Analysis simulations were conducted on a Percussion Device, which is able to diagnose a pneumothorax using an automated percussion technique. The simulations helped determine the natural modes of vibration of the Percussion Device. These modes were then compared to the motion experimentally measured by an accelerometer on the Percussion Device. It was observed that the modes of the percussion head occurred in the range of 0 to 100 Hz, while the sensor membrane modes occurred in the range of 600 to 900 Hz. Most of these modes were found to match with peaks in the experimental spectra. The simulations performed are reliable and provide an understanding of the contribution of the normal modes to the complex signals measured using the Percussion Device.
Experimental investigation of the Multipoint Ultrasonic Flowmeter
NASA Astrophysics Data System (ADS)
Jakub, Filipský
2018-06-01
The Multipoint Ultrasonic Flowmeter is a vector tomographic device capable of reconstructing all three components of velocity field based solely on boundary ultrasonic measurements. Computer simulations have shown the feasibility of such a device and have been published previously. This paper describes an experimental investigation of achievable accuracy of such a method. Doubled acoustic tripoles used to obtain information of the solenoidal part of vector field show extremely short differences between the Time Of Flights (TOFs) of individual sensors and are therefore sensitive to parasitic effects of TOF measurements. Sampling at 40MHz and correlation method is used to measure the TOF.
Production of a large, quiescent, magnetized plasma
NASA Technical Reports Server (NTRS)
Landt, D. L.; Ajmera, R. C.
1976-01-01
An experimental device is described which produces a large homogeneous quiescent magnetized plasma. In this device, the plasma is created in an evacuated brass cylinder by ionizing collisions between electrons emitted from a large-diameter electron gun and argon atoms in the chamber. Typical experimentally measured values of the electron temperature and density are presented which were obtained with a glass-insulated planar Langmuir probe. It is noted that the present device facilitates the study of phenomena such as waves and diffusion in magnetized plasmas.
Portable emittance measurement device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakin, D.; Seleznev, D.; Orlov, A.
2010-02-15
In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.
Chambers, Nola
2009-01-01
There is extensive experimental evidence that altered auditory feedback (AAF) can have a clinically significant effect on the severity of speech symptoms in people who stutter. However, there is less evidence regarding whether these experimental effects can be observed in naturalistic everyday settings particularly when using the telephone. This study aimed to investigate the effectiveness of the Telephone Assistive Device (TAD), which is designed to provide AAF on the telephone to people who stutter, on reducing stuttering severity. Nine adults participated in a quasi-experimental study. Stuttering severity was measured first without and then with the device in participants' naturalistic settings while making and receiving telephone calls (immediate benefit). Participants were then allowed a week of repeated use of the device following which all measurements were repeated (delayed benefit). Overall, results revealed significant immediate benefits from the TAD in all call conditions. Delayed benefits in received and total calls were also significant. There was substantial individual variability in response to the TAD but none of the demographic or speech-related factors measured in the study were found to significantly impact the benefit (immediate or delayed) derived from the TAD. Results have implications for clinical decision making for adults who stutter.
Improvement of the accuracy of noise measurements by the two-amplifier correlation method.
Pellegrini, B; Basso, G; Fiori, G; Macucci, M; Maione, I A; Marconcini, P
2013-10-01
We present a novel method for device noise measurement, based on a two-channel cross-correlation technique and a direct "in situ" measurement of the transimpedance of the device under test (DUT), which allows improved accuracy with respect to what is available in the literature, in particular when the DUT is a nonlinear device. Detailed analytical expressions for the total residual noise are derived, and an experimental investigation of the increased accuracy provided by the method is performed.
Fulian; Gooch; Fisher; Stevens; Compton
2000-08-01
The development and application of a new electrochemical device using a computer-aided design strategy is reported. This novel design is based on the flow of electrolyte solution past a microwire electrode situated centrally within a large duct. In the design stage, finite element simulations were employed to evaluate feasible working geometries and mass transport rates. The computer-optimized designs were then exploited to construct experimental devices. Steady-state voltammetric measurements were performed for a reversible one-electron-transfer reaction to establish the experimental relationship between electrolysis current and solution velocity. The experimental results are compared to those predicted numerically, and good agreement is found. The numerical studies are also used to establish an empirical relationship between the mass transport limited current and the volume flow rate, providing a simple and quantitative alternative for workers who would prefer to exploit this device without the need to develop the numerical aspects.
Empirically based device modeling of bulk heterojunction organic photovoltaics
NASA Astrophysics Data System (ADS)
Pierre, Adrien; Lu, Shaofeng; Howard, Ian A.; Facchetti, Antonio; Arias, Ana Claudia
2013-04-01
We develop an empirically based optoelectronic model to accurately simulate the photocurrent in organic photovoltaic (OPV) devices with novel materials including bulk heterojunction OPV devices based on a new low band gap dithienothiophene-DPP donor polymer, P(TBT-DPP), blended with PC70BM at various donor-acceptor weight ratios and solvent compositions. Our devices exhibit power conversion efficiencies ranging from 1.8% to 4.7% at AM 1.5G. Electron and hole mobilities are determined using space-charge limited current measurements. Bimolecular recombination coefficients are both analytically calculated using slowest-carrier limited Langevin recombination and measured using an electro-optical pump-probe technique. Exciton quenching efficiencies in the donor and acceptor domains are determined from photoluminescence spectroscopy. In addition, dielectric and optical constants are experimentally determined. The photocurrent and its bias-dependence that we simulate using the optoelectronic model we develop, which takes into account these physically measured parameters, shows less than 7% error with respect to the experimental photocurrent (when both experimentally and semi-analytically determined recombination coefficient is used). Free carrier generation and recombination rates of the photocurrent are modeled as a function of the position in the active layer at various applied biases. These results show that while free carrier generation is maximized in the center of the device, free carrier recombination is most dominant near the electrodes even in high performance devices. Such knowledge of carrier activity is essential for the optimization of the active layer by enhancing light trapping and minimizing recombination. Our simulation program is intended to be freely distributed for use in laboratories fabricating OPV devices.
Shiba, Kenji
2015-08-01
We proposed an electrically induced energy transmission method for implantable medical devices deep inside the body. This method makes it possible to transmit energy deep inside the body using only a couple of titanium electrodes attached to the surface of the implantable medical device. In this study, electromagnetic simulations in which the area and distance of the receiving electrodes were changed were conducted. Then, experimental measurements of the received voltage were conducted in which electric energy was transmitted from the surface of the human phantom to an implantable device inside it (transmitting distance: 12 cm). As a result of the electromagnetic simulation, the area and distance of the receiving electrodes were roughly proportional to the received voltage, respectively. As a result of the experimental measurement, a received voltage of 2460 mV could be obtained with a load resistance of 100 Ω. We confirmed that our energy transmission method could be a powerful method for transmitting energy to a deeply implanted medical device.
NASA Astrophysics Data System (ADS)
Liang, Lin-Mei; Sun, Shi-Hai; Jiang, Mu-Sheng; Li, Chun-Yan
2014-10-01
In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].
Optical properties of electrically connected plasmonic nanoantenna dimer arrays
NASA Astrophysics Data System (ADS)
Zimmerman, Darin T.; Borst, Benjamin D.; Carrick, Cassandra J.; Lent, Joseph M.; Wambold, Raymond A.; Weisel, Gary J.; Willis, Brian G.
2018-02-01
We fabricate electrically connected gold nanoantenna arrays of homodimers and heterodimers on silica substrates and present a systematic study of their optical properties. Electrically connected arrays of plasmonic nanoantennas make possible the realization of novel photonic devices, including optical sensors and rectifiers. Although the plasmonic response of unconnected arrays has been studied extensively, the present study shows that the inclusion of nanowire connections modifies the device response significantly. After presenting experimental measurements of optical extinction for unconnected dimer arrays, we compare these to measurements of dimers that are interconnected by gold nanowire "busbars." The connected devices show the familiar dipole response associated with the unconnected dimers but also show a second localized surface plasmon resonance (LSPR) that we refer to as the "coupled-busbar mode." Our experimental study also demonstrates that the placement of the nanowire along the antenna modifies the LSPR. Using finite-difference time-domain simulations, we confirm the experimental results and investigate the variation of dimer gap and spacing. Changing the dimer gap in connected devices has a significantly smaller effect on the dipole response than it does in unconnected devices. On the other hand, both LSPR modes respond strongly to changing the spacing between devices in the direction along the interconnecting wires. We also give results for the variation of E-field strength in the dimer gap, which will be important for any working sensor or rectenna device.
Wind Speed Measurement by Paper Anemometer
ERIC Educational Resources Information Center
Zhong, Juhua; Cheng, Zhongqi; Guan, Wenchuan
2011-01-01
A simple wind speed measurement device, a paper anemometer, is fabricated based on the theory of standing waves. In providing the working profile of the paper anemometer, an experimental device is established, which consists of an anemometer sensor, a sound sensor, a microphone, paper strips, a paper cup, and sonic acquisition software. It shows…
Fiber-optic evanescent-field sensor for attitude measurement
NASA Astrophysics Data System (ADS)
Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei
2017-11-01
We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.
3D Printed Composites for Topology Transforming Multifunctional Devices
2017-01-26
approach to find non -trivial designs. The comparison against experimental measurements motivates future research on improving the accuracy of the...new methodology for the fabrication and the design of new multifunctional composites and devices using 3D printing. The main accomplishments of this...design; 6) developing a finite element framework for the optimum design of PACS by topology optimization; 7) optimizing and experimentally
Experimental and theoretical studies of Sub-THz detection using strained-Si FETs
NASA Astrophysics Data System (ADS)
Delgado Notario, J. A.; Javadi, E.; Clericò, V.; Fobelets, K.; Otsuji, T.; Diez, E.; Velázquez-Pérez, J. E.; Meziani, Y. M.
2017-10-01
We report on experimental and theoretical studies of nanoscale gate-lengths strained Silicon MODFETs as room temperature non resonant detectors. Devices were excited at room temperature by an electronic source at 150 and 300 GHz to characterize their sub-THz response. The maximum of the photovoltaic response was obtained when the FET gate was biased at a value close to the threshold voltage. Simulations based on a bi-dimensional hydrodynamic model for the charge transport coupled to a Poisson equation solver were performed by using Synopsys TCAD. A charge boundary condition for the floating drain contact was implemented to obtain the photovoltaic response. Results from numerical simulations are in agreement with experimental ones. To understand the coupling between terahertz radiation and devices, the devices were rotated at different angles under excitation at both sub-terahertz frequencies and their response measured. Both NEP (Noise Equivalent Power) and Responsivity were calculated from measurements. To demonstrate their utility, devices were used as sensors in a terahertz imaging system for inspection of hidden objects at both frequencies.
Proposal and Evaluation of BLE Discovery Process Based on New Features of Bluetooth 5.0.
Hernández-Solana, Ángela; Perez-Diaz-de-Cerio, David; Valdovinos, Antonio; Valenzuela, Jose Luis
2017-08-30
The device discovery process is one of the most crucial aspects in real deployments of sensor networks. Recently, several works have analyzed the topic of Bluetooth Low Energy (BLE) device discovery through analytical or simulation models limited to version 4.x. Non-connectable and non-scannable undirected advertising has been shown to be a reliable alternative for discovering a high number of devices in a relatively short time period. However, new features of Bluetooth 5.0 allow us to define a variant on the device discovery process, based on BLE scannable undirected advertising events, which results in higher discovering capacities and also lower power consumption. In order to characterize this new device discovery process, we experimentally model the real device behavior of BLE scannable undirected advertising events. Non-detection packet probability, discovery probability, and discovery latency for a varying number of devices and parameters are compared by simulations and experimental measurements. We demonstrate that our proposal outperforms previous works, diminishing the discovery time and increasing the potential user device density. A mathematical model is also developed in order to easily obtain a measure of the potential capacity in high density scenarios.
Proposal and Evaluation of BLE Discovery Process Based on New Features of Bluetooth 5.0
2017-01-01
The device discovery process is one of the most crucial aspects in real deployments of sensor networks. Recently, several works have analyzed the topic of Bluetooth Low Energy (BLE) device discovery through analytical or simulation models limited to version 4.x. Non-connectable and non-scannable undirected advertising has been shown to be a reliable alternative for discovering a high number of devices in a relatively short time period. However, new features of Bluetooth 5.0 allow us to define a variant on the device discovery process, based on BLE scannable undirected advertising events, which results in higher discovering capacities and also lower power consumption. In order to characterize this new device discovery process, we experimentally model the real device behavior of BLE scannable undirected advertising events. Non-detection packet probability, discovery probability, and discovery latency for a varying number of devices and parameters are compared by simulations and experimental measurements. We demonstrate that our proposal outperforms previous works, diminishing the discovery time and increasing the potential user device density. A mathematical model is also developed in order to easily obtain a measure of the potential capacity in high density scenarios. PMID:28867786
NASA Astrophysics Data System (ADS)
Denisov, Alexander; Gudkov, Alexander; Qiu, Jing Hui
2014-10-01
Josephson junction (JJ) can be used as the criterion in single-block super wide band frequency-meter and as the sensitive element in the super wide band panoramic receiver. There presented the theoretical and experimental investigations and described the innovation decision about to combine both devices in one new microwave device. JJ in this case works in self-pump mode regime. New device can be especially convenient for the experimental purposes with new generation structures when radiated power is small and frequency are unknown correctly.
New method for remote and repeatable monitoring of intraocular pressure variations.
Margalit, Israel; Beiderman, Yevgeny; Skaat, Alon; Rosenfeld, Elkanah; Belkin, Michael; Tornow, Ralf-Peter; Mico, Vicente; Garcia, Javier; Zalevsky, Zeev
2014-02-01
We present initial steps toward a new measurement device enabling high-precision, noncontact remote and repeatable monitoring of intraocular pressure (IOP)-based on an innovative measurement principle. Using only a camera and a laser source, the device measures IOP by tracking the secondary speckle pattern trajectories produced by the reflection of an illuminating laser beam from the iris or the sclera. The device was tested on rabbit eyes using two different methods to modify IOP: via an infusion bag and via mechanical pressure. In both cases, the eyes were stimulated with increasing and decreasing ramps of the IOP. As IOP variations changed the speckle distributions reflected back from the eye, data were recorded under various optical configurations to define and optimize the best experimental configuration for the IOP extraction. The association between the data provided by our proposed device and that resulting from controlled modification of the IOP was assessed, revealing high correlation (R2=0.98) and sensitivity and providing a high-precision measurement (5% estimated error) for the best experimental configuration. Future steps will be directed toward applying the proposed measurement principle in clinical trials for monitoring IOP with human subjects.
Nonhoff, J; Moest, T; Schmitt, Christian Martin; Weisel, T; Bauer, S; Schlegel, K A
2015-12-01
The animal study aims to evaluate a new experimental model for measuring sole the influence of the surface characteristics independent from implant macro-design on the level of osseointegration by registering the pull-out strength needed for removal of experimental devices with different surfaces from artificial defects. Seventy-two test bodies (36 with the FRIADENT(®) plus surface, 36 with the P15/HAp biofunctionalized surface) were inserted in six adult domestic pigs with artificial calvarial defects. The experimental devices were designed to fit in the defects leaving a gap between the test body and the local bone. After 21 days of healing, the animals were sacrificed and the test bodies were pulled out with a standardised reproducible pull-out device measuring the pull-out strength. The pull-out strength for both groups was compared. Twenty-one days after insertion a mean force of 412 ± 142 N for the P15/HAp group and 183 ± 105 N for the FRIADENT(®) plus group was measured for the removal of the specimens from the calvarial bone. The difference between the groups was statistically significant (p < 0.0001). The experimental set-up seems to be a suitable method when measuring the impact of implant surfaces on the early stage of osseointegration. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbanis, E.; Martin, A.; Rosset, D.
Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less
Noise trauma induced by a mousetrap--sound pressure level measurement of vole captive bolt devices.
Frank, Matthias; Napp, Matthias; Lange, Joern; Grossjohann, Rico; Ekkernkamp, Axel; Beule, Achim G
2010-05-01
While ballistic parameters of vole captive bolt devices have been reported, there is no investigation on their hazardous potential to cause noise trauma. The aim of this experimental study was to measure the sound pressure levels of vole captive bolt devices. Two different shooting devices were examined with a modular precision sound level meter on an outdoor firing range. Measurements were taken in a semi-circular configuration with measuring points 0 degrees in front of the muzzle, 90 degrees at right angle of the muzzle, and 180 degrees behind the shooting device. Distances between muzzle and microphone were 0.5, 1, 2, 10, and 20 m. Sound pressure levels exceeded 130 dB(C) at any measuring point within the 20-m area. Highest measurements (more than 172 dB[C]) were taken in the 0 degrees direction at the 0.5-m distance for both shooting devices proving the hazardous potential of these gadgets to cause noise trauma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaedtke, P.; Lang, R.; Maeder, J.
2012-02-15
Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally foundmore » structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.« less
NASA Astrophysics Data System (ADS)
Tabia, Gelo Noel M.
2012-12-01
It is crucial for various quantum information processing tasks that the state of a quantum system can be determined reliably and efficiently from general quantum measurements. One important class of measurements for this purpose is symmetric informationally complete positive operator-valued measurements (SIC-POVMs). SIC-POVMs have the advantage of providing an unbiased estimator for the quantum state with the minimal number of outcomes needed for full tomography. By virtue of Naimark's dilation theorem, any POVM can always be realized with a suitable coupling between the system and an auxiliary system and by performing a projective measurement on the joint system. In practice, finding the appropriate coupling is rather nontrivial. Here we propose an experimental design for directly implementing SIC-POVMs using multiport devices and path-encoded qubits and qutrits, the utility of which has recently been demonstrated by several experimental groups around the world. Furthermore, we describe how these multiports can be attained in practice with an integrated photonic system composed of nested linear optical elements.
Evaluation of thermal gradients in longitudinal spin Seebeck effect measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, A., E-mail: a.sola@inrim.it; Kuepferling, M.; Basso, V.
2015-05-07
In the framework of the longitudinal spin Seebeck effect (LSSE), we developed an experimental setup for the characterization of LSSE devices. This class of device consists in a layered structure formed by a substrate, a ferrimagnetic insulator (YIG) where the spin current is thermally generated, and a paramagnetic metal (Pt) for the detection of the spin current via the inverse spin-Hall effect. In this kind of experiments, the evaluation of a thermal gradient through the thin YIG layer is a crucial point. In this work, we perform an indirect determination of the thermal gradient through the measurement of the heatmore » flux. We developed an experimental setup using Peltier cells that allow us to measure the heat flux through a given sample. In order to test the technique, a standard LSSE device produced at Tohoku University was measured. We find a spin Seebeck S{sub SSE} coefficient of 2.8×10{sup −7} V K{sup −1}.« less
Nonlinear effects in the time measurement device based on surface acoustic wave filter excitation.
Prochazka, Ivan; Panek, Petr
2009-07-01
A transversal surface acoustic wave filter has been used as a time interpolator in a time interval measurement device. We are presenting the experiments and results of an analysis of the nonlinear effects in such a time interpolator. The analysis shows that the nonlinear distortion in the time interpolator circuits causes a deterministic measurement error which can be understood as the time interpolation nonlinearity. The dependence of this error on time of the measured events can be expressed as a sparse Fourier series thus it usually oscillates very quickly in comparison to the clock period. The theoretical model is in good agreement with experiments carried out on an experimental two-channel timing system. Using highly linear amplifiers in the time interpolator and adjusting the filter excitation level to the optimum, we have achieved the interpolation nonlinearity below 0.2 ps. The overall single-shot precision of the experimental timing device is 0.9 ps rms in each channel.
Quasi-Isentropic Compressibility of Deuterium at a Pressure of 12 TPa
NASA Astrophysics Data System (ADS)
Mochalov, M. A.; Il'kaev, R. I.; Fortov, V. E.; Mikhailov, A. L.; Arinin, V. A.; Blikov, A. O.; Komrakov, V. A.; Maksimkin, I. P.; Ogorodnikov, V. A.; Ryzhkov, A. V.
2018-04-01
An experimental result for the quasi-isentropic compressibility of a strongly nonideal deuterium plasma compressed in a spherical device by the pressure P = 11400 GPa (114 Mbar) to the density ρ ≈ 10g/cm3 has been reported. The characteristics of the experimental device, diagnostic methods, and experimental results have been described. The trajectory of motion of metallic shells compressing a deuterium plasma has been recorded using intense pulsed sources of X rays with the boundary energy of electrons up to 60 MeV. The deuterium plasma density ρ ≈ 10g/cm3 has been determined from the measured radius of the shell at the time of its "stop." The pressure of the compressed plasma has been determined from gas-dynamic calculations taking into account the real characteristics of the experimental device.
. Another project used multivariate statistics to develop a novel device to non-invasively measure hydrogen Cellulosic Ethanol Production due to Experimental Measurement Uncertainty," Biotechnology for Biofuels
Experimental generation of Laguerre-Gaussian beam using digital micromirror device.
Ren, Yu-Xuan; Li, Ming; Huang, Kun; Wu, Jian-Guang; Gao, Hong-Fang; Wang, Zi-Qiang; Li, Yin-Mei
2010-04-01
A digital micromirror device (DMD) modulates laser intensity through computer control of the device. We experimentally investigate the performance of the modulation property of a DMD and optimize the modulation procedure through image correction. Furthermore, Laguerre-Gaussian (LG) beams with different topological charges are generated by projecting a series of forklike gratings onto the DMD. We measure the field distribution with and without correction, the energy of LG beams with different topological charges, and the polarization property in sequence. Experimental results demonstrate that it is possible to generate LG beams with a DMD that allows the use of a high-intensity laser with proper correction to the input images, and that the polarization state of the LG beam differs from that of the input beam.
An experimental study of perforated muzzle brakes
NASA Astrophysics Data System (ADS)
Dillon, R. E., Jr.; Nagamatsu, H. T.
1984-06-01
A firing test was conducted to examine the recoil efficiency and blast characteristics of perforated muzzle brakes fitted to a 20 mm cannon. Recoil impulse blast overpressures, muzzle velocity, sequential spark shadowgraphs, and photographs of the muzzle flash structure were obtained. Three different nuzzle devices were used with one device equipped with pressure transducers to measure the static pressure in the brake. Experimental results are compared with the earlier predictions of Dillon and Nagamatsu.
Development for equipment of the milk macromolecules content detection
NASA Astrophysics Data System (ADS)
Ding, Guochao; Li, Weimin; Shang, Tingyi; Xi, Yang; Gao, Yunli; Zhou, Zhen
Developed an experimental device for rapid and accurate detection of milk macromolecular content. This device developed based on laser scattered through principle, the principle use of the ingredients of the scattered light and transmitted light ratio characterization of macromolecules. Peristaltic pump to achieve automatic input and output of the milk samples, designing weak signal detection amplifier circuit for detecting the ratio with ICL7650. Real-time operating system μC / OS-II is the core design of the software part of the whole system. The experimental data prove that the device can achieve a fast real-time measurement of milk macromolecules.
Park, Young Seo; Jang, Yeong Min; Joo, Kyung Kwang
2018-04-01
This paper describes in brief features of various experimental devices constructed for half-ton synthesis of gadolinium(Gd)-loaded liquid scintillator (GdLS) and also includes the performances and detailed chemical and physical results of a 0.5% high-concentration GdLS. Various feasibility studies on useful apparatus used for loading Gd into solvents have been carried out. The transmittance, Gd concentration, density, light yield, and moisture content were measured for quality control. We show that with the help of adequate automated experimental devices and tools, it is possible to perform ton scale synthesis of GdLS at moderate laboratory scale without difficulty. The synthesized GdLS was satisfactory to meet chemical, optical, and physical properties and various safety requirements. These synthesizing devices can be expanded into massive scale next-generation neutrino experiments of several hundred tons.
NASA Astrophysics Data System (ADS)
Park, Young Seo; Jang, Yeong Min; Joo, Kyung Kwang
2018-04-01
This paper describes in brief features of various experimental devices constructed for half-ton synthesis of gadolinium(Gd)-loaded liquid scintillator (GdLS) and also includes the performances and detailed chemical and physical results of a 0.5% high-concentration GdLS. Various feasibility studies on useful apparatus used for loading Gd into solvents have been carried out. The transmittance, Gd concentration, density, light yield, and moisture content were measured for quality control. We show that with the help of adequate automated experimental devices and tools, it is possible to perform ton scale synthesis of GdLS at moderate laboratory scale without difficulty. The synthesized GdLS was satisfactory to meet chemical, optical, and physical properties and various safety requirements. These synthesizing devices can be expanded into massive scale next-generation neutrino experiments of several hundred tons.
Study of materials for space processing
NASA Technical Reports Server (NTRS)
Lal, R. B.
1975-01-01
Materials were selected for device applications and their commercial use. Experimental arrangements were also made for electrical characterization of single crystals using electrical resistivity and Hall effect measurements. The experimental set-up was tested with some standard samples.
Experimental determination of the PTW 60019 microDiamond dosimeter active area and volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinelli, Marco, E-mail: marco.marinelli@uniroma2
Purpose: Small field output correction factors have been studied by several research groups for the PTW 60019 microDiamond (MD) dosimeter, by comparing the response of such a device with both reference dosimeters and Monte Carlo simulations. A general good agreement is observed for field sizes down to about 1 cm. However, evident inconsistencies can be noticed when comparing some experimental results and Monte Carlo simulations obtained for smaller irradiation fields. This issue was tentatively attributed by some authors to unintentional large variations of the MD active surface area. The aim of the present study is a nondestructive experimental determination ofmore » the MD active surface area and active volume. Methods: Ten MD dosimeters, one MD prototype, and three synthetic diamond samples were investigated in the present work. 2D maps of the MD response were recorded under scanned soft x-ray microbeam irradiation, leading to an experimental determination of the device active surface area. Profiles of the device responses were measured as well. In order to evaluate the MD active volume, the thickness of the diamond sensing layer was independently evaluated by capacitance measurements and alpha particle detection experiments. The MD sensitivity, measured at the PTW calibration laboratory, was also used to calculate the device active volume thickness. Results: An average active surface area diameter of (2.19 ± 0.02) mm was evaluated by 2D maps and response profiles of all the MDs. Average active volume thicknesses of (1.01 ± 0.13) μm and (0.97 ± 0.14) μm were derived by capacitance and sensitivity measurements, respectively. The obtained results are well in agreement with the nominal values reported in the manufacturer dosimeter specifications. A homogeneous response was observed over the whole device active area. Besides the one from the device active volume, no contributions from other components of the housing nor from encapsulation materials were observed in the 2D response maps. Conclusions: The obtained results demonstrate the high reproducibility of the MD fabrication process. The observed discrepancies among the output correction factors reported by several authors for MD response in very small fields are very unlikely to be ascribed to unintentional variations of the device active surface area and volume. It is the opinion of the authors that the role of the volume averaging as well as of other perturbation effects should be separately investigated instead, both experimentally and by Monte Carlo simulations, in order to better clarify the behaviour of the MD response in very small fields.« less
A sensorless method for measuring the point mobility of mechanical structures
NASA Astrophysics Data System (ADS)
Boulandet, R.; Michau, M.; Herzog, P.; Micheau, P.; Berry, A.
2016-09-01
This paper presents a convenient and cost-effective experimental tool for measuring the mobility characteristics of a mechanical structure. The objective is to demonstrate that the point mobility measurement can be performed using only an electrodynamic inertial exciter. Unlike previous work based on voice coil actuators, no load cell or accelerometer is needed. Instead, it is theoretically shown that the mobility characteristics of the structure can be estimated from variations in the electrical input impedance of the actuator fixed onto it, provided that the electromechanical parameters of the actuator are known. The proof of concept is made experimentally using a cheap commercially available actuator on a simply supported plate, leading to a good dynamic range from 100 Hz to 1 kHz. The methodology to assess the basic parameters of the actuator is also given. Measured data are compared to a standard shaker testing and the strengths and weaknesses of the sensorless mobility measuring device are discussed. It is believed that this sensorless mobility measuring device can be a convenient experimental tool to determine the dynamic characteristics of a wide range of mechanical structures.
NASA Astrophysics Data System (ADS)
Huang, Wenkai; Huan, Shi; He, Junfeng; Jiang, Jichang
2018-03-01
In a split Hopkinson pressure bar (SHPB) experiment, the pasting quality of strain gauges will directly affect the accuracy of the measurement results. The traditional method of pasting the strain gauges is done manually by the experimenter. In the process of pasting, it is easy to shift or twist the strain gauge, and the experimental results are greatly affected by human factors. In this paper, a novel type automatic pasting device for strain gauges is designed and developed, which can be used to accurately and rapidly paste the strain gauges. The paste quality is reliable, and it can guarantee the consistency of SHPB experimental measurement. We found that a clamping force of 74 N achieved a success rate of 97%, whilst ensuring good adhesion.
Diehl, V A; Mills, C B
1995-11-01
In two experiments, subjects interacted to different extents with relevant devices while reading two complex multistep procedural texts and were then tested with task performance time, true/false, and recall measures. While reading, subjects performed the task (read and do), saw the experimenter perform the task (read and see experimenter do), imagined doing the task (read and imagine), looked at the device while reading (read and see), or only read (read only). Van Dijk and Kintsch's (1983) text representation theory led to the prediction that exposure to the task device (in the read-and-do, read-and-see, and read-and-see-experimenter-do conditions) would lead to the development of a stronger situation model and therefore faster task performance, whereas the read-only and read-and-see conditions would lead to a better textbase, and therefore better performance on the true/false and recall tasks. Paivio's (1991) dual coding theory led to the opposite prediction for recall. The results supported the text representation theory with task performance and recall. The read-and-see condition produced consistently good performance on the true/false measure. Amount of text study time contributed to recall performance. These findings support the notion that information available while reading leads to differential development of representations in memory, which, in turn, causes differences in performance on various measures.
Design optimization of beta- and photovoltaic conversion devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.; Blum, A.; Fischer-Colbrie, E.
1976-01-08
This report presents the theoretical and experimental results of an LLL Electronics Engineering research program aimed at optimizing the design and electronic-material parameters of beta- and photovoltaic p-n junction conversion devices. To meet this objective, a comprehensive computer code has been developed that can handle a broad range of practical conditions. The physical model upon which the code is based is described first. Then, an example is given of a set of optimization calculations along with the resulting optimized efficiencies for silicon (Si) and gallium-arsenide (GaAs) devices. The model we have developed, however, is not limited to these materials. Itmore » can handle any appropriate material--single or polycrystalline-- provided energy absorption and electron-transport data are available. To check code validity, the performance of experimental silicon p-n junction devices (produced in-house) were measured under various light intensities and spectra as well as under tritium beta irradiation. The results of these tests were then compared with predicted results based on the known or best estimated device parameters. The comparison showed very good agreement between the calculated and the measured results.« less
NASA Astrophysics Data System (ADS)
Kumar, Umesh; Ganesh, R.; Saxena, Y. C.; Thatipamula, Shekar G.; Sathyanarayana, K.; Raju, Daniel
2017-10-01
In magnetized toroidal devices without rotational transform also known as Simple Magnetized Torus (SMT). The device BETA at the IPR is one such SMT with a major radius of 45 cm, minor radius of 15 cm and a maximum toroidal field of 0.1 Tesla. Understanding confinement in such helical configurations is an important problem both for fundamental plasma physics and for Tokamak edge physics. In a recent series of experiments it was demonstrated experimentally that the mean plasma profiles, fluctuation, flow and turbulence depend crucially on the parallel connection length, which was controlled by external vertical field. In the present work, we report our experimental findings, wherein we measure the particle confinement time for hot cathode discharge and ECRH discharge, with variation in parallel connection length. As ECRH plasma don't have mean electric field and hence the poloidal rotation of plasma is absent. However, in hot cathode discharge, there exist strong poloidal flows due to mean electric field. An experimental comparison of these along with theoretical model with variation in connection length will be presented. We also present experimental measurements of variation of plasma confinement time with mass as well as the ratio of vertical field to toroidal magnetic field.
Long-distance measurement-device-independent multiparty quantum communication.
Fu, Yao; Yin, Hua-Lei; Chen, Teng-Yun; Chen, Zeng-Bing
2015-03-06
The Greenberger-Horne-Zeilinger (GHZ) entanglement, originally introduced to uncover the extreme violation of local realism against quantum mechanics, is an important resource for multiparty quantum communication tasks. But the low intensity and fragility of the GHZ entanglement source in current conditions have made the practical applications of these multiparty tasks an experimental challenge. Here we propose a feasible scheme for practically distributing the postselected GHZ entanglement over a distance of more than 100 km for experimentally accessible parameter regimes. Combining the decoy-state and measurement-device-independent protocols for quantum key distribution, we anticipate that our proposal suggests an important avenue for practical multiparty quantum communication.
NASA Astrophysics Data System (ADS)
Yuzhakov, AD; Nosarev, AV; Aleinik, AN
2017-11-01
This article describes the development of the experimental setup for measuring the cell membrane electrical potential by Double -Sucrose-Gap Technique. The double-gap isolation method allows the simultaneous measurement of electrical activity and tension output from contracting segments of muscle fibers. This technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations. This device can be an effective way to provide undergraduate biomedical engineering students with invaluable experiences in neurophysiology. The installation design and its main characteristics are described. The advantages of the described device are the simplicity of the experiment, relatively low cost, the possibility of long-term experiment.
Wibirama, Sunu; Nugroho, Hanung A
2017-07-01
Mobile devices addiction has been an important research topic in cognitive science, mental health, and human-machine interaction. Previous works observed mobile device addiction by logging mobile devices activity. Although immersion has been linked as a significant predictor of video game addiction, investigation on addiction factors of mobile device with behavioral measurement has never been done before. In this research, we demonstrated the usage of eye tracking to observe effect of screen size on experience of immersion. We compared subjective judgment with eye movements analysis. Non-parametric analysis on immersion score shows that screen size affects experience of immersion (p<;0.05). Furthermore, our experimental results suggest that fixational eye movements may be used as an indicator for future investigation of mobile devices addiction. Our experimental results are also useful to develop a guideline as well as intervention strategy to deal with smartphone addiction.
Binding configurations and intramolecular strain in single-molecule devices.
Rascón-Ramos, Habid; Artés, Juan Manuel; Li, Yuanhui; Hihath, Joshua
2015-05-01
The development of molecular-scale electronic devices has made considerable progress over the past decade, and single-molecule transistors, diodes and wires have all been demonstrated. Despite this remarkable progress, the agreement between theoretically predicted conductance values and those measured experimentally remains limited. One of the primary reasons for these discrepancies lies in the difficulty to experimentally determine the contact geometry and binding configuration of a single-molecule junction. In this Article, we apply a small-amplitude, high-frequency, sinusoidal mechanical signal to a series of single-molecule devices during junction formation and breakdown. By measuring the current response at this frequency, it is possible to determine the most probable binding and contact configurations for the molecular junction at room temperature in solution, and to obtain information about how an applied strain is distributed within the molecular junction. These results provide insight into the complex configuration of single-molecule devices, and are in excellent agreement with previous predictions from theoretical models.
Finite-element analysis of NiTi wire deflection during orthodontic levelling treatment
NASA Astrophysics Data System (ADS)
Razali, M. F.; Mahmud, A. S.; Mokhtar, N.; Abdullah, J.
2016-02-01
Finite-element analysis is an important product development tool in medical devices industry for design and failure analysis of devices. This tool helps device designers to quickly explore various design options, optimizing specific designs and providing a deeper insight how a device is actually performing. In this study, three-dimensional finite-element models of superelastic nickel-titanium arch wire engaged in a three brackets system were developed. The aim was to measure the effect of binding friction developed on wire-bracket interaction towards the remaining recovery force available for tooth movement. Uniaxial and three brackets bending test were modelled and validated against experimental works. The prediction made by the three brackets bending models shows good agreement with the experimental results.
NASA Technical Reports Server (NTRS)
Ross, B. E.
1971-01-01
The Moire method experimental stress analysis is similar to a problem encountered in astrometry. It is necessary to extract accurate coordinates from images on photographic plates. The solution to the mutual problem found applicable to the field of experimental stress analysis is presented to outline the measurement problem. A discussion of the photo-reading device developed to make the measurements follows.
NASA Astrophysics Data System (ADS)
Bilbro, Griff L.; Hou, Danqiong; Yin, Hong; Trew, Robert J.
2009-02-01
We have quantitatively modeled the conduction current and charge storage of an HFET in terms its physical dimensions and material properties. For DC or small-signal RF operation, no adjustable parameters are necessary to predict the terminal characteristics of the device. Linear performance measures such as small-signal gain and input admittance can be predicted directly from the geometric structure and material properties assumed for the device design. We have validated our model at low-frequency against experimental I-V measurements and against two-dimensional device simulations. We discuss our recent extension of our model to include a larger class of electron velocity-field curves. We also discuss the recent reformulation of our model to facilitate its implementation in commercial large-signal high-frequency circuit simulators. Large signal RF operation is more complex. First, the highest CW microwave power is fundamentally bounded by a brief, reversible channel breakdown in each RF cycle. Second, the highest experimental measurements of efficiency, power, or linearity always require harmonic load pull and possibly also harmonic source pull. Presently, our model accounts for these facts with an adjustable breakdown voltage and with adjustable load impedances and source impedances for the fundamental frequency and its harmonics. This has allowed us to validate our model for large signal RF conditions by simultaneously fitting experimental measurements of output power, gain, and power added efficiency of real devices. We show that the resulting model can be used to compare alternative device designs in terms of their large signal performance, such as their output power at 1dB gain compression or their third order intercept points. In addition, the model provides insight into new device physics features enabled by the unprecedented current and voltage levels of AlGaN/GaN HFETs, including non-ohmic resistance in the source access regions and partial depletion of the 2DEG in the drain access region.
NASA Astrophysics Data System (ADS)
Miroshnichenko, I. P.; Parinov, I. A.
2017-06-01
It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.
Viegas, Vítor; Dias Pereira, J. M.; Postolache, Octavian; Girão, Pedro Silva
2018-01-01
This paper presents a measurement system intended to monitor the usage of walker assistive devices. The goal is to guide the user in the correct use of the device in order to prevent risky situations and maximize comfort. Two risk indicators are defined: one related to force unbalance and the other related to motor incoordination. Force unbalance is measured by load cells attached to the walker legs, while motor incoordination is estimated by synchronizing force measurements with distance data provided by an optical sensor. The measurement system is equipped with a Bluetooth link that enables local supervision on a computer or tablet. Calibration and experimental results are included in the paper. PMID:29439428
Measuring the power consumption of social media applications on a mobile device
NASA Astrophysics Data System (ADS)
Dunia, A. I. M.; Suherman; Rambe, A. H.; Fauzi, R.
2018-03-01
As fully connected social media applications become popular and require all time connection, the power consumption on mobile device battery increases significantly. As power supplied by a battery is limited, social media application should be designed to be less power consuming. This paper reports the power consumption measurement of social media running on a mobile device. Experimental circuit was developed by using a microcontroller measuring an android smartphone on a 802.11 controlled network. The experiment results show that whatsapp consumes the power less than others in stand by and chat. While other states are dominated by line. The blackberry consumes the power the worst.
Experimental measurement-device-independent quantum digital signatures over a metropolitan network
NASA Astrophysics Data System (ADS)
Yin, Hua-Lei; Wang, Wei-Long; Tang, Yan-Lin; Zhao, Qi; Liu, Hui; Sun, Xiang-Xiang; Zhang, Wei-Jun; Li, Hao; Puthoor, Ittoop Vergheese; You, Li-Xing; Andersson, Erika; Wang, Zhen; Liu, Yang; Jiang, Xiao; Ma, Xiongfeng; Zhang, Qiang; Curty, Marcos; Chen, Teng-Yun; Pan, Jian-Wei
2017-04-01
Quantum digital signatures (QDSs) provide a means for signing electronic communications with information-theoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here we exploit a measurement-device-independent (MDI) quantum network, over a metropolitan area, to perform a field test of a three-party MDI QDS scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 10-7. Remarkably, our work demonstrates the feasibility of MDI QDSs for practical applications.
Indirect Blood Pressure Measuring Device
NASA Technical Reports Server (NTRS)
Hum, L.; Cole, C. E.
1973-01-01
Design and performance of a blood pressure recording device for pediatric use are reported. A strain gage transducer with a copper-beryllium strip as force sensing element is used to monitor skin movements and to convert them into electrical signals proportional to those displacements. Experimental tests with this device in recording of force developed above the left femoral artery of a dog accurately produced a blood pressure curve.
Sader, John E; Sanelli, Julian; Hughes, Barry D; Monty, Jason P; Bieske, Evan J
2011-09-01
The thermal noise spectrum of nanomechanical devices is commonly used to characterize their mechanical properties and energy dissipation. This spectrum is measured from finite time series of Brownian motion of the device, which is windowed and Fourier transformed. Here, we present a theoretical and experimental investigation of the effect of such finite sampling on the measured device quality factor. We prove that if no spectral window is used, the thermal noise spectrum retains its original Lorentzian distribution but with a reduced quality factor, indicating an apparent enhancement in energy dissipation. A simple analytical formula is derived connecting the true and measured quality factors - this enables extraction of the true device quality factor from measured data. Common windows used to reduce spectral leakage are found to distort the (true) Lorentzian shape, potentially making fitting problematic. These findings are expected to be of particular importance for devices with high quality factors, where spectral resolution can be limited in practice. Comparison and validation using measurements on atomic force microscope cantilevers are presented. © 2011 American Institute of Physics
Experimental Measurement-Device-Independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei
2013-09-01
Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.
Experimental measurement-device-independent quantum key distribution.
Liu, Yang; Chen, Teng-Yun; Wang, Liu-Jun; Liang, Hao; Shentu, Guo-Liang; Wang, Jian; Cui, Ke; Yin, Hua-Lei; Liu, Nai-Le; Li, Li; Ma, Xiongfeng; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Zhang, Qiang; Pan, Jian-Wei
2013-09-27
Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.
Probing for quantum speedup on D-Wave Two
NASA Astrophysics Data System (ADS)
Rønnow, Troels F.; Wang, Zhihui; Job, Joshua; Isakov, Sergei V.; Boixo, Sergio; Lidar, Daniel; Martinis, John; Troyer, Matthias
2014-03-01
Quantum speedup refers to the advantage quantum devices can have over classical ones in solving classes of computational problems. In this talk we show how to correctly define and measure quantum speedup in experimental devices. We show how to avoid issues that might mask or fake quantum speedup.
Collection of low-grade waste heat for enhanced energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less
Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors.
Godin, Thomas; Fromager, Michael; Cagniot, Emmanuel; Brunel, Marc; Aït-Ameur, Kamel
2013-12-01
We propose a new device that is able to perform highly sensitive wavefront measurements based on the use of continuous position sensitive detectors and without resorting to any reconstruction process. We demonstrate experimentally its ability to measure small wavefront distortions through the characterization of pump-induced refractive index changes in laser material. In addition, it is shown using computer-generated holograms that this device can detect phase discontinuities as well as improve the quality of sharp phase variations measurements. Results are compared to reference Shack-Hartmann measurements, and dramatic enhancements are obtained.
NASA Astrophysics Data System (ADS)
Badano, Aldo
1999-11-01
This thesis addresses the characterization of light scattering processes that degrade image quality in high performance electronic display devices for digital radiography. Using novel experimental and computational tools, we study the lateral diffusion of light in emissive display devices that causes extensive veiling glare and significant reduction of the physical contrast. In addition, we examine the deleterious effects of ambient light reflections that affect the contrast of low luminance regions, and superimpose unwanted structured signal. The analysis begins by introducing the performance limitations of the human visual system to define high fidelity requirements. It is noted that current devices severely suffer from image quality degradation due to optical transport processes. To model the veiling glare and reflectance characteristics of display devices, we introduce a Monte Carlo light transport simulation code, DETECT-II, that tracks individual photons through multiple scattering events. The simulation accounts for the photon polarization state at each scattering event, and provides descriptions for rough surfaces and thin film coatings. A new experimental method to measure veiling glare is described next, based on a conic collimated probe that minimizes contamination from bright areas. The measured veiling glare ratio is taken to be the luminance in the surrounding bright field divided by the luminance in the dark circle. We show that veiling glare ratios in the order of a few hundreds can be measured with an uncertainty of a few percent. The veiling glare response function is obtained by measuring the small spot contrast ratio of test patterns having varying dark spot radius. Using DETECT-II, we then estimate the ring response functions for a high performance medical imaging monitor of current design, and compare the predictions of the model with the experimentally measured response function. The data presented in this thesis demonstrate that although absorption in the faceplate of high performance monochrome cathode-ray tube monitors have reduced glare, a black matrix design is needed for high fidelity applications. For a high performance medical imaging monitor with anti-reflective coating, the glare ratio for a 1 cm diameter dark spot was measured to be 240. Finally, we introduce experimental techniques for measurements of specular and diffuse display reflectance, and we compare measured reflection coefficients with Monte Carlo estimates. A specular reflection coefficient of 0.0012, and a diffuse coefficient of 0.005 nits/lux are required to minimize degradation from ambient light in rooms with 100 lux illumination. In spite of having comparable reflection coefficients, the low maximum luminance of current devices worsens the effect of ambient light reflections when compared to radiographic film. Flat panel technologies with optimized designs can perform even better than film due to a thin faceplate, increased light absorption, and high brightness.
Theoretical Study of Gilbert Damping and Spin Dynamics in Spintronic Devices
NASA Astrophysics Data System (ADS)
Qu, Tao
The determination of damping mechanisms is one of the most fundamental problems of magnetism. It represents the elimination of the magnetic energy and thus has broad impact in both science and technology. The dynamic time scale in spintronic devices is controlled by the damping and the consumed power depends on the damping constant squared. In recent years, the interest in high perpendicular anisotropy materials and thin film structures have increased considerably, owing to their stability over a wide temperature range when scaling devices to nanometer length scales. However, the conventional measurement method-Ferromagnetic resonance (FMR) can not produce accurate damping results in the high magnetic crystalline anisotropy materials/structures, and the intrinsic damping reported experimentally diverges among investigators, probably due to the varying fabrication techniques. This thesis describes the application of the Kambersky torque correlation technique, within the tight binding method, to multiple materials with high perpendicular magnetic anisotropy ( 10 7 erg/cm3), in both bulk and thin film structures. The impact of the inevitable experimental defects on the energy dissipation is identified and the experimental damping divergence among investigators due to the material degree of order is explained. It is demonstrated that this corresponds to an enhanced DOS at the Fermi level, owing to the rounding of the DOS with loss of long-range order. The consistency of the predicted damping constant with experimental measurement is demonstrated and the interface contribution to the energy damping constant in potential superlattices and heterostructures for spintronic devices is explored. An optimized structure will be a tradeoff involving both anisotropy and damping. The damping related spin dynamics in spintronic devices for different applications is investigated. One device is current perpendicular to planes(CPP) spin valve. Incoherent scattering matrices are applied to calculate the angle dependent magnetoresistantce and obtain analytic expressions for the spin valve. The non-linearity of magnetoresistance can be quantitatively explained by reflected electrons using only experimental spin polarization as input. The other device is a spin-transfer-torque nano-oscillator. The Landau-Lifshitz-Gilbert equation is applied and the synchronization requirement for experimentally fabricated non-identical multi spintronic oscillators is explored. Power enhancement and noise decrease for the synchronized state is demonstrated in a temperature range. Through introducing combined electric and magnetic coupling effect, a design for an optimized feasible nanopillar structure suitable for thin-film deposition is developed.
Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak
NASA Astrophysics Data System (ADS)
Bi, Yafeng; Jia, Han; Sun, Zhaoyong; Yang, Yuzhen; Zhao, Han; Yang, Jun
2018-05-01
We present the design, architecture, and detailed performance of a three-dimensional (3D) underwater acoustic carpet cloak (UACC). The proposed system of the 3D UACC is an octahedral pyramid, which is composed of periodical steel strips. This underwater acoustic device, placed over the target to hide, is able to manipulate the scattered wavefront to mimic a reflecting plane. The effectiveness of the prototype is experimentally demonstrated in an anechoic tank. The measured acoustic pressure distributions show that the 3D UACC can work in all directions in a wide frequency range. This experimental verification of 3D device paves the way for guidelines on future practical applications.
A device for high-throughput monitoring of degradation in soft tissue samples.
Tzeranis, D S; Panagiotopoulos, I; Gkouma, S; Kanakaris, G; Georgiou, N; Vaindirlis, N; Vasileiou, G; Neidlin, M; Gkousioudi, A; Spitas, V; Macheras, G A; Alexopoulos, L G
2018-06-06
This work describes the design and validation of a novel device, the High-Throughput Degradation Monitoring Device (HDD), for monitoring the degradation of 24 soft tissue samples over incubation periods of several days inside a cell culture incubator. The device quantifies sample degradation by monitoring its deformation induced by a static gravity load. Initial instrument design and experimental protocol development focused on quantifying cartilage degeneration. Characterization of measurement errors, caused mainly by thermal transients and by translating the instrument sensor, demonstrated that HDD can quantify sample degradation with <6 μm precision and <10 μm temperature-induced errors. HDD capabilities were evaluated in a pilot study that monitored the degradation of fresh ex vivo human cartilage samples by collagenase solutions over three days. HDD could robustly resolve the effects of collagenase concentration as small as 0.5 mg/ml. Careful sample preparation resulted in measurements that did not suffer from donor-to-donor variation (coefficient of variance <70%). Due to its unique combination of sample throughput, measurement precision, temporal sampling and experimental versality, HDD provides a novel biomechanics-based experimental platform for quantifying the effects of proteins (cytokines, growth factors, enzymes, antibodies) or small molecules on the degradation of soft tissues or tissue engineering constructs. Thereby, HDD can complement established tools and in vitro models in important applications including drug screening and biomaterial development. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Torregrosa, A. J.; Arnau, F. J.; Piqueras, P.; Sanchis, E. J.; Tartoussi, H.
2017-05-01
The increasing limits of standards on aerosol and gaseous emissions from internal combustion engines have led to the progressive inclusion of different exhaust aftertreatment systems (EATS) as a part of the powertrain. Regulated emissions are generally abated making use of devices based on monolithic structures with different chemical functions. As a side effect, wave transmission across the device is affected and so is the boundary at the exhaust line inlet, so that the design of the latter is in turn affected. While some models are available for the prediction of these effects, the geometrical complexity of many devices makes still necessary in many cases to rely on experimental measurements, which cannot cover all the diversity of flow conditions under which these devices operate. To overcome this limitation, a phenomenological methodology is proposed in this work that allows for the sound extrapolation of experimental results to flow conditions different from those used in the measurements. The transfer matrix is obtained from tests in an impulse rig for different excitation amplitudes and mean flows. The experimental coefficients of the transmission matrix of the device are fitted to Fourier series. It allows treating the influence of the flow conditions on the acoustic response, which is manifested on changes in the characteristic periods, separately from the specific properties of every device. In order to provide predictive capabilities to the method, the Fourier series approach is coupled to a gas dynamics model able to account for the sensitivity of propagation velocity to variations in the flow conditions.
Passive device based on plastic optical fibers to determine the indices of refraction of liquids.
Zubia, J; Garitaonaindía, G; Arrúe, J
2000-02-20
We have designed and measured a passive device based on plastic optical fibers (POF's) that one can use to determine the indices of refraction of liquids. A complementary software has also been designed to simulate the behavior of the device. We report on the theoretical model developed for the device, its implementation in a simulation software program, and the results of the simulation. A comparison of the experimental and calculated results is also shown and discussed.
Advanced Experimental Methods for Low-temperature Magnetotransport Measurement of Novel Materials
Hagmann, Joseph A.; Le, Son T.; Richter, Curt A.; Seiler, David G.
2016-01-01
Novel electronic materials are often produced for the first time by synthesis processes that yield bulk crystals (in contrast to single crystal thin film synthesis) for the purpose of exploratory materials research. Certain materials pose a challenge wherein the traditional bulk Hall bar device fabrication method is insufficient to produce a measureable device for sample transport measurement, principally because the single crystal size is too small to attach wire leads to the sample in a Hall bar configuration. This can be, for example, because the first batch of a new material synthesized yields very small single crystals or because flakes of samples of one to very few monolayers are desired. In order to enable rapid characterization of materials that may be carried out in parallel with improvements to their growth methodology, a method of device fabrication for very small samples has been devised to permit the characterization of novel materials as soon as a preliminary batch has been produced. A slight variation of this methodology is applicable to producing devices using exfoliated samples of two-dimensional materials such as graphene, hexagonal boron nitride (hBN), and transition metal dichalcogenides (TMDs), as well as multilayer heterostructures of such materials. Here we present detailed protocols for the experimental device fabrication of fragments and flakes of novel materials with micron-sized dimensions onto substrate and subsequent measurement in a commercial superconducting magnet, dry helium close-cycle cryostat magnetotransport system at temperatures down to 0.300 K and magnetic fields up to 12 T. PMID:26863449
Single-Image Distance Measurement by a Smart Mobile Device.
Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling
2017-12-01
Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.
Electromagnetic field tapering using all-dielectric gradient index materials.
Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz
2016-07-28
The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.
Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device.
Picone, Rico A R; Davis, Solomon; Devine, Cameron; Garbini, Joseph L; Sidles, John A
2017-04-01
We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.
Instrumentation and control of harmonic oscillators via a single-board microprocessor-FPGA device
NASA Astrophysics Data System (ADS)
Picone, Rico A. R.; Davis, Solomon; Devine, Cameron; Garbini, Joseph L.; Sidles, John A.
2017-04-01
We report the development of an instrumentation and control system instantiated on a microprocessor-field programmable gate array (FPGA) device for a harmonic oscillator comprising a portion of a magnetic resonance force microscope. The specific advantages of the system are that it minimizes computation, increases maintainability, and reduces the technical barrier required to enter the experimental field of magnetic resonance force microscopy. Heterodyne digital control and measurement yields computational advantages. A single microprocessor-FPGA device improves system maintainability by using a single programming language. The system presented requires significantly less technical expertise to instantiate than the instrumentation of previous systems, yet integrity of performance is retained and demonstrated with experimental data.
An Implementation-Focused Bio/Algorithmic Workflow for Synthetic Biology.
Goñi-Moreno, Angel; Carcajona, Marta; Kim, Juhyun; Martínez-García, Esteban; Amos, Martyn; de Lorenzo, Víctor
2016-10-21
As synthetic biology moves away from trial and error and embraces more formal processes, workflows have emerged that cover the roadmap from conceptualization of a genetic device to its construction and measurement. This latter aspect (i.e., characterization and measurement of synthetic genetic constructs) has received relatively little attention to date, but it is crucial for their outcome. An end-to-end use case for engineering a simple synthetic device is presented, which is supported by information standards and computational methods and focuses on such characterization/measurement. This workflow captures the main stages of genetic device design and description and offers standardized tools for both population-based measurement and single-cell analysis. To this end, three separate aspects are addressed. First, the specific vector features are discussed. Although device/circuit design has been successfully automated, important structural information is usually overlooked, as in the case of plasmid vectors. The use of the Standard European Vector Architecture (SEVA) is advocated for selecting the optimal carrier of a design and its thorough description in order to unequivocally correlate digital definitions and molecular devices. A digital version of this plasmid format was developed with the Synthetic Biology Open Language (SBOL) along with a software tool that allows users to embed genetic parts in vector cargoes. This enables annotation of a mathematical model of the device's kinetic reactions formatted with the Systems Biology Markup Language (SBML). From that point onward, the experimental results and their in silico counterparts proceed alongside, with constant feedback to preserve consistency between them. A second aspect involves a framework for the calibration of fluorescence-based measurements. One of the most challenging endeavors in standardization, metrology, is tackled by reinterpreting the experimental output in light of simulation results, allowing us to turn arbitrary fluorescence units into relative measurements. Finally, integration of single-cell methods into a framework for multicellular simulation and measurement is addressed, allowing standardized inspection of the interplay between the carrier chassis and the culture conditions.
Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers
Ansari, M H; Karami, M Amin
2018-01-01
This paper studies the fabrication and testing of a magnet free piezoelectric energy harvester (EH) for powering biomedical devices and sensors inside the body. The design for the EH is a fan-folded structure consisting of bimorph piezoelectric beams folding on top of each other. An actual size experimental prototype is fabricated to verify the developed analytical models. The model is verified by matching the analytical results of the tip acceleration frequency response functions (FRF) and voltage FRF with the experimental results. The generated electricity is measured when the EH is excited by the heartbeat. A closed loop shaker system is utilized to reproduce the heartbeat vibrations. Achieving low fundamental natural frequency is a key factor to generate sufficient energy for pacemakers using heartbeat vibrations. It is shown that the natural frequency of the small-scale device is less than 20 Hz due to its unique fan-folded design. The experimental results show that the small-scale EH generates sufficient power for state of the art pacemakers. The 1 cm3 EH with18.4 gr tip mass generates more than16 μW of power from a normal heartbeat waveform. The robustness of the device to the heart rate is also studied by measuring the relation between the power output and the heart rate. PMID:29674807
Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers.
Ansari, M H; Karami, M Amin
2017-06-01
This paper studies the fabrication and testing of a magnet free piezoelectric energy harvester (EH) for powering biomedical devices and sensors inside the body. The design for the EH is a fan-folded structure consisting of bimorph piezoelectric beams folding on top of each other. An actual size experimental prototype is fabricated to verify the developed analytical models. The model is verified by matching the analytical results of the tip acceleration frequency response functions (FRF) and voltage FRF with the experimental results. The generated electricity is measured when the EH is excited by the heartbeat. A closed loop shaker system is utilized to reproduce the heartbeat vibrations. Achieving low fundamental natural frequency is a key factor to generate sufficient energy for pacemakers using heartbeat vibrations. It is shown that the natural frequency of the small-scale device is less than 20 Hz due to its unique fan-folded design. The experimental results show that the small-scale EH generates sufficient power for state of the art pacemakers. The 1 cm 3 EH with18.4 gr tip mass generates more than16 μ W of power from a normal heartbeat waveform. The robustness of the device to the heart rate is also studied by measuring the relation between the power output and the heart rate.
Hasani, E; Parravicini, J; Tartara, L; Tomaselli, A; Tomassini, D
2018-05-01
We propose an innovative experimental approach to estimate the two-photon absorption (TPA) spectrum of a fluorescent material. Our method develops the standard indirect fluorescence-based method for the TPA measurement by employing a line-shaped excitation beam, generating a line-shaped fluorescence emission. Such a configuration, which requires a relatively high amount of optical power, permits to have a greatly increased fluorescence signal, thus avoiding the photon counterdetection devices usually used in these measurements, and allowing to employ detectors such as charge-coupled device (CCD) cameras. The method is finally tested on a fluorescent isothiocyanate sample, whose TPA spectrum, which is measured with the proposed technique, is compared with the TPA spectra reported in the literature, confirming the validity of our experimental approach. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Using smartphones and tablet PCs for β--spectroscopy in an educational experimental setup
NASA Astrophysics Data System (ADS)
Gröber, Sebastian; Molz, Alexander; Kuhn, Jochen
2014-11-01
A magnetic spectrometer is used to gather the β--spectrum of 90 Sr /Y with a focus on two aspects. (1) The intensity of β--radiation is measured by the camera sensor module of a tablet PC together with the RadioactivityCounter app and by a Geiger-Müller tube. We evaluate the quality of mobile devices as radioactive radiation detectors by using polyenergetic β--radiation as an example and by comparing the spectra measured with the two detector types. (2) For educational purposes we implement a simple experimental setup, which consists of separate devices for measuring the electron’s kinetic energy and intensity, which are available in laboratories in educational settings. Comparison of the measured β--spectra published in the literature should encourage students to think about the energy resolution power of the β--spectrometer. Theoretical considerations show the low, yet sufficient energy resolution power of this spectrometer, especially for low energy levels.
Modulation characteristics of graphene-based thermal emitters
NASA Astrophysics Data System (ADS)
Mahlmeister, Nathan Howard; Lawton, Lorreta Maria; Luxmoore, Isaac John; Nash, Geoffrey Richard
2016-01-01
We have investigated the modulation characteristics of the emission from a graphene-based thermal emitter both experimentally and through simulations using finite element method modelling. Measurements were performed on devices containing square multilayer graphene emitting areas, with the devices driven by a pulsed DC drive current over a range of frequencies. Simulations show that the dominant heat path is from the emitter to the underlying substrate, and that the thermal resistance between the graphene and the substrate determines the modulation characteristics. This is confirmed by measurements made on devices in which the emitting area is encapsulated by hexagonal boron nitride.
Experimental Measurements at the MASURCA Facility
NASA Astrophysics Data System (ADS)
Assal, W.; Bosq, J. C.; Mellier, F.
2012-12-01
Dedicated to the neutronics studies of fast and semi-fast reactor lattices, MASURCA (meaning “mock-up facility for fast breeder reactor studies at CADARACHE”) is an airflow cooled fast reactor operating at a maximum power of 5 kW playing an important role in the CEA research activities. At this facility, a lot of neutron integral experimental programs were undertaken. The purpose of this poster is to show a panorama of the facility from this experimental measurement point of view. A hint at the forthcoming refurbishment will be included. These programs include various experimental measurements (reactivity, distributions of fluxes, reaction rates), performed essentially with fission chambers, in accordance with different methods (noise methods, radial or axial traverses, rod drops) and involving several devices systems (monitors, fission chambers, amplifiers, power supplies, data acquisition systems ...). For this purpose are implemented electronics modules to shape the signals sent from the detectors in various mode (fluctuation, pulse, current). All the electric and electronic devices needed for these measurements and the relating wiring will be fully explained through comprehensive layouts. Data acquired during counting performed at the time of startup phase or rod drops are analyzed by the mean of a Neutronic Measurement Treatment (TMN in French) programmed on the basis of the MATLAB software. This toolbox gives the opportunity of data files management, reactivity valuation from neutronics measurements and transient or divergence simulation at zero power. Particular TMN using at MASURCA will be presented.
NASA Astrophysics Data System (ADS)
Sakuma, I.; Kikuchi, Y.; Kitagawa, Y.; Asai, Y.; Onishi, K.; Fukumoto, N.; Nagata, M.
2015-08-01
We have developed a unique experimental device of so-called double plasma gun, which consists of two magnetized coaxial plasma gun (MCPG) devices, in order to clarify effects of vapor shielding on material erosion due to transient events in magnetically confined fusion devices. Two ELM-like pulsed plasmas produced by the two MCPG devices were injected into a target chamber with a variable time difference. For generating ablated plasmas in front of a target material, an aluminum foil sample in the target chamber was exposed to a pulsed plasma produced by the 1st MCPG device. The 2nd pulsed plasma was produced with a time delay of 70 μs. It was found that a surface absorbed energy measured by a calorimeter was reduced to ∼66% of that without the Al foil sample. Thus, the reduction of the incoming plasma energy by the vapor shielding effect was successfully demonstrated in the present experiment.
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Taguchi, Dai
2018-03-01
Thermally stimulated current (TSC) measurement is widely used in a variety of research fields, i.e., physics, electronics, electrical engineering, chemistry, ceramics, and biology. TSC is short-circuit current that flows owing to the displacement of charges in samples during heating. TSC measurement is very simple, but TSC curves give very important information on charge behaviors. In the 1970s, TSC measurement contributed greatly to the development of electrical insulation engineering, semiconductor device technology, and so forth. Accordingly, the TSC experimental technique and its analytical method advanced. Over the past decades, many new molecules and advanced functional materials have been discovered and developed. Along with this, TSC measurement has attracted much attention in industries and academic laboratories as a way of characterizing newly discovered materials and devices. In this review, we report the latest research trend in the TSC method for the development of materials and devices in Japan.
A non-invasive online photoionization spectrometer for FLASH2.
Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai
2016-01-01
The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon-matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer.
A non-invasive online photoionization spectrometer for FLASH2
Braune, Markus; Brenner, Günter; Dziarzhytski, Siarhei; Juranić, Pavle; Sorokin, Andrey; Tiedtke, Kai
2016-01-01
The stochastic nature of the self-amplified spontaneous emission (SASE) process of free-electron lasers (FELs) effects pulse-to-pulse fluctuations of the radiation properties, such as the photon energy, which are determinative for processes of photon–matter interactions. Hence, SASE FEL sources pose a great challenge for scientific investigations, since experimenters need to obtain precise real-time feedback of these properties for each individual photon bunch for interpretation of the experimental data. Furthermore, any device developed to deliver the according information should not significantly interfere with or degrade the FEL beam. Regarding the spectral properties, a device for online monitoring of FEL wavelengths has been developed for FLASH2, which is based on photoionization of gaseous targets and the measurements of the corresponding electron and ion time-of-flight spectra. This paper presents experimental studies and cross-calibration measurements demonstrating the viability of this online photoionization spectrometer. PMID:26698040
Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration.
Zhang, Yangyang; Lu, Bingwei; Lü, Chaofeng; Feng, Xue
2017-11-01
Self-powered implantable devices with flexible energy harvesters are of significant interest due to their potential to solve the problem of limited battery life and surgical replacement. The flexible electronic devices made of piezoelectric materials have been employed to harvest energy from the motion of biological organs. Experimental measurements show that the output voltage of the device mounted on porcine left ventricle in chest closed environment decreases significantly compared to the case of chest open. A restricted-space deformation model is proposed to predict the impeding effect of pleural cavity, surrounding tissues, as well as respiration on the efficiency of energy harvesting from heartbeat using flexible piezoelectric devices. The analytical solution is verified by comparing theoretical predictions to experimental measurements. A simple scaling law is established to analyse the intrinsic correlations between the normalized output power and the combined system parameters, i.e. the normalized permitted space and normalized electrical load. The results may provide guidelines for optimization of in vivo energy harvesting from heartbeat or the motions of other biological organs using flexible piezoelectric energy harvesters.
Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration
NASA Astrophysics Data System (ADS)
Zhang, Yangyang; Lu, Bingwei; Lü, Chaofeng; Feng, Xue
2017-11-01
Self-powered implantable devices with flexible energy harvesters are of significant interest due to their potential to solve the problem of limited battery life and surgical replacement. The flexible electronic devices made of piezoelectric materials have been employed to harvest energy from the motion of biological organs. Experimental measurements show that the output voltage of the device mounted on porcine left ventricle in chest closed environment decreases significantly compared to the case of chest open. A restricted-space deformation model is proposed to predict the impeding effect of pleural cavity, surrounding tissues, as well as respiration on the efficiency of energy harvesting from heartbeat using flexible piezoelectric devices. The analytical solution is verified by comparing theoretical predictions to experimental measurements. A simple scaling law is established to analyse the intrinsic correlations between the normalized output power and the combined system parameters, i.e. the normalized permitted space and normalized electrical load. The results may provide guidelines for optimization of in vivo energy harvesting from heartbeat or the motions of other biological organs using flexible piezoelectric energy harvesters.
Comparisons of dense-plasma-focus kinetic simulations with experimental measurements.
Schmidt, A; Link, A; Welch, D; Ellsworth, J; Falabella, S; Tang, V
2014-06-01
Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.
Dynamic pressure measurement of cartridge operated vole captive bolt devices.
Frank, M; Philipp, K P; Franke, E; Frank, N; Bockholdt, B; Grossjohann, R; Ekkernkamp, A
2009-01-10
Vole captive bolt devices are powder actuated spring guns that are used as a pest control mean. After having triggered the explosion of the blank cartridge by touching a metal ring around the muzzle, the vole is killed by the massive propulsion of the gas jet. Improper use and recklessness while handling these devices may cause severe injuries with the hand of the operator at particular risk. Currently, there are no experimental investigations on the ballistic background of these devices. An experimental test set-up was designed for measurement of the firing pressure and the dynamic force of the gas jet of a vole captive bolt device. Therefore, a vole captive bolt device was prepared with a pressure take-off channel and a piezoelectric transducer for measurement of the firing pressure. For measurement of the dynamic impact force of the gas jet an annular quartz force sensor was installed on a test bench. Each three simultaneous measurements of the cartridges' firing pressure and the dynamic force of the blast wave were taken at various distances between muzzle and load washer. The maximum gas pressure in the explosion chamber was up to 1100 bar. The shot development over time showed a typical gas pressure curve. Flow velocity of the gas jet was up to 2000 m/s. The maximum impact force of the gas jet at the target showed a strong inverse ratio to the muzzle's distance and was up to 11,500 N for the contact shot distance. Energy density of the gas jet for the close contact shot was far beyond the energy density required for skin penetration. The unique design features (short tube between cartridge mouth and muzzle and narrow diameter of the muzzle) of these gadgets are responsible for the high firing pressure, velocity and force of the gas jet. These findings explain the trauma mechanics of the extensive tissue damage observed in accidental shots of these devices.
Experimental device for measuring the dynamic properties of diaphragm motors
NASA Astrophysics Data System (ADS)
Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan
The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.
Moderation of neoclassical impurity accumulation in high temperature plasmas of helical devices
NASA Astrophysics Data System (ADS)
Velasco, J. L.; Calvo, I.; Satake, S.; Alonso, A.; Nunami, M.; Yokoyama, M.; Sato, M.; Estrada, T.; Fontdecaba, J. M.; Liniers, M.; McCarthy, K. J.; Medina, F.; Van Milligen, B. Ph; Ochando, M.; Parra, F.; Sugama, H.; Zhezhera, A.; The LHD Experimental Team; The TJ-II Team
2017-01-01
Achieving impurity and helium ash control is a crucial issue in the path towards fusion-grade magnetic confinement devices, and this is particularly the case of helical reactors, whose low-collisionality ion-root operation scenarios usually display a negative radial electric field which is expected to cause inwards impurity pinch. In this work we discuss, based on experimental measurements and standard predictions of neoclassical theory, how plasmas of very low ion collisionality, similar to those observed in the impurity hole of the large helical device (Yoshinuma et al and The LHD Experimental Group 2009 Nucl. Fusion 49 062002, Ida et al and The LHD Experimental Group 2009 Phys. Plasmas 16 056111 and Yokoyama et al and LHD Experimental Group 2002 Nucl. Fusion 42 143), can be an exception to this general rule, and how a negative radial electric field can coexist with an outward impurity flux. This interpretation is supported by comparison with documented discharges available in the International Stellarator-Heliotron Profile Database, and it can be extrapolated to show that achievement of high ion temperature in the core of helical devices is not fundamentally incompatible with low core impurity content.
Lai, Chien-Hung; Leung, Ting-Kai; Peng, Chih-Wei; Chang, Kwang-Hwa; Lai, Ming-Jun; Lai, Wen-Fu; Chen, Shih-Ching
2014-02-01
The objective of this study was to determine the relative efficacy of irradiation using a device containing a far-infrared emitting ceramic powder (cFIR) for the management of chronic myofascial neck pain compared with a control treatment. This was a randomized, double-blind, placebo-controlled pilot study. The study comprised 48 patients with chronic, myofascial neck pain. Patients were randomly assigned to the experimental group or the control (sham-treatment) group. The patients in the experimental group wore a cFIR neck device for 1 week, and the control group wore an inert neck device for 1 week. Quantitative measurements based on a visual analogue scale (VAS) scoring of pain, a sleep quality assessment, pressure-pain threshold (PPT) testing, muscle tone and compliance analysis, and skin temperature analysis were obtained. Both the experimental and control groups demonstrated significant improvement in pain scores. However, no statistically significant difference in the pain scores was observed between the experimental and control groups. Significant decreases in muscle stiffness in the upper regions of the trapezius muscles were reported in the experimental group after 1 week of treatment. Short-term treatment using the cFIR neck device partly reduced muscle stiffness. Although the differences in the VAS and PPT scores for the experimental and control groups were not statistically significant, the improvement in muscle stiffness in the experimental group warrants further investigation of the long-term effects of cFIR treatment for pain management.
Polarized electroluminescence from edge-emission organic light emitting devices
NASA Astrophysics Data System (ADS)
Ran, G. Z.; Jiang, D. F.
2011-01-01
We report the experimental observation and measurement of the polarized electroluminescence from an edge-emission Si based- organic light emitting device (OLED) with a Sm/Au or Sm/Ag cathode. Light collected from the OLED edge comes from the scattering of the surface plasmon polaritons (SPPs) at the device boundary. This experiment shows that such Si-OLED can be an electrically excited SPP source on a silicon chip for optical interconnect based on SPPs.
Wang, Pengfei; Hatta, Agus Muhamad; Zhao, Haoyu; Zheng, Jie; Farrell, Gerald; Brambilla, Gilberto
2015-01-01
A ratiometric wavelength measurement based on a Silicon-on-Insulator (SOI) integrated device is proposed and designed, which consists of directional couplers acting as two edge filters with opposite spectral responses. The optimal separation distance between two parallel silicon waveguides and the interaction length of the directional coupler are designed to meet the desired spectral response by using local supermodes. The wavelength discrimination ability of the designed ratiometric structure is demonstrated by a beam propagation method numerically and then is verified experimentally. The experimental results have shown a general agreement with the theoretical models. The ratiometric wavelength system demonstrates a resolution of better than 50 pm at a wavelength around 1550 nm with ease of assembly and calibration. PMID:26343668
NASA Astrophysics Data System (ADS)
Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen
2005-05-01
We describe the design, fabrication, testing and application (in structural experiments) of our 2004 (second generation) MEMS device, designed for acoustic emission sensing based upon experiments with our 2002 (first generation) device. Both devices feature a suite of resonant-type transducers in the frequency range between 100 kHz and 1 MHz. The 2002 device was designed to operate in an evacuated housing because of high squeeze film damping, as confirmed in our earlier experiments. In additional studies involving the 2002 device, experimental simulation of acoustic emissions in a steel plate, using pencil lead break or ball impact loading, showed that the transducers in the frequency range of 100 kHz-500 kHz presented clearer output signals than the transducers with frequencies higher than 500 kHz. Using the knowledge gained from the 2002 device, we designed and fabricated our second generation device in 2004 using the multi-user polysilicon surface micromachining (MUMPs) process. The 2004 device has 7 independent capacitive type transducers, compared to 18 independent transducers in the 2002 device, including 6 piston type transducers in the frequency range of 100 kHz to 500 kHz and 1 piston type transducer at 1 MHz to capture high frequency information. Piston type transducers developed in our research have two uncoupled modes so that twofold information can be acquired from a single transducer. In addition, the piston shape helps to reduce residual stress effect of surface micromachining process. The center to center distance between etch holes in the vibrating plate was reduced from 30 μm to 13 μm, in order to reduce squeeze film damping. As a result, the Q factor under atmospheric pressure for the 100 kHz transducer was increased to 2.37 from 0.18, and therefore the vacuum housing has been eliminated from the 2004 device. Sensitivities of transducers were also increased, by enlarging transducer area, in order to capture significant small amplitude acoustic emission events. The average individual transducer area in the 2004 device was increased to 6.97 mm2 as compared to 2.51 mm2 in the 2002 device. In this paper, we report the new experimental results on the characterization of the 2004 device and compare them with analytical results. We show improvements in sensitivity as measured by capacitance and as measured by pencil lead break experiments. Improvement in damping is also evaluated by admittance measurement in atmosphere. Pencil lead break experiments also show that transducers can operate in atmospheric pressure. Finally, we apply the device to acoustic emission experiments on crack propagation in a steel beam specimen, precracked in fatigue, in a four-point bending test.
Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
Mancisidor, Aitziber; Zubizarreta, Asier; Cabanes, Itziar; Portillo, Eva; Jung, Je Hyung
2018-03-05
In order to properly control rehabilitation robotic devices, the measurement of interaction force and motion between patient and robot is an essential part. Usually, however, this is a complex task that requires the use of accurate sensors which increase the cost and the complexity of the robotic device. In this work, we address the development of virtual sensors that can be used as an alternative of actual force and motion sensors for the Universal Haptic Pantograph (UHP) rehabilitation robot for upper limbs training. These virtual sensors estimate the force and motion at the contact point where the patient interacts with the robot using the mathematical model of the robotic device and measurement through low cost position sensors. To demonstrate the performance of the proposed virtual sensors, they have been implemented in an advanced position/force controller of the UHP rehabilitation robot and experimentally evaluated. The experimental results reveal that the controller based on the virtual sensors has similar performance to the one using direct measurement (less than 0.005 m and 1.5 N difference in mean error). Hence, the developed virtual sensors to estimate interaction force and motion can be adopted to replace actual precise but normally high-priced sensors which are fundamental components for advanced control of rehabilitation robotic devices.
Local bipolar-transistor gain measurement for VLSI devices
NASA Astrophysics Data System (ADS)
Bonnaud, O.; Chante, J. P.
1981-08-01
A method is proposed for measuring the gain of a bipolar transistor region as small as possible. The measurement then allows the evaluation particularly of the effect of the emitter-base junction edge and the technology-process influence of VLSI-technology devices. The technique consists in the generation of charge carriers in the transistor base layer by a focused laser beam in order to bias the device in as small a region as possible. To reduce the size of the conducting area, a transversal reverse base current is forced through the base layer resistance in order to pinch in the emitter current in the illuminated region. Transistor gain is deduced from small signal measurements. A model associated with this technique is developed, and this is in agreement with the first experimental results.
Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow
NASA Astrophysics Data System (ADS)
Holden, Matthew A.; Kumar, Saurabh; Beskok, Ali; Cremer, Paul S.
2003-05-01
The bulging of microfluidic systems during pressure-driven flow is potentially a major consideration for polydimethylsiloxane (PDMS)-based devices. Microchannel cross-sectional areas can change drastically as a function of flow rate and downstream microchannel position. Such geometrical flexibility leads to difficulties in predicting convective/diffusive transport for these systems. We have previously introduced a non-dimensional parameter, kappa, for characterizing convection and diffusion behavior for pressure-driven flow in rigid all-glass systems. This paper describes a modification of that concept for application to non-rigid systems, which is accomplished by incorporating an experimental step to account for the bulging in PDMS/glass microsystems. Specifically, an experimental measurement of channel height by fluorescence microscopy is combined with the aforementioned theory to characterize convective/diffusive behavior at a single location in the device. This allowed the parameter kappa to be determined at that point and applied to predict fluid flow in the subsequent portion of the PDMS microsystem. This procedure was applied to a PDMS/glass microfluidic diffusion dilution (muDD) device designed for generating concentration gradients. Theoretically predicted and experimentally measured distributions of concentrations within the microsystem matched well.
New laser power sensor using weighing method
NASA Astrophysics Data System (ADS)
Pinot, P.; Silvestri, Z.
2018-01-01
We present a set-up using a piece of pyrolytic carbon (PyC) to measure laser power in the range from a few milliwatts to a few watts. The experimental configuration consists in measuring the magnetic repulsion force acting between a piece of PyC placed on a weighing pan and in a magnetic induction generated by a magnet array in a fixed position above the PyC sheet. This involves a repulsion force on the PyC piece which is expressed in terms of mass by the balance display. The quantities affecting the measurement results have been identified. An example of metrological characterization in terms of accuracy, linearity and sensitivity is given. A relative uncertainty of optical power measurement for the first experimental set-up is around 1%. The wavelength and power density dependence on power response of this device has been demonstrated. This PyC-based device presented here in weighing configuration and the other one previously studied in levitation configuration offer a new technique for measuring optical power.
NASA Astrophysics Data System (ADS)
Yang, Tae-Heon; Koo, Jeong-Hoi
2017-12-01
Humans can experience a realistic and vivid haptic sensations by the sense of touch. In order to have a fully immersive haptic experience, both kinaesthetic and vibrotactile information must be presented to human users. Currently, little haptic research has been performed on small haptic actuators that can covey both vibrotactile feedback based on the frequency of vibrations up to the human-perceivable limit and multiple levels of kinaesthetic feedback rapidly. Therefore, this study intends to design a miniature haptic device based on MR fluid and experimentally evaluate its ability to convey vibrotactile feedback up to 300 Hz along with kinaesthetic feedback. After constructing a prototype device, a series of testing was performed to evaluate its performance of the prototype using an experimental setup, consisting of a precision dynamic mechanical analyzer and an accelerometer. The kinaesthetic testing results show that the prototype device can provide the force rate up to 89% at 5 V (360 mA), which can be discretized into multiple levels of ‘just noticeable difference’ force rate, indicating that the device can convey a wide range of kinaesthetic sensations. To evaluate the high frequency vibrotactile feedback performance of the device, its acceleration responses were measured and processed using the FFT analysis. The results indicate that the device can convey high frequency vibrotactile sensations up to 300 Hz with the sufficiently large intensity of accelerations that human can feel.
Large - scale Rectangular Ruler Automated Verification Device
NASA Astrophysics Data System (ADS)
Chen, Hao; Chang, Luping; Xing, Minjian; Xie, Xie
2018-03-01
This paper introduces a large-scale rectangular ruler automated verification device, which consists of photoelectric autocollimator and self-designed mechanical drive car and data automatic acquisition system. The design of mechanical structure part of the device refer to optical axis design, drive part, fixture device and wheel design. The design of control system of the device refer to hardware design and software design, and the hardware mainly uses singlechip system, and the software design is the process of the photoelectric autocollimator and the automatic data acquisition process. This devices can automated achieve vertical measurement data. The reliability of the device is verified by experimental comparison. The conclusion meets the requirement of the right angle test procedure.
Measurement of whole tire profile
NASA Astrophysics Data System (ADS)
Yang, Yongyue; Jiao, Wenguang
2010-08-01
In this paper, a precision measuring device is developed for obtaining characteristic curve of tire profile and its geometric parameters. It consists of a laser displacement measurement unit, a closed-loop precision two-dimensional coordinate table, a step motor control system and a fast data acquisition and analysis system. Based on the laser trigonometry, a data map of tire profile and coordinate values of all points can be obtained through corresponding data transformation. This device has a compact structure, a convenient control, a simple hardware circuit design and a high measurement precision. Experimental results indicate that measurement precision can meet the customer accuracy requirement of +/-0.02 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Andreas, A.; Ottoson, L.
2014-11-01
Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements ofmore » the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.« less
NASA Astrophysics Data System (ADS)
Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong
2014-05-01
We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.
Tang, Zhiyuan; Liao, Zhongfa; Xu, Feihu; Qi, Bing; Qian, Li; Lo, Hoi-Kwong
2014-05-16
We demonstrate the first implementation of polarization encoding measurement-device-independent quantum key distribution (MDI-QKD), which is immune to all detector side-channel attacks. Active phase randomization of each individual pulse is implemented to protect against attacks on imperfect sources. By optimizing the parameters in the decoy state protocol, we show that it is feasible to implement polarization encoding MDI-QKD with commercial off-the-shelf devices. A rigorous finite key analysis is applied to estimate the secure key rate. Our work paves the way for the realization of a MDI-QKD network, in which the users only need compact and low-cost state-preparation devices and can share complicated and expensive detectors provided by an untrusted network server.
NASA Astrophysics Data System (ADS)
Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Bravyi, Sergey; Takita, Maika; Chavez-Garcia, Jose; Córcoles, Antonio; Smolin, John; Chow, Jerry; Gambetta, Jay
Hybrid quantum-classical algorithms can be used to find variational solutions to generic quantum problems. Here, we present an experimental implementation of a device-oriented optimizer that uses superconducting quantum hardware. The experiment relies on feedback between the quantum device and classical optimization software which is robust to measurement noise. Our device-oriented approach uses naturally available interactions for the preparation of trial states. We demonstrate the application of this technique for solving interacting spin and molecular structure problems.
Experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum tube
NASA Astrophysics Data System (ADS)
Toufexis, Filippos; Tantawi, Sami G.; Jensen, Aaron; Dolgashev, Valery A.; Haase, Andrew; Fazio, Michael V.; Borchard, Philipp
2017-06-01
We report the experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum electronic device, which uses an over-moded spherical sector output cavity. In this device, a pencil electron beam is helically deflected in a transverse deflecting cavity before entering the output cavity. No magnetic field is required to focus or guide the beam. We built and tested a proof-of-principle device with an output frequency of 57.12 GHz. The measured peak power was 52.67 W at the 5th harmonic of the drive frequency. Power at the 4th, 6th, and 7th harmonics was 33.28 dB lower than that at the 5th harmonic.
Experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toufexis, Filippos; Tantawi, Sami G.; Jensen, Aaron
Here, we report the experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum electronic device, which uses an over-moded spherical sector output cavity. In this device, a pencil electron beam is helically deflected in a transverse deflecting cavity before entering the output cavity. No magnetic field is required to focus or guide the beam. We built and tested a proof-of-principle device with an output frequency of 57.12 GHz. The measured peak power was 52.67 W at the 5th harmonic of the drive frequency. Power at the 4th, 6th, and 7th harmonics was 33.28 dB lower than that at themore » 5th harmonic.« less
Experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum tube
Toufexis, Filippos; Tantawi, Sami G.; Jensen, Aaron; ...
2017-06-26
Here, we report the experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum electronic device, which uses an over-moded spherical sector output cavity. In this device, a pencil electron beam is helically deflected in a transverse deflecting cavity before entering the output cavity. No magnetic field is required to focus or guide the beam. We built and tested a proof-of-principle device with an output frequency of 57.12 GHz. The measured peak power was 52.67 W at the 5th harmonic of the drive frequency. Power at the 4th, 6th, and 7th harmonics was 33.28 dB lower than that at themore » 5th harmonic.« less
Surface acoustic wave devices for harsh environment wireless sensing
Greve, David W.; Chin, Tao -Lun; Zheng, Peng; ...
2013-05-24
In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore » with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less
Pressure beneath the Surface of a Fluid: Measuring the Correct Depth
ERIC Educational Resources Information Center
McCall, Richard P.
2013-01-01
Systematic errors can cause measurements to deviate from the actual value of the quantity being measured. Faulty equipment (such as a meterstick that is not marked correctly), inaccurate calibration of measuring devices (such as a scale to measure mass that has not been properly zeroed), and improper use of equipment by the experimenter (such as…
Multi-channel temperature measurement system for automotive battery stack
NASA Astrophysics Data System (ADS)
Lewczuk, Radoslaw; Wojtkowski, Wojciech
2017-08-01
A multi-channel temperature measurement system for monitoring of automotive battery stack is presented in the paper. The presented system is a complete battery temperature measuring system for hybrid / electric vehicles that incorporates multi-channel temperature measurements with digital temperature sensors communicating through 1-Wire buses, individual 1-Wire bus for each sensor for parallel computing (parallel measurements instead of sequential), FPGA device which collects data from sensors and translates it for CAN bus frames. CAN bus is incorporated for communication with car Battery Management System and uses additional CAN bus controller which communicates with FPGA device through SPI bus. The described system can parallel measure up to 12 temperatures but can be easily extended in the future in case of additional needs. The structure of the system as well as particular devices are described in the paper. Selected results of experimental investigations which show proper operation of the system are presented as well.
NASA Astrophysics Data System (ADS)
Wang, Hongbei; Cui, Xiaoqian; Feng, Chunlei; Li, Yuanbo; Zhao, Mengge; Luo, Guangnan; Ding, Hongbin
2017-11-01
Plasma Facing Components (PFCs) in a magnetically confined fusion plasma device will be exposed to high heat load and particle fluxes, and it would cause PFCs' surface morphology to change due to material erosion and redeposition from plasma wall interactions. The state of PFCs' surface condition will seriously affect the performance of long-pulse or steady state plasma discharge in a tokamak; it will even constitute an enormous threat to the operation and the safety of fusion plasma devices. The PFCs' surface morphology evolution measurement could provide important information about PFCs' real-time status or damage situation and it would help to a better understanding of the plasma wall interaction process and mechanism. Meanwhile through monitoring the distribution of dust deposition in a tokamak and providing an upper limit on the amount of loose dust, the PFCs' surface morphology measurement could indirectly contribute to keep fusion operational limits and fusion device safety. Aiming at in situ dynamic monitoring PFCs' surface morphology evolution, a laboratory experimental platform DUT-SIEP (Dalian University of Technology-speckle interferometry experimental platform) based on the speckle interferometry technique has been constructed at Dalian University of Technology (DUT) in China. With directional specific designing and focusing on the real detection condition of EAST (Experimental Advanced Superconducting Tokamak), the DUT-SIEP could realize a variable measurement range, widely increased from 0.1 μm to 300 μm, with high spatial resolution (<1 mm) and ultra-high time resolution (<2 s for EAST measuring conditions). Three main components of the DUT-SIEP are all integrated and synchronized by a time schedule control and data acquisition terminal and coupled with a three-dimensional phase unwrapping algorithm, the surface morphology information of target samples can be obtained and reconstructed in real-time. A local surface morphology of the real divertor tiles adopted from EAST has been measured, and the feasibility and reliability of this new experimental platform have been demonstrated.
A handheld optical device for skin profile measurement
NASA Astrophysics Data System (ADS)
Sun, Jiuai; Liu, Xiaojin
2018-04-01
This paper describes a portable optical scanning device designed for skin surface measurement on both colour and 3D geometry through a relative easy and cost effective multiple light source photometric stereo method. The validation of colour recovered had been verified through its application on skin lesion segmentation in our early work. This paper focuses on the reconstructed topographic data which are subject to further evaluation and advancement. The evaluation work takes the skin in vitro as an application scenario and compares the experimental result to that obtained by using a commercial product. The experiments show that this handheld device can measure the skin profile significantly closer to that of the ground truth and have the additional function of skin colour recovery.
Signal and Noise in FET-Nanopore Devices.
Parkin, William M; Drndić, Marija
2018-02-23
The combination of a nanopore with a local field-effect transistor (FET-nanopore), like a nanoribbon, nanotube, or nanowire, in order to sense single molecules translocating through the pore is promising for DNA sequencing at megahertz bandwidths. Previously, it was experimentally determined that the detection mechanism was due to local potential fluctuations that arise when an analyte enters a nanopore and constricts ion flow through it, rather than the theoretically proposed mechanism of direct charge coupling between the DNA and nanowire. However, there has been little discussion on the experimentally observed detection mechanism and its relation to the operation of real devices. We model the intrinsic signal and noise in such an FET-nanopore device and compare the results to the ionic current signal. The physical dimensions of DNA molecules limit the change in gate voltage on the FET to below 40 mV. We discuss the low-frequency flicker noise (<10 kHz), medium-frequency thermal noise (<100 kHz), and high-frequency capacitive noise (>100 kHz) in FET-nanopore devices. At bandwidths dominated by thermal noise, the signal-to-noise ratio in FET-nanopore devices is lower than in the ionic current signal. At high frequencies, where noise due to parasitic capacitances in the amplifier and chip is the dominant source of noise in ionic current measurements, high-transconductance FET-nanopore devices can outperform ionic current measurements.
NASA Astrophysics Data System (ADS)
Lin, Pei-Sheng; Rosset, Denis; Zhang, Yanbao; Bancal, Jean-Daniel; Liang, Yeong-Cherng
2018-03-01
The device-independent approach to physics is one where conclusions are drawn directly from the observed correlations between measurement outcomes. In quantum information, this approach allows one to make strong statements about the properties of the underlying systems or devices solely via the observation of Bell-inequality-violating correlations. However, since one can only perform a finite number of experimental trials, statistical fluctuations necessarily accompany any estimation of these correlations. Consequently, an important gap remains between the many theoretical tools developed for the asymptotic scenario and the experimentally obtained raw data. In particular, a physical and concurrently practical way to estimate the underlying quantum distribution has so far remained elusive. Here, we show that the natural analogs of the maximum-likelihood estimation technique and the least-square-error estimation technique in the device-independent context result in point estimates of the true distribution that are physical, unique, computationally tractable, and consistent. They thus serve as sound algorithmic tools allowing one to bridge the aforementioned gap. As an application, we demonstrate how such estimates of the underlying quantum distribution can be used to provide, in certain cases, trustworthy estimates of the amount of entanglement present in the measured system. In stark contrast to existing approaches to device-independent parameter estimations, our estimation does not require the prior knowledge of any Bell inequality tailored for the specific property and the specific distribution of interest.
Nonlinear Sound Field by Interdigital Transducers in Water
NASA Astrophysics Data System (ADS)
Maezawa, Miyuki; Kamada, Rui; Kamakura, Tomoo; Matsuda, Kazuhisa
2008-05-01
Nonlinear ultrasound beams in water radiated by a surface acoustic wave (SAW) device are examined experimentally and theoretically. SAWs on an 128° X-cut Y-propagation LiNbO3 substrate are excited by 50 pairs of interdigital transducers (IDTs). The device with a 2 ×10 mm2 rectangular aperture and a center frequency of 20 MHz radiate two ultrasound beams in the direction of the Rayleigh angle determined by the propagation speed of the SAW on the device and of the longitudinal wave in water. The Rayleigh angle becomes 22° in the present experimental situation. The fundamental and second harmonic sound pressures are respectively measured along and across the beam using a miniature hydrophone whose active element 0.4 mm in diameter and whose frequency response is calibrated up to 40 MHz. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is utilized to theoretically predict sound pressure amplitudes. The theoretical predictions of both the fundamental and second harmonic pressures agree well with the measured sound pressures.
NASA Astrophysics Data System (ADS)
Evans, William J.; Yoo, Choong-Shik; Lee, Geun Woo; Cynn, Hyunchae; Lipp, Magnus J.; Visbeck, Ken
2007-07-01
We have developed a unique device, a dynamic diamond anvil cell (dDAC), which repetitively applies a time-dependent load/pressure profile to a sample. This capability allows studies of the kinetics of phase transitions and metastable phases at compression (strain) rates of up to 500GPa/s (˜0.16s-1 for a metal). Our approach adapts electromechanical piezoelectric actuators to a conventional diamond anvil cell design, which enables precise specification and control of a time-dependent applied load/pressure. Existing DAC instrumentation and experimental techniques are easily adapted to the dDAC to measure the properties of a sample under the varying load/pressure conditions. This capability addresses the sparsely studied regime of dynamic phenomena between static research (diamond anvil cells and large volume presses) and dynamic shock-driven experiments (gas guns, explosive, and laser shock). We present an overview of a variety of experimental measurements that can be made with this device.
Wong, Felix Wu Shun; Lim, Chi Eung Danforn; Smith, Warren
2010-03-01
The aim of this article is to introduce an electrical bioimpedance device that uses an old and little-known impedance measuring technique to study the impedance of the meridian and nonmeridian tissue segments. Three (3) pilot experimental studies involving both a tissue phantom (a cucumber) and 3 human subjects were performed using this BIRD-I (Bioimpedance Research Device) device. This device consists of a Fluke RCL meter, a multiplexer box, a laptop computer, and a medical-grade isolation transformer. Segment and surface sheath (or local) impedances were estimated using formulae first published in the 1930s, in an approach that differs from that of the standard four-electrode technique used in most meridian studies to date. Our study found that, when using a quasilinear four-electrode arrangement, the reference electrodes should be positioned at least 10 cm from the test electrodes to ensure that the segment (or core) impedance estimation is not affected by the proximity of the reference electrodes. A tissue phantom was used to determine the repeatability of segment (core) impedance measurement by the device. An applied frequency of 100 kHz was found to produce the best repeatability among the various frequencies tested. In another preliminary study, with a segment of the triple energizer meridian on the lower arm selected as reference segment, core resistance-based profiles around the lower arm showed three of the other five meridians to exist as local resistance minima relative to neighboring nonmeridian segments. The profiles of the 2 subjects tested were very similar, suggesting that the results are unlikely to be spurious. In electrical bioimpedance studies, it is recommended that the measuring technique and device be clearly defined and standardized to provide optimal working conditions. In our study using the BIRD I device, we defined our standard experimental conditions as a test frequency of 100 kHz and the position of the reference electrodes of at least 10 cm from the test electrodes. Our device has demonstrated potential for use in quantifying the degree of electrical interconnection between any two surface-defined test meridian or nonmeridian segments. Issues arising from use of this device and the measurement Horton and van Ravenswaay technique were also presented.
Visible light emission measurements from a dense electrothermal launcher plasma
NASA Astrophysics Data System (ADS)
Hankins, O. E.; Bourham, M. A.; Earnhart, J.; Gilligan, J. G.
1993-01-01
Measurements of the visible light emission from dense, weakly non-ideal plasmas have been performed on the experimental electrothermal launcher device 'SIRENS'. The plasma is created by the ablation or a Lexan insulator in the source, which then flows through a cylindrical barrel which serves as the material sample. Visible light emission spectra have been observed both in-bore and from the muzzle flash or the barrel, and from the flash or the source. Due to high plasma opacity (the plasma emits as a near blackbody) and absorption by the molecular components of the vapor shield, the hotter core or the arc has been difficult to observe. Recent measurements along the axis or the device indicate time-averaged plasma temperatures in the barrel or about 1 eV for lower energy shots, which agree with experimental measurements of the average heat flux and plasma conductivity along the barrel. Measurements or visible emission from the source indicate time averaged temperatures of 1 to 2 eV which agree with the theoretical estimates derived from ablated mass measurements and calculated estimates derived from plasma conductivity measurements.
Koumpouros, Yiannis; Papageorgiou, Effie; Karavasili, Alexandra; Alexopoulou, Despoina
2017-07-01
To examine the Assistive Technology Device Predisposition Assessment scale and provide evidence of validity and reliability of the Greek version. We translated and adapted the original instrument in Greek according to the most well-known guidelines recommendations. Field test studies were conducted in a rehabilitation hospital to validate the appropriateness of the final results. Ratings of the different items were statistically analyzed. We recruited 115 subjects who were administered the Form E of the original questionnaire. The experimental analysis conducted revealed a three subscales structure: (i) Adaptability, (ii) Fit to Use, and (iii) Socializing. According to the results of our study the three subscales measure different constructs. Reliability measures (ICC = 0.981, Pearson's correlation = 0.963, Cronbach's α = 0.701) yielded high values. Test-retest outcome showed great stability. This is the first study, at least to the knowledge of the authors, which focuses merely on measuring the satisfaction of the users from the used assistive device, while exploring the Assistive Technology Device Predisposition Assessment - Device Form in such depth. According to the results, it is a stable, valid and reliable instrument and applicable to the Greek population. Thus, it can be used to measure the satisfaction of patients with assistive devices. Implications for Rehabilitation The paper explores the cultural adaptability and applicability of ATD PA - Device Form. ATD PA - Device Form can be used to assess user satisfaction by the selected assistive device. ATD PA - Device Form is a valid and reliable instrument in measuring users' satisfaction in Greekreality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strongrich, Andrew D.; Alexeenko, Alina A.
We present experimental measurements and numerical simulations of convective heat transfer performance in the transitional rarefied regime for an isolated rectangular beam geometry. Experiments were performed using single crystalline silicon beam elements having width-to-thickness aspect ratios of 8.5 and 17.4. Devices were enclosed in a vacuum chamber and heated resistively using a DC power supply. A range of pressures corresponding to Knudsen numbers between 0.096 and 43.2 in terms of device thickness were swept, adjusting applied power to maintain a constant temperature of 50 K above the ambient temperature. Both parasitic electrical resistance associated with the hardware and radiative exchangemore » with the environment were removed from measured data, allowing purely convective heat flux to be extracted. Numerical simulations were carried out deterministically through solution of the Ellipsoidal Statistical Bhatnagar-Gross-Krook collision model of the Boltzmann equation. Results agree with experimental data, revealing a strong coupling between dissipated heat flux and thermal stresses within the flowfield as well as a nonlinear transition between the free-molecule and continuum regimes.« less
Oculometer Measurement of Air Traffic Controller Visual Attention
1975-02-01
AD/A-006 965 OCULOMETER MEASUREMENT OF AIR TRAFFIC CONTR OLLER VISUAL ATTENTION Gloria Karsten, et al National Aviation Facilities Experimental Cente...Radiation Center, Lexington, Mass., July 1971. 2. Stell, Kenneth J ., Avionics: Optical Device Studies Flight Displays, Aviation Week and Space Technology
"Johnny Poppers": a cause of serious ocular injury.
MacAndie, K; Kyle, P
1998-07-01
The causes of blunt ocular trauma are many and diverse. We present two cases of ocular injury caused by an unusual form of weapon called a "Johnny Popper". There follows a theoretical and experimental evaluation of the velocity of the projectiles fired by this device. A Johnny Popper was constructed under expert guidance. The elastic properties of the device were measured and this allowed calculation of a theoretical exit velocity of the projectiles fired. The weapon was subsequently fired under test conditions which permitted the exit velocity of the projectiles fired to be measured directly. The theoretical velocity of the projectiles was calculated as 80 ms-1 and the experimentally measured velocity was 57 ms-1. Johnny Poppers are a previously undescribed and unique form of home made weapon. They are intended for playful mischief, but have the potential to cause serious ocular trauma.
Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.
Illing, Lucas; Gauthier, Daniel J
2006-09-01
We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.
High-accuracy direct ZT and intrinsic properties measurement of thermoelectric couple devices.
Kraemer, D; Chen, G
2014-04-01
Advances in thermoelectric materials in recent years have led to significant improvements in thermoelectric device performance and thus, give rise to many new potential applications. In order to optimize a thermoelectric device for specific applications and to accurately predict its performance ideally the material's figure of merit ZT as well as the individual intrinsic properties (Seebeck coefficient, electrical resistivity, and thermal conductivity) should be known with high accuracy. For that matter, we developed two experimental methods in which the first directly obtains the ZT and the second directly measures the individual intrinsic leg properties of the same p/n-type thermoelectric couple device. This has the advantage that all material properties are measured in the same sample direction after the thermoelectric legs have been mounted in the final device. Therefore, possible effects from crystal anisotropy and from the device fabrication process are accounted for. The Seebeck coefficients, electrical resistivities, and thermal conductivities are measured with differential methods to minimize measurement uncertainties to below 3%. The thermoelectric couple ZT is directly measured with a differential Harman method which is in excellent agreement with the calculated ZT from the individual leg properties. The errors in both the directly measured and calculated thermoelectric couple ZT are below 5% which is significantly lower than typical uncertainties using commercial methods. Thus, the developed technique is ideal for characterizing assembled couple devices and individual thermoelectric materials and enables accurate device optimization and performance predictions. We demonstrate the methods by measuring a p/n-type thermoelectric couple device assembled from commercial bulk thermoelectric Bi2Te3 elements in the temperature range of 30 °C-150 °C and discuss the performance of the couple thermoelectric generator in terms of its efficiency and materials' self-compatibility.
Toward the integration of optical sensors in smartphone screens using femtosecond laser writing.
Lapointe, Jerome; Parent, Francois; de Lima Filho, Elton Soares; Loranger, Sébastien; Kashyap, Raman
2015-12-01
We demonstrate a new type of sensor incorporated directly into Corning Gorilla glass, an ultraresistant glass widely used in the screen of popular devices such as smartphones, tablets, and smart watches. Although physical space is limited in portable devices, the screens have been so far neglected in regard to functionalization. Our proof-of-concept shows a new niche for photonics device development, in which the screen becomes an active component integrated into the device. The sensor itself is a near-surface waveguide, sensitive to refractive index changes, enabling the analysis of liquids directly on the screen of a smartphone, without the need for any add-ons, thus opening this part of the device to advanced functionalization. The primary function of the screen is unaffected, since the sensor and waveguide are effectively invisible to the naked eye. We fabricated a waveguide just below the glass surface, directly written without any surface preparation, in which the change in refractive index on the surface-air interface changes the light guidance, thus the transmission of light. This work reports on sensor fabrication, using a femtosecond pulsed laser, and the light-interaction model of the beam propagating at the surface is discussed and compared with experimental measurement for refractive indexes in the range 1.3-1.7. A new and improved model, including input and output reflections due to the effective mode index change, is also proposed and yields a better match with our experimental measurements and also with previous measurements reported in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Drew Adam; Backhaus, Scott N.
Control of consumer electrical devices for providing electrical grid services is expanding in both the scope and the diversity of loads that are engaged in control, but there are few experimentally-based models of these devices suitable for control designs and for assessing the cost of control. A laboratory-scale test system is developed to experimentally evaluate the use of a simple window-mount air conditioner for electrical grid regulation services. The experimental test bed is a single, isolated air conditioner embedded in a test system that both emulates the thermodynamics of an air conditioned room and also isolates the air conditioner frommore » the real-world external environmental and human variables that perturb the careful measurements required to capture a model that fully characterizes both the control response functions and the cost of control. The control response functions and cost of control are measured using harmonic perturbation of the temperature set point and a test protocol that further isolates the air conditioner from low frequency environmental variability.« less
Using quantum process tomography to characterize decoherence in an analog electronic device
NASA Astrophysics Data System (ADS)
Ostrove, Corey; La Cour, Brian; Lanham, Andrew; Ott, Granville
The mathematical structure of a universal gate-based quantum computer can be emulated faithfully on a classical electronic device using analog signals to represent a multi-qubit state. We describe a prototype device capable of performing a programmable sequence of single-qubit and controlled two-qubit gate operations on a pair of voltage signals representing the real and imaginary parts of a two-qubit quantum state. Analog filters and true-RMS voltage measurements are used to perform unitary and measurement gate operations. We characterize the degradation of the represented quantum state with successive gate operations by formally performing quantum process tomography to estimate the equivalent decoherence channel. Experimental measurements indicate that the performance of the device may be accurately modeled as an equivalent quantum operation closely resembling a depolarizing channel with a fidelity of over 99%. This work was supported by the Office of Naval Research under Grant No. N00014-14-1-0323.
Experimental measurement-device-independent quantum key distribution with uncharacterized encoding.
Wang, Chao; Wang, Shuang; Yin, Zhen-Qiang; Chen, Wei; Li, Hong-Wei; Zhang, Chun-Mei; Ding, Yu-Yang; Guo, Guang-Can; Han, Zheng-Fu
2016-12-01
Measurement-device-independent quantum key distribution (MDI QKD) is an efficient way to share secrets using untrusted measurement devices. However, the assumption on the characterizations of encoding states is still necessary in this promising protocol, which may lead to unnecessary complexity and potential loopholes in realistic implementations. Here, by using the mismatched-basis statistics, we present the first proof-of-principle experiment of MDI QKD with uncharacterized encoding sources. In this demonstration, the encoded states are only required to be constrained in a two-dimensional Hilbert space, and two distant parties (Alice and Bob) are resistant to state preparation flaws even if they have no idea about the detailed information of their encoding states. The positive final secure key rates of our system exhibit the feasibility of this novel protocol, and demonstrate its value for the application of secure communication with uncharacterized devices.
Investigating fast enzyme-DNA kinetics using multidimensional fluorescence imaging and microfluidics
NASA Astrophysics Data System (ADS)
Robinson, Tom; Manning, Hugh B.; Dunsby, Christopher; Neil, Mark A. A.; Baldwin, Geoff S.; de Mello, Andrew J.; French, Paul M. W.
2010-02-01
We have developed a rapid microfluidic mixing device to image fast kinetics. To verify the performance of the device it was simulated using computational fluid dynamics (CFD) and the results were directly compared to experimental fluorescence lifetime imaging (FLIM) measurements. The theoretical and measured mixing times of the device were found to be in agreement over a range of flow rates. This mixing device is being developed with the aim of analysing fast enzyme kinetics in the sub-millisecond time domain, which cannot be achieved with conventional macro-stopped flow devices. Here we have studied the binding of a DNA repair enzyme, uracil DNA glycosylase (UDG), to a fluorescently labelled DNA substrate. Bulk phase fluorescence measurements have been used to measure changes on binding: it was found that the fluorescence lifetime increased along with an increase in the polarisation anisotropy and rotational correlation time. Analysis of the same reaction in the microfluidic mixer by CFD enabled us to predict the mixing time of the device to be 46 μs, more than 20 times faster than current stopped-flow techniques. We also demonstrate that it is possible to image UDG-DNA interactions within the micromixer using the signal changes observed from the multidimensional spectrofluorometer.
Hysteretic Flux Response and Nondegenerate Gain of Flux-Driven Josephson Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Pogorzalek, Stefan; Fedorov, Kirill G.; Zhong, Ling; Goetz, Jan; Wulschner, Friedrich; Fischer, Michael; Eder, Peter; Xie, Edwar; Inomata, Kunihiro; Yamamoto, Tsuyoshi; Nakamura, Yasunobu; Marx, Achim; Deppe, Frank; Gross, Rudolf
2017-08-01
Josephson parametric amplifiers (JPAs) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs exhibiting a hysteretic dependence of the resonant frequency on the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices, which provide the JPA nonlinearity for a nonzero screening parameter βL>0 and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.
NASA Astrophysics Data System (ADS)
Ozer, Ekin; Feng, Dongming; Feng, Maria Q.
2017-10-01
State-of-the-art multisensory technologies and heterogeneous sensor networks propose a wide range of response measurement opportunities for structural health monitoring (SHM). Measuring and fusing different physical quantities in terms of structural vibrations can provide alternative acquisition methods and improve the quality of the modal testing results. In this study, a recently introduced SHM concept, SHM with smartphones, is focused to utilize multisensory smartphone features for a hybridized structural vibration response measurement framework. Based on vibration testing of a small-scale multistory laboratory model, displacement and acceleration responses are monitored using two different smartphone sensors, an embedded camera and accelerometer, respectively. Double-integration or differentiation among different measurement types is performed to combine multisensory measurements on a comparative basis. In addition, distributed sensor signals from collocated devices are processed for modal identification, and performance of smartphone-based sensing platforms are tested under different configuration scenarios and heterogeneity levels. The results of these tests show a novel and successful implementation of a hybrid motion sensing platform through multiple sensor type and device integration. Despite the heterogeneity of motion data obtained from different smartphone devices and technologies, it is shown that multisensory response measurements can be blended for experimental modal analysis. Getting benefit from the accessibility of smartphone technology, similar smartphone-based dynamic testing methodologies can provide innovative SHM solutions with mobile, programmable, and cost-free interfaces.
Development and test of a Microwave Ice Accretion Measurement Instrument (MIAMI)
NASA Technical Reports Server (NTRS)
Magenheim, B.; Rocks, J. K.
1982-01-01
The development of an ice accretion measurement instrument that is a highly sensitive, accurate, rugged and reliable microprocessor controlled device using low level microwave energy for non-instrusive real time measurement and recording of ice growth history, including ice thickness and accretion rate is discussed. Data is displayed and recorded digitally. New experimental data is presented, obtained with the instrument, which demonstrates its ability to measure ice growth on a two-dimensional airfoil. The device is suitable for aircraft icing protection. It may be mounted flush, non-intrusively, on any part of an aircraft skin including rotor blades and engine inlets.
NASA Astrophysics Data System (ADS)
Onuma, Takashi; Otani, Yukitoshi
2014-03-01
A two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz is proposed. A polarization image sensor is developed as core device of the system. It is composed of a pixelated polarizer array made from photonic crystal and a parallel read out circuit with a multi-channel analog to digital converter specialized for two-dimensional polarization detection. By applying phase shifting algorism with circularly-polarized incident light, birefringence phase difference and azimuthal angle can be measured. The performance of the system is demonstrated experimentally by measuring actual birefringence distribution and polarization device such as Babinet-Soleil compensator.
Fundamentals of heat measurement. [heat flux transducers
NASA Technical Reports Server (NTRS)
Gerashchenko, O. A.
1979-01-01
Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.
Simplifying Nanowire Hall Effect Characterization by Using a Three-Probe Device Design.
Hultin, Olof; Otnes, Gaute; Samuelson, Lars; Storm, Kristian
2017-02-08
Electrical characterization of nanowires is a time-consuming and challenging task due to the complexity of single nanowire device fabrication and the difficulty in interpreting the measurements. We present a method to measure Hall effect in nanowires using a three-probe device that is simpler to fabricate than previous four-probe nanowire Hall devices and allows characterization of nanowires with smaller diameter. Extraction of charge carrier concentration from the three-probe measurements using an analytical model is discussed and compared to simulations. The validity of the method is experimentally verified by a comparison between results obtained with the three-probe method and results obtained using four-probe nanowire Hall measurements. In addition, a nanowire with a diameter of only 65 nm is characterized to demonstrate the capabilities of the method. The three-probe Hall effect method offers a relatively fast and simple, yet accurate way to quantify the charge carrier concentration in nanowires and has the potential to become a standard characterization technique for nanowires.
High Precision Pressure Measurement with a Funnel
ERIC Educational Resources Information Center
Lopez-Arias, T.; Gratton, L. M.; Oss, S.
2008-01-01
A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…
Micromachined modulator arrays for use in free-space optical communication systems
NASA Astrophysics Data System (ADS)
Lewis, Keith L.; Ridley, Kevin D.; McNie, Mark E.; Smith, Gilbert W.; Scott, Andrew M.
2004-12-01
A summary is presented of some of the design criteria relevant to the realisation of silicon micromachined modulator arrays for use in free-space optical communication systems. Theoretical performance levels achievable are compared with values measured on experimental devices produced using a modified Multi-User MEMS Process (MUMPS). Devices capable of realising modulation rates in excess of 300 kHz are described and their optical characteristics compared with published data on devices based on multiple quantum well technology.
Shin, Min-Ho; Kim, Hyo-Jun; Kim, Young-Joo
2017-02-20
We proposed an optical simulation model for the quantum dot (QD) nanophosphor based on the mean free path concept to understand precisely the optical performance of optoelectronic devices. A measurement methodology was also developed to get the desired optical characteristics such as the mean free path and absorption spectra for QD nanophosphors which are to be incorporated into the simulation. The simulation results for QD-based white LED and OLED displays show good agreement with the experimental values from the fabricated devices in terms of spectral power distribution, chromaticity coordinate, CCT, and CRI. The proposed simulation model and measurement methodology can be applied easily to the design of lots of optoelectronics devices using QD nanophosphors to obtain high efficiency and the desired color characteristics.
Experimental evaluations of wearable ECG monitor.
Ha, Kiryong; Kim, Youngsung; Jung, Junyoung; Lee, Jeunwoo
2008-01-01
Healthcare industry is changing with ubiquitous computing environment and wearable ECG measurement is one of the most popular approaches in this healthcare industry. Reliability and performance of healthcare device is fundamental issue for widespread adoptions, and interdisciplinary perspectives of wearable ECG monitor make this more difficult. In this paper, we propose evaluation criteria considering characteristic of both ECG measurement and ubiquitous computing. With our wearable ECG monitors, various levels of experimental analysis are performed based on evaluation strategy.
Towards Prognostics of Power MOSFETs: Accelerated Aging and Precursors of Failure
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Saxena, Abhinav; Wysocki, Philip; Saha, Sankalita; Goebel, Kai
2010-01-01
This paper presents research results dealing with power MOSFETs (metal oxide semiconductor field effect transistor) within the prognostics and health management of electronics. Experimental results are presented for the identification of the on-resistance as a precursor to failure of devices with die-attach degradation as a failure mechanism. Devices are aged under power cycling in order to trigger die-attach damage. In situ measurements of key electrical and thermal parameters are collected throughout the aging process and further used for analysis and computation of the on-resistance parameter. Experimental results show that the devices experience die-attach damage and that the on-resistance captures the degradation process in such a way that it could be used for the development of prognostics algorithms (data-driven or physics-based).
Feeding Experimentation Device (FED): A flexible open-source device for measuring feeding behavior.
Nguyen, Katrina P; O'Neal, Timothy J; Bolonduro, Olurotimi A; White, Elecia; Kravitz, Alexxai V
2016-07-15
Measuring food intake in rodents is a conceptually simple yet labor-intensive and temporally-imprecise task. Most commonly, food is weighed manually, with an interval of hours or days between measurements. Commercial feeding monitors are excellent, but are costly and require specialized caging and equipment. We have developed the Feeding Experimentation Device (FED): a low-cost, open-source, home cage-compatible feeding system. FED utilizes an Arduino microcontroller and open-source software and hardware. FED dispenses a single food pellet into a food well where it is monitored by an infrared beam. When the mouse removes the pellet, FED logs the timestamp to a secure digital (SD) card and dispenses a new pellet into the well. Post-hoc analyses of pellet retrieval timestamps reveal high-resolution details about feeding behavior. FED is capable of accurately measuring food intake, identifying discrete trends during light and dark-cycle feeding. Additionally, we show the utility of FED for measuring increases in feeding resulting from optogenetic stimulation of agouti-related peptide neurons in the arcuate nucleus of the hypothalamus. With a cost of ∼$350 per device, FED is >10× cheaper than commercially available feeding systems. FED is also self-contained, battery powered, and designed to be placed in standard colony rack cages, allowing for monitoring of true home cage feeding behavior. Moreover, FED is highly adaptable and can be synchronized with emerging techniques in neuroscience, such as optogenetics, as we demonstrate here. FED allows for accurate, precise monitoring of feeding behavior in a home cage setting. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Huismann, Tyler D.
Due to the rapidly expanding role of electric propulsion (EP) devices, it is important to evaluate their integration with other spacecraft systems. Specifically, EP device plumes can play a major role in spacecraft integration, and as such, accurate characterization of plume structure bears on mission success. This dissertation addresses issues related to accurate prediction of plume structure in a particular type of EP device, a Hall thruster. This is done in two ways: first, by coupling current plume simulation models with current models that simulate a Hall thruster's internal plasma behavior; second, by improving plume simulation models and thereby increasing physical fidelity. These methods are assessed by comparing simulated results to experimental measurements. Assessment indicates the two methods improve plume modeling capabilities significantly: using far-field ion current density as a metric, these approaches used in conjunction improve agreement with measurements by a factor of 2.5, as compared to previous methods. Based on comparison to experimental measurements, recent computational work on discharge chamber modeling has been largely successful in predicting properties of internal thruster plasmas. This model can provide detailed information on plasma properties at a variety of locations. Frequently, experimental data is not available at many locations that are of interest regarding computational models. Excepting the presence of experimental data, there are limited alternatives for scientifically determining plasma properties that are necessary as inputs into plume simulations. Therefore, this dissertation focuses on coupling current models that simulate internal thruster plasma behavior with plume simulation models. Further, recent experimental work on atom-ion interactions has provided a better understanding of particle collisions within plasmas. This experimental work is used to update collision models in a current plume simulation code. Previous versions of the code assume an unknown dependence between particles' pre-collision velocities and post-collision scattering angles. This dissertation focuses on updating several of these types of collisions by assuming a curve fit based on the measurements of atom-ion interactions, such that previously unknown angular dependences are well-characterized.
Experimental study of delta wing leading-edge devices for drag reduction at high lift
NASA Technical Reports Server (NTRS)
Johnson, T. D., Jr.; Rao, D. M.
1982-01-01
The drag reduction devices selected for evaluation were the fence, slot, pylon-type vortex generator, and sharp leading-edge extension. These devices were tested on a 60 degree flatplate delta (with blunt leading edges) in the Langley Research Center 7- by 10-foot high-speed tunnel at low speed and to angles of attack of 28 degrees. Balance and static pressure measurements were taken. The results indicate that all the devices had significant drag reduction capability and improved longitudinal stability while a slight loss of lift and increased cruise drag occurred.
Large membrane deflection via capillary force actuation
NASA Astrophysics Data System (ADS)
Barth, Christina A.; Hu, Xiaoyu; Mibus, Marcel A.; Reed, Michael L.; Knospe, Carl R.
2018-06-01
Experimental results from six prototype devices demonstrate that pressure changes induced in a liquid bridge via electrowetting can generate large deflections (20–75 µm) of an elastomeric membrane similar to those used in lab-on-a-chip microfluidic devices. In all cases deflections are obtained with a low voltage (20 V) and very small power consumption (<1 µW). The effects of variations in the bridge size and membrane dimensions on measured displacements are examined. Theoretical predictions are in good agreement with the measured displacements in those cases where the liquid contact angles could be measured within the devices during electrowetting. Contact angle hysteresis and charge injection into the dielectric layers limited the repeatability of deflection behavior during repeated cycling. Approaches for achieving greater deflections and improved repeatability are discussed.
Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors
Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia
2017-01-01
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices. PMID:28505089
Squeeze-Film Air Damping of a Five-Axis Electrostatic Bearing for Rotary Micromotors.
Wang, Shunyue; Han, Fengtian; Sun, Boqian; Li, Haixia
2017-05-13
Air-film damping, which dominates over other losses, plays a significant role in the dynamic response of many micro-fabricated devices with a movable mass suspended by various bearing mechanisms. Modeling the damping characteristics accurately will be greatly helpful to the bearing design, control, and test in various micromotor devices. This paper presents the simulated and experimental squeeze-film air damping results of an electrostatic bearing for use in a rotary high-speed micromotor. It is shown that the boundary condition to solve the three-dimensional Reynolds equation, which governs the squeeze-film damping in the air gap between the rotor and its surrounding stator sealed in a three-layer evacuated cavity, behaves with strong cross-axis coupling characteristics. To accurately characterize the damping effect, a set of multiphysics finite-element simulations are performed by computing both the rotor velocity and the distribution of the viscous damping force acting on the rotor. The damping characteristics varying with several key structure parameters are simulated and discussed to optimize the device structure for desirable rotor dynamics. An electrical measurement method is also proposed and applied to validate the numerical results of the damping coefficients experimentally. Given that the frequency response of the electric bearing is critically dependent on the damping coefficients at atmospheric pressure, a solution to the air-film damping measurement problem is presented by taking approximate curve fitting of multi-axis experimental frequency responses. The measured squeeze-film damping coefficients for the five-axis electric bearing agrees well with the numerical solutions. This indicates that numerical multiphysics simulation is an effective method to accurately examine the air-film damping effect for complex device geometry and arbitrary boundary condition. The accurate damping coefficients obtained by FEM simulation will greatly simplify the design of the five-axis bearing control system and facilitate the initial suspension test of the rotor for various micromotor devices.
The effect of alpha rhythm sleep on EEG activity and individuals' attention.
Kim, Seon Chill; Lee, Myoung Hee; Jang, Chel; Kwon, Jung Won; Park, Joo Wan
2013-12-01
[Purpose] This study examined whether the alpha rhythm sleep alters the EEG activity and response time in the attention and concentration tasks. [Subjects and Methods] The participants were 30 healthy university students, who were randomly and equally divided into two groups, the experimental and control groups. They were treated using the Happy-sleep device or a sham device, respectively. All participants had a one-week training period. Before and after training sessions, a behavioral task test was performed and EEG alpha waves were measured to confirm the effectiveness of training on cognitive function. [Results] In terms of the behavioral task test, reaction time (RT) variations in the experimental group were significantly larger than in the control group for the attention item. Changes in the EEG alpha power in the experimental group were also significantly larger than those of the control group. [Conclusions] These findings suggest that sleep induced using the Happy-sleep device modestly enhances the ability to pay attention and focus during academic learning.
A Pedagogical Measurement of the Velocity of Light
ERIC Educational Resources Information Center
Tyler, Charles E.
1969-01-01
Describes an inexpensive, easily constructed device for demonstrating that the speed of light is finite, and for measuring its value. The main components are gallium arsenide light emitting diodes, a light pulser, transistors, and an oscilloscope. Detailed instructions of procedure and experimental results are given. (LC)
Improved perceptual-motor performance measurement system
NASA Technical Reports Server (NTRS)
Parker, J. F., Jr.; Reilly, R. E.
1969-01-01
Battery of tests determines the primary dimensions of perceptual-motor performance. Eighteen basic measures range from simple tests to sophisticated electronic devices. Improved system has one unit for the subject containing test display and response elements, and one for the experimenter where test setups, programming, and scoring are accomplished.
Exploring Novel Crystals and Designs for Acousto-Optic Devices
NASA Astrophysics Data System (ADS)
Pfeiffer, Jonathan B.
Acousto-optic devices are a versatile technology that are driven electronically to precisely and rapidly control the intensity, frequency, and propagation direction of a laser beam. Applications include acousto-optic scanners, filters, mode lockers, and modulators. Despite the popularity of acousto-optic devices, there currently is no UV transparent device that can satisfy the requirements of the atomic clock and quantum computing communities. In this thesis, I describe my experimental efforts for discovering a new UV transparent, acousto-optic crystal that can meet the experimental requirements. I also present my graphical representations for locating practical and efficient acousto-optic designs in a given medium. The first part of this thesis describes how to measure the elastic-stiffness and photoelastic coefficients of a given crystal. The elastic-stiffness coefficients are essential for designing acousto-optic devices because they determine the velocity, diffraction, and polarization of acoustic waves in a given medium. I used both resonant ultrasound spectroscopy and a modified version of Schaefer-Bergman diffraction to measure elastic coefficients. I discuss in detail the strengths, differences, and similarities of the two experiments. The photoelastic coefficients are necessary for determining the diffraction efficiency of a given acousto-optic geometry. Similar to the elastic coefficients, I employ a modified version of the Schaefer-Bergmann experiment to measure the photoelastic coefficients. I corroborate the measured results with the well established Dixon experiment. The second part of this thesis describes four different graphical representations that help locate practical and efficient acousto-optic designs. I describe in detail each algorithm and how to interpret the calculated results. Several examples are provided for commonly used acosuto-optic materials. The thesis concludes by describing the design and performance of an acousto-optic frequency shifter that was designed based on the culmination my research effort.
Mass and stiffness estimation using mobile devices for structural health monitoring
NASA Astrophysics Data System (ADS)
Le, Viet; Yu, Tzuyang
2015-04-01
In the structural health monitoring (SHM) of civil infrastructure, dynamic methods using mass, damping, and stiffness for characterizing structural health have been a traditional and widely used approach. Changes in these system parameters over time indicate the progress of structural degradation or deterioration. In these methods, capability of predicting system parameters is essential to their success. In this paper, research work on the development of a dynamic SHM method based on perturbation analysis is reported. The concept is to use externally applied mass to perturb an unknown system and measure the natural frequency of the system. Derived theoretical expressions for mass and stiffness prediction are experimentally verified by a building model. Dynamic responses of the building model perturbed by various masses in free vibration were experimentally measured by a mobile device (cell phone) to extract the natural frequency of the building model. Single-degreeof- freedom (SDOF) modeling approach was adopted for the sake of using a cell phone. From the experimental result, it is shown that the percentage error of predicted mass increases when the mass ratio increases, while the percentage error of predicted stiffness decreases when the mass ratio increases. This work also demonstrated the potential use of mobile devices in the health monitoring of civil infrastructure.
Cosmological flux noise and measured noise power spectra in SQUIDs
Beck, Christian
2016-01-01
The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418
Cosmological flux noise and measured noise power spectra in SQUIDs.
Beck, Christian
2016-06-20
The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.
In-situ comprehensive calibration of a tri-port nano-electro-mechanical device.
Collin, E; Defoort, M; Lulla, K; Moutonet, T; Heron, J-S; Bourgeois, O; Bunkov, Yu M; Godfrin, H
2012-04-01
We report on experiments performed in vacuum and at cryogenic temperatures on a tri-port nano-electro-mechanical (NEMS) device. One port is a very nonlinear capacitive actuation, while the two others implement the magnetomotive scheme with a linear input force port and a (quasi-linear) output velocity port. We present an experimental method enabling a full characterization of the nanomechanical device harmonic response: the nonlinear capacitance function C(x) is derived, and the normal parameters k and m (spring constant and mass) of the mode under study are measured through a careful definition of the motion (in meters) and of the applied forces (in Newtons). These results are obtained with a series of purely electric measurements performed without disconnecting/reconnecting the device, and rely only on known dc properties of the circuit, making use of a thermometric property of the oscillator itself: we use the Young modulus of the coating metal as a thermometer, and the resistivity for Joule heating. The setup requires only three connecting lines without any particular matching, enabling the preservation of a high impedance NEMS environment even at MHz frequencies. The experimental data are fit to a detailed electrical and thermal model of the NEMS device, demonstrating a complete understanding of its dynamics. These methods are quite general and can be adapted (as a whole, or in parts) to a large variety of electromechanical devices. © 2012 American Institute of Physics
A new passive radon-thoron discriminative measurement system.
Sciocchetti, G; Sciocchetti, A; Giovannoli, P; DeFelice, P; Cardellini, F; Cotellessa, G; Pagliari, M
2010-10-01
A new passive radon-thoron discriminative measurement system has been developed for monitoring radon and thoron individually. It consists of a 'couple' of passive integrating devices with a CR39 nuclear track detector (NTD). The experimental prototype is based on the application of a new concept of NTD instrument developed at ENEA, named Alpha-PREM, acronym of piston radon exposure meter, which allows controlling the detector exposure with a patented sampling technique (Int. Eu. Pat. and US Pat.). The 'twin diffusion chambers system' was based on two A-PREM devices consisting of the standard device, named NTD-Rn, and a modified version, named NTD-Rn/Tn, which was set up to improve thoron sampling efficiency of the diffusion chamber, without changing the geometry and the start/stop function of the NTD-Rn device. Coupling devices fitted on each device allowed getting a system, which works as a double-chamber structure when deployed at the monitoring position. In this paper both technical and physical aspects are considered.
NASA Astrophysics Data System (ADS)
Bouchami, J.; Gutiérrez, A.; Holy, T.; Houdayer, A.; Jakůbek, J.; Lebel, C.; Leroy, C.; Macana, J.; Martin, J.-P.; Pospíšil, S.; Prak, S.; Sabella, P.; Teyssier, C.; CERN Medipix Collaboration
2011-05-01
Several experiments were performed to establish the Medipix2 device capabilities for track recognition and its efficiency at measuring fluxes. A Medipix2 device was exposed to 241Am, 106Ru and 137Cs radioactive sources, separately and simultaneously. It was also exposed to heavy particle beams (protons and alpha-particles), recoiled on a gold foil to reduce the incoming flux and allow the study of the detector response struck by incoming particles at different incidence angles. For three proton beams (400 keV, 4 and 10 MeV), the device was exposed to the radioactive sources on top of beam, giving a mixed radiation field. To test the reliability of track recognition with this device, the activities of the radioactive sources were extracted from the experimental data and compared to the expected activities. Rotation of the Medipix2 device allowed the test of the heavy tracks recognition at different incidence angles.
NASA Astrophysics Data System (ADS)
Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun
2017-04-01
In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.
Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun
2017-04-01
In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.
Smith, Zachary J; Strombom, Sven; Wachsmann-Hogiu, Sebastian
2011-08-29
A multivariate optical computer has been constructed consisting of a spectrograph, digital micromirror device, and photomultiplier tube that is capable of determining absolute concentrations of individual components of a multivariate spectral model. We present experimental results on ternary mixtures, showing accurate quantification of chemical concentrations based on integrated intensities of fluorescence and Raman spectra measured with a single point detector. We additionally show in simulation that point measurements based on principal component spectra retain the ability to classify cancerous from noncancerous T cells.
Control of crankshaft finish by scattering technique
NASA Astrophysics Data System (ADS)
Fontani, Daniela; Francini, Franco; Longobardi, Giuseppe; Sansoni, Paola
2001-06-01
The paper describes a new sensor dedicated to measure and check the surface quality of mechanical products. The results were obtained comparing the light scattered from two different ranges of angles by means of 16 photodiodes. The device is designed for obtaining valid data from curved surfaces as that of a crankshaft. Experimental measurements show that the ratio between scattered and reflected light intensity increases with the surface roughness. This device was developed for the off-tolerance detection of mechanical pieces in industrial production. Results of surface quality on crankshaft supplied by Renault were carried out.
Development of haptic system for surgical robot
NASA Astrophysics Data System (ADS)
Gang, Han Gyeol; Park, Jiong Min; Choi, Seung-Bok; Sohn, Jung Woo
2017-04-01
In this paper, a new type of haptic system for surgical robot application is proposed and its performances are evaluated experimentally. The proposed haptic system consists of an effective master device and a precision slave robot. The master device has 3-DOF rotational motion as same as human wrist motion. It has lightweight structure with a gyro sensor and three small-sized MR brakes for position measurement and repulsive torque generation, respectively. The slave robot has 3-DOF rotational motion using servomotors, five bar linkage and a torque sensor is used to measure resistive torque. It has been experimentally demonstrated that the proposed haptic system has good performances on tracking control of desired position and repulsive torque. It can be concluded that the proposed haptic system can be effectively applied to the surgical robot system in real field.
NASA Astrophysics Data System (ADS)
Kuruliuk, K. A.; Kulesh, V. P.
2016-10-01
An optical videogrammetry method using one digital camera for non-contact measurements of geometric shape parameters, position and motion of models and structural elements of aircraft in experimental aerodynamics was developed. The tests with the use of this method for measurement of six components (three linear and three angular ones) of real position of helicopter device in wind tunnel flow were conducted. The distance between camera and test object was 15 meters. It was shown in practice that, in the conditions of aerodynamic experiment instrumental measurement error (standard deviation) for angular and linear displacements of helicopter device does not exceed 0,02° and 0.3 mm, respectively. Analysis of the results shows that at the minimum rotor thrust deviations are systematic and generally are within ± 0.2 degrees. Deviations of angle values grow with the increase of rotor thrust.
Analysis of detection performance of multi band laser beam analyzer
NASA Astrophysics Data System (ADS)
Du, Baolin; Chen, Xiaomei; Hu, Leili
2017-10-01
Compared with microwave radar, Laser radar has high resolution, strong anti-interference ability and good hiding ability, so it becomes the focus of laser technology engineering application. A large scale Laser radar cross section (LRCS) measurement system is designed and experimentally tested. First, the boundary conditions are measured and the long range laser echo power is estimated according to the actual requirements. The estimation results show that the echo power is greater than the detector's response power. Secondly, a large scale LRCS measurement system is designed according to the demonstration and estimation. The system mainly consists of laser shaping, beam emitting device, laser echo receiving device and integrated control device. Finally, according to the designed lidar cross section measurement system, the scattering cross section of target is simulated and tested. The simulation results are basically the same as the test results, and the correctness of the system is proved.
Helbling, Ignacio M; Ibarra, Juan C D; Luna, Julio A
2012-02-28
A mathematical modeling of controlled release of drug from one-layer torus-shaped devices is presented. Analytical solutions based on Refined Integral Method (RIM) are derived. The validity and utility of the model are ascertained by comparison of the simulation results with matrix-type vaginal rings experimental release data reported in the literature. For the comparisons, the pair-wise procedure is used to measure quantitatively the fit of the theoretical predictions to the experimental data. A good agreement between the model prediction and the experimental data is observed. A comparison with a previously reported model is also presented. More accurate results are achieved for small A/C(s) ratios. Copyright © 2011 Elsevier B.V. All rights reserved.
He, Wei; Yurkevich, Igor V; Canham, Leigh T; Loni, Armando; Kaplan, Andrey
2014-11-03
We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.
Femtosecond laser-ablated Fresnel zone plate fiber probe and sensing applications
NASA Astrophysics Data System (ADS)
Tan, Xiaoling; Geng, Youfu; Chen, Yan; Li, Shiguo; Wang, Xinzhong
2018-02-01
We investigate the Fresnel zone plate (FZP) inscribed on multimode fiber endface using femtosecond laser ablation and its application in sensing. The mode transmission through fiber tips with FZP is investigated both by the beam propagation method theoretically and by measuring the beam images with a charge-coupled device camera experimentally, which show a good agreement. Such devices are tested for surface-enhanced Raman scattering (SERS) using the aqueous solution of rhodamine 6G under a Raman spectroscopy. The experimental results demonstrate that the SERS signal is enhanced benefiting from focal ability of FZP, which is a promising method for the particular biochemical spectra sensing applications.
Bachim, Brent L; Gaylord, Thomas K
2005-01-20
A new technique, microinterferometric optical phase tomography, is introduced for use in measuring small, asymmetric refractive-index differences in the profiles of optical fibers and fiber devices. The method combines microscopy-based fringe-field interferometry with parallel projection-based computed tomography to characterize fiber index profiles. The theory relating interference measurements to the projection set required for tomographic reconstruction is given, and discrete numerical simulations are presented for three test index profiles that establish the technique's ability to characterize fiber with small, asymmetric index differences. An experimental measurement configuration and specific interferometry and tomography practices employed in the technique are discussed.
Experimental study on secondary electron emission characteristics of Cu
NASA Astrophysics Data System (ADS)
Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang
2018-02-01
Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.
NASA Astrophysics Data System (ADS)
Hui, Yu; Rinaldi, Matteo
2013-03-01
This letter presents a miniaturized, fast, and high resolution thermal detector, in which a heat absorbing element and a temperature sensitive microelectromechanical system (MEMS) resonator are perfectly overlapped but separated by a microscale air gap. This unique design guarantees efficient and fast (˜10s μs) heat transfer from the absorbing element to the temperature sensitive device and enables high resolution thermal power detection (˜nW), thanks to the low noise performance of the high quality factor (Q = 2305) MEMS resonant thermal detector. A device prototype was fabricated, and its detection capabilities were experimentally characterized. A thermal power as low as 150 nW was experimentally measured, and a noise equivalent power of 6.5 nW/Hz1/2 was extracted. A device thermal time constant of only 350 μs was measured (smallest ever reported for MEMS resonant thermal detectors), indicating the great potential of the proposed technology for the implementation of ultra-fast and high resolution un-cooled resonant thermal detectors.
[Telerehabilitation to treat stress urinary incontinence. Pilot study].
Carrión Pérez, Francisca; Rodríguez Moreno, María Sofía; Carnerero Córdoba, Lidia; Romero Garrido, Marina C; Quintana Tirado, Laura; García Montes, Inmaculada
2015-05-21
We aimed to test a new telerehabilitation device for stress urinary incontinence (SUI) in order to make an initial assessment of its effectiveness. Randomized, controlled pilot study. experimental group (10 patients): pelvic floor muscle training, device training and home treatment with it; control group (9 patients): conventional rehabilitation treatment. Outcome measures (baseline and 3 months) overall and specific quality of life: International Consultation Incontinence Questionnaire and King's Health Questionnaire, bladder diary, perineometry, satisfaction with the program and degree of compliance. Baseline characteristics were similar in both groups. There was no statistically significant difference for any outcome measures between groups at the end of the follow-up. The change in perineometry values at baseline and after the intervention was significant in the experimental group (23.06 to 32.00, P=.011). No group in this study had any serious adverse effects. The tested device is safe and well accepted. Although there is some evidence of its efficacy in the rehabilitation treatment of SUI, larger trials are needed to appropriately evaluate the potential advantages. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.
Hollow-Fiber Cartridges: Model Systems for Virus Removal from Blood
NASA Astrophysics Data System (ADS)
Jacobitz, Frank; Menon, Jeevan
2005-11-01
Aethlon Medical is developing a hollow-fiber hemodialysis device designed to remove viruses and toxins from blood. Possible target viruses include HIV and pox-viruses. The filter could reduce virus and viral toxin concentration in the patient's blood, delaying illness so the patient's immune system can fight off the virus. In order to optimize the design of such a filter, the fluid mechanics of the device is both modeled analytically and investigated experimentally. The flow configuration of the proposed device is that of Starling flow. Polysulfone hollow-fiber dialysis cartridges were used. The cartridges are charged with water as a model fluid for blood and fluorescent latex beads are used in the experiments as a model for viruses. In the experiments, properties of the flow through the cartridge are determined through pressure and volume flow rate measurements of water. The removal of latex beads, which are captured in the porous walls of the fibers, was measured spectrophotometrically. Experimentally derived coefficients derived from these experiments are used in the analytical model of the flow and removal predictions from the model are compared to those obtained from the experiments.
NASA Astrophysics Data System (ADS)
Radulović, Vladimir; Kolšek, Aljaž; Fauré, Anne-Laure; Pottin, Anne-Claire; Pointurier, Fabien; Snoj, Luka
2018-03-01
The Fission Track Thermal Ionization Mass Spectrometry (FT-TIMS) method is considered as the reference method for particle analysis in the field of nuclear Safeguards for measurements of isotopic compositions (fissile material enrichment levels) in micrometer-sized uranium particles collected in nuclear facilities. An integral phase in the method is the irradiation of samples in a very well thermalized neutron spectrum. A bilateral collaboration project was carried out between the Jožef Stefan Institute (JSI, Slovenia) and the Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA, France) to determine whether the JSI TRIGA reactor could be used for irradiations of samples for the FT-TIMS method. This paper describes Monte Carlo simulations, experimental activation measurements and test irradiations performed in the JSI TRIGA reactor, firstly to determine the feasibility, and secondly to design and qualify a purpose-built heavy water based irradiation device for FT-TIMS samples. The final device design has been shown experimentally to meet all the required performance specifications.
An unattended device for high-voltage sampling and passive measurement of thoron decay products.
Gierl, Stefanie; Meisenberg, Oliver; Haninger, Thomas; Wielunski, Marek; Tschiersch, Jochen
2014-02-01
An integrating measurement device for the concentration of airborne thoron decay products was designed and calibrated. It is suitable for unattended use over up to several months also in inhabited dwellings. The device consists of a hemispheric capacitor with a wire mesh as the outer electrode on ground potential and the sampling substrates as the inner electrode on +7.0 kV. Negatively charged and neutral thoron decay products are accelerated to and deposited on the sampling substrates. As sampling substrates, CR39 solid-state nuclear track detectors are used in order to record the alpha decay of the sampled decay products. Nuclide discrimination is achieved by covering the detectors with aluminum foil of different thickness, which are penetrated only by alpha particles with sufficient energy. Devices of this type were calibrated against working level monitors in a thoron experimental house. The sensitivity was measured as 9.2 tracks per Bq/m(3) × d of thoron decay products. The devices were used over 8 weeks in several houses built of earthen material in southern Germany, where equilibrium equivalent concentrations of 1.4-9.9 Bq/m(3) of thoron decay products were measured.
Optical device for thermal diffusivity determination in liquids by reflection of a thermal wave
NASA Astrophysics Data System (ADS)
Sánchez-Pérez, C.; De León-Hernández, A.; García-Cadena, C.
2017-08-01
In this work, we present a device for determination of the thermal diffusivity using the oblique reflection of a thermal wave within a solid slab that is in contact with the medium to be characterized. By using the reflection near a critical angle under the assumption that thermal waves obey Snell's law of refraction with the square root of the thermal diffusivities, the unknown thermal diffusivity is obtained by simple formulae. Experimentally, the sensor response is measured using the photothermal beam deflection technique within a slab that results in a compact device with no contact of the laser probing beam with the sample. We describe the theoretical basis and provide experimental results to validate the proposed method. We determine the thermal diffusivity of tridistilled water and glycerin solutions with an error of less than 0.5%.
Circuit quantum acoustodynamics with surface acoustic waves.
Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J
2017-10-17
The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This "rotating balance" was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Inducer Hydrodynamic Load Measurement Devices
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.; Zoladz, Thomas F.; Turner, Jim (Technical Monitor)
2002-01-01
Marshall Space Flight Center (MSFC) has demonstrated two measurement devices for sensing and resolving the hydrodynamic loads on fluid machinery. The first - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining both the amplitude and frequency content associated with operating in various cavitation modes. The second device - a high frequency response pressure transducer surface mounted on a rotating component - was merely an extension of existing technology for application in water. MSFC has recently completed experimental evaluations of both the rotating balance and surface-mount transducers in a water test loop. The measurement bandwidth of the rotating balance was severely limited by the relative flexibility of the device itself, resulting in an unexpectedly low structural bending mode and invalidating the higher-frequency response data. Despite these limitations, measurements confirmed that the integrated loads on the four-bladed inducer respond to both cavitation intensity and cavitation phenomena. Likewise, the surface-mount pressure transducers were subjected to a range of temperatures and flow conditions in a non-rotating environment to record bias shifts and transfer functions between the transducers and a reference device. The pressure transducer static performance was within manufacturer's specifications and dynamic response accurately followed that of the reference.
Using Mobile Devices for Robotic Controllers: Examples and Some Initial Concepts for Experimentation
2011-06-01
3 Figure 3. The Sony PlayStation Portable hand-held control device is about 6.7 × 2.9 × 0.9 in. .... 4 Figure 4 . Current...Nunchuk (left) measures 4.45 × 1.5 × 1.48 in. Figure 2. Apple iPhone is 4.5 × 2.31 × 0.37 in. 4 Figure 3. The Sony PlayStation Portable...YYYY) June 2011 2. REPORT TYPE Final 3. DATES COVERED (From - To) June 2010–July 2010 4 . TITLE AND SUBTITLE Using Mobile Devices for Robotic
A programmable point-of-care device for external CSF drainage and monitoring.
Simkins, Jeffrey R; Subbian, Vignesh; Beyette, Fred R
2014-01-01
This paper presents a prototype of a programmable cerebrospinal fluid (CSF) external drainage system that can accurately measure the dispensed fluid volume. It is based on using a miniature spectrophotometer to collect color data to inform drain rate and pressure monitoring. The prototype was machined with 1 μm dimensional accuracy. The current device can reliably monitor the total accumulated fluid volume, the drain rate, the programmed pressure, and the pressure read from the sensor. Device requirements, fabrication processes, and preliminary results with an experimental set-up are also presented.
NASA Astrophysics Data System (ADS)
Cui, Yang; Luo, Wang; Fan, Qiang; Peng, Qiwei; Cai, Yiting; Yao, Yiyang; Xu, Changfu
2018-01-01
This paper adopts a low power consumption ARM Hisilicon mobile processing platform and OV4689 camera, combined with a new skeleton extraction based on distance transform algorithm and the improved Hough algorithm for multi meters real-time reading. The design and implementation of the device were completed. Experimental results shows that The average error of measurement was 0.005MPa, and the average reading time was 5s. The device had good stability and high accuracy which meets the needs of practical application.
(Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, X.; Mamaluy, D.; Cyr, E. C.
As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less
(Invited) Comprehensive Assessment of Oxide Memristors As Post-CMOS Memory and Logic Devices
Gao, X.; Mamaluy, D.; Cyr, E. C.; ...
2016-05-10
As CMOS technology approaches the end of its scaling, oxide-based memristors have become one of the leading candidates for post-CMOS memory and logic devices. In orderTo facilitate the understanding of physical switching mechanisms and accelerate experimental development of memristors, we have developed a three-dimensional fully-coupled electrical and thermal transport model, which captures all the important processes that drive memristive switching and is applicable for simulating a wide range of memristors. Moreover, the model is applied to simulate the RESET and SET switching in a 3D filamentary TaOx memristor. Extensive simulations show that the switching dynamics of the bipolar device ismore » determined by thermally-activated field-dominant processes: with Joule heating, the raised temperature enables the movement of oxygen vacancies, and the field drift dominates the overall motion of vacancies. Simulated current-voltage hysteresis and device resistance profiles as a function of time and voltage during RESET and SET switching show good agreement with experimental measurement.« less
Spatially resolved Hall effect measurement in a single semiconductor nanowire.
Storm, Kristian; Halvardsson, Filip; Heurlin, Magnus; Lindgren, David; Gustafsson, Anders; Wu, Phillip M; Monemar, Bo; Samuelson, Lars
2012-11-01
Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core-shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices.
"Johnny Poppers": a cause of serious ocular injury
MacAndie, K.; Kyle, P.
1998-01-01
AIMS/BACKGROUND—The causes of blunt ocular trauma are many and diverse. We present two cases of ocular injury caused by an unusual form of weapon called a "Johnny Popper". There follows a theoretical and experimental evaluation of the velocity of the projectiles fired by this device. METHODS—A Johnny Popper was constructed under expert guidance. The elastic properties of the device were measured and this allowed calculation of a theoretical exit velocity of the projectiles fired. The weapon was subsequently fired under test conditions which permitted the exit velocity of the projectiles fired to be measured directly. RESULTS—The theoretical velocity of the projectiles was calculated as 80 ms-1 and the experimentally measured velocity was 57 ms-1. CONCLUSIONS—Johnny Poppers are a previously undescribed and unique form of home made weapon. They are intended for playful mischief, but have the potential to cause serious ocular trauma. Keywords: ocular trauma; projectiles PMID:9924377
Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin
2014-01-01
This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.
An oxygen pressure sensor using surface acoustic wave devices
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.
1993-01-01
Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.
1981-05-01
production 01 these gamma-rays and an experimental verification of their magnitude essential: 11) Tha transient radiation on electronics (TREE) work...Figure 2.6. It con- sisted of a scintillator, light pipe, photo sensitive device, and auxiliary electronic assembly. Arrangement of these elements in...types of mechanically interchangeable packages, consisting of a photosensitive device and auxiliary electronics , were available for each detector. (M
Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian
2016-03-20
We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.
Temperature Dependence of the Seebeck Coefficient in Zinc Oxide Thin Films
NASA Astrophysics Data System (ADS)
Noori, Amirreza; Masoumi, Saeed; Hashemi, Najmeh
2017-12-01
Thermoelectric devices are reliable tools for converting waste heat into electricity as they last long, produce no noise or vibration, have no moving elements, and their light weight makes them suitable for the outer space usage. Materials with high thermoelectric figure of merit (zT) have the most important role in the fabrication of efficient thermoelectric devices. Metal oxide semiconductors, specially zinc oxide has recently received attention as a material suitable for sensor, optoelectronic and thermoelectric device applications because of their wide direct bandgap, chemical stability, high-energy radiation endurance, transparency and acceptable zT. Understanding the thermoelectric properties of the undoped ZnO thin films can help design better ZnO-based devices. Here, we report the results of our experimental work on the thermoelectric properties of the undoped polycrystalline ZnO thin films. These films are deposited on alumina substrates by thermal evaporation of zinc in vacuum followed by a controlled oxidation process in air carried out at the 350-500 °C temperature range. The experimental setup including gradient heaters, thermometry system and Seebeck voltage measurement equipment for high resistance samples is described. Seebeck voltage and electrical resistivity of the samples are measured at different conditions. The observed temperature dependence of the Seebeck coefficient is discussed.
NASA Astrophysics Data System (ADS)
Demir, K. Çinar; Kurudirek, S. V.; Oz, S.; Biber, M.; Aydoğan, Ş.; Şahin, Y.; Coşkun, C.
We fabricated 25 Au/n-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current-voltage (I-V) and capacitance-voltage (C-V) measurements. From the I-V characteristics, experimental ideality factor n and barrier height Φ values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential Vbi, barrier height Φ, Fermi level EF and donor concentration Nd values have been determined from the reverse bias C-V and C-2-V curves of Au/n-GaP/Al Schottky barrier diodes at 100kHz before and after 12MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/n-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.
Epidermal differential impedance sensor for conformal skin hydration monitoring.
Huang, Xian; Yeo, Woon-Hong; Liu, Yuhao; Rogers, John A
2012-12-01
We present the design and use of an ultrathin, stretchable sensor system capable of conformal lamination onto the skin, for precision measurement and spatial mapping of levels of hydration. This device, which we refer to as a class of 'epidermal electronics' due to its 'skin-like' construction and mode of intimate integration with the body, contains miniaturized arrays of impedance-measurement electrodes arranged in a differential configuration to compensate for common-mode disturbances. Experimental results obtained with different frequencies and sensor geometries demonstrate excellent precision and accuracy, as benchmarked against conventional, commercial devices. The reversible, non-invasive soft contact of this device with the skin makes its operation appealing for applications ranging from skin care, to athletic monitoring to health/wellness assessment.
NASA Astrophysics Data System (ADS)
Kim, Donggyu; Choi, Wonjun; Kim, Moonseok; Moon, Jungho; Seo, Keumyoung; Ju, Sanghyun; Choi, Wonshik
2014-11-01
We report a method for measuring the transmission matrix of a disordered medium using a binary-control of a digital micromirror device (DMD). With knowledge of the measured transmission matrix, we identified the transmission eigenchannels of the medium. We then used binary control of the DMD to shape the wavefront of incident waves and to experimentally couple light to individual eigenchannels. When the wave was coupled to the eigenchannel with the largest eigenvalue, in particular, we were able to achieve about two times more energy transmission than the mean transmittance of the medium. Our study provides an elaborated use of the DMD as a high-speed wavefront shaping device for controlling the multiple scattering of waves in highly scattering media.
Inducer Hydrodynamic Forces in a Cavitating Environment
NASA Technical Reports Server (NTRS)
Skelley, Stephen E.
2004-01-01
Marshall Space Flight Center has developed and demonstrated a measurement device for sensing and resolving the hydrodynamic loads on fluid machinery. The device - a derivative of the six-component wind tunnel balance - senses the forces and moments on the rotating device through a weakened shaft section instrumented with a series of strain gauges. This rotating balance was designed to directly measure the steady and unsteady hydrodynamic loads on an inducer, thereby defining the amplitude and frequency content associated with operating in various cavitation modes. The rotating balance was calibrated statically using a dead-weight load system in order to generate the 6 x 12 calibration matrix later used to convert measured voltages to engineering units. Structural modeling suggested that the rotating assembly first bending mode would be significantly reduced with the balance s inclusion. This reduction in structural stiffness was later confirmed experimentally with a hammer-impact test. This effect, coupled with the relatively large damping associated with the rotating balance waterproofing material, limited the device s bandwidth to approximately 50 Hertz Other pre-test validations included sensing the test article rotating assembly built-in imbalance for two configurations and directly measuring the assembly mass and buoyancy while submerged under water. Both tests matched predictions and confirmed the device s sensitivity while stationary and rotating. The rotating balance was then demonstrated in a water test of a full-scale Space Shuttle Main Engine high-pressure liquid oxygen pump inducer. Experimental data was collected a scaled operating conditions at three flow coefficients across a range of cavitation numbers for the single inducer geometry and radial clearance. Two distinct cavitation modes were observed symmetric tip vortex cavitation and alternate-blade cavitation. Although previous experimental tests on the same inducer demonstrated two additional cavitation modes at lower inlet pressures, these conditions proved unreachable with the rotating balance installed due to the intense dynamic environment. The sensed radial load was less influenced by flow coefficient than by cavitation number or cavitation mode although the flow coefficient range was relatively narrow. Transition from symmetric tip vortex to alternate-blade cavitation corresponded to changes in both radial load magnitude and radial load orientation relative to the inducer. Sensed moments indicated that the effective load center moved downstream during this change in cavitation mode. An occurrence of "higher+rdex cavitation" was also detected in both the stationary pressures and the rotating balance data although the frequency of the phenomena was well above the reliable bandwidth of the rotating balance. In summary the experimental tests proved both the concept and device s capability despite the limitations and confirmed that hydrodynamically-induced forces and moments develop in response to the unbalanced pressure field, which is, in turn, a product of the cavitation environment.
NASA Astrophysics Data System (ADS)
Jo, Young Chang; Kim, Hae Na; Kang, Jae Hwan; Hong, Hyuck Ki; Choi, Yeon Shik; Jung, Suk Won; Kim, Sung Phil
2017-04-01
In this study, we examined the possibility of using a multispectral skin photomatrix (MSP) module as a novel biometric device. The MSP device measures optical patterns of the wrist skin tissue. Optical patterns consist of 2 × 8 photocurrent intensities of photodiode arrays, which are generated by optical transmission and diffuse reflection of photons from LED light sources with variable wavelengths into the wrist skin tissue. Optical patterns detected by the MSP device provide information on both the surface and subsurface characteristics of the human skin tissue. We found that in the 21 subjects we studied, they showed their unique characteristics, as determined using several wavelengths of light. The experimental results show that the best personal identification accuracy can be acquired using a combination of infrared light and yellow light. This novel biometric device, the MSP module, exhibited an excellent false acceptance rate (FAR) of 0.3% and a false rejection rate (FRR) of 0.0%, which are better than those of commercialized biometric devices such as a fingerprint biometric system. From these experimental results, we found that people exhibit unique optical patterns of their inner-wrist skin tissue and this uniqueness could be used for developing novel high-accuracy personal identification devices.
Isothermal Titration Calorimetry in the Student Laboratory
ERIC Educational Resources Information Center
Wadso, Lars; Li, Yujing; Li, Xi
2011-01-01
Isothermal titration calorimetry (ITC) is the measurement of the heat produced by the stepwise addition of one substance to another. It is a common experimental technique, for example, in pharmaceutical science, to measure equilibrium constants and reaction enthalpies. We describe a stirring device and an injection pump that can be used with a…
OVERVIEW OF NEUTRON MEASUREMENTS IN JET FUSION DEVICE.
Batistoni, P; Villari, R; Obryk, B; Packer, L W; Stamatelatos, I E; Popovichev, S; Colangeli, A; Colling, B; Fonnesu, N; Loreti, S; Klix, A; Klosowski, M; Malik, K; Naish, J; Pillon, M; Vasilopoulou, T; De Felice, P; Pimpinella, M; Quintieri, L
2017-10-05
The design and operation of ITER experimental fusion reactor requires the development of neutron measurement techniques and numerical tools to derive the fusion power and the radiation field in the device and in the surrounding areas. Nuclear analyses provide essential input to the conceptual design, optimisation, engineering and safety case in ITER and power plant studies. The required radiation transport calculations are extremely challenging because of the large physical extent of the reactor plant, the complexity of the geometry, and the combination of deep penetration and streaming paths. This article reports the experimental activities which are carried-out at JET to validate the neutronics measurements methods and numerical tools used in ITER and power plant design. A new deuterium-tritium campaign is proposed in 2019 at JET: the unique 14 MeV neutron yields produced will be exploited as much as possible to validate measurement techniques, codes, procedures and data currently used in ITER design thus reducing the related uncertainties and the associated risks in the machine operation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Turbo fluid machinery and diffusers
NASA Technical Reports Server (NTRS)
Sakurai, T.
1984-01-01
The general theory behind turbo devices and diffusers is explained. Problems and the state of research on basic equations of flow and experimental and measuring methods are discussed. Conventional centrifugation-type compressor and fan diffusers are considered in detail.
Experimental measurement-device-independent quantum digital signatures.
Roberts, G L; Lucamarini, M; Yuan, Z L; Dynes, J F; Comandar, L C; Sharpe, A W; Shields, A J; Curty, M; Puthoor, I V; Andersson, E
2017-10-23
The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario.
A novel method for the accurate evaluation of Poisson's ratio of soft polymer materials.
Lee, Jae-Hoon; Lee, Sang-Soo; Chang, Jun-Dong; Thompson, Mark S; Kang, Dong-Joong; Park, Sungchan; Park, Seonghun
2013-01-01
A new method with a simple algorithm was developed to accurately measure Poisson's ratio of soft materials such as polyvinyl alcohol hydrogel (PVA-H) with a custom experimental apparatus consisting of a tension device, a micro X-Y stage, an optical microscope, and a charge-coupled device camera. In the proposed method, the initial positions of the four vertices of an arbitrarily selected quadrilateral from the sample surface were first measured to generate a 2D 1st-order 4-node quadrilateral element for finite element numerical analysis. Next, minimum and maximum principal strains were calculated from differences between the initial and deformed shapes of the quadrilateral under tension. Finally, Poisson's ratio of PVA-H was determined by the ratio of minimum principal strain to maximum principal strain. This novel method has an advantage in the accurate evaluation of Poisson's ratio despite misalignment between specimens and experimental devices. In this study, Poisson's ratio of PVA-H was 0.44 ± 0.025 (n = 6) for 2.6-47.0% elongations with a tendency to decrease with increasing elongation. The current evaluation method of Poisson's ratio with a simple measurement system can be employed to a real-time automated vision-tracking system which is used to accurately evaluate the material properties of various soft materials.
Measurement-device-independent quantum digital signatures
NASA Astrophysics Data System (ADS)
Puthoor, Ittoop Vergheese; Amiri, Ryan; Wallden, Petros; Curty, Marcos; Andersson, Erika
2016-08-01
Digital signatures play an important role in software distribution, modern communication, and financial transactions, where it is important to detect forgery and tampering. Signatures are a cryptographic technique for validating the authenticity and integrity of messages, software, or digital documents. The security of currently used classical schemes relies on computational assumptions. Quantum digital signatures (QDS), on the other hand, provide information-theoretic security based on the laws of quantum physics. Recent work on QDS Amiri et al., Phys. Rev. A 93, 032325 (2016);, 10.1103/PhysRevA.93.032325 Yin, Fu, and Zeng-Bing, Phys. Rev. A 93, 032316 (2016), 10.1103/PhysRevA.93.032316 shows that such schemes do not require trusted quantum channels and are unconditionally secure against general coherent attacks. However, in practical QDS, just as in quantum key distribution (QKD), the detectors can be subjected to side-channel attacks, which can make the actual implementations insecure. Motivated by the idea of measurement-device-independent quantum key distribution (MDI-QKD), we present a measurement-device-independent QDS (MDI-QDS) scheme, which is secure against all detector side-channel attacks. Based on the rapid development of practical MDI-QKD, our MDI-QDS protocol could also be experimentally implemented, since it requires a similar experimental setup.
NASA Astrophysics Data System (ADS)
Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo
2012-10-01
Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.
Panek, Petr; Prochazka, Ivan
2007-09-01
This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3 ps rms that corresponds to the time of arrival precision of 0.9 ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5 ps/K, and the long term stability is better than +/-0.2 ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.
NASA Astrophysics Data System (ADS)
Brask, Jonatan Bohr; Martin, Anthony; Esposito, William; Houlmann, Raphael; Bowles, Joseph; Zbinden, Hugo; Brunner, Nicolas
2017-05-01
An approach to quantum random number generation based on unambiguous quantum state discrimination is developed. We consider a prepare-and-measure protocol, where two nonorthogonal quantum states can be prepared, and a measurement device aims at unambiguously discriminating between them. Because the states are nonorthogonal, this necessarily leads to a minimal rate of inconclusive events whose occurrence must be genuinely random and which provide the randomness source that we exploit. Our protocol is semi-device-independent in the sense that the output entropy can be lower bounded based on experimental data and a few general assumptions about the setup alone. It is also practically relevant, which we demonstrate by realizing a simple optical implementation, achieving rates of 16.5 Mbits /s . Combining ease of implementation, a high rate, and a real-time entropy estimation, our protocol represents a promising approach intermediate between fully device-independent protocols and commercial quantum random number generators.
Predicting scattering scanning near-field optical microscopy of mass-produced plasmonic devices
NASA Astrophysics Data System (ADS)
Otto, Lauren M.; Burgos, Stanley P.; Staffaroni, Matteo; Ren, Shen; Süzer, Özgün; Stipe, Barry C.; Ashby, Paul D.; Hammack, Aeron T.
2018-05-01
Scattering scanning near-field optical microscopy enables optical imaging and characterization of plasmonic devices with nanometer-scale resolution well below the diffraction limit. This technique enables developers to probe and understand the waveguide-coupled plasmonic antenna in as-fabricated heat-assisted magnetic recording heads. In order to validate and predict results and to extract information from experimental measurements that is physically comparable to simulations, a model was developed to translate the simulated electric field into expected near-field measurements using physical parameters specific to scattering scanning near-field optical microscopy physics. The methods used in this paper prove that scattering scanning near-field optical microscopy can be used to determine critical sub-diffraction-limited dimensions of optical field confinement, which is a crucial metrology requirement for the future of nano-optics, semiconductor photonic devices, and biological sensing where the near-field character of light is fundamental to device operation.
Microwave non-contact imaging of subcutaneous human body tissues.
Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey
2015-10-01
A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.
Atomic and electronic structure of exfoliated black phosphorus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok
2015-11-15
Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolutionmore » view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.« less
NASA Astrophysics Data System (ADS)
Ishimoto, Jun; Oh, U.; Guanghan, Zhao; Koike, Tomoki; Ochiai, Naoya
2014-01-01
The ultra-high heat flux cooling characteristics and impingement behavior of cryogenic micro-solid nitrogen (SN2) particles in relation to a heated wafer substrate were investigated for application to next generation semiconductor wafer cleaning technology. The fundamental characteristics of cooling heat transfer and photoresist removal-cleaning performance using micro-solid nitrogen particulate spray impinging on a heated substrate were numerically investigated and experimentally measured by a new type of integrated computational-experimental technique. This study contributes not only advanced cryogenic cooling technology for high thermal emission devices, but also to the field of nano device engineering including the semiconductor wafer cleaning technology.
Trauma potential and ballistic parameters of cal. 9 mm P.A. dummy launchers.
Frank, Matthias; Bockholdt, Britta; Philipp, Klaus-Peter; Ekkernkamp, Axel
2010-07-15
Blank cartridge actuated dummy launching devices are used by migratory bird hunters to train dogs to retrieve downed birds. The devices create a loud noise while simultaneously propelling a hard foam dummy for retrieval. A newly developed dummy launcher is based on a modified cal. 9 mm P.A. blank handgun with an extension tube pinned and welded to the barrel imitation. Currently, there are no experimental investigations on the ballistic background and trauma potential of these uncommon shooting devices. An experimental test set-up consisting of a photoelectric infrared light barrier was used for measurement of the velocity of hard foam dummies propelled with an automatic dummy launcher. Ballistic parameters of the dummies and an aluminium sleeve as improvised projectile (kinetic energy (E), impulse (p), energy density (E') and threshold velocity (v(tsh)) to cause penetrating wounds as a function of cross-sectional density (S)) were calculated. The average velocity (v) of the dummies was measured 25.71 m/s exerting an average impulse (p) of 3.342 Ns. The average kinetic energy (E) was calculated 43.04 J with an average energy density (E') of 0.069 J/mm(2). The average velocity (v) of the aluminium sleeves as improvised projectiles was measured 79.58 m/s exerting an average impulse (p) of 2.228 Ns. The average kinetic energy (E) of the aluminium sleeves was calculated as 88.70 J with an average energy density (E') of 0.282 J/mm(2). The energy delivered by these shooting devices is high enough to cause relevant injuries. The absence of skin penetration must not mislead the emergency physician or forensic expert into neglecting the potential damage from these devices. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Bahrieh, Garsha; Özgür, Ebru; Koyuncuoğlu, Aziz; Erdem, Murat; Gündüz, Ufuk; Külah, Haluk
2015-08-01
This is a study of in-plane and out-of-plane distribution of rotational torque (ROT-T) and effective electric field (EEF) on electrorotation (ER) devices with 3D electrodes using finite element modeling (FEM) and experimental method. The objective of this study is to investigate electrical characteristics of the ER devices with five different electrode geometries and obtain an optimum structure for ER experiments. Further, it provides a comparison between characteristics of the 3D electrodes and traditionally used 2D electrodes. 3D distributions of EEF were studied by the time-variant FEM. FEM results were verified experimentally by studying the rotation of biological cells. The results show that the variations of ROT-T and EEF over the measurement area of the devices are considerably large. This can potentially lead to misinterpretation of recorded data. Therefore, it is essential to specify the boundaries of the measurement area with minimum deviation from the central EEF. For this purpose, FE analyses were utilized to specify the optimal region. Thereby, with confining the measurements to these regions, the dependency of ROT-T on the spatial position of the particles can be eliminated. Comparisons have been made on the sustainability of the EEF and ROT-T distributions for each device, to find an optimum design. Analyses of the devices prove that utilization of the 3D electrodes eliminate irregularities of EEF and ROT-T along the z-axis. The Results show that triangular electrodes provide the highest sustainability for the in-plane ROT-T and EEF distribution, while the oblate elliptical and circular electrodes have the lowest variances along the z-axis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells
NASA Astrophysics Data System (ADS)
Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B.
2014-07-01
We present a device model for the hydrazine processed kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cell with a world record efficiency of ˜12.6%. Detailed comparison of the simulation results, performed using wxAMPS software, to the measured device parameters shows that our model captures the vast majority of experimental observations, including VOC, JSC, FF, and efficiency under normal operating conditions, and temperature vs. VOC, sun intensity vs. VOC, and quantum efficiency. Moreover, our model is consistent with material properties derived from various techniques. Interestingly, this model does not have any interface defects/states, suggesting that all the experimentally observed features can be accounted for by the bulk properties of CZTSSe. An electrical (mobility) gap that is smaller than the optical gap is critical to fit the VOC data. These findings point to the importance of tail states in CZTSSe solar cells.
Helix structure for low frequency acoustic energy harvesting
NASA Astrophysics Data System (ADS)
Yuan, Ming; Cao, Ziping; Luo, Jun; Pang, Zongqiang
2018-05-01
In this study, a novel helix acoustic resonator is proposed to realize acoustic energy harvesting (AEH). Compared with the traditional acoustic resonators, the proposed structure occupies a small volume and is suitable for the low frequency range. At a specific incident frequency, the mechanical component of the AEH device can be intensely excited and the bonded piezoelectric patch is utilized to convert the strain energy into electrical energy. Analytical studies are carried out to disclose the acoustic resonant system properties. Meanwhile, the pure acoustic and coupled vibro-acoustic properties of the proposed device are analyzed via the finite element method. The major part of the AEH device is fabricated via 3D printing for experimental study, which is favored for rapid prototyping. At acoustic resonance frequency 175 Hz, 100 dB sound pressure level excitation working condition, the measured experimental data show that the harvested power can be up to 7.3 μW.
Helix structure for low frequency acoustic energy harvesting.
Yuan, Ming; Cao, Ziping; Luo, Jun; Pang, Zongqiang
2018-05-01
In this study, a novel helix acoustic resonator is proposed to realize acoustic energy harvesting (AEH). Compared with the traditional acoustic resonators, the proposed structure occupies a small volume and is suitable for the low frequency range. At a specific incident frequency, the mechanical component of the AEH device can be intensely excited and the bonded piezoelectric patch is utilized to convert the strain energy into electrical energy. Analytical studies are carried out to disclose the acoustic resonant system properties. Meanwhile, the pure acoustic and coupled vibro-acoustic properties of the proposed device are analyzed via the finite element method. The major part of the AEH device is fabricated via 3D printing for experimental study, which is favored for rapid prototyping. At acoustic resonance frequency 175 Hz, 100 dB sound pressure level excitation working condition, the measured experimental data show that the harvested power can be up to 7.3 μW.
Basic investigation into the electrical performance of solid electrolyte membranes
NASA Technical Reports Server (NTRS)
Richter, R.
1982-01-01
The electrical performance of solid electrolyte membranes was investigated analytically and the results were compared with experimental data. It is concluded that in devices that are used for pumping oxygen the major power losses have to be attributed to the thin film electrodes. Relations were developed by which the effectiveness of tubular solid electrolyte membranes can be determined and the optimum length evaluated. The observed failure of solid electrolyte tube membranes in very localized areas is explained by the highly non-uniform current distribution in the membranes. The analysis points to a possible contact resistance between the electrodes and the solid electrolyte material. This possible contact resistance remains to be investigated experimentally. It is concluded that film electrodes are not appropriate for devices which operate with current flow, i.e., pumps though they can be employed without reservation in devices that measure oxygen pressures if a limited increase in the response time can be tolerated.
NASA Astrophysics Data System (ADS)
Dagdeviren, Canan; Shi, Yan; Joe, Pauline; Ghaffari, Roozbeh; Balooch, Guive; Usgaonkar, Karan; Gur, Onur; Tran, Phat L.; Crosby, Jessi R.; Meyer, Marcin; Su, Yewang; Chad Webb, R.; Tedesco, Andrew S.; Slepian, Marvin J.; Huang, Yonggang; Rogers, John A.
2015-07-01
Mechanical assessment of soft biological tissues and organs has broad relevance in clinical diagnosis and treatment of disease. Existing characterization methods are invasive, lack microscale spatial resolution, and are tailored only for specific regions of the body under quasi-static conditions. Here, we develop conformal and piezoelectric devices that enable in vivo measurements of soft tissue viscoelasticity in the near-surface regions of the epidermis. These systems achieve conformal contact with the underlying complex topography and texture of the targeted skin, as well as other organ surfaces, under both quasi-static and dynamic conditions. Experimental and theoretical characterization of the responses of piezoelectric actuator-sensor pairs laminated on a variety of soft biological tissues and organ systems in animal models provide information on the operation of the devices. Studies on human subjects establish the clinical significance of these devices for rapid and non-invasive characterization of skin mechanical properties.
Ceccolini, E; Ferrari, P; Castelluccio, D M; Mostacci, D; Sumini, M
2013-10-01
The electron beam emitted backward by plasma focus devices is being considered as a radiation source for Intra-Operative Radiation Therapy (IORT) applications. Radiobiological investigations have been conducted to assess the potential of this new prototype of IORT device. A standard x-ray beam, ISO-H60, was used for comparison, irradiating cell cultures in a holder filled with an aqueous solution. The influence of scattering by the culture water and by the walls of the holder was investigated to determine their influence on the dose delivered to the cell culture. MCNPX simulations were run and experimental measurements conducted. The effect of scattering by the holder was found to be negligible; scattering by the culture water was determined to give an increase in dose of the order of 10%.
Laboratory experiments duplicate conditions in the Earth’s crust
Peselnick, L.; Dieterich, J.H.; Stewart, R.M.
1974-01-01
An experimental device that simulates conditions in the Earth's crust at depths of up to 30 kilometers has been constructed by geophysicists working at the U.S Geological Survey laboratories in Menlo Park, California. A high pressure "bomb" is being used to experimentally measure the velocity of seismic waves in different types of rock at various confining pressures and temperatures. The principal purpose of these measurements is to determine the elastic and non-elastic properties of rocks and minerals under conditions of high-pressure such as exist deep in the Earth's crust.
Scanning and Measuring Device for Diagnostic of Barrel Bore
NASA Astrophysics Data System (ADS)
Marvan, Ales; Hajek, Josef; Vana, Jan; Dvorak, Radim; Drahansky, Martin; Jankovych, Robert; Skvarek, Jozef
The article discusses the design, mechanical design, electronics and software for robot diagnosis of barrels with caliber of 120 mm to 155 mm. This diagnostic device is intended primarily for experimental research and verification of appropriate methods and technologies for the diagnosis of the main bore guns. Article also discusses the design of sensors and software, the issue of data processing and image reconstruction obtained by scanning of the surface of the bore.
Design and Development of Patient Monitoring System
NASA Astrophysics Data System (ADS)
Hazwanie Azizulkarim, Azra; Jamil, Muhammad Mahadi Abdul; Ambar, Radzi
2017-08-01
Patient monitoring system allows continuous monitoring of patient vital signs, support decision making among medical personnel and help enhance patient care. This system can consist of devices that measure, display and record human’s vital signs, including body temperature, heart rate, blood pressure and other health-related criteria. This paper proposes a system to monitor the patient’s conditions by monitoring the body temperature and pulse rate. The system consists of a pulse rate monitoring software and a wearable device that can measure a subject’s temperature and pulse rate only by using a fingertip. The device is able to record the measurement data and interface to PC via Arduino microcontroller. The recorded data can be viewed as a historical file or can be archived for further analysis. This work also describes the preliminary experimental results of the selected sensors to show the usefulness of the sensors for the proposed patient monitoring system.
High-rate measurement-device-independent quantum cryptography
NASA Astrophysics Data System (ADS)
Pirandola, Stefano; Ottaviani, Carlo; Spedalieri, Gaetana; Weedbrook, Christian; Braunstein, Samuel L.; Lloyd, Seth; Gehring, Tobias; Jacobsen, Christian S.; Andersen, Ulrik L.
2015-06-01
Quantum cryptography achieves a formidable task—the remote distribution of secret keys by exploiting the fundamental laws of physics. Quantum cryptography is now headed towards solving the practical problem of constructing scalable and secure quantum networks. A significant step in this direction has been the introduction of measurement-device independence, where the secret key between two parties is established by the measurement of an untrusted relay. Unfortunately, although qubit-implemented protocols can reach long distances, their key rates are typically very low, unsuitable for the demands of a metropolitan network. Here we show, theoretically and experimentally, that a solution can come from the use of continuous-variable systems. We design a coherent-state network protocol able to achieve remarkably high key rates at metropolitan distances, in fact three orders of magnitude higher than those currently achieved. Our protocol could be employed to build high-rate quantum networks where devices securely connect to nearby access points or proxy servers.
Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices
NASA Astrophysics Data System (ADS)
Al-Taie, H.; Smith, L. W.; Xu, B.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.
2013-06-01
We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e2/h. A fabrication-limited yield of 94% is achieved for the array, and a "quantum yield" is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.
NASA Technical Reports Server (NTRS)
Susko, M.
1977-01-01
Electrets used to detect the chemical composition of rocket exhaust effluents were investigated. The effectiveness of electrets was assessed while comparisons were made with hydrogen chloride measuring devices from chamber and field tests, and computed results from a multilayer diffusion model. The experimental data used were obtained from 18 static test firings, chamber tests, and the Viking 1 launch to Mars. Results show that electrets have multipollutant measuring capabilities, simplicity of deployment, and speed of assessment. The electrets compared favorably with other hydrogen chloride measuring devices. The summary of the measured data from the electrets and the hydrogen chloride detectors was within the upper and lower bounds of the computed hydrogen chloride concentrations from the multilayer diffusion model.
Long term performance of wearable transducer for motion energy harvesting
NASA Astrophysics Data System (ADS)
McGarry, Scott A.; Behrens, Sam
2010-04-01
Personal electronic devices such as cell phones, GPS and MP3 players have traditionally depended on battery energy storage technologies for operation. By harvesting energy from a person's motion, these devices may achieve greater run times without increasing the mass or volume of the electronic device. Through the use of a flexible piezoelectric transducer such as poly-vinylidene fluoride (PVDF), and integrating it into a person's clothing, it becomes a 'wearable transducer'. As the PVDF transducer is strained during the person's routine activities, it produces an electrical charge which can then be harvested to power personal electronic devices. Existing wearable transducers have shown great promise for personal motion energy harvesting applications. However, they are presently physically bulky and not ergonomic for the wearer. In addition, there is limited information on the energy harvesting performance for wearable transducers, especially under realistic conditions and for extended cyclic force operations - as would be experienced when worn. In this paper, we present experimental results for a wearable PVDF transducer using a person's measured walking force profile, which is then cycled for a prolonged period of time using an experimental apparatus. Experimental results indicate that after an initial drop in performance, the transducer energy harvesting performance does not substantially deteriorate over time, as less than 10% degradation was observed. Longevity testing is still continuing at CSIRO.
THE ECOLOGY OF BACTERIA IN THE ALFRESCO ATMOSPHERE
This MiniReview is concerned with the sources,flux and the spacial and temporal distributions of culturable airborne bacteria; how meteorological conditions modulate these distributions; and how death, culture media, and experimental devices relate to measuring airborne bacteria....
An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.
Yu, Yi-Hsin; Lu, Shao-Wei; Chuang, Chun-Hsiang; King, Jung-Tai; Chang, Che-Lun; Chen, Shi-An; Chen, Sheng-Fu; Lin, Chin-Teng
2016-07-01
Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications.
Resolution of the EPR Paradox for Fermion Spin Correlations
NASA Astrophysics Data System (ADS)
Close, Robert
2011-10-01
The EPR paradox addresses the question of whether a physical system can have a definite state independent of its measurement. Bell's Theorem places limits on correlations between local measurements of particles whose properties are established prior to measurement. Experimental violation of Bell's theorem has been regarded as evidence against the existence of a definite state prior to measurement. We model fermions as having a spatial distribution of spin values, so that a Stern-Gerlach device samples the spin distribution differently at different orientations. The computed correlations agree with quantum mechanical predictions and experimental observations. Bell's Theorem is not applicable because for any sampling of angles, different points on the sphere have different density of states.
Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.
Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann
2017-01-01
The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.
Electromagnetic radiation screening of microcircuits for long life applications
NASA Technical Reports Server (NTRS)
Brammer, W. G.; Erickson, J. J.; Levy, M. E.
1974-01-01
The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws.
On-fiber plasmonic interferometer for multi-parameter sensing
Zhang, Zhijian; Chen, Yongyao; Liu, Haijun; ...
2015-01-01
We demonstrate a novel miniature multi-parameter sensing device based on a plasmonic interferometer fabricated on a fiber facet in the optical communication wavelength range. This device enables the coupling between surface plasmon resonance and plasmonic interference in the structure, which are the two essential mechanisms for multi-parameter sensing. We experimentally show that these two mechanisms have distinctive responses to temperature and refractive index, rendering the device the capability of simultaneous temperature and refractive index measurement on an ultra-miniature form factor. A high refractive index sensitivity of 220 nm per refractive index unit (RIU) and a high temperature sensitivity of –60more » pm/ °C is achieved with our device.« less
Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol
Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki
2014-01-01
The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431
Gravity Acceleration Measurements Using a Soundcard
ERIC Educational Resources Information Center
Abellan-Garcia, Francisco J.; Garcia-Gamuz, Jose Antonio; Valerdi-Perez, Ramon P.; Ibanez-Mengual, Jose A.
2012-01-01
The aim of this paper is to determine the acceleration due to gravity "g", using a simple and low-cost experimental device. The time taken for a metallic ball to travel a predetermined distance is measured and recorded by a series of optical sensors. Four pairs of sensors are placed along the external surface of a vertical methacrylate tube at…
Measured and Predicted Radiation-Induced Currents in Semirigid Coaxial Cables.
1977-10-11
plasma focus device. Semirigid cables of different size, material, and impedance were tested. Minute gaps and conductor flashings were found to be dominant factors affecting cable response. Response predictions provided by the MCCABE computer code closely correlated with the experimental measurements. Design of low-response semirigid cables matching the metal and dielectric electron emission is discussed.
Four-port coupled channel-guide device based on 2D photonic crystal structure
NASA Astrophysics Data System (ADS)
Camargo, Edilson A.; Chong, Harold M. H.; De La Rue, Richard M.
2004-12-01
We have fabricated and measured a four-port coupled channel-waveguide device using W1 channel waveguides oriented along ΓK directions in a two-dimensional (2D) hole-based planar photonic crystal (PhC) based on silicon-on-insulator (SOI) waveguide material, at operation wavelengths around 1550 nm. 2D FDTD simulations and experimental results are shown and compared. The structure has been designed using a mode conversion approach, combined with coupled-mode concepts. The overall length of the photonic crystal structure is typically about 39 μm and the structure has been fabricated using a combination of direct-write electron-beam lithography (EBL) and dry-etch processing. Devices were measured using a tunable laser with end-fire coupling into the planar structure.
NASA Technical Reports Server (NTRS)
1975-01-01
Flow charts and display formats for the simulation of five experiments are given. The experiments are: (1) electromagnetic wave transmission; (2) passive observations of ambient plasma; (3) ionospheric measurements with subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustical gravity waves in the sodium layer using lasers. A detailed explanation of the simulation procedure, definition of variables, and an explanation of how the experimenter makes display choices is also presented. A functional description is included on each flow chart and the assumptions and definitions of terms and scope of the flow charts and displays are presented.
Modeling and experimental study on characterization of micromachined thermal gas inertial sensors.
Zhu, Rong; Ding, Henggao; Su, Yan; Yang, Yongjun
2010-01-01
Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.
Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.
2012-01-01
With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681
Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, YongAn; Damadoran, Anoop R; Xia, Jing; Martin, Lane W; Huang, Yonggang; Rogers, John A
2014-08-05
The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bird, S.P.
1978-03-01
Biofouling and corrosion of heat exchanger surfaces in Ocean Thermal Energy Conversion (OTEC) systems may be controlling factors in the potential success of the OTEC concept. Very little is known about the nature and behavior of marine fouling films at sites potentially suitable for OTEC power plants. To facilitate the acquisition of needed data, a biofouling measurement device developed by Professor J. G. Fetkovich and his associates at Carnegie-Mellon University (CMU) has been mass produced for use by several organizations in experiments at a variety of ocean sites. The CMU device is designed to detect small changes in thermal resistancemore » associated with the formation of marine microfouling films. An account of the work performed at the Pacific Northwest Laboratory (PNL) to develop a computerized uncertainty analysis for estimating experimental uncertainties of results obtained with the CMU biofouling measurement device and data reduction scheme is presented. The analysis program was written as a subroutine to the CMU data reduction code and provides an alternative to the CMU procedure for estimating experimental errors. The PNL code was used to analyze sample data sets taken at Keahole Point, Hawaii; St. Croix, the Virgin Islands; and at a site in the Gulf of Mexico. The uncertainties of the experimental results were found to vary considerably with the conditions under which the data were taken. For example, uncertainties of fouling factors (where fouling factor is defined as the thermal resistance of the biofouling layer) estimated from data taken on a submerged buoy at Keahole Point, Hawaii were found to be consistently within 0.00006 hr-ft/sup 2/-/sup 0/F/Btu, while corresponding values for data taken on a tugboat in the Gulf of Mexico ranged up to 0.0010 hr-ft/sup 2/-/sup 0/F/Btu. Reasons for these differences are discussed.« less
Polymer taper bridge for silicon waveguide to single mode waveguide coupling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Middlebrook, Christopher T.
2016-03-01
Coupling of optical power from high-density silicon waveguides to silica optical fibers for signal routing can incur high losses and often requires complex end-face preparation/processing. Novel coupling device taper structures are proposed for low coupling loss between silicon photonic waveguides and single mode fibers are proposed and devices are fabricated and measured in terms of performance. Theoretical mode conversion models for waveguide tapers are derived for optimal device structure design and performance. Commercially viable vertical and multi-layer taper designs using polymer waveguide materials are proposed as innovative, cost-efficient, and mass-manufacturable optical coupling devices. The coupling efficiency for both designs is determined to evaluate optimal device dimensions and alignment tolerances with both silicon rib waveguides and silicon nanowire waveguides. Propagation loss as a function of waveguide roughness and metallic loss are determined and correlated to waveguide dimensions to obtain total insertion loss for the proposed taper designs. Multi-layer tapers on gold-sputtered substrates are fabricated through photolithography as proof-of-concept devices and evaluated for device loss optimization. Tapered waveguide coupling loss with Si WGs (2.74 dB) was experimentally measured with high correlation to theoretical results.
Energy transport in cooling device by magnetic fluid
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroshi; Iwamoto, Yuhiro
2017-06-01
Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.
NASA Astrophysics Data System (ADS)
Wingqvist, G.; Arapan, L.; Yantchev, V.; Katardjiev, I.
2009-03-01
Micromachined thin film plate acoustic wave resonators (FPARs) utilizing the lowest order symmetric Lamb wave (S0) propagating in highly textured 2 µm thick aluminium nitride (AlN) membranes have been successfully demonstrated (Yantchev and Katardjiev 2007 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 87-95). The proposed devices have a SAW-based design and exhibit Q factors of up to 3000 at a frequency around 900 MHz as well as design flexibility with respect to the required motional resistance. However, a notable drawback of the proposed devices is the non-zero temperature coefficient of frequency (TCF) which lies in the range -20 ppm K-1 to -25 ppm K-1. Thus, despite the promising features demonstrated, further device optimization is required. In this work temperature compensation of thin AlN film Lamb wave resonators is studied and experimentally demonstrated. Temperature compensation while retaining at the same time the device electromechanical coupling is experimentally demonstrated. The zero TCF Lamb wave resonators are fabricated onto composite AlN/SiO2 membranes. Q factors of around 1400 have been measured at a frequency of around 755 MHz. Finally, the impact of technological issues on the device performance is discussed in view of improving the device performance.
The Measurement of Airflow Using Singing Helmet That Allows Free Movement of the Jaw.
Jiang, Jack J; Hanna, Rewais B; Willey, Malachi V; Rieves, Adam
2016-11-01
Airflow measurement is a useful method of evaluating laryngeal physiology. We introduce a noninvasive device that measures airflow without restricting jaw movement or requiring phonation into a mouthpiece, thus facilitating measurement during singing and connected speech. Validation and human subject trials were conducted. Airflow measurements were obtained from 16 male and 16 female subjects during singing, speech, and constant vowel production tasks. A similar helmet was designed by Stevens and Mead in 1968. The new device validity was evaluated by comparing the measured volume of air to a known volume of administered air using a calibration syringe. Subjects were asked to voice sustained vowels at low, medium, and high vocal intensity, read two sentences at a conversational volume, and perform different singing exercises while airflow was recorded. The device accurately and reliably measured airflow with mean airflow values falling within previously published ranges. There was an experimentally determined response time of 0.173 ± 0.014 seconds. Subjects were able to comfortably perform speech and singing exercises. Male subjects had higher airflow for all sustained vowels (P < 0.05). Airflow was higher for abduction rather than adduction sentences (P < 0.05). No other portable device has been shown to measure airflow during singing and speech while allowing for free movement of the jaw. This device provides a more natural environment to measure airflow that could be used to help evaluate laryngeal function and aid in singing training. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon
2013-01-01
The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures. PMID:24404040
Computational and experimental study of airflow around a fan powered UVGI lamp
NASA Astrophysics Data System (ADS)
Kaligotla, Srikar; Tavakoli, Behtash; Glauser, Mark; Ahmadi, Goodarz
2011-11-01
The quality of indoor air environment is very important for improving the health of occupants and reducing personal exposure to hazardous pollutants. An effective way of controlling air quality is by eliminating the airborne bacteria and viruses or by reducing their emissions. Ultraviolet Germicidal Irradiation (UVGI) lamps can effectively reduce these bio-contaminants in an indoor environment, but the efficiency of these systems depends on airflow in and around the device. UVGI lamps would not be as effective in stagnant environments as they would be when the moving air brings the bio-contaminant in their irradiation region. Introducing a fan into the UVGI system would augment the efficiency of the system's kill rate. Airflows in ventilated spaces are quite complex due to the vast range of length and velocity scales. The purpose of this research is to study these complex airflows using CFD techniques and validate computational model with airflow measurements around the device using Particle Image Velocimetry measurements. The experimental results including mean velocities, length scales and RMS values of fluctuating velocities are used in the CFD validation. Comparison of these data at different locations around the device with the CFD model predictions are performed and good agreement was observed.
NASA Astrophysics Data System (ADS)
Le Du, Mathieu
The use of phase change materials (PCMs) allows to store and release large amounts of energy in reduced volumes by using latent heat storage through melting and solidifying at specific temperatures. Phase change materials received a great interest for reducing energy consumption by easing the implementation of passive solar heating and cooling. They can be integrated to buildings as wallboards to improve the heat storage capacity. In this study, an original experimental device has allowed to characterize the thermophysical proprieties of a composite wallboard constituted of PCMs. Generally, PCMs are characterized by calorimetric methods which use very small quantities of material. The device used can characterize large sample's dimensions, as they could be used in real condition. Apparent thermal conductivity and specific heat have been measured for various temperatures. During phase change process, total and latent heat storage capacities have been evaluated with the peak melting and freezing temperatures. Results are compared to the manufacturer's data and data from literature. Incoherencies have been found between sources. Despite several differences with published data, overall results are similar to the latest information, which allow validate the original experimental device. Thermal disturbances due to hysteresis have been noticed and discussed. Results allow suggesting recommendations on thermal procedure and experimental device to characterize efficiently this kind of materials. Temperature's ranges and heating and freezing rates affect results and it must be considered in the characterization. Moreover, experimental devices have to be designed to allow similar heating and freezing rates in order to compare results during melting and freezing.
NASA Astrophysics Data System (ADS)
Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.
2015-05-01
Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.
Experimental Study of under-platform Damper Kinematics in Presence of Blade Dynamics
NASA Astrophysics Data System (ADS)
Botto, D.; Gastaldi, C.; Gola, M. M.; Umer, M.
2018-01-01
Among the different devices used in the aerospace industries under-platform dampers are widely used in turbo engines to mitigate the blade vibration. Nevertheless, the damper behaviour is not easy to simulate and engineers have been working in order to improve the accuracy with which theoretical contact models predict the damper behaviour. Majority of the experimental setups collect experimental data in terms of blade amplitude reduction which do not increase the knowledge about the damper dynamics and therefore the uncertainty on the damper behaviour remains a big issue. In this paper, a novel test rig has been purposely designed to accommodate a single blade and two under-platform dampers to deeply investigate the damper-blade interactions. In this test bench, a contact force measuring system was designed to extensively measure the damper contact forces. Damper kinematics is rebuilt by using the relative displacement measured between damper and blade. This paper describes the concept behind the new approach, shows the details of new test rig and discusses experimental results by comparing with previously measured results on an old experimental setup.
Cooling molten salt reactors using "gas-lift"
NASA Astrophysics Data System (ADS)
Zitek, Pavel; Valenta, Vaclav; Klimko, Marek
2014-08-01
This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a "Two-phase flow demonstrator" (TFD) used for experimental study of the "gas-lift" system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for "gas-lift" (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.
Analysis and characterization of graphene-on-substrate devices
NASA Astrophysics Data System (ADS)
Berdebes, Dionisis
The purpose of this MS Thesis is the analysis and characterization of graphene on substrate structures prepared at the Birck Nanotechnology Center-Purdue University/IBM Watson Research Center-N.Y., and characterized under low-field transport conditions. First, a literature survey is conducted, both in theoretical and experimental work on graphene transport phenomena, and the open issues are reported. Next, the theory of low-field transport in graphene is reviewed within a Landauer framework. Experimental results of back-gated graphene-on-substrate devices, prepared by the Appenzeller group, are then presented, followed by an extraction of an energy/temperature dependent backscattering mean free path as the main characterization parameter. A key conclusion is the critical role of contacts in two-probe measurements. In this framework, a non-self-consistent Non Equilibrium Green's Function method is employed for the calculation of the odd and even metal-graphene ballistic interfacial resistance. A good agreement with the relevant experimental work is observed.
NASA Astrophysics Data System (ADS)
Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.
2013-09-01
This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% <1.53 and 2.85 % for training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.
The multipole resonance probe: characterization of a prototype
NASA Astrophysics Data System (ADS)
Lapke, Martin; Oberrath, Jens; Schulz, Christian; Storch, Robert; Styrnoll, Tim; Zietz, Christian; Awakowicz, Peter; Brinkmann, Ralf Peter; Musch, Thomas; Mussenbrock, Thomas; Rolfes, Ilona
2011-08-01
The multipole resonance probe (MRP) was recently proposed as an economical and industry compatible plasma diagnostic device (Lapke et al 2008 Appl. Phys. Lett. 93 051502). This communication reports the experimental characterization of a first MRP prototype in an inductively coupled argon/nitrogen plasma at 10 Pa. The behavior of the device follows the predictions of both an analytical model and a numerical simulation. The obtained electron densities are in excellent agreement with the results of Langmuir probe measurements.
Air elimination capability in rapid infusion systems.
Zoremba, N; Gruenewald, C; Zoremba, M; Rossaint, R; Schaelte, G
2011-11-01
Pressure infusion devices are used in clinical practice to apply large volumes of fluid over a short period of time. Although air infusion is a major complication, they have limited capability to detect and remove air during pressure infusion. In this investigation, we tested the air elimination capabilities of the Fluido(®) (The Surgical Company), Level 1(®) (Level 1 Technologies Inc.) and Ranger(®) (Augustine Medical GmbH) pressure infusion devices. Measurements were undertaken with a crystalloid solution during an infusion flow of 100, 200, 400 and 800 ml.min(-1). Four different volumes of air (25, 50, 100 and 200 ml) were injected as boluses in one experimental setting, or infused continuously over the time needed to perfuse 2 l saline in the other setting. The perfusion fluid was collected in an airtight infusion bag and the amount of air obtained in the bag was measured. The delivered air volume was negligible and would not cause any significant air embolism in all experiments. In our experimental setting, we found, during high flow, an increased amount of uneliminated air in all used devices compared with lower perfusion flows. All tested devices had a good air elimination capability. The use of ultrasonic air detection coupled with an automatic shutoff is a significant safety improvement and can reliably prevent accidental air embolism at rapid flows. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.
Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio
2017-01-01
The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage. PMID:28273801
Perez-Diaz de Cerio, David; Hernández, Ángela; Valenzuela, Jose Luis; Valdovinos, Antonio
2017-03-03
The purpose of this paper is to evaluate from a real perspective the performance of Bluetooth Low Energy (BLE) as a technology that enables fast and reliable discovery of a large number of users/devices in a short period of time. The BLE standard specifies a wide range of configurable parameter values that determine the discovery process and need to be set according to the particular application requirements. Many previous works have been addressed to investigate the discovery process through analytical and simulation models, according to the ideal specification of the standard. However, measurements show that additional scanning gaps appear in the scanning process, which reduce the discovery capabilities. These gaps have been identified in all of the analyzed devices and respond to both regular patterns and variable events associated with the decoding process. We have demonstrated that these non-idealities, which are not taken into account in other studies, have a severe impact on the discovery process performance. Extensive performance evaluation for a varying number of devices and feasible parameter combinations has been done by comparing simulations and experimental measurements. This work also includes a simple mathematical model that closely matches both the standard implementation and the different chipset peculiarities for any possible parameter value specified in the standard and for any number of simultaneous advertising devices under scanner coverage.
In search of the autologous clip: a case for experimental standardization.
Krugman, Kimberly A; Martin, Kimberly E; Cosgriff, Ned; Slakey, Douglas P
2011-10-01
In an effort to enable faster and, at times, more challenging surgeries without compromising patient or physician safety, medical device manufacturers have created myriad solutions to vascular ligation through the development of novel tools. The speed of development, FDA approval, and dissemination of these devices into the hands of surgeons often outpaces the ability of investigators to critically evaluate comparative effectiveness of these devices. The Medline database was searched for energy-based vessel ligation devices. To remove any perception bias against non-Covidien instruments, critical review was applied only to the devices manufactured by our company. We report on the variability present in published results and offer vital metrics for future studies. Standardized testing and reporting for measures of safety and efficacy of these surgical instruments awaits definition from a consensus group.
[Test of thermal deformation for electronic devices of high thermal reliability].
Li, Hai-yuan; Li, Bao-ming
2002-06-01
Thermal deformation can be caused by high partial heat flux and greatly reduce thermal reliability of electronic devices. In this paper, an attempt is made to measure the thermal deformation of high power electronic devices under working condition using laser holographic interferometry with double exposure. Laser holographic interferometry is an untouched measurement with measurement precision up to micron dimension. The electronic device chosen for measurement is a type of solid state relay which is used for ignition of rockets. The output circuit of the solid state relay is made up of a MOSFET chip and the power density of the chip can reach high value. In particular situations thermal deformation and stress may significantly influence working performance of the solid state relay. The bulk deformation of the chip and its mount is estimated by number of interferential stripes on chip surface. While thermal stress and deformation can be estimated by curvature of interferential stripes on chip surface. Experimental results indicate that there are more interferential stripes on chip surface and greater flexural degree of stripes under high power. Therefore, these results reflect large out-of-plain displacement and deformed size of the chip with the increase of load current.
Chahl, J S
2014-01-20
This paper describes an application for arrays of narrow-field-of-view sensors with parallel optical axes. These devices exhibit some complementary characteristics with respect to conventional perspective projection or angular projection imaging devices. Conventional imaging devices measure rotational egomotion directly by measuring the angular velocity of the projected image. Translational egomotion cannot be measured directly by these devices because the induced image motion depends on the unknown range of the viewed object. On the other hand, a known translational motion generates image velocities which can be used to recover the ranges of objects and hence the three-dimensional (3D) structure of the environment. A new method is presented for computing egomotion and range using the properties of linear arrays of independent narrow-field-of-view optical sensors. An approximate parallel projection can be used to measure translational egomotion in terms of the velocity of the image. On the other hand, a known rotational motion of the paraxial sensor array generates image velocities, which can be used to recover the 3D structure of the environment. Results of tests of an experimental array confirm these properties.
A tensile machine with a novel optical load cell for soft biological tissues application.
Faturechi, Rahim; Hashemi, Ata; Abolfathi, Nabiollah
2014-11-01
The uniaxial tensile testing machine is the most common device used to measure the mechanical properties of industrial and biological materials. The need for a low-cost uniaxial tension testing device for small research centers has always been the subject of research. To address this need, a novel uniaxial tensile testing machine was designed and fabricated to measure the mechanical properties of soft biological tissues. The device is equipped with a new low-cost load cell which works based on the linear displacement/force relationship of beams. The deflection of the beam load cell is measured optically by a digital microscope with an accuracy of 1 µm. The stiffness of the designed load cell was experimentally and theoretically determined at 100 N mm(-1). The stiffness of the load cell can be easily adjusted according to the tissue's strength. The force-time behaviour of soft tissue specimens was obtained by an in-house image processing program. To demonstrate the efficiency of the fabricated device, the mechanical properties of amnion tissue was measured and compared with available data. The obtained results indicate a strong agreement with that of previous studies.
Compressive Optical Imaging Systems -- Theory, Devices and Implementation
2009-04-15
strategies have a long history. The most obvious example is tomography, which relies on Radon projections of the object distribution. However, more...experiment. The top fruit is green, the bottom right is yellow-green, and the bottom left is yellow- orange . Note the the broad spectral ranges have...Measured spectra Greenish yellow Measured spectra yellow orange measured spectra Figure 19: DD-CASSI experimental results from real-world objects
Morales, Ricardo; Badesa, Francisco J; García-Aracil, Nicolas; Perez-Vidal, Carlos; Sabater, Jose María
2012-01-01
This paper presents a microdevice for monitoring, control and management of electric loads at home. The key idea is to compact the electronic design as much as possible in order to install it inside a Schuko socket. Moreover, the electronic Schuko socket (electronic microdevice + Schuko socket) has the feature of communicating with a central unit and with other microdevices over the existing powerlines. Using the existing power lines, the proposed device can be installed in new buildings or in old ones. The main use of this device is to monitor, control and manage electric loads to save energy and prevent accidents produced by different kind of devices (e.g., iron) used in domestic tasks. The developed smart device is based on a single phase multifunction energy meter manufactured by Analog Devices (ADE7753) to measure the consumption of electrical energy and then to transmit it using a serial interface. To provide current measurement information to the ADE7753, an ultra flat SMD open loop integrated circuit current transducer based on the Hall effect principle manufactured by Lem (FHS-40P/SP600) has been used. Moreover, each smart device has a PL-3120 smart transceiver manufactured by LonWorks to execute the user's program, to communicate with the ADE7753 via serial interface and to transmit information to the central unit via powerline communication. Experimental results show the exactitude of the measurements made using the developed smart device.
Effects of vibration on inertial wind-tunnel model attitude measurement devices
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Buehrle, Ralph D.; Balakrishna, S.; Kilgore, W. Allen
1994-01-01
Results of an experimental study of a wind tunnel model inertial angle-of-attack sensor response to a simulated dynamic environment are presented. The inertial device cannot distinguish between the gravity vector and the centrifugal accelerations associated with wind tunnel model vibration, this situation results in a model attitude measurement bias error. Significant bias error in model attitude measurement was found for the model system tested. The model attitude bias error was found to be vibration mode and amplitude dependent. A first order correction model was developed and used for estimating attitude measurement bias error due to dynamic motion. A method for correcting the output of the model attitude inertial sensor in the presence of model dynamics during on-line wind tunnel operation is proposed.
NASA Astrophysics Data System (ADS)
Dörr, Dominik; Joppich, Tobias; Schirmaier, Fabian; Mosthaf, Tobias; Kärger, Luise; Henning, Frank
2016-10-01
Thermoforming of continuously fiber reinforced thermoplastics (CFRTP) is ideally suited to thin walled and complex shaped products. By means of forming simulation, an initial validation of the producibility of a specific geometry, an optimization of the forming process and the prediction of fiber-reorientation due to forming is possible. Nevertheless, applied methods need to be validated. Therefor a method is presented, which enables the calculation of error measures for the mismatch between simulation results and experimental tests, based on measurements with a conventional coordinate measuring device. As a quantitative measure, describing the curvature is provided, the presented method is also suitable for numerical or experimental sensitivity studies on wrinkling behavior. The applied methods for forming simulation, implemented in Abaqus explicit, are presented and applied to a generic geometry. The same geometry is tested experimentally and simulation and test results are compared by the proposed validation method.
Design and testing of an innovative measurement device for tyre-road contact forces
NASA Astrophysics Data System (ADS)
Cheli, F.; Braghin, F.; Brusarosco, M.; Mancosu, F.; Sabbioni, E.
2011-08-01
The measurement of tyre-road contact forces is the first step towards the development of new control systems for improving vehicle safety and performances. Tyre-road contact forces measurement systems are very expensive and significantly modify the unsprung masses of the vehicle as well as the rotational inertia of the tyres. Thus, vehicle dynamics results are significantly affected. As a consequence, the measured contact forces do not correspond to the contact forces under real working conditions. A new low-cost tyre-road contact forces measurement system is proposed in this paper that can be applied to passenger cars. Its working principle is based on the measurement of three deformations of the wheel rim through strain gauges. The tyre-rim assembly is thus turned into a sensor for tyre-road contact forces. The influence of the strain gauges position onto the measurement results has been assessed through finite element simulations and experimental tests. It has been proven that, for a large variety of rims, the strain gauge position that leads to high signal-to-noise ratios is almost the same. A dynamic calibration procedure has been developed in order to allow the reconstruction of contact force and torque components once per wheel turn. The capability of the developed device to correctly estimate tyre-road contact forces has been assessed, in a first stage, through indoor laboratory experimental test on an MTS Flat-Trac ® testing machine. Results show that the implemented measuring system allows to reconstruct contact forces once per wheel turn with a precision that is comparable to that of existing high-cost measurement systems. Subsequently, outdoor tests with a vehicle having all four wheels equipped with the developed measuring device have also been performed. Reliability of the measurements provided by the developed sensor has been assessed by comparing the global measured longitudinal/lateral forces and the product of the measured longitudinal/lateral accelerations times the vehicle mass. A good agreement has been found during all the performed manoeuvres.
Nintendo Wii™ Versus Xbox Kinect™ for Assisting People With Parkinson's Disease.
Alves, Melissa L M; Mesquita, Beatriz S; Morais, Wenderson S; Leal, Josevan C; Satler, Corina E; Dos Santos Mendes, Felipe A
2018-06-01
This study investigated changes in motor and cognitive skills, anxiety levels, and quality of life perception among patients with Parkinson's Disease (PD) following training with different commercial gaming devices-Nintendo Wii™ and Xbox Kinect™. We used a quasi-experimental, simple blinded clinical trial, dividing 27 patients with PD into three equal groups of nine members: (a) Nintendo Wii™, (b) Xbox Kinect™, and (c) control group. After pretests, experimental group participants spent 10 sessions playing four games of the selected gaming device, while control group participants received no intervention. Only those engaged with the Nintendo Wii™ significantly improved their performance on single and dual task gait tests, decreased anxiety levels, and improved memory, attention, and reversibility. The control group showed no changes on any measures.
Two-dimensional numerical model for the high electron mobility transistor
NASA Astrophysics Data System (ADS)
Loret, Dany
1987-11-01
A two-dimensional numerical drift-diffusion model for the High Electron Mobility Transistor (HEMT) is presented. Special attention is paid to the modeling of the current flow over the heterojunction. A finite difference scheme is used to solve the equations, and a variable mesh spacing was implemented to cope with the strong variations of functions near the heterojunction. Simulation results are compared to experimental data for a 0.7 μm gate length device. Small-signal transconductances and cut-off frequency obtained from the 2-D model agree well with the experimental values from S-parameter measurements. It is shown that the numerical models give good insight into device behaviour, including important parasitic effects such as electron injection into the bulk GaAs.
NASA Astrophysics Data System (ADS)
Novak, A.; Simon, L.; Lotton, P.
2018-04-01
Mechanical transducers, such as shakers, loudspeakers and compression drivers that are used as excitation devices to excite acoustical or mechanical nonlinear systems under test are imperfect. Due to their nonlinear behaviour, unwanted contributions appear at their output besides the wanted part of the signal. Since these devices are used to study nonlinear systems, it should be required to measure properly the systems under test by overcoming the influence of the nonlinear excitation device. In this paper, a simple method that corrects distorted output signal of the excitation device by means of predistortion of its input signal is presented. A periodic signal is applied to the input of the excitation device and, from analysing the output signal of the device, the input signal is modified in such a way that the undesirable spectral components in the output of the excitation device are cancelled out after few iterations of real-time processing. The experimental results provided on an electrodynamic shaker show that the spectral purity of the generated acceleration output approaches 100 dB after few iterations (1 s). This output signal, applied to the system under test, is thus cleaned from the undesirable components produced by the excitation device; this is an important condition to ensure a correct measurement of the nonlinear system under test.
Microwave non-contact imaging of subcutaneous human body tissues
Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey
2015-01-01
A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated. PMID:26609415
A cost-effective measurement-device-independent quantum key distribution system for quantum networks
NASA Astrophysics Data System (ADS)
Valivarthi, Raju; Zhou, Qiang; John, Caleb; Marsili, Francesco; Verma, Varun B.; Shaw, Matthew D.; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2017-12-01
We experimentally realize a measurement-device-independent quantum key distribution (MDI-QKD) system. It is based on cost-effective and commercially available hardware such as distributed feedback lasers and field-programmable gate arrays that enable time-bin qubit preparation and time-tagging, and active feedback systems that allow for compensation of time-varying properties of photons after transmission through deployed fiber. We examine the performance of our system, and conclude that its design does not compromise performance. Our demonstration paves the way for MDI-QKD-based quantum networks in star-type topology that extend over more than 100 km distance.
Simple method to measure the refractive index of liquid with graduated cylinder and beaker.
An, Yu-Kuan
2017-12-01
A simple method is introduced to measure the refractive index (RI) of a liquid with an experimental device composed of a graduated cylinder and a beaker which are coaxial. A magnified image of the graduated cylinder is formed as the liquid is poured into the beaker. Optical path analysis indicates that the RI of the liquid is equal to the product of the image's diameter magnification and the RI of air, irrelevant to the beaker. Theoretically, the RI measurement range is unlimited and the liquid dosage could be small as well. The device is used to carry out experiments by means of both the photographic method and telescope method to measure RIs of three kinds of liquids. The results show that the measured RIs all fit their published values well.
Simple method to measure the refractive index of liquid with graduated cylinder and beaker
NASA Astrophysics Data System (ADS)
An, Yu-Kuan
2017-12-01
A simple method is introduced to measure the refractive index (RI) of a liquid with an experimental device composed of a graduated cylinder and a beaker which are coaxial. A magnified image of the graduated cylinder is formed as the liquid is poured into the beaker. Optical path analysis indicates that the RI of the liquid is equal to the product of the image's diameter magnification and the RI of air, irrelevant to the beaker. Theoretically, the RI measurement range is unlimited and the liquid dosage could be small as well. The device is used to carry out experiments by means of both the photographic method and telescope method to measure RIs of three kinds of liquids. The results show that the measured RIs all fit their published values well.
Analysis of quantum semiconductor heterostructures by ballistic electron emission spectroscopy
NASA Astrophysics Data System (ADS)
Guthrie, Daniel K.
1998-09-01
The microelectronics industry is diligently working to achieve the goal of gigascale integration (GSI) by early in the 21st century. For the past twenty-five years, progress toward this goal has been made by continually scaling down device technology. Unfortunately, this trend cannot continue to the point of producing arbitrarily small device sizes. One possible solution to this problem that is currently under intensive study is the relatively new area of quantum devices. Quantum devices represent a new class of microelectronic devices that operate by utilizing the wave-like nature (reflection, refraction, and confinement) of electrons together with the laws of quantum mechanics to construct useful devices. One difficulty associated with these structures is the absence of measurement techniques that can fully characterize carrier transport in such devices. This thesis addresses this need by focusing on the study of carrier transport in quantum semiconductor heterostructures using a relatively new and versatile measurement technique known as ballistic electron emission spectroscopy (BEES). To achieve this goal, a systematic approach that encompasses a set of progressively more complex structures is utilized. First, the simplest BEES structure possible, the metal/semiconductor interface, is thoroughly investigated in order to provide a foundation for measurements on more the complex structures. By modifying the semiclassical model commonly used to describe the experimental BEES spectrum, a very complete and accurate description of the basic structure has been achieved. Next, a very simple semiconductor heterostructure, a Ga1-xAlxAs single-barrier structure, was measured and analyzed. Low-temperature measurements on this structure were used to investigate the band structure and electron-wave interference effects in the Ga1-xAlxAs single barrier structure. These measurements are extended to a simple quantum device by designing, measuring, and analyzing a set of complementary electron-wave Fabry-Perot quantum interference filters which included both a half- and a quarter-electron-wavelength resonant device. High-resolution, low noise, BEES spectra obtained on these devices at low-temperature were used to measure the zero-bias electron transmittance as a function of injected energy for these resonant devices. Finally, by analyzing BEES spectra taken at various spatial locations, one monolayer variations in the thickness of a buried quantum well have been detected.
NASA Astrophysics Data System (ADS)
Rabbaa, S.; Stiens, J.
2012-11-01
Gallium nitride (GaN) is a relatively new semiconductor material that has the potential of replacing gallium arsenide (GaAs) in some of the more recent technological applications, for example chemical sensor applications. In this paper, we introduce a triangular quantum well model for an undoped AlGaN/GaN high electron mobility transistor (HEMT) structure used as a chemical and biological sensor for pH and dipole moment measurements of polar liquids. We have performed theoretical calculations related to the HEMT characteristics and we have compared them with experimental measurements carried out in many previous papers. These calculations include the current-voltage (I-V) characteristics of the device, the surface potential, the change in the drain current with the dipole moment and the drain current as a function of pH. The results exhibit good agreement with experimental measurements for different polar liquids and electrolyte solutions. It is also found that the drain current of the device exhibits a large linear variation with the dipole moment, and that the surface potential and the drain current depend strongly on the pH. Therefore, it can distinguish molecules with slightly different dipole moments and solutions with small variations in pH. The ability of the device to sense biomolecules (such as proteins) with very large dipole moments is investigated.
Atmospheric absorption measurements in the region of 1 mm wavelength.
NASA Technical Reports Server (NTRS)
Emery, R.
1972-01-01
A Froome-type plasma-metal-junction device (1962) was used in high-resolution radiation transmission measurements in the atmosphere at wavelengths from 0.5 to 3.0 mm. The experimental and theoretical results for water vapor absorption lines in two submillimeter wavelength windows were compared, showing that this technique provided a much higher wavelength accuracy than more conventional optical-type spectroscopy.
Quantum acoustics with superconducting qubits
NASA Astrophysics Data System (ADS)
Chu, Yiwen; Kharel, Prashanta; Renninger, William H.; Burkhart, Luke D.; Frunzio, Luigi; Rakich, Peter T.; Schoelkopf, Robert J.
2017-10-01
Mechanical objects have important practical applications in the fields of quantum information and metrology as quantum memories or transducers for measuring and connecting different types of quantum systems. The field of electromechanics is in pursuit of a robust and highly coherent device that couples motion to nonlinear quantum objects such as superconducting qubits. Here, we experimentally demonstrate a high-frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction with a cooperativity of 260. We measure qubit and mechanical coherence times on the order of 10 microseconds. Our device requires only simple fabrication methods and provides controllable access to a multitude of phonon modes. We demonstrate quantum control and measurement on gigahertz phonons at the single-quantum level.
Calibration procedure for a laser triangulation scanner with uncertainty evaluation
NASA Astrophysics Data System (ADS)
Genta, Gianfranco; Minetola, Paolo; Barbato, Giulio
2016-11-01
Most of low cost 3D scanning devices that are nowadays available on the market are sold without a user calibration procedure to correct measurement errors related to changes in environmental conditions. In addition, there is no specific international standard defining a procedure to check the performance of a 3D scanner along time. This paper aims at detailing a thorough methodology to calibrate a 3D scanner and assess its measurement uncertainty. The proposed procedure is based on the use of a reference ball plate and applied to a triangulation laser scanner. Experimental results show that the metrological performance of the instrument can be greatly improved by the application of the calibration procedure that corrects systematic errors and reduces the device's measurement uncertainty.
Chen, Runlin; Wei, Yangyang; Shi, Zhaoyang; Yuan, Xiaoyang
2016-01-01
The identification accuracy of dynamic characteristics coefficients is difficult to guarantee because of the errors of the measurement system itself. A novel dynamic calibration method of measurement system for dynamic characteristics coefficients is proposed in this paper to eliminate the errors of the measurement system itself. Compared with the calibration method of suspension quality, this novel calibration method is different because the verification device is a spring-mass system, which can simulate the dynamic characteristics of sliding bearing. The verification device is built, and the calibration experiment is implemented in a wide frequency range, in which the bearing stiffness is simulated by the disc springs. The experimental results show that the amplitude errors of this measurement system are small in the frequency range of 10 Hz–100 Hz, and the phase errors increase along with the increasing of frequency. It is preliminarily verified by the simulated experiment of dynamic characteristics coefficients identification in the frequency range of 10 Hz–30 Hz that the calibration data in this frequency range can support the dynamic characteristics test of sliding bearing in this frequency range well. The bearing experiments in greater frequency ranges need higher manufacturing and installation precision of calibration device. Besides, the processes of calibration experiments should be improved. PMID:27483283
SF-FDTD analysis of a predictive physical model for parallel aligned liquid crystal devices
NASA Astrophysics Data System (ADS)
Márquez, Andrés.; Francés, Jorge; Martínez, Francisco J.; Gallego, Sergi; Alvarez, Mariela L.; Calzado, Eva M.; Pascual, Inmaculada; Beléndez, Augusto
2017-08-01
Recently we demonstrated a novel and simplified model enabling to calculate the voltage dependent retardance provided by parallel aligned liquid crystal devices (PA-LCoS) for a very wide range of incidence angles and any wavelength in the visible. To our knowledge it represents the most simplified approach still showing predictive capability. Deeper insight into the physics behind the simplified model is necessary to understand if the parameters in the model are physically meaningful. Since the PA-LCoS is a black-box where we do not have information about the physical parameters of the device, we cannot perform this kind of analysis using the experimental retardance measurements. In this work we develop realistic simulations for the non-linear tilt of the liquid crystal director across the thickness of the liquid crystal layer in the PA devices. We consider these profiles to have a sine-like shape, which is a good approximation for typical ranges of applied voltage in commercial PA-LCoS microdisplays. For these simulations we develop a rigorous method based on the split-field finite difference time domain (SF-FDTD) technique which provides realistic retardance values. These values are used as the experimental measurements to which the simplified model is fitted. From this analysis we learn that the simplified model is very robust, providing unambiguous solutions when fitting its parameters. We also learn that two of the parameters in the model are physically meaningful, proving a useful reverse-engineering approach, with predictive capability, to probe into internal characteristics of the PA-LCoS device.
Multi-path interferometric Josephson directional amplifier for qubit readout
NASA Astrophysics Data System (ADS)
Abdo, Baleegh; Bronn, Nicholas T.; Jinka, Oblesh; Olivadese, Salvatore; Brink, Markus; Chow, Jerry M.
2018-04-01
We realize and characterize a quantum-limited, directional Josephson amplifier suitable for qubit readout. The device consists of two nondegenerate, three-wave-mixing amplifiers that are coupled together in an interferometric scheme, embedded in a printed circuit board. Nonreciprocity is generated by applying a phase gradient between the same-frequency pumps feeding the device, which plays the role of the magnetic field in a Faraday medium. Directional amplification and reflection-gain elimination are induced via wave interference between multiple paths in the system. We measure and discuss the main figures of merit of the device and show that the experimental results are in good agreement with theory. An improved version of this directional amplifier is expected to eliminate the need for bulky, off-chip isolation stages that generally separate quantum systems and preamplifiers in high-fidelity, quantum-nondemolition measurement setups.
NASA Astrophysics Data System (ADS)
Krak, Michael D.; Dreyer, Jason T.; Singh, Rajendra
2016-03-01
A vehicle clutch damper is intentionally designed to contain multiple discontinuous non-linearities, such as multi-staged springs, clearances, pre-loads, and multi-staged friction elements. The main purpose of this practical torsional device is to transmit a wide range of torque while isolating torsional vibration between an engine and transmission. Improved understanding of the dynamic behavior of the device could be facilitated by laboratory measurement, and thus a refined vibratory experiment is proposed. The experiment is conceptually described as a single degree of freedom non-linear torsional system that is excited by an external step torque. The single torsional inertia (consisting of a shaft and torsion arm) is coupled to ground through parallel production clutch dampers, which are characterized by quasi-static measurements provided by the manufacturer. Other experimental objectives address physical dimensions, system actuation, flexural modes, instrumentation, and signal processing issues. Typical measurements show that the step response of the device is characterized by three distinct non-linear regimes (double-sided impact, single-sided impact, and no-impact). Each regime is directly related to the non-linear features of the device and can be described by peak angular acceleration values. Predictions of a simplified single degree of freedom non-linear model verify that the experiment performs well and as designed. Accordingly, the benchmark measurements could be utilized to validate non-linear models and simulation codes, as well as characterize dynamic parameters of the device including its dissipative properties.
Preliminary Studies of Ions Emission in a Small Plasma Focus Device of Hundreds of Joules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Jose; Pavez, Cristian; Soto, Leopoldo
2009-01-21
Ion beam emission in plasma focus (PF) discharges was originally investigated to explain the strong forward anisotropy observed in the neutron. Several properties of PF emitted deuteron beams have been measured, including their angular distributions and energy spectra in devices operating with energies from 1 kJ to 1 MJ. At present there is a growing interest in the development of very small PF devices operating under 1 kJ. As part of the characterization program of the very low energy PF devices (<1 kJ) developed at the Chilean Nuclear Energy Commission, the charges particle emission in hydrogen (H{sub 2}) and mixturemore » (H{sub 2}+%Ar) are being studied. In order to obtain an estimation of the ions energy spectrum and ionization grade, by using time of flight method, a graphite collector system operating in the bias ion collector mode was constructed and it is being used. Preliminary results of the ion beams measurements in different experimental conditions, at a plasma focus device of 400 joules (PF-400 J) are presented.« less
NASA Astrophysics Data System (ADS)
Gisario, Annamaria; Barletta, Massimiliano; Venettacci, Simone; Veniali, Francesco
2015-06-01
Achievement of sharp bending angles with small fillet radius on stainless steel sheets by mechanical bending requires sophisticated bending device and troublesome operational procedures, which can involve expensive molds, huge presses and large loads. In addition, springback is always difficult to control, thus often leading to final parts with limited precision and accuracy. In contrast, laser-assisted bending of metals is an emerging technology, as it often allows to perform difficult and multifaceted manufacturing tasks with relatively small efforts. In the present work, laser-assisted bending of stainless steel sheets to achieve sharp angles is thus investigated. First, bending trials were performed by combining laser irradiation with an auxiliary bending device triggered by a pneumatic actuator and based on kinematic of deformable quadrilaterals. Second, laser operational parameters, that is, scanning speed, power and number of passes, were varied to identify the most suitable processing settings. Bending angles and fillet radii were measured by coordinate measurement machine. Experimental data were elaborated by combined ANalysis Of Mean (ANOM) and ANalysis Of VAriance (ANOVA). Based on experimental findings, the best strategy to achieve an aircraft prototype from a stainless steel sheet was designed and implemented.
Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
Ben-Tzvi, Pinhas; Ma, Zhou
2015-11-01
This paper presents the design, implementation and experimental validation of a novel robotic haptic exoskeleton device to measure the user's hand motion and assist hand motion while remaining portable and lightweight. The device consists of a five-finger mechanism actuated with miniature DC motors through antagonistically routed cables at each finger, which act as both active and passive force actuators. The SAFE Glove is a wireless and self-contained mechatronic system that mounts over the dorsum of a bare hand and provides haptic force feedback to each finger. The glove is adaptable to a wide variety of finger sizes without constraining the range of motion. This makes it possible to accurately and comfortably track the complex motion of the finger and thumb joints associated with common movements of hand functions, including grip and release patterns. The glove can be wirelessly linked to a computer for displaying and recording the hand status through 3D Graphical User Interface (GUI) in real-time. The experimental results demonstrate that the SAFE Glove is capable of reliably modeling hand kinematics, measuring finger motion and assisting hand grasping motion. Simulation and experimental results show the potential of the proposed system in rehabilitation therapy and virtual reality applications.
Characterization of piezoelectric device for implanted pacemaker energy harvesting
NASA Astrophysics Data System (ADS)
Jay, Sunny; Caballero, Manuel; Quinn, William; Barrett, John; Hill, Martin
2016-10-01
Novel implanted cardiac pacemakers that are powered by energy harvesters driven by the cardiac motion and have a 40 year lifetime are currently under development. To satisfy space constraints and energy requirements of the device, silicon-based MEMS energy harvesters are being developed in the EU project (MANpower1). Such MEMS harvesters for vibration frequencies below 50 Hz have not been widely reported. In this paper, an analytical model and a 3D finite element model (FEM) to predict displacement and open circuit voltage, validated through experimental analysis using an off-the-shelf low frequency energy harvester, are presented. The harvester was excited through constant amplitude sinusoidal base displacement over a range of 20 to 70 Hz passing through its first mode natural frequency at 47 Hz. At resonance both models predict displacements with an error of less than 2% when compared to the experimental result. Comparing the two models, the application of the experimentally measured damping ratio differs for accurate displacement prediction and the differences in symmetry in the measured and modelled displacement and voltage data around the resonance frequency indicate the two piezoelectric voltage models use different fundamental equations.
NASA Astrophysics Data System (ADS)
Chatterjee, Rohit
In this research work, we explore fundamental silicon-based active and passive photonic devices that can be integrated together to form functional photonic integrated circuits. The devices which include power splitters, switches and lenses are studied starting from their physics, their design and fabrication techniques and finally from an experimental standpoint. The experimental results reveal high performance devices that are compatible with standard CMOS fabrication processes and can be easily integrated with other devices for near infrared telecom applications. In Chapter 2, a novel method for optical switching using nanomechanical proximity perturbation technique is described and demonstrated. The method which is experimentally demonstrated employs relatively low powers, small chip footprint and is compatible with standard CMOS fabrication processes. Further, in Chapter 3, this method is applied to develop a hitless bypass switch aimed at solving an important issue in current wavelength division multiplexing systems namely hitless switching of reconfigurable optical add drop multiplexers. Experimental results are presented to demonstrate the application of the nanomechanical proximity perturbation technique to practical situations. In Chapter 4, a fundamental photonic component namely the power splitter is described. Power splitters are important components for any photonic integrated circuits because they help split the power from a single light source to multiple devices on the same chip so that different operations can be performed simultaneously. The power splitters demonstrated in this chapter are based on multimode interference principles resulting in highly compact low loss and highly uniform power splitting to split the power of the light from a single channel to two and four channels. These devices can further be scaled to achieve higher order splitting such as 1x16 and 1x32 power splits. Finally in Chapter 5 we overcome challenges in device fabrication and measurement techniques to demonstrate for the first time a "superlens" for the technologically important near infrared wavelength ranges with the opportunity to scale down further to visible wavelengths. The observed resolution is 0.47lambda, clearly smaller than the diffraction limit of 0.61lambda and is supported by detailed theoretical analyses and comprehensive numerical simulations. Importantly, we clearly show for the first time this subdiffraction limit imaging is due to the resonant excitation of surface slab modes, permitting amplification of evanescent waves. The demonstrated "superlens" has the largest figure of merit ever reported till date both theoretically and experimentally. The techniques and devices described in this thesis can be further applied to develop new devices with different functionalities. In Chapter 6 we describe two examples using these ideas. First, we experimentally demonstrate the use of the nanomechanical proximity perturbation technique to develop a phase retarder for on-chip all state polarization control. Next, we use the negative refraction photonic crystals described in Chapter 5 to achieve a special kind of bandgap called the zero-n¯ bandgap having unique properties.
Experimental research on a modular miniaturization nanoindentation device
NASA Astrophysics Data System (ADS)
Huang, Hu; Zhao, Hongwei; Mi, Jie; Yang, Jie; Wan, Shunguang; Yang, Zhaojun; Yan, Jiwang; Ma, Zhichao; Geng, Chunyang
2011-09-01
Nanoindentation technology is developing toward the in situ test which requires miniaturization of indentation instruments. This paper presents a miniaturization nanoindentation device based on the modular idea. It mainly consists of macro-adjusting mechanism, x-y precise positioning platform, z axis precise driving unit, and the load-depth measuring unit. The device can be assembled with different forms and has minimum dimensions of 200 mm × 135 mm × 200 mm. The load resolution is about 0.1 mN and the displacement resolution is about 10 nm. A new calibration method named the reference-mapping method is proposed to calibrate the developed device. Output performance tests and indentation experiments indicate the feasibility of the developed device and calibration method. This paper gives an example that combining piezoelectric actuators with flexure hinge to realize nanoindentation tests. Integrating a smaller displacement sensor, a more compact nanoindentation device can be designed in the future.
NASA Astrophysics Data System (ADS)
Mathews, A. J.; Gang, G.; Levinson, R.; Zbijewski, W.; Kawamoto, S.; Siewerdsen, J. H.; Stayman, J. W.
2017-03-01
Acquisition of CT images with comparable diagnostic power can potentially be achieved with lower radiation exposure than the current standard of care through the adoption of hardware-based fluence-field modulation (e.g. dynamic bowtie filters). While modern CT scanners employ elements such as static bowtie filters and tube-current modulation, such solutions are limited in the fluence patterns that they can achieve, and thus are limited in their ability to adapt to broad classes of patient morphology. Fluence-field modulation also enables new applications such as region-of-interest imaging, task specific imaging, reducing measurement noise or improving image quality. The work presented in this paper leverages a novel fluence modulation strategy that uses "Multiple Aperture Devices" (MADs) which are, in essence, binary filters, blocking or passing x-rays on a fine scale. Utilizing two MAD devices in series provides the capability of generating a large number of fluence patterns via small relative motions between the MAD filters. We present the first experimental evaluation of fluence-field modulation using a dual-MAD system, and demonstrate the efficacy of this technique with a characterization of achievable fluence patterns and an investigation of experimental projection data.
NASA Astrophysics Data System (ADS)
Turkulets, Yury; Shalish, Ilan
2018-01-01
Modern bandgap engineered electronic devices are typically made of multi-semiconductor multi-layer heterostructures that pose a major challenge to silicon-era characterization methods. As a result, contemporary bandgap engineering relies mostly on simulated band structures that are hardly ever verified experimentally. Here, we present a method that experimentally evaluates bandgap, band offsets, and electric fields, in complex multi-semiconductor layered structures, and it does so simultaneously in all the layers. The method uses a modest optical photocurrent spectroscopy setup at ambient conditions. The results are analyzed using a simple model for electro-absorption. As an example, we apply the method to a typical GaN high electron mobility transistor structure. Measurements under various external electric fields allow us to experimentally construct band diagrams, not only at equilibrium but also under any other working conditions of the device. The electric fields are then used to obtain the charge carrier density and mobility in the quantum well as a function of the gate voltage over the entire range of operating conditions of the device. The principles exemplified here may serve as guidelines for the development of methods for simultaneous characterization of all the layers in complex, multi-semiconductor structures.
A cranial nail for fetal shunting.
Saunders, R L; Simmons, G M; Edwards, W H; Crow, H C
1985-01-01
A small number of human fetal hydrocephalics have been treated by ventriculoamniotic shunts of silastic tubing. The Colorado device appears to be the one most commonly used. The original experimental device tested on a primate model resembled a hollow shingle nail. This was designed by Michedja and Hodgen, contained a spring valve, measured approximately 32 X 4 mm and was placed by hysterotomy. An attractive feature of this design was its fixation by impaction in the skull, preventing displacement by fetal activity, a reported disadvantage with the silastic devices. To our knowledge, no one has used this nail-like design and tailored it to transuterine percutaneous placement in a human case.
NASA Technical Reports Server (NTRS)
Popovic, Zorana B.; Kim, Moonil; Rutledge, David B.
1988-01-01
Loading a two-dimensional grid with active devices offers a means of combining the power of solid-state oscillators in the microwave and millimeter-wave range. The grid structure allows a large number of negative resistance devices to be combined. This approach is attractive because the active devices do not require an external locking signal, and the combining is done in free space. In addition, the loaded grid is a planar structure amenable to monolithic integration. Measurements on a 25-MESFET grid at 9.7 GHz show power-combining and frequency-locking without an external locking signal, with an ERP of 37 W. Experimental far-field patterns agree with theoretical results obtained using reciprocity.
First experimental demonstration of an isotropic electromagnetic cloak with strict conformal mapping
Ma, Yungui; Liu, Yichao; Lan, Lu; Wu, Tiantian; Jiang, Wei; Ong, C. K.; He, Sailing
2013-01-01
In the past years quasi-conformal mapping has been generally used to design broadband electromagnetic cloaks. However, this technique has some inherit practical limitations such as the lateral beam shift, rendering the device visible or difficult to hide a large object. In this work we circumvent these issues by using strict conformal mapping to build the first isotropic cloak. Microwave near-field measurement shows that our device (with dielectric constant larger than unity everywhere) has a very good cloaking performance and a broad frequency response. The present dielectric approach could be technically extended to the fabrication of other conformal devices at higher frequencies. PMID:23851589
Long-term stable active mount for reflective optics
NASA Astrophysics Data System (ADS)
Reinlein, C.; Brady, A.; Damm, C.; Mohaupt, M.; Kamm, A.; Lange, N.; Goy, M.
2016-07-01
We report on the development of an active mount with an orthogonal actuator matrix offering a stable shape optimization for gratings or mirrors. We introduce the actuator distribution and calculate the accessible Zernike polynomials from their actuator influence function. Experimental tests show the capability of the device to compensate for aberrations of grating substrates as we report measurements of a 110x105 mm2 and 220x210 mm2 device With these devices, we evaluate the position depending aberrations, long-term stability shape results, and temperature-induced shape variations. Therewith we will discuss potential applications in space telescopes and Earth-based facilities where long-term stability is mandatory.
Providing Situational Awareness for Pipeline Control Operations
NASA Astrophysics Data System (ADS)
Butts, Jonathan; Kleinhans, Hugo; Chandia, Rodrigo; Papa, Mauricio; Shenoi, Sujeet
A SCADA system for a single 3,000-mile-long strand of oil or gas pipeline may employ several thousand field devices to measure process parameters and operate equipment. Because of the vital tasks performed by these sensors and actuators, pipeline operators need accurate and timely information about their status and integrity. This paper describes a realtime scanner that provides situational awareness about SCADA devices and control operations. The scanner, with the assistance of lightweight, distributed sensors, analyzes SCADA network traffic, verifies the operational status and integrity of field devices, and identifies anomalous activity. Experimental results obtained using real pipeline control traffic demonstrate the utility of the scanner in industrial settings.
NASA Astrophysics Data System (ADS)
Klein, P.; Hirth, M.; Gröber, S.; Kuhn, J.; Müller, A.
2014-07-01
Smartphones and tablets are used as experimental tools and for quantitative measurements in two traditional laboratory experiments for undergraduate physics courses. The Doppler effect is analyzed and the speed of sound is determined with an accuracy of about 5% using ultrasonic frequency and two smartphones, which serve as rotating sound emitter and stationary sound detector. Emphasis is put on the investigation of measurement errors in order to judge experimentally derived results and to sensitize undergraduate students to the methods of error estimates. The distance dependence of the illuminance of a light bulb is investigated using an ambient light sensor of a mobile device. Satisfactory results indicate that the spectrum of possible smartphone experiments goes well beyond those already published for mechanics.
NASA Astrophysics Data System (ADS)
Allred, C. Jeff; Churchill, David; Buckner, Gregory D.
2017-07-01
This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.
Decay Time of Cathodoluminescence
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2009-01-01
Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…
Ni, Zhi; Wu, Sean F
2010-09-01
This paper presents experimental validation of an alternate integral-formulation method (AIM) for predicting acoustic radiation from an arbitrary structure based on the particle velocities specified on a hypothetical surface enclosing the target source. Both the normal and tangential components of the particle velocity on this hypothetical surface are measured and taken as the input to AIM codes to predict the acoustic pressures in both exterior and interior regions. The results obtained are compared with the benchmark values measured by microphones at the same locations. To gain some insight into practical applications of AIM, laser Doppler anemometer (LDA) and double hotwire sensor (DHS) are used as measurement devices to collect the particle velocities in the air. Measurement limitations of using LDA and DHS are discussed.
Measurements on wave propagation characteristics of spiraling electron beams
NASA Technical Reports Server (NTRS)
Singh, A.; Getty, W. D.
1976-01-01
Dispersion characteristics of cyclotron-harmonic waves propagating on a neutralized spiraling electron beam immersed in a uniform axial magnetic field are studied experimentally. The experimental setup consisted of a vacuum system, an electron-gun corkscrew assembly which produces a 110-eV beam with the desired delta-function velocity distribution, a measurement region where a microwave signal is injected onto the beam to measure wavelengths, and a velocity analyzer for measuring the axial electron velocity. Results of wavelength measurements made at beam currents of 0.15, 1.0, and 2.0 mA are compared with calculated values, and undesirable effects produced by increasing the beam current are discussed. It is concluded that a suitable electron beam for studies of cyclotron-harmonic waves can be generated by the corkscrew device.
Oxygen Impurities Link Bistability and Magnetoresistance in Organic Spin Valves.
Bergenti, Ilaria; Borgatti, Francesco; Calbucci, Marco; Riminucci, Alberto; Cecchini, Raimondo; Graziosi, Patrizio; MacLaren, Donald A; Giglia, Angelo; Rueff, Jean Pascal; Céolin, Denis; Pasquali, Luca; Dediu, Valentin
2018-03-07
Vertical crossbar devices based on manganite and cobalt injecting electrodes and a metal-quinoline molecular transport layer are known to manifest both magnetoresistance (MR) and electrical bistability. The two effects are strongly interwoven, inspiring new device applications such as electrical control of the MR and magnetic modulation of bistability. To explain the device functionality, we identify the mechanism responsible for electrical switching by associating the electrical conductivity and the impedance behavior with the chemical states of buried layers obtained by in operando photoelectron spectroscopy. These measurements revealed that a significant fraction of oxygen ions migrate under voltage application, resulting in a modification of the electronic properties of the organic material and of the oxidation state of the interfacial layer with the ferromagnetic contacts. Variable oxygen doping of the organic molecules represents the key element for correlating bistability and MR, and our measurements provide the first experimental evidence in favor of the impurity-driven model describing the spin transport in organic semiconductors in similar devices.
Generalized Optoelectronic Model of Series-Connected Multijunction Solar Cells
Geisz, John F.; Steiner, Myles A.; Garcia, Ivan; ...
2015-10-02
The emission of light from each junction in a series-connected multijunction solar cell, we found, both complicates and elucidates the understanding of its performance under arbitrary conditions. Bringing together many recent advances in this understanding, we present a general 1-D model to describe luminescent coupling that arises from both voltage-driven electroluminescence and voltage-independent photoluminescence in nonideal junctions that include effects such as Sah-Noyce-Shockley (SNS) recombination with n ≠ 2, Auger recombination, shunt resistance, reverse-bias breakdown, series resistance, and significant dark area losses. The individual junction voltages and currents are experimentally determined from measured optical and electrical inputs and outputs ofmore » the device within the context of the model to fit parameters that describe the devices performance under arbitrary input conditions. Furthermore, our techniques to experimentally fit the model are demonstrated for a four-junction inverted metamorphic solar cell, and the predictions of the model are compared with concentrator flash measurements.« less
A System for Measurement of Convection Aboard Space Station
NASA Technical Reports Server (NTRS)
Bogatyrev, Gennady P.; Gorbunov, Aleksei V; Putin, Gennady F.; Ivanov, Alexander I.; Nikitin, Sergei A.; Polezhaev, Vadim I.
1996-01-01
A simple device for direct measurement of buoyancy driven fluid flows in a low-gravity environment is proposed. A system connecting spacecraft accelerometers data and results of thermal convection in enclosure measurements and numerical simulations is developed. This system will permit also to evaluate the low frequency microacceleration component. The goal of the paper is to present objectives and current results of ground-based experimental and numerical modeling of this convection detector.
Quantitative experimental assessment of hot carrier-enhanced solar cells at room temperature
NASA Astrophysics Data System (ADS)
Nguyen, Dac-Trung; Lombez, Laurent; Gibelli, François; Boyer-Richard, Soline; Le Corre, Alain; Durand, Olivier; Guillemoles, Jean-François
2018-03-01
In common photovoltaic devices, the part of the incident energy above the absorption threshold quickly ends up as heat, which limits their maximum achievable efficiency to far below the thermodynamic limit for solar energy conversion. Conversely, the conversion of the excess kinetic energy of the photogenerated carriers into additional free energy would be sufficient to approach the thermodynamic limit. This is the principle of hot carrier devices. Unfortunately, such device operation in conditions relevant for utilization has never been evidenced. Here, we show that the quantitative thermodynamic study of the hot carrier population, with luminance measurements, allows us to discuss the hot carrier contribution to the solar cell performance. We demonstrate that the voltage and current can be enhanced in a semiconductor heterostructure due to the presence of the hot carrier population in a single InGaAsP quantum well at room temperature. These experimental results substantiate the potential of increasing photovoltaic performances in the hot carrier regime.
Grating-patterned FeCo coated surface acoustic wave device for sensing magnetic field
NASA Astrophysics Data System (ADS)
Wang, Wen; Jia, Yana; Xue, Xufeng; Liang, Yong; Du, Zhaofu
2018-01-01
This study addresses the theoretical and experimental investigations of grating-patterned magnetostrictive FeCo coated surface acoustic wave (SAW) device for sensing magnetic field. The proposed sensor is composed of a configuration of differential dual-delay-line oscillators, and a magnetostrictive FeCo grating array deposited along the SAW propagation path of the sensing device, which suppresses effectively the hysteresis effect by releasing the internal binding force in FeCo. The magnetostrictive strain and ΔE effect from the FeCo coating modulates the SAW propagation characteristic, and the corresponding shift in differential oscillation frequency was utilized to evaluate the measurant. A theoretical model is performed to investigate the wave propagation in layered structure of FeCo/LiNbO3 in the effect of magnetostrictive, and allowing determining the optimal structure. The experimental results indicate that higher sensitivity, excellent linearity, and lower hysteresis error over the typical FeCo thin-film coated sensor were achieved from the grating-patterned FeCo coated sensor successfully.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorton, H.C.; Mengali, O.J.; Zacaroli, A.R.
A practical, prototype silicon p-n junction fast-neutron dosimeter, sensitive in the same range as human tissue, was developed, together with sn associated read-out circuit to facilitate the accurate measurement of accumulated dose. From both theoretical and experimental considerations, it was demonstrated that the dosimeter is essentially insensitive to the gamma and thermal components of a uranium fission spectrum. It was shown that accumulated damage effects appear to be environmentally stable up to an ambient temperature of 100 C. A rather raarked reversible temperature dependence of the read-out parameters requires either control of the read-out temperature or temperature compensation in themore » read-out device. A high degree of reproducibility of dosimeter characteristics from one device to another was not achieved. The lack of reproducibility was attributed to uncontrolled variables in the bulk silicon from which the devices are fabricated, and in the production procedure. (auth)« less
Experimental aeroelasticity history, status and future in brief
NASA Technical Reports Server (NTRS)
Ricketts, Rodney H.
1990-01-01
NASA conducts wind tunnel experiments to determine and understand the aeroelastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.
NASA Astrophysics Data System (ADS)
Louie, Daniel C.; Tchvialeva, Lioudmilla; Zeng, Haishan; Lee, Tim K.
2017-02-01
Skin roughness is an important parameter in the characterization of skin and skin lesions, particularly for the purposes of skin cancer detection. Our group had previously constructed a laser speckle device that can detect the roughness in microrelief of the skin. This paper reports on findings made for the further miniaturization of our existing portably-sized device. These findings include the feasibility of adopting a laser diode without temperature control, and the use of a single CCD camera for detection. The coherence length of a laser is a crucial criterion for speckle measurements as it must be within a specific range. The coherence length of a commercial grade 405 nm laser diode was found to be of an appropriate length. Also, after a short warm-up period the coherence length of the laser was found to remain relatively stable, even without temperature control. Although the laser's temperature change during operation may affect its power output and the shape of its spectrum, these are only minor factors in speckle contrast measurements. Our second finding covers a calibration curve to relate speckle measurements to roughness using only parallel polarization from one CCD camera. This was created using experimental data from skin phantoms and tested on in-vivo skin. These improvements are important steps forward in the ongoing development of the laser speckle device, especially towards a clinical device to measure skin roughness and evaluate skin lesions.
NASA Astrophysics Data System (ADS)
Yatcheva, Lydia; Barros, Rui; Segel, Max; Sprung, Detlev; Sucher, Erik; Eisele, Christian; Gladysz, Szymon
2015-10-01
We have performed a series of experiments in order to simultaneously validate several devices and methods for measurement of the path-averaged refractive index structure constant ( 𝐶𝑛 2). The experiments were carried out along a horizontal urban path near the ground. Measuring turbulence in this layer is particularly important because of the prospect of using adaptive optics for free-space optical communications in an urban environment. On one hand, several commercial sensors were used: SLS20, a laser scintillometer from Scintec AG, BLS900, a largeaperture scintillometer, also from Scintec, and a 3D sonic anemometer from Thies GmbH. On the other hand, we measured turbulence strength with new approaches and devices developed in-house. Firstly, an LED array combined with a high-speed camera allowed for measurement of 𝐶𝑛 2 from raw- and differential image motion, and secondly a two-part system comprising a laser source, a Shack-Hartmann sensor and a PSF camera recoded turbulent modulation transfer functions, Zernike variances and angle-of-arrival structure functions, yielding three independent estimates of 𝐶𝑛 2. We compare the measured values yielded simultaneously by commercial and in-house developed devices and show very good agreement between 𝐶𝑛 2 values for all the methods. Limitations of each experimental method are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Perez, C.; Garcia-Valenzuela, A.
2012-11-15
We propose and evaluate a spectroscopic refractometer device to measure the refractive index dispersion of transparent and absorbing solutions. The angle-dependent reflectivity of a white beam of light in an internal reflection configuration around the critical angle is spectrally analyzed. The refractive index in a wavelength range from 400 nm to 900 nm is obtained from the angle-reflectivity curve around the critical angle at each wavelength. The device does not use angle scanning mechanisms, decreasing considerably the complexity of the instrument in comparison to previous proposals. As a result, the measurements are obtained relatively fast. Nevertheless, a good experimental resolutionmore » in refractive index of about {Delta}n Almost-Equal-To 10{sup -4} at all the wavelengths is achieved in the case of transparent solutions. The calibration procedure of the device is discussed in detail. We also present measurements of the refractive index dispersion of rhodamine 6G-methanol solutions, which has a strong absorption band in the visible spectra.« less
Primary experimental study on safety of deep brain stimulation in RF electromagnetic field.
Jun, Xu; Luming, Li; Hongwei, Hao
2009-01-01
With the rapid growth of clinical application of Deep Brain Stimulation, its safety and functional concern in the electromagnetic field, another pollution becoming much more serious, has become more and more significant. Meanwhile, the measuring standards on Electromagnetic Compatibility (EMC) for DBS are still incomplete. Particularly, the knowledge of the electromagnetic field induced signals on the implanted lead is ignorant while some informal reports some side effects. This paper briefly surmised the status of EMC standards on implantable medical devices. Based on the EMC experiments of DBS device we developed, two experiments for measuring the induced voltage of the deep brain stimulator in RF electromagnetic field were reported. The measured data showed that the induced voltage in some frequency was prominent, for example over 2V. As a primary research, we think these results would be significant to cause researcher to pay more attention to the EMC safety problem and biological effects of the induced voltage in deep brain stimulation and other implantable devices.
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
A 3-RSR Haptic Wearable Device for Rendering Fingertip Contact Forces.
Leonardis, Daniele; Solazzi, Massimiliano; Bortone, Ilaria; Frisoli, Antonio
2017-01-01
A novel wearable haptic device for modulating contact forces at the fingertip is presented. Rendering of forces by skin deformation in three degrees of freedom (DoF), with contact-no contact capabilities, was implemented through rigid parallel kinematics. The novel asymmetrical three revolute-spherical-revolute (3-RSR) configuration allowed compact dimensions with minimum encumbrance of the hand workspace. The device was designed to render constant to low frequency deformation of the fingerpad in three DoF, combining light weight with relatively high output forces. A differential method for solving the non-trivial inverse kinematics is proposed and implemented in real time for controlling the device. The first experimental activity evaluated discrimination of different fingerpad stretch directions in a group of five subjects. The second experiment, enrolling 19 subjects, evaluated cutaneous feedback provided in a virtual pick-and-place manipulation task. Stiffness of the fingerpad plus device was measured and used to calibrate the physics of the virtual environment. The third experiment with 10 subjects evaluated interaction forces in a virtual lift-and-hold task. Although with different performance in the two manipulation experiments, overall results show that participants better controlled interaction forces when the cutaneous feedback was active, with significant differences between the visual and visuo-haptic experimental conditions.
Naval Biodynamics Laboratory 1993 Command History
1993-01-01
position and alignment, camera optical calibration, photo target position, and standard anatomical coordinate systems based upon X-rays of each HRV...safety range. Before, during, and after each sled run, a physiological data acquisition system is used to collect and analyze physiological measurements ...experimental devices. It is also responsible for the configuring of field data measuring and acquisition systems for use aboard ships or at other field
NASA Technical Reports Server (NTRS)
Mcree, Griffith J., Jr.; Roberts, A. Sidney, Jr.
1991-01-01
An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified.
High-speed noncontacting instrumentation for jet engine testing
NASA Astrophysics Data System (ADS)
Scotto, M. J.; Eismeier, M. E.
1980-03-01
This paper discusses high-speed, noncontacting instrumentation systems for measuring the operating characteristics of jet engines. The discussion includes optical pyrometers for measuring blade surface temperatures, capacitance clearanceometers for measuring blade tip clearance and vibration, and optoelectronic systems for measuring blade flex and torsion. In addition, engine characteristics that mandate the use of such unique instrumentation are pointed out as well as the shortcomings of conventional noncontacting devices. Experimental data taken during engine testing are presented and recommendations for future development discussed.
Measuring average angular velocity with a smartphone magnetic field sensor
NASA Astrophysics Data System (ADS)
Pili, Unofre; Violanda, Renante
2018-02-01
The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.
Off-Axis and Angular Impulse Measurements on a Lightcraft Engine
NASA Astrophysics Data System (ADS)
Libeau, Michael; Myrabo, Leik
2005-04-01
A laser pulse into a Lightcraft engine applies three linear impulses and three angular impulses to the vehicle that depend on the engine's position and orientation with respect to the laser beam. The magnitudes on this impulsive reaction determine the vehicle's autonomous beam-riding characteristics. The impulsive reaction applied to the laser Lightcraft is examined and a device capable of measuring the reaction is designed and tested. Previous work has examined only the linear impulse acting in the thrust direction but the new apparatus, termed the Angular Impulse Measuring Device (AIMD), experimentally measures the dominant side impulse and dominant pitching angular impulse generated by the engine after a laser-strike. Recent tests of an 11/10 scale Model 200 Lightcraft were conducted using a 10KW Army laser at White Sands Missile Range. The resulting measurements are presented as a function of laser beam position.
Interconnection network architectures based on integrated orbital angular momentum emitters
NASA Astrophysics Data System (ADS)
Scaffardi, Mirco; Zhang, Ning; Malik, Muhammad Nouman; Lazzeri, Emma; Klitis, Charalambos; Lavery, Martin; Sorel, Marc; Bogoni, Antonella
2018-02-01
Novel architectures for two-layer interconnection networks based on concentric OAM emitters are presented. A scalability analysis is done in terms of devices characteristics, power budget and optical signal to noise ratio by exploiting experimentally measured parameters. The analysis shows that by exploiting optical amplifications, the proposed interconnection networks can support a number of ports higher than 100. The OAM crosstalk induced-penalty, evaluated through an experimental characterization, do not significantly affect the interconnection network performance.
Caselli, Federica; Bisegna, Paolo
2017-10-01
The performance of a novel microfluidic impedance cytometer (MIC) with coplanar configuration is investigated in silico. The main feature of the device is the ability to provide accurate particle-sizing despite the well-known measurement sensitivity to particle trajectory. The working principle of the device is presented and validated by means of an original virtual laboratory providing close-to-experimental synthetic data streams. It is shown that a metric correlating with particle trajectory can be extracted from the signal traces and used to compensate the trajectory-induced error in the estimated particle size, thus reaching high-accuracy. An analysis of relevant parameters of the experimental setup is also presented. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; Garcia, Javier; Zalevsky, Zeev
2016-06-01
We experimentally verify a speckle-based technique for noncontact measurement of glucose concentration in the bloodstream. The final device is intended to be a single wristwatch-style device containing a laser, a camera, and an alternating current (ac) electromagnet generated by a solenoid. The experiments presented are performed in vitro as proof of the concept. When a glucose substance is inserted into a solenoid generating an ac magnetic field, it exhibits Faraday rotation, which affects the temporal changes of the secondary speckle pattern distributions. The temporal frequency resulting from the ac magnetic field was found to have a lock-in amplification role, which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.
Remote sensing of methane with OSAS-lidar on the 2ν3 band Q-branch: Experimental proof
NASA Astrophysics Data System (ADS)
Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Sivignon, J. F.; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick
2018-06-01
Optical sensors based on absorption spectroscopy play a central role in the detection and monitoring of atmospheric trace gases. We here present for the first time the experimental demonstration of OSAS-Lidar on the remote sensing of CH4 in the atmosphere. This new methodology, the OSAS-Lidar, couples the Optical Similitude Absorption Spectroscopy (OSAS) methodology with a light detection and ranging device. It is based on the differential absorption of spectrally integrated signals following Beer Lambert-Bouguer law, which are range-resolved. Its novelty originates from the use of broadband laser spectroscopy and from the mathematical approach used to retrieve the trace gas concentration. We previously applied the OSAS methodology in laboratory on the 2ν3 methane absorption band, centered at the 1665 nm wavelength and demonstrated that the OSAS-methodology is almost independent from atmospheric temperature and pressure. In this paper, we achieve an OSAS-Lidar device capable of observing large concentrations of CH4 released from a methane source directly into the atmosphere. Comparison with a standard in-situ measurement device shows that the path-integrated concentrations retrieved from OSAS-Lidar methodology exhibit sufficient sensitivity (2 000 ppm m) and observational time resolution (1 s) to remotely sense methane leaks in the atmosphere. The coupling of OSAS-lidar with a wind measurement device opens the way to monitor time-resolved methane flux emissions, which is important in regards to future climate mitigation involving regional reduction of CH4 flux emissions.
Temperature Effects in Varactors and Multipliers
NASA Technical Reports Server (NTRS)
East, J.; Mehdi, Imran
2001-01-01
Varactor diode multipliers are a critical part of many THz measurement systems. The power and efficiencies of these devices limit the available power for THz sources. Varactor operation is determined by the physics of the varactor device and a careful doping profile design is needed to optimize the performance. Higher doped devices are limited by junction breakdown and lower doped structures are limited by current saturation. Higher doped structures typically have higher efficiencies and lower doped structures typically have higher powers at the same operating frequency and impedance level. However, the device material properties are also a function of the operating temperature. Recent experimental evidence has shown that the power output of a multiplier can be improved by cooling the device. We have used a particle Monte Carlo simulation to investigate the temperature dependent velocity vs. electric field in GaAs. This information was then included in a nonlinear device circuit simulator to predict multiplier performance for various temperatures and device designs. This paper will describe the results of this analysis of temperature dependent multiplier operation.
Role of hydrogen in volatile behaviour of defects in SiO2-based electronic devices
NASA Astrophysics Data System (ADS)
Wimmer, Yannick; El-Sayed, Al-Moatasem; Gös, Wolfgang; Grasser, Tibor; Shluger, Alexander L.
2016-06-01
Charge capture and emission by point defects in gate oxides of metal-oxide-semiconductor field-effect transistors (MOSFETs) strongly affect reliability and performance of electronic devices. Recent advances in experimental techniques used for probing defect properties have led to new insights into their characteristics. In particular, these experimental data show a repeated dis- and reappearance (the so-called volatility) of the defect-related signals. We use multiscale modelling to explain the charge capture and emission as well as defect volatility in amorphous SiO2 gate dielectrics. We first briefly discuss the recent experimental results and use a multiphonon charge capture model to describe the charge-trapping behaviour of defects in silicon-based MOSFETs. We then link this model to ab initio calculations that investigate the three most promising defect candidates. Statistical distributions of defect characteristics obtained from ab initio calculations in amorphous SiO2 are compared with the experimentally measured statistical properties of charge traps. This allows us to suggest an atomistic mechanism to explain the experimentally observed volatile behaviour of defects. We conclude that the hydroxyl-E' centre is a promising candidate to explain all the observed features, including defect volatility.
An atomic magnetometer with autonomous frequency stabilization and large dynamic range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, S., E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.
2015-06-15
The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the biasmore » magnetic field without compromising on its sensitivity.« less
NASA Astrophysics Data System (ADS)
Li, Qian; Zhu, Changhua; Ma, Shuquan; Wei, Kejin; Pei, Changxing
2018-04-01
Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.
Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption.
de Graaf, S E; Faoro, L; Burnett, J; Adamyan, A A; Tzalenchuk, A Ya; Kubatkin, S E; Lindström, T; Danilov, A V
2018-03-20
Noise and decoherence due to spurious two-level systems located at material interfaces are long-standing issues for solid-state quantum devices. Efforts to mitigate the effects of two-level systems have been hampered by a lack of knowledge about their chemical and physical nature. Here, by combining dielectric loss, frequency noise and on-chip electron spin resonance measurements in superconducting resonators, we demonstrate that desorption of surface spins is accompanied by an almost tenfold reduction in the charge-induced frequency noise in the resonators. These measurements provide experimental evidence that simultaneously reveals the chemical signatures of adsorbed magnetic moments and highlights their role in generating charge noise in solid-state quantum devices.
George, Mitchell J; Bynum, James; Nair, Prajeeda; Cap, Andrew P; Wade, Charles E; Cox, Charles S; Gill, Brijesh S
2018-07-01
The purpose of this review is to explore the relationship between platelet bioenergetics and biomechanics and how this relationship affects the clinical interpretation of platelet function devices. Recent experimental and technological advances highlight platelet bioenergetics and biomechanics as alternative avenues for collecting clinically relevant data. Platelet bioenergetics drive energy production for key biomechanical processes like adhesion, spreading, aggregation, and contraction. Platelet function devices like thromboelastography, thromboelastometry, and aggregometry measure these biomechanical processes. Platelet storage, stroke, sepsis, trauma, or the activity of antiplatelet drugs alters measures of platelet function. However, the specific mechanisms governing these alterations in platelet function and how they relate to platelet bioenergetics are still under investigation.
NASA Astrophysics Data System (ADS)
Olafsen, L. J.; Olafsen, J. S.; Eaves, I. K.
2018-06-01
We report on an experimental investigation of the time-dependent spatial intensity distribution of near-infrared idler pulses from an optical parametric oscillator measured using an infrared (IR) camera, in contrast to beam profiles obtained using traditional knife-edge techniques. Comparisons show the information gained by utilizing the thermal camera provides more detail than the spatially- or time-averaged measurements from a knife-edge profile. Synchronization, averaging, and thresholding techniques are applied to enhance the images acquired. The additional information obtained can improve the process by which semiconductor devices and other IR lasers are characterized for their beam quality and output response and thereby result in IR devices with higher performance.
Wang, Qin; Wang, Xiang-Bin
2014-01-01
We present a model on the simulation of the measurement-device independent quantum key distribution (MDI-QKD) with phase randomized general sources. It can be used to predict experimental observations of a MDI-QKD with linear channel loss, simulating corresponding values for the gains, the error rates in different basis, and also the final key rates. Our model can be applicable to the MDI-QKDs with arbitrary probabilistic mixture of different photon states or using any coding schemes. Therefore, it is useful in characterizing and evaluating the performance of the MDI-QKD protocol, making it a valuable tool in studying the quantum key distributions. PMID:24728000
Instrument comparison for Aerosolized Titanium Dioxide
NASA Astrophysics Data System (ADS)
Ranpara, Anand
Recent toxicological studies have shown that the surface area of ultrafine particles (UFP i.e., particles with diameters less than 0.1 micrometer) has a stronger correlation with adverse health effects than does mass of these particles. Ultrafine titanium dioxide (TiO2) particles are widely used in industry, and their use is associated with adverse health outcomes, such as micro vascular dysfunctions and pulmonary damages. The primary aim of this experimental study was to compare a variety of laboratory and industrial hygiene (IH) field study instruments all measuring the same aerosolized TiO2. The study also observed intra-instrument variability between measurements made by two apparently identical devices of the same type of instrument placed side-by-side. The types of instruments studied were (1) DustTrak(TM) DRX, (2) Personal Data RAMs(TM) (PDR), (3) GRIMM, (4) Diffusion charger (DC) and (5) Scanning Mobility Particle Sizer (SMPS). Two devices of each of the four IH field study instrument types were used to measure six levels of mass concentration of fine and ultrafine TiO2 aerosols in controlled chamber tests. Metrics evaluated included real-time mass, active surface area and number/geometric surface area distributions, and off-line gravimetric mass and morphology on filters. DustTrak(TM) DRXs and PDRs were used for mass concentration measurements. DCs were used for active surface area concentration measurements. GRIMMs were used for number concentration measurements. SMPS was used for inter-instrument comparisons of surface area and number concentrations. The results indicated that two apparently identical devices of each DRX and PDR were statistically not different with each other for all the trials of both the sizes of powder (p < 5%). Mean difference between mass concentrations measured by two DustTrak DRX devices was smaller than that measured by two PDR devices. DustTrak DRX measurements were closer to the reference method, gravimetric mass concentration, than the PDRs. Two apparently identical DC devices were statistically different with each other for fine particles but not for UFP. DC devices and SMPS were statistically different with each other for both sizes of particles. Two apparently identical GRIMM devices were statistically different with each other for fine particles. For UFP, results of GRIMM device were statistically different than SMPS but not for fine particles. These observations suggest that inter-device within instrument and inter-instrument agreements depend on particle size and instrument characteristics to measure nanoparticles at different concentration levels.
NASA Astrophysics Data System (ADS)
Starostin, A. A.; Shangin, V. V.; Bukhman, V. G.; Volosnikov, D. V.; Skripov, P. V.
2016-08-01
The research is devoted to development of a self-contained device for rapid detection of volatile impurities in the oil system of a turbine and testing it using the operating equipment. The device consists of a remote sensor, whose sensitive element is a 3-5-mm long wire probe 20 microns in diameter, and a measurement unit that comprises a microcontroller with a set of peripherals. The design of the device enables automation of the measurement procedure with a minimum number of preset settings and real-time output of information to the operator console. The software of the device provides two-stage pulse heating of the wire probe and a resistance temperature detector. The two-stage mode proves to be the most sensitive to appearance in the system of moisture, including its trace amounts. The characteristic time of the heating is of the order of 10 ms. The measurement procedure is based on a method that consists in automatic search for spontaneous boiling-up temperature of the oil accompanied by a characteristic response signal. The results were interpreted by formal correlation of the measured values with an array of calibration data obtained in similar experiments with well-defined oil samples. An experimental method for application of the device has been developed that takes into account technological factors, such as comparatively high values of the flow rate and the temperature of the oil in locations of the oil drain from bearings, the variability of these values, and the variety of noise types that accompany the operation of the thermal power equipment that complicate the online measurements. Tests of the device were carried out in locations of oil drain from supporting bearings. The test results have demonstrated the possibility of applying the device directly in the oil system of a turbine and provided a practical basis for development of a system of multipoint control of the technological scheme in real time.
Energy harvesting: an integrated view of materials, devices and applications.
Radousky, H B; Liang, H
2012-12-21
Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.
Energy harvesting: an integrated view of materials, devices and applications
NASA Astrophysics Data System (ADS)
Radousky, H. B.; Liang, H.
2012-12-01
Energy harvesting refers to the set of processes by which useful energy is captured from waste, environmental, or mechanical sources and is converted into a usable form. The discipline of energy harvesting is a broad topic that includes established methods and materials such as photovoltaics and thermoelectrics, as well as more recent technologies that convert mechanical energy, magnetic energy and waste heat to electricity. This article will review various state-of-the-art materials and devices for direct energy conversion and in particular will include multistep energy conversion approaches. The article will highlight the nano-materials science underlying energy harvesting principles and devices, but also include more traditional bulk processes and devices as appropriate and synergistic. Emphasis is placed on device-design innovations that lead to higher efficiency energy harvesting or conversion technologies ranging from the cm/mm-scale down to MEMS/NEMS (micro- and nano-electromechanical systems) devices. Theoretical studies are reviewed, which address transport properties, crystal chemistry, thermodynamic analysis, energy transfer, system efficiency and device operation. New developments in experimental methods; device design and fabrication; nanostructured materials fabrication; materials properties; and device performance measurement techniques are discussed.
Ladner, Tobias; Held, Markus; Flitsch, David; Beckers, Mario; Büchs, Jochen
2016-12-03
Microtiter plates (MTP) are often applied as culture vessels in high-throughput screening programs. If online measuring techniques are available, MTPs can also be applied in the first steps of process development. For such small-scale bioreactors dipping probes are usually too large; therefore, optical measurements are often used. For example, the BioLector technology allows for the online monitoring of scattered light and fluorescence in each well of a continuously orbitally shaken MTP. Although this system provides valuable data, these measurements are mainly of a semi-quantitative nature. Therefore, signal calibration is required to obtain absolute values. With the µRAMOS technology it became possible for the first time to quantify the oxygen transfer rate (OTR) separately in each well of an MTP. In this work, a device is presented that combines both techniques, to provide a hitherto unparalleled high amount of information from each single well. Because both systems (BioLector and µRAMOS) are based on optical measurements, the measurements need to be synchronized to avoid interferences with the optical signals. The new experimental setup was applied for online monitoring in cultures of Escherichia coli and Hansenula polymorpha. It has been demonstrated that the well-to-well reproducibility is very high, and that the monitored signals provide reliable and valuable information about the process. With varying filling volumes, different maximum oxygen transfer capacities (OTR max ) were adjusted in oxygen-limited cultures. The different degrees of stress during the culture due to oxygen limitation affected microbial growth and also impacted reproducibility from culture to culture. Furthermore, it was demonstrated that this new device significantly simplifies the experimental efforts: instead of parallel cultures in a shake flask and MTP, just one single experiment in MTP needs to be conducted to measure the OTR, dissolved oxygen tension (DOT), scattered light and fluorescence. The new device is a very suitable system for the online monitoring of cultures in continuously orbitally shaken MTPs. Due to the high number of parameters that can simultaneously be measured with this small-scale device, deeper insight into the investigated microbial system can be achieved. Furthermore, the experimental efforts to obtain OTR, DOT, scattered light and fluorescence signals during a culture are decreased. Ultimately, this new technology and the resulting high amount of collected data will eliminate the currently existing separation between screening and process development. Graphical abstract Picture of the combined μRAMOS and BioLector setup which allows for measurements of the oxygen transfer rate (OTR), dissolved oxygen tension (DOT), scattered light and fluorescence in each single well of an orbitally shaken microtiter plate.
Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware.
Daneels, Glenn; Municio, Esteban; Van de Velde, Bruno; Ergeerts, Glenn; Weyn, Maarten; Latré, Steven; Famaey, Jeroen
2018-02-02
The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks.
Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware
Municio, Esteban; Van de Velde, Bruno; Latré, Steven
2018-01-01
The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks. PMID:29393900
Chen, Roland K; Chastagner, Matthew W; Dodde, Robert E; Shih, Albert J
2013-02-01
The temporal and spatial tissue temperature profile in electrosurgical vessel sealing was experimentally measured and modeled using finite element modeling (FEM). Vessel sealing procedures are often performed near the neurovascular bundle and may cause collateral neural thermal damage. Therefore, the heat generated during electrosurgical vessel sealing is of concern among surgeons. Tissue temperature in an in vivo porcine femoral artery sealed using a bipolar electrosurgical device was studied. Three FEM techniques were incorporated to model the tissue evaporation, water loss, and fusion by manipulating the specific heat, electrical conductivity, and electrical contact resistance, respectively. These three techniques enable the FEM to accurately predict the vessel sealing tissue temperature profile. The averaged discrepancy between the experimentally measured temperature and the FEM predicted temperature at three thermistor locations is less than 7%. The maximum error is 23.9%. Effects of the three FEM techniques are also quantified.
Ultrathin conformal devices for precise and continuous thermal characterization of human skin
Webb, R. Chad; Bonifas, Andrew P.; Behnaz, Alex; Zhang, Yihui; Yu, Ki Jun; Cheng, Huanyu; Shi, Mingxing; Bian, Zuguang; Liu, Zhuangjian; Kim, Yun-Soung; Yeo, Woon-Hong; Park, Jae Suk; Song, Jizhou; Li, Yuhang; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.
2013-01-01
Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples. PMID:24037122
Ultrathin conformal devices for precise and continuous thermal characterization of human skin
NASA Astrophysics Data System (ADS)
Webb, R. Chad; Bonifas, Andrew P.; Behnaz, Alex; Zhang, Yihui; Yu, Ki Jun; Cheng, Huanyu; Shi, Mingxing; Bian, Zuguang; Liu, Zhuangjian; Kim, Yun-Soung; Yeo, Woon-Hong; Park, Jae Suk; Song, Jizhou; Li, Yuhang; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.
2013-10-01
Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples.
SenseCube—a novel inexpensive wireless multisensor for physics lab experimentations
NASA Astrophysics Data System (ADS)
Mehta, Vedant; Lane, Charles D.
2018-07-01
SenseCube is a multisensor capable of measuring many different real-time events and changes in environment. Most conventional sensors used in introductory-physics labs use their own software and have wires that must be attached to a computer or an alternate device to analyze the data. This makes the standard sensors time consuming, tedious, and space-constricted. SenseCube was developed to overcome these limitations. This research was focused on developing a device that is all-encompassing, cost-effective, wireless, and compact, yet can perform the same tasks as the multiple standard sensors normally used in physics labs. It measures more than twenty distinct types of real-time events and transfers the data via Bluetooth. Both Windows and Mac software were developed so that the data from this device can be retrieved and/or saved on either platform. This paper describes the sensor itself, its development, its capabilities, and its cost comparison with standard sensors.
Quantum Steering Beyond Instrumental Causal Networks
NASA Astrophysics Data System (ADS)
Nery, R. V.; Taddei, M. M.; Chaves, R.; Aolita, L.
2018-04-01
We theoretically predict, and experimentally verify with entangled photons, that outcome communication is not enough for hidden-state models to reproduce quantum steering. Hidden-state models with outcome communication correspond, in turn, to the well-known instrumental processes of causal inference but in the one-sided device-independent scenario of one black-box measurement device and one well-characterized quantum apparatus. We introduce one-sided device-independent instrumental inequalities to test against these models, with the appealing feature of detecting entanglement even when communication of the black box's measurement outcome is allowed. We find that, remarkably, these inequalities can also be violated solely with steering, i.e., without outcome communication. In fact, an efficiently computable formal quantifier—the robustness of noninstrumentality—naturally arises, and we prove that steering alone is enough to maximize it. Our findings imply that quantum theory admits a stronger form of steering than known until now, with fundamental as well as practical potential implications.
Microwave platform as a valuable tool for characterization of nanophotonic devices
Shishkin, Ivan; Baranov, Dmitry; Slobozhanyuk, Alexey; Filonov, Dmitry; Lukashenko, Stanislav; Samusev, Anton; Belov, Pavel
2016-01-01
The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies. We demonstrate that the microwave experiments provide a unique platform for the comprehensive studies of electromagnetic properties of micro- and nanophotonic devices, and allow to obtain data which are hardly acquirable by conventional optical methods. PMID:27759058
2010-01-01
science and engineering. For example, by measuring the frequency shift of sensor oscillations, one can measure gas adsorption on the sensor surface...free-molecular regime with varied gas pressure. The measurement path of the experimental setup is schematically shown in Fig. 3.1. The sensor is...excited by the electric field between the sensor and fixed electrode by means of a specially designed system of self-induced oscillations. The
NASA Technical Reports Server (NTRS)
Geng, Tao; Paxson, Daniel E.; Zheng, Fei; Kuznetsov, Andrey V.; Roberts, William L.
2008-01-01
Pulsed combustion is receiving renewed interest as a potential route to higher performance in air breathing propulsion systems. Pulsejets offer a simple experimental device with which to study unsteady combustion phenomena and validate simulations. Previous computational fluid dynamic (CFD) simulation work focused primarily on the pulsejet combustion and exhaust processes. This paper describes a new inlet sub-model which simulates the fluidic and mechanical operation of a valved pulsejet head. The governing equations for this sub-model are described. Sub-model validation is provided through comparisons of simulated and experimentally measured reed valve motion, and time averaged inlet mass flow rate. The updated pulsejet simulation, with the inlet sub-model implemented, is validated through comparison with experimentally measured combustion chamber pressure, inlet mass flow rate, operational frequency, and thrust. Additionally, the simulated pulsejet exhaust flowfield, which is dominated by a starting vortex ring, is compared with particle imaging velocimetry (PIV) measurements on the bases of velocity, vorticity, and vortex location. The results show good agreement between simulated and experimental data. The inlet sub-model is shown to be critical for the successful modeling of pulsejet operation. This sub-model correctly predicts both the inlet mass flow rate and its phase relationship with the combustion chamber pressure. As a result, the predicted pulsejet thrust agrees very well with experimental data.
A mechanical rotator for neutron scattering measurements
Thaler, A.; Northen, E.; Aczel, A. A.; ...
2016-12-01
We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses andmore » future extension possibilities.« less
Upgrade of the IGN-14 neutron generator for research on detection of fusion-plasma products
NASA Astrophysics Data System (ADS)
Igielski, Andrzej; Kurowski, Arkadiusz; Janik, Władysław; Gabańska, Barbara; Woźnicka, Urszula
2015-10-01
The fast neutron generator (IGN-14) at the Institute of Nuclear Physics of the Polish Academy of Sciences (IFJ PAN) in Kraków (Poland) is a laboratory multi-purpose experimental device. Neutrons are produced in a beam-target D-D or D-T reactions. A new vacuum chamber installed directly to the end of the ion guide of IGN-14 makes it possible to measure not only neutrons but also alpha particles in the presence of a mixed radiation field of other accompanying reaction products. The new experimental setup allows test detectors dedicated to spectrometric measurements of thermonuclear fusion reaction products.
Acoustics of the piezo-electric pressure probe
NASA Technical Reports Server (NTRS)
Dutt, G. S.
1974-01-01
Acoustical properties of a piezoelectric device are reported for measuring the pressure in the plasma flow from an MPD arc. A description and analysis of the acoustical behavior in a piezoelectric probe is presented for impedance matching and damping. The experimental results are presented in a set of oscillographic records.
Noise of space-charge-limited current in solids is thermal.
NASA Technical Reports Server (NTRS)
Golder, J.; Nicolet, M.-A.; Shumka, A.
1973-01-01
The white noise level of space-charge-limited current (SCLC) of holes in a silicon device measured at five temperatures ranging from 113 to 300 K is shown to be proportional to the absolute temperature. This proves experimentally the thermal origin of noise for SCLC in solids.
A new device for continuous monitoring the CO2 dissolved in water
NASA Astrophysics Data System (ADS)
de Gregorio, S.; Camarda, M.; Cappuzzo, S.; Giudice, G.; Gurrieri, S.; Longo, M.
2009-04-01
The measurements of dissolved CO2 in water are common elements of industrial processes and scientific research. In order to perform gas dissolved measurements is required to separate the dissolved gaseous phase from water. We developed a new device able to separate the gases phase directly in situ and well suitable for continuous measuring the CO2 dissolved in water. The device is made by a probe of a polytetrafluorethylene (PTFE) tube connected to an I.R. spectrophotometer (I.R.) and a pump. The PTFE is a polymeric semi-permeable membrane and allows the permeation of gas in the system. Hence, this part of the device is dipped in water in order to equilibrate the probe headspace with the dissolved gases. The partial pressure of the gas i in the headspace at equilibrium (Pi) follows the Henry's law: Pi=Hi•Ci, where Hi is the Henry's constant and Ci is the dissolved concentration of gas i. After the equilibrium is achieved, the partial pressure of CO2 inside the tube is equal to the partial pressure of dissolved CO2. The concentration of CO2 is measured by the I.R. connected to the tube. The gas is moved from the tube headspace to the I.R. by using the pump. In order to test the device and assess the best operating condition, several experimental were performed in laboratory. All the test were executed in a special apparatus where was feasible to create controlled atmospheres. Afterward the device has been placed in a draining tunnel sited in the Mt. Etna Volcano edifice (Italy). The monitored groundwater intercepts the Pernicana Fault, along which degassing phenomena are often observed. The values recorded by the station result in agreement with monthly directly measurements of dissolved CO2 partial pressure.
NASA Astrophysics Data System (ADS)
Jiang, Hai; Liu, Jianfang; Lv, Qingqing; Gu, Shoudong; Jiao, Xiaoyang; Li, Minjiao; Zhang, Shasha
2016-09-01
The influence of a resonant tube on the performance of acoustic standing wave-based levitation device (acoustic levitation device hereinafter) is studied by analyzing the acoustic pressure and levitation force of four types of acoustic levitation devices without a resonance tube and with resonance tubes of different radii R using ANSYS and MATLAB. Introducing a resonance tube either enhances or weakens the levitation strength of acoustic levitation device, depending on the resonance tube radii. Specifically, the levitation force is improved to a maximum degree when the resonance tube radius is slightly larger than the size of the reflector end face. Furthermore, the stability of acoustic levitation device is improved to a maximum degree by introducing a resonance tube of R=1.023λ. The experimental platform and levitation force measurement system of the acoustic levitation device with concave-end-face-type emitter and reflector are developed, and the test of suspended matters and liquid drops is conducted. Results show that the Φ6.5-mm steel ball is suspended easily when the resonance tube radius is 1.023λ, and the Φ5.5-mm steel ball cannot be suspended when the resonance tube radius is 1.251λ. The levitation capability of the original acoustic levitation device without a resonance tube is weakened when a resonance tube of R=1.251λ is applied. These results are consistent with the ANSYS simulation results. The levitation time of the liquid droplet with a resonance tube of R=1.023λ is longer than without a resonance tube. This result is also supported by the MATLAB simulation results. Therefore, the performance of acoustic levitation device can be improved by introducing a resonant tube with an appropriate radius.
Fries, M; Montavon, S; Spadavecchia, C; Levionnois, O L
2017-03-01
Methods of evaluating locomotor activity can be useful in efforts to quantify behavioural activity in horses objectively. To evaluate whether an accelerometric device would be adequate to quantify locomotor activity and step frequency in horses, and to distinguish between different levels of activity and different gaits. Observational study in an experimental setting. Dual-mode (activity and step count) piezo-electric accelerometric devices were placed at each of 4 locations (head, withers, forelimb and hindlimb) in each of 6 horses performing different controlled activities including grazing, walking at different speeds, trotting and cantering. Both the activity count and step count were recorded and compared by the various activities. Statistical analyses included analysis of variance for repeated measures, receiver operating characteristic curves, Bland-Altman analysis and linear regression. The accelerometric device was able to quantify locomotor activity at each of the 4 locations investigated and to distinguish between gaits and speeds. The activity count recorded by the accelerometer placed on the hindlimb was the most accurate, displaying a clear discrimination between the different levels of activity and a linear correlation to speed. The accelerometer placed on the head was the only one to distinguish specifically grazing behaviour from standing. The accelerometer placed on the withers was unable to differentiate different gaits and activity levels. The step count function measured at the hindlimb was reliable but the count was doubled at the walk. The dual-mode accelerometric device was sufficiently accurate to quantify and compare locomotor activity in horses moving at different speeds and gaits. Positioning the device on the hindlimb allowed for the most accurate results. The step count function can be useful but must be manually corrected, especially at the walk. © 2016 EVJ Ltd.
Self-testing through EPR-steering
NASA Astrophysics Data System (ADS)
Šupić, Ivan; Hoban, Matty J.
2016-07-01
The verification of quantum devices is an important aspect of quantum information, especially with the emergence of more advanced experimental implementations of quantum computation and secure communication. Within this, the theory of device-independent robust self-testing via Bell tests has reached a level of maturity now that many quantum states and measurements can be verified without direct access to the quantum systems: interaction with the devices is solely classical. However, the requirements for this robust level of verification are daunting and require high levels of experimental accuracy. In this paper we discuss the possibility of self-testing where we only have direct access to one part of the quantum device. This motivates the study of self-testing via EPR-steering, an intermediate form of entanglement verification between full state tomography and Bell tests. Quantum non-locality implies EPR-steering so results in the former can apply in the latter, but we ask what advantages may be gleaned from the latter over the former given that one can do partial state tomography? We show that in the case of self-testing a maximally entangled two-qubit state, or ebit, EPR-steering allows for simpler analysis and better error tolerance than in the case of full device-independence. On the other hand, this improvement is only a constant improvement and (up to constants) is the best one can hope for. Finally, we indicate that the main advantage in self-testing based on EPR-steering could be in the case of self-testing multi-partite quantum states and measurements. For example, it may be easier to establish a tensor product structure for a particular party’s Hilbert space even if we do not have access to their part of the global quantum system.
Hydrogen fluoride overtone laser: experimental methods of characterization
NASA Astrophysics Data System (ADS)
Wisniewski, Charles F.; Hewett, Kevin B.; Manke, Gerald C., II; Truman, C. Randall; Hager, Gordon D.
2004-09-01
The uncertainty in both the fluorine atom concentration and the gain length has inhibited the development of accurate and device independent models of HF overtone lasers. Furthermore, previous methods of measuring the small signal gain were cumbersome and could not easily generate spatial maps of the gain in the cavity. Experimental techniques have been developed to directly measure the concentration of fluorine atoms, the gain length and the small signal gain in a hydrogen fluoride 5 cm slit nozzle laser. A gas phase titration technique was utilized to measure the fluorine atom concentration using HCl as the titrant. The gain length was measured using a pitot probe to locate the interface of the primary flow with the high Mach number shroud flows. A tunable diode laser was utilized to perform small signal gain measurements on HF overtone (ν=2-->0) transitions.
Spina, Laura; Morgavi, Daniele; Cannata, Andrea; Campeggi, Carlo; Perugini, Diego
2018-05-01
A challenging objective of modern volcanology is to quantitatively characterize eruptive/degassing regimes from geophysical signals (in particular seismic and infrasonic), for both research and monitoring purposes. However, the outcomes of the attempts made so far are still considered very uncertain because volcanoes remain inaccessible when deriving quantitative information on crucial parameters such as plumbing system geometry and magma viscosity. In order to improve our knowledge of volcanic systems, a novel experimental device, which is capable of mimicking volcanic degassing processes with different regimes and gas flow rates, and allowing for the investigation of the related seismo-acoustic emissions, was designed and developed. The benefits of integrating observations on real volcanoes with seismo-acoustic signals generated in laboratory are many and include (i) the possibility to fix the controlling parameters such as the geometry of the structure where the gas flows, the gas flow rate, and the fluid viscosity; (ii) the possibility of performing acoustic measurements at different azimuthal and zenithal angles around the opening of the analog conduit, hence constraining the radiation pattern of different acoustic sources; (iii) the possibility to measure micro-seismic signals in distinct points of the analog conduit; (iv) finally, thanks to the transparent structure, it is possible to directly observe the degassing pattern through the optically clear analog magma and define the degassing regime producing the seismo-acoustic radiations. The above-described device represents a step forward in the analog volcano seismo-acoustic measurements.
NASA Astrophysics Data System (ADS)
Spina, Laura; Morgavi, Daniele; Cannata, Andrea; Campeggi, Carlo; Perugini, Diego
2018-05-01
A challenging objective of modern volcanology is to quantitatively characterize eruptive/degassing regimes from geophysical signals (in particular seismic and infrasonic), for both research and monitoring purposes. However, the outcomes of the attempts made so far are still considered very uncertain because volcanoes remain inaccessible when deriving quantitative information on crucial parameters such as plumbing system geometry and magma viscosity. In order to improve our knowledge of volcanic systems, a novel experimental device, which is capable of mimicking volcanic degassing processes with different regimes and gas flow rates, and allowing for the investigation of the related seismo-acoustic emissions, was designed and developed. The benefits of integrating observations on real volcanoes with seismo-acoustic signals generated in laboratory are many and include (i) the possibility to fix the controlling parameters such as the geometry of the structure where the gas flows, the gas flow rate, and the fluid viscosity; (ii) the possibility of performing acoustic measurements at different azimuthal and zenithal angles around the opening of the analog conduit, hence constraining the radiation pattern of different acoustic sources; (iii) the possibility to measure micro-seismic signals in distinct points of the analog conduit; (iv) finally, thanks to the transparent structure, it is possible to directly observe the degassing pattern through the optically clear analog magma and define the degassing regime producing the seismo-acoustic radiations. The above-described device represents a step forward in the analog volcano seismo-acoustic measurements.
Gonçalves, Flávia; Boaro, Leticia C; Ferracane, Jack L; Braga, Roberto R
2012-06-01
The null hypothesis was that mechanical testing systems used to determine polymerization stress (σ(pol)) would rank a series of composites similarly. Two series of composites were tested in the following systems: universal testing machine (UTM) using glass rods as bonding substrate, UTM/acrylic rods, "low compliance device", and single cantilever device ("Bioman"). One series had five experimental composites containing BisGMA:TEGDMA in equimolar concentrations and 60, 65, 70, 75 or 80 wt% of filler. The other series had five commercial composites: Filtek Z250 (3M ESPE), Filtek A110 (3M ESPE), Tetric Ceram (Ivoclar), Heliomolar (Ivoclar) and Point 4 (Kerr). Specimen geometry, dimensions and curing conditions were similar in all systems. σ(pol) was monitored for 10 min. Volumetric shrinkage (VS) was measured in a mercury dilatometer and elastic modulus (E) was determined by three-point bending. Shrinkage rate was used as a measure of reaction kinetics. ANOVA/Tukey test was performed for each variable, separately for each series. For the experimental composites, σ(pol) decreased with filler content in all systems, following the variation in VS. For commercial materials, σ(pol) did not vary in the UTM/acrylic system and showed very few similarities in rankings in the others tests system. Also, no clear relationships were observed between σ(pol) and VS or E. The testing systems showed a good agreement for the experimental composites, but very few similarities for the commercial composites. Therefore, comparison of polymerization stress results from different devices must be done carefully. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
High throughput screening of CO2 solubility in aqueous monoamine solutions.
Porcheron, Fabien; Gibert, Alexandre; Mougin, Pascal; Wender, Aurélie
2011-03-15
Post-combustion Carbon Capture and Storage technology (CCS) is viewed as an efficient solution to reduce CO(2) emissions of coal-fired power stations. In CCS, an aqueous amine solution is commonly used as a solvent to selectively capture CO(2) from the flue gas. However, this process generates additional costs, mostly from the reboiler heat duty required to release the carbon dioxide from the loaded solvent solution. In this work, we present thermodynamic results of CO(2) solubility in aqueous amine solutions from a 6-reactor High Throughput Screening (HTS) experimental device. This device is fully automated and designed to perform sequential injections of CO(2) within stirred-cell reactors containing the solvent solutions. The gas pressure within each reactor is monitored as a function of time, and the resulting transient pressure curves are transformed into CO(2) absorption isotherms. Solubility measurements are first performed on monoethanolamine, diethanolamine, and methyldiethanolamine aqueous solutions at T = 313.15 K. Experimental results are compared with existing data in the literature to validate the HTS device. In addition, a comprehensive thermodynamic model is used to represent CO(2) solubility variations in different classes of amine structures upon a wide range of thermodynamic conditions. This model is used to fit the experimental data and to calculate the cyclic capacity, which is a key parameter for CO(2) process design. Solubility measurements are then performed on a set of 50 monoamines and cyclic capacities are extracted using the thermodynamic model, to asses the potential of these molecules for CO(2) capture.
NASA Astrophysics Data System (ADS)
Hirth, Michael; Kuhn, Jochen; Müller, Andreas
2015-02-01
Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.
Pressure and Thrust Measurements of a High-Frequency Pulsed Detonation Tube
NASA Technical Reports Server (NTRS)
Nguyen, N.; Cutler, A. D.
2008-01-01
This paper describes measurements of a small-scale, high-frequency pulsed detonation tube. The device utilized a mixture of H2 fuel and air, which was injected into the device at frequencies of up to 1200 Hz. Pulsed detonations were demonstrated in an 8-inch long combustion volume, at about 600 Hz, for the quarter wave mode of resonance. The primary objective of this experiment was to measure the generated thrust. A mean value of thrust was measured up to 6.0 lb, corresponding to H2 flow based specific impulse of 2970 s. This value is comparable to measurements in H2-fueled pulsed detonation engines (PDEs). The injection and detonation frequency for this new experimental case was much higher than typical PDEs, where frequencies are usually less than 100 Hz. The compact size of the device and high frequency of detonation yields a thrust-per-unit-volume of approximately 2.0 pounds per cubic inch, and compares favorably with other experiments, which typically have thrust-per-unit-volume of order 0.01 pound per cubic inch. This much higher volumetric efficiency results in a potentially much more practical device than the typical PDE, for a wide range of potential applications, including high-speed boundary layer separation control, for example in hypersonic engine inlets, and propulsion for small aircraft and missiles.
Radiation effects on MOS devices - dosimetry, annealing, irradiation sequence, and sources
NASA Technical Reports Server (NTRS)
Stassinopoulos, E. G.; Brucker, G. J.; Van Gunten, O.; Knudson, A. R.; Jordan, T. M.
1983-01-01
This paper reports on some investigations of dosimetry, annealing, irradiation sequences, and radioactive sources, involved in the determination of radiation effects on MOS devices. Results show that agreement in the experimental and theoretical surface to average doses support the use of thermo-luminescent dosimeters (manganese activated calcium fluoride) in specifying the surface dose delivered to thin gate insulators of MOS devices. Annealing measurements indicate the existence of at least two energy levels,,s or a activation energies, for recovery of soft oxide MOS devices after irradiation by electrons, protons, and gammas. Damage sensitivities of MOS devices were found to be independent of combinations and sequences of radiation type or energies. Comparison of various gamma sources indicated a small dependence of damage sensitivity on the Cobalt facility, but a more significant dependence in the case of the Cesium source. These results were attributed to differences in the spectral content of the several sources.
NASA Astrophysics Data System (ADS)
Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.
1996-11-01
Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
2017-11-13
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
Phloem-sap-dynamics sensor device for monitoring photosynthates transportation in plant shoots
NASA Astrophysics Data System (ADS)
Yano, Yuya; Ono, Akihito; Terao, Kyohei; Suzuki, Takaaki; Takao, Hidekuni; Kobayashi, Tsuyoshi; Kataoka, Ikuo; Shimokawa, Fusao
2018-06-01
We propose a microscale phloem-sap-dynamics sensor device to obtain the index of an internal plant condition regarding the transportation of primary photosynthates in phloem, which is an essential indicator of stable crop production under controlled-growth environments. In detail, we integrated a conventional Granier sensor with a thermal-flow sensor and devised an improved sensor device to quantify such index, including the information on velocity and direction of the phloem-sap flow using the microelectromechanical systems (MEMS) technology. The experimental results showed that although the proposed sensor device was approximately only 1/10 the size of the conventional Granier sensor, it could generate an output nearly equal to that of the conventional sensor. Furthermore, experiments using mimicked plants demonstrated that the proposed device could measure minute flow velocities in the range of 0–200 µm/s, which are generally known as the phloem-sap flow velocity, and simultaneously detect the flow direction.
Mori, Kotaro; Horibe, Tadashi; Ishikawa, Shigekazu
2018-04-10
This study deals with the numerical and experimental study of the effect of weight on the resonant tuning and energy harvesting characteristics of energy harvesting devices using giant magnetostrictive materials. The energy harvesting device is made in a cantilever shape using a thin Terfenol-D layer, stainless steel (SUS) layer and a movable proof mass, among other things. In this study, two types of movable proof mass were prepared, and the device was designed to adjust its own resonant frequency automatically to match external vibration frequency in real time. Three-dimensional finite element analysis (FEA) was performed, and the resonant frequency, tip displacement, and output voltage in the devices were predicted and measured, and the simulation and experiment results were compared. The effects of the weight of the proof mass on self-tuning ability and time-varying behavior were then considered in particular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
NASA Astrophysics Data System (ADS)
Demasi, Alexander
Organic molecules have been the subject of many scientific studies due to their potential for use in a new generation of optoelectronic and semiconducting devices, such as organic photovoltaics and organic light emitting diodes. These studies are motivated by the fact that organic semiconductor devices have several advantages over traditional inorganic semiconductor devices. Unlike inorganic semiconductors, where the electronic properties are a result of the deliberate introduction of dopants to the material, the properties of organic semiconductors are often intrinsic to the molecules themselves. As a result, organic semiconductor devices are frequently less susceptible to contamination by impurities than their inorganic counterparts, which results in the relatively lower cost of producing such devices. Accurate experimental determination of the bulk and surface electronic structure of organic semiconductors is a prerequisite in developing a comprehensive understanding of such materials. The organic materials studied in this thesis were N,N-Ethylene-bis(1,1,1trifluoropentane-2,4-dioneiminato)-copper(ii) (abbreviated Cu-TFAC), aluminum tris-8hydroxyquinoline (A1g3), lithium quinolate (Liq), tetracyanoquinodimethane (TCNQ), and tetrafluorotetracyanoquinodimethane (F4TCNQ). The electronic structures of these materials were measured with several synchrotron-based x-ray spectroscopies. X-ray photoemission spectroscopy was used to measure the occupied total density of states and the core-level states of the aforementioned materials. X-ray absorption spectroscopy (XAS) was used to probe the element-specific unoccupied partial density of states (PDOS); its angle-resolved variant was used to measure the orientation of the molecules in a film and, in some circumstances, to gauge the extent of an organic film's crystallinity. Most notably, x-ray emission spectroscopy (XES) measures the element- specific occupied PDOS and, when aided by XAS, resonant XES can additionally be used to probe the electronic structure of individual atomic sites within a molecule. Most of the results in this thesis are accompanied by the results of electronic structure calculations determined with density functional theory (DFT). DFT is a useful aid in interpreting the results of the x-ray spectroscopies employed. The experimental results, combined with DFT calculations, provide a wealth of information regarding the electronic structures of these organic materials. v
Mobile optogenetic modules for mice
NASA Astrophysics Data System (ADS)
Rusakov, Konstantin; Radzewicz, Czesław; Czajkowski, Rafał; Konopka, Witold; Chilczuk, Joanna
2017-08-01
We present a set of novel optogenetic devices for mice freely moving in cages. The purpose of the devices is to stimulate specific brain regions using light. The devices we have constructed consist of an electrical connector, cannula and micro- LED chip operating at 470 nm as light source for delivering light into the stimulated region of the mouse brain. We have also demonstrated light conversion from 470 nm to 590 nm by applying a silicate orange phosphor directly to the LED chip. The measured conversion efficiency is approximately 80% for ZIP595I phosphor. We discuss the properties of various forms of implant needles with respect to the ease of LED attachment and experimental validation of the constructed optogenetic implants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toufexis, Filippos; Tantawi, Sami G.; Jensen, Aaron
Here, we report the experimental demonstration of a 5th harmonic mm-wave frequency multiplying vacuum electronic device, which uses an over-moded spherical sector output cavity. In this device, a pencil electron beam is helically deflected in a transverse deflecting cavity before entering the output cavity. No magnetic field is required to focus or guide the beam. We built and tested a proof-of-principle device with an output frequency of 57.12 GHz. The measured peak power was 52.67 W at the 5th harmonic of the drive frequency. Power at the 4th, 6th, and 7th harmonics was 33.28 dB lower than that at themore » 5th harmonic.« less
Noncontacting device to indicate deflection of turbopump internal rotating parts
NASA Technical Reports Server (NTRS)
Hamilton, D. B.; Grieser, D. R.; Plummer, A. M.; Ensminger, D.; Saccacio, E. J.
1972-01-01
Phase 2 (development) which was concluded for the ultrasonic Doppler device and the light-pipe-reflectance device is reported. An ultrasonic Doppler breadboard system was assembled which accurately measured runout in the J-2 LOX pump impeller during operation. The transducer was mounted on the outside of the pump volute using a C-clamp. Vibration was measured by conducting the ultrasonic wave through the volute housing and through the fluid in the volute to the impeller surface. The impeller vibration was also measured accurately using the light-pipe probe mounted in an elastomeric-gland fitting in the pump case. A special epoxy resin developed for cryogenic applications was forced into the end of the fiber-optic probe to retain the fibers. Subsequently, the probe suffered no damage after simultaneous exposure to 2150 psi and 77 F. Preliminary flash X-radiographs were taken of the turbine wheel and the shaft-bearing-seal assembly, using a 2-megavolt X-ray unit. Reasonable resolution and contrast was obtained. A fast-neutron detector was fabricated and sensitivity was measured. The results demonstrated that the technique is feasible for integrated-time measurements requiring, perhaps, 240 revolutions to obtain sufficient exposure at 35,000 rpm. The experimental verification plans are included.
NASA Astrophysics Data System (ADS)
Batır, G. Güven; Arık, Mustafa; Caldıran, Zakir; Turut, Abdulmecit; Aydogan, Sakir
2018-01-01
Reduced graphene oxide (rGO)-rhodamine 101 (Rh101) nanocomposites with different ratios of rGO have been synthesized in aqueous medium by ultrasonic homogenization. The fluorescence of Rh101 as measured using a laser dye with high fluorescence quantum yield was substantially quenched with increasing amount of rGO in the nanocomposite. Formation of rGO-Rh101 nanocomposites was confirmed by x-ray diffraction analysis, scanning electron microscopy, ultraviolet-visible (UV-Vis) spectroscopy, and fluorescence microscopy. Furthermore, rGO-Rh101 nanocomposite/ p-Si heterojunctions were synthesized, all of which showed good rectifying behavior. The electrical characteristics of these devices were analyzed using current-voltage ( I- V) measurements to determine the ideality factor and barrier height. The experimental results confirmed the presence of lateral inhomogeneity in the effective barrier height of the rGO-Rh101 nanocomposite/ p-Si heterojunctions. In addition to I- V measurements, one device was analyzed in more detail using frequency-dependent capacitance-voltage measurements. All electrical measurements were carried out at room temperature and in the dark.
Feng, Y; Schafer, D W; Song, S; Sun, Y; Zhu, D; Krzywinski, J; Robert, A; Wu, J; Decker, F J
2018-01-01
The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the second pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. This measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.
Feng, Y.; Schafer, D. W.; Song, S.; ...
2018-01-01
The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Y.; Schafer, D. W.; Song, S.
The experimental observation of the depression effect in gas devices designed for X-ray free-electron lasers (FELs) is reported. The measurements were carried out at the Linac Coherent Light Source using a two-bunch FEL beam at 6.5 keV with 122.5 ns separation passing through an argon gas cell. The relative intensities of the two pulses of the two-bunch beam were measured, after and before the gas cell, from X-ray scattering off thin targets by using fast diodes with sufficient temporal resolution. At a cell pressure of 140 hPa, it was found that the after-to-before ratio of the intensities of the secondmore » pulse was about 17% ± 6% higher than that of the first pulse, revealing lower effective attenuation of the gas cell due to heating by the first pulse and subsequent gas density reduction in the beam path. Furthermore, this measurement is important in guiding the design and/or mitigating the adverse effects in gas devices for high-repetition-rate FELs such as the LCLS-II and the European XFEL or other future high-repetition-rate upgrades to existing FEL facilities.« less
Direct measurement of clinical mammographic x-ray spectra using a CdTe spectrometer.
Santos, Josilene C; Tomal, Alessandra; Furquim, Tânia A; Fausto, Agnes M F; Nogueira, Maria S; Costa, Paulo R
2017-07-01
To introduce and evaluate a method developed for the direct measurement of mammographic x-ray spectra using a CdTe spectrometer. The assembly of a positioning system and the design of a simple and customized alignment device for this application is described. A positioning system was developed to easily and accurately locate the CdTe detector in the x-ray beam. Additionally, an alignment device to line up the detector with the central axis of the radiation beam was designed. Direct x-ray spectra measurements were performed in two different clinical mammography units and the measured x-ray spectra were compared with computer-generated spectra. In addition, the spectrometer misalignment effect was evaluated by comparing the measured spectra when this device is aligned relatively to when it is misaligned. The positioning and alignment of the spectrometer have allowed the measurements of direct mammographic x-ray spectra in agreement with computer-generated spectra. The most accurate x-ray spectral shape, related with the minimal HVL value, and high photon fluence for measured spectra was found with the spectrometer aligned according to the proposed method. The HVL values derived from both simulated and measured x-ray spectra differ at most 1.3 and 4.5% for two mammography devices evaluated in this study. The experimental method developed in this work allows simple positioning and alignment of a spectrometer for x-ray spectra measurements given the geometrical constraints and maintenance of the original configurations of mammography machines. © 2017 American Association of Physicists in Medicine.
Bagnall, Kevin R; Moore, Elizabeth A; Badescu, Stefan C; Zhang, Lenan; Wang, Evelyn N
2017-11-01
As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E 2 (high), A 1 longitudinal optical (LO), and E 2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to demonstrate its viability, this technique is applicable to any solid-state material with a suitable Raman response and will likely enable new measurement capabilities in a wide variety of scientific and engineering applications.
NASA Astrophysics Data System (ADS)
Bagnall, Kevin R.; Moore, Elizabeth A.; Badescu, Stefan C.; Zhang, Lenan; Wang, Evelyn N.
2017-11-01
As semiconductor devices based on silicon reach their intrinsic material limits, compound semiconductors, such as gallium nitride (GaN), are gaining increasing interest for high performance, solid-state transistor applications. Unfortunately, higher voltage, current, and/or power levels in GaN high electron mobility transistors (HEMTs) often result in elevated device temperatures, degraded performance, and shorter lifetimes. Although micro-Raman spectroscopy has become one of the most popular techniques for measuring localized temperature rise in GaN HEMTs for reliability assessment, decoupling the effects of temperature, mechanical stress, and electric field on the optical phonon frequencies measured by micro-Raman spectroscopy is challenging. In this work, we demonstrate the simultaneous measurement of temperature rise, inverse piezoelectric stress, thermoelastic stress, and vertical electric field via micro-Raman spectroscopy from the shifts of the E2 (high), A1 longitudinal optical (LO), and E2 (low) optical phonon frequencies in wurtzite GaN. We also validate experimentally that the pinched OFF state as the unpowered reference accurately measures the temperature rise by removing the effect of the vertical electric field on the Raman spectrum and that the vertical electric field is approximately the same whether the channel is open or closed. Our experimental results are in good quantitative agreement with a 3D electro-thermo-mechanical model of the HEMT we tested and indicate that the GaN buffer acts as a semi-insulating, p-type material due to the presence of deep acceptors in the lower half of the bandgap. This implementation of micro-Raman spectroscopy offers an exciting opportunity to simultaneously probe thermal, mechanical, and electrical phenomena in semiconductor devices under bias, providing unique insight into the complex physics that describes device behavior and reliability. Although GaN HEMTs have been specifically used in this study to demonstrate its viability, this technique is applicable to any solid-state material with a suitable Raman response and will likely enable new measurement capabilities in a wide variety of scientific and engineering applications.
Inhalers and nebulizers: basic principles and preliminary measurements
NASA Astrophysics Data System (ADS)
Misik, Ondrej; Lizal, Frantisek; Asl, Vahid Farhikhteh; Belka, Miloslav; Jedelsky, Jan; Elcner, Jakub; Jicha, Miroslav
2018-06-01
Inhalers are hand-held devices which are used for administration of therapeutic aerosols via inhalation. Nebulizers are larger devices serving for home and hospital care using inhaled medication. This contribution describes the basic principles of dispersion of aerosol particles used in various types of inhalers and nebulizers, and lists the basic physical mechanisms contributing to the deposition of inhaled particles in the human airways. The second part of this article presents experimental setup, methodology and preliminary results of particle size distributions produced by several selected inhalers and nebulizers.
The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer
NASA Astrophysics Data System (ADS)
Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.
2008-05-01
The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.
Dynamic modal characterization of musical instruments using digital holography
NASA Astrophysics Data System (ADS)
Demoli, Nazif; Demoli, Ivan
2005-06-01
This study shows that a dynamic modal characterization of musical instruments with membrane can be carried out using a low-cost device and that the obtained very informative results can be presented as a movie. The proposed device is based on a digital holography technique using the quasi-Fourier configuration and time-average principle. Its practical realization with a commercial digital camera and large plane mirrors allows relatively simple analyzing of big vibration surfaces. The experimental measurements given for a percussion instrument are supported by the mathematical formulation of the problem.
Payload specialists Millie Hughes-Fulford in Body Mass Measurement Device
1985-02-01
S85-26553 (Feb 1985) --- STS-40/SLS-1 payload specialist Millie Hughes-Fulford sits strapped in the special device scientists have developed for determining mass on orbit. As the chair swings back and forth, a timer records how much the crewmember's mass retards the chair's movement. Dr. Hughes-Fulford will be joined by three mission specialists, the mission commander, the pilot and a second payload specialist for the scheduled 10-day Spacelab Life Sciences-1 (SLS-1) mission. The flight is totally dedicated to biological and medical experimentation.
Chang, Hao-Hueng; Lee, Ming-Shu; Hsu, You-Chyun; Tsai, Shang-Jye; Lin, Chun-Pin
2015-10-01
Impacted third molars can be extracted by regular surgery or piezosurgery. The aim of this study was to compare clinical parameters and device-produced noise levels between regular surgery and piezosurgery for the extraction of impacted third molars. Twenty patients (18 women and 2 men, 17-29 years of age) with bilateral symmetrical impacted mandibular or maxillary third molars of the same level were included in this randomized crossover clinical trial. The 40 impacted third molars were divided into a control group (n = 20), in which the third molar was extracted by regular surgery using a high-speed handpiece and an elevator, and an experimental group (n = 20), in which the third molar was extracted by piezosurgery using a high-speed handpiece and a piezotome. The clinical parameters were evaluated by a self-reported questionnaire. The noise levels produced by the high-speed handpiece and piezotome were measured and compared between the experimental and control groups. Patients in the experimental group had a better feeling about tooth extraction and force delivery during extraction and less facial swelling than patients in the control group. However, there were no significant differences in noise-related disturbance, extraction period, degree of facial swelling, pain score, pain duration, any noise levels produced by the devices under different circumstances during tooth extraction between the control and experimental groups. The piezosurgery device produced noise levels similar to or lower than those of the high-speed drilling device. However, piezosurgery provides advantages of increased patient comfort during extraction of impacted third molars. Copyright © 2014. Published by Elsevier B.V.
Experimental simulation of decoherence in photonics qudits
Marques, B.; Matoso, A. A.; Pimenta, W. M.; Gutiérrez-Esparza, A. J.; Santos, M. F.; Pádua, S.
2015-01-01
We experimentally perform the simulation of open quantum dynamics in single-qudit systems. Using a spatial light modulator as a dissipative optical device, we implement dissipative-dynamical maps onto qudits encoded in the transverse momentum of spontaneous parametric down-converted photon pairs. We show a well-controlled technique to prepare entangled qudits states as well as to implement dissipative local measurements; the latter realize two specific dynamics: dephasing and amplitude damping. Our work represents a new analogy-dynamical experiment for simulating an open quantum system. PMID:26527330
Ion cyclotron production by a four-wave interaction with a helicon pump.
Sutherland, O; Giles, M; Boswell, R
2005-05-27
Ion cyclotron waves at approximately 0.7 the ion gyrofrequency have been observed experimentally in the large volume helicon reactor WOMBAT. These waves are highly localized along the axis of the device where a 8 cm diameter, 2 m long. Ar II plasma column is produced. Spectral measurements reveal a four-wave interaction where energy is down-converted to the ion cyclotron mode from the helicon pump. The experimental results are explained in terms of a filamentation type instability.
Electric Propulsion: Experimental Research
NASA Technical Reports Server (NTRS)
Ruyten, W. M.; Friedly, V. J.; Keefer, D.
1995-01-01
This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed LIF technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes form electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.
Electric propulsion: Experimental research
NASA Technical Reports Server (NTRS)
Ruyten, W. M.; Friedly, V. J.; Keefer, D.
1992-01-01
This paper describes experimental electric propulsion research which was carried out at the University of Tennessee Space Institute with support from the Center for Space Transportation and Applied Research. Specifically, a multiplexed laser induced fluorescence (LIF) technique for obtaining vector velocities, Doppler temperatures, and relative number densities in the exhaust plumes from electric propulsion devices is described, and results are presented that were obtained on a low power argon arcjet. Also, preliminary Langmuir probe measurements on an ion source are described, and an update on the vacuum facility is presented.
Design Tools for Zero-Net Mass-Flux Separation Control Devices
2004-12-01
experimental data. Most of the experimental studies employed either Hot Wire Anemometry (HWA), Particle Image Velocimetry (PIV) or Laser Doppler...To61 View traverse Y Z z to procdspor X * ’ probe I,it, I from laser Sbellows synthetic PMTs extender jet,,, olor i 200 mm 2 ", separator micro...measured using a laser displacement sensor Micro-Epsilon Model ILD2000-10. The sensitivity is 1 V/mm, with a full-scale range of 10 mm and a resolution of
On the correct use of stepped-sine excitations for the measurement of time-varying bioimpedance.
Louarroudi, E; Sanchez, B
2017-02-01
When a linear time-varying (LTV) bioimpedance is measured using stepped-sine excitations, a compromise must be made: the temporal distortions affecting the data depend on the experimental time, which in turn sets the data accuracy and limits the temporal bandwidth of the system that needs to be measured. Here, the experimental time required to measure linear time-invariant bioimpedance with a specified accuracy is analyzed for different stepped-sine excitation setups. We provide simple equations that allow the reader to know whether LTV bioimpedance can be measured through repeated time- invariant stepped-sine experiments. Bioimpedance technology is on the rise thanks to a plethora of healthcare monitoring applications. The results presented can help to avoid distortions in the data while measuring accurately non-stationary physiological phenomena. The impact of the work presented is broad, including the potential of enhancing bioimpedance studies and healthcare devices using bioimpedance technology.
Zhong, Z W; Wu, R G; Wang, Z P; Tan, H L
2015-09-01
Conventional microfluidic devices are typically complex and expensive. The devices require the use of pneumatic control systems or highly precise pumps to control the flow in the devices. This work investigates an alternative method using paper based microfluidic devices to replace conventional microfluidic devices. Size based separation and extraction experiments conducted were able to separate free dye from a mixed protein and dye solution. Experimental results showed that pure fluorescein isothiocyanate could be separated from a solution of mixed fluorescein isothiocyanate and fluorescein isothiocyanate labeled bovine serum albumin. The analysis readings obtained from a spectrophotometer clearly show that the extracted tartrazine sample did not contain any amount of Blue-BSA, because its absorbance value was 0.000 measured at a wavelength of 590nm, which correlated to Blue-BSA. These demonstrate that paper based microfluidic devices, which are inexpensive and easy to implement, can potentially replace their conventional counterparts by the use of simple geometry designs and the capillary action. These findings will potentially help in future developments of paper based microfluidic devices. Copyright © 2015 Elsevier B.V. All rights reserved.
Jiang, Hua; Lu, Wenke; Zhang, Guoan
2013-07-01
In this paper, we propose a low insertion loss and miniaturization wavelet transform and inverse transform processor using surface acoustic wave (SAW) devices. The new SAW wavelet transform devices (WTDs) use the structure with two electrode-widths-controlled (EWC) single phase unidirectional transducers (SPUDT-SPUDT). This structure consists of the input withdrawal weighting interdigital transducer (IDT) and the output overlap weighting IDT. Three experimental devices for different scales 2(-1), 2(-2), and 2(-3) are designed and measured. The minimum insertion loss of the three devices reaches 5.49dB, 4.81dB, and 5.38dB respectively which are lower than the early results. Both the electrode width and the number of electrode pairs are reduced, thus making the three devices much smaller than the early devices. Therefore, the method described in this paper is suitable for implementing an arbitrary multi-scale low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices. Copyright © 2013 Elsevier B.V. All rights reserved.
Tirilomis, Theodor; Popov, Aron F; Hanekop, Gunnar G; Braeuer, Anselm; Quintel, Michael; Schoendube, Friedrich A; Friedrich, Martin G
2013-10-01
Renal blood flow (RBF) may vary during cardiopulmonary bypass and low flow may cause insufficient blood supply of the kidney triggering renal failure postoperatively. Still, a valid intraoperative method of continuous RBF measurement is not available. A new catheter combining thermodilution and intravascular Doppler was developed, first calibrated in an in vitro model, and the catheter specific constant was determined. Then, application of the device was evaluated in a pilot study in an adult cardiovascular population. The data of the clinical pilot study revealed high correlation between the flow velocities detected by intravascular Doppler and the RBF measured by thermodilution (Pearson's correlation range: 0.78 to 0.97). In conclusion, the RBF can be measured excellently in real time using the new catheter, even under cardiopulmonary bypass. © 2013 Wiley Periodicals, Inc. and International Center for Artificial Organs and Transplantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.
Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less
Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.
2016-09-21
Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less
Display device-adapted video quality-of-experience assessment
NASA Astrophysics Data System (ADS)
Rehman, Abdul; Zeng, Kai; Wang, Zhou
2015-03-01
Today's viewers consume video content from a variety of connected devices, including smart phones, tablets, notebooks, TVs, and PCs. This imposes significant challenges for managing video traffic efficiently to ensure an acceptable quality-of-experience (QoE) for the end users as the perceptual quality of video content strongly depends on the properties of the display device and the viewing conditions. State-of-the-art full-reference objective video quality assessment algorithms do not take into account the combined impact of display device properties, viewing conditions, and video resolution while performing video quality assessment. We performed a subjective study in order to understand the impact of aforementioned factors on perceptual video QoE. We also propose a full reference video QoE measure, named SSIMplus, that provides real-time prediction of the perceptual quality of a video based on human visual system behaviors, video content characteristics (such as spatial and temporal complexity, and video resolution), display device properties (such as screen size, resolution, and brightness), and viewing conditions (such as viewing distance and angle). Experimental results have shown that the proposed algorithm outperforms state-of-the-art video quality measures in terms of accuracy and speed.
NASA Astrophysics Data System (ADS)
Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu
2017-11-01
Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.
Guo, Xudong; Ge, Bin; Wang, Wenxing
2013-08-01
In order to detect endoleaks after endovascular aneurysm repair (EVAR), we developed an implantable micro-device based on wireless power transmission to measure aortic aneurysm sac pressure. The implantable micro-device is composed of a miniature wireless pressure sensor, an energy transmitting coil, a data recorder and a data processing platform. Power transmission without interconnecting wires is performed by a transmitting coil and a receiving coil. The coupling efficiency of wireless power transmission depends on the coupling coefficient between the transmitting coil and the receiving coil. With theoretical analysis and experimental study, we optimized the geometry of the receiving coil to increase the coupling coefficient. In order to keep efficiency balance and satisfy the maximizing conditions, we designed a closed loop power transmission circuit, including a receiving voltage feedback module based on wireless communication. The closed loop improved the stability and reliability of transmission energy. The prototype of the micro-device has been developed and the experiment has been performed. The experiments showed that the micro-device was feasible and valid. For normal operation, the distance between the transmitting coil and the receiving coil is smaller than 8cm. Besides, the distance between the micro-device and the data recorder is within 50cm.
Benneker, Anne M.; Wood, Jeffery A.; Tsai, Peichun A.; Lammertink, Rob G. H.
2016-01-01
Electrokinetic effects adjacent to charge-selective interfaces (CSI) have been experimentally investigated in microfluidic platforms in order to gain understanding on underlying phenomena of ion transport at elevated applied voltages. We experimentally investigate the influence of geometry and multiple array densities of the CSI on concentration and flow profiles in a microfluidic set-up using nanochannels as the CSI. Particle tracking obtained under chronoamperometric measurements show the development of vortices in the microchannel adjacent to the nanochannels. We found that the direction of the electric field and the potential drop inside the microchannel has a large influence on the ion transport through the interface, for example by inducing immediate wall electroosmotic flow. In microfluidic devices, the electric field may not be directed normal to the interface, which can result in an inefficient use of the CSI. Multiple vortices are observed adjacent to the CSI, growing in size and velocity as a function of time and dependent on their location in the microfluidic device. Local velocities inside the vortices are measured to be more than 1.5 mm/s. Vortex speed, as well as flow speed in the channel, are dependent on the geometry of the CSI and the distance from the electrode. PMID:27853257
Metrological characterization of 3D imaging devices
NASA Astrophysics Data System (ADS)
Guidi, G.
2013-04-01
Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.
NASA Astrophysics Data System (ADS)
Basili, M.; De Angelis, M.; Fraraccio, G.
2013-06-01
This paper presents the results of shaking table tests on adjacent structures controlled by passive and semi-active MR dampers. The aim was to demonstrate experimentally the effectiveness of passive and semi-active strategies in reducing structural vibrations due to seismic excitation. The physical model at issue was represented by two adjacent steel structures, respectively of 4 and 2 levels, connected at the second level by a MR damper. When the device operated in semi-active mode, an ON-OFF control algorithm, derived by the Lyapunov stability theory, was implemented and experimentally validated. Since the experimentation concerned adjacent structures, two control objectives have been reached: global and selective protection. In case of global protection, the attention was focused on protecting both structures, whereas, in case of selective protection, the attention was focused on protecting only one structure. For each objective the effectiveness of passive control has been compared with the situation of no control and then the effectiveness of semi-active control has been compared with the passive one. The quantities directly compared have been: measured displacements, accelerations and force-displacement of the MR damper, moreover some global response quantities have been estimated from experimental measures, which are the base share force and the base bending moment, the input energy and the energy dissipated by the device. In order to evaluate the effectiveness of the control action in both passive and semi-active case, an energy index EDI, previously defined and already often applied numerically, has been utilized. The aspects investigated in the experimentation have been: the implementation and validation of the control algorithm for selective and global protection, the MR damper input voltage influence, the kind of seismic input and its intensity.
Finite Element Modeling of Micromachined MEMS Photon Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Datskos, P.G.; Evans, B.M.; Schonberger, D.
1999-09-20
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We havemore » used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.« less
2016-01-01
Nitric oxide (NO) releasing polymers are promising in improving the biocompatibility of medical devices. Polyurethanes are commonly used to prepare/fabricate many devices (e.g., catheters); however, the transport properties of NO within different polyurethanes are less studied, creating a gap in the rational design of new NO releasing devices involving polyurethane materials. Herein, we study the diffusion and partitioning of NO in different biomedical polyurethanes via the time-lag method. The diffusion of NO is positively correlated with the PDMS content within the polyurethanes, which can be rationalized by effective media theory considering various microphase morphologies. Using catheters as a model device, the effect of these transport properties on the NO release profiles and the distribution around an asymmetric dual lumen catheter are simulated using finite element analysis and validated experimentally. This method can be readily applied in studying other NO release medical devices with different configurations. PMID:27660819
Proposition for sensorless self-excitation by a piezoelectric device
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Kokubun, Y.; Yabuno, H.
2018-04-01
In this paper, we propose a method to realize self-excitation in an oscillator actuated by a piezoelectric device without a sensor. In general, the positive feedback associated with the oscillator velocity causes the self-excitation. Instead of measuring the velocity with a sensor, we utilize the electro-mechanical coupling effect in the oscillator and piezoelectric device. We drive the piezoelectric device with a current proportional to the linear combination of the voltage across the terminals of the piezoelectric device and its differential voltage signal. Then, the oscillator with the piezoelectric device behaves like a third-order system, which has three eigenvalues. The self-excitation can be realized because appropriate feedback gains can set two of the eigenvalues to be conjugate complex roots with a positive real part and the other eigenvalue to be a negative real root. To confirm the validity of the proposed method, we experimentally demonstrated the sensorless self-excitation and, as an application example, carried out mass sensing in a sensorless self-excited macrocantilever.
Finite element modeling of micromachined MEMS photon devices
NASA Astrophysics Data System (ADS)
Evans, Boyd M., III; Schonberger, D. W.; Datskos, Panos G.
1999-09-01
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.
NASA Astrophysics Data System (ADS)
Hochberg, Katrin; Kuhn, Jochen; Müller, Andreas
2018-04-01
Smartphones as experimental tools (SETs) offer inspiring possibilities for science education, as their built-in sensors allow many different measurements, but until now, there has been little research that studies this approach. Due to current interest in their development, it seems necessary to provide empirical evidence about potential effects of SETs by a well-controlled study. For the present investigation, experiments were developed that use the smartphones' acceleration sensors to investigate an important topic of classical mechanics (pendulum). A quasi-experimental repeated-measurement design, consisting of an experimental group using SETs (smartphone group, SG, N SG = 87) and a control group working with traditional experimental tools (CG, N CG = 67), was used to study the effects on interest, curiosity, and learning achievement. Moreover, various control variables were taken into account. With multiple-regression analyses and ANCOVA, we found significantly higher levels of interest in the SG (small to medium effect size). Pupils that were less interested at the beginning of the study profited most from implementing SETs. Moreover, the SG showed higher levels of topic-specific curiosity (small effect size). No differences were found for learning achievement. This means that the often-supposed cognitive disadvantage of distracting learners with technological devices did not lead to reduced learning, whereas interest and curiosity were apparently fostered. Moreover, the study contributes evidence that could reduce potential concerns related to classroom use of smartphones and similar devices (increased cognitive load, mere novelty effect). In sum, the study presents encouraging results for the under-researched topic of SET use in science classrooms.
Aeroacoustic Characteristics of Model Jet Test Facility Flow Conditioners
NASA Technical Reports Server (NTRS)
Kinzie, Kevin W.; Henderson, Brenda S.; Haskin, Harry H.
2005-01-01
An experimental investigation of flow conditioning devices used to suppress internal rig noise in high speed, high temperature experimental jet facilities is discussed. The aerodynamic and acoustic characteristics of a number of devices including pressure loss and extraneous noise generation are measured. Both aerodynamic and acoustic characteristics are strongly dependent on the porosity of the flow conditioner and the closure ratio of the duct system. For unchoked flow conditioners, the pressure loss follows conventional incompressible flow models. However, for choked flow conditioners, a compressible flow model where the duct and flow conditioner system is modeled as a convergent-divergent nozzle can be used to estimate pressure loss. Choked flow conditioners generate significantly more noise than unchoked conditioners. In addition, flow conditioners with small hole diameters or sintered metal felt material generate less self-noise noise compared to flow conditioners with larger holes.
Angular-dependent polarization-insensitive filter fashioned with zero-contrast grating.
Gao, Xumin; Wu, Tong; Xu, Yin; Li, Xin; Bai, Dan; Zhu, Gangyi; Zhu, Hongbo; Wang, Yongjin
2015-06-15
We report here an angular-dependent polarization-insensitive filter fashioned with a free-standing zero-contrast grating (ZCG), which is implemented on an HfO(2)/Silicon platform. The spectral characteristics are investigated by rigorous coupled-wave analysis method and measured on angular-resolved micro-reflectance system. The proposed ZCG structure experimentally shows that the polarization-insensitive resonances occur at 595nm for the incidence angle θ of 12.8° and 500nm for the incidence angle θ of 14.2°. When the incident light is normal to the grating surface, the ZCG device generates yellow and red colors for p- and s-polarization, respectively. The experimental results are in good agreement with the simulations, which indicate that the free-standing ZCG device is promising for polarization-insensitive filter and polarization-controlled tunable color filter.
Borthakur, T K; Talukdar, N; Neog, N K; Rao, C V S; Shyam, A
2011-10-01
A qualitative study on the performance of cylindrical vacuum photodiodes (VPDs) for x-ray detection in plasma focus device has been carried out. Various parameters of VPD such as electrode's diameter, electrode's separation, and its sensitivity are experimentally tested in plasma focus environment. For the first time it is found experimentally that the electrode-separation in the lateral direction of the two coaxial electrodes of cylindrical VPD also plays an important role to increase the efficiency of the detector. The efficiency is found to be highest for the detector with smaller cathode-anode lateral gap (1.5 mm) with smaller photo cathode diameter (10 mm). A comparison between our VPD with PIN (BPX-65) diode as an x-ray detector has also been made.
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
2018-03-13
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
Phase-Reference-Free Experiment of Measurement-Device-Independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Wang, Chao; Song, Xiao-Tian; Yin, Zhen-Qiang; Wang, Shuang; Chen, Wei; Zhang, Chun-Mei; Guo, Guang-Can; Han, Zheng-Fu
2015-10-01
Measurement-device-independent quantum key distribution (MDI QKD) is a substantial step toward practical information-theoretic security for key sharing between remote legitimate users (Alice and Bob). As with other standard device-dependent quantum key distribution protocols, such as BB84, MDI QKD assumes that the reference frames have been shared between Alice and Bob. In practice, a nontrivial alignment procedure is often necessary, which requires system resources and may significantly reduce the secure key generation rate. Here, we propose a phase-coding reference-frame-independent MDI QKD scheme that requires no phase alignment between the interferometers of two distant legitimate parties. As a demonstration, a proof-of-principle experiment using Faraday-Michelson interferometers is presented. The experimental system worked at 1 MHz, and an average secure key rate of 8.309 bps was obtained at a fiber length of 20 km between Alice and Bob. The system can maintain a positive key generation rate without phase compensation under normal conditions. The results exhibit the feasibility of our system for use in mature MDI QKD devices and its value for network scenarios.
Lee, Chih-Chien; Su, Wei-Cheng; Chang, Wen-Chang
2016-05-14
The theoretical maximum of open-circuit voltage (VOC) of organic photovoltaic (OPV) devices has yet to be determined, and its origin remains debated. Here, we demonstrate that VOC of small-molecule OPV devices can be improved by controlling the deposition rate of a donor without changing the interfacial energy gap at the donor/acceptor interface. The measurement of external quantum efficiency and electroluminescence spectra facilitates the observation of the existence of charge transfer (CT) states. A simplified approach by reusing the reciprocity relationship for obtaining the properties of the CT states is proposed without introducing complex techniques. We compare experimental and fitting results and propose that reorganization energy is the primary factor in determining VOC instead of either the CT energy or electronic coupling term in bilayer OPV devices. Atomic force microscopy images indicate a weak molecular aggregation when a higher deposition rate is used. The results of temperature-dependent measurements suggest the importance of molecular stacking for the CT properties.
Analysis of Deep and Shallow Traps in Semi-Insulating CdZnTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kihyun; Yoon, Yongsu; James, Ralph B.
Trap levels which are deep or shallow play an important role in the electrical and the optical properties of a semiconductor; thus, a trap level analysis is very important in most semiconductor devices. Deep-level defects in CdZnTe are essential in Fermi level pinning at the middle of the bandgap and are responsible for incomplete charge collection and polarization effects. However, a deep level analysis in semi-insulating CdZnTe (CZT) is very difficult. Theoretical capacitance calculation for a metal/insulator/CZT (MIS) device with deep-level defects exhibits inflection points when the donor/acceptor level crosses the Fermi level in the surface-charge layer (SCL). Three CZTmore » samples with different resistivities, 2 × 10 4 (n-type), 2 × 10 6 (p-type), and 2 × 10 10 (p-type) Ω·cm, were used in fabricating the MIS devices. These devices showed several peaks in their capacitance measurements due to upward/downward band bending that depend on the surface potential. In conclusion, theoretical and experimental capacitance measurements were in agreement, except in the fully compensated case.« less
An office-place stepping device to promote workplace physical activity.
McAlpine, David A; Manohar, Chinmay U; McCrady, Shelly K; Hensrud, Donald; Levine, James A
2007-12-01
It was proposed that an office-place stepping device is associated with significant and substantial increases in energy expenditure compared to sitting energy expenditure. The objective was to assess the effect of using an office-place stepping device on the energy expenditure of lean and obese office workers. The office-place stepping device is an inexpensive, near-silent, low-impact device that can be housed under a standard desk and plugged into an office PC for self-monitoring. Energy expenditure was measured in lean and obese subjects using the stepping device and during rest, sitting and walking. 19 subjects (27+/-9 years, 85+/-23 kg): 9 lean (BMI<25 kg/m2) and 10 obese (BMI>29 kg/m2) attended the experimental office facility. Energy expenditure was measured at rest, while seated in an office chair, standing, walking on a treadmill and while using the office-place stepping device. The office-place stepping device was associated with an increase in energy expenditure above sitting in an office chair by 289+/-102 kcal/hour (p<0.001). The increase in energy expenditure was greater for obese (335+/-99 kcal/hour) than for lean subjects (235+/-80 kcal/hour; p = 0.03). The increments in energy expenditure were similar to exercise-style walking. The office-place stepping device could be an approach for office workers to increase their energy expenditure. If the stepping device was used to replace sitting by 2 hours per day and if other components of energy balance were constant, weight loss of 20 kg/year could occur.
Jousselme, Chloé; Vialet, Renaud; Jouve, Elisabeth; Lagier, Pierre; Martin, Claude; Michel, Fabrice
2011-03-01
To determine whether a sound-activated light-alarm device could reduce the noise in the central area of our pediatric intensive care unit and to determine whether this reduction was significant enough to decrease the noise that could be perceived by a patient located in a nearby room. The secondary objective was to determine the mode of action of the device. In a 16-bed pediatric and neonatal intensive care unit, a large and clearly noticeable sound-activated light device was set in the noisiest part of the central area of our unit, and noise measurements were made in the central area and in a nearby room. In a prospective, quasi-experimental design, sound levels were compared across three different situations--no device present, device present and turned on, and device present but turned off--and noise level measurements were made over a total of 18 days. None. Setting a sound-activated light device on or off. When the device was present, the noise was about 2 dB lower in the central area and in a nearby room, but there was no difference in noise level with the device turned on vs. turned off. The noise decrease in the central area was of limited importance but was translated in a nearby room. The sound-activated light device did not directly decrease noise when turned on, but repetition of the visual signal throughout the day raised staff awareness of noise levels over time.
The capacitive proximity sensor based on transients in RC-circuits
NASA Astrophysics Data System (ADS)
Yakunin, A. G.
2018-05-01
The principle of operation of the capacitive proximity sensor is described. It can be used in various robotic complexes, automation systems and alarm devices to inform the control device of the approach to the sensor sensitive surface of an object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor because of the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. At the heart of the device is the measurement of the change in the current of the transient accompanying the charge of the reference capacitor caused by the parallel connection to it the capacitance formed by the sensitive sensor surface and the external object. As shown by theoretical and experimental studies, the value of this capacity, depending on the purpose of the device, can vary within very wide limits. In this case, the sensitive surface can be both a piece of ordinary wire several centimeters long, and a metall plate or grid, the area of which can reach units and even tens of square meters. The main advantage of the proposed solution is a significant reduction in the effect of spurious leakage currents arising at the capacitance of the measuring electrode under the influence of pollution and humidity of the environment.
A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix
Zhang, Min; Wang, Hai; Liu, Yan
2017-01-01
In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time. PMID:28420121
A 7.4 ps FPGA-Based TDC with a 1024-Unit Measurement Matrix.
Zhang, Min; Wang, Hai; Liu, Yan
2017-04-14
In this paper, a high-resolution time-to-digital converter (TDC) based on a field programmable gate array (FPGA) device is proposed and tested. During the implementation, a new architecture of TDC is proposed which consists of a measurement matrix with 1024 units. The utilization of routing resources as the delay elements distinguishes the proposed design from other existing designs, which contributes most to the device insensitivity to variations of temperature and voltage. Experimental results suggest that the measurement resolution is 7.4 ps, and the INL (integral nonlinearity) and DNL (differential nonlinearity) are 11.6 ps and 5.5 ps, which indicates that the proposed TDC offers high performance among the available TDCs. Benefitting from the FPGA platform, the proposed TDC has superiorities in easy implementation, low cost, and short development time.
Ion heating and flows in a high power helicon source
NASA Astrophysics Data System (ADS)
Thompson, Derek S.; Agnello, Riccardo; Furno, Ivo; Howling, Alan; Jacquier, Rémy; Plyushchev, Gennady; Scime, Earl E.
2017-06-01
We report experimental measurements of ion temperatures and flows in a high power, linear, magnetized, helicon plasma device, the Resonant Antenna Ion Device (RAID). Parallel and perpendicular ion temperatures on the order of 0.6 eV are observed for an rf power of 4 kW, suggesting that higher power helicon sources should attain ion temperatures in excess of 1 eV. The unique RAID antenna design produces broad, uniform plasma density and perpendicular ion temperature radial profiles. Measurements of the azimuthal flow indicate rigid body rotation of the plasma column of a few kHz. When configured with an expanding magnetic field, modest parallel ion flows are observed in the expansion region. The ion flows and temperatures are derived from laser induced fluorescence measurements of the Doppler resolved velocity distribution functions of argon ions.
Note: Compact and light displacement sensor for a precision measurement system in large motion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang Heon, E-mail: shlee@andong.ac.kr
We developed a compact and light displacement sensor applicable to systems that require wide range motions of its sensing device. The proposed sensor utilized the optical pickup unit of the optical disk drive, which has been used applied to atomic force microscopy (AFM) because of its compactness and lightness as well as its high performance. We modified the structure of optical pickup unit and made the compact sensor driver attachable to a probe head of AFM to make large rotation. The feasibilities of the developed sensor for a general probe-moving measurement device and for probe-rotating AFM were verified. Moreover, amore » simple and precise measurement of alignment between centers of rotator and probe tip in probe-rotation AFM was experimentally demonstrated using the developed sensor.« less
Run-to-Run Optimization Control Within Exact Inverse Framework for Scan Tracking.
Yeoh, Ivan L; Reinhall, Per G; Berg, Martin C; Chizeck, Howard J; Seibel, Eric J
2017-09-01
A run-to-run optimization controller uses a reduced set of measurement parameters, in comparison to more general feedback controllers, to converge to the best control point for a repetitive process. A new run-to-run optimization controller is presented for the scanning fiber device used for image acquisition and display. This controller utilizes very sparse measurements to estimate a system energy measure and updates the input parameterizations iteratively within a feedforward with exact-inversion framework. Analysis, simulation, and experimental investigations on the scanning fiber device demonstrate improved scan accuracy over previous methods and automatic controller adaptation to changing operating temperature. A specific application example and quantitative error analyses are provided of a scanning fiber endoscope that maintains high image quality continuously across a 20 °C temperature rise without interruption of the 56 Hz video.
Gas transfer model to design a ventilator for neonatal total liquid ventilation.
Bonfanti, Mirko; Cammi, Antonio; Bagnoli, Paola
2015-12-01
The study was aimed to optimize the gas transfer in an innovative ventilator for neonatal Total Liquid Ventilation (TLV) that integrates the pumping and oxygenation functions in a non-volumetric pulsatile device made of parallel flat silicone membranes. A computational approach was adopted to evaluate oxygen (O2) and carbon dioxide (CO2) exchanges between the liquid perfluorocarbon (PFC) and the oxygenating gas, as a function of the geometrical parameter of the device. A 2D semi-empirical model was implemented to this purpose using Comsol Multiphysics to study both the fluid dynamics and the gas exchange in the ventilator. Experimental gas exchanges measured with a preliminary prototype were compared to the simulation outcomes to prove the model reliability. Different device configurations were modeled to identify the optimal design able to guarantee the desired gas transfer. Good agreement between experimental and simulation outcomes was obtained, validating the model. The optimal configuration, able to achieve the desired gas exchange (ΔpCO2 = 16.5 mmHg and ΔpO2 = 69 mmHg), is a device comprising 40 modules, 300 mm in length (total exchange area = 2.28 m(2)). With this configuration gas transfer performance is satisfactory for all the simulated settings, proving good adaptability of the device. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Optimization of a hydrodynamic separator using a multiscale computational fluid dynamics approach.
Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine
2013-01-01
This article deals with the optimization of a hydrodynamic separator working on the tangential separation mechanism along a screen. The aim of this study is to optimize the shape of the device to avoid clogging. A multiscale approach is used. This methodology combines measurements and computational fluid dynamics (CFD). A local model enables us to observe the different phenomena occurring at the orifice scale, which shows the potential of expanded metal screens. A global model is used to simulate the flow within the device using a conceptual model of the screen (porous wall). After validation against the experimental measurements, the global model was used to investigate the influence of deflectors and disk plates in the structure.
Continuous-variable measurement-device-independent quantum key distribution with photon subtraction
NASA Astrophysics Data System (ADS)
Ma, Hong-Xin; Huang, Peng; Bai, Dong-Yun; Wang, Shi-Yu; Bao, Wan-Su; Zeng, Gui-Hua
2018-04-01
It has been found that non-Gaussian operations can be applied to increase and distill entanglement between Gaussian entangled states. We show the successful use of the non-Gaussian operation, in particular, photon subtraction operation, on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI-QKD) protocol. The proposed method can be implemented based on existing technologies. Security analysis shows that the photon subtraction operation can remarkably increase the maximal transmission distance of the CV-MDI-QKD protocol, which precisely make up for the shortcoming of the original CV-MDI-QKD protocol, and one-photon subtraction operation has the best performance. Moreover, the proposed protocol provides a feasible method for the experimental implementation of the CV-MDI-QKD protocol.
Detector-device-independent quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Charles Ci Wen; Korzh, Boris; Martin, Anthony
2014-12-01
Recently, a quantum key distribution (QKD) scheme based on entanglement swapping, called measurement-device-independent QKD (mdiQKD), was proposed to bypass all measurement side-channel attacks. While mdiQKD is conceptually elegant and offers a supreme level of security, the experimental complexity is challenging for practical systems. For instance, it requires interference between two widely separated independent single-photon sources, and the secret key rates are dependent on detecting two photons—one from each source. Here, we demonstrate a proof-of-principle experiment of a QKD scheme that removes the need for a two-photon system and instead uses the idea of a two-qubit single-photon to significantly simplify themore » implementation and improve the efficiency of mdiQKD in several aspects.« less
One-sided measurement-device-independent quantum key distribution
NASA Astrophysics Data System (ADS)
Cao, Wen-Fei; Zhen, Yi-Zheng; Zheng, Yu-Lin; Li, Li; Chen, Zeng-Bing; Liu, Nai-Le; Chen, Kai
2018-01-01
Measurement-device-independent quantum key distribution (MDI-QKD) protocol was proposed to remove all the detector side channel attacks, while its security relies on the trusted encoding systems. Here we propose a one-sided MDI-QKD (1SMDI-QKD) protocol, which enjoys detection loophole-free advantage, and at the same time weakens the state preparation assumption in MDI-QKD. The 1SMDI-QKD can be regarded as a modified MDI-QKD, in which Bob's encoding system is trusted, while Alice's is uncharacterized. For the practical implementation, we also provide a scheme by utilizing coherent light source with an analytical two decoy state estimation method. Simulation with realistic experimental parameters shows that the protocol has a promising performance, and thus can be applied to practical QKD applications.
An Automated and Continuous Plant Weight Measurement System for Plant Factory
Chen, Wei-Tai; Yeh, Yu-Hui F.; Liu, Ting-Yu; Lin, Ta-Te
2016-01-01
In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications. PMID:27066040
An Automated and Continuous Plant Weight Measurement System for Plant Factory.
Chen, Wei-Tai; Yeh, Yu-Hui F; Liu, Ting-Yu; Lin, Ta-Te
2016-01-01
In plant factories, plants are usually cultivated in nutrient solution under a controllable environment. Plant quality and growth are closely monitored and precisely controlled. For plant growth evaluation, plant weight is an important and commonly used indicator. Traditional plant weight measurements are destructive and laborious. In order to measure and record the plant weight during plant growth, an automated measurement system was designed and developed herein. The weight measurement system comprises a weight measurement device and an imaging system. The weight measurement device consists of a top disk, a bottom disk, a plant holder and a load cell. The load cell with a resolution of 0.1 g converts the plant weight on the plant holder disk to an analog electrical signal for a precise measurement. The top disk and bottom disk are designed to be durable for different plant sizes, so plant weight can be measured continuously throughout the whole growth period, without hindering plant growth. The results show that plant weights measured by the weight measurement device are highly correlated with the weights estimated by the stereo-vision imaging system; hence, plant weight can be measured by either method. The weight growth of selected vegetables growing in the National Taiwan University plant factory were monitored and measured using our automated plant growth weight measurement system. The experimental results demonstrate the functionality, stability and durability of this system. The information gathered by this weight system can be valuable and beneficial for hydroponic plants monitoring research and agricultural research applications.
Potato respirometer experiment SO61
NASA Technical Reports Server (NTRS)
Taudvin, P. C.; Szpakowski, T. A.
1971-01-01
The design and manufacture of a respirometer for measuring the oxygen consumption rate of a respiring potato sprout in a Skylab experiment is reported. The device monitors low gravity effects on the biorhythmicity of organisms during space flight. Several experimental runs using bench mounted flight hardware units were inconclusive due to room temperature induced artifacts.
A Lab Experience to Illustrate the Physicochemical Principles of Detergency
ERIC Educational Resources Information Center
Poce-Fatou, J. A.; Bethencourt-Nunez, M.; Moreno, C.; Pinto-Ganfornina, J. J.; Moreno-Dorado, F. J.
2008-01-01
This article presents a lab experience to study detergency from a physicochemical point of view intended for undergraduate students. By means of a simple experimental device, we analyze the influence of the surfactant concentration in both distilled water and tap water. Our method is based on the measurement of diffuse reflectances of polyester…
DOT National Transportation Integrated Search
1976-01-01
The FOLLOWING TOO CLOSELY (FTC) MONITOR system is an experimental device designed to measure vehicle gaps at a point along the highway and to advise the motorist, by means of a flashing message on a sign, that he is following the car in front of him ...
Luo, Ye; Chamanzar, Maysamreza; Apuzzo, Aniello; Salas-Montiel, Rafael; Nguyen, Kim Ngoc; Blaize, Sylvain; Adibi, Ali
2015-02-11
The enhancement and confinement of electromagnetic radiation to nanometer scale have improved the performances and decreased the dimensions of optical sources and detectors for several applications including spectroscopy, medical applications, and quantum information. Realization of on-chip nanofocusing devices compatible with silicon photonics platform adds a key functionality and provides opportunities for sensing, trapping, on-chip signal processing, and communications. Here, we discuss the design, fabrication, and experimental demonstration of light nanofocusing in a hybrid plasmonic-photonic nanotaper structure. We discuss the physical mechanisms behind the operation of this device, the coupling mechanisms, and how to engineer the energy transfer from a propagating guided mode to a trapped plasmonic mode at the apex of the plasmonic nanotaper with minimal radiation loss. Optical near-field measurements and Fourier modal analysis carried out using a near-field scanning optical microscope (NSOM) show a tight nanofocusing of light in this structure to an extremely small spot of 0.00563(λ/(2n(rmax)))(3) confined in 3D and an exquisite power input conversion of 92%. Our experiments also verify the mode selectivity of the device (low transmission of a TM-like input mode and high transmission of a TE-like input mode). A large field concentration factor (FCF) of about 4.9 is estimated from our NSOM measurement with a radius of curvature of about 20 nm at the apex of the nanotaper. The agreement between our theory and experimental results reveals helpful insights about the operation mechanism of the device, the interplay of the modes, and the gradual power transfer to the nanotaper apex.
Counter-Flow Cooling Tower Test Cell
NASA Astrophysics Data System (ADS)
Dvořák, Lukáš; Nožička, Jiří
2014-03-01
The article contains a design of a functional experimental model of a cross-flow mechanical draft cooling tower and the results and outcomes of measurements. This device is primarily used for measuring performance characteristics of cooling fills, but with a simple rebuild, it can be used for measuring other thermodynamic processes that take part in so-called wet cooling. The main advantages of the particular test cell lie in the accuracy, size, and the possibility of changing the water distribution level. This feature is very useful for measurements of fills of different heights without the influence of the spray and rain zone. The functionality of this test cell has been verified experimentally during assembly, and data from the measurement of common film cooling fills have been compared against the results taken from another experimental line. For the purpose of evaluating the data gathered, computational scripts were created in the MATLAB numerical computing environment. The first script is for exact calculation of the thermal balance of the model, and the second is for determining Merkel's number via Chebyshev's method.
Pickering, Thomas G; Hall, John E; Appel, Lawrence J; Falkner, Bonita E; Graves, John; Hill, Martha N; Jones, Daniel W; Kurtz, Theodore; Sheps, Sheldon G; Roccella, Edward J
2005-01-01
Accurate measurement of blood pressure is essential to classify individuals, to ascertain blood pressure-related risk, and to guide management. The auscultatory technique with a trained observer and mercury sphygmomanometer continues to be the method of choice for measurement in the office, using the first and fifth phases of the Korotkoff sounds, including in pregnant women. The use of mercury is declining, and alternatives are needed. Aneroid devices are suitable, but they require frequent calibration. Hybrid devices that use electronic transducers instead of mercury have promise. The oscillometric method can be used for office measurement, but only devices independently validated according to standard protocols should be used, and individual calibration is recommended. They have the advantage of being able to take multiple measurements. Proper training of observers, positioning of the patient, and selection of cuff size are all essential. It is increasingly recognized that office measurements correlate poorly with blood pressure measured in other settings, and that they can be supplemented by self-measured readings taken with validated devices at home. There is increasing evidence that home readings predict cardiovascular events and are particularly useful for monitoring the effects of treatment. Twenty-four-hour ambulatory monitoring gives a better prediction of risk than office measurements and is useful for diagnosing white-coat hypertension. There is increasing evidence that a failure of blood pressure to fall during the night may be associated with increased risk. In obese patients and children, the use of an appropriate cuff size is of paramount importance.
Pickering, Thomas G; Hall, John E; Appel, Lawrence J; Falkner, Bonita E; Graves, John; Hill, Martha N; Jones, Daniel W; Kurtz, Theodore; Sheps, Sheldon G; Roccella, Edward J
2005-02-08
Accurate measurement of blood pressure is essential to classify individuals, to ascertain blood pressure-related risk, and to guide management. The auscultatory technique with a trained observer and mercury sphygmomanometer continues to be the method of choice for measurement in the office, using the first and fifth phases of the Korotkoff sounds, including in pregnant women. The use of mercury is declining, and alternatives are needed. Aneroid devices are suitable, but they require frequent calibration. Hybrid devices that use electronic transducers instead of mercury have promise. The oscillometric method can be used for office measurement, but only devices independently validated according to standard protocols should be used, and individual calibration is recommended. They have the advantage of being able to take multiple measurements. Proper training of observers, positioning of the patient, and selection of cuff size are all essential. It is increasingly recognized that office measurements correlate poorly with blood pressure measured in other settings, and that they can be supplemented by self-measured readings taken with validated devices at home. There is increasing evidence that home readings predict cardiovascular events and are particularly useful for monitoring the effects of treatment. Twenty-four-hour ambulatory monitoring gives a better prediction of risk than office measurements and is useful for diagnosing white-coat hypertension. There is increasing evidence that a failure of blood pressure to fall during the night may be associated with increased risk. In obese patients and children, the use of an appropriate cuff size is of paramount importance.
Integrated packaging of 2D MOEMS mirrors with optical position feedback
NASA Astrophysics Data System (ADS)
Baumgart, M.; Lenzhofer, M.; Kremer, M. P.; Tortschanoff, A.
2015-02-01
Many applications of MOEMS microscanners rely on accurate position feedback. For MOEMS devices which do not have intrinsic on-chip feedback, position information can be provided with optical methods, most simply by using a reflection from the backside of a MOEMS scanner. By measuring the intensity distribution of the reflected beam across a quadrant diode, one can precisely detect the mirror's deflection angles. Previously, we have presented a position sensing device, applicable to arbitrary trajectories, which is based on the measurement of the position of the reflected laser beam with a quadrant diode. In this work, we present a novel setup, which comprises the optical position feedback functionality integrated into the device package itself. The new device's System-in-Package (SiP) design is based on a flip-folded 2.5D PCB layout and fully assembled as small as 9.2×7×4 mm³ in total. The device consists of four layers, which supply the MOEMS mirror, a spacer to provide the required optical path length, the quadrant photo-diode and a laser diode to serve as the light source. In addition to describing the mechanical setup of the novel device, we will present first experimental results and optical simulation studies. Accurate position feedback is the basis for closed-loop control of the MOEMS devices, which is crucial for some applications as image projection for example. Position feedback and the possibility of closed-loop control will significantly improve the performance of these devices.
An Empirical Model for Mine-Blast Loading
2014-10-17
fledged experimental program. The numerical approach however suffers from several drawbacks in the mine blast simulations. First, it is a very...Suffield consisted in a pendulum type device to measure global impulse of buried mine [15]. One of the main purposes of the ONAGER pendulum was to study...TP-1 Terminal effects, KTA 1-34 report, 2004. [15] Bues, R., Hlady, S.L. and Bergeron, D.M., Pendulum Measurement of Land Mine Blast Output, Volume
Tissue-Informative Mechanism for Wearable Non-invasive Continuous Blood Pressure Monitoring
NASA Astrophysics Data System (ADS)
Woo, Sung Hun; Choi, Yun Young; Kim, Dae Jung; Bien, Franklin; Kim, Jae Joon
2014-10-01
Accurate continuous direct measurement of the blood pressure is currently available thru direct invasive methods via intravascular needles, and is mostly limited to use during surgical procedures or in the intensive care unit (ICU). Non-invasive methods that are mostly based on auscultation or cuff oscillometric principles do provide relatively accurate measurement of blood pressure. However, they mostly involve physical inconveniences such as pressure or stress on the human body. Here, we introduce a new non-invasive mechanism of tissue-informative measurement, where an experimental phenomenon called subcutaneous tissue pressure equilibrium is revealed and related for application in detection of absolute blood pressure. A prototype was experimentally verified to provide an absolute blood pressure measurement by wearing a watch-type measurement module that does not cause any discomfort. This work is supposed to contribute remarkably to the advancement of continuous non-invasive mobile devices for 24-7 daily-life ambulatory blood-pressure monitoring.
New method for measuring the laser-induced damage threshold of optical thin film
NASA Astrophysics Data System (ADS)
Su, Jun-hong; Wang, Hong; Xi, Ying-xue
2012-10-01
The laser-induced damage threshold (LIDT) of thin film means that the thin film can withstand a maximum intensity of laser radiation. The film will be damaged when the irradiation under high laser intensity is greater than the value of LIDT. In this paper, an experimental platform with measurement operator interfaces and control procedures in the VB circumstance is built according to ISO11254-1. In order to obtain more accurate results than that with manual measurement, in the software system, a hardware device can be controlled by control widget on the operator interfaces. According to the sample characteristic, critical parameters of the LIDT measurement system such as spot diameter, damage threshold region, and critical damage pixel number are set up on the man-machine conversation interface, which could realize intelligent measurements of the LIDT. According to experimental data, the LIDT is obtained by fitting damage curve automatically.
NASA Technical Reports Server (NTRS)
Goradia, S. H.; Mehta, J. M.; Shrewsbury, G. S.
1977-01-01
The viscous flow phenomena associated with sharp and blunt trailing edge airfoils were investigated. Experimental measurements were obtained for a 17 percent thick, high performance GAW-1 airfoil. Experimental measurements consist of velocity and static pressure profiles which were obtained by the use of forward and reverse total pressure probes and disc type static pressure probes over the surface and in the wake of sharp and blunt trailing edge airfoils. Measurements of the upper surface boundary layer were obtained in both the attached and separated flow regions. In addition, static pressure data were acquired, and skin friction on the airfoil upper surface was measured with a specially constructed device. Comparison of the viscous flow data with data previously obtained elsewhere indicates reasonable agreement in the attached flow region. In the separated flow region, considerable differences exist between these two sets of measurements.
Study on light scattering characterization for polishing surface of optical elements
NASA Astrophysics Data System (ADS)
Zhang, Yingge; Tian, Ailing; Wang, Chunhui; Wang, Dasen; Liu, Weiguo
2017-02-01
Based on the principle of bidirectional reflectance distribution function (BRDF), the relationship between the surface roughness and the spatial scattering distribution of the optical elements were studied. First, a series of optical components with different surface roughness was obtained by the traditional polishing processing, and measured by Talysurf CCI 3000. Secondly, the influences of different factors on the scattering characteristics were simulated and analyzed, such as different surface roughness, incident wavelength and incident angle. Finally, the experimental device was built, and the spatial distribution of scattered light was measured with the different conditions, and then the data curve variation was analyzed. It was shown that the experimental method was reliable by comparing the simulation and experimental results. Base on this to know, many studies on light scattering characteristics for optical element polishing surface can try later.
Wear-screening and joint simulation studies vs. materials selection and prosthesis design.
Clarke, I C
1982-01-01
Satisfactory friction and wear performance of orthomedic biomaterials is an essential criterion for both hemiarthroplasty and total joint replacements. This report will chart the clinical historical experience of candidate biomaterials with their wear resistance and compare/contrast these data to experimental test predictions. The latter review will encompass publications dealing with both joint simulators and the more basic friction and wear screening devices. Special consideration will be given to the adequacy of the test protocol, the design of the experimental machines, and the accuracy of the measurement techniques. The discussion will then center on clinical reality vs. experimental adequacy and summarize current developments.
NASA Astrophysics Data System (ADS)
Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.
2014-06-01
How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.
Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.
Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G
2015-03-07
The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.
High-efficiency generation of Bessel beams with transmissive metasurfaces
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Dong, Shaohua; Luo, Weijie; Jia, Min; Liang, Zhongzhu; He, Qiong; Sun, Shulin; Zhou, Lei
2018-05-01
Circularly polarized Bessel beams (BBs) are important in biomolecule-sensing-related applications, but the available generators are too bulky in size and/or exhibit low efficiencies. Here, we design and fabricate ultra-thin ( ˜λ /6 ) transmissive Pancharatnam-Berry metasurfaces and perform near-field scanning measurements to show that they can generate circularly polarized BBs within a frequency window of 10.7-12.3 GHz. We experimentally demonstrate that the generated BBs exhibit a self-healing effect, illustrating their non-diffraction characteristics. Finally, we employ far-field measurements to demonstrate that the working efficiency of our devices can reach 91%, while the simulated efficiency reaches 92%. All experimental results are in perfect agreement with full-wave simulations.
Experimental detection of steerability in Bell local states with two measurement settings
NASA Astrophysics Data System (ADS)
Orieux, Adeline; Kaplan, Marc; Venuti, Vivien; Pramanik, Tanumoy; Zaquine, Isabelle; Diamanti, Eleni
2018-04-01
Steering, a quantum property stronger than entanglement but weaker than non-locality in the quantum correlation hierarchy, is a key resource for one-sided device-independent quantum key distribution applications, in which only one of the communicating parties is trusted. A fine-grained steering inequality was introduced in (2014 Phys. Rev. A 90 050305), enabling for the first time the detection of steering in all steerable two-qubit Werner states using only two measurement settings. Here, we numerically and experimentally investigate this inequality for generalized Werner states and successfully detect steerability in a wide range of two-photon polarization-entangled Bell local states generated by a parametric down-conversion source.
NASA Astrophysics Data System (ADS)
Tsai, Chien-Chung; Huang, Yi-Chao; Yang, Tsa-Hsien; Chen, Jen-Chieh
2006-01-01
The concentric circles type and saw-tooth type of micro grating device based upon the diffraction theory are proposed in this study. The geometry dimension of micro optical device is 200 × 200 μm2, the interval of grating is 4 μm, and the depth is 0.75 μm. The Micro Array Thermal Actuator, MATA, is applied to drive the micro grating device, and the pre-elevating structure is designed to lift the micro grating device by the residual stress of polysilicon combined with metal. The micro grating device is fabricated by Surface Micromachining for applications and research technology platform, SMart, common process. The incident ray of He-Ne laser focused by a lens which focal length is 250 mm is applied to be the light source for the experiment, and then analyzes the optical information of the outgoing ray. From the experimental results, the basic optical features are examined based upon the concentric circles type and saw-tooth type of micro grating device, respectively. The outgoing ray angle of central spot is 60° in theory. The measurements are 59.475° for the concentric circles type and 59.88° for the saw-tooth type. The outgoing ray angle of the first stripe is 46.9° in theory, and 46.81° for the concentric circles type and 46.67° for the saw-tooth type are measured from the experiment. The variation of outgoing ray angle is smaller than 1% compared the measurement results with theory of diffraction on the central spot and first stripe characteristics. The work successfully demonstrates the micro grating device with highly accurate performance by the verification of optical information. All of the efforts will be contributed to Controlled Blazed Diffraction micro grating device, CBDMG, and that will be the main device of Integrate Opto-Electronics applied on display to develop in the future.
Chemical kinetic modeling of benzene and toluene oxidation behind shock waves
NASA Technical Reports Server (NTRS)
Mclain, A. G.; Jachimowski, C. J.; Wilson, C. H.
1979-01-01
The oxidation of stoichiometric mixtures of benzene and toluene behind incident shock waves was studied for a temperature range from 1700 to 2800 K and a pressure range from 1.1 to 1.7 atm. The concentration of CO and CO2 produced were measured as well as the product of the oxygen atom and carbon monoxide concentrations. Comparisons between the benzene experimental data and results calculated by use of a reaction mechanism published in the open literature were carried out. With some additional reactions and changes in rate constants to reflect the pressure-temperature range of the experimental data, a good agreement was achieved between computed and experimental results. A reaction mechanism was developed for toluene oxidation based on analogous rate steps from the benzene mechanism. Measurements of NOx levels in an actual flame device, a jet-stirred combustor, were reproduced successfully by use of the reaction mechanism developed from the shock-tube experiments on toluene. These experimental measurements of NOx levels were reproduced from a computer simulation of a jet-stirred combustor.
NASA Astrophysics Data System (ADS)
Kim, Jae-Min; Lee, Chang-Heon; Kim, Jang-Joo
2017-11-01
Organic light-emitting diode (OLED) displays are lighter and more flexible, have a wider color gamut, and consume less power than conventional displays. Stable materials and the structural design of the device are important for OLED longevity. Control of charge transport and accumulation in the device is particularly important because the interaction of excitons and polarons results in material degradation. This research investigated the charge dynamics of OLEDs experimentally and by drift-diffusion modeling. Parallel capacitance-voltage measurements of devices provided knowledge of charge behavior at different driving voltages. A comparison of exciplex-forming co-host and single host structures established that the mobility balance in the emitting layers determined the amount of accumulated polarons in those layers. Consequently, an exciplex-forming co-host provides a superior structure in terms of device lifetime and efficiency because of its well-balanced mobility. Minimizing polaron accumulation is key to achieving long OLED device lifetimes. This is a crucial aspect of device physics that must be considered in the device design structure.
Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; ...
2016-02-08
This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less
An experimental study of an airfoil with a bio-inspired leading edge device at high angles of attack
NASA Astrophysics Data System (ADS)
Mandadzhiev, Boris A.; Lynch, Michael K.; Chamorro, Leonardo P.; Wissa, Aimy A.
2017-09-01
Robust and predictable aerodynamic performance of unmanned aerial vehicles at the limits of their design envelope is critical for safety and mission adaptability. Deployable aerodynamic surfaces from the wing leading or trailing edges are often used to extend the aerodynamic envelope (e.g. slats and flaps). Birds have also evolved feathers at the leading edge (LE) of their wings, known as the alula, which enables them to perform high angles of attack maneuvers. In this study, a series of wind tunnel experiments are performed to quantify the effect of various deployment parameters of an alula-like LE device on the aerodynamic performance of a cambered airfoil (S1223) at stall and post stall conditions. The alula relative angle of attack, measured from the mean chord of the airfoil, is varied to modulate tip-vortex strength, while the alula deflection angle is varied to modulate the distance between the tip vortex and the wing surface. Integrated lift force measurements were collected at various alula-inspired device configurations. The effect of the alula-inspired device on the boundary layer velocity profile and turbulence intensity were investigated through hot-wire anemometer measurements. Results show that as alula deflection angle increases, the lift coefficient also increase especially at lower alula relative angles of attack. Moreover, at post stall wing angles of attack, the wake velocity deficit is reduced in the presence of alula device, confirming the mitigation of the wing adverse pressure gradient. The results are in strong agreement with measurements taken on bird wings showing delayed flow reversal and extended range of operational angles of attack. An engineered alula-inspired device has the potential to improve mission adaptability in small unmanned air vehicles during low Reynolds number flight.
Investigation of electronic noise in selected mesoscopic devices
NASA Astrophysics Data System (ADS)
Camino, Fernando Enrique
In the last few years, several experiments and theoretical works have confirmed the importance of shot-noise measurements as a source of information about the charge transport in electronic devices, information that is not in all cases accessible from conductance measurements. The use of shot-noise for the direct confirmation of the fractional charge in the fractional quantum Hall effect or the identification of the transport mechanism in negative differential resistance devices are a few examples of its importance. In this thesis, we have performed shot-noise measurements on two semiconductor-based systems in which shot noise is different from the Poissonian value 2eI The first one is a superconductor/semiconductor/superconductor (sp/sm/sp) junction where the superconducting electrodes are 0.5 um apart and the semiconductor bridge between them is composed of a two-dimensional electron gas (2-DEG). The second system is a 2-DEG in the hopping conduction regime. The fabrication of sp/sm/sp junctions is explained in detail in this work as so are the noise measurements of two devices that show enhancement from the Poissonian value. These devices present the signatures of the phenomenon of Andreev reflections and supercurrent at 1.2K; therefore, we tentatively attribute the enhancement to this phenomenon, which has been predicted to give giant noise enhancement for superconducting quantum point contacts (SQPC). On the other hand, in the hoping conduction device, we have observed shot-noise suppression from its classical value, confirming in a different material system a previous experimental result that was explained by percolation theory. In addition, we have driven the system to a region where percolation theory seems to fail, signaling a reconstruction of the hopping trajectories.
Kang, Joon Sang; Wu, Huan; Hu, Yongjie
2017-12-13
Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of boron phosphide. The present study paves the way toward the establishment of a new framework, based on the phonon spectra-material structure relationship, for the rational design of high thermal conductivity materials and nano- to multiscale devices.
Experimental Studies of Compact Toroidal Plasma on BCTX
NASA Astrophysics Data System (ADS)
Morse, Edward C.; Coomer, Eric D.; Hartman, Charles W.
1998-11-01
The Berkeley Compact Toroid Experiment (BCTX) is a spheromak-type magnetically confined fusion confinement experiment. The plasma is formed using a Marshall gun and injected into a 70 cm diameter copper flux conserver. The BCTX device has an RF heating sy stem which can deliver twenty megawatts of RF power for 100 μs pulse length. The RF system operates at 450 MHz, and energy is coupled into the plasma by lower hybrid waves. The purpose of the experiment is to assess the energy-confining capability of the spheromak plasma configuration by using the RF power as a heat pulse and determining the decay rate of the plasma temperature following the heat pulse. Electron temperatures up to 150 eV have been measured in BCTX using Thomson scattering. Core dens ities have been measured with the Raman-calibrated Thomson system in the 2 arrow 5 × 10^14 per cc range. Other diagnostics include magnetic probes, a laser interferometer electron density measurement, three UV spectrometers for impurity l ine radiation, and an ion Doppler temperature measurement. Some data will be presented which shows the effects of an axial pinch being present in the device, giving the device a nonzero q at the wall.
Kröckel, Lars; Frosch, Torsten; Schmidt, Markus A
2015-05-22
In conventional absorption spectrometers, the range of accessible concentrations of analytes in aqueous solution is significantly limited by the dynamic range of the measurement system. Here we introduce the concept of multiscale spectroscopy allowing extending that range by orders of magnitude within one single device. The concept relies on using multiple light-sample interaction lengths, boosting the accessible concentration range by a particular extension factor. We experimentally implement our concept by a liquid core waveguide having multiple fiber ports side-wise attached to the waveguide, thus probing the light propagating inside the core at predefined distances from the input. This configuration provides three orders of magnitude of interaction length in one device. To verify the concept we exemplarily determine the concentrations of nitrate and of Rhodamine 6G in water, showing one hundred times improved measurement capabilities. The multiscale spectrometer uses the entire sample volume and allows the simultaneous measurement of fluorescence and attenuance. Due to its integrated design and the extended measurements capabilities, we anticipate application of our device in many application-relevant areas such as water quality analysis or environmental science. Copyright © 2015 Elsevier B.V. All rights reserved.
[AOR characterization and zoning: a dosimeter for blue light].
Dario, R; Uva, J; Di Lecce, V; Quarto, A
2011-01-01
The paper presents the results obtained thanks to an innovative experimental device for the assessment of artificial optical radiation (AOR) exposure in workplace. This . device was developed by 'Politecnico di Bari-DIASS'. The wearable personal dosimeter has three sensors: one is used for measuring head position/movement, therefore there is a color light sensor to determine the AOR and finally there is a video camera to localize sources. Our system is connected to a netbook via USB cable that allows one to obtain the real and extimated value of worker's exposure, also with "augmented reality". The aim of this paper is realizing work place safety zoning for the classifacation of not only specific dangerous areas through the analysis of overlapping information from the device.
Fracture Probability of MEMS Optical Devices for Space Flight Applications
NASA Technical Reports Server (NTRS)
Fettig, Rainer K.; Kuhn, Jonathan L.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon
1999-01-01
A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.
NASA Astrophysics Data System (ADS)
Saleh, H.; Charon, J.; Dauchet, J.; Tortel, H.; Geffrin, J.-M.
2017-07-01
Light scattering by optically soft particles is being theoretically investigated in many radiative studies. An interest is growing up to develop approximate methods when the resolution of Maxwell's equations is impractical due to time and/or memory size problems with objects of complex geometries. The participation of experimental studies is important to assess novel approximations when no reference solution is available. The microwave analogy represents an efficient solution to perform such electromagnetic measurements in controlled conditions. In this paper, we take advantage of the particular features of our microwave device to present an extensive experimental study on the electromagnetic scattering by spheroidal particles analogs with low refractive indices, as a first step toward the assessment of micro-organisms with low refractive index and heterogeneities. The spheroidal analogs are machined from a low density material and they mimic soft particles of interest to the light scattering community. The measurements are confronted to simulations obtained with Finite Element Method and T-Matrix method. A good agreement is obtained even with refractive index as low as 1.13. Scattered signals of low intensities are correctly measured and the position of the targets is precisely controlled. The forward scattering measurements show high sensitivity to noise and require careful extraction. The configuration of the measurement device reveals different technical requirements between forward and backward scattering directions. The results open interesting perspectives about novel measurement procedures as well as about the use of high prototyping technologies to manufacture analogs of precise refractive indices and shapes.
Validation of a Mobile Device for Acoustic Coordinated Reset Neuromodulation Tinnitus Therapy.
Hauptmann, Christian; Wegener, Alexander; Poppe, Hendrik; Williams, Mark; Popelka, Gerald; Tass, Peter A
2016-10-01
Sound-based tinnitus intervention stimuli include broad-band noise signals with subjectively adjusted bandwidths used as maskers delivered by commercial devices or hearing aids, environmental sounds broadly described and delivered by both consumer devices and hearing aids, music recordings specifically modified and delivered in a variety of different ways, and other stimuli. Acoustic coordinated reset neuromodulation therapy for tinnitus reduction has unique and more stringent requirements compared to all other sound-based tinnitus interventions. These include precise characterization of tinnitus pitch and loudness, and effective provision of patient-controlled daily therapy signals at defined frequencies, levels, and durations outside of the clinic. The purpose of this study was to evaluate an approach to accommodate these requirements including evaluation of a mobile device, validation of an automated tinnitus pitch-matching algorithm and assessment of a patient's ability to control stimuli and collect repeated outcome measures. The experimental design involved direct laboratory measurements of the sound delivery capabilities of a mobile device, comparison of an automated, adaptive pitch-matching method to a traditional manual method and measures of a patient's ability to understand and manipulate a mobile device graphic user interface to both deliver the therapy signals and collect the outcome measures. This study consisted of 5 samples of a common mobile device for the laboratory measures and a total of 30 adult participants: 15 randomly selected normal-hearing participants with simulated tinnitus for validation of a tinnitus pitch-matching algorithm and 15 sequentially selected patients already undergoing tinnitus therapy for evaluation of patient usability. No tinnitus intervention(s) were specifically studied as a component of this study. Data collection involved laboratory measures of mobile devices, comparison of manual and automated adaptive tinnitus pitch-matching psychoacoustic procedures in the same participant analyzed for absolute differences (t test), variance differences (f test), and range comparisons, and assessment of patient usability including questionnaire measures and logs of patient observations. Mobile devices are able to reliably and accurately deliver the acoustic therapy signals. There was no difference in mean pitch matches (t test, p > 0.05) between an automated adaptive method compared to a traditional manual pitch-matching method. However, the variability of the automated pitch-matching method was much less (f test, p < 0.05) with twice as many matches within the predefined error range (±5%) compared to the manual pitch-matching method (80% versus 40%). After a short initial training, all participants were able to use the mobile device effectively and to perform the required tasks without further professional assistance. American Academy of Audiology
Precision Electron Beam Polarimetry in Hall C at Jefferson Lab
NASA Astrophysics Data System (ADS)
Gaskell, David
2013-10-01
The electron beam polarization in experimental Hall C at Jefferson Lab is measured using two devices. The Hall-C/Basel Møller polarimeter measures the beam polarization via electron-electron scattering and utilizes a novel target system in which a pure iron foil is driven to magnetic saturation (out of plane) using a superconducting solenoid. A Compton polarimeter measures the polarization via electron-photon scattering, where the photons are provided by a high-power, CW laser coupled to a low gain Fabry-Perot cavity. In this case, both the Compton-scattered electrons and backscattered photons provide measurements of the beam polarization. Results from both polarimeters, acquired during the Q-Weak experiment in Hall C, will be presented. In particular, the results of a test in which the Møller and Compton polarimeters made interleaving measurements at identical beam currents will be shown. In addition, plans for operation of both devices after completion of the Jefferson Lab 12 GeV Upgrade will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhale, Atul Prakash; Rao, K. S. R. Koteswara, E-mail: ksrkrao@physics.iisc.erent.in
2014-07-15
The nature of the signal due to light beam induced current (LBIC) at the remote contacts is verified as a lateral photovoltage for non-uniformly illuminated planar p-n junction devices; simulation and experimental results are presented. The limitations imposed by the ohmic contacts are successfully overcome by the introduction of capacitively coupled remote contacts, which yield similar results without any significant loss in the estimated material and device parameters. It is observed that the LBIC measurements introduce artefacts such as shift in peak position with increasing laser power. Simulation of LBIC signal as a function of characteristic length L{sub c} ofmore » photo-generated carriers and for different beam diameters has resulted in the observed peak shifts, thus attributed to the finite size of the beam. Further, the idea of capacitively coupled contacts has been extended to contactless measurements using pressure contacts with an oxidized aluminium electrodes. This technique avoids the contagious sample processing steps, which may introduce unintentional defects and contaminants into the material and devices under observation. Thus, we present here, the remote contact LBIC as a practically non-destructive tool in the evaluation of device parameters and welcome its use during fabrication steps.« less
Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone
Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling
2017-01-01
Objective K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. Approach In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. Main Results We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 μg g−1 bone mineral using a cadmium zinc telluride detector. Significance In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment. PMID:28169835
Theoretical modeling of a portable x-ray tube based KXRF system to measure lead in bone.
Specht, Aaron J; Weisskopf, Marc G; Nie, Linda Huiling
2017-03-01
K-shell x-ray fluorescence (KXRF) techniques have been used to identify health effects resulting from exposure to metals for decades, but the equipment is bulky and requires significant maintenance and licensing procedures. A portable x-ray fluorescence (XRF) device was developed to overcome these disadvantages, but introduced a measurement dependency on soft tissue thickness. With recent advances to detector technology, an XRF device utilizing the advantages of both systems should be feasible. In this study, we used Monte Carlo simulations to test the feasibility of an XRF device with a high-energy x-ray tube and detector operable at room temperature. We first validated the use of Monte Carlo N-particle transport code (MCNP) for x-ray tube simulations, and found good agreement between experimental and simulated results. Then, we optimized x-ray tube settings and found the detection limit of the high-energy x-ray tube based XRF device for bone lead measurements to be 6.91 µg g -1 bone mineral using a cadmium zinc telluride detector. In conclusion, this study validated the use of MCNP in simulations of x-ray tube physics and XRF applications, and demonstrated the feasibility of a high-energy x-ray tube based XRF for metal exposure assessment.
Design of magnetic Circuit Simulation for Curing Device of Anisotropic MRE
NASA Astrophysics Data System (ADS)
Hapipi, N.; Ubaidillah; Mazlan, S. A.; Widodo, P. J.
2018-03-01
The strength of magnetic field during fabrication of magnetorheological elastomer (MRE) plays a crucial role in order to form a pre-structured MRE. So far, gaussmeter were used to determine the magnetic intensity subjected to the MRE during curing. However, the magnetic flux reading through that measurement considered less accurate. Therefore, a simulation should be done to figure out the magnetic flux concentration around the sample. This paper investigates the simulation of magnetic field distribution in a curing device used during curing stage of anisotropic magnetorheological elastomer (MRE). The target in designing the magnetic circuit is to ensure a sufficient and uniform magnetic field to all the MRE surfaces during the curing process. The magnetic circuit design for the curing device was performed using Finite Element Method Magnetic (FEMM) to examine the magnetic flux density distribution in the device. The material selection was first done instantaneously during a magnetic simulation process. Then, the experimental validation of simulation was performed by measuring and comparing the actual flux generated within the specimen type and the one from the FEMM simulation. İt apparent that the data from FEMM simulation shows an agreement with the actual measurement. Furthermore, the FEMM results showed that the magnetic design is able to provide sufficient and uniform magnetic field all over the surfaces of the MRE.
NASA Technical Reports Server (NTRS)
Bridges, James
2002-01-01
As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.
Katz, Ira; Pichelin, Marine; Montesantos, Spyridon; Kang, Min-Yeong; Sapoval, Bernard; Zhu, Kaixian; Thevenin, Charles-Philippe; McCoy, Robert; Martin, Andrew R; Caillibotte, Georges
2016-01-01
Oxygen treatment based on intermittent-flow devices with pulse delivery modes available from portable oxygen concentrators (POCs) depends on the characteristics of the delivered pulse such as volume, pulse width (the time of the pulse to be delivered), and pulse delay (the time for the pulse to be initiated from the start of inhalation) as well as a patient’s breathing characteristics, disease state, and respiratory morphology. This article presents a physiological-based analysis of the performance, in terms of blood oxygenation, of a commercial POC at different settings using an in silico model of a COPD patient at rest and during exercise. The analysis encompasses experimental measurements of pulse volume, width, and time delay of the POC at three different settings and two breathing rates related to rest and exercise. These experimental data of device performance are inputs to a physiological-based model of oxygen uptake that takes into account the real dynamic nature of gas exchange to illustrate how device- and patient-specific factors can affect patient oxygenation. This type of physiological analysis that considers the true effectiveness of oxygen transfer to the blood, as opposed to delivery to the nose (or mouth), can be instructive in applying therapies and designing new devices. PMID:27729783
Practical device-independent quantum cryptography via entropy accumulation.
Arnon-Friedman, Rotem; Dupuis, Frédéric; Fawzi, Omar; Renner, Renato; Vidick, Thomas
2018-01-31
Device-independent cryptography goes beyond conventional quantum cryptography by providing security that holds independently of the quality of the underlying physical devices. Device-independent protocols are based on the quantum phenomena of non-locality and the violation of Bell inequalities. This high level of security could so far only be established under conditions which are not achievable experimentally. Here we present a property of entropy, termed "entropy accumulation", which asserts that the total amount of entropy of a large system is the sum of its parts. We use this property to prove the security of cryptographic protocols, including device-independent quantum key distribution, while achieving essentially optimal parameters. Recent experimental progress, which enabled loophole-free Bell tests, suggests that the achieved parameters are technologically accessible. Our work hence provides the theoretical groundwork for experimental demonstrations of device-independent cryptography.
Microfabrication and Applications of Opto-Microfluidic Sensors
Zhang, Daiying; Men, Liqiu; Chen, Qiying
2011-01-01
A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904
Anti-contamination device for cryogenic soft X-ray diffraction microscopy
Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...
2011-05-01
Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.
NaOH-based high temperature heat-of-fusion thermal energy storage device
NASA Technical Reports Server (NTRS)
Cohen, B. M.; Rice, R. E.
1978-01-01
A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.
Modelling of the internal dynamics and density in a tens of joules plasma focus device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel
2012-01-15
Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.
Quantum Hall resistance standard in graphene devices under relaxed experimental conditions
NASA Astrophysics Data System (ADS)
Ribeiro-Palau, R.; Lafont, F.; Brun-Picard, J.; Kazazis, D.; Michon, A.; Cheynis, F.; Couturaud, O.; Consejo, C.; Jouault, B.; Poirier, W.; Schopfer, F.
2015-11-01
The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions necessary for the operation of devices made of high-quality graphene grown by chemical vapour deposition on silicon carbide can be extended and significantly relaxed compared with those for state-of-the-art GaAs/AlGaAs devices. In particular, the Hall resistance can be accurately quantized to within 1 × 10-9 over a 10 T wide range of magnetic flux density, down to 3.5 T, at a temperature of up to 10 K or with a current of up to 0.5 mA. This experimental simplification highlights the great potential of graphene in the development of user-friendly and versatile quantum standards that are compatible with broader industrial uses beyond those in national metrology institutes. Furthermore, the measured agreement of the quantized Hall resistance in graphene and GaAs/AlGaAs, with an ultimate uncertainty of 8.2 × 10-11, supports the universality of the quantum Hall effect. This also provides evidence of the relation of the quantized Hall resistance with h and e, which is crucial for the new Système International d'unités to be based on fixing such fundamental constants of nature.
The NASA, Marshall Space Flight Center drop tube user's manual
NASA Technical Reports Server (NTRS)
Rathz, Thomas J.; Robinson, Michael B.
1990-01-01
A comprehensive description of the structural and instrumentation hardware and the experimental capabilities of the 105-meter Marshall Space Flight Center Drop Tube Facility is given. This document is to serve as a guide to the investigator who wishes to perform materials processing experiments in the Drop Tube. Particular attention is given to the Tube's hardware to which an investigator must interface to perform experiments. This hardware consists of the permanent structural hardware (with such items as vacuum flanges), and the experimental hardware (with the furnaces and the sample insertion devices). Two furnaces, an electron-beam and an electromagnetic levitator, are currently used to melt metallic samples in a process environment that can range from 10(exp -6) Torr to 1 atmosphere. Details of these furnaces, the processing environment gases/vacuum, the electrical power, and data acquisition capabilities are specified to allow an investigator to design his/her experiment to maximize successful results and to reduce experimental setup time on the Tube. Various devices used to catch samples while inflicting minimum damage and to enhance turnaround time between experiments are described. Enough information is provided to allow an investigator who wishes to build his/her own furnace or sample catch devices to easily interface it to the Tube. The experimental instrumentation and data acquisition systems used to perform pre-drop and in-flight measurements of the melting and solidification process are also detailed. Typical experimental results are presented as an indicator of the type of data that is provided by the Drop Tube Facility. A summary bibliography of past Drop Tube experiments is provided, and an appendix explaining the noncontact temperature determination of free-falling drops is provided. This document is to be revised occasionally as improvements to the Facility are made and as the summary bibliography grows.
Nelson, Cassandra E; Beri, Nina R; Gardner, Jeffrey G
2016-11-01
Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interaction between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. We applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present. Copyright © 2016 Elsevier B.V. All rights reserved.
Berger, Andrew J; Page, Michael R; Jacob, Jan; Young, Justin R; Lewis, Jim; Wenzel, Lothar; Bhallamudi, Vidya P; Johnston-Halperin, Ezekiel; Pelekhov, Denis V; Hammel, P Chris
2014-12-01
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform the various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Andrew J., E-mail: berger.156@osu.edu; Page, Michael R.; Young, Justin R.
Understanding the complex properties of electronic and spintronic devices at the micro- and nano-scale is a topic of intense current interest as it becomes increasingly important for scientific progress and technological applications. In operando characterization of such devices by scanning probe techniques is particularly well-suited for the microscopic study of these properties. We have developed a scanning probe microscope (SPM) which is capable of both standard force imaging (atomic, magnetic, electrostatic) and simultaneous electrical transport measurements. We utilize flexible and inexpensive FPGA (field-programmable gate array) hardware and a custom software framework developed in National Instrument's LabVIEW environment to perform themore » various aspects of microscope operation and device measurement. The FPGA-based approach enables sensitive, real-time cantilever frequency-shift detection. Using this system, we demonstrate electrostatic force microscopy of an electrically biased graphene field-effect transistor device. The combination of SPM and electrical transport also enables imaging of the transport response to a localized perturbation provided by the scanned cantilever tip. Facilitated by the broad presence of LabVIEW in the experimental sciences and the openness of our software solution, our system permits a wide variety of combined scanning and transport measurements by providing standardized interfaces and flexible access to all aspects of a measurement (input and output signals, and processed data). Our system also enables precise control of timing (synchronization of scanning and transport operations) and implementation of sophisticated feedback protocols, and thus should be broadly interesting and useful to practitioners in the field.« less
A novel test rig to investigate under-platform damper dynamics
NASA Astrophysics Data System (ADS)
Botto, Daniele; Umer, Muhammad
2018-02-01
In the field of turbomachinery, vibration amplitude is often reduced by dissipating the kinetic energy of the blades with devices that utilize dry friction. Under-platform dampers, for example, are often placed in the underside of two consecutive turbine blades. Dampers are kept in contact with the under-platform of the respective blades by means of the centrifugal force. If the damper is well designed, vibration of blades instigate a relative motion between the under-platform and the damper. A friction force, that is a non-conservative force, arises in the contact and partly dissipates the vibration energy. Several contact models are available in the literature to simulate the contact between the damper and the under-platform. However, the actual dynamics of the blade-damper interaction have not fully understood yet. Several test rigs have been previously developed to experimentally investigate the performance of under-platform dampers. The majority of these experimental setups aim to evaluate the overall damper efficiency in terms of reduction in response amplitude of the blade for a given exciting force that simulates the aerodynamic loads. Unfortunately, the experimental data acquired on the blade dynamics do not provide enough information to understand the damper dynamics. Therefore, the uncertainty on the damper behavior remains a big issue. In this work, a novel experimental test rig has been developed to extensively investigate the damper dynamic behavior. A single replaceable blade is clamped in the rig with a specific clamping device. With this device the blade root is pressed against a groove machined in the test rig. The pushing force is controllable and measurable, to better simulate the actual centrifugal load acting on the blade. Two dampers, one on each side of the blade, are in contact with the blade under-platforms and with platforms on force measuring supports. These supports have been specifically designed to measure the contact forces on the damper. The contact forces on the blade are computed by post processing the measured forces and assuming the static equilibrium of the damper. The damper kinematics is rebuilt by using the relative displacement, measured with a differential laser, between the damper and the blade under-platform. This article describes the main concepts behind this new approach and explains the design and working of this novel test rig. Moreover, the influence of the damper contact forces on the dynamic behavior of the blade is discussed in the result section.
Resonance Frequency Readout Circuit for a 900 MHz SAW Device
Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua
2017-01-01
A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm2. In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time. PMID:28914799
Resonance Frequency Readout Circuit for a 900 MHz SAW Device.
Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua
2017-09-15
A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.
Neuscamman, Stephanie J.; Yu, Kristen L.
2016-05-01
The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less
Non-contact optical sensor for detection of glucose concentration using a magneto-optic effect
NASA Astrophysics Data System (ADS)
Ozana, Nisan; Beiderman, Yevgeny; Anand, Arun; Javidi, Baharam; Polani, Sagi; Schwarz, Ariel; Shemer, Amir; García, Javier; Zalevsky, Zeev
2016-03-01
In this paper we aim to experimentally verify a speckle based technique for non-contact measurement of glucose concentration in blood stream while the vision for the final device aims to contain a single wristwatch-style device containing an AC (alternating) electro-magnet generated by a solenoid, a laser and a camera. The experiments presented in work are performed in-vitro in order to verify the effects that are responsible for the operation principle. When a glucose substance is inserted into a solenoid generating an alternating magnetic field it exhibits Faraday rotation which affects the temporal changes of the secondary speckle patterns distribution. The temporal frequency resulting from the AC magnetic field was found to have a lock-in amplification role which increased the observability of the relatively small magneto-optic effect. Experimental results to support the proposed concept are presented.
van Spengen, W Merlijn; Turq, Viviane; Frenken, Joost W M
2010-01-01
We have replaced the periodic Prandtl-Tomlinson model with an atomic-scale friction model with a random roughness term describing the surface roughness of micro-electromechanical systems (MEMS) devices with sliding surfaces. This new model is shown to exhibit the same features as previously reported experimental MEMS friction loop data. The correlation function of the surface roughness is shown to play a critical role in the modelling. It is experimentally obtained by probing the sidewall surfaces of a MEMS device flipped upright in on-chip hinges with an AFM (atomic force microscope). The addition of a modulation term to the model allows us to also simulate the effect of vibration-induced friction reduction (normal-force modulation), as a function of both vibration amplitude and frequency. The results obtained agree very well with measurement data reported previously.
Generation of nondiffracting Bessel beam using digital micromirror device.
Gong, Lei; Ren, Yu-Xuan; Xue, Guo-Sheng; Wang, Qian-Chang; Zhou, Jin-Hua; Zhong, Min-Cheng; Wang, Zi-Qiang; Li, Yin-Mei
2013-07-01
We experimentally demonstrated Bessel-like beams utilizing digital micromirror device (DMD). DMD with images imitating the equivalent axicon can shape the collimated Gaussian beam into Bessel beam. We reconstructed the 3D spatial field of the generated beam through a stack of measured cross-sectional images. The output beams have the profile of Bessel function after intensity modulation, and the beams extend at least 50 mm while the lateral dimension of the spot remains nearly invariant. Furthermore, the self-healing property has also been investigated, and all the experimental results agree well with simulated results numerically calculated through beam propagation method. Our observations demonstrate that the DMD offers a simple and efficient method to generate Bessel beams with distinct nondiffracting and self-reconstruction behaviors. The generated Bessel beams will potentially expand the applications to the optical manipulation and high-resolution fluorescence imaging owing to the unique nondiffracting property.
NASA Astrophysics Data System (ADS)
Fishler, Rami; Mulligan, Molly; Dubowski, Yael; Sznitman, Josue; Sznitman Lab-department of Biomedical Engineering Team; Dubowski Lab-faculty of Civil; Environmental Engineering Team
2014-11-01
In order to experimentally investigate particle deposition mechanisms in the deep alveolated regions of the lungs, we have developed a novel microfluidic device mimicking breathing acinar flow conditions directly at the physiological scale. The model features an anatomically-inspired acinar geometry with five dichotomously branching airway generations lined with periodically expanding and contracting alveoli. Deposition patterns of airborne polystyrene microspheres (spanning 0.1 μm to 2 μm in diameter) inside the airway tree network compare well with CFD simulations and reveal the roles of gravity and Brownian motion on particle deposition sites. Furthermore, measured trajectories of incense particles (0.1-1 μm) inside the breathing device show a critical role for Brownian diffusion in determining the fate of inhaled sub-micron particles by enabling particles to cross from the acinar ducts into alveolar cavities, especially during the short time lag between inhalation and exhalation phases.
NASA Astrophysics Data System (ADS)
Yang, Ming; Ji, Qizheng; Gao, Zhiliang; Zhang, Shufeng; Lin, Zhaojun; Yuan, Yafei; Song, Bo; Mei, Gaofeng; Lu, Ziwei; He, Jihao
2017-11-01
For the fabricated AlGaN/GaN heterostructure field-effect transistors (HFETs) with different gate widths, the gate-channel carrier mobility is experimentally obtained from the measured current-voltage and capacitance-voltage curves. Under each gate voltage, the mobility gets lower with gate width increasing. Analysis shows that the phenomenon results from the polarization Coulomb field (PCF) scattering, which originates from the irregularly distributed polarization charges at the AlGaN/GaN interface. The device with a larger gate width is with a larger PCF scattering potential and a stronger PCF scattering intensity. As a function of gate width, PCF scattering potential shows a same trend with the mobility variation. And the theoretically calculated mobility values fits well with the experimentally obtained values. Varying gate widths will be a new perspective for the improvement of device characteristics by modulating the gate-channel carrier mobility.
Road Nail: Experimental Solar Powered Intelligent Road Marking System
NASA Astrophysics Data System (ADS)
Samardžija, Dragan; Teslić, Nikola; Todorović, Branislav M.; Kovač, Erne; Isailović, Đorđe; Miladinović, Bojan
2012-03-01
Driving in low visibility conditions (night time, fog or heavy precipitation) is particularly challenging task with an increased probability of traffic accidents and possible injuries. Road Nail is a solar powered intelligent road marking system of wirelessly networked signaling devices that improve driver safety in low visibility conditions along hazardous roadways. Nails or signaling devices are autonomous nodes with capability to accumulate energy, exchange wireless messages, detect approaching vehicles and emit signalization light. We have built an experimental test-bed that consists of 20 nodes and a cellular gateway. Implementation details of the above system, including extensive measurements and performance evaluations in realistic field deployments are presented. A novel distributed network topology discovery scheme is proposed which integrates both sensor and wireless communication aspects, where nodes act autonomously. Finally, integration of the Road Nail system with the cellular network and the Internet is described.
Flow-induced voltage generation in non-ionic liquids over monolayer graphene
NASA Astrophysics Data System (ADS)
Ho Lee, Seung; Jung, Yousung; Kim, Soohyun; Han, Chang-Soo
2013-02-01
To clarify the origin of the flow-induced voltage generation in graphene, we prepared a new experimental device whose electrodes were aligned perpendicular to the flow with a non-ionic liquid. We found that significant voltage in our device was generated with increasing flow velocity, thereby confirming that voltage was due to an intrinsic interaction between graphene and the flowing liquid. To understand the mechanism of the observed flow-induced voltage generation, we systematically varied several important experimental parameters: flow velocity, electrode alignment, liquid polarity, and liquid viscosity. Based on these measurements, we suggest that polarity of the fluid is a significant factor in determining the extent of the voltage generated, and the major mechanism can be attributed to instantaneous potential differences induced in the graphene due to an interaction with polar liquids and to the momentum transferred from the flowing liquid to the graphene.
Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies.
Zhang, Hao Chi; Zhang, Qian; Liu, Jun Feng; Tang, Wenxuan; Fan, Yifeng; Cui, Tie Jun
2016-03-17
Transmission line is a basic component in all passive devices, integrated circuits, and systems. Microstrip is the most popular transmission line in the microwave and millimeter-wave frequencies, and has been widely used in current electronic devices, circuits, and systems. One of the important issues to be solved in such applications is the relatively large transmission loss of microstrip. Here, we propose a method to reduce the loss of microwave transmission line based on the designable wavenumber of spoof surface plasmon polaritons (SPPs). Using this characteristic, we analyze and experimentally demonstrate the low-loss feature of the SPP transmission line through the perturbation method and S-parameter measurements, respectively. Both simulation and experimental results show that the SPP transmission line has much smaller transmission loss than traditional microstrip with the same size in the microwave frequencies. Hence, the spoof SPP transmission line may make a big step forward in the low-loss circuits and systems.
Experimental demonstration of highly localized pulses (X waves) at microwave frequencies
NASA Astrophysics Data System (ADS)
Chiotellis, Nikolaos; Mendez, Victor; Rudolph, Scott M.; Grbic, Anthony
2018-02-01
A device that radiates transverse magnetic Bessel beams in the radiative near field is reported. The cone angle of the emitted radiation remains constant over a wide frequency range (18-30 GHz), allowing highly localized pulses (X waves) to be generated under a broadband excitation. The design process, based on ray optics, is discussed. Both frequency and time domain experimental results for a prototype are presented. The measured fields show close agreement with simulation results, and demonstrate the radiator's ability to emit X waves within its nondiffracting range.