Sample records for measuring internal friction

  1. Design, implementation, and application of a microresonator platform for measuring energy dissipation by internal friction in nanowires.

    PubMed

    Das, Kaushik; Sosale, Guruprasad; Vengallatore, Srikar

    2012-12-21

    Accurate measurements of internal friction in nanowires are required for the rational design of high-Q resonators used in nanoelectromechanical systems and for fundamental studies of nanomechanical behavior. However, measuring internal friction is challenging because of the difficulties associated with identifying the contributions of material dissipation to structural damping. Here, we present an approach for overcoming these difficulties by using a composite microresonator platform that is calibrated against the ultimate limits of thermoelastic damping. The platform consists of an array of nanowires patterned at the root of a low-loss single-crystal silicon microcantilever. The structure is processed using a lift-off technique, implemented using electron-beam lithography, to achieve excellent control over the size, alignment, dispersion and location of the nanowire array. As the first application of this platform, we measured internal friction at room temperature in aluminum nanowires that ranged from 50 to 100 nm in thickness and 100 to 400 nm in width. Internal friction is ~0.03 at frequencies of 6.5-21 kHz. Transmission electron microscopy of the nanocrystalline grain structure, and comparison with previously measured values of internal friction in continuous thin films of aluminum, suggest that grain-boundary sliding is a major source of internal friction in these nanowires.

  2. Internal friction in enzyme reactions.

    PubMed

    Rauscher, Anna; Derényi, Imre; Gráf, László; Málnási-Csizmadia, András

    2013-01-01

    The empirical concept of internal friction was introduced 20 years ago. This review summarizes the results of experimental and theoretical studies that help to uncover the nature of internal friction. After the history of the concept, we describe the experimental challenges in measuring and interpreting internal friction based on the viscosity dependence of enzyme reactions. We also present speculations about the structural background of this viscosity dependence. Finally, some models about the relationship between the energy landscape and internal friction are outlined. Alternative concepts regarding the viscosity dependence of enzyme reactions are also discussed. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  3. Driving- stress waveform and the determination of rock internal friction by the stress-strain curve method.

    USGS Publications Warehouse

    Hsi-Ping, Liu

    1980-01-01

    Harmonic distortion in the stress-time function applied to rock specimens affects the measurement of rock internal friction in the seismic wave periods by the stress-strain hysteresis loop method. If neglected, the harmonic distortion can cause measurements of rock internal friction to be in error by 3O% in the linear range. The stress-time function therefore must be recorded and Fourier analysed for correct interpretation of the experimental data. Such a procedure would also yield a value for internal friction at the higher harmonic frequencies.-Author

  4. Modulation of Folding Internal Friction by Local and Global Barrier Heights.

    PubMed

    Zheng, Wenwei; de Sancho, David; Best, Robert B

    2016-03-17

    Recent experiments have revealed an unexpected deviation from a first power dependence of protein relaxation times on solvent viscosity, an effect that has been attributed to "internal friction". One clear source of internal friction in protein dynamics is the isomerization of dihedral angles. A key outstanding question is whether the global folding barrier height influences the measured internal friction, based on the observation that the folding rates of fast-folding proteins, with smaller folding free energy barriers, tend to exhibit larger internal friction. Here, by studying two alanine-based peptides, we find that systematic variation of global folding barrier heights has little effect on the internal friction for folding rates. On the other hand, increasing local torsion angle barriers leads to increased internal friction, which is consistent with solvent memory effects being the origin of the viscosity dependence. Thus, it appears that local torsion transitions determine the viscosity dependence of the diffusion coefficient on the global coordinate and, in turn, internal friction effects on the folding rate.

  5. Mechanical spectroscopy of nanocrystalline aluminum films: effects of frequency and grain size on internal friction.

    PubMed

    Sosale, Guruprasad; Almecija, Dorothée; Das, Kaushik; Vengallatore, Srikar

    2012-04-20

    Energy dissipation by internal friction is a property of fundamental interest for probing the effects of scale on mechanical behavior in nanocrystalline metallic films and for guiding the use of these materials in the design of high-Q micro/nanomechanical resonators. This paper describes an experimental study to measure the effects of frequency, annealing and grain size on internal friction at room temperature in sputter-deposited nanocrystalline aluminum films with thicknesses ranging from 60 to 120 nm. Internal friction was measured using a single-crystal silicon microcantilever platform that calibrates dissipation against the fundamental limits of thermoelastic damping. Internal friction was a weak function of frequency, reducing only by a factor of two over three decades of frequency (70 Hz to 44 kHz). Annealing led to significant grain growth and the average grain size of 100 nm thick films increased from 90 to 390 nm after annealing for 1 h at 450 (∘)C. This increase in grain size was accompanied by a decrease in internal friction from 0.05 to 0.02. Taken together, these results suggest that grain-boundary sliding, characterized by a spectrum of relaxation times, contributes to internal friction in these films. © 2012 IOP Publishing Ltd

  6. Temperature dependence of internal friction in enzyme reactions.

    PubMed

    Rauscher, Anna Á; Simon, Zoltán; Szöllosi, Gergely J; Gráf, László; Derényi, Imre; Malnasi-Csizmadia, Andras

    2011-08-01

    Our aim was to elucidate the physical background of internal friction of enzyme reactions by investigating the temperature dependence of internal viscosity. By rapid transient kinetic methods, we directly measured the rate constant of trypsin 4 activation, which is an interdomain conformational rearrangement, as a function of temperature and solvent viscosity. We found that the apparent internal viscosity shows an Arrhenius-like temperature dependence, which can be characterized by the activation energy of internal friction. Glycine and alanine mutations were introduced at a single position of the hinge of the interdomain region to evaluate how the flexibility of the hinge affects internal friction. We found that the apparent activation energies of the conformational change and the internal friction are interconvertible parameters depending on the protein flexibility. The more flexible a protein was, the greater proportion of the total activation energy of the reaction was observed as the apparent activation energy of internal friction. Based on the coupling of the internal and external movements of the protein during its conformational change, we constructed a model that quantitatively relates activation energy, internal friction, and protein flexibility.

  7. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations

    PubMed Central

    Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E.; Schuler, Benjamin

    2017-01-01

    Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques. PMID:28223518

  8. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations.

    PubMed

    Soranno, Andrea; Holla, Andrea; Dingfelder, Fabian; Nettels, Daniel; Makarov, Dmitrii E; Schuler, Benjamin

    2017-03-07

    Internal friction is an important contribution to protein dynamics at all stages along the folding reaction. Even in unfolded and intrinsically disordered proteins, internal friction has a large influence, as demonstrated with several experimental techniques and in simulations. However, these methods probe different facets of internal friction and have been applied to disparate molecular systems, raising questions regarding the compatibility of the results. To obtain an integrated view, we apply here the combination of two complementary experimental techniques, simulations, and theory to the same system: unfolded protein L. We use single-molecule Förster resonance energy transfer (FRET) to measure the global reconfiguration dynamics of the chain, and photoinduced electron transfer (PET), a contact-based method, to quantify the rate of loop formation between two residues. This combination enables us to probe unfolded-state dynamics on different length scales, corresponding to different parts of the intramolecular distance distribution. Both FRET and PET measurements show that internal friction dominates unfolded-state dynamics at low denaturant concentration, and the results are in remarkable agreement with recent large-scale molecular dynamics simulations using a new water model. The simulations indicate that intrachain interactions and dihedral angle rotation correlate with the presence of internal friction, and theoretical models of polymer dynamics provide a framework for interrelating the contribution of internal friction observed in the two types of experiments and in the simulations. The combined results thus provide a coherent and quantitative picture of internal friction in unfolded proteins that could not be attained from the individual techniques.

  9. Internal friction measurement in high purity tungsten single crystal

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.

    1974-01-01

    Internal friction peaks observed after small deformation in high purity tungsten single crystals between liquid helium temperature and 800 K in the frequency range 30-50 KHz, are studied as a function of orientation. An orientation effect is observed in the internal friction spectra due to the creation of internal stresses. The elementary processes related to these peaks are discussed in terms of kink generation and geometric kink motion on screw and edge dislocations in an internal stress field.

  10. The measurement and theory of tire friction on contaminated surfaces

    DOT National Transportation Integrated Search

    1998-01-01

    In the past five years there has been an International Experiment to Harmonize Friction Measurement by the World Road Association (PIARC) and within the past three years there have been at least four separate studies on winter friction, a five year j...

  11. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration.

    PubMed

    Wang, Y Z; Ding, X D; Xiong, X M; Zhang, J X

    2007-10-01

    Relations between various values of the internal friction (tgdelta, Q(-1), Q(-1*), and Lambda/pi) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay omega(FD), displacement-resonant frequency of forced vibration omega(d), and velocity-resonant frequency of forced vibration omega(0) are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements.

  12. Temperature-Dependent Friction and Wear Behavior of PTFE and MoS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babuska, T. F.; Pitenis, A. A.; Jones, M. R.

    2016-06-16

    We present an investigation of the temperature-dependent friction behavior of PTFE, MoS 2, and PTFE-on- MoS 2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on themore » PTFE-on-MoS 2 sliding contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, T α~ 116°C.« less

  13. Internal friction of single polypeptide chains at high stretch.

    PubMed

    Khatri, Bhavin S; Byrne, Katherine; Kawakami, Masaru; Brockwell, David J; Smith, D Alastair; Radford, Sheena E; McLeish, Tom C B

    2008-01-01

    Experiments that measure the viscoelasticity of single molecules from the Brownian fluctuations of an atomic force microscope (AFM) have provided a new window onto their internal dynamics in an underlying conformational landscape. Here we develop and apply these methods to examine the internal friction of unfolded polypeptide chains at high stretch. The results reveal a power law dependence of internal friction with tension (exponent 1.3 +/- 0.5) and a relaxation time approximately independent of force. To explain these results we develop a frictional worm-like chain (FWLC) model based on the Rayleigh dissipation function of a stiff chain with dynamical resistance to local bending. We analyse the dissipation rate integrated over the chain length by its Fourier components to calculate an effective tension-dependent friction constant for the end-to-end vector of the chain. The result is an internal friction that increases as a power law with tension with an exponent 3/2, consistent with experiment. Extracting the intrinsic bending friction constant of the chain it is found to be approximately 7 orders of magnitude greater than expected from solvent friction alone; a possible explanation we offer is that the underlying energy landscape for bending amino acids and/or peptide bond is rough, consistent with recent results on both proteins and polysaccharides.

  14. The attenuation of Love waves and toroidal oscillations of the earth.

    NASA Technical Reports Server (NTRS)

    Jackson, D. D.

    1971-01-01

    An attempt has been made to invert a large set of attenuation data for Love waves and toroidal oscillations in the earth, using a recent method by Backus and Gilbert. The difficulty in finding an acceptable model of internal friction which explains the data, under the assumption that the internal friction is independent of frequency, casts doubt on the validity of this assumption. A frequency-dependent model of internal friction is presented which is in good agreement with the seismic data and with recent experimental measurements of attenuation in rocks.

  15. Mechanical properties of thin-film materials evaluated from amplitude-dependent internal friction

    NASA Astrophysics Data System (ADS)

    Nishino, Yoichi

    1999-09-01

    A method is presented to evaluate the mechanical properties of thin-film materials from measurements of the amplitude-dependent internal friction. According to the constitutive equation, the internal friction in the film can be determined separately from measured damping of the film/substrate composite. The internal friction in aluminum films is dependent on the strain amplitude that is approximately two orders of magnitude higher than that for bulk aluminum. On the basis of the microplasticity theory, the amplitude-dependent internal friction in the film can be converted into the plastic strain as a function of effective stress on dislocation motion. The mechanical responses thus obtained for aluminum films show that the plastic strain of the order of 10-9 increases nonlinearly with increasing stress. These curves tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of microplastic flow. The microflow stress at a constant level of the plastic strain varies inversely with the film thickness, provided the grain size is larger than the film thickness. The film thickness effect in the microplastic range can be well explained by the bowing of a dislocation segment whose ends are pinned at the film surface and at the film/substrate interface.

  16. Concerted dihedral rotations give rise to internal friction in unfolded proteins.

    PubMed

    Echeverria, Ignacia; Makarov, Dmitrii E; Papoian, Garegin A

    2014-06-18

    Protein chains undergo conformational diffusion during folding and dynamics, experiencing both thermal kicks and viscous drag. Recent experiments have shown that the corresponding friction can be separated into wet friction, which is determined by the solvent viscosity, and dry friction, where frictional effects arise due to the interactions within the protein chain. Despite important advances, the molecular origins underlying dry friction in proteins have remained unclear. To address this problem, we studied the dynamics of the unfolded cold-shock protein at different solvent viscosities and denaturant concentrations. Using extensive all-atom molecular dynamics simulations we estimated the internal friction time scales and found them to agree well with the corresponding experimental measurements (Soranno et al. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 17800-17806). Analysis of the reconfiguration dynamics of the unfolded chain further revealed that hops in the dihedral space provide the dominant mechanism of internal friction. Furthermore, the increased number of concerted dihedral moves at physiological conditions suggest that, in such conditions, the concerted motions result in higher frictional forces. These findings have important implications for understanding the folding kinetics of proteins as well as the dynamics of intrinsically disordered proteins.

  17. Low-temperature internal friction in quenched amorphous selenium films

    NASA Astrophysics Data System (ADS)

    Metcalf, Thomas; Liu, Xiao; Abernathy, Matthew; Stephens, Richard

    Using ultra-high-quality-factor silicon mechanical resonators, we have measured the internal friction and shear modulus of amorphous selenium (a-Se) films at liquid helium temperatures. The glass transition temperature of selenium lies at a conveniently accessible 40 -50° C, facilitating a series of in- and ex-situ annealing and quench cycles. The a-Se films exhibit the low-temperature internal friction plateau (10-4 <=Q-1 <=10-3) found in almost all amorphous solids, which is a result of (and direct measure of) a broad distribution of two-level tunneling systems (TLS), whose origin is still unknown. We find a clear correlation between the post-anneal quench rate and the value of this plateau. The implications of these observations for understanding the microscopic origin of TLS will be discussed. Principally, the observed changes in the internal friction plateau could show the way in which the density of TLS could be manipulated or suppressed in other amorphous systems. Work supported by the Office of Naval Research and the University of Pennsylvania Materials Research Science and Engineering Center.

  18. Experimental research on friction coefficient between grain bulk and bamboo clappers

    NASA Astrophysics Data System (ADS)

    Tang, Gan; Sun, Ping; Zhao, Yanqi; Yin, Lingfeng; Zhuang, Hong

    2017-12-01

    A silo is an important piece of storage equipment, especially in the grain industry. The internal friction angle and the friction coefficient between the grain and the silo wall are the main parameters needed for calculating the lateral pressure of the silo wall. Bamboo is used in silo walls, but there are no provisions about the friction coefficient between bulk grain and bamboo clappers in existing codes. In this paper, the material of the silo wall is bamboo. The internal friction of five types of grain and the friction coefficient between the grain and the bamboo clappers were measured with an equal-strain direct shear apparatus. By comparing the experimental result values with the code values, the friction coefficient between the grain bulk and bamboo clappers is lower than that between grain and steel wall and that between grain and concrete wall. The differences in value are 0.21 and 0.09, respectively.

  19. Expansion and internal friction in unfolded protein chain.

    PubMed

    Yasin, U Mahammad; Sashi, Pulikallu; Bhuyan, Abani K

    2013-10-10

    Similarities in global properties of homopolymers and unfolded proteins provide approaches to mechanistic description of protein folding. Here, hydrodynamic properties and relaxation rates of the unfolded state of carbonmonoxide-liganded cytochrome c (cyt-CO) have been measured using nuclear magnetic resonance and laser photolysis methods. Hydrodynamic radius of the unfolded chain gradually increases as the solvent turns increasingly better, consistent with theory. Curiously, however, the rate of intrachain contact formation also increases with an increasing denaturant concentration, which, by Szabo, Schulten, and Schulten theory for the rate of intramolecular contact formation in a Gaussian polymer, indicates growing intramolecular diffusion. It is argued that diminishing nonbonded atom interactions with increasing denaturant reduces internal friction and, thus, increases the rate of polypeptide relaxation. Qualitative scaling of the extent of unfolding with nonbonded repulsions allows for description of internal friction by a phenomenological model. The degree of nonbonded atom interactions largely determines the extent of internal friction.

  20. Measuring internal friction of an ultrafast-folding protein.

    PubMed

    Cellmer, Troy; Henry, Eric R; Hofrichter, James; Eaton, William A

    2008-11-25

    Nanosecond laser T-jump was used to measure the viscosity dependence of the folding kinetics of the villin subdomain under conditions where the viscogen has no effect on its equilibrium properties. The dependence of the unfolding/refolding relaxation time on solvent viscosity indicates a major contribution to the dynamics from internal friction. The internal friction increases with increasing temperature, suggesting a shift in the transition state along the reaction coordinate toward the native state with more compact structures, and therefore, a smaller diffusion coefficient due to increased landscape roughness. Fitting the data with an Ising-like model yields a relatively small position dependence for the diffusion coefficient. This finding is consistent with the excellent correlation found between experimental and calculated folding rates based on free energy barrier heights using the same diffusion coefficient for every protein.

  1. Three-dimensional friction measurement during hip simulation

    PubMed Central

    Braun, Steffen; Al-Salehi, Loay; Reinders, Joern; Mueller, Ulrike; Kretzer, J. Philippe

    2017-01-01

    Objectives Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions. Materials and methods A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm). Results A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque) was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented. Conclusions This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization. PMID:28886102

  2. Three-dimensional friction measurement during hip simulation.

    PubMed

    Sonntag, Robert; Braun, Steffen; Al-Salehi, Loay; Reinders, Joern; Mueller, Ulrike; Kretzer, J Philippe

    2017-01-01

    Wear of total hip replacements has been the focus of many studies. However, frictional effects, such as high loading on intramodular connections or the interface to the bone, as well as friction associated squeaking have recently increased interest about the amount of friction that is generated during daily activities. The aim of this study was thus to establish and validate a three-dimensional friction setup under standardized conditions. A standard hip simulator was modified to allow for high precision measurements of small frictional effects in the hip during three-dimensional hip articulation. The setup was verified by an ideal hydrostatic bearing and validated with a static-load physical pendulum and an extension-flexion rotation with a dynamic load profile. Additionally, a pendulum model was proposed for screening measurement of frictional effects based on the damping behavior of the angular oscillation without the need for any force/moment transducer. Finally, three-dimensional friction measurements have been realized for ceramic-on-polyethylene bearings of three different sizes (28, 36 and 40 mm). A precision of less than 0.2 Nm during three-dimensional friction measurements was reported, while increased frictional torque (resultant as well as taper torque) was measured for larger head diameters. These effects have been confirmed by simple pendulum tests and the theoretical model. A comparison with current literature about friction measurements is presented. This investigation of friction is able to provide more information about a field that has been dominated by the reduction of wear. It should be considered in future pre-clinical testing protocols given by international organizations of standardization.

  3. Atomic scale friction of molecular adsorbates during diffusion.

    PubMed

    Lechner, B A J; de Wijn, A S; Hedgeland, H; Jardine, A P; Hinch, B J; Allison, W; Ellis, J

    2013-05-21

    Experimental observations suggest that molecular adsorbates exhibit a larger friction coefficient than atomic species of comparable mass, yet the origin of this increased friction is not well understood. We present a study of the microscopic origins of friction experienced by molecular adsorbates during surface diffusion. Helium spin-echo measurements of a range of five-membered aromatic molecules, cyclopentadienyl, pyrrole, and thiophene, on a copper(111) surface are compared with molecular dynamics simulations of the respective systems. The adsorbates have different chemical interactions with the surface and differ in bonding geometry, yet the measurements show that the friction is greater than 2 ps(-1) for all these molecules. We demonstrate that the internal and external degrees of freedom of these adsorbate species are a key factor in the underlying microscopic processes and identify the rotation modes as the ones contributing most to the total measured friction coefficient.

  4. Estimation of internal friction angle of subduction zone in northeast of Japan by using seismic focal mechanisms

    NASA Astrophysics Data System (ADS)

    Miyakawa, A.; Sato, K.; Otsubo, M.

    2017-12-01

    Physical properties, such as friction angle of the material, is important to understand the interplate earthquake of a subduction zone. Coulomb wedge model (Davis et al., 1983, JGR) is successfully revealed the relationship between a geometry of an accretionary wedge in a subduction zone and the physical properties of the material composing the accretionary wedge (e.g. Dahlen, 1984, JGR). An internal friction angle of the wedge and the frictional strength of the plate boundary fault control the wedge angle according to the Coulomb wedge model. However, the internal friction angle of the wedge and the frictional strength of the plate boundary fault are hard to estimate. Many previous works assumed the internal friction angle of the wedge on the basis of the laboratory experiments. Then, the frictional strength of the plate boundary fault, which is usually most interested, were evaluated from the observed wedge angle and the assumed internal friction angle of the wedge. Consequently, we should be careful of the selection of the internal friction angle of the wedge, otherwise, the uncertain an inappropriate internal friction angle may mislead the frictional strength of the plate boundary fault. In this study, we employed the newly developed technique to evaluate the internal friction angle of the wedge from the earthquake focal mechanisms occurred in the wedge along Japan Trench, northeast Japan. We used 650 earthquake mechanisms determined by NIED, Japan for the stress and friction coefficient inversion. The stress and friction coefficient inversion method is modified to handle the earthquake focal mechanisms from a computerized method to estimate the friction coefficient from the orientation distribution of faults (Sato, 2016, JSG). Finally, we obtained 25 degrees of internal friction angle of the wedge from the inversion. This value of friction angle is lower than usually assumed internal friction angle (30 degrees) (Byerlee, 1978, PAGEOPH). This lower internal friction angle leads to lower frictional strength of plate boundary fault ( 0.35) according to the Coulomb wedge model. These constrained physical parameters can contribute to understanding the interplate earthquake at each subduction zones.

  5. Relevance of Internal Friction and Structural Constraints for the Dynamics of Denatured Bovine Serum Albumin.

    PubMed

    Ameseder, Felix; Radulescu, Aurel; Holderer, Olaf; Falus, Peter; Richter, Dieter; Stadler, Andreas M

    2018-05-17

    A general property of disordered proteins is their structural expansion that results in a high molecular flexibility. The structure and dynamics of bovine serum albumin (BSA) denatured by guanidinium hydrochloride (GndCl) were investigated using small-angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). SANS experiments demonstrated the relevance of intrachain interactions for structural expansion. Using NSE experiments, we observed a high internal flexibility of denatured BSA in addition to center-of-mass diffusion detected by dynamic light scattering. Internal motions measured by NSE were described using concepts based on polymer theory. The contribution of residue-solvent friction was accounted for using the Zimm model including internal friction (ZIF). Disulfide bonds forming loops of amino acids of the peptide backbone have a major impact on internal dynamics that can be interpreted with a reduced set of Zimm modes.

  6. Effect of Mn and Cr additions on kinetics of recrystallization and parameters of grain-boundary relaxation of Al-4.9Mg alloy

    NASA Astrophysics Data System (ADS)

    Mikhailovskaya, A. V.; Golovin, I. S.; Zaitseva, A. A.; Portnoi, V. K.; Dröttboom, P.; Cifre, J.

    2013-03-01

    Methods of microstructural analysis, measurements of hardness, and temperature and time dependences of internal friction (TDIF and TDIF(iso), respectively) have been used to study recrystallization in cold-rolled alloys and grain-boundary relaxation in annealed alloys. A complex analysis of the effect of additions of transition metals (Mn, Cr) on the magnitude of the activation energy of the background of the internal friction in deformed and annealed states and on the activation parameters of grain-boundary relaxation has been performed. Methods of amplitude dependences of internal friction (ADIF) have been used to determine the critical amplitude that corresponds to the beginning of microplastic deformation in the alloys at different temperatures.

  7. Food waste impact on municipal solid waste angle of internal friction.

    PubMed

    Cho, Young Min; Ko, Jae Hac; Chi, Liqun; Townsend, Timothy G

    2011-01-01

    The impact of food waste content on the municipal solid waste (MSW) friction angle was studied. Using reconstituted fresh MSW specimens with different food waste content (0%, 40%, 58%, and 80%), 48 small-scale (100-mm-diameter) direct shear tests and 12 large-scale (430 mm × 430 mm) direct shear tests were performed. A stress-controlled large-scale direct shear test device allowing approximately 170-mm sample horizontal displacement was designed and used. At both testing scales, the mobilized internal friction angle of MSW decreased considerably as food waste content increased. As food waste content increased from 0% to 40% and from 40% to 80%, the mobilized internal friction angles (estimated using the mobilized peak (ultimate) shear strengths of the small-scale direct shear tests) decreased from 39° to 31° and from 31° to 7°, respectively, while those of large-scale tests decreased from 36° to 26° and from 26° to 15°, respectively. Most friction angle measurements produced in this study fell within the range of those previously reported for MSW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Apparatus for measuring internal friction Q factors in brittle materials. [applied to lunar samples

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Curnow, J. M.

    1976-01-01

    A flexural analog of the torsion pendulum for measuring the Young's modulus and the internal friction Q factor of brittle materials has been developed for Q greater than 10 to the 3rd measurements at a zero static stress and at 10 to the -7th strains of brittle materials in the Hz frequency range. The present design was motivated by the desire to measure Q in fragile lunar return samples at zero static stress to shed light on the anomalously low attenuation of seismic waves on the moon. The use of the apparatus is demonstrated with data on fused silica and on a terrestrial analog of lunar basalt.

  9. Study of structure defect interactions in aluminum by the acoustic method. [internal friction in pure aluminum

    NASA Technical Reports Server (NTRS)

    Nicolaescu, I. I.

    1974-01-01

    Using echo pulse and resonance rod methods, internal friction in pure aluminum was studied as a function of frequency, hardening temperature, time (internal friction relaxation) and impurity content. These studies led to the conclusion that internal friction in these materials depends strongly on dislocation structure and on elastic interactions between structure defects. It was found experimentally that internal friction relaxation depends on the cooling rate and on the impurity content. Some parameters of the dislocation structure and of the diffusion process were determined. It is shown that the dislocated dependence of internal friction can be used as a method of nondestructive testing of the impurity content of high-purity materials.

  10. Theoretical and computational validation of the Kuhn barrier friction mechanism in unfolded proteins.

    PubMed

    Avdoshenko, Stanislav M; Das, Atanu; Satija, Rohit; Papoian, Garegin A; Makarov, Dmitrii E

    2017-03-21

    A long time ago, Kuhn predicted that long polymers should approach a limit where their global motion is controlled by solvent friction alone, with ruggedness of their energy landscapes having no consequences for their dynamics. In contrast, internal friction effects are important for polymers of modest length. Internal friction in proteins, in particular, affects how fast they fold or find their binding targets and, as such, has attracted much recent attention. Here we explore the molecular origins of internal friction in unfolded proteins using atomistic simulations, coarse-grained models and analytic theory. We show that the characteristic internal friction timescale is directly proportional to the timescale of hindered dihedral rotations within the polypeptide chain, with a proportionality coefficient b that is independent of the chain length. Such chain length independence of b provides experimentally testable evidence that internal friction arises from concerted, crankshaft-like dihedral rearrangements. In accord with phenomenological models of internal friction, we find the global reconfiguration timescale of a polypeptide to be the sum of solvent friction and internal friction timescales. At the same time, the time evolution of inter-monomer distances within polypeptides deviates both from the predictions of those models and from a simple, one-dimensional diffusion model.

  11. Stiffness and frictional resistance of a superelastic nickel-titanium orthodontic wire with low-stress hysteresis.

    PubMed

    Liaw, Yu-Cheng; Su, Yu-Yu M; Lai, Yu-Lin; Lee, Shyh-Yuan

    2007-05-01

    Stress-induced martensite formation with stress hysteresis that changes the elasticity and stiffness of nickel-titanium (Ni-Ti) wire influences the sliding mechanics of archwire-guided tooth movement. This in-vitro study investigated the frictional behavior of an improved superelastic Ni-Ti wire with low-stress hysteresis. Improved superelastic Ni-Ti alloy wires (L & H Titan, Tomy International, Tokyo, Japan) with low-stress hysteresis were examined by using 3-point bending and frictional resistance tests with a universal test machine at a constant temperature of 35 degrees C, and compared with the former conventional austenitic-active superelastic Ni-Ti wires (Sentalloy, Tomy International). Wire stiffness levels were derived from differentiation of the polynomial regression of the unloading curves, and values for kinetic friction were measured at constant bending deflection distances of 0, 2, 3, and 4 mm, respectively. Compared with conventional Sentalloy wires, the L & H Titan wire had a narrower stress hysteresis including a lower loading plateau and a higher unloading plateau. In addition, L & H Titan wires were less stiff than the Sentalloy wires during most unloading stages. Values of friction measured at deflections of 0, 2, and 3 mm were significantly (P <.05) increased in both types of wire. However, they showed a significant decrease in friction from 3 to 4 mm of deflection. L & H Titan wires had less friction than Sentalloy wires at all bending deflections (P <.05). Stress-induced martensite formation significantly reduced the stiffness and thus could be beneficial to decrease the binding friction of superelastic Ni-Ti wires during sliding with large bending deflections. Austenitic-active alloy wires with low-stress hysteresis and lower stiffness and friction offer significant potential for further investigation.

  12. Dependence of internal friction on folding mechanism.

    PubMed

    Zheng, Wenwei; De Sancho, David; Hoppe, Travis; Best, Robert B

    2015-03-11

    An outstanding challenge in protein folding is understanding the origin of "internal friction" in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein.

  13. The temperature dependences of electromechanical properties of PLZT ceramics

    NASA Astrophysics Data System (ADS)

    Czerwiec, M.; Zachariasz, R.; Ilczuk, J.

    2008-02-01

    The mechanical and electrical properties in lanthanum modified lead zirconate-titanate ceramics of 5/50/50 and 10/50/50 were studied by mechanical loss Q - 1, Young's modulus E, electric permittivity ɛ and tangent of dielectric loss of angle tgδ measurements. The internal friction Q - 1 and Young modulus E measured from 290 K to 600 K shows that Curie temperature TC is located at 574 K and 435 K (1st cycle of heating) respectively for ceramic samples 5/50/50 and 10/50/50. The movement of TC in second cycle of heating to lower temperature (561 K for 5/50/50 and 420 K for 10/50/50) has been observed. Together with Q - 1 and E measurements, temperature dependences of ɛ=f(T) and tgδ=f(T) were determinated in temperature range from 300 K to 730 K. The values of TC obtained during ɛ and tgδ measurements were respectively: 560 K for 5/50/50 and 419 K for 10/50/50. These temperatures are almost as high as the temperatures obtained by internal friction Q - 1 measurements in second cycle of heating. In ceramic sample 10/50/50 the additional maximum on internal friction Q - 1 curve at the temperature 316 K was observed.

  14. Flow Function of Pharmaceutical Powders Is Predominantly Governed by Cohesion, Not by Friction Coefficients.

    PubMed

    Leung, Lap Yin; Mao, Chen; Srivastava, Ishan; Du, Ping; Yang, Chia-Yi

    2017-07-01

    The purpose of this study was to demonstrate that the flow function (FFc) of pharmaceutical powders, as measured by rotational shear cell, is predominantly governed by cohesion but not friction coefficients. Driven by an earlier report showing an inverse correlation between FFc and the cohesion divided by the corresponding pre-consolidation stress (Wang et al. 2016. Powder Tech. 294:105-112), we performed analysis on a large data set containing 1130 measurements from a ring shear tester and identified a near-perfect inverse correlation between the FFc and cohesion. Conversely, no correlation was found between FFc and friction angles. We also conducted theoretical analysis and estimated such correlations based on Mohr-Coulomb failure model. We discovered that the correlation between FFc and cohesion can sustain as long as the angle of internal friction at incipient flow is not significantly larger than the angle of internal friction at steady-state flow, a condition covering almost all pharmaceutical powders. The outcome of this study bears significance in pharmaceutical development. Because the cohesion value is strongly influenced by the interparticle cohesive forces, this study effectively shows that it is more efficient to improve the pharmaceutical powder flow by lowering the interparticle cohesive forces than by lowering the interparticle frictions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Mechanical response of the flux lines in ceramic YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Luzuriaga, J.; André, M.-O.; Benoit, W.

    1992-06-01

    We have studied the mechanical response of the flux-line lattice (FLL) in ceramic samples of YBa2Cu3O7 by means of a low-frequency forced pendulum. The internal friction and elastic modulus variation of the FLL have been measured as a function of temperature for different values of the applied stress. A somewhat different behavior was observed whether a zero-field-cooling or field-cooling procedure was followed. Measurements of the internal friction and elastic modulus as a function of the applied stress at constant temperature show amplitude-dependent dissipation, with a maximum dissipation at intermediate values of the stress. This dependence is well fitted by a rheological model of extended dry friction, if we restrict ourselves to the dissipation and modulus at fixed temperature. The agreement is not so good when attempting to extend the model to fit the temperature dependence.

  16. Flowability parameters for chopped switchgrass, wheat straw and corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.

    2009-02-01

    A direct shear cell to measure the shear strength and flow properties of chopped switchgrass, wheat straw, and corn stover was designed, fabricated, and tested. Yield loci (r2=0.99) determined at pre-consolidation pressures of 3.80 kPa and 5.02 kPa indicated that chopped biomass followed Mohr-Coulomb failure. Normal stress significantly affected the displacement required for shear failure, as well as the friction coefficient values for all three chopped biomass types. Displacement at shear failure ranged from 30 to 80 mm, and depended on pre-consolidation pressure, normal stress, and particle size. Friction coefficient was inversely related to normal stress, and was highest formore » chopped corn stover. Also, chopped corn stover exhibited the highest angle of internal friction, unconfined yield strength, major consolidation strength, and cohesive strength, all of which indicated increased challenges in handling chopped corn stover. The measured angle of internal friction and cohesive strength indicated that chopped biomass cannot be handled by gravity alone. The measured angle of internal friction and cohesive strength were 43 and 0.75 kPa for chopped switchgrass; 44 and 0.49 kPa for chopped wheat straw; and 48 and 0.82 kPa for chopped corn stover. Unconfined yield strength and major consolidation strength used for characterization of bulk flow materials and design of hopper dimensions were 3.4 and 10.4 kPa for chopped switchgrass; 2.3 and 9.6 kPa for chopped wheat straw and 4.2 and 11.8 kPa for chopped corn stover. These results are useful for development of efficient handling, storage, and transportation systems for biomass in biorefineries.« less

  17. Normal and frictional interactions of purified human statherin adsorbed on molecularly-smooth solid substrata.

    PubMed

    Harvey, Neale M; Carpenter, Guy H; Proctor, Gordon B; Klein, Jacob

    2011-09-01

    Human salivary statherin was purified from parotid saliva and adsorbed to bare hydrophilic (HP) mica and STAI-coated hydrophobic (HB) mica in a series of Surface Force Balance experiments that measured the normal (F(n)) and friction forces (F(s)*) between statherin-coated mica substrata. Readings were taken both in the presence of statherin solution (HP and HB mica) and after rinsing (HP mica). F(n) measurements showed, for both substrata, monotonic steric repulsion that set on at a surface separation D ~20 nm, indicating an adsorbed layer whose unperturbed thickness was ca 10 nm. An additional longer-ranged repulsion, probably of electrostatic double-layer origin, was observed for rinsed surfaces under pure water. Under applied pressures of ~1 MPa, each surface layer was compressed to a thickness of ca 2 nm on both types of substratum, comparable with earlier estimates of the size of the statherin molecule. Friction measurements, in contrast with F(n) observations, were markedly different on the two different substrata: friction coefficients, μ ≡ ∂F(s)*/∂F(n), on the HB substratum (μ ≈ 0.88) were almost an order of magnitude higher than on the HP substratum (μ ≈ 0.09 and 0.12 for unrinsed and rinsed, respectively), and on the HB mica there was a lower dependence of friction on sliding speed than on the HP mica. The observations were attributed to statherin adsorbing to the mica in multimer aggregates, with internal re-arrangement of the protein molecules within the aggregate dependent on the substratum to which the aggregate adsorbed. This internal re-arrangement permitted aggregates to be of similar size on HP and HB mica but to have different internal molecular orientations, thus exposing different moieties to the solution in each case and accounting for the very different friction behaviour.

  18. Dependence of Internal Friction on Folding Mechanism

    PubMed Central

    2016-01-01

    An outstanding challenge in protein folding is understanding the origin of “internal friction” in folding dynamics, experimentally identified from the dependence of folding rates on solvent viscosity. A possible origin suggested by simulation is the crossing of local torsion barriers. However, it was unclear why internal friction varied from protein to protein or for different folding barriers of the same protein. Using all-atom simulations with variable solvent viscosity, in conjunction with transition-path sampling to obtain reaction rates and analysis via Markov state models, we are able to determine the internal friction in the folding of several peptides and miniproteins. In agreement with experiment, we find that the folding events with greatest internal friction are those that mainly involve helix formation, while hairpin formation exhibits little or no evidence of friction. Via a careful analysis of folding transition paths, we show that internal friction arises when torsion angle changes are an important part of the folding mechanism near the folding free energy barrier. These results suggest an explanation for the variation of internal friction effects from protein to protein and across the energy landscape of the same protein. PMID:25721133

  19. Butane dihedral angle dynamics in water is dominated by internal friction

    PubMed Central

    Daldrop, Jan O.; Kappler, Julian; Brünig, Florian N.; Netz, Roland R.

    2018-01-01

    The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers’ turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane’s dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins. PMID:29712838

  20. Effects of internal friction on contact formation dynamics of polymer chain

    NASA Astrophysics Data System (ADS)

    Bian, Yukun; Li, Peng; Zhao, Nanrong

    2018-04-01

    A theoretical framework is presented to study the contact formation dynamics of polymer chains, in accompany with an electron-transfer quenching. Based on a non-Markovian Smoluchowski equation supplemented with an exponential sink term, we derive the mean time of contact formation under Wilemski-Fixman approximation. Our particular attentions are paid to the effect of internal friction. We find out that internal friction induces a novel fractional viscosity dependence, which will become more remarkable as internal friction increases. Furthermore, we clarify that internal friction inevitably promotes a diffusion-controlled mechanism by slowing the chain relaxation. Finally, we apply our theory to rationalise the experimental investigation for contact formation of a single-stranded DNA. The theoretical results can reproduce the experimental data very well with quite reasonable estimation for the intrinsic parameters. Such good agreements clearly demonstrate the validity of our theory which has appropriately addressed the very role of internal friction to the relevant dynamics.

  1. Investigation of internal friction in fused quartz, steel, Plexiglass, and Westerly granite from 0.01 to 1.00 Hertz at 10- 8 to 10-7 strain amplitude.

    USGS Publications Warehouse

    Hsi-Ping, Liu; Peselnick, L.

    1983-01-01

    A detailed evaluation on the method of internal friction measurement by the stress-strain hysteresis loop method from 0.01 to 1 Hz at 10-8-10-7 strain amplitude and 23.9oC is presented. Significant systematic errors in relative phase measurement can result from convex end surfaces of the sample and stress sensor and from end surface irregularities such as nicks and asperities. Preparation of concave end surfaces polished to optical smoothness having a radius of curvature >3.6X104 cm reduces the systematic error in relative phase measurements to <(5.5+ or -2.2)X10-4 radians. -from Authors

  2. Drag force scaling for penetration into granular media.

    PubMed

    Katsuragi, Hiroaki; Durian, Douglas J

    2013-05-01

    Impact dynamics is measured for spherical and cylindrical projectiles of many different densities dropped onto a variety non-cohesive granular media. The results are analyzed in terms of the material-dependent scaling of the inertial and frictional drag contributions to the total stopping force. The inertial drag force scales similar to that in fluids, except that it depends on the internal friction coefficient. The frictional drag force scales as the square-root of the density of granular medium and projectile, and hence cannot be explained by the combination of granular hydrostatic pressure and Coulomb friction law. The combined results provide an explanation for the previously observed penetration depth scaling.

  3. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy

    PubMed Central

    Soranno, Andrea; Buchli, Brigitte; Nettels, Daniel; Cheng, Ryan R.; Müller-Späth, Sonja; Pfeil, Shawn H.; Hoffmann, Armin; Lipman, Everett A.; Makarov, Dmitrii E.; Schuler, Benjamin

    2012-01-01

    Internal friction, which reflects the “roughness” of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics. Using concepts from polymer dynamics, we determine internal friction with three complementary, largely independent, and consistent approaches as an additive contribution to the reconfiguration time of the unfolded state. We find that the magnitude of internal friction correlates with the compactness of the unfolded protein: its contribution dominates the reconfiguration time of approximately 100 ns of the compact unfolded state of a small cold shock protein under native conditions, but decreases for more expanded chains, and approaches zero both at high denaturant concentrations and in intrinsically disordered proteins that are expanded due to intramolecular charge repulsion. Our results suggest that internal friction in the unfolded state will be particularly relevant for the kinetics of proteins that fold in the microsecond range or faster. The low internal friction in expanded intrinsically disordered proteins may have implications for the dynamics of their interactions with cellular binding partners. PMID:22492978

  4. Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy.

    PubMed

    Soranno, Andrea; Buchli, Brigitte; Nettels, Daniel; Cheng, Ryan R; Müller-Späth, Sonja; Pfeil, Shawn H; Hoffmann, Armin; Lipman, Everett A; Makarov, Dmitrii E; Schuler, Benjamin

    2012-10-30

    Internal friction, which reflects the "roughness" of the energy landscape, plays an important role for proteins by modulating the dynamics of their folding and other conformational changes. However, the experimental quantification of internal friction and its contribution to folding dynamics has remained challenging. Here we use the combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, and microfluidic mixing to determine the reconfiguration times of unfolded proteins and investigate the mechanisms of internal friction contributing to their dynamics. Using concepts from polymer dynamics, we determine internal friction with three complementary, largely independent, and consistent approaches as an additive contribution to the reconfiguration time of the unfolded state. We find that the magnitude of internal friction correlates with the compactness of the unfolded protein: its contribution dominates the reconfiguration time of approximately 100 ns of the compact unfolded state of a small cold shock protein under native conditions, but decreases for more expanded chains, and approaches zero both at high denaturant concentrations and in intrinsically disordered proteins that are expanded due to intramolecular charge repulsion. Our results suggest that internal friction in the unfolded state will be particularly relevant for the kinetics of proteins that fold in the microsecond range or faster. The low internal friction in expanded intrinsically disordered proteins may have implications for the dynamics of their interactions with cellular binding partners.

  5. [Integrate the surgical hand disinfection as a quality indicator in an operating room of urology].

    PubMed

    Francois, M; Girard, R; Mauranne, C C; Ruffion, A; Terrier, J E

    2017-12-01

    The surgical hand disinfection by friction (SDF) helps to reduce the risk of surgical site infections. For this purpose and in order to promote good compliance to quality care, the urology service of Centre Hospitalier Lyon Sud achieved a continuous internal audit to improve the quality of the SDF. An internal audit executed by the medical students of urology was established in 2013. The study population was all operators, instrumentalists and operating aids of urology operating room (OR). Each student realized 5-10 random observations, of all types of professionals. The criteria measured by the audit were criteria for friction. The evolution of indicators was positive. Particularly, the increasing duration of the first and second friction was statistically significant during follow-up (P=0.001). The total duration of friction shows a similar trend for all professionals. The surgical hand disinfection by friction in the urology OR of the Centre Hospitalier Lyon Sud has gradually improved over the iterative audits. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Butane dihedral angle dynamics in water is dominated by internal friction.

    PubMed

    Daldrop, Jan O; Kappler, Julian; Brünig, Florian N; Netz, Roland R

    2018-05-15

    The dihedral dynamics of butane in water is known to be rather insensitive to the water viscosity; possible explanations for this involve inertial effects or Kramers' turnover, the finite memory time of friction, and the presence of so-called internal friction. To disentangle these factors, we introduce a method to directly extract the friction memory function from unconstrained simulations in the presence of an arbitrary free-energy landscape. By analysis of the dihedral friction in butane for varying water viscosity, we demonstrate the existence of an internal friction contribution that does not scale linearly with water viscosity. At normal water viscosity, the internal friction turns out to be eight times larger than the solvent friction and thus completely dominates the effective friction. By comparison with simulations of a constrained butane molecule that has the dihedral as the only degree of freedom, we show that internal friction comes from the six additional degrees of freedom in unconstrained butane that are orthogonal to the dihedral angle reaction coordinate. While the insensitivity of butane's dihedral dynamics to water viscosity is solely due to the presence of internal friction, inertial effects nevertheless crucially influence the resultant transition rates. In contrast, non-Markovian effects due to the finite memory time are present but do not significantly influence the dihedral barrier-crossing rate of butane. These results not only settle the character of dihedral dynamics in small solvated molecular systems such as butane, they also have important implications for the folding of polymers and proteins. Copyright © 2018 the Author(s). Published by PNAS.

  7. Exploring the role of internal friction in the dynamics of unfolded proteins using simple polymer models.

    PubMed

    Cheng, Ryan R; Hawk, Alexander T; Makarov, Dmitrii E

    2013-02-21

    Recent experiments showed that the reconfiguration dynamics of unfolded proteins are often adequately described by simple polymer models. In particular, the Rouse model with internal friction (RIF) captures internal friction effects as observed in single-molecule fluorescence correlation spectroscopy (FCS) studies of a number of proteins. Here we use RIF, and its non-free draining analog, Zimm model with internal friction, to explore the effect of internal friction on the rate with which intramolecular contacts can be formed within the unfolded chain. Unlike the reconfiguration times inferred from FCS experiments, which depend linearly on the solvent viscosity, the first passage times to form intramolecular contacts are shown to display a more complex viscosity dependence. We further describe scaling relationships obeyed by contact formation times in the limits of high and low internal friction. Our findings provide experimentally testable predictions that can serve as a framework for the analysis of future studies of contact formation in proteins.

  8. Evaluation of Improvements to Brayton Cycle Performance.

    DTIC Science & Technology

    1986-05-29

    cogeneration systems. They are International Power Technology (IPT), Palo Alto, California and Mechanical Technology, Inc. (MTI), Latham, New York [13]. IPT...constant (10) For a constant Reynold’s number and dimensions, the friction factor will be constant. The relationship for friction of internal ...equation for the friction factor of internal turbulent flow is expressed as Ap -friction =f(Re) - constant. (12) pV 2 Applying Equation (11), Equation (12

  9. Peptide chain dynamics in light and heavy water: zooming in on internal friction.

    PubMed

    Schulz, Julius C F; Schmidt, Lennart; Best, Robert B; Dzubiella, Joachim; Netz, Roland R

    2012-04-11

    Frictional effects due to the chain itself, rather than the solvent, may have a significant effect on protein dynamics. Experimentally, such "internal friction" has been investigated by studying folding or binding kinetics at varying solvent viscosity; however, the molecular origin of these effects is hard to pinpoint. We consider the kinetics of disordered glycine-serine and α-helix forming alanine peptides and a coarse-grained protein folding model in explicit-solvent molecular dynamics simulations. By varying the solvent mass over more than two orders of magnitude, we alter only the solvent viscosity and not the folding free energy. Folding dynamics at the near-vanishing solvent viscosities accessible by this approach suggests that solvent and internal friction effects are intrinsically entangled. This finding is rationalized by calculation of the polymer end-to-end distance dynamics from a Rouse model that includes internal friction. An analysis of the friction profile along different reaction coordinates, extracted from the simulation data, demonstrates that internal as well as solvent friction varies substantially along the folding pathways and furthermore suggests a connection between friction and the formation of hydrogen bonds upon folding. © 2012 American Chemical Society

  10. Some Observations on the Relationship Between Fatigue and Internal Friction

    NASA Technical Reports Server (NTRS)

    Valluri, S R

    1956-01-01

    Results are presented of an investigation made to determine the internal friction and fatigue strength of commercially pure 1100 aluminum under repeated stressing in torsion at various temperatures and stress levels in an effort to find if there exists any correlation between internal friction and fatigue characteristics.

  11. Fault detection in mechanical systems with friction phenomena: an online neural approximation approach.

    PubMed

    Papadimitropoulos, Adam; Rovithakis, George A; Parisini, Thomas

    2007-07-01

    In this paper, the problem of fault detection in mechanical systems performing linear motion, under the action of friction phenomena is addressed. The friction effects are modeled through the dynamic LuGre model. The proposed architecture is built upon an online neural network (NN) approximator, which requires only system's position and velocity. The friction internal state is not assumed to be available for measurement. The neural fault detection methodology is analyzed with respect to its robustness and sensitivity properties. Rigorous fault detectability conditions and upper bounds for the detection time are also derived. Extensive simulation results showing the effectiveness of the proposed methodology are provided, including a real case study on an industrial actuator.

  12. Rotor internal friction instability

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  13. The influence of nitrogen ion implantation on the tribological properties of piston rings made of Hardox and Raex steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Pyszniak, K.

    2016-09-01

    The implantation of nitrogen, carbon, and oxygen can be used for enhancing the tribological properties of critical components for internal combustion engines. Hardox and Raex steels have very similar strength parameters as for steel used for piston rings in internal combustion engines. An essential criterion when selecting material for the production of piston rings is a low friction factor and a low wear index. The aim of this study was to determine the extent to which these parameters can be enhanced by nitrogen ion implantation. Samples were implanted with nitrogen ions with 65 keV energy and the fluence of implanted ions set to 1.1017 N + /cm2. Friction and wear measurements were performed on a pin-on disc stand. The results demonstrate that implantation with nitrogen ions significantly reduces the friction factor and wear of Hardox 450 and Raex 400 steels. Implantation can and should be used for enhancing the tribological properties of steel used for friction elements in internal combustion engines, particularly when heat treatment is excluded. Final elements can be subjected to implantation, as the process does not change their dimensions.

  14. Internal friction and velocity measurements. [vacuum effects on lunar basalt resonance

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L.; Curnow, J.

    1976-01-01

    The Q of a lunar basalt sample was measured under varying vacuum conditions, and it was found that even at pressures as low as 10 to the -7th to 10 to the -10th torr, substantial increases in Q with decreasing pressure are observed, while the resonant frequency increases only slightly. This suggests that only small amounts of volatiles are sufficient to increase the internal friction (lower the Q) dramatically. The technique of vibrating encapsulated samples in the torsional mode was used to measure Q of terrestrial rocks as a function of hydrostatic pressure under lunar vacuum conditions. Young's modulus measurements in the temperature range 25-600 C under a variety of conditions including high vacuum show no evidence of any irreversibility upon temperature cycling and no indication that the high Q-values obtained are associated with any permanent structure changes such as the formation of lossless 'welded' contacts.

  15. a Study on the Effect of Annealing Process on Sound Velocity and Internal Friction Using the Vibrating Reed Technique

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, P. K.; Kumar, Uday; Badawi, Emad

    Al has unique intrinsic characteristics, which are of interest to scientists as well as engineers. Al and its alloys are slightly paramagnetic materials. Al has very low cross section for thermal neutrons of 0.23 barn, hence Al can be used in nuclear fields as a structural material which is virtually transparent to neutrons. We report VRT as a new technique to study material problems. We also discuss, the results of sound velocity and internal friction, and resonance frequency as a function of temperature range for a pure aluminum sample under investigation. By using VRT, we found that the annealing temperature (450°C) is sufficient to remove the type of defects introduced in the materials under study. The activation energy to remove point defect for Al samples was calculated and found to be about 0.0624 eV. Also, we could easily observe that Q-1 is a function of annealing time. From these measurements of sound velocity and internal friction we can conclude that VRT is a powerful tool for detecting and probing the physical properties of the material under study. Internal friction is a microscopic property for the indication of the purity of the sample. Sound velocity depends on the state of the materials (which depends on the process of treatment).

  16. Joule-Thomson effect and internal convection heat transfer in turbulent He II flow

    NASA Technical Reports Server (NTRS)

    Walstrom, P. L.

    1988-01-01

    The temperature rise in highly turbulent He II flowing in tubing was measured in the temperature range 1.6-2.1 K. The effect of internal convection heat transport on the predicted temperature profiles is calculated from the two-fluid model with mutual friction. The model predictions are in good agreement with the measurements, provided that the pressure gradient term is retained in the expression for internal convection heat flow.

  17. On the nature of low temperature internal friction peaks in metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khonik, V.A.; Spivak, L.V.

    Low temperature (30 < T < 300 K) internal friction in a metallic glass Ni{sub 60}Nb{sub 40} subjected to preliminary inhomogeneous deformation by cold rolling, homogeneous tensile deformation or electrolytic charging with hydrogen is investigated. Cold rolling or hydrogenation result in appearance of similar internal friction peaks and hysteresis damping. Homogeneous deformation has no influence on low temperature internal friction. The phenomenon of microplastic deformation during hydrogenation of weakly stressed samples is revealed. It is argued that microplastic deformation of metallic glasses during hydrogenation without external stress takes place too. Plastic flow both on cold rolling and hydrogenation occurs viamore » formation and motion of dislocation-like defects which are the reason of the observed anelastic anomalies. It is concluded that low temperature internal friction peaks described in the literature for as-cast, cold deformed and hydrogenated samples have common dislocation-like origin.« less

  18. Is internal friction friction?

    USGS Publications Warehouse

    Savage, J.C.; Byerlee, J.D.; Lockner, D.A.

    1996-01-01

    Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.

  19. A new skin friction balance and selected measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.

    1992-01-01

    A new skin friction balance with moving belt has been developed for measurement of the surface shear stress component in the direction of belt motion. The device is described in this paper with typical measurement results. This instrument is symmetric in design with small moving mass negligible internal friction. It is 3.8 cm high, 3.8 cm long and 2.1 cm wide, with the sensing surface 0.7 cm wide and 1.5 cm long, and it can be made in various sizes. The unique design of this instrument has reduced some of the errors associated with conventional floating-element balances. The instrument can use various sensing systems and the output signal is a linear function of the wall shear stress. Measurements show good agreement with data obtained by the floating element balances and flat plate prediction techniques. Dynamic measurements have been made in a limited range. The overall uncertainty of measurement is estimated to be +/- 2 percent.

  20. Internal friction and nonequilibrium unfolding of polymeric globules.

    PubMed

    Alexander-Katz, Alfredo; Wada, Hirofumi; Netz, Roland R

    2009-07-10

    The stretching response of a single collapsed homopolymer is studied using Brownian dynamic simulations. The irreversibly dissipated work is found to be dominated by internal friction effects below the collapse temperature, and the internal viscosity grows exponentially with the effective cohesive strength between monomers. These results explain friction effects of globular DNA and are relevant for dissipation at intermediate stages of protein folding.

  1. Internal friction in an intrinsically disordered protein—Comparing Rouse-like models with experiments

    NASA Astrophysics Data System (ADS)

    Soranno, Andrea; Zosel, Franziska; Hofmann, Hagen

    2018-03-01

    Internal friction is frequently found in protein dynamics. Its molecular origin however is difficult to conceptualize. Even unfolded and intrinsically disordered polypeptide chains exhibit signs of internal friction despite their enormous solvent accessibility. Here, we compare four polymer theories of internal friction with experimental results on the intrinsically disordered protein ACTR (activator of thyroid hormone receptor). Using nanosecond fluorescence correlation spectroscopy combined with single-molecule Förster resonance energy transfer (smFRET), we determine the time scales of the diffusive chain dynamics of ACTR at different solvent viscosities and varying degrees of compaction. Despite pronounced differences between the theories, we find that all models can capture the experimental viscosity-dependence of the chain relaxation time. In contrast, the observed slowdown upon chain collapse of ACTR is not captured by any of the theories and a mechanistic link between chain dimension and internal friction is still missing, implying that the current theories are incomplete. In addition, a discrepancy between early results on homopolymer solutions and recent single-molecule experiments on unfolded and disordered proteins suggests that internal friction is likely to be a composite phenomenon caused by a variety of processes.

  2. Internal friction in an intrinsically disordered protein-Comparing Rouse-like models with experiments.

    PubMed

    Soranno, Andrea; Zosel, Franziska; Hofmann, Hagen

    2018-03-28

    Internal friction is frequently found in protein dynamics. Its molecular origin however is difficult to conceptualize. Even unfolded and intrinsically disordered polypeptide chains exhibit signs of internal friction despite their enormous solvent accessibility. Here, we compare four polymer theories of internal friction with experimental results on the intrinsically disordered protein ACTR (activator of thyroid hormone receptor). Using nanosecond fluorescence correlation spectroscopy combined with single-molecule Förster resonance energy transfer (smFRET), we determine the time scales of the diffusive chain dynamics of ACTR at different solvent viscosities and varying degrees of compaction. Despite pronounced differences between the theories, we find that all models can capture the experimental viscosity-dependence of the chain relaxation time. In contrast, the observed slowdown upon chain collapse of ACTR is not captured by any of the theories and a mechanistic link between chain dimension and internal friction is still missing, implying that the current theories are incomplete. In addition, a discrepancy between early results on homopolymer solutions and recent single-molecule experiments on unfolded and disordered proteins suggests that internal friction is likely to be a composite phenomenon caused by a variety of processes.

  3. A km-scale "triaxial experiment" reveals the extreme mechanical weakness and anisotropy of mica-schists (Grandes Rousses Massif, France)

    NASA Astrophysics Data System (ADS)

    Bolognesi, Francesca; Bistacchi, Andrea

    2018-02-01

    The development of Andersonian faults is predicted, according to theory and experiments, for brittle/frictional deformation occurring in a homogeneous medium. In contrast, in an anisotropic medium it is possible to observe fault nucleation and propagation that is non-Andersonian in geometry and kinematics. Here, we consider post-metamorphic brittle/frictional deformation in the mechanically anisotropic mylonitic mica-schists of the Grandes Rousse Massif (France). The role of the mylonitic foliation (and of any other source of mechanical anisotropy) in brittle/frictional deformation is a function of orientation and friction angle. According to the relative orientation of principal stress axes and foliation, a foliation characterized by a certain coefficient of friction will be utilized or not for the nucleation and propagation of brittle/frictional fractures and faults. If the foliation is not utilized, the rock behaves as if it was isotropic, and Andersonian geometry and kinematics can be observed. If the foliation is utilized, the deviatoric stress magnitude is buffered and Andersonian faults/fractures cannot develop. In a narrow transition regime, both Andersonian and non-Andersonian structures can be observed. We apply stress inversion and slip tendency analysis to determine the critical angle for failure of the metamorphic foliation of the Grandes Rousses schists, defined as the limit angle between the foliation and principal stress axes for which the foliation was brittlely reactivated. This approach allows defining the ratio of the coefficient of internal friction for failure along the mylonitic foliation to the isotropic coefficient of friction. Thus, the study area can be seen as a km-scale triaxial experiment that allows measuring the degree of mechanical anisotropy of the mylonitic mica-schists. In this way, we infer a coefficient of friction μweak = 0.14 for brittle-frictional failure of the foliation, or 20 % of the isotropic coefficient of internal friction.

  4. Development of devices for self-injection: using tribological analysis to optimize injection force

    PubMed Central

    Lange, Jakob; Urbanek, Leos; Burren, Stefan

    2016-01-01

    This article describes the use of analytical models and physical measurements to characterize and optimize the tribological behavior of pen injectors for self-administration of biopharmaceuticals. One of the main performance attributes of this kind of device is its efficiency in transmitting the external force applied by the user on to the cartridge inside the pen in order to effectuate an injection. This injection force characteristic is heavily influenced by the frictional properties of the polymeric materials employed in the mechanism. Standard friction tests are available for characterizing candidate materials, but they use geometries and conditions far removed from the actual situation inside a pen injector and thus do not always generate relevant data. A new test procedure, allowing the direct measurement of the coefficient of friction between two key parts of a pen injector mechanism using real parts under simulated use conditions, is presented. In addition to the absolute level of friction, the test method provides information on expected evolution of friction over lifetime as well as on expected consistency between individual devices. Paired with an analytical model of the pen mechanism, the frictional data allow the expected overall injection system force efficiency to be estimated. The test method and analytical model are applied to a range of polymer combinations with different kinds of lubrication. It is found that material combinations used without lubrication generally have unsatisfactory performance, that the use of silicone-based internal lubricating additives improves performance, and that the best results can be achieved with external silicone-based lubricants. Polytetrafluoroethylene-based internal lubrication and external lubrication are also evaluated but found to provide only limited benefits unless used in combination with silicone. PMID:27274319

  5. Internal Friction And Instabilities Of Rotors

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  6. Relaxation peak near 200 K in NiTi alloy

    NASA Astrophysics Data System (ADS)

    Zhu, J. S.; Schaller, R.; Benoit, W.

    1989-10-01

    Internal friction (IF), frequency ( f), electrical resistance ( R) and zero point movement of the torsion pendulum (ɛ) have been measured in near equi-atomic NiTi alloy in order to clarify the mechanism for the relaxation peak near 200 K. The height of the relaxation peak decreases successively with thermal cycling and settles down to a lower stable value in running 15 cycles. However, the electrical resistance of the sample shows a variation in contrast with the internal friction. Both of them will return to the initial state after a single annealing at 773 K for 1 h. The probable mechanism of this relaxation peak was discussed.

  7. Development of a new instrument for direct skin friction measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.

    1986-01-01

    A device developed for the direct measurement of wall shear stress generated by flows is described. Simple and symmetric in design with optional small moving mass and no internal friction, the features employed in the design eliminate most of the difficulties associated with the traditional floating element balances. The device is basically small and can be made in various sizes. Vibration problems associated with the floating element skin friction balances were found to be minimized due to the design symmetry and optional damping provided. The design eliminates or reduces the errors associated with conventional floating element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer, and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Dynamic measurements could be made in a limited range and measurements in liquids could be performed readily. Measurement made in the three different tunnels show excellent agreement with data obtained by the floating element devices and other techniques.

  8. PREFACE: The International Conference on Science of Friction

    NASA Astrophysics Data System (ADS)

    Miura, Kouji; Matsukawa, Hiroshi

    2007-07-01

    The first international conference on the science of friction in Japan was held at Irago, Aichi on 9-13 September 2007. The conference focused on the elementary process of friction phenomena from the atomic and molecular scale view. Topics covered in the conference are shown below.:

  9. Superlubricity and friction
  10. Electronic and phononic contributions to friction
  11. Friction on the atomic and molecular scales
  12. van der Waals friction and Casimir force
  13. Molecular motor and friction
  14. Friction and adhesion in soft matter systems
  15. Wear and crack on the nanoscale
  16. Theoretical studies on the atomic scale friction and energy dissipation
  17. Friction and chaos
  18. Mechanical properties of nanoscale contacts
  19. Friction of powder
  20. The number of participants in the conference was approximately 100, registered from 11 countries. 48 oral and 29 poster talks were presented at the conference. This volume of Journal of Physics: Conference Series includes 23 papers devoted to the above topics of friction. The successful organization of the conference was made possible by the contribution of the members of the Organizing Committee and International Advisory Committee. The conference was made possible thanks to the financial support from Aichi University of Education and the Taihokogyo Tribology Research Foundation (TTRF), and moreover thanks to the approval societies of The Physical Society of Japan, The Surface Science Society of Japan, The Japanese Society of Tribologists and Toyota Physical and Chemical Research Institute. The details of the conference are available at http://www.science-of-friction.com . Finally we want to thank the speakers for the high quality of their talks and all participants for coming to Irago, Japan and actively contributing to the conference. Kouji Miura and Hiroshi Matsukawa Editors

  21. Internal friction and dislocation collective pinning in disordered quenched solid solutions

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; Benoit, W.; Vinokur, V. M.

    1997-12-01

    We introduce the collective pinning of dislocations in disordered quenched solid solutions and calculate the macroscopic mechanical response to a small dc or ac applied stress. This work is a generalization of the Granato-Lücke string model, able to describe self-consistently short and long range dislocation motion. Under dc applied stress the long distance dislocation creep has at the microscopic level avalanche features, which result in a macroscopic nonlinear "glassy" velocity-stress characteristic. Under ac conditions the model predicts, in addition to the anelastic internal friction relaxation in the high frequency regime, a linear internal friction background which remains amplitude-independent down to a crossover frequency to a strongly nonlinear internal friction regime.

  22. Field evaluation of two commonly used slipmeters.

    PubMed

    Chang, Wen-Ruey; Cotnam, John P; Matz, Simon

    2003-01-01

    A variety of slipmeters have been used to assess the slipperiness of floor surfaces. International standards for the operation of slipmeters describe the protocol for a single measurement. These standards usually do not cover some of the critical elements in safety assessment such as methods for the selection of measurement locations and the necessary number of repeated measurements at each location. Furthermore, most of the slipmeters were evaluated in laboratory settings with new floor surfaces and artificial contaminants. Two commonly used slipmeters, the Brungraber Mark II and the English XL, were evaluated at actual worksites in this experiment. Four floor tiles in each of four different work areas in the kitchens of 18 fast food restaurants were selected for repeated measurements with these two slipmeters. The results indicated that sanding of footwear materials has a significant effect on the outcomes of friction measurements, and the tile-to-tile variations in friction in the same areas of restaurants were also mostly statistically significant. Significant local variation in friction among tiles in the same area could potentially increase the chances of slip and fall incidents. Both slipmeters used in this experiment could potentially have problems in the areas with grease, such as grill and fryer areas, since the build-up of grease during repeated strikes could alter the outcome of friction measured.

  23. Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction.

    PubMed

    Cunningham, J C; Sinka, I C; Zavaliangos, A

    2004-08-01

    In this first of two articles on the modeling of tablet compaction, the experimental inputs related to the constitutive model of the powder and the powder/tooling friction are determined. The continuum-based analysis of tableting makes use of an elasto-plastic model, which incorporates the elements of yield, plastic flow potential, and hardening, to describe the mechanical behavior of microcrystalline cellulose over the range of densities experienced during tableting. Specifically, a modified Drucker-Prager/cap plasticity model, which includes material parameters such as cohesion, internal friction, and hydrostatic yield pressure that evolve with the internal state variable relative density, was applied. Linear elasticity is assumed with the elastic parameters, Young's modulus, and Poisson's ratio dependent on the relative density. The calibration techniques were developed based on a series of simple mechanical tests including diametrical compression, simple compression, and die compaction using an instrumented die. The friction behavior is measured using an instrumented die and the experimental data are analyzed using the method of differential slices. The constitutive model and frictional properties are essential experimental inputs to the finite element-based model described in the companion article. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2022-2039, 2004

  24. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy

    PubMed Central

    Borgia, Alessandro; Wensley, Beth G.; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B.; Hoffmann, Armin; Pfeil, Shawn H.; Lipman, Everett A.; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes. PMID:23149740

  25. Localizing internal friction along the reaction coordinate of protein folding by combining ensemble and single-molecule fluorescence spectroscopy.

    PubMed

    Borgia, Alessandro; Wensley, Beth G; Soranno, Andrea; Nettels, Daniel; Borgia, Madeleine B; Hoffmann, Armin; Pfeil, Shawn H; Lipman, Everett A; Clarke, Jane; Schuler, Benjamin

    2012-01-01

    Theory, simulations and experimental results have suggested an important role of internal friction in the kinetics of protein folding. Recent experiments on spectrin domains provided the first evidence for a pronounced contribution of internal friction in proteins that fold on the millisecond timescale. However, it has remained unclear how this contribution is distributed along the reaction and what influence it has on the folding dynamics. Here we use a combination of single-molecule Förster resonance energy transfer, nanosecond fluorescence correlation spectroscopy, microfluidic mixing and denaturant- and viscosity-dependent protein-folding kinetics to probe internal friction in the unfolded state and at the early and late transition states of slow- and fast-folding spectrin domains. We find that the internal friction affecting the folding rates of spectrin domains is highly localized to the early transition state, suggesting an important role of rather specific interactions in the rate-limiting conformational changes.

  26. A method for evaluating dynamical friction in linear ball bearings.

    PubMed

    Fujii, Yusaku; Maru, Koichi; Jin, Tao; Yupapin, Preecha P; Mitatha, Somsak

    2010-01-01

    A method is proposed for evaluating the dynamical friction of linear bearings, whose motion is not perfectly linear due to some play in its internal mechanism. In this method, the moving part of a linear bearing is made to move freely, and the force acting on the moving part is measured as the inertial force given by the product of its mass and the acceleration of its centre of gravity. To evaluate the acceleration of its centre of gravity, the acceleration of two different points on it is measured using a dual-axis optical interferometer.

  27. Flowability of JSC-1a

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Wilkinson, Allen; Elliot, Alan; Young, Carolyn

    2009-01-01

    We have done a complete flowability characterization of the lunar soil simulant, JSC-1a, following closely the ASTM-6773 standard for the Schulze ring shear test. The measurements, which involve pre-shearing the material before each yield point, show JSC-1a to be cohesionless, with an angle of internal friction near 40 deg. We also measured yield loci after consolidating the material in a vibration table which show it to have significant cohesion (approximately equal to 1 kPa) and an angle of internal friction of about 60 deg. Hopper designs based on each type of flowability test differ significantly. These differences highlight the need to discern the condition of the lunar soil in the specific process where flowability is an issue. We close with a list not necessarily comprehensive of engineering rules of thumb that apply to powder flow in hoppers.

  28. Transduction channels' gating can control friction on vibrating hair-cell bundles in the ear.

    PubMed

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2014-05-20

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force-displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell's characteristic frequency of responsiveness.

  29. Transduction channels’ gating can control friction on vibrating hair-cell bundles in the ear

    PubMed Central

    Bormuth, Volker; Barral, Jérémie; Joanny, Jean-François; Jülicher, Frank; Martin, Pascal

    2014-01-01

    Hearing starts when sound-evoked mechanical vibrations of the hair-cell bundle activate mechanosensitive ion channels, giving birth to an electrical signal. As for any mechanical system, friction impedes movements of the hair bundle and thus constrains the sensitivity and frequency selectivity of auditory transduction. Friction is generally thought to result mainly from viscous drag by the surrounding fluid. We demonstrate here that the opening and closing of the transduction channels produce internal frictional forces that can dominate viscous drag on the micrometer-sized hair bundle. We characterized friction by analyzing hysteresis in the force–displacement relation of single hair-cell bundles in response to periodic triangular stimuli. For bundle velocities high enough to outrun adaptation, we found that frictional forces were maximal within the narrow region of deflections that elicited significant channel gating, plummeted upon application of a channel blocker, and displayed a sublinear growth for increasing bundle velocity. At low velocity, the slope of the relation between the frictional force and velocity was nearly fivefold larger than the hydrodynamic friction coefficient that was measured when the transduction machinery was decoupled from bundle motion by severing tip links. A theoretical analysis reveals that channel friction arises from coupling the dynamics of the conformational change associated with channel gating to tip-link tension. Varying channel properties affects friction, with faster channels producing smaller friction. We propose that this intrinsic source of friction may contribute to the process that sets the hair cell’s characteristic frequency of responsiveness. PMID:24799674

  30. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  31. Lunar sample analysis

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1975-01-01

    Previous studies have shown that very small amounts of absorbed volatiles only removed by outgassing in high vacuum and elevated temperatures-drastically increase the internal friction in terrestrial analogs of lunar basalt. Recently room temperature Q values as high as 2000 were achieved by thorough outgassing procedures in 10 to the 8th power torr. Results are presented on Q measurements for lunar rock 70215.85, along with some data on the effect on Q of a variety of gases. Data show that substantially greater increases in Q are obtainable in a lunar rock sample than in the terrestrial analog samples studied, and that in addition to H2O other gases also can make non-negligible contributions to the internal friction.

  32. Dispersion Forces and the Molecular Origin of Internal Friction in Protein.

    PubMed

    Sashi, Pulikallu; Ramakrishna, Dasari; Bhuyan, Abani K

    2016-08-23

    Internal friction in macromolecules is one of the curious phenomena that control conformational changes and reaction rates. It is held here that dispersion interactions and London-van der Waals forces between nonbonded atoms are major contributors to internal friction. To demonstrate this, the flipping motion of aromatic rings of F10 and Y97 amino acid residues of cytochrome c has been studied in glycerol/water mixtures by cross relaxation-suppressed exchange nuclear magnetic resonance spectroscopy. The ring-flip rate is highly overdamped by glycerol, but this is not due to the effect of protein-solvent interactions on the Brownian dynamics of the protein, because glycerol cannot penetrate into the protein to slow the internal collective motions. Sound velocity in the protein under matching solvent conditions shows that glycerol exerts its effect by rather smothering the protein interior to produce reduced molecular compressibility and root-mean-square volume fluctuation (δVRMS), implying an increased number of dispersion interactions of nonbonded atoms. Hence, δVRMS can be used as a proxy for internal friction. By using the ansatz that internal friction is related to nonbonded interactions by the equation f(n) = f0 + f1n + f2n(2) + ..., where the variable n is the extent of nonbonded interactions with fi coefficients, the barrier to aromatic ring rotation is found to be flat. Also interesting is the appearance of a turnover region in the δVRMS dependence of the ring-flip rate, suggesting anomalous internal diffusion. We conclude that cohesive forces among nonbonded atoms are major contributors to the molecular origin of internal friction.

  1. Skin friction measurement in complex flows using thin oil film techniques

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Grant NAG2-261 was initiated to support a program of research to study complex flows that occur in flight and laboratory experiments by building, testing and optimizing an on-board technique for direct measurement of surface shear stress using thin oil film techniques. The program of research has proceeded under the supervision of the NASA Ames Research Center and with further cooperation from the NASA Ames-Dryden and NASA Langley Research Centers. In accordance with the original statement of work, the following research milestones were accomplished: (1) design and testing of an internally mounted one-directional skin friction meter to demonstrate the feasibility of the concept; (2) design and construction of a compact instrument capable of measuring skin friction in two directions; (3) study of transitional and fully turbulent boundary layers over a flat plate with and without longitudinal pressure gradients utilizing the compact two-directional skin friction meter; (4) study of the interaction between a turbulent boundary layer and a shock wave generated by a compression corner using the two-directional meter; and (5) flight qualification of the compact meter and accompanying electronic and pneumatic systems, preliminary installation into flight test fixture.

  2. Elastic Properties and Internal Friction of Two Magnesium Alloys at Elevated Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freels, M.; Liaw, P. K.; Garlea, E.

    2011-06-01

    The elastic properties and internal friction of two magnesium alloys were studied from 25 C to 450 C using Resonant Ultrasound Spectroscopy (RUS). The Young's moduli decrease with increasing temperature. At 200 C, a change in the temperature dependence of the elastic constants is observed. The internal friction increases significantly with increasing temperature above 200 C. The observed changes in the temperature dependence of the elastic constants and the internal friction are the result of anelastic relaxation by grain boundary sliding at elevated temperatures. Elastic properties govern the behavior of a materials subjected to stress over a region of strainmore » where the material behaves elastically. The elastic properties, including the Young's modulus (E), shear modulus (G), bulk modulus (B), and Poisson's ratio (?), are of significant interest to many design and engineering applications. The choice of the most appropriate material for a particular application at elevated temperatures therefore requires knowledge of its elastic properties as a function of temperature. In addition, mechanical vibration can cause significant damage in the automotive, aerospace, and architectural industries and thus, the ability of a material to dissipate elastic strain energy in materials, known as damping or internal friction, is also important property. Internal friction can be the result of a wide range of physical mechanisms, and depends on the material, temperature, and frequency of the loading. When utilized effectively in engineering applications, the damping capacity of a material can remove undesirable noise and vibration as heat to the surroundings. The elastic properties of materials can be determined by static or dynamic methods. Resonant Ultrasound Spectroscopy (RUS), used in this study, is a unique and sophisticated non-destructive dynamic technique for determining the complete elastic tensor of a solid by measuring the resonant spectrum of mechanical resonance for a sample of known geometry, dimensions, and mass. In addition, RUS allows determination of internal friction, or damping, at different frequencies and temperatures. Polycrystalline pure magnesium (Mg) exhibits excellent high damping properties. However, the poor mechanical properties limit the applications of pure Mg. Although alloying can improve the mechanical properties of Mg, the damping properties are reduced with additions of alloying elements. Therefore, it becomes necessary to study and develop Mg-alloys with simultaneous high damping capacity and improved mechanical properties. Moreover, studies involving the high temperature dynamic elastic properties of Mg alloys are limited. In this study, the elastic properties and internal friction of two magnesium alloys were studied at elevated temperatures using RUS. The effect of alloy composition and grain size was investigated. The wrought magnesium alloys AZ31 and ZK60 were employed. Table 1 gives the nominal chemical compositions of these two alloys. The ZK60 alloy is a commercial extruded plate with a T5 temper, i.e. solution-treated at 535 C for two hours, quenched in hot water, and aged at 185 C for 24 hours. The AZ31 alloy is a commercial rolled plate with a H24 temper, i.e. strain hardened and partially annealed.« less

  3. Assessment of local friction in protein folding dynamics using a helix cross-linker.

    PubMed

    Markiewicz, Beatrice N; Jo, Hyunil; Culik, Robert M; DeGrado, William F; Gai, Feng

    2013-11-27

    Internal friction arising from local steric hindrance and/or the excluded volume effect plays an important role in controlling not only the dynamics of protein folding but also conformational transitions occurring within the native state potential well. However, experimental assessment of such local friction is difficult because it does not manifest itself as an independent experimental observable. Herein, we demonstrate, using the miniprotein trp-cage as a testbed, that it is possible to selectively increase the local mass density in a protein and hence the magnitude of local friction, thus making its effect directly measurable via folding kinetic studies. Specifically, we show that when a helix cross-linker, m-xylene, is placed near the most congested region of the trp-cage it leads to a significant decrease in both the folding rate (by a factor of 3.8) and unfolding rate (by a factor of 2.5 at 35 °C) but has little effect on protein stability. Thus, these results, in conjunction with those obtained with another cross-linked trp-cage and two uncross-linked variants, demonstrate the feasibility of using a nonperturbing cross-linker to help quantify the effect of internal friction. In addition, we estimate that a m-xylene cross-linker could lead to an increase in the roughness of the folding energy landscape by as much as 0.4-1.0k(B)T.

  4. Linear viscoelasticity of a single semiflexible polymer with internal friction.

    PubMed

    Hiraiwa, Tetsuya; Ohta, Takao

    2010-07-28

    The linear viscoelastic behaviors of single semiflexible chains with internal friction are studied based on the wormlike-chain model. It is shown that the frequency dependence of the complex compliance in the high frequency limit is the same as that of the Voigt model. This asymptotic behavior appears also for the Rouse model with internal friction. We derive the characteristic times for both the high frequency limit and the low frequency limit and compare the results with those obtained by Khatri et al.

  5. A summary of Viking sample-trench analyses for angles of internal friction and cohesions

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Clow, G. D.; Hutton, R. E.

    1982-01-01

    Analyses of sample trenches excavated on Mars, using a theory for plowing by narrow blades, provide estimates of the angles of internal friction and the cohesions of the Martian surface materials. Angles of internal friction appear to be the same as those of many terrestrial soils because they are generally between 27 degrees and 39 degrees. Drift material, at the Lander 1 site, has a low angle of internal friction (near 18 degrees). All the materials excavated have low cohesions, generally between 0.2 and 10 kPa. The occurrence of cross bedding, layers of crusts, and blocky slabs shows that these materials are heterogeneous and that they contain planes of weakness. The results reported here have significant implications for future landed missions, Martian eolian processes, and interpretation of infrared temperatures.

  6. Aircraft and Ground Vehicle Winter Runway Friction Assessment

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1999-01-01

    Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.

  7. Simultaneous measurement of friction and wear in hip simulators.

    PubMed

    Haider, Hani; Weisenburger, Joel N; Garvin, Kevin L

    2016-05-01

    We propose and have evaluated a method to measure hip friction during wear testing on a popular multi-station hip simulator. A 6-degree-of-freedom load cell underneath the specimen sensed forces and torques during implant wear testing of simulated walking. This included internal-external and adduction-abduction rotations which are often neglected during friction testing on pendulum-type machines. Robust mathematical analysis and data processing provided friction estimates in three simultaneous orthogonal rotations, over extended multi-million cycle wear tests. We tested various bearing couples including metal-on-plastic, ceramic-on-plastic, and metal-on-metal material couples. In one test series, new and intentionally scratched CoCrMo 40-mm-diameter femoral heads were tested against conventional ultrahigh-molecular-weight polyethylene, highly cross-linked, and highly cross-linked with vitamin E versions. The scratching significantly increased friction and doubled the wear of all groups. Before scratching, friction levels for the aforementioned plastic groups were 0.056 ± 0.0060, 0.062 ± 0.0080, and 0.070 ± 0.0045, respectively, but after scratching increased to 0.088 ± 0.018, 0.076 ± 0.0066, and 0.082 ± 0.0049, respectively, all statistically significant increases (p = 0.00059, 0.00005, 0.0115, respectively). In another test series of 44-mm femoral head diameter hips, metal-on-plastic hips with conventional ultrahigh-molecular-weight polyethylene showed the lowest friction at 0.045 ± 0.0085, followed by highly cross-linked with 0.046 ± 0.0035 (not significantly different). In a ceramic-on-plastic design with conventional ultrahigh-molecular-weight polyethylene, higher friction 0.079 ± 0.0070 was measured likely due to that ceramic surface being rougher than usual. Metal-on-metal hips were compared without and with a TiN coating, resulting in 0.049 ± 0.014 and 0.097 ± 0.020 friction factors, respectively (statistically significant, p < 0.001), and the coating wore away on all coated hips eventually. Higher friction mostly correlated with higher wear or damage to femoral heads or implant coatings, except for the highly cross-linked wear resistant ultrahigh-molecular-weight polyethylene which had slightly higher friction, confirming the same finding in other independent studies. This type of friction measurements can help screen for clamping and elevated wear of metal-on-metal and resurfacing total hip replacements, surgical malpositioning, and abraded and otherwise damaged surfaces. © IMechE 2016.

  8. Young's modulus and internal friction of the SiC/Si biomorphic composite based on the sapele wood precursor

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Orlova, T. S.; Smirnov, B. I.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.

    2009-04-01

    The effect of the vibrational strain amplitude on the Young’s modulus and ultrasound absorption (internal friction) of a SiC/Si biomorphic composite prepared by pyrolysis of sapele wood followed by infiltration of silicon were investigated. The studies were conducted in air and in vacuum by the acoustic resonance method with the use of a composite vibrator in longitudinal vibrations at frequencies of about 100 kHz. Measurements performed on sapele wood-based bio-SiC/Si samples revealed a substantial effect of adsorption-desorption of molecules contained in air on the effective elasticity modulus and elastic vibration decrement. Microplastic characteristics of the SiC/Si composites prepared from wood of different tree species were compared.

  9. Internal friction of rocks and volatiles on the moon

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Housley, R. M.; Cirlin, E. H.

    1973-01-01

    Internal friction quality factors Q up to 2200 have been observed in a strongly outgassed terrestrial analog of lunar basalt. This was accomplished by successively cycling a bar shaped sample vibrating in its fundamental longitudinal mode at 15 kHz to higher and higher temperatures in a vacuum between 100 and 10 nanotorr. After each cycle, Q measured at room temperature in the vacuum was observed to decrease with time suggesting that gas reabsorption was taking place even at these low pressures. A study of the effect of exposing a sample to a variety of gases and vapors showed that of the volatiles most likely to be present in the lunar environment H2O was by far the most effective in lowering Q.

  10. Dynamics of hydrated mucopolysaccharides in cartilaginous tissues treated by laser radiation

    NASA Astrophysics Data System (ADS)

    Omelchenko, Alexander I.; Sobol, Emil N.; Ignatieva, Natalia Y.; Lunin, Valerii V.; Jumel, Kornelia; Harding, Stephen E.; Jones, Nicholas

    2001-05-01

    Dynamic mechanical properties of hydrated mucopolysaccharides have been studied in heated solutions by means of molecular hydrodynamic and acoustic techniques. These experiments model the thermal condition used for laser reshaping of cartilage. It has been shown that elastic modulus and internal friction depends on concentration of chondroitine sulphate in the solution and temperature. Maximum of internal friction was revealed at about 40 degree(s)C that corresponds to temperature of breakdown of hydrophobic bonds. Temperature dependence of internal friction manifests structural changes in polysaccharides molecules under laser heating.

  11. Anelastic properties of (TaSe 4) 2I at low frequencies

    NASA Astrophysics Data System (ADS)

    Salva, H.; Ghilarducci, A.; Monceau, P.; Levy, F.; D'Anna, G.; Benoit, W.

    1995-05-01

    We have performed torsion measurements in (TaSe 4) 2I in the temperature range 110-290 K and 5.10 -3-10 Hz measuring frequency. We have always found a dip in modulus at the Peierls transition and that deformation of measurement gives additional response in modulus and internal friction spectra. These results are compared with existing models.

  12. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.

    PubMed

    Chang, Pyung Hun; Kang, Sang Hoon

    2010-05-30

    The basic assumption of stochastic human arm impedance estimation methods is that the human arm and robot behave linearly for small perturbations. In the present work, we have identified the degree of influence of nonlinear friction in robot joints to the stochastic human arm impedance estimation. Internal model based impedance control (IMBIC) is then proposed as a means to make the estimation accurate by compensating for the nonlinear friction. From simulations with a nonlinear Lugre friction model, it is observed that the reliability and accuracy of the estimation are severely degraded with nonlinear friction: below 2 Hz, multiple and partial coherence functions are far less than unity; estimated magnitudes and phases are severely deviated from that of a real human arm throughout the frequency range of interest; and the accuracy is not enhanced with an increase of magnitude of the force perturbations. In contrast, the combined use of stochastic estimation and IMBIC provides with accurate estimation results even with large friction: the multiple coherence functions are larger than 0.9 throughout the frequency range of interest and the estimated magnitudes and phases are well matched with that of a real human arm. Furthermore, the performance of suggested method is independent of human arm and robot posture, and human arm impedance. Therefore, the IMBIC will be useful in measuring human arm impedance with conventional robot, as well as in designing a spatial impedance measuring robot, which requires gearing. (c) 2010 Elsevier B.V. All rights reserved.

  13. Weld defect identification in friction stir welding using power spectral density

    NASA Astrophysics Data System (ADS)

    Das, Bipul; Pal, Sukhomay; Bag, Swarup

    2018-04-01

    Power spectral density estimates are powerful in extraction of useful information retained in signal. In the current research work classical periodogram and Welch periodogram algorithms are used for the estimation of power spectral density for vertical force signal and transverse force signal acquired during friction stir welding process. The estimated spectral densities reveal notable insight in identification of defects in friction stir welded samples. It was observed that higher spectral density against each process signals is a key indication in identifying the presence of possible internal defects in the welded samples. The developed methodology can offer preliminary information regarding presence of internal defects in friction stir welded samples can be best accepted as first level of safeguard in monitoring the friction stir welding process.

  14. Biomechanical analysis of the influence of friction in jaw joint disorders.

    PubMed

    Koolstra, J H

    2012-01-01

    Increased friction due to impaired lubrication in the jaw joint has been considered as one of the possible causes for internal joint disorders. A very common internal disorder in the jaw joint is an anteriorly dislocated articular disc. This is generally considered to contribute to the onset of arthritic injuries. Increase of friction as caused by impairment of lubrication is suspected to be a possible cause for such a disorder. The influence of friction was addressed by analysis of its effects on tensions and deformations of the cartilaginous structures in the jaw joint using computational biomechanical analysis. Jaw open-close movements were simulated while in one or two compartments of the right joint friction was applied in the articular contact. The left joint was treated as the healthy control. The simulations predicted that friction primarily causes increased shear stress in the articular cartilage layers, but hardly in the articular disc. This suggests that impaired lubrication may facilitate deterioration of the cartilage-subchondral bone unit of the articular surfaces. The results further suggest that increased friction is not a plausible cause for turning a normally functioning articular disc into an anteriorly dislocated one. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Comparing internal migration across the countries of Latin America: A multidimensional approach

    PubMed Central

    Bernard, Aude; Rowe, Francisco; Bell, Martin; Ueffing, Philipp; Charles-Edwards, Elin

    2017-01-01

    While considerable progress has been made in understanding the way particular aspects of internal migration, such as its intensity, age profile and spatial impact, vary between countries around the world, little attention to date has been given to establishing how these dimensions of migration interact in different national settings. We use recently developed measures of internal migration that are scale-independent to compare the overall intensity, age composition, spatial impact, and distance profile of internal migration in 19 Latin American countries. Comparisons reveal substantial cross-national variation but cluster analysis suggests the different dimensions of migration evolve systematically to form a broad sequence characterised by low intensities, young ages at migration, unbalanced flows and high friction of distance at lower levels of development, trending to high intensities, an older age profile of migration, more closely balanced flows and lower friction of distance at later stages of development. However, the transition is not linear and local contingencies, such as international migration and political control, often distort the migration-development nexus, leading to unique migration patterns in individual national contexts. PMID:28328932

  16. Work and power outputs determined from pedalling and flywheel friction forces during brief maximal exertion on a cycle ergometer.

    PubMed

    Hibi, N; Fujinaga, H; Ishii, K

    1996-01-01

    Work and power outputs during short-term, maximal exertion on a friction loaded cycle ergometer are usually calculated from the friction force applied to the flywheel. The inertia of the flywheel is sometimes taken into consideration, but the effects of internal resistances and other factors have been ignored. The purpose of this study was to estimate their effects by comparing work or power output determined from the force exerted on the pedals (pedalling force) with work or power output determined from the friction force and the moment of inertia of the rotational parts. A group of 22 male college students accelerated a cycle ergometer as rapidly as possible for 3 s. The total work output determined from the pedalling force (TWp) was significantly greater than that calculated from the friction force and the moment of inertia (TWf). Power output determined from the pedalling force during each pedal stroke (SPp) was also significantly greater than that calculated from the friction force and the moment of inertia. Percentage difference (% diff), defined by % diff = ¿(TWp - TWf)/TWf¿ x 100, ranged from 16.8% to 49.3% with a mean value of 30.8 (SD 9.1)%. It was observed that % diff values were higher in subjects with greater TWp or greater maximal SPp. These results would indicate that internal resistances and other factors, such as the deformation of the chain and the vibrations of the entire system, may have significant effects on the measurements of work and power outputs. The effects appear to depend on the magnitudes of pedalling force and pedal velocity.

  17. Internally architectured materials with directionally asymmetric friction

    PubMed Central

    Bafekrpour, Ehsan; Dyskin, Arcady; Pasternak, Elena; Molotnikov, Andrey; Estrin, Yuri

    2015-01-01

    Internally Architectured Materials (IAMs) that exhibit different friction forces for sliding in the opposite directions are proposed. This is achieved by translating deformation normal to the sliding plane into a tangential force in a manner that is akin to a toothbrush with inclined bristles. Friction asymmetry is attained by employing a layered material or a structure with parallel ‘ribs’ inclined to the direction of sliding. A theory of directionally asymmetric friction is presented, along with prototype IAMs designed, fabricated and tested. The friction anisotropy (the ξ-coefficient) is characterised by the ratio of the friction forces for two opposite directions of sliding. It is further demonstrated that IAM can possess very high levels of friction anisotropy, with ξ of the order of 10. Further increase in ξ is attained by modifying the shape of the ribs to provide them with directionally dependent bending stiffness. Prototype IAMs produced by 3D printing exhibit truly giant friction asymmetry, with ξ in excess of 20. A novel mechanical rectifier, which can convert oscillatory movement into unidirectional movement by virtue of directionally asymmetric friction, is proposed. Possible applications include locomotion in a constrained environment and energy harvesting from oscillatory noise and vibrations. PMID:26040634

  18. Molecular Origins of Internal Friction Effects on Protein Folding Rates

    PubMed Central

    Sirur, Anshul

    2014-01-01

    Recent experiments on protein folding dynamics have revealed strong evidence for internal friction effects. That is, observed relaxation times are not simply proportional to the solvent viscosity as might be expected if the solvent were the only source of friction. However, a molecular interpretation of this remarkable phenomenon is currently lacking. Here, we use all-atom simulations of peptide and protein folding in explicit solvent, to probe the origin of the unusual viscosity dependence. We find that an important contribution to this effect, explaining the viscosity dependence of helix formation and the folding of a helix-containing protein, is the insensitivity of torsion angle isomerization to solvent friction. The influence of this landscape roughness can, in turn, be quantitatively explained by a rate theory including memory friction. This insensitivity of local barrier crossing to solvent friction is expected to contribute to the viscosity dependence of folding rates in larger proteins. PMID:24986114

  19. Molecular origins of internal friction effects on protein-folding rates.

    PubMed

    de Sancho, David; Sirur, Anshul; Best, Robert B

    2014-07-02

    Recent experiments on protein-folding dynamics have revealed strong evidence for internal friction effects. That is, observed relaxation times are not simply proportional to the solvent viscosity as might be expected if the solvent were the only source of friction. However, a molecular interpretation of this remarkable phenomenon is currently lacking. Here, we use all-atom simulations of peptide and protein folding in explicit solvent, to probe the origin of the unusual viscosity dependence. We find that an important contribution to this effect, explaining the viscosity dependence of helix formation and the folding of a helix-containing protein, is the insensitivity of torsion angle isomerization to solvent friction. The influence of this landscape roughness can, in turn, be quantitatively explained by a rate theory including memory friction. This insensitivity of local barrier crossing to solvent friction is expected to contribute to the viscosity dependence of folding rates in larger proteins.

  20. Surface effects on friction-induced fluid heating in nanochannel flows.

    PubMed

    Li, Zhigang

    2009-02-01

    We investigate the mechanism of friction-induced fluid heating under the influence of surfaces. The temperature distributions of liquid argon and helium in nanoscale Poiseuille flows are studied through molecular dynamics simulations. It is found that the fluid heating is mainly caused by the viscous friction in the fluid when the external force is small and there is no slip at the fluid-solid interface. When the external force is larger than the fluid-surface binding force, the friction at the fluid-solid interface dominates over the internal friction of the fluid and is the major contribution to fluid heating. An asymmetric temperature gradient in the fluid is developed in the case of nonidentical walls and the general temperature gradient may change sign as the dominant heating factor changes from internal to interfacial friction with increasing external force. The effect of temperature on the fluid heating is also discussed.

  1. Analysis of Apex Seal Friction Power Loss in Rotary Engines

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Owen, A. Karl

    2010-01-01

    An analysis of the frictional losses from the apex seals in a rotary engine was developed. The modeling was initiated with a kinematic analysis of the rotary engine. Next a modern internal combustion engine analysis code was altered for use in a rotary engine to allow the calculation of the internal combustion pressure as a function of rotor rotation. Finally the forces from the spring, inertial, and combustion pressure on the seal were combined to provide the frictional horsepower assessment.

  2. Experimental investigation into biomechanical and biotribological properties of a real intestine and their significance for design of a spiral-type robotic capsule.

    PubMed

    Zhou, Hao; Alici, Gursel; Than, Trung D; Li, Weihua

    2014-03-01

    This article reports on the results and implications of our experimental investigation into the biomechanical and biotribological properties of a real intestine for the optimal design of a spiral-type robotic capsule. Dynamic shear experiments were conducted to evaluate how the storage and loss moduli and damping factor of the small intestine change with the speed or the angular frequency. The sliding friction between differently shaped test pieces, with a topology similar to that of the spirals, and the intestine sample was experimentally determined. Our findings demonstrate that the intestine's biomechanical and biotribological properties are coupled, suggesting that the sliding friction is strongly related to the internal friction of the intestinal tissue. The significant implication of this finding is that one can predict the reaction force between the capsule with a spiral-type traction topology and the intestine directly from the intestine's biomechanical measurements rather than employing complicated three-dimensional finite element analysis or an inaccurate analytical model. Sliding friction experiments were also conducted with bar-shaped solid samples to determine the sliding friction between the samples and the small intestine. This sliding friction data will be useful in determining spiral material for an optimally designed robotic capsule.

  3. Friction Stir Welding of Thick Section Aluminum for Military Vehicle Applications

    DTIC Science & Technology

    2012-12-01

    Friction Stir Welding of Thick Section Aluminum for Military Vehicle Applications by Brian Thompson, Kevin Doherty, Craig Niese, Mike Eff...International Symposium on Friction Stir Welding (9ISFSW), Huntsville, AL, 15–17 May 2012. Approved for public release...Aberdeen Proving Ground, MD 21005-5069 ARL-RP-417 December 2012 Friction Stir Welding of Thick Section Aluminum for Military

  4. Frictionless bead packs have macroscopic friction, but no dilatancy.

    PubMed

    Peyneau, Pierre-Emmanuel; Roux, Jean-Noël

    2008-07-01

    The statement of the title is shown by numerical simulation of homogeneously sheared assemblies of frictionless, nearly rigid beads in the quasistatic limit. Results coincide for steady flows at constant shear rate gamma[over ] in the limit of small gamma[over ] and static approaches, in which packings are equilibrated under growing deviator stresses. The internal friction angle phi , equal to 5.76 degrees +/-0.22 degrees in simple shear, is independent of average pressure P in the rigid limit and stems from the ability of stable frictionless contact networks to form stress-induced anisotropic fabrics. No enduring strain localization is observed. Dissipation at the macroscopic level results from repeated network rearrangements, similar to the effective friction of a frictionless slider on a bumpy surface. Solid fraction Phi remains equal to the random close packing value approximately 0.64 in slowly or statically sheared systems. Fluctuations of stresses and volume are observed to regress in the large system limit. Defining the inertial number as I=gamma radical m/(aP), with m the grain mass and a its diameter, both internal friction coefficient mu*=tan phi and volume 1/Phi increase as powers of I in the quasistatic limit of vanishing I , in which all mechanical properties are determined by contact network geometry. The microstructure of the sheared material is characterized with a suitable parametrization of the fabric tensor and measurements of coordination numbers.

  5. Measurement of earth pressure in the iron-ore mines of eastern France

    USGS Publications Warehouse

    Tincelin, M.E.

    1953-01-01

    The values of the tangential stresses along the periphery being known, they will be compared with the values that would be given by the computations based on various hypotheseses, that of elasticity, perfect plasticity, masses with internal friction, irreversibility of stresses, stratified masses, etc. 

  6. Role of Friction in Materials Selection for Automotive Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian

    This is an invited article for a special issue of the ASM International monthly magazine that concerns "Automotive Materials and Applications." The article itself overviews frictional considerations in material selection for automobiles. It discusses implications for energy efficiency (engine friction) and safety (brakes) among other topics.

  7. Some aspects of frictional measurements in hip joint simulators.

    PubMed

    Unsworth, Anthony

    2016-05-01

    The measurement of friction in artificial hip joints can lead to the knowledge of the lubrication mechanisms occurring in the joints. However, the measurement of friction, particularly in spherical contacts, is not always straightforward. The important loading and kinematic features must be appropriate and the friction must be measured in the correct plane. Even defining a coefficient of friction is difficult with spherical contacts as friction acts at different moment arms throughout the contact area. Thus, the generated frictional torques depend on the pressure distribution of the contact and the moment arms at which this pressure acts. The pressure distribution depends on the material properties, the surface entraining velocities, the joint diameters, and the clearance between the two surfaces of the ball and socket joint. Equally measuring friction is very taxing for machines which are applying very high loads. Slight misalignments of the application of these loads can produce torques which are very much greater than the frictional torques that we are trying to measure. This article attempts to share the thoughts behind over 40 years of measuring friction in artificial joints using the Durham Friction Simulators. This has led to accrued consistency of measurement and a robust scientific design rationale to understand the nature of friction in these spherical contacts. It also impacts on how to obtain accurate measurements as well as on the understanding of where the difficult issues lie and how to overcome them. © IMechE 2016.

  8. Internal friction, Young's modulus, and electrical resistivity of submicrocrystalline titanium

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Sapozhnikov, K. V.; Betekhtin, V. I.; Kadomtsev, A. G.; Narykova, M. V.

    2017-12-01

    The variation of the internal friction, Young's modulus, and electrical resistivity of two grades of polycrystalline titanium (VT1-0 and Grade 4) in the area of low temperatures (100-300 K) as depending on the initial structure and subsequent severe plastic deformation converting the material into the submicrocrystalline structural state in relation to the grain size is studied. The maximum of the internal friction is detected in submicrocrystalline titanium, which is interpreted as a Bordoni peak. All the studied characteristics are sensitive indicators for a nonequilibrium state of the grain boundaries after the deformation. The effect of the initial structure of the metal on its properties after the severe deformation is revealed.

  9. 78 FR 69927 - Notice to Manufacturers of Continuous Friction Measurement Equipment (CFME)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... Friction Measurement Equipment (CFME) AGENCY: Federal Aviation Administration (FAA), US DOT. ACTION: Notice... (FAA) is considering issuing waivers to foreign manufacturers of Continuous Friction Measurement... entitled, Continuous Friction Measurement Equipment Request for Qualifications. The FAA wants to determine...

  10. Internal friction peaks observed in explosively deformed polycrystalline Mo, Nb, and Cu

    NASA Technical Reports Server (NTRS)

    Rieu, G. E.; Grimes, H. H.; Romain, J. P.; Defouquet, J.

    1974-01-01

    Explosive deformation (50 kbar range) induced, in Cu, Mo and Nb, internal friction peaks identical to those observed after large normal deformation. The variation of the peaks with pressure for Mo and Nb lead to an explanation of these processes in terms of double kink generation in screw and edge dislocations.

  11. Origin of the low-frequency internal friction background of gold

    NASA Astrophysics Data System (ADS)

    Baur, J.; Benoit, W.

    1986-11-01

    The internal friction (IF) background of gold is studied in the kHz frequency range. Systematic measurements of IF as a function of frequency, strain amplitude, and temperature show that the IF is due to the superposition of two contributions: the thermoelastic effect and a dislocation effect. The thermoelastic effect is responsible for the IF background observed when the strain amplitude tends to zero. It is the only contribution to the IF background which is strain amplitude independent. On the contrary, the dislocation effect contributes only to the strain amplitude-dependent IF background. This effect is proportional to the strain amplitude. In particular, it is zero when the strain amplitude tends to zero. Furthermore, the dislocation contribution is frequency independent. The experimental results show that the dislocation effect cannot be explained by a viscous damping of dislocation motion, but must be related to an hysteretic and athermal motion of dislocations.

  12. The evolving energy budget of accretionary wedges

    NASA Astrophysics Data System (ADS)

    McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline

    2017-04-01

    The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the simulated increments of the physical experiments. The work budget components of the physical experiments are determined from backwall force measurements and incremental velocity fields calculated via digital image correlation. Comparison of the energy budget preceding and following the development of the first thrust pair quantifies the tradeoff of work done in distributed deformation and work expended in frictional slip due to the development of the first backthrust and forethrust. In both the numerical and physical experiments, after the pair develops internal work decreases at the expense of frictional work, which increases. Despite the increase in frictional work, the total external work of the system decreases, revealing that accretion faulting leads to gains in efficiency. Comparison of the energy budget of the accretion experiments and simulations with the strong and weak detachments indicate that when the detachment is strong, the total energy consumed in frictional sliding and internal deformation is larger than when the detachment is relatively weak.

  13. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  14. Internal friction and vulnerability of mixed alkali glasses.

    PubMed

    Peibst, Robby; Schott, Stephan; Maass, Philipp

    2005-09-09

    Based on a hopping model we show how the mixed alkali effect in glasses can be understood if only a small fraction c(V) of the available sites for the mobile ions is vacant. In particular, we reproduce the peculiar behavior of the internal friction and the steep fall ("vulnerability") of the mobility of the majority ion upon small replacements by the minority ion. The single and mixed alkali internal friction peaks are caused by ion-vacancy and ion-ion exchange processes. If c(V) is small, they can become comparable in height even at small mixing ratios. The large vulnerability is explained by a trapping of vacancies induced by the minority ions. Reasonable choices of model parameters yield typical behaviors found in experiments.

  15. Wall shear stress measurements using a new transducer

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.; Wu, J. M.; Lawing, P. L.

    1986-01-01

    A new instrument has been developed for direct measurement of wall shear stress. This instrument is simple and symmetric in design with small moving mass and no internal friction. Features employed in the design of this instrument eliminate most of the difficulties associated with the traditional floating element balances. Vibration problems associated with the floating element skin friction balances have been found to be minimized by the design features and optional damping provided. The unique design of this instrument eliminates or reduces the errors associated with conventional floating-element devices: such as errors due to gaps, pressure gradient, acceleration, heat transfer and temperature change. The instrument is equipped with various sensing systems and the output signal is a linear function of the wall shear stress. Measurement made in three different tunnels show good agreement with theory and data obtained by the floating element devices.

  16. Methods to Measure, Predict and Relate Friction, Wear and Fuel Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gravante, Steve; Fenske, George; Demas, Nicholas

    High-fidelity measurements of the coefficient of friction and the parasitic friction power of the power cylinder components have been made for the Isuzu 5.2L 4H on-highway engine. In particular, measurements of the asperity friction coefficient were made with test coupons using Argonne National Lab’s (ANL) reciprocating test rig for the ring-on-liner and skirt-on-liner component pairs. These measurements correlated well with independent measurements made by Electro-Mechanical Associates (EMA). In addition, surface roughness measurements of the Isuzu components were made using white light interferometer (WLI). The asperity friction and surface characterization are key inputs to advanced CAE simulation tools such as RINGPAKmore » and PISDYN which are used to predict the friction power and wear rates of power cylinder components. Finally, motored friction tests were successfully performed to quantify the friction mean effective pressure (FMEP) of the power cylinder components for various oils (High viscosity 15W40, low viscosity 5W20 with friction modifier (FM) and specially blended oil containing consisting of PAO/ZDDP/MoDTC) at 25, 50, and 110°C.« less

  17. Nonlinear friction model for servo press simulation

    NASA Astrophysics Data System (ADS)

    Ma, Ninshu; Sugitomo, Nobuhiko; Kyuno, Takunori; Tamura, Shintaro; Naka, Tetsuo

    2013-12-01

    The friction coefficient was measured under an idealized condition for a pulse servo motion. The measured friction coefficient and its changing with both sliding distance and a pulse motion showed that the friction resistance can be reduced due to the re-lubrication during unloading process of the pulse servo motion. Based on the measured friction coefficient and its changes with sliding distance and re-lubrication of oil, a nonlinear friction model was developed. Using the newly developed the nonlinear friction model, a deep draw simulation was performed and the formability was evaluated. The results were compared with experimental ones and the effectiveness was verified.

  18. Unfolding and folding internal friction of β-hairpins is smaller than that of α-helices.

    PubMed

    Schulz, Julius C F; Miettinen, Markus S; Netz, R R

    2015-04-02

    By the forced unfolding of polyglutamine and polyalanine homopeptides in competing α-helix and β-hairpin secondary structures, we disentangle equilibrium free energetics from nonequilibrium dissipative effects. We find that α-helices are characterized by larger friction or dissipation upon unfolding, regardless of whether they are free energetically preferred over β-hairpins or not. Our analysis, based on MD simulations for atomistic peptide models with explicit water, suggests that this difference is related to the internal friction and mostly caused by the different number of intrapeptide hydrogen bonds in the α-helix and β-hairpin states.

  19. Conformational dynamics and internal friction in homopolymer globules: equilibrium vs. non-equilibrium simulations.

    PubMed

    Einert, T R; Sing, C E; Alexander-Katz, A; Netz, R R

    2011-12-01

    We study the conformational dynamics within homopolymer globules by solvent-implicit Brownian dynamics simulations. A strong dependence of the internal chain dynamics on the Lennard-Jones cohesion strength ε and the globule size N (G) is observed. We find two distinct dynamical regimes: a liquid-like regime (for ε < ε(s) with fast internal dynamics and a solid-like regime (for ε > ε(s) with slow internal dynamics. The cohesion strength ε(s) of this freezing transition depends on N (G) . Equilibrium simulations, where we investigate the diffusional chain dynamics within the globule, are compared with non-equilibrium simulations, where we unfold the globule by pulling the chain ends with prescribed velocity (encompassing low enough velocities so that the linear-response, viscous regime is reached). From both simulation protocols we derive the internal viscosity within the globule. In the liquid-like regime the internal friction increases continuously with ε and scales extensive in N (G) . This suggests an internal friction scenario where the entire chain (or an extensive fraction thereof) takes part in conformational reorganization of the globular structure.

  20. Effects of thermal annealing on the structural, mechanical, and tribological properties of hard fluorinated carbon films deposited by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Maia da Costa, M. E. H.; Baumvol, I. J. R.; Radke, C.; Jacobsohn, L. G.; Zamora, R. R. M.; Freire, F. L.

    2004-11-01

    Hard amorphous fluorinated carbon films (a-C:F) deposited by plasma enhanced chemical vapor deposition were annealed in vacuum for 30 min in the temperature range of 200-600 °C. The structural and compositional modifications were followed by several analytical techniques: Rutherford backscattering spectrometry (RBS), elastic recoil detection analysis (ERDA), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Nanoidentation measurements and lateral force microscopy experiments were carried out in order to provide the film hardness and the friction coefficient, respectively. The internal stress and contact angle were also measured. RBS, ERDA, and XPS results indicate that both fluorine and hydrogen losses occur for annealing temperatures higher than 300 °C. Raman spectroscopy shows a progressive graphitization upon annealing, while the surface became slightly more hydrophobic as revealed by the increase of the contact angle. Following the surface wettability reduction, a decrease of the friction coefficient was observed. These results highlight the influence of the capillary condensation on the nanoscale friction. The film hardness and the internal stress are constant up to 300 °C and decrease for higher annealing temperatures, showing a direct correlation with the atomic density of the films. Since the thickness variation is negligible, the mass loss upon thermal treatment results in amorphous structures with a lower degree of cross-linking, explaining the deterioration of the mechanical properties of the a-C:F films.

  1. Locomotive and reptation motion induced by internal force and friction.

    PubMed

    Sakaguchi, Hidetsugu; Ishihara, Taisuke

    2011-06-01

    We propose a simple mechanical model of locomotion induced by internal force and friction. We first construct a system of two elements as an analog of the bipedal motion. The internal force does not induce a directional motion by itself because of the action-reaction law, but a directional motion becomes possible by the control of the frictional force. The efficiency of these model systems is studied using an analogy to the heat engine. As a modified version of the two-element model, we construct a model that exhibits a bipedal motion similar to kinesin's motion of molecular motor. Next, we propose a linear chain model and a ladder model as an extension of the original two-element model. We find a transition from a straight to a snake-like motion in a ladder model by changing the strength of the internal force.

  2. Cyclically modulated dissipation and friction in ice and ice mixtures: how tidal forcing influences the mechanical properties in an icy shell

    NASA Astrophysics Data System (ADS)

    McCarthy, C.; Savage, H. M.; Cooper, R. F.; Kaczynski, T.; Nielson, M.; Domingos, A.

    2017-12-01

    Measuring the response of ice to dynamic, time-varying stress at appropriate planetary conditions is important to improving estimates of long-term heat flux and satellite evolution. The viscoelastic and frictional responses of ice may play important roles in tidal heating and convection, but at different time and lengthscales. We will share results from two different types of laboratory experiments on polycrystalline ice samples that reproduce tidally modulated behavior: (1) forced oscillation compression experiments that measure attenuation; and (2) periodic velocity biaxial experiments that measure friction. The former inform us about the influences of frequency, temperature, grain size, and strain history on mechanical dissipation of tidal energy in the deep interiors of icy crusts. In particular, we examine the combination of low amplitude tidal forcing with a relentless (steady-state) background stress, such as that from convection. The beauty of attenuation is that it can potentially be used as mechanical spectroscopy to identify structure and mechanisms that are otherwise shrouded by steady-state behavior. Friction experiments were conducted in a biaxial apparatus in which a central ice piece is forced between two stationary pieces at constant velocity with a sinusoidal oscillation super-imposed. The rig is fitted with a new, low-temperature cryostat ( 100 - 200 K) that also employs a vacuum. These experiments explore the dependence of frictional stability on the amplitude and frequency of the oscillating load. Additionally, small quantities of impurities that are thought to be important in icy satellites: sulfuric acid and ammonia (systems with deep eutectics with ice) are added to polycrystalline ice samples and tested at subsolidus conditions to discern when/if frictional heating can cause melting at icy satellite surface temperatures. The combination of the two types of experiments will provide valuable parameters for modeling of tidal response of planetary objects. Tidal response can potentially be measured during future missions, in which case characterization of its amplitude and phase could provide direct constraints on the internal and thermal structures of these bodies.

  3. Friction between various self-ligating brackets and archwire couples during sliding mechanics.

    PubMed

    Stefanos, Sennay; Secchi, Antonino G; Coby, Guy; Tanna, Nipul; Mante, Francis K

    2010-10-01

    The aim of this study was to evaluate the frictional resistance between active and passive self-ligating brackets and 0.019 × 0.025-in stainless steel archwire during sliding mechanics by using an orthodontic sliding simulation device. Maxillary right first premolar active self-ligating brackets In-Ovation R, In-Ovation C (both, GAC International, Bohemia, NY), and SPEED (Strite Industries, Cambridge, Ontario, Canada), and passive self-ligating brackets SmartClip (3M Unitek, Monrovia, Calif), Synergy R (Rocky Mountain Orthodontics, Denver, Colo), and Damon 3mx (Ormco, Orange, Calif) with 0.022-in slots were used. Frictional force was measured by using an orthodontic sliding simulation device attached to a universal testing machine. Each bracket-archwire combination was tested 30 times at 0° angulation relative to the sliding direction. Statistical comparisons were performed with 1-way analysis of variance (ANOVA) followed by Dunn multiple comparisons. The level of statistical significance was set at P <0.05. The Damon 3mx brackets had significantly the lowest mean static frictional force (8.6 g). The highest mean static frictional force was shown by the SPEED brackets (83.1 g). The other brackets were ranked as follows, from highest to lowest, In-Ovation R, In-Ovation C, SmartClip, and Synergy R. The mean static frictional forces were all statistically different. The ranking of the kinetic frictional forces of bracket-archwire combinations was the same as that for static frictional forces. All bracket-archwire combinations showed significantly different kinetic frictional forces except SmartClip and In-Ovation C, which were not significantly different from each other. Passive self-ligating brackets have lower static and kinetic frictional resistance than do active self-ligating brackets with 0.019 × 0.025-in stainless steel wire. Copyright © 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  4. Strain amplitude-dependent anelasticity in Cu-Ni solid solution due to thermally activated and athermal dislocation-point obstacle interactions

    NASA Astrophysics Data System (ADS)

    Kustov, S.; Gremaud, G.; Benoit, W.; Golyandin, S.; Sapozhnikov, K.; Nishino, Y.; Asano, S.

    1999-02-01

    Experimental investigations of the internal friction and the Young's modulus defect in single crystals of Cu-(1.3-7.6) at. % Ni have been performed for 7-300 K over a wide range of oscillatory strain amplitudes. Extensive data have been obtained at a frequency of vibrations around 100 kHz and compared with the results obtained for the same crystals at a frequency of ˜1 kHz. The strain amplitude dependence of the anelastic strain amplitude and the average friction stress acting on a dislocation due to solute atoms are also analyzed. Several stages in the strain amplitude dependence of the internal friction and the Young's modulus defect are revealed for all of the alloy compositions, at different temperatures and in different frequency ranges. For the 100 kHz frequency, low temperatures and low strain amplitudes (˜10-7-10-5), the amplitude-dependent internal friction and the Young's modulus defect are essentially temperature independent, and are ascribed to a purely hysteretic internal friction component. At higher strain amplitudes, a transition stage and a steep strain amplitude dependence of the internal friction and the Young's modulus defect are observed, followed by saturation at the highest strain amplitudes employed. These stages are temperature and frequency dependent and are assumed to be due to thermally activated motion of dislocations. We suggest that the observed regularities in the entire strain amplitude, temperature and frequency ranges correspond to a motion of dislocations in a two-component system of obstacles: weak but long-range ones, due to the elastic interaction of dislocations with solute atoms distributed in the bulk of the crystal; and strong short-range ones, due to the interaction of dislocations with solute atoms distributed close to dislocation glide planes. Based on these assumptions, a qualitative explanation is given for the variety of experimental observations.

  5. General theory of frictional heating with application to rubber friction

    NASA Astrophysics Data System (ADS)

    Fortunato, G.; Ciaravola, V.; Furno, A.; Lorenz, B.; Persson, B. N. J.

    2015-05-01

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s-1. We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci ‘laws’ of friction.

  6. General theory of frictional heating with application to rubber friction.

    PubMed

    Fortunato, G; Ciaravola, V; Furno, A; Lorenz, B; Persson, B N J

    2015-05-08

    The energy dissipation in the contact regions between solids in sliding contact can result in high local temperatures which may strongly effect friction and wear. This is the case for rubber sliding on road surfaces at speeds above 1 mm s(-1). We derive equations which describe the frictional heating for solids with arbitrary thermal properties. The theory is applied to rubber friction on road surfaces and we take into account that the frictional energy is partly produced inside the rubber due to the internal friction of rubber and in a thin (nanometer) interfacial layer at the rubber-road contact region. The heat transfer between the rubber and the road surface is described by a heat transfer coefficient which depends on the sliding speed. Numerical results are presented and compared to experimental data. We find that frictional heating results in a kinetic friction force which depends on the orientation of the sliding block, thus violating one of the two basic Leonardo da Vinci 'laws' of friction.

  7. Control of rotordynamic instability in a typical gas turbine's power system

    NASA Technical Reports Server (NTRS)

    Veikos, N. M.; Page, R. H.; Tornillo, E. J.

    1984-01-01

    The effect of rotor internal friction on the system's stability was studied when operated above the first critical speed. This internal friction is commonly caused by sliding press fits or sliding splines. Under conditions of high speed and low bearing damping, these systems will occassionally whirl at a frequency less than the shaft's rotational speed. This subsynchronous precession is a self excited phenomenon and stress reversals are created. This phenomenon was observed during engine testing. The reduction of spline friction and/or the inclusion of squeeze film damping have controlled the instability. Case history and the detail design of the squeeze film dampers is discussed.

  8. Analytical skin friction and heat transfer formula for compressible internal flows

    NASA Technical Reports Server (NTRS)

    Dechant, Lawrence J.; Tattar, Marc J.

    1994-01-01

    An analytic, closed-form friction formula for turbulent, internal, compressible, fully developed flow was derived by extending the incompressible law-of-the-wall relation to compressible cases. The model is capable of analyzing heat transfer as a function of constant surface temperatures and surface roughness as well as analyzing adiabatic conditions. The formula reduces to Prandtl's law of friction for adiabatic, smooth, axisymmetric flow. In addition, the formula reduces to the Colebrook equation for incompressible, adiabatic, axisymmetric flow with various roughnesses. Comparisons with available experiments show that the model averages roughly 12.5 percent error for adiabatic flow and 18.5 percent error for flow involving heat transfer.

  9. Interplay of non-Markov and internal friction effects in the barrier crossing kinetics of biopolymers: insights from an analytically solvable model.

    PubMed

    Makarov, Dmitrii E

    2013-01-07

    Conformational rearrangements in biomolecules (such as protein folding or enzyme-ligand binding) are often interpreted in terms of low-dimensional models of barrier crossing such as Kramers' theory. Dimensionality reduction, however, entails memory effects; as a result, the effective frictional drag force along the reaction coordinate nontrivially depends on the time scale of the transition. Moreover, when both solvent and "internal" friction effects are important, their interplay results in a highly nonlinear dependence of the effective friction on solvent viscosity that is not captured by common phenomenological models of barrier crossing. Here, these effects are illustrated using an analytically solvable toy model of an unstructured polymer chain involved in an inter- or intramolecular transition. The transition rate is calculated using the Grote-Hynes and Langer theories, which--unlike Kramers' theory--account for memory. The resulting effective frictional force exerted by the polymer along the reaction coordinate can be rationalized in terms of the effective number of monomers engaged in the transition. Faster transitions (relative to the polymer reconfiguration time scale) involve fewer monomers and, correspondingly, lower friction forces, because the polymer chain does not have enough time to reconfigure in response to the transition.

  10. Granular self-organization by autotuning of friction.

    PubMed

    Kumar, Deepak; Nitsure, Nitin; Bhattacharya, S; Ghosh, Shankar

    2015-09-15

    A monolayer of granular spheres in a cylindrical vial, driven continuously by an orbital shaker and subjected to a symmetric confining centrifugal potential, self-organizes to form a distinctively asymmetric structure which occupies only the rear half-space. It is marked by a sharp leading edge at the potential minimum and a curved rear. The area of the structure obeys a power-law scaling with the number of spheres. Imaging shows that the regulation of motion of individual spheres occurs via toggling between two types of motion, namely, rolling and sliding. A low density of weakly frictional rollers congregates near the sharp leading edge whereas a denser rear comprises highly frictional sliders. Experiments further suggest that because the rolling and sliding friction coefficients differ substantially, the spheres acquire a local time-averaged coefficient of friction within a large range of intermediate values in the system. The various sets of spatial and temporal configurations of the rollers and sliders constitute the internal states of the system. Experiments demonstrate and simulations confirm that the global features of the structure are maintained robustly by autotuning of friction through these internal states, providing a previously unidentified route to self-organization of a many-body system.

  11. How geometrical constraints contribute to the weakness of mature faults

    USGS Publications Warehouse

    Lockner, D.A.; Byerlee, J.D.

    1993-01-01

    Increasing evidence that the San Andreas fault has low shear strength1 has fuelled considerable discussion regarding the role of fluid pressure in controlling fault strength. Byerlee2,3 and Rice4 have shown how fluid pressure gradients within a fault zone can produce a fault with low strength while avoiding hydraulic fracture of the surrounding rock due to excessive fluid pressure. It may not be widely realised, however, that the same analysis2-4 shows that even in the absence of fluids, the presence of a relatively soft 'gouge' layer surrounded by harder country rock can also reduce the effective shear strength of the fault. As shown most recently by Byerlee and Savage5, as the shear stress across a fault increases, the stress state within the fault zone evolves to a limiting condition in which the maximum shear stress within the fault zone is parallel to the fault, which then slips with a lower apparent coefficient of friction than the same material unconstrained by the fault. Here we confirm the importance of fault geometry in determining the apparent weakness of fault zones, by showing that the apparent friction on a sawcut granite surface can be predicted from the friction measured in intact rock, given only the geometrical constraints introduced by the fault surfaces. This link between the sliding friction of faults and the internal friction of intact rock suggests a new approach to understanding the microphysical processes that underlie friction in brittle materials.

  12. Frictional properties of saponite-rich gouge from a serpentinite-bearing fault zone along the Gokasho-Arashima Tectonic Line, central Japan

    USGS Publications Warehouse

    Sone, Hiroki; Shimamoto, Toshihiko; Moore, Diane E.

    2012-01-01

    We studied a serpentinite-bearing fault zone in Gokasho-Arashima Tectonic Line, Mie Prefecture, central Japan, characterizing its internal structures, mineral assemblage, permeability, and frictional properties. The fault core situated between the serpentinite breccia and the adjacent sedimentary rocks is characterized by a zone locally altered to saponite. The clayey gouge layer separates fault rocks of serpentinite origin containing talc and tremolite from fault rocks of sedimentary origin containing chlorite but no quartz. The minerals that formed within the fault are the products of metasomatic reaction between the serpentinite and the siliceous rocks. Permeability measurements show that serpentinite breccia and fault gouge have permeability of 10−14–10−17 m2 and 10−15–10−18 m2, respectively, at 5–120 MPa confining pressure. Frictional coefficient of the saponite-rich clayey fault gouge ranged between 0.20 and 0.35 under room-dry condition, but was reduced to 0.06–0.12 when saturated with water. The velocity dependence of friction was strongly positive, mostly ranging between 0.005 and 0.006 in terms of a–b values. The governing friction law is not constrained yet, but we find that the saponite-rich gouge possesses an evolutional behavior in the opposite direction to that suggested by the rate and state friction law, in addition to its direct velocity dependence.

  13. Friction measurement in a hip wear simulator.

    PubMed

    Saikko, Vesa

    2016-05-01

    A torque measurement system was added to a widely used hip wear simulator, the biaxial rocking motion device. With the rotary transducer, the frictional torque about the drive axis of the biaxial rocking motion mechanism was measured. The principle of measuring the torque about the vertical axis above the prosthetic joint, used earlier in commercial biaxial rocking motion simulators, was shown to sense only a minor part of the total frictional torque. With the present method, the total frictional torque of the prosthetic hip was measured. This was shown to consist of the torques about the vertical axis above the joint and about the leaning axis. Femoral heads made from different materials were run against conventional and crosslinked polyethylene acetabular cups in serum lubrication. Regarding the femoral head material and the type of polyethylene, there were no categorical differences in frictional torque with the exception of zirconia heads, with which the lowest values were obtained. Diamond-like carbon coating of the CoCr femoral head did not reduce friction. The friction factor was found to always decrease with increasing load. High wear could increase the frictional torque by 75%. With the present system, friction can be continuously recorded during long wear tests, so the effect of wear on friction with different prosthetic hips can be evaluated. © IMechE 2016.

  14. Methods for determining the internal thrust of scramjet engine modules from experimental data

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.

    1990-01-01

    Methods for calculating zero-fuel internal drag of scramjet engine modules from experimental measurements are presented. These methods include two control-volume approaches, and a pressure and skin-friction integration. The three calculation techniques are applied to experimental data taken during tests of a version of the NASA parametric scramjet. The methods agree to within seven percent of the mean value of zero-fuel internal drag even though several simplifying assumptions are made in the analysis. The mean zero-fuel internal drag coefficient for this particular engine is calculated to be 0.150. The zero-fuel internal drag coefficient when combined with the change in engine axial force with and without fuel defines the internal thrust of an engine.

  15. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  16. Boundary-layer transition and global skin friction measurement with an oil-fringe imaging technique

    NASA Technical Reports Server (NTRS)

    Monson, Daryl J.; Mateer, George G.; Menter, Florian R.

    1993-01-01

    A new oil-fringe imaging system skin friction (FISF) technique to measure skin friction on wind tunnel models is presented. In the method used to demonstrate the technique, lines of oil are applied on surfaces that connect the intended sets of measurement points, and then a wind tunnel is run so that the oil thins and forms interference fringes that are spaced in proportion to local skin friction. After a run the fringe spacings are imaged with a CCD-array digital camera and measured on a computer. Skin friction and transition measurements on a two-dimensional wing are presented and compared with computational predictions.

  17. Thermal characterization of phacoemulsification probes operated in axial and torsional modes.

    PubMed

    Zacharias, Jaime

    2015-01-01

    To analyze temperature increases and identify potential sources of heat generated when sleeved and sleeveless phacoemulsification probes were operated in axial and torsional modes using the Infiniti Vision System with the Ozil torsional handpiece. Phacodynamics Laboratory, Pasteur Ophthalmic Clinic, Santiago, Chile. Experimental study. Two computer-controlled thermal transfer systems were developed to evaluate the contribution of internal metal stress and tip-to-sleeve friction on heat generation during phacoemulsification using axial and torsional ultrasound modalities. Both systems incorporated infrared thermal imaging and used a black-body film to accurately capture temperature measurements. Axial mode was consistently associated with greater temperature increases than torsional mode whether tips were operated with or without sleeves. In tests involving bare tips, axial mode and torsional mode peaked at 51.7°C and 34.2°C, respectively. In an example using sleeved tips in which a 30.0 g load was applied for 1 second, temperatures for axial mode reached 45°C and for torsional mode, 38°C. Friction between the sleeved probe and the incisional wall contributed more significantly to the temperature increase than internal metal stress regardless of the mode used. In all experiments, the temperature increase observed with axial mode was greater than that observed with torsional mode, even when conditions such as power or amplitude and flow rate were varied. Tip-to-sleeve friction was a more dominant source of phaco probe heating than internal metal stress. The temperature increase due to internal metal stress was greater with axial mode than with torsional mode. Dr. Zacharias received research funding from Alcon Laboratories, Inc., to conduct this study. He has no financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  19. Glass Microbeads in Analog Models of Thrust Wedges.

    PubMed

    D'Angelo, Taynara; Gomes, Caroline J S

    2017-01-01

    Glass microbeads are frequently used in analog physical modeling to simulate weak detachment zones but have been neglected in models of thrust wedges. Microbeads differ from quartz sand in grain shape and in low angle of internal friction. In this study, we compared the structural characteristics of microbeads and sand wedges. To obtain a better picture of their mechanical behavior, we determined the physical and frictional properties of microbeads using polarizing and scanning electron microscopy and ring-shear tests, respectively. We built shortening experiments with different basal frictions and measured the thickness, slope and length of the wedges and also the fault spacings. All the microbeads experiments revealed wedge geometries that were consistent with previous studies that have been performed with sand. However, the deformation features in the microbeads shortened over low to intermediate basal frictions were slightly different. Microbeads produced different fault geometries than sand as well as a different grain flow. In addition, they produced slip on minor faults, which was associated with distributed deformation and gave the microbeads wedges the appearance of disharmonic folds. We concluded that the glass microbeads may be used to simulate relatively competent rocks, like carbonates, which may be characterized by small-scale deformation features.

  20. Measurement of rolling friction by a damped oscillator

    NASA Technical Reports Server (NTRS)

    Dayan, M.; Buckley, D. H.

    1983-01-01

    An experimental method for measuring rolling friction is proposed. The method is mechanically simple. It is based on an oscillator in a uniform magnetic field and does not involve any mechanical forces except for the measured friction. The measured pickup voltage is Fourier analyzed and yields the friction spectral response. The proposed experiment is not tailored for a particular case. Instead, various modes of operation, suitable to different experimental conditions, are discussed.

  1. The Use of Empirical Methods for Testing Granular Materials in Analogue Modelling

    PubMed Central

    Montanari, Domenico; Agostini, Andrea; Bonini, Marco; Corti, Giacomo; Del Ventisette, Chiara

    2017-01-01

    The behaviour of a granular material is mainly dependent on its frictional properties, angle of internal friction, and cohesion, which, together with material density, are the key factors to be considered during the scaling procedure of analogue models. The frictional properties of a granular material are usually investigated by means of technical instruments such as a Hubbert-type apparatus and ring shear testers, which allow for investigating the response of the tested material to a wide range of applied stresses. Here we explore the possibility to determine material properties by means of different empirical methods applied to mixtures of quartz and K-feldspar sand. Empirical methods exhibit the great advantage of measuring the properties of a certain analogue material under the experimental conditions, which are strongly sensitive to the handling techniques. Finally, the results obtained from the empirical methods have been compared with ring shear tests carried out on the same materials, which show a satisfactory agreement with those determined empirically. PMID:28772993

  2. Seven Experiment Designs Addressing Problems of Safety and Capacity on Two-Lane Rural Highways : Volume 7. Experimental Design to Develop and Evaluate Measures for Reducing the Effects of Roadside Friction on Traffic Flow

    DOT National Transportation Integrated Search

    1994-04-01

    This operational test case study is one of six performed in response to a Volpe National Transportation Systems Center technical task directive (TTD) to Science Applications International Corporation (SAIC) entitled, "IVHS Institutional Issues and Ca...

  3. Characterization of physico-mechanical properties of Z-phase strengthened ferritic steels using internal friction measurements in the range 25 ÷ 750°C

    NASA Astrophysics Data System (ADS)

    Kutelia, E. R.; Dzigrashvili, T. A.; Kukava, T. G.; Darsavelidze, G. Sh.; Kurashvili, I. R.; Riedel, H.; Donth, B.

    2017-02-01

    The present research is dealing with the comparative study of inelastic/elastic behavior of reference ˜12%Cr steel ZL3 and three new trial steels ZU1, ZU2, ZU3, with different ratio of alloying elements and equal content of Cr, using internal friction measurements. The samples were examined in "as-received" condition and after additional electric current tempering at 700˚C under different fixed external mechanical tensions. The values of deformation critical amplitudes for dislocation breakaway (ɛ1) and for microplastic deformation beginning (ɛ2) were determined in addition to the activation energies of relaxation processes in the investigated steels. It is shown that all the three trial steel samples in "as-received" condition exhibit considerably higher values of ɛ2 in comparison to those of reference ZL3 steel. Among them the ZU3 steel has the highest values of ɛ1 and ɛ2, and demonstrates the visible (˜40%) increase in strength characteristics at elevated temperatures (600÷750˚C), achieved by the additional electric current tempering under mechanical tension.

  4. Understanding dynamic friction through spontaneously evolving laboratory earthquakes

    PubMed Central

    Rubino, V.; Rosakis, A. J.; Lapusta, N.

    2017-01-01

    Friction plays a key role in how ruptures unzip faults in the Earth’s crust and release waves that cause destructive shaking. Yet dynamic friction evolution is one of the biggest uncertainties in earthquake science. Here we report on novel measurements of evolving local friction during spontaneously developing mini-earthquakes in the laboratory, enabled by our ultrahigh speed full-field imaging technique. The technique captures the evolution of displacements, velocities and stresses of dynamic ruptures, whose rupture speed range from sub-Rayleigh to supershear. The observed friction has complex evolution, featuring initial velocity strengthening followed by substantial velocity weakening. Our measurements are consistent with rate-and-state friction formulations supplemented with flash heating but not with widely used slip-weakening friction laws. This study develops a new approach for measuring local evolution of dynamic friction and has important implications for understanding earthquake hazard since laws governing frictional resistance of faults are vital ingredients in physically-based predictive models of the earthquake source. PMID:28660876

  5. Recent Progress Towards Predicting Aircraft Ground Handling Performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    The significant progress which has been achieved in development of aircraft ground handling simulation capability is reviewed and additional improvements in software modeling identified. The problem associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior is discussed and efforts to improve this complex model, and hence simulator fidelity, are described. Aircraft braking performance data obtained on several wet runway surfaces is compared to ground vehicle friction measurements and, by use of empirically derived methods, good agreement between actual and estimated aircraft braking friction from ground vehilce data is shown. The performance of a relatively new friction measuring device, the friction tester, showed great promise in providing data applicable to aircraft friction performance. Additional research efforts to improve methods of predicting tire friction performance are discussed including use of an instrumented tire test vehicle to expand the tire friction data bank and a study of surface texture measurement techniques.

  6. Friction behavior of a microstructured polymer surface inspired by snake skin.

    PubMed

    Baum, Martina J; Heepe, Lars; Gorb, Stanislav N

    2014-01-01

    The aim of this study was to understand the influence of microstructures found on ventral scales of the biological model, Lampropeltis getula californiae, the California King Snake, on the friction behavior. For this purpose, we compared snake-inspired anisotropic microstructured surfaces to other microstructured surfaces with isotropic and anisotropic geometry. To exclude that the friction measurements were influenced by physico-chemical variations, all friction measurements were performed on the same epoxy polymer. For frictional measurements a microtribometer was used. Original data were processed by fast Fourier transformation (FFT) with a zero frequency related to the average friction and other peaks resulting from periodic stick-slip behavior. The data showed that the specific ventral surface ornamentation of snakes does not only reduce the frictional coefficient and generate anisotropic frictional properties, but also reduces stick-slip vibrations during sliding, which might be an adaptation to reduce wear. Based on this extensive comparative study of different microstructured polymer samples, it was experimentally demonstrated that the friction-induced stick-slip behavior does not solely depend on the frictional coefficient of the contact pair.

  7. Laboratory evaluation of friction loss and compactability of asphalt mixtures.

    DOT National Transportation Integrated Search

    2012-04-01

    This study aimed to develop prediction models for friction loss and laboratory compaction of asphalt : mixtures. In addition, the study evaluated the effect of compaction level and compaction method of skid : resistance and the internal structure of ...

  8. Comparison of the effects of friction varnish and electroforming on the retention of telescopic crowns.

    PubMed

    Özyemişci-Cebeci, Nuran; Yavuzyilmaz, Hüsnü

    2013-06-01

    Methods to improve the retention of telescopic crowns, including the application of friction varnish and electroforming, are available. However, information about their efficiency is limited. The purpose of this study was to compare the influence of 2 different friction varnishes and an electroforming method on the retention of telescopic crowns. Thirty inner and outer crowns were fabricated from cobalt-chromium-molybdenum alloy having lengths and cervical diameters of 6 mm, 2-degree tapers, and shoulder margins of 1 mm. Fifty-μm thick layers were removed from the internal surfaces of the outer crowns with a vertical machining center to simulate wear. The retentive forces of these specimens were measured with a testing machine. FGP friction varnish (FGP Friction-Fit-System), SD friction varnish (Servo-dental), and an electroforming method (GES\\Gold Electroforming System) were applied to the specimens. After the application of the 3 methods, retention values were measured, and the results analyzed with 1-way ANOVA, paired sample t test (α=.05). The increase in the retentive forces of all specimens was statistically significant (P<.01). The mean retentive forces increased from 3.6 N to 9.8 N for group FGP, 3.6 N to 4.6 N for group SD, and 3.7 N to 6.0 N for group EF. Group FGP was significantly different from group SD and group EF (P<.05), and no significant difference was observed between group SD and group EF. Mean standard deviation values of retentive forces for group FGP before, FGP after, SD before, SD after, EF before and EF after is 0.5, 2.7, 0.6, 1.3, 0.8, 2.3, respectively. Group FGP showed the maximum retention values. Group EF showed higher retention values than group SD. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  9. Effect of Interface Modified by Graphene on the Mechanical and Frictional Properties of Carbon/Graphene/Carbon Composites

    PubMed Central

    Yang, Wei; Luo, Ruiying; Hou, Zhenhua

    2016-01-01

    In this work, we developed an interface modified by graphene to simultaneously improve the mechanical and frictional properties of carbon/graphene/carbon (C/G/C) composite. Results indicated that the C/G/C composite exhibits remarkably improved interfacial bonding mode, static and dynamic mechanical performance, thermal conductivity, and frictional properties in comparison with those of the C/C composite. The weight contents of carbon fibers, graphene and pyrolytic carbon are 31.6, 0.3 and 68.1 wt %, respectively. The matrix of the C/G/C composite was mainly composed of rough laminar (RL) pyrocarbon. The average hardness by nanoindentation of the C/G/C and C/C composite matrices were 0.473 and 0.751 GPa, respectively. The flexural strength (three point bending), interlaminar shear strength (ILSS), interfacial debonding strength (IDS), internal friction and storage modulus of the C/C composite were 106, 10.3, 7.6, 0.038 and 12.7 GPa, respectively. Those properties of the C/G/C composite increased by 76.4%, 44.6%, 168.4% and 22.8%, respectively, and their internal friction decreased by 42.1% in comparison with those of the C/C composite. Owing to the lower hardness of the matrix, improved fiber/matrix interface bonding strength, and self-lubricating properties of graphene, a complete friction film was easily formed on the friction surface of the modified composite. Compared with the C/C composite, the C/G/C composite exhibited stable friction coefficients and lower wear losses at simulating air-plane normal landing (NL) and rejected take-off (RTO). The method appears to be a competitive approach to improve the mechanical and frictional properties of C/C composites simultaneously. PMID:28773613

  10. Friction angle measurements on a naturally formed gravel streambed: Implications for critical boundary shear stress

    Treesearch

    John M. Buffington; William E. Dietrich; James W. Kirchner

    1992-01-01

    We report the first measurements of friction angles for a naturally formed gravel streambed. For a given test grain size placed on a bed surface, friction angles varied from 10º to over 100º; friction angle distributions can be expressed as a function of test grain size, median bed grain size, and bed sorting parameter. Friction angles decrease with increasing grain...

  11. Tribochemical Competition within a MoS2/Ti Dry Lubricated Macroscale Contact in Ultrahigh Vacuum: A Time-of-Flight Secondary Ion Mass Spectrometry Investigation.

    PubMed

    Colas, Guillaume; Saulot, Aurélien; Philippon, David; Berthier, Yves; Léonard, Didier

    2018-06-13

    Controlling and predicting the tribological behavior of dry lubricants is a necessity to ensure low friction, long life, and low particle generation. Understanding the tribochemistry of the materials as a function of the environment is of primary interest as synergistic effects exist between the mechanics, the physicochemistry, and the thermodynamics within a contact. However, in most studies the role of the coating internal contaminants in the process is often discarded to the benefit of a more common approach in which the performances of the materials are compared as a function of different atmospheric pressure environments. The study focuses on the understanding of the tribochemical processes occurring between the materials and their internal contaminants inside an AISI440C contact lubricated by a MoS 2 /Ti coating. Time-of-flight secondary ion mass spectrometry is used to study at the molecular level, the material before and after friction. Friction tests with different durations are performed in ultrahigh vacuum at the macroscale to stay relevant to the real application (space). The adsorption/desorption of gaseous species during friction is monitored by mass spectrometry to ensure reliable study of the tribochemical processes inside the contact. The study shows that a competition exists between the Ti- and MoS 2 -based materials to create the appropriate lubricating materials via (i) recrystallization of MoS 2 materials with creation of a MoS x O y material via reactions with internal contaminants (presumably H 2 O), (ii) reaction of Ti-based materials with internal contaminants (mostly H 2 O and N 2 ). The biphasic material created is highly similar to the one created in both humid air and dry N 2 environments and providing low friction and low particle generation. However, the process is incomplete. The study thus brings insight into the possibility of controlling friction via a rational inclusion of reactants in a form of contaminants to control the tribochemical processes governing the low friction and long life.

  12. Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.

    1994-01-01

    The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.

  13. Internal friction in particulate composites of (x)Mn0.4Zn0.6Fe2O4 –(1-x)PbZr0.53Ti0.47O3 in the vicinity of the structural phase transition temperatures

    NASA Astrophysics Data System (ADS)

    Kalgin, A. V.; Gridnev, S. A.

    2018-03-01

    The internal friction in particulate ceramic composites of (x)Mn0.4Zn0.6Fe2O4 –(1-x)PbZr0.53Ti0.47O3 (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.6) in the vicinity of the phase transition temperatures was studied. We observed the influence of the composite composition on the exponent that characterizes a temperature dependence of the internal friction near the ferroelectric Curie point. The reason for this influence is shown to be the doping of the PbZr0.53Ti0.47O3 ferroelectric phase with atoms of the Mn04Zn0.6Fe2O4 ferrite phase that occurs during high- temperature sintering of composite samples.

  14. Quantum friction in arbitrarily directed motion

    DOE PAGES

    Klatt, J.; Farías, M. Belen; Dalvit, D. A. R.; ...

    2017-05-30

    In quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired by the recent finding that dynamical corrections to such an atom's internal dynamics are enhanced by one order of magnitude for vertical motion—compared with the paradigmatic setup of parallel motion—here we generalize quantum friction calculations to arbitrary angles between the atom's direction of motion and the surface in front of which it moves. Motivated by the disagreement between quantum friction calculations based on Markovian quantum master equationsmore » and time-dependent perturbation theory, we carry out our derivations of the quantum frictional force for arbitrary angles by employing both methods and compare them.« less

  15. Development and Evaluation of New Calibration Site, Tyndall AFB, for Continuous Friction Measurement Equipment

    DTIC Science & Technology

    2016-02-01

    color images. The Air Force Civil Engineering Center (AFCEC) has been measuring military runway pavement friction and texture conditions around the...world for many years. In recent years, the friction measurements have been collected using seven GripTester (GT) trailers, and pavement texture...with several conclusions and recommendations are given as well as a list of appropriate references. pavement friction, calibration, pavement surface U U

  16. Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact Running-in Process

    DTIC Science & Technology

    2015-10-01

    ARL-TR-7501 ● OCT 2015 US Army Research Laboratory Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact...Research Laboratory Friction Mapping as a Tool for Measuring the Elastohydrodynamic Contact Running-in Process by Stephen Berkebile Vehicle...YYYY) October 2015 2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 January–30 June 2015 4. TITLE AND SUBTITLE Friction Mapping as a Tool for

  17. [Determination of a Friction Coefficient for THA Bearing Couples].

    PubMed

    Vrbka, M; Nečas, D; Bartošík, J; Hartl, M; Křupka, I; Galandáková, A; Gallo, J

    2015-01-01

    The wear of articular surfaces is considered one of the most important factors limiting the life of total hip arthroplasty (THA). It is assumed that the particles released from the surface of a softer material induce a complex inflammatory response, which will eventually result in osteolysis and aseptic loosening. Implant wear is related to a friction coefficient which depends on combination of the materials used, roughness of the articulating surfaces, internal clearance, and dimensions of the prosthesis. The selected parameters of the bearing couples tested were studied using an experimental device based on the principle of a pendulum. Bovine serum was used as a lubricant and the load corresponded to a human body mass of 75 kg. The friction coefficient was derived from a curve of slowdown of pendulum oscillations. Roughness was measured with a device working on the principle of interferometry. Clearance was assessed by measuring diameters of the acetabular and femoral heads with a 3D optical scanner. The specimens tested included unused metal-on-highly cross-linked polyethylene, ceramic-on-highly cross-linked polyethylene and ceramic-on-ceramic bearing couples with the diameters of 28 mm and 36 mm. For each measured parameter, an arithmetic mean was calculated from 10 measurements. 1) The roughness of polyethylene surfaces was higher by about one order of magnitude than the roughness of metal and ceramic components. The Protasul metal head had the least rough surface (0.003 μm). 2) The ceramic-on-ceramic couples had the lowest clearance. Bearing couples with polyethylene acetabular liners had markedly higher clearances ranging from 150 μm to 545 μm. A clearance increased with large femoral heads (up to 4-fold in one of the couple tested). 3) The friction coefficient was related to the combination of materials; it was lowest in ceramic-on-ceramic surfaces (0.11 to 0.12) and then in ceramic-on-polyethylene implants (0.13 to 0.14). The friction coefficient is supposed to increase with a decreasing femoral head diameter. However, in the bearing couples with polyethylene liners manufactured by one company, paradoxically, the friction coefficient slightly increased with an increase in femoral head size from 28 mm to 36 mm. 4) The lowest friction moment (< 3.5 Nm) was found for ceramic-on-ceramic implants 28 mm in diameter; the highest values were recorded in metal-on-polyethylene bearing couples 36 mm in diameter (> 7 Nm). Although our study confirmed that the bearing couples produced by different manufacturers varied to some extent in the parameters studied, in our opinion, this variability was not significant because it was not within an order of magnitude in any of the tests. The study showed that both the friction coefficient and the friction moment are affected more by the combination of materials than by the diameter of a femoral head. The best results were achieved in ceramic-on-ceramic implants.

  18. Joint Winter Runway Friction Program Accomplishments

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Wambold, James C.; Henry, John J.; Andresen, Arild; Bastian, Matthew

    2002-01-01

    The major program objectives are: (1) harmonize ground vehicle friction measurements to report consistent friction value or index for similar contaminated runway conditions, for example, compacted snow, and (2) establish reliable correlation between ground vehicle friction measurements and aircraft braking performance. Accomplishing these objectives would give airport operators better procedures for evaluating runway friction and maintaining acceptable operating conditions, providing pilots information to base go/no go decisions, and would contribute to reducing traction-related aircraft accidents.

  19. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramicmore » exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.« less

  20. Investigation of squeal noise under positive friction characteristics condition provided by friction modifiers

    NASA Astrophysics Data System (ADS)

    Liu, Xiaogang; Meehan, Paul A.

    2016-06-01

    Field application of friction modifiers on the top of rail has been shown to effectively curb squeal and reduce lateral forces, but performance can be variable, according to other relevant research. Up to now, most investigations of friction modifiers were conducted in the field, where it is difficult to control or measure important parameters such as angle of attack, rolling speed, adhesion ratio etc. In the present investigation, the effect of different friction modifiers on the occurrence of squeal was investigated on a rolling contact two disk test rig. In particular, friction-creep curves and squeal sound pressure levels were measured under different rolling speeds and friction modifiers. The results show friction modifiers can eliminate or reduce the negative slope of friction-creep curves, but squeal noise still exists. Theoretical modelling of instantaneous creep behaviours reveals a possible reason why wheel squeal still exists after the application of friction modifiers.

  1. Slip measurement in a frictional connection by torsional LDV

    NASA Astrophysics Data System (ADS)

    Schäfer, Günter; Lohrengel, Armin; Hilgermann, Jan Lukas

    2016-06-01

    Frictional shaft-hub connections are often used in drive train applications. The classic version is fitted by a temperature difference between the cold shaft und the hot hub, or simply axial press-fitted at room temperature. The critical point in this type of connection is the contact pressure at the edge of the hub regarding the relative deformation between the shaft and the hub under dynamic operating loads. Another innovative version, the internal press-fit, leads to a tolerance insensitive lightweight design using a tube as shaft and a controlled plastic deformation by internal high pressure. The internal press-fit connection is a special research topic at the IMW, TU Clausthal. The use of internal high pressure allows to trigger the contact pressure at the edge of the hub on an optimum value. The product of contact pressure and slipway is the key value to determine the fatigue resistance and load capacity of this kind of connection. /1/ and /2/ defined a critical range of slipway amplitudes between 5 and 25 µm for fretting. The normal use and main function of a shaft-hub connection is the transmission of torque. Regarding the different torsional stiffness of the shaft and the hub, there will be a difference in deformation in the contact zone between the shaft and the hub, which is necessary to measure on a probe under oscillating torque load. The measurement on the test-rig in /3/ was done with a POLYTEC torsional LDV (controller OFV-4000, sensor head OFV-400). In general the continuously oscillating torque load allowed a serial measurement of the torsional movement of the shaft and the hub. The difference of the two maximum values is the expected slipway between the two parts in the critical zone at the edge of the hub. The main benefits of the Torsional LDV in this application are the very small measuring point (next to the contact), no influence on the probe, no special preparation of the probe and a really good resolution. The paper gives an overview to the technical background of the measured value, to the measuring setup, to the other used measuring techniques and to the measuring results.

  2. Dynamic measurements of gear tooth friction and load

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1991-01-01

    As part of a program to study fundamental mechanisms of gear noise, static and dynamic gear tooth strain measurements were made on the NASA gear-noise rig. Tooth-fillet strains from low-contact ratio-spur gears were recorded for 28 operating conditions. A method is introduced whereby strain gage measurements taken from both the tension and compression sides of a gear tooth can be transformed into the normal and frictional loads on the tooth. This technique was applied to both the static and dynamic strain data. The static case results showed close agreement with expected results. For the dynamic case, the normal-force computation produced very good results, but the friction results, although promising, were not as accurate. Tooth sliding friction strongly affected the signal from the strain gage on the tensionside of the tooth. The compression gage was affected by friction to a much lesser degree. The potential of the method to measure friction force was demonstrated, but further refinement will be required before this technique can be used to measure friction forces dynamically with an acceptable degree of accuracy.

  3. The Friction of Piston Rings

    NASA Technical Reports Server (NTRS)

    Tischbein, Hans W

    1945-01-01

    The coefficient of friction between piston ring and cylinder liner was measured in relation to gliding acceleration, pressure, temperature, quantity of oil and quality of oil. Comparing former lubrication-technical tests, conclusions were drawn as to the state of friction. The coefficients of friction as figured out according to the hydrodynamic theory were compared with those measured by tests. Special tests were made on "oiliness." The highest permissible pressure was measured and the ratio of pressure discussed.

  4. Experimental and theoretical study of friction torque from radial ball bearings

    NASA Astrophysics Data System (ADS)

    Geonea, Ionut; Dumitru, Nicolae; Dumitru, Ilie

    2017-10-01

    In this paper it is presented a numerical simulation and an experimental study of total friction torque from radial ball bearings. For this purpose it is conceived a virtual CAD model of the experimental test bench for bearing friction torque measurement. The virtual model it is used for numerical simulation in Adams software, that allows dynamic study of multi-body systems and in particularly with facility Adams Machinery of dynamic behavior of machine parts. It is manufactured an experimental prototype of the test bench for radial ball bearings friction torque measurement. In order to measure the friction torque of the tested bearings it is used an equal resistance elastic beam element, with strain gauge transducer to measure bending deformations. The actuation electric motor of the bench has the shaft mounted on two bearings and the motor housing is fixed to the free side of the elastic beam, which is bended by a force proportional with the total friction torque. The beam elastic element with strain gauge transducer is calibrated in order to measure the force occurred. Experimental determination of the friction torque is made for several progressive radial loads. It is established the correlation from the friction torque and bearing radial load. The bench allows testing of several types and dimensions of radial bearings, in order to establish the bearing durability and of total friction torque.

  5. Internal friction of hydrated soda-lime-silicate glasses.

    PubMed

    Reinsch, S; Müller, R; Deubener, J; Behrens, H

    2013-11-07

    The internal friction of hydrated soda-lime-silica glasses with total water content (C(W)) up to 1.9 wt. % was studied by dynamic mechanical analysis (DMA) using temperature-frequency sweeps from 723 K to 273 K and from 1 s(-1) to 50 s(-1). Total water content and concentrations of H2O molecules (C(H2O)) and OH groups (C(OH)) in the DMA specimens were determined by infrared spectroscopy. For low water contents (C(W) ≈ C(OH) < 0.25 wt. %) two discrete internal friction peaks below the glass transition (α relaxation) were assigned to the low-temperature motion of alkali ions (γ relaxation) and cooperative movements of dissimilar mobile species under participation of OH at higher temperature (β(OH) relaxation). For large water contents (C(W) > 1 wt. %), where significant amounts of molecular water are evident (C(H2O) > 0.15 wt. %), however, internal friction spectra change unexpectedly: the β(OH) peak heights saturate and a low temperature shoulder appears on the β-relaxation peak. This emerging relaxation mode (β(H2O) relaxation) was assigned to the motions of H2O molecules. β(H2O) relaxation was found to be faster than β(OH) but slower than γ relaxation. Activation energy of the different relaxation modes increased in the order γ < β(H2O) < β(OH) < α.

  6. Automated vehicle location, data recording, friction measurement and applicator control for winter road maintenance.

    DOT National Transportation Integrated Search

    2010-02-01

    The first part of this project conducted a detailed evaluation of the ability of a new friction measurement system to : provide an accurate measure of road conditions. A system that records friction coefficient as a function of road : location was de...

  7. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    NASA Technical Reports Server (NTRS)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of the bed media increased with decrease in initial compaction of the bed media. This effect could be attributed to the greater tendency for inter-particle sliding/rub bing due to smaller internal friction angles, as seen from the shear tests, at lesser initial compacted levels. Upon unloading, it was obse rved that there was no change in displacement (especially rebounding) in the bed media. This effect could be attributed to the fact that th e porous activated alumina particles fracture/break upon increase in applied load (during loading phase) and occupy void spaces in between the material grains; thereby leading to settling of the media. The lo ad-displacement curve becomes more linear with increase in initial compaction of the bed media. It is concluded that compaction considerabl y affects the load-displacement behavior of the bed media. A series of tests were also conducted on the packed bed media to determine the f orce required to mobilize the friction between the bed media and the housing cylinder. The results from these tests showed the existence of significant friction between the bed media and the encasing stainles s steel cylinder. Further, it was found that friction effects were more pronounced for media with higher initial compaction. Internal frict ion of the granular media was measured using direct shear apparatus. It was observed that the internal friction increased with increase in initial compaction of the bed media. In this study, a computational m odel (CM) is also developed using finite element software ANSYS to verify experimental results obtained for the distribution of the axial n ormal stress and axial displacement along the length of the full-scal e activated alumina bed media. In the computational model, the granular material is considered to have appropriate failure and frictional c ontact exists between the wall and the granular media. It is observed that the model predicts results closely with the experimental method. The compational results show that the axial normal stress distribution along the length of the activated alumina media decreases non-linea rly from the loading end and is negligible beyond a certain depth. Th is can be attributed to the existence of friction between the walls and the media and that the friction takes up most of the applied load.

  8. Frictional Characteristics of graphene

    NASA Astrophysics Data System (ADS)

    Lee, Changgu; Carpick, Robert; Hone, James

    2009-03-01

    The frictional characteristics of graphene were characterized using friction force microscopy (FFM). The frictional force for monolayer graphene is more than twice that of bulk graphite, with 2,3, and 4 layer samples showing a monotonic decrease in friction with increasing sample thickness. Measurements on suspended graphene membranes show identical results, ruling out substrate effects as the cause of the observed variation. Likewise, the adhesion force is identical for all samples. The frictional force is independent of load within experimental uncertainty, consistent with previous measurements on graphite. We consider several possible explanations for the origin of the observed thickness dependence.

  9. Electromechanical imitator of antilock braking modes of wheels with pneumatic tire and its application for the runways friction coefficient measurement

    NASA Astrophysics Data System (ADS)

    Putov, A. V.; Kopichev, M. M.; Ignatiev, K. V.; Putov, V. V.; Stotckaia, A. D.

    2017-01-01

    In this paper it is considered a discussion of the technique that realizes a brand new method of runway friction coefficient measurement based upon the proposed principle of measuring wheel braking control for the imitation of antilock braking modes that are close to the real braking modes of the aircraft chassis while landing that are realized by the aircraft anti-skid systems. Also here is the description of the model of towed measuring device that realizes a new technique of runway friction coefficient measuring, based upon the measuring wheel braking control principle. For increasing the repeatability accuracy of electromechanical braking imitation system the sideslip (brake) adaptive control system is proposed. Based upon the Burkhard model and additive random processes several mathematical models were created that describes the friction coefficient arrangement along the airstrip with different qualitative adjectives. Computer models of friction coefficient measuring were designed and first in the world the research of correlation between the friction coefficient measuring results and shape variations, intensity and cycle frequency of the measuring wheel antilock braking modes. The sketch engineering documentation was designed and prototype of the latest generation measuring device is ready to use. The measuring device was tested on the autonomous electromechanical examination laboratory treadmill bench. The experiments approved effectiveness of method of imitation the antilock braking modes for solving the problem of correlation of the runway friction coefficient measuring.

  10. Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, B.; Hulbert, C.; Ren, C. X.; Bolton, D. C.; Marone, C.; Johnson, P. A.

    2017-12-01

    Fault friction controls nearly all aspects of fault rupture, yet it is only possible to measure in the laboratory. Here we describe laboratory experiments where acoustic emissions are recorded from the fault. We find that by applying a machine learning approach known as "extreme gradient boosting trees" to the continuous acoustical signal, the fault friction can be directly inferred, showing that instantaneous characteristics of the acoustic signal are a fingerprint of the frictional state. This machine learning-based inference leads to a simple law that links the acoustic signal to the friction state, and holds for every stress cycle the laboratory fault goes through. The approach does not use any other measured parameter than instantaneous statistics of the acoustic signal. This finding may have importance for inferring frictional characteristics from seismic waves in Earth where fault friction cannot be measured.

  11. Tire-to-Surface Friction Especially Under Wet Conditions

    NASA Technical Reports Server (NTRS)

    Sawyer, Richard H.; Batterson, Sidney A.; Harrin, Eziaslav N.

    1959-01-01

    The results of measurements of the maximum friction available in braking on various runway surfaces under various conditions is shown for a C-123B airplane and comparisons of measurements with a tire-friction cart on the same runways are made. The.results of studies of wet-surface friction made with a 12-inch-diameter low-pressure tire on a tire-friction treadmill, with an automobile tire on the tire-friction cart, and with a 44 x 13 extra-high-pressure type VII aircraft tire at the Langley landing-loads track are compared. Preliminary results of tests on the tire-friction treadmill under wet-surface conditions to determine the effect of the wiping action of the front wheel of a tandem-wheel arrangement on the friction available in braking for the rear wheel are given.

  12. An evaluation of winter operational runway friction measurement equipment, procedures and research

    DOT National Transportation Integrated Search

    1995-01-25

    For many years, the aviation community has struggled with runway friction reporting practices. Airport operations personnel, in taking on the responsibility for conducting friction measurements during winter storms, work diligently to keep up with ra...

  13. Observations on the deformation-induced beta internal friction peak in bcc metals

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1974-01-01

    During a study of the effects of electron irradiation on the tungsten alpha mechanism, internal friction data were obtained. The data indicate that the mechanism underlying the beta peak does not possess the relaxation parameters generally associated with a simple dislocation process. The significance of the experimental results in the light of beta observations in other metals is discussed. It is suggested that the beta peaks in deformed bcc metals are the anelastic result of the thermally-activated relaxation of deformation-induced imperfections.

  14. Micromachine friction test apparatus

    DOEpatents

    deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  15. In-Vivo Human Skin to Textiles Friction Measurements

    NASA Astrophysics Data System (ADS)

    Pfarr, Lukas; Zagar, Bernhard

    2017-10-01

    We report on a measurement system to determine highly reliable and accurate friction properties of textiles as needed for example as input to garment simulation software. Our investigations led to a set-up that allows to characterize not just textile to textile but also textile to in-vivo human skin tribological properties and thus to fundamental knowledge about genuine wearer interaction in garments. The method of test conveyed in this paper is measuring concurrently and in a highly time resolved manner the normal force as well as the resulting shear force caused by a friction subject intending to slide out of the static friction regime and into the dynamic regime on a test bench. Deeper analysis of various influences is enabled by extending the simple model following Coulomb's law for rigid body friction to include further essential parameters such as contact force, predominance in the yarn's orientation and also skin hydration. This easy-to-use system enables to measure reliably and reproducibly both static and dynamic friction for a variety of friction partners including human skin with all its variability there might be.

  16. Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking

    PubMed Central

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114

  17. Friction in total hip joint prosthesis measured in vivo during walking.

    PubMed

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  18. Strongly Modulated Friction of a Film-Terminated Ridge-Channel Structure.

    PubMed

    He, Zhenping; Hui, Chung-Yuen; Levrard, Benjamin; Bai, Ying; Jagota, Anand

    2016-05-26

    Natural contacting surfaces have remarkable surface mechanical properties, which has led to the development of bioinspired surface structures using rubbery materials with strongly enhanced adhesion and static friction. However, sliding friction of structured rubbery surfaces is almost always significantly lower than that of a flat control, often due to significant loss of contact. Here we show that a film-terminated ridge-channel structure can strongly enhance sliding friction. We show that with properly chosen materials and geometrical parameters the near surface structure undergoes mechanical instabilities along with complex folding and sliding of internal interfaces, which is responsible for the enhancement of sliding friction. Because this structure shows no enhancement of adhesion under normal indentation by a sphere, it breaks the connection between energy loss during normal and shear loading. This makes it potentially interesting in many applications, for instance in tires, where one wishes to minimize rolling resistance (normal loading) while maximizing sliding friction (shear loading).

  19. Internal friction quality-factor Q under confining pressure. [of lunar rocks

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Ahlberg, L.; Nadler, H.; Curnow, J.; Smith, T.; Cohen, E. R.

    1977-01-01

    It has been found in previous studies that small amounts of adsorbed volatiles can have a profound effect on the internal friction quality-factor Q of rocks and other porous media. Pandit and Tozer (1970) have suggested that the laboratory-measured Q of volatile-free rocks should be similar to the in situ seismic Q values of near-surface lunar rocks which according to Latham et al. (1970) are in the range of 3000-5000. Observations of dramatic increases in Q with outgassing up to values approaching 2000 in the seismic frequency range confirm this supposition. Measurements under confining pressures with the sample encapsulated under hard vacuum are reported to aid in the interpretation of seismic data obtained below the lunar surface. It has been possible to achieve in the experiments Q values just under 2000 at about 1 kbar for a terrestrial analog of lunar basalt. It was found that a well-outgassed sample maintains a high Q whereas one exposed to moisture maintains a low Q as the confining pressure is raised to 2.5 kbar. This result suggests that volatiles can indeed affect Q when cracks are partially closed and the high lunar seismic Q values reported are concomitant with very dry rock down to depths of at least 50 km.

  20. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  1. Effects of Cu and Ag as ternary and quaternary additions on some physical properties of SnSb7 bearing alloy

    NASA Astrophysics Data System (ADS)

    El-Bediwi, A. B.

    2004-02-01

    The structure, electrical resistivity, and elastic modulus of SnSb7 and SnSb7X (X = Cu , Ag, or Cu and Ag) rapidly solidified alloys have been investigated using X-ray diffractometer, double bridge, and dynamic resonance techniques. Copper and silver additions to SnSb result in the formation of a eutectic matrix containing embedded crystals (intermetallic phases) of SnCu, SnAg, and SnSb. The hard crystals SnCu, SnAg, and SnSb increase the overall hardness and wear resistance of SnSb bearing alloys. Addition of copper and silver improves internal friction, electrical conductivity, and elastic modulus values of SnSb rapidly solidified bearing alloys. The internal friction, elastic modulus, and electrical resistivity values are relatively sensitive to the composition of the intermediate phases in the matrix. The SbSb(7)Cu(2)g(2) has better properties (lowest internal friction, cost, adequate elastic modulus, and electrical resistivity) for bearing alloys as compared to cast iron and bronzes.

  2. Effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure.

    PubMed

    Yu, Wancheng; Luo, Kaifu

    2015-03-28

    Using 3D Langevin dynamics simulations, we investigate the effects of the internal friction and the solvent quality on the dynamics of a polymer chain closure. We show that the chain closure in good solvents is a purely diffusive process. By extrapolation to zero solvent viscosity, we find that the internal friction of a chain plays a non-ignorable role in the dynamics of the chain closure. When the solvent quality changes from good to poor, the mean closure time τc decreases by about 1 order of magnitude for the chain length 20 ≤ N ≤ 100. Furthermore, τc has a minimum as a function of the solvent quality. With increasing the chain length N, the minimum of τc occurs at a better solvent. Finally, the single exponential distributions of the closure time in poor solvents suggest that the negative excluded volume of segments does not alter the nearly Poisson statistical characteristics of the process of the chain closure.

  3. Measurement of Gear Tooth Dynamic Friction

    NASA Technical Reports Server (NTRS)

    Rebbechi, Brian; Oswald, Fred B.; Townsend, Dennis P.

    1996-01-01

    Measurements of dynamic friction forces at the gear tooth contact were undertaken using strain gages at the root fillets of two successive teeth. Results are presented from two gear sets over a range of speeds and loads. The results demonstrate that the friction coefficient does not appear to be significantly influenced by the sliding reversal at the pitch point, and that the friction coefficient values found are in accord with those in general use. The friction coefficient was found to increase at low sliding speeds. This agrees with the results of disc machine testing.

  4. Detection and assessment of flaws in friction stir welded metallic plates

    NASA Astrophysics Data System (ADS)

    Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey

    2017-04-01

    Investigated is the ability of ultrasonic guided waves to detect flaws and assess the quality of friction stir welds (FSW). AZ31B magnesium plates were friction stir welded. While process parameters of spindle speed and tool feed were fixed, shoulder penetration depth was varied resulting in welds of varying quality. Ultrasonic waves were excited at different frequencies using piezoelectric wafers and the fundamental symmetric (S0) mode was selected to detect the flaws resulting from the welding process. The front of the first transmitted wave signal was used to capture the S0 mode. A damage index (DI) measure was defined based on the amplitude attenuation after wave interaction with the welded zone. Computed Tomography (CT) scanning was employed as a nondestructive testing (NDT) technique to assess the actual weld quality. Derived DI values were plotted against CT-derived flaw volume resulting in a perfectly linear fit. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the weld. As such, this methodology bears great potential as a future predictive method for the evaluation of FSW weld quality.

  5. 49 CFR 173.36 - Hazardous materials in Large Packagings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Packagings (e.g., 51H) are only authorized for use with flexible inner packagings. (3) Friction. The nature and thickness of the outer packaging must be such that friction during transportation is not likely to... transportation in inner packagings appropriately resistant to an increase of internal pressure likely to develop...

  6. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes.

    PubMed

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C

    2014-07-24

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.

  7. Solvent friction effects propagate over the entire protein molecule through low-frequency collective modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.

    2014-06-25

    Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagatesmore » into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.« less

  8. International Congress NONLINEAR DYNAMICAL ANALYSIS 2007 dedicated to the 150th Anniversary of Academician A. M. Lyapunov

    DTIC Science & Technology

    2010-05-14

    and Coulomb friction. We consider a simple mass spring system submitted to an external force and constrained to remain in a half -space. The contact of... the mass with the boundary of the half -space is assumed to hold with Coulomb friction. The unilateral contact and Coulomb friction laws are strict...Lyapunov frequently discussed this problem with Henry Poincare (1854-1912) and George Darwin (1845 - 1912). They both considered the "pear-form" figure as

  9. Friction evaluation of unpaved, gypsum-surface runways at Northrup Strip, White Sands Missile Range, in support of Space Shuttle Orbiter landing and retrieval operations

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; Horne, W. B.

    1980-01-01

    Friction measurement results obtained on the gypsum surface runways at Northrup Strip, White Sands Missile Range, N. M., using an instrumented tire test vehicle and a diagonal braked vehicle, are presented. These runways were prepared to serve as backup landing and retrieval sites to the primary sites located at Dryden Flight Research Center for shuttle orbiter during initial test flights. Similar friction data obtained on paved and other unpaved surfaces was shown for comparison and to indicate that the friction capability measured on the dry gypsum surface runways is sufficient for operations with the shuttle orbiter and the Boeing 747 aircraft. Based on these ground vehicle friction measurements, estimates of shuttle orbiter and aircraft tire friction performance are presented and discussed. General observations concerning the gypsum surface characteristics are also included and several recommendations are made for improving and maintaining adequate surface friction capabilities prior to the first shuttle orbiter landing.

  10. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder

    PubMed Central

    Thurber, Kent R.; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of 79Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the 79Br NMR frequency to that of 13C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions. PMID:18930418

  11. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder.

    PubMed

    Thurber, Kent R; Tycko, Robert

    2009-01-01

    Accurate determination of sample temperatures in solid state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS) can be problematic, particularly because frictional heating and heating by radio-frequency irradiation can make the internal sample temperature significantly different from the temperature outside the MAS rotor. This paper demonstrates the use of (79)Br chemical shifts and spin-lattice relaxation rates in KBr powder as temperature-dependent parameters for the determination of internal sample temperatures. Advantages of this method include high signal-to-noise, proximity of the (79)Br NMR frequency to that of (13)C, applicability from 20 K to 320 K or higher, and simultaneity with adjustment of the MAS axis direction. We show that spin-lattice relaxation in KBr is driven by a quadrupolar mechanism. We demonstrate a simple approach to including KBr powder in hydrated samples, such as biological membrane samples, hydrated amyloid fibrils, and hydrated microcrystalline proteins, that allows direct assessment of the effects of frictional and radio-frequency heating under experimentally relevant conditions.

  12. Development of a New Method to Investigate the Dynamic Friction Behavior of Interfaces Using a Kolsky Tension Bar

    DOE PAGES

    Sanborn, B.; Song, B.; Nishida, E.

    2017-11-02

    In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steelmore » and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.« less

  13. Skin-Friction Measurements in Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Smith, Donald W.; Walker, John H.

    1959-01-01

    Experiments have been conducted to measure the local surface-shear stress and the average skin-friction coefficient in Incompressible flow for a turbulent boundary layer on a smooth flat plate having zero pressure gradient. Data were obtained for a range of Reynolds numbers from 1 million to 45 million. The local surface-shear stress was measured by a floating-element skin-friction balance and also by a calibrated total head tube located on the surface of the test wall. The average skin-friction coefficient was obtained from boundary-layer velocity profiles.

  14. R245fa Flow Boiling inside a 4.2 mm ID Microfin Tube

    NASA Astrophysics Data System (ADS)

    Longo, G. A.; Mancin, S.; Righetti, G.; Zilio, C.

    2017-11-01

    This paper presents the R245fa flow boiling heat transfer and pressure drop measurements inside a mini microfin tube with internal diameter at the fin tip of 4.2 mm, having 40 fins, 0.15 mm high with a helix angle of 18°. The tube was brazed inside a copper plate and electrically heated from the bottom. Sixteen T-type thermocouples are located in the copper plate to monitor the wall temperature. The experimental measurements were carried out at constant mean saturation temperature of 30 °C, by varying the refrigerant mass velocity between 100 kg m-2 s-1 and 300 kg m-2 s-1, the vapour quality from 0.15 to 0.95, at two different heat fluxes: 30 and 60 kW m-2. The experimental results are presented in terms of two-phase heat transfer coefficient, onset dryout vapour quality, and frictional pressure drop. Moreover, the experimental measurements are compared against the most updated models for boiling heat transfer coefficient and frictional pressure drop estimations available in the open literature for microfin tubes.

  15. Effect of grafted oligopeptides on friction.

    PubMed

    Iarikov, Dmitri D; Ducker, William A

    2013-05-14

    Frictional and normal forces in aqueous solution at 25 °C were measured between a glass particle and oligopeptide films grafted from a glass plate. Homopeptide molecules consisting of 11 monomers of either glutamine, leucine, glutamic acid, lysine, or phenylalanine and one heteropolymer were each "grafted from" an oxidized silicon wafer using microwave-assisted solid-phase peptide synthesis. The peptide films were characterized using X-ray photoelectron spectroscopy and secondary ion mass spectrometry. Frictional force measurements showed that the oligopeptides increased the magnitude of friction compared to that on a bare hydrophilic silicon wafer but that the friction was a strong function of the nature of the monomer unit. Overall we find that the friction is lower for more hydrophilic films. For example, the most hydrophobic monomer, leucine, exhibited the highest friction whereas the hydrophilic monomer, polyglutamic acid, exhibited the lowest friction at zero load. When the two surfaces had opposite charges, there was a strong attraction, adhesion, and high friction between the surfaces. Friction for all polymers was lower in phosphate-buffered saline than in pure water, which was attributed to lubrication via hydrated salt ions.

  16. Direct Measurements of Skin Friction

    NASA Technical Reports Server (NTRS)

    Dhawan, Satish

    1953-01-01

    A device has been developed to measure local skin friction on a flat plate by measuring the force exerted upon a very small movable part of the surface of the flat plate. These forces, which range from about 1 milligram to about 100 milligrams, are measured by means of a reactance device. The apparatus was first applied to measurements in the low-speed range, both for laminar and turbulent boundary layers. The measured skin-friction coefficients show excellent agreement with Blasius' and Von Karman's results. The device was then applied to high-speed subsonic flow and the turbulent-skin-friction coefficients were determined up to a Mach number of about 0.8. A few measurements in supersonic flow were also made. This paper describes the design and construction of the device and the results of the measurements.

  17. Effect of Transpiration Injection on Skin Friction in an Internal Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Castiglone, L. A.; Northam, G. B.; Baker, N. R.; Roe, L. A.

    1996-01-01

    An experimental program was conducted at NASA Langley Research Center that included development and evaluation of an operational facility for wall drag measurement of potential scramjet fuel injection or wall cooling configurations. The facility consisted of a supersonic tunnel, with one wall composed of a series of interchangeable aluminum plates attached to an air bearing suspension system. The system was equipped with load cells that measured drag forces of 115 psia (793 kPa). This flow field contained a train of weak, unsteady, reflecting shock waves that were produced in the Mach 2 nozzle flows, the effect of reflecting shocks (which are to be expected in scramjet combustors) in internal flows has not previously been documented.

  18. Skin friction related behaviour of artificial turf systems.

    PubMed

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  19. Development of a penetration friction apparatus (PFA) to measure the frictional performance of surgical suture.

    PubMed

    Zhang, Gangqiang; Ren, Tianhui; Lette, Walter; Zeng, Xiangqiong; van der Heide, Emile

    2017-10-01

    Nowadays there is a wide variety of surgical sutures available in the market. Surgical sutures have different sizes, structures, materials and coatings, whereas they are being used for various surgeries. The frictional performances of surgical sutures have been found to play a vital role in their functionality. The high friction force of surgical sutures in the suturing process may cause inflammation and pain to the person, leading to a longer recovery time, and the second trauma of soft or fragile tissue. Thus, the investigation into the frictional performance of surgical suture is essential. Despite the unquestionable fact, little is actually known on the friction performances of surgical suture-tissue due to the lack of appropriate test equipment. This study presents a new penetration friction apparatus (PFA) that allowed for the evaluation of the friction performances of various surgical needles and sutures during the suturing process, under different contact conditions. It considered the deformation of tissue and can realize the puncture force measurements of surgical needles as well as the friction force of surgical sutures. The developed PFA could accurately evaluate and understand the frictional behaviour of surgical suture-tissue in the simulating clinical conditions. The forces measured by the PFA showed the same trend as that reported in literatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    NASA Astrophysics Data System (ADS)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid-state mixing. Thirdly, the corrosion resistance of multiple austenitic stainless steels (types 304, 316, and 309) processed in varying ways was compared for acid chloride environments using advanced electrochemical techniques. Physical simulation of fusion claddings and friction weld claddings (wrought stainless steels) was used for sample preparation to determine compositional and microstructural effects. Pitting resistance correlated firstly with Cr content, with N and Mo additions providing additional benefits. The high ferrite fraction of as-welded samples reduced their corrosion resistance. Wrought type 309L outperformed as-welded type 309L in dissolved mass loss and reverse corrosion rate from the potentiodynamic scan in 1.0 N HCl/3.5% NaCl solution. Electrochemical impedance results indicated that wrought 309L and 316L developed a corrosion resistant passive film more rapidly than other alloys in 0.1 N HCl/3.5% NaCl, and also performed well in long term (160-day) corrosion testing in the same environment. Fourthly, to prove the concept of internal CR lining by friction welding, a conical work piece of 304L stainless steel was friction welded internally to 1018 steel.

  1. Dynamic Friction Performance of a Pneumatic Cylinder with Al2O3 Film on Cylinder Surface.

    PubMed

    Chang, Ho; Lan, Chou-Wei; Wang, Hao-Xian

    2015-11-01

    A friction force system is proposed for accurately measuring friction force and motion properties produced by reciprocating motion of piston in a pneumatic cylinder. In this study, the proposed system is used to measure the effects of lubricating greases of different viscosities on the friction properties of pneumatic cylinder, and improvement of stick-slip motion for the cylinder bore by anodizing processes. A servo motor-driven ball screw is used to drive the pneumatic cylinder to be tested and to measure the change in friction force of the pneumatic cylinder. Experimental results show, that under similar test conditions, the lubricating grease with viscosity VG100 is best suited for measuring reciprocating motion of the piston of pneumatic cylinder. The wear experiment showed that, in the Al2O3 film obtained at a preset voltage 40 V in the anodic process, the friction coefficient and hardness decreased by 55% and increased by 274% respectively, thus achieving a good tribology and wear resistance. Additionally, the amplitude variation in the friction force of the pneumatic cylinder wall that received the anodizing treatment was substantially reduced. Additionally, the stick-slip motion of the pneumatic cylinder during low-speed motion was substantially improved.

  2. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  3. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    DOE PAGES

    Chrystal, Colin; Burrell, Keith H.; Grierson, Brian A.; ...

    2014-07-09

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of themore » $$\\vec{E}$$ × $$\\vec{B}$$ shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Finally, predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain.« less

  4. Long-range effect of ion implantation of Raex and Hardox steels

    NASA Astrophysics Data System (ADS)

    Budzyński, P.; Kamiński, M.; Droździel, A.; Wiertel, M.

    2016-09-01

    Ion implantation involves introduction of ionized atoms of any element (nitrogen) to metals thanks to the high kinetic energy that they acquired in the electric field. The distribution of nitrogen ions implanted at E = 65 keV energy and D = 1.1017 N+ /cm2 fluence in the steel sample and vacancies produced by them was calculated using the SRIM program. This result was confirmed by RBS measurements. The initial maximum range of the implanted nitrogen ions is ∼⃒0.17 μm. This value is relatively small compared to the influence of nitriding on the thickness surface layer of modified steel piston rings. Measurements of the friction coefficient during the pin-on-disc tribological test were performed under dry friction conditions. The friction coefficient of the implanted sample increased to values characteristic of an unimplanted sample after ca. 1500 measurement cycles. The depth of wear trace is ca. 2.4 μm. This implies that the thickness of the layer modified by the implantation process is ∼⃒2.4 μm and exceeds the initial range of the implanted ions by an order of magnitude. This effect, referred to as a long-range implantation effect, is caused by migration of vacancies and nitrogen atoms into the sample. This phenomenon makes ion implantation a legitimate process of modification of the surface layer in order to enhance the tribological properties of critical components of internal combustion engines such as steel piston rings.

  5. Skin-friction measurements in high-enthalpy hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Goyne, C. P.; Stalker, R. J.; Paull, A.

    2003-06-01

    Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4 6.7, 3 13 MJ kg(-1) and 0.16× 10(6) 21× 10(6) , respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1 0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of ± 7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.

  6. Analysis of Full-Test tools and their limitations as applied to terminal junction blocks

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1983-01-01

    Discovery of unlocked contacts in Deutsch Block terminal junctions in Solid Rocket Booster flight hardware prompted an investigation into pull test techniques to help insure against possible failures. Internal frictional forces between socket and pin and between wire and grommet were examined. Pull test force must be greater than internal friction yet less than the crimp strength of the pin or socket. For this reason, a 100 percent accurate test is impossible. Test tools were evaluated. Available tools are adequate for pull testing.

  7. Determination of the Basic Friction Angle of Rock Surfaces by Tilt Tests

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sic; Zhang, Qing-Zhao; Kang, Seong-Seung; Jang, Bo-An

    2018-04-01

    Samples of Hwangdeung granite from Korea and Berea sandstone from USA, both containing sliding planes, were prepared by saw-cutting or polishing using either #100 or #600 grinding powders. Their basic friction angles were measured by direct shear testing, triaxial compression testing, and tilt testing. The direct shear tests and triaxial compression tests on the saw-cut, #100, and #600 surfaces indicated that the most reliable results were obtained from the #100 surface: basic friction angle of 29.4° for granite and 34.1° for sandstone. To examine the effect of surface conditions on the friction angle in tilt tests, the sliding angles were measured 50 times with two surface conditions (surfaces cleaned and not cleaned after each measurement). The initial sliding angles were high regardless of rock type and surface conditions and decreased exponentially as measurements continued. The characteristics of the sliding angles, differences between tilt tests, and dispersion between measurements in each test indicated that #100 surface produced the most reliable basic friction angle measurement. Without cleaning the surfaces, the average angles for granite (32 measurements) and sandstone (23 measurements) were similar to the basic friction angle. When 20-50 measurements without cleaning were averaged, the basic friction angle was within ± 2° for granite and ± 3° for sandstone. Sliding angles using five different tilting speeds were measured but the average was similar, indicating that tilting speed (between 0.2° and 1.6°/s) has little effect on the sliding angle. Sliding angles using four different sample sizes were measured with the best results obtained for samples larger than 8 × 8 cm.

  8. Influence of moisture content on physical properties of minor millets.

    PubMed

    Balasubramanian, S; Viswanathan, R

    2010-06-01

    Physical properties including 1000 kernel weight, bulk density, true density, porosity, angle of repose, coefficient of static friction, coefficient of internal friction and grain hardness were determined for foxtail millet, little millet, kodo millet, common millet, barnyard millet and finger millet in the moisture content range of 11.1 to 25% db. Thousand kernel weight increased from 2.3 to 6.1 g and angle of repose increased from 25.0 to 38.2°. Bulk density decreased from 868.1 to 477.1 kg/m(3) and true density from 1988.7 to 884.4 kg/m(3) for all minor millets when observed in the moisture range of 11.1 to 25%. Porosity decreased from 63.7 to 32.5%. Coefficient of static friction of minor millets against mild steel surface increased from 0.253 to 0.728 and coefficient of internal friction was in the range of 1.217 and 1.964 in the moisture range studied. Grain hardness decreased from 30.7 to 12.4 for all minor millets when moisture content was increased from 11.1 to 25% db.

  9. Skin friction measurements by a new nonintrusive double-laser-beam oil viscosity balance technique

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Higuchi, H.

    1980-01-01

    A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low-speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a 'law-of-the-wall' coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.

  10. Skin Friction Measurements by a Dual-Laser-Beam Interferometer Technique

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Higuchi, H.

    1981-01-01

    A portable dual-laser-beam interferometer that nonintrusively measures skin friction by monitoring the thickness change of an oil film subject to shear stress is described. The method is an advance over past versions in that the troublesome and error-introducing need to measure the distance to the oil leading edge and the starting time for the oil flow has been eliminated. The validity of the method was verified by measuring oil viscosity in the laboratory, and then using those results to measure skin friction beneath the turbulent boundary layer in a low speed wind tunnel. The dual-laser-beam skin friction measurements are compared with Preston tube measurements, with mean velocity profile data in a "law-of-the-well" coordinate system, and with computations based on turbulent boundary-layer theory. Excellent agreement is found in all cases. (This validation and the aforementioned improvements appear to make the present form of the instrument usable to measure skin friction reliably and nonintrusively in a wide range of flow situations in which previous methods are not practical.)

  11. Second International Symposium on Structural Intermetallics

    DTIC Science & Technology

    1997-09-01

    former case, twin Price [18], as schematically illustrated in Fig. 3 (c). formation can be further described by two mechanisms. One is the pole... source (Figure 5(c)). on how the heights of the jogs are distributed. These Dipoles become unstable when numbers may be compared with the measured friction... source the variation within growth of gamma grains, but the HIP temperature could only be reduced castings is not known, so far and still close

  12. Investigating the feasibility of integrating pavement friction and texture depth data in modeling for INDOT PMS.

    DOT National Transportation Integrated Search

    2012-11-01

    Under INDOTs current friction testing program, the friction is measured annually on interstates but only once every three years on noninterstate : roadways. The states Pavement Management System, however, would require current data if friction ...

  13. Tribological testing of skin products: gender, age, and ethnicity on the volar forearm.

    PubMed

    Sivamani, Raja K; Wu, Gabriel C; Gitis, Norm V; Maibach, Howard I

    2003-11-01

    Few studies have focused on the simultaneous measurement of the friction and electrical properties of skin. This work investigates the feasibility of using these measurements to differentiate between the effects of chemicals commonly applied to the skin. In addition, this study also compares the condition of the skin and its response to application of chemicals across gender, ethnicity, and age at the volar forearm. Friction and electrical tests were performed on 59 healthy volunteers with the UMT Series Micro-Tribometer (UMT). A 13-mm-diameter copper cylindrical friction/electrical probe was pressed onto the skin with a weight of 20 g and moved across the skin at a constant velocity of 0.4 mm/s. Each volunteer served as his or her own control. The friction and electrical impedance measurements were performed for polyvinylidene chloride occlusion and for the application of glycerin and petrolatum. No differences were found across age, gender, or ethnicity at the volar forearm. Polyvinylidene chloride (PVDC) occlusion showed a small increase in the friction and a small decrease in the electrical impedance; petrolatum increased the friction by a greater amount but its effect on the impedance was comparable to PVDC occlusion; glycerin increased the friction by an amount comparable to petrolatum, but it decreased the impedance to a much greater degree than petrolatum or the PVDC occlusion. An amplitude/mean measurement of the friction curves of glycerin and petrolatum showed that glycerin has a significantly higher amplitude/mean than petrolatum. The properties of the volar forearm appear to be independent of age, gender, and ethnicity. Also, the simultaneous measurement of friction and electrical impedance was useful in differentiating between compounds administered to the skin.

  14. Measurements of Skin Friction of the Compressible Turbulent Boundary Layer on a Cone with Foreign Gas Injection

    NASA Technical Reports Server (NTRS)

    Pappas, Constantine C.; Ukuno, Arthur F.

    1960-01-01

    Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.

  15. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  16. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  17. Friction coefficient of skin in real-time.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  18. Tactile friction of topical formulations.

    PubMed

    Skedung, L; Buraczewska-Norin, I; Dawood, N; Rutland, M W; Ringstad, L

    2016-02-01

    The tactile perception is essential for all types of topical formulations (cosmetic, pharmaceutical, medical device) and the possibility to predict the sensorial response by using instrumental methods instead of sensory testing would save time and cost at an early stage product development. Here, we report on an instrumental evaluation method using tactile friction measurements to estimate perceptual attributes of topical formulations. Friction was measured between an index finger and an artificial skin substrate after application of formulations using a force sensor. Both model formulations of liquid crystalline phase structures with significantly different tactile properties, as well as commercial pharmaceutical moisturizing creams being more tactile-similar, were investigated. Friction coefficients were calculated as the ratio of the friction force to the applied load. The structures of the model formulations and phase transitions as a result of water evaporation were identified using optical microscopy. The friction device could distinguish friction coefficients between the phase structures, as well as the commercial creams after spreading and absorption into the substrate. In addition, phase transitions resulting in alterations in the feel of the formulations could be detected. A correlation was established between skin hydration and friction coefficient, where hydrated skin gave rise to higher friction. Also a link between skin smoothening and finger friction was established for the commercial moisturizing creams, although further investigations are needed to analyse this and correlations with other sensorial attributes in more detail. The present investigation shows that tactile friction measurements have potential as an alternative or complement in the evaluation of perception of topical formulations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Solvent friction changes the folding pathway of the tryptophan zipper TZ2.

    PubMed

    Narayanan, Ranjani; Pelakh, Leslie; Hagen, Stephen J

    2009-07-17

    Because the rate of a diffusional process such as protein folding is controlled by friction encountered along the reaction pathway, the speed of folding is readily tunable through adjustment of solvent viscosity. The precise relationship between solvent viscosity and the rate of diffusion is complex and even conformation-dependent, however, because both solvent friction and protein internal friction contribute to the total reaction friction. The heterogeneity of the reaction friction along the folding pathway may have subtle consequences. For proteins that fold on a multidimensional free-energy surface, an increase in solvent friction may drive a qualitative change in folding trajectory. Our time-resolved experiments on the rapidly and heterogeneously folding beta-hairpin TZ2 show a shift in the folding pathway as viscosity increases, even though the energetics of folding is unaltered. We also observe a nonlinear or saturating behavior of the folding relaxation time with rising solvent viscosity, potentially an experimental signature of the shifting pathway for unfolding. Our results show that manipulations of solvent viscosity in folding experiments and simulations may have subtle and unexpected consequences on the folding dynamics being studied.

  20. Friction measurements on InAs NWs by AFM manipulation

    NASA Astrophysics Data System (ADS)

    Pettersson, Hakan; Conache, Gabriela; Gray, Struan; Bordag, Michael; Ribayrol, Aline; Froberg, Linus; Samuelson, Lars; Montelius, Lars

    2008-03-01

    We discuss a new approach to measure the friction force between elastically deformed nanowires and a surface. The wires are bent, using an AFM, into an equilibrium shape determined by elastic restoring forces within the wire and friction between the wire and the surface. From measurements of the radius of curvature of the bent wires, elasticity theory allows the friction force per unit length to be calculated. We have studied friction properties of InAs nanowires deposited on SiO2, silanized SiO2 and Si3N4 substrates. The wires were typically from 0.5 to a few microns long, with diameters varying between 20 and 80 nm. Manipulation is done in a `Retrace Lift' mode, where feedback is turned off for the reverse scan and the tip follows a nominal path. The effective manipulation force during the reverse scan can be changed by varying an offset in the height of the tip over the surface. We will report on interesting static- and sliding friction experiments with nanowires on the different substrates, including how the friction force per unit length varies with the diameter of the wires.

  1. The effect of surface waviness on friction between Neolite and quarry tiles.

    PubMed

    Chang, Wen-Ruey; Grönqvist, Raoul; Hirvonen, Mikko; Matz, Simon

    2004-06-22

    Friction is widely used as an indicator of surface slipperiness in preventing accidents in slips and falls. Surface texture affects friction, but it is not clear which surface characteristics are better correlated with friction. Highly correlated surface characteristics could be used as potential interventions to prevent slip and fall accidents. The dynamic friction between quarry tiles and a commonly used sole testing material, Neolite, using three different mixtures of glycerol and water as contaminants at the interface was correlated with the surface parameters of the tile surfaces. The surface texture was quantified with various surface roughness and surface waviness parameters using three different cut-off lengths to filter the measured profiles for obtaining the profiles of either surface roughness or surface waviness. The correlation coefficients between the surface parameters and the measured friction were affected by the glycerol contents and cut-off lengths. Surface waviness parameters could potentially be better indicators of friction than commonly used surface roughness parameters, especially when they were measured with commonly used cut-off lengths or when the viscosity of the liquid contaminant was high.

  2. Estimation of wheel-rail friction for vehicle certification

    NASA Astrophysics Data System (ADS)

    Petrov, Vladislav; Berg, Mats; Persson, Ingemar

    2014-08-01

    In certification of new rail vehicles with respect to running characteristics, a wide variety of operating conditions needs to be considered. However, in associated test runs the wheel-rail friction condition is difficult to handle because the friction coefficient needs to be fairly high and the friction is also generally hard to assess. This is an issue that has been studied in the European project DynoTRAIN and part of the results is presented in this paper. More specifically, an algorithm for estimating the wheel-rail friction coefficient at vehicle certification tests is proposed. Owing to lack of some measurement results, the algorithm here is evaluated in a simulation environment which is also an important step towards practical implementation. A quality measure of the friction estimate is suggested in terms of estimated wheel-rail spin and total creep. It is concluded that, tentatively, the total creep should exceed 0.006 and the spin should be less than 1.0 m-1 for the algorithm to give a good friction estimate. Sensitivity analysis is carried out to imitate measurement errors, but should be expanded in further work.

  3. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae).

    PubMed

    Dai, Zhendong; Gorb, Stanislav N; Schwarz, Uli

    2002-08-01

    This paper studies slide-resisting forces generated by claws in the free-walking beetle Pachnoda marginata (Coleoptera, Scarabaeoidea) with emphasis on the relationship between the dimension of the claw tip and the substrate texture. To evaluate the force range by which the claw can interact with a substrate, forces generated by the freely moving legs were measured using a load cell force transducer. To obtain information about material properties of the claw, its mechanical strength was tested in a fracture experiment, and the internal structure of the fractured claw material was studied by scanning electron microscopy. The bending stress of the claw was evaluated as 143.4-684.2 MPa, depending on the cross-section model selected. Data from these different approaches led us to propose a model explaining the saturation of friction force with increased texture roughness. The forces are determined by the relative size of the surface roughness R(a) (or an average particle diameter) and the diameter of the claw tip. When surface roughness is much bigger than the claw tip diameter, the beetle can grasp surface irregularities and generate a high degree of attachment due to mechanical interlocking with substrate texture. When R(a) is lower than or comparable to the claw tip diameter, the frictional properties of the contact between claw and substrate particles play a key role in the generation of the friction force.

  4. Frictional properties of lubrication greases with the addition of nickel nanoparticles in pneumatic cylinder

    NASA Astrophysics Data System (ADS)

    Chang, Ho; Lan, Chou-Wei; Guo, Jia-Bin

    2011-12-01

    This paper studies the influence of addition of 100 nm diameter nickel nano-particles on the friction properties of synthetic grease (Li base, VG100) in pneumatic cylinder. The friction force test of pneumatic cylinder equipment measures the frictional force between seal and cylinder bore in pneumatic cylinders. The lubricants with addition of nickel nano-particles were used for lubricating the contact interface between seal and cylinder bore. The friction force test equipment employ a load cell force sensor to measure the friction force between seals and cylinder bores. Results obtained from experimental tests are compared to determine the friction force between seals and cylinder bore in pneumatic cylinders. The study leads to the conclusion that the addition of nickel nano-particles to synthetic grease results in a decrease in friction force between seals and cylinder bores in pneumatic cylinder. This tribological behavior is closely related to the deposition of nano-particles on the rubbing surfaces

  5. Friction Coefficient Determination by Electrical Resistance Measurements

    ERIC Educational Resources Information Center

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-01-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino…

  6. Modeling of heat transfer in compacted machining chips during friction consolidation process

    NASA Astrophysics Data System (ADS)

    Abbas, Naseer; Deng, Xiaomin; Li, Xiao; Reynolds, Anthony

    2018-04-01

    The current study aims to provide an understanding of the heat transfer process in compacted aluminum alloy AA6061 machining chips during the friction consolidation process (FCP) through experimental investigations and mathematical modelling and numerical simulation. Compaction and friction consolidation of machining chips is the first stage of the Friction Extrusion Process (FEP), which is a novel method for recycling machining chips to produce useful products such as wires. In this study, compacted machining chips are modelled as a continuum whose material properties vary with density during friction consolidation. Based on density and temperature dependent thermal properties, the temperature field in the chip material and process chamber caused by frictional heating during the friction consolidation process is predicted. The predicted temperature field is found to compare well with temperature measurements at select points where such measurements can be made using thermocouples.

  7. Experimental rig to estimate the coefficient of friction between tire and surface in airplane touchdown simulations.

    PubMed

    Li, Chengwei; Zhan, Liwei

    2015-08-01

    To estimate the coefficient of friction between tire and runway surface during airplane touchdowns, we designed an experimental rig to simulate such events and to record the impact and friction forces being executed. Because of noise in the measured signals, we developed a filtering method that is based on the ensemble empirical mode decomposition and the bandwidth of probability density function of each intrinsic mode function to extract friction and impact force signals. We can quantify the coefficient of friction by calculating the maximum values of the filtered force signals. Signal measurements are recorded for different drop heights and tire rotational speeds, and the corresponding coefficient of friction is calculated. The result shows that the values of the coefficient of friction change only slightly. The random noise and experimental artifact are the major reason of the change.

  8. Friction between footwear and floor covered with solid particles under dry and wet conditions.

    PubMed

    Li, Kai Way; Meng, Fanxing; Zhang, Wei

    2014-01-01

    Solid particles on the floor, both dry and wet, are common but their effects on the friction on the floor were seldom discussed in the literature. In this study, friction measurements were conducted to test the effects of particle size of solid contaminants on the friction coefficient on the floor under footwear, floor, and surface conditions. The results supported the hypothesis that particle size of solids affected the friction coefficient and the effects depended on footwear, floor, and surface conditions. On dry surfaces, solid particles resulted in friction loss when the Neolite footwear pad was used. On the other hand, solid particles provided additional friction when measured with the ethylene vinyl acetate (EVA) footwear pad. On wet surfaces, introducing solid particles made the floors more slip-resistant and such effects depended on particle size. This study provides information for better understanding of the mechanism of slipping when solid contaminants are present.

  9. Characterization of Martian near-subsurface materials by determination of cohesion and angle of internal friction

    NASA Technical Reports Server (NTRS)

    Sullivan, R. J.

    1992-01-01

    Back-analysis (reconstruction) of the stability of thirty avalanche chutes was performed in the very limited areas where high resolution imaging overlapped with available 1:500 K topographic map coverage. A new technique was developed to incorporate the third dimension (width) of an avalanche chute in stability back-analysis in order to yield unambiguous values of cohesion and angle of internal friction. The procedure is based upon extending the ordinary method of slices to three dimensions, in order to construct avalanche chute cross-sections whose widths and depths vary as a function of gradient, gravity, density of material, and phi and c. Applying the technique to the well documented slide at Lodalen, Norway as a test produces excellent correspondence with reality. Generally, the technique reveals that the width:depth ratio of any avalanche chute decreases with increasing contrast between the average slope angle and the angle of internal friction. Applying this technique to the martian avalanche chute yields results consistent with indications from earlier work, but with greater certainty. Values of cohesion and angle of internal friction identify the materials at the time of failure as moderately cohesive debris. If Sharp's identification of these features as avalanche chutes is correct, then the results here imply that weathering processes have had a significant effect to depths of tens of meters (where failure has occured) below the martian surface. It is also implied that on relatively steep slopes within Valles Marineris, sizable, unaltered, unmantled bedrock exposures for high resolution spectral and spatial scanning by Mars Observer may be scarce.

  10. Tire-to-Surface Friction-Coefficient Measurements with a C-123B Airplane on Various Runway Surfaces

    NASA Technical Reports Server (NTRS)

    Sawyer, Richard H.; Kolnick, Joseph J.

    1959-01-01

    An investigation was conducted to obtain information on the tire-to-surface friction coefficients available in aircraft braking during the landing run. The tests were made with a C-123B airplane on both wet and dry concrete and bituminous pavements and on snow-covered and ice surfaces at speeds from 12 to 115 knots. Measurements were made of the maximum (incipient skidding) friction coefficient, the full-skidding (locked wheel) friction coefficient, and the wheel slip ratio during braking.

  11. Frictional processes in smectite-rich gouges sheared at slow to high slip rates

    NASA Astrophysics Data System (ADS)

    Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio

    2015-04-01

    The slipping zones of shallow sections of megathrusts and of large landslides are often smectite-rich (e.g., montmorillonite type). Consequently, similar "frictional" processes operating at high slip rates (> 1 m/s) might be responsible of the large slips estimated in megathrust (50 m for the 2011 Tohoku Mw 9.1 earthquake) and measured in large landslides (500 m for the 1963 Vajont slide, Italy). At present, only rotary shear apparatuses can reproduce simultaneously the large slips and slip rates of these events. Noteworthy, the frictional processes proposed so far (thermal and thermochemical pressurization, etc.) remain rather obscure. Here we present preliminary results obtained with the ROtary Shear Apparatus (ROSA) installed at Padua University. Thirty-one experiments were performed at ambient conditions on pure end-members of (1) smectite-rich standard powders (STx-1b: ~68 wt% Ca-montmorillonite, ~30 wt% opal-CT and ~2 wt% quartz), (2) quartz powders (qtz) and (3) on 80:20 = Stx-1b:qtz mixtures. The gouges were sandwiched between two (1) hollow (25/15 mm external/internal diameter) or (2) solid (25 mm in diameter) stainless-steel made cylinders and confined by inner and outer Teflon rings (only outer for solid cylinders). Gouges were sheared at a normal stress of 5 MPa, slip rates V from 300 μm/s to 1.5 m/s and total slip of 3 m. The deformed gouges were investigated with quantitative (Rietveld method with internal standard) X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM). In the smectite-rich standard endmember, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, initial friction coefficient (μi) was 0.6±0.05 whereas the steady-state friction coefficient (μss) was velocity and slip strengthening (μss 0.85±0.05), (2) for 0.1 m/s < V < 0.3 m/s, velocity and slip neutral (μi = μss = 0.62±0.08) and (3) for V > 0.8 m/s, velocity and slip weakening (μi = 0.7±0.1 and μss = 0.25±0.05). In the 80:20 Stx-1b:qtz mixtures, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, μi ranged was 0.7±0.05 and increased with slip to μss = 0.77±0.02 (slip-strengthening behavior), (2) for V = 0.1 m/s velocity and slip neutral (μi = μss = 0.77±0.02) and (3) for V ≥ 0.3 m/s the friction coefficient was velocity and slip weakening with μss = 0.32±0.02 for V = 1.5 m/s. The Rietveld analysis of the smectite-rich standard endmember showed (1) the insensitivity of the amount of the amorphous fraction with frictional work and (2) the shift and broadening of both the (001) and (110) peaks of Ca-montmorillonite with increasing frictional work (i.e., product of shear stress with slip, here from 5.2 Jm-2 to 11.8 Jm-2). Instead, mineralogical and lattice changes were unrelated to the frictional work rate (i.e., product of shear stress with slip rate). Strain localization in the gouge layer was observed for V ≥ 0.3 m/s (SEM investigations); for V < 0.3 m/s, strain was distributed and the gouge layer pervasively foliated. We conclude that the degree of amorphization of the sheared gouges was not responsible of the measured frictional weakening; instead, weakening was concomitant to strain localization.

  12. The Influence of Friction Between Football Helmet and Jersey Materials on Force: A Consideration for Sport Safety

    PubMed Central

    Rossi, Anthony M.; Claiborne, Tina L.; Thompson, Gregory B.; Todaro, Stacey

    2016-01-01

    Context: The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. Objective: To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: Helmets with different finishes and different football jersey fabrics. Main Outcome Measure(s): The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. Results: The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). Conclusions: The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety. PMID:27824251

  13. Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C.

    2016-08-01

    Cohesion and friction coefficient are fundamental parameters for scaling brittle deformation in laboratory models of geological processes. However, they are commonly not experimental variable, whereas (1) rocks range from cohesion-less to strongly cohesive and from low friction to high friction and (2) strata exhibit substantial cohesion and friction contrasts. This brittle paradox implies that the effects of brittle properties on processes involving brittle deformation cannot be tested in laboratory models. Solving this paradox requires the use of dry granular materials of tunable and controllable brittle properties. In this paper, we describe dry mixtures of fine-grained cohesive, high friction silica powder (SP) and low-cohesion, low friction glass microspheres (GM) that fulfill this requirement. We systematically estimated the cohesions and friction coefficients of mixtures of variable proportions using two independent methods: (1) a classic Hubbert-type shear box to determine the extrapolated cohesion (C) and friction coefficient (μ), and (2) direct measurements of the tensile strength (T0) and the height (H) of open fractures to calculate the true cohesion (C0). The measured values of cohesion increase from 100 Pa for pure GM to 600 Pa for pure SP, with a sub-linear trend of the cohesion with the mixture GM content. The two independent cohesion measurement methods, from shear tests and tension/extensional tests, yield very similar results of extrapolated cohesion (C) and show that both are robust and can be used independently. The measured values of friction coefficients increase from 0.5 for pure GM to 1.05 for pure SP. The use of these granular material mixtures now allows testing (1) the effects of cohesion and friction coefficient in homogeneous laboratory models and (2) testing the effect of brittle layering on brittle deformation, as demonstrated by preliminary experiments. Therefore, the brittle properties become, at last, experimental variables.

  14. Skin-friction gauge for use in hypervelocity impulse facilities

    NASA Technical Reports Server (NTRS)

    Kelly, G. M.; Simmons, J. M.; Paull, A.

    1992-01-01

    A transducer is presented which can measure as rise-time of about 20 microsec, and is thereby applicable to measurements in the high-enthalpy flows associated with hypervelocity impulse facilities. Results are presented which demonstrate the effectiveness of the concept in the case of skin-friction measurements conducted on a flat plate at Mach 3.2. The calibration used was against theoretical skin-friction values in a simple flow.

  15. A Micro-Force Sensor with Slotted-Quad-Beam Structure for Measuring the Friction in MEMS Bearings

    PubMed Central

    Liu, Huan; Yang, Shuming; Zhao, Yulong; Jiang, Zhuangde; Liu, Yan; Tian, Bian

    2013-01-01

    Presented here is a slotted-quad-beam structure sensor for the measurement of friction in micro bearings. Stress concentration slots are incorporated into a conventional quad-beam structure to improve the sensitivity of force measurements. The performance comparison between the quad-beam structure sensor and the slotted-quad-beam structure sensor are performed by theoretical modeling and finite element (FE) analysis. A hollow stainless steel probe is attached to the mesa of the sensor chip by a tailor-made organic glass fixture. Concerning the overload protection of the fragile beams, a glass wafer is bonded onto the bottom of sensor chip to limit the displacement of the mesa. The calibration of the packaged device is experimentally performed by a tri-dimensional positioning stage, a precision piezoelectric ceramic and an electronic analytical balance, which indicates its favorable sensitivity and overload protection. To verify the potential of the proposed sensor being applied in micro friction measurement, a measurement platform is established. The output of the sensor reflects the friction of bearing resulting from dry friction and solid lubrication. The results accord with the theoretical modeling and demonstrate that the sensor has the potential application in measuring the micro friction force under stable stage in MEMS machines. PMID:24084112

  16. Skin Friction at Very High Reynolds Numbers in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Watson, Ralph D.; Anders, John B.; Hall, Robert M.

    2006-01-01

    Skin friction coefficients were derived from measurements using standard measurement technologies on an axisymmetric cylinder in the NASA Langley National Transonic Facility (NTF) at Mach numbers from 0.2 to 0.85. The pressure gradient was nominally zero, the wall temperature was nominally adiabatic, and the ratio of boundary layer thickness to model diameter within the measurement region was 0.10 to 0.14, varying with distance along the model. Reynolds numbers based on momentum thicknesses ranged from 37,000 to 605,000. The measurements approximately doubled the range of available data for flat plate skin friction coefficients. Three different techniques were used to measure surface shear. The maximum error of Preston tube measurements was estimated to be 2.5 percent, while that of Clauser derived measurements was estimated to be approximately 5 percent. Direct measurements by skin friction balance proved to be subject to large errors and were not considered reliable.

  17. A rare case of severe third degree friction burns and large Morel-Lavallee lesion of the abdominal wall.

    PubMed

    Brown, Darnell J; Lu, Kuo Jung G; Chang, Kristina; Levin, Jennifer; Schulz, John T; Goverman, Jeremy

    2018-01-01

    Morel-Lavallee lesions (MLLs) are rare internal degloving injuries typically caused by blunt traumatic injuries and most commonly occur around the hips and in association with pelvic or acetabular fractures. MLL is often overlooked in the setting of poly-trauma; therefore, clinicians must maintain a high degree of suspicion and be familiar with the management of such injuries, especially in obese poly-trauma patients. We present a 30-year-old female pedestrian struck by a motor vehicle who sustained multiple long bone fractures, a mesenteric hematoma, and full-thickness abdominal skin friction burn which masked a significant underlying abdominal MLL. The internal degloving caused significant devascularization of the overlying soft tissue and skin which required surgical drainage of hematoma, abdominal wall reconstruction with tangential excision, allografting, negative pressure wound therapy, and ultimately autografting. MLL is a rare, often overlooked, internal degloving injury. Surgeons must maintain a high index of suspicion when dealing with third degree friction burns as they may mask underlying injuries such as MLL, and a delay in diagnosis can lead to increased morbidity.

  18. Friction Effects of Lead-Based and Lead-Free Primers in 5.56mm NATO

    DTIC Science & Technology

    2014-01-30

    Temperatures – A Review,” Tribology International 15(5), pp. 303-315. Martin, J.M., Le Mogne, T., Chassagnette, C., and Gardos, M.N., 1992. “Friction of...Hexagonal Boron Nitride in Various Environments,” Tribology Transactions 35(3), pp. 462-472. White, L. and Siewert, J., 2007. “Final Report of the

  19. The detrimental effect of friction on space microgravity robotics

    NASA Technical Reports Server (NTRS)

    Newman, Wyatt S.; Glosser, Gregory D.; Miller, Jeffrey H.; Rohn, Douglas

    1992-01-01

    The authors present an analysis of why control systems are ineffective in compensating for acceleration disturbances due to Coulomb friction. Linear arguments indicate that the effects of Coulomb friction on a body are most difficult to reject when the control actuator is separated from the body of compliance. The linear arguments were illustrated in a nonlinear simulation of optimal linear tracking control in the presence of nonlinear friction. The results of endpoint acceleration measurements for four robot designs are presented and are compared with simulation and to equivalent measurements on a human. It is concluded that Coulomb friction in common bearings and transmission induces unacceptable levels of endpoint acceleration, that these accelerations cannot be adequately attenuated by control, and that robots for microgravity work will require special design considerations for inherently low friction.

  20. A laser interferometer for measuring skin friction in three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A new, nonintrusive method is described for measuring skin friction in three-dimensional flows with unknown direction. The method uses a laser interferometer to measure the changing slope of a thin oil film applied to a surface experiencing shear stress. The details of the method are described, and skin friction measurements taken in a swirling three-dimensional boundary-layer flow are presented. Comparisons between analytical results and experimental values from the laser interferometer method and from a bidirectional surface-fence gauge are made.

  1. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  2. Method and device for frictional welding

    DOEpatents

    Peacock, H.B.

    1991-01-01

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel`s recessed bottom. Also, the channel design limits distortion of the two members during the friction welding, process, further contributing to the complete seal that is obtained.

  3. Method and device for frictional welding

    DOEpatents

    Peacock, Harold B.

    1992-01-01

    A method for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical cannister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained.

  4. Friction Syndromes of the Knee: The Iliotibial Band and Anterior Fat Pads.

    PubMed

    Wissman, Robert D; Pomeranz, Stephen J

    2018-01-01

    As participation in sporting activities increases among the general population, the incidence of overuse injuries continues to rise. Friction syndromes of the knee are common and are often clinically diagnosed without the need for imaging. However, clinical symptoms may overlap with other joint abnormalities, and physical examination may be limited in individuals with excessive pain. Magnetic resonance imaging has remained the modality of choice for the evaluation of internal derangements of the joints and is a useful aid in the diagnosis of friction syndrome of the knee. This case report provides clinicians with an understanding of the most common friction syndromes of the knee joint as well as their imaging findings. (Journal of Surgical Orthopaedic Advances 27(1):77-80, 2018).

  5. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part II: Numerical implementation.

    PubMed

    Delrue, Steven; Aleshin, Vladislav; Truyaert, Kevin; Bou Matar, Olivier; Van Den Abeele, Koen

    2018-01-01

    Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An Investigation of the Role of Friction in the Motion of a Tippe Top

    NASA Astrophysics Data System (ADS)

    Kager, Elisabeth; Howald, Craig; Kuhl, Dennis

    2008-03-01

    The time it takes a Tippe Top to turn over was measured as a function of friction. The reproducibility of the measured tipping time was also examined. Two experiments were conducted: One to measure a frictional figure of merit and the second to test the time it takes the Tippe Top to tip on three surfaces with varying friction. The three surfaces used were glass, Teflon, and Vinyl. Several runs of spinning Tippe Tops were recorded by means of a video camera. The data was analyzed by extracting the angular position and the angular velocity of the Tippe Top. By graphing the angular velocity vs. time and using the slope of the line, a frictional figure of merit was found. The time it took the Tippe Top to tip in each case was also determined.

  7. Study of Plastic Deformation in Binary Aluminum Alloys by Internal-Friction Methods

    NASA Technical Reports Server (NTRS)

    Olson, E. C.; Maringer, R. E.; Marsh, L. L.; Manning, G. K.

    1959-01-01

    The damping capacity of several aluminum-copper alloys has been investigated during tensile elongation. This damping is shown to depend on strain rate, strain, temperature, alloy content, and heat treatment. A tentative hypothesis, based on the acceleration of solute atom diffusion by deformation-produced vacancies, is proposed to account for the observed behavior. Internal-friction maxima are observed in deformed aluminum and aluminum-copper alloys at -70 deg and -50 deg C. The peaks appear to be relatively insensitive to frequency and alloy content, but they disappear after annealing at temperatures nearing the recrystallization temperature.

  8. Contact sensing from force measurements

    NASA Technical Reports Server (NTRS)

    Bicchi, Antonio; Salisbury, J. K.; Brock, David L.

    1993-01-01

    This article addresses contact sensing (i.e., the problem of resolving the location of a contact, the force at the interface, and the moment about the contact normals). Called 'intrinsic' contact sensing for the use of internal force and torque measurements, this method allows for practical devices that provide simple, relevant contact information in practical robotic applications. Such sensors have been used in conjunction with robot hands to identify objects, determine surface friction, detect slip, augment grasp stability, measure object mass, probe surfaces, and control collision and for a variety of other useful tasks. This article describes the theoretical basis for their operation and provides a framework for future device design.

  9. Micro- and macroscale coefficients of friction of cementitious materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomboy, Gilson; Sundararajan, Sriram, E-mail: srirams@iastate.edu; Wang, Kejin

    2013-12-15

    Millions of metric tons of cementitious materials are produced, transported and used in construction each year. The ease or difficulty of handling cementitious materials is greatly influenced by the material friction properties. In the present study, the coefficients of friction of cementitious materials were measured at the microscale and macroscale. The materials tested were commercially-available Portland cement, Class C fly ash, and ground granulated blast furnace slag. At the microscale, the coefficient of friction was determined from the interaction forces between cementitious particles using an Atomic Force Microscope. At the macroscale, the coefficient of friction was determined from stresses onmore » bulk cementitious materials under direct shear. The study indicated that the microscale coefficient of friction ranged from 0.020 to 0.059, and the macroscale coefficient of friction ranged from 0.56 to 0.75. The fly ash studied had the highest microscale coefficient of friction and the lowest macroscale coefficient of friction. -- Highlights: •Microscale (interparticle) coefficient of friction (COF) was determined with AFM. •Macroscale (bulk) COF was measured under direct shear. •Fly ash had the highest microscale COF and the lowest macroscale COF. •Portland cement against GGBFS had the lowest microscale COF. •Portland cement against Portland cement had the highest macroscale COF.« less

  10. Provoked Vestibulodynia: Does Pain Intensity Correlate With Sexual Dysfunction and Dissatisfaction?

    PubMed

    Aerts, Leen; Bergeron, Sophie; Pukall, Caroline F; Khalifé, Samir

    2016-06-01

    Provoked vestibulodynia (PVD) is suspected to be the most frequent cause of vulvodynia in premenopausal women. Previous research has been inconclusive as to whether higher vulvovaginal pain ratings are associated with lower sexual function and satisfaction in women with PVD. Whether pain intensity correlates with sexual impairment is an important question given its implications for treatment recommendations. To examine the associations among self-reported and objective pain measurements, sexual function, and sexual satisfaction in a large combined clinical and community sample of premenopausal women diagnosed with PVD. Ninety-eight women with PVD underwent a cotton-swab test, a vestibular friction pain measurement, and a vestibular pressure-pain threshold measurement. In addition to sociodemographics, participants completed measurements of pain, sexual function, and sexual satisfaction. Self-report measurements were the pain numerical rating scale (0-10), the McGill-Melzack Pain Questionnaire, the Female Sexual Function Index, and the Global Measure of Sexual Satisfaction. Objective measurements were pain during a cotton-swab test, pain during a vestibular friction procedure, and the vestibular pressure-pain threshold measurement. Age and relationship duration were significantly correlated with the Female Sexual Function Index total score (r = -0.31, P < .01; and r = -0.22, P < .05, respectively). When controlling for age, intercourse-related pain intensity, pain during the cotton-swab test, pain during vestibular friction, the vestibular pressure-pain threshold, and the McGill-Melzack Pain Questionnaire sensory and affective subscale scores were not significantly associated with sexual function and satisfaction in women with PVD. The findings show that in women with PVD, self-report and objective pain ratings are not associated with sexual function and satisfaction. The results support the biopsychosocial nature of PVD and underscore the importance of a patient-focused multidisciplinary treatment approach for PVD. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  11. Shear flow of angular grains: acoustic effects and nonmonotonic rate dependence of volume.

    PubMed

    Lieou, Charles K C; Elbanna, Ahmed E; Langer, J S; Carlson, J M

    2014-09-01

    Naturally occurring granular materials often consist of angular particles whose shape and frictional characteristics may have important implications on macroscopic flow rheology. In this paper, we provide a theoretical account for the peculiar phenomenon of autoacoustic compaction-nonmonotonic variation of shear band volume with shear rate in angular particles-recently observed in experiments. Our approach is based on the notion that the volume of a granular material is determined by an effective-disorder temperature known as the compactivity. Noise sources in a driven granular material couple its various degrees of freedom and the environment, causing the flow of entropy between them. The grain-scale dynamics is described by the shear-transformation-zone theory of granular flow, which accounts for irreversible plastic deformation in terms of localized flow defects whose density is governed by the state of configurational disorder. To model the effects of grain shape and frictional characteristics, we propose an Ising-like internal variable to account for nearest-neighbor grain interlocking and geometric frustration and interpret the effect of friction as an acoustic noise strength. We show quantitative agreement between experimental measurements and theoretical predictions and propose additional experiments that provide stringent tests on the new theoretical elements.

  12. The influence of micro-scale dimples and nano-sized grains on the fretting characteristics generated by laser pulses.

    PubMed

    Amanov, Auezhan; Watabe, Tsukasa; Sasaki, Shinya

    2013-12-01

    The tribological characteristics of micro-scale dimpled Cu-based alloy specimen generated using a laser surface texturing (LST) were assessed and compared with that of the untextured specimen. The objective of this study is to improve the tribological characteristics of internal combustion engine (ICE) bearings and bushings made of Cu-based alloy by generating micro-scale dimples using an LST. Fretting wear tests were performed by sliding a hardened SAE52100 steel ball against the untextured and LSTed specimens at a normal load of 5 N under oil-lubricated conditions. The friction force and relative movement between the specimens were measured simultaneously during the fretting tests. The test results showed that the LSTed specimens showed a reduction in friction coefficient and an enhancement in fretting wear resistance compared to that of the untextured specimen. The friction coefficient and fretting wear volume increased with increasing frequency for both untextured and LSTed specimens. The improved tribological properties of the LSTed specimen may be attributed to the micro-scale dimples, refined grain size and high lattice strain. In addition, a model for the nanocrystallization mechanism of the LSTed specimen was proposed.

  13. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  14. Observation instrument of dynamic frictional interface of gel engineering materials with polarized optical microscopic

    NASA Astrophysics Data System (ADS)

    Yamada, Naoya; Wada, Masato; Kabir, M. Hasnat; Gong, Jin; Furukawa, Hidemitsu

    2013-03-01

    Gels are soft and wet materials that differ from hard and dry materials like metals, plastics and ceramics. These have some unique characteristic such as low frictional properties, high water content and materials permeability. A decade earlier, DN gels having a mechanical strength of 30MPa of the maximum breaking stress in compression was developed and it is a prospective material as the biomaterial of the human body. Indeed it frictional coefficient and mechanical strength are comparable to our cartilages. In this study, we focus on the dynamic frictional interface of hydrogels and aim to develop a new apparatus with a polarization microscope for observation. The dynamical interface is observed by the friction of gel and glass with hudroxypropylcellulose (HPC) polymer solution sandwiching. At the beginning, we rubbed hydrogel and glass with HPC solution sandwiching on stage of polarization microscope. Second step, we designed a new system which combined microscope with friction measuring machine. The comparison between direct observation with this instrument and measurement of friction coefficient will become a foothold to elucidate distinctive frictional phenomena that can be seen in soft and wet materials.

  15. Coefficient of friction: tribological studies in man - an overview.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Compared to other studies of skin, relatively few studies have focused on the friction of skin. This work reviews existing skin friction, emphasizing test apparatuses and parameters that have added to information regarding the friction coefficient. This review also outlines what factors are important to consider in future friction studies. Past studies have utilized numerous designs for a test apparatus, including probe geometry and material, as well as various probe motions (rotational vs. linear). Most tests were performed in vivo; a few were performed in vitro and on porcine skin. Differences in probe material, geometry and smoothness affect friction coefficient measurements. An increase in skin hydration, either through water or through moisturizer application, increases its friction coefficient; a decrease in skin hydration, either through clinical dermatitis or through alcohol addition, decreases the coefficient. Differences are present between anatomical sites. Conflicting results are found regarding age and no differences are apparent as a result of gender or race. Skin friction appears to be dependent on several factors - such as age, anatomical site and skin hydration. The choice of the probe and the test apparatus also influence the measurement.

  16. Determination of the frictional coefficient of the implant-antler interface: experimental approach.

    PubMed

    Hasan, Istabrak; Keilig, Ludger; Staat, Manfred; Wahl, Gerhard; Bourauel, Christoph

    2012-10-01

    The similar bone structure of reindeer antler to human bone permits studying the osseointegration of dental implants in the jawbone. As the friction is one of the major factors that have a significant influence on the initial stability of immediately loaded dental implants, it is essential to define the frictional coefficient of the implant-antler interface. In this study, the kinetic frictional forces at the implant-antler interface were measured experimentally using an optomechanical setup and a stepping motor controller under different axial loads and sliding velocities. The corresponding mean values of the static and kinetic frictional coefficients were within the range of 0.5-0.7 and 0.3-0.5, respectively. An increase in the frictional forces with increasing applied axial loads was registered. The measurements showed an evidence of a decrease in the magnitude of the frictional coefficient with increasing sliding velocity. The results of this study provide a considerable assessment to clarify the suitable frictional coefficient to be used in the finite element contact analysis of antler specimens.

  17. Granular dynamics during impact.

    PubMed

    Nordstrom, K N; Lim, E; Harrington, M; Losert, W

    2014-06-06

    We study the impact of a projectile onto a bed of 3 mm grains immersed in an index-matched fluid. We vary the amount of prestrain on the sample, strengthening the force chains within the system. We find this affects only the prefactor of the linear depth-dependent term in the stopping force. We propose a simple model to account for the strain dependence of this term, owing to increased pressure in the pile. Interestingly, we find that the presence of the fluid does not affect the impact dynamics, suggesting that dynamic friction is not a factor. Using a laser sheet scanning technique to visualize internal grain motion, we measure the trajectory of each grain throughout an impact. Microscopically, our results indicate that weaker initial force chains result in more irreversible, plastic rearrangements, suggesting static friction between grains does play a substantial role in the energy dissipation.

  18. Probing Interfacial Friction and Dissipation in Granular Gold­ Nickel Alloys with a Quartz Crystal Oscillator in an External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Stevens, K. M.; Krim, J.

    2015-03-01

    We present here a quartz crystal microbalance study of two-phase gold nickel alloys whose internal granular properties are probed by exposure to a fluctuating external magnetic field. The work is motivated by prior studies demonstrating that granular two-phase materials exhibited lower friction and wear than solid solution alloys with identical compositions. In particular, we report a ``flexing'' effect which appears when an external magnetic field is applied, and is manifested as a decrease in the magnitude of oscillation amplitude that is synchronized with the applied field; the effect is not seen on the complimentary solid solution samples. The effect is consistent with internal interfacial friction between nickel and gold grains, indicating a degree of freedom which may decrease friction even in the absence of an external magnetic field. This is supported through analysis of energy dissipation in the system, using the Butterworth­-Van Dyke equivalent circuit model. Data and interpretation are also presented that rule out alternate explanations such as giant magnetoresistance and/or other resistive phenomenon within the film. Funding provided by NSF DMR0805204. Thanks to L. Pan for sample preparation.

  19. Improvement of arthroscopic cartilage stiffness probe using amorphous diamond coating.

    PubMed

    Töyräs, Juha; Korhonen, Rami K; Voutilainen, Tanja; Jurvelin, Jukka S; Lappalainen, Reijo

    2005-04-01

    During arthroscopic evaluation of articular cartilage unstable contact and even slipping of the measurement instrument on the tissue surface may degrade the reproducibility of the measurement. The main aim of the present study was to achieve more stable contact by controlling the friction between articular cartilage surface and the arthroscopic cartilage stiffness probe (Artscan 200, Artscan Oy, Helsinki, Finland) using amorphous diamond (AD) coating. In order to obtain surfaces with different average roughnesses (R(a)), polished stainless steel disks were coated with AD by using the filtered pulsed arc-discharge (FPAD) method. Dynamic coefficient of friction (mu) between the articular cartilage (n = 8) and the coated plates along one non-coated plate was then determined. The friction between AD and cartilage could be controlled over a wide range (mu = 0.027-0.728, p < 0.05, Wilcoxon test) by altering the roughness. Possible deterioration of cartilage was investigated by measuring surface roughness after friction tests and comparing it with the roughness of the adjacent, untested samples (n = 8). Importantly, even testing with the roughest AD (R(a) = 1250 nm) did not damage articular surface. On the basis of the friction measurements, a proper AD coating was selected for the stiffness probe. The performance of coated and non-coated probe was compared by measuring bovine osteochondral samples (n = 22) with both instruments. The reproducibility of the stiffness measurements was significantly better with the AD-coated probe (CV% = 4.7) than with the uncoated probe (CV% = 8.2). To conclude, AD coating can be used to safely control dynamic friction with articular surface. Sufficient friction between articular surface and reference plate of the arthroscopic probe improves significantly reproducibility of the stiffness measurements. (c) 2005 Wiley Periodicals, Inc.

  20. An automated high throughput tribometer for adhesion, wear, and friction measurements

    NASA Astrophysics Data System (ADS)

    Kalihari, Vivek; Timpe, Shannon J.; McCarty, Lyle; Ninke, Matthew; Whitehead, Jim

    2013-03-01

    Understanding the origin and correlation of different surface properties under a multitude of operating conditions is critical in tribology. Diverse tribological properties and a lack of a single instrument to measure all make it difficult to compare and correlate properties, particularly in light of the wide range of interfaces commonly investigated. In the current work, a novel automated tribometer has been designed and validated, providing a unique experimental platform capable of high throughput adhesion, wear, kinetic friction, and static friction measurements. The innovative design aspects are discussed that allow for a variety of probes, sample surfaces, and testing conditions. Critical components of the instrument and their design criteria are described along with examples of data collection schemes. A case study is presented with multiple surface measurements performed on a set of characteristic substrates. Adhesion, wear, kinetic friction, and static friction are analyzed and compared across surfaces, highlighting the comprehensive nature of the surface data that can be generated using the automated high throughput tribometer.

  1. Frictional strength and heat flow of southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Zhu, P. P.

    2016-01-01

    Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault friction heat at various seismogenic depths in the southern SAF. The new data show that as depth increases, regional friction stress increases within the depth of 15 km; its increment per kilometer equals 5.75 ± 0.05 MPa/km. As depth increases, regional long-term fault friction heat increases; its increment per kilometer is equal to 3.68 ± 0.03 mW/m2/km. The values of regional long-term fault friction heat provided by this study are always lower than those from heat flow measurements. The difference between them and the scatter existing in the measured heat flow data are mainly caused by the following processes: (i) heat convection, (ii) heat advection, (iii) stress accumulation, (iv) seismic bursts between short-term lull periods in a long-term period, and (v) influence of seismicity in short-term periods upon long-term slip rate and heat flow. Fault friction heat is a fundamental parameter in research on heat flow.

  2. Which ureteral access sheath is compatible with your flexible ureteroscope?

    PubMed

    Al-Qahtani, Saeed M; Letendre, Julien; Thomas, Alexandre; Natalin, Ricardo; Saussez, Thibaud; Traxer, Olivier

    2014-03-01

    Our aim is to evaluate different ureteral access sheaths (UASs), which are available in the international market and their compatibility with different available flexible ureteroscopes (F-URSs) to help the urologist choose the proper ureteral access sheath for his or her endoscope before commencing the procedure. A total of 21 UASs and 12 F-URSs were evaluated. Measurements were obtained in French (F) units considering different characteristics for each UAS and each F-URS. Insertion test without friction between F-URS and UAS was considered as a successful test and was referred as (YES). All UASs and F-URSs were successfully submitted to the insertion test. All F-URSs that were inserted into UASs without friction had an internal diameter of at least 12F. Different lengths of UAS did not influence the test outcome. This study was able to establish a correlation table between different UASs and different flexible ureteroscopes. As of now, the 12/14F UAS is considered the universal UAS that accepts all F-URSs that are available in the endourology field. Nevertheless, we are expecting a significant change with the new standard size 10/12F UAS as well as huge advances in minimizing the size of different endoscopes.

  3. The Influence of SAND’s Gradation and Clay Content of Direct Sheart Test on Clayey Sand

    NASA Astrophysics Data System (ADS)

    Wibisono, Gunawan; Agus Nugroho, Soewignjo; Umam, Khairul

    2018-03-01

    The shear strength of clayey-sand can be affected by several factors, e.g. gradation, density, moisture content, and the percentage of clay and sand fraction. The same percentage of clay and sand fraction in clayey-sand mixtures may have different shear strengths due to those factors. This research aims to study the effect of clay content on sand that cause the change of its shear strength. Samples consisted of different clay and sand fractions were reconstituted at a certain moisture content. Sand fractions varied from well-graded to poorly-graded sand. Shear strength was measured in terms of the direct shear test. Prior to the test, surcharge loads were applied to represent overburden pressures. Shear strength results and their components (i.e. Cohesion and internal angle of friction) were correlated with physical properties of samples (i.e. grading coefficient of curvature, coefficient of uniformity, and density). Results showed that samples classified as well-graded and dense sand had higher shear strength. In the other hand, the shear strengths decreased when the mixtures became poorly-graded and less dense. The inclusion of the clay fraction increased cohesion component and decreased internal angle of friction.

  4. Friction in Forming of UD Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachs, U.; Haanappel, S. P.; Akkerman, R.

    2011-05-04

    Inter-ply and tool/ply friction play a dominant role in hot stamp forming of UD fiber-reinforced thermoplastic laminates. This research treats friction measurements of a PEEK-AS4 composite system. To this end, an in-house developed friction tester is utilized to pull a laminate through two heat controlled clamping platens. The friction coefficient is determined by relating the clamp force to the pull force. The geometry of the gap between the clamping platens is monitored with micrometer accuracy. A first approach to describe the relation between the geometry and frictional behavior is undertaken by applying a standard thin-film theory for hydrodynamic lubrication. Experimentalmore » measurements showed that the thin-film theory does not entirely cover the underlying physics. Thus a second model is utilized, which employs a Leonov-model to describe the shear deformation of the matrix material, while its viscosity is described with a multi-mode Maxwell model. The combination of both models shows the potential to capture the complete frictional behavior.« less

  5. Uncertainty Analysis for Oil-Film Interferometry Skin-Friction Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Naughton, Jonathan W.; Brown, James L.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    Over the past 20 years, the use of oil-film interferometry to measure the skin friction coefficient (C(sub f) = tau/q where tau is the surface shear stress and q is the dynamic pressure) has increased. Different forms of this oil-film technique with various levels of accuracy and ease of use have been successfully applied in a wide range of flows. The method's popularity is growing due to its relative ease of implementation and minimal intrusiveness as well as an increased demand for C(sub f) measurements. Nonetheless, the accuracy of these methods has not been rigorously addressed to date. Most researchers have simply shown that the skin-friction measurements made using these techniques compare favorably with other measurements and theory, most of which are only accurate to within 5-20%. The use of skin-friction data in the design of commercial aircraft, whose drag at cruise is 50% skin-friction drag, and in the validation of computational fluid dynamics programs warrants better uncertainty estimates. Additional information is contained in the original extended abstract.

  6. The frequency response of dynamic friction: Enhanced rate-and-state models

    NASA Astrophysics Data System (ADS)

    Cabboi, A.; Putelat, T.; Woodhouse, J.

    2016-07-01

    The prediction and control of friction-induced vibration requires a sufficiently accurate constitutive law for dynamic friction at the sliding interface: for linearised stability analysis, this requirement takes the form of a frictional frequency response function. Systematic measurements of this frictional frequency response function are presented for small samples of nylon and polycarbonate sliding against a glass disc. Previous efforts to explain such measurements from a theoretical model have failed, but an enhanced rate-and-state model is presented which is shown to match the measurements remarkably well. The tested parameter space covers a range of normal forces (10-50 N), of sliding speeds (1-10 mm/s) and frequencies (100-2000 Hz). The key new ingredient in the model is the inclusion of contact stiffness to take into account elastic deformations near the interface. A systematic methodology is presented to discriminate among possible variants of the model, and then to identify the model parameter values.

  7. Imaging high-speed friction at the nanometer scale

    PubMed Central

    Thorén, Per-Anders; de Wijn, Astrid S.; Borgani, Riccardo; Forchheimer, Daniel; Haviland, David B.

    2016-01-01

    Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales. Understanding its microscopic origin requires methods for measuring force on nanometer-scale asperities sliding at velocities reaching centimetres per second. Despite enormous advances in experimental technique, this combination of small length scale and high velocity remain elusive. We present a technique for rapidly measuring the frictional forces on a single asperity over a velocity range from zero to several centimetres per second. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to smooth sliding friction. We explain measurements on graphite using a modified Prandtl–Tomlinson model, including the damped elastic deformation of the asperity. With its improved force sensitivity and small sliding amplitude, our method enables rapid and detailed surface mapping of the velocity dependence of frictional forces with less than 10 nm spatial resolution. PMID:27958267

  8. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Lawrence; Smith, Justin

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow ormore » simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by« less

  9. Adhesion and friction of the smooth attachment system of the cockroach Gromphadorhina portentosa and the influence of the application of fluid adhesives

    PubMed Central

    Frenzel, Melina; Steiner, Michael; Vogt, Martin; Kleemeier, Malte; Hartwig, Andreas; Sampalla, Benjamin; Rupp, Frank; Boley, Moritz; Schmitt, Christian

    2017-01-01

    ABSTRACT Two different measurement techniques were applied to study the attachment of the smooth foot pads of the Madagascar hissing cockroach Gromphadorhina portentosa. The attachment of the non-manipulated adhesive organs was compared with that of manipulated ones (depletion or substitution by artificial secretions). From measurements of the friction on a centrifuge, it can be concluded that on nanorough surfaces, the insect appears to benefit from employing emulsions instead of pure oils to avoid excessive friction. Measurements performed with a nanotribometer on single attachment organs showed that, in the non-manipulated euplantulae, friction was clearly increased in the push direction, whereas the arolium of the fore tarsus showed higher friction in the pull direction. The surface of the euplantulae shows an imbricate appearance, whereupon the ledges face distally, which might contribute to the observed frictional anisotropy in the push direction. Upon depletion of the tarsal adhesion-mediating secretion or its replacement by oily fluids, in several cases, the anisotropic effect of the euplantula disappeared due to the decrease of friction forces in push-direction. In the euplantulae, adhesion was one to two orders of magnitude lower than friction. Whereas the tenacity was slightly decreased with depleted secretion, it was considerably increased after artificial application of oily liquids. In terms of adhesion, it is concluded that the semi-solid consistence of the natural adhesion-mediating secretion facilitates the detachment of the tarsus during locomotion. In terms of friction, on smooth to nanorough surfaces, the insects appear to benefit from employing emulsions instead of pure oils to avoid excessive friction forces, whereas on rougher surfaces the tarsal fluid rather functions in improving surface contact by keeping the cuticle compliable and compensating surface asperities of the substratum. PMID:28507055

  10. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking.

    PubMed

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by 'running-in' effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different 'running-in' effects that were influenced by the individual activity levels and synovia properties.

  11. Solvent viscosity and friction in protein folding dynamics.

    PubMed

    Hagen, Stephen J

    2010-08-01

    The famous Kramers rate theory for diffusion-controlled reactions has been extended in numerous ways and successfully applied to many types of reactions. Its application to protein folding reactions has been of particular interest in recent years, as many researchers have performed experiments and simulations to test whether folding reactions are diffusion-controlled, whether the solvent is the source of the reaction friction, and whether the friction-dependence of folding rates generally can provide insight into folding dynamics. These experiments involve many practical difficulties, however. They have also produced some unexpected results. Here we briefly review the Kramers theory for reactions in the presence of strong friction and summarize some of the subtle problems that arise in the application of the theory to protein folding. We discuss how the results of these experiments ultimately point to a significant role for internal friction in protein folding dynamics. Studies of friction in protein folding, far from revealing any weakness in Kramers theory, may actually lead to new approaches for probing diffusional dynamics and energy landscapes in protein folding.

  12. Biofilms inducing ultra-low friction on titanium.

    PubMed

    Souza, J C M; Henriques, M; Oliveira, R; Teughels, W; Celis, J-P; Rocha, L A

    2010-12-01

    Biofilm formation is widely reported in the literature as a problem in the healthcare, environmental, and industrial sectors. However, the role of biofilms in sliding contacts remains unclear. Friction during sliding was analyzed for titanium covered with mixed biofilms consisting of Streptococcus mutans and Candida albicans. The morphology of biofilms on titanium surfaces was evaluated before, during, and after sliding tests. Very low friction was recorded on titanium immersed in artificial saliva and sliding against alumina in the presence of biofilms. The complex structure of biofilms, which consist of microbial cells and their hydrated exopolymeric matrix, acts like a lubricant. A low friction in sliding contacts may have major significance in the medical field. The composition and structure of biofilms are shown to be key factors for an understanding of friction behavior of dental implant connections and prosthetic joints. For instance, a loss of mechanical integrity of dental implant internal connections may occur as a consequence of the decrease in friction caused by biofilm formation. Consequently, the study of the exopolymeric matrix can be important for the development of high-performance novel joint-based systems for medical and other engineering applications.

  13. Method and device for frictional welding

    DOEpatents

    Peacock, H.B.

    1992-10-13

    A method is described for friction welding that produces a seal having essentially no gas porosity, comprises two rotationally symmetric, generally cylindrical members, spaced apart and coaxially aligned, that are rotated with respect to each other and brought together under high pressure. One member is preferably a generally cylindrical canister that stores uranium within its hollow walls. The other member is preferably a generally cylindrical, hollow weld ring. An annular channel formed in the weld ring functions as an internal flash trap and is uniquely designed so that substantially all of the welding flash generated from the friction welding is directed into the channel's recessed bottom. Also, the channel design limits distortion of the two members during the friction welding process, further contributing to the complete seal that is obtained. 5 figs.

  14. Facile characterization of ripple domains on exfoliated graphene.

    PubMed

    Choi, Jin Sik; Kim, Jin-Soo; Byun, Ik-Su; Lee, Duk Hyun; Hwang, In Rok; Park, Bae Ho; Choi, Taekjib; Park, Jeong Young; Salmeron, Miquel

    2012-07-01

    Ripples in graphene monolayers deposited on SiO(2)/Si wafer substrates were recently shown to give rise to friction anisotropy. High friction appears when the AFM tip slides in a direction perpendicular to the ripple crests and low friction when parallel. The direction of the ripple crest is, however, hard to determine as it is not visible in topographic images and requires elaborate measurements of friction as a function of angle. Here we report a simple method to characterize ripple crests by measuring the cantilever torsion signal while scanning in the non-conventional longitudinal direction (i.e., along the cantilever axis, as opposed to the usual friction measurement). The longitudinal torsion signal provides a much clearer ripple domain contrast than the conventional friction signal, while both signals show respective rotation angle dependences that can be explained using the torsion component of the normal reaction force exerted by the graphene ripples. We can also determine the ripple direction by comparing the contrast in torsion images obtained in longitudinal and lateral scans without sample rotation or complicated normalization.

  15. High-resolution imaging of (100) kyanite surfaces using friction force microscopy in water

    NASA Astrophysics Data System (ADS)

    Pimentel, Carlos; Gnecco, Enrico; Pina, Carlos M.

    2015-05-01

    In this paper, we present high-resolution friction force microscopy (FFM) images of the (100) face of kyanite (Al2SiO5) immersed in water. These images show an almost rectangular lattice presumably defined by the protruding oxygen of AlO6 polyhedra. Surface lattice parameters measured on two-dimensional fast Fourier transform (2D-FFT) plots of recorded high-resolution friction maps are in good agreement with lattice parameters calculated from the bulk mineral structure. Friction measurements performed along the [001] and [010] directions on the kyanite (100) face provide similar friction coefficients μ ≈ 0.10, even if the sequences of AlO6 polyhedra are different along the two crystallographic directions.

  16. Effects of wall temperature on skin-friction measurements by oil-film interferometry

    NASA Astrophysics Data System (ADS)

    Bottini, H.; Kurita, M.; Iijima, H.; Fukagata, K.

    2015-10-01

    Wind-tunnel skin-friction measurements with thin-oil-film interferometry have been taken on an aluminum sample to investigate the effects of wall temperature on the accuracy of the technique. The sample has been flush-mounted onto a flat plate with an electric heater at its bottom and mirror-smooth temperature-sensitive paint sprayed on its top. The heater has varied the sample temperature from ambient to 328 K, and the paint has permitted wall temperature measurements on the same area of the skin-friction measurements and during the same test. The measured wall temperatures have been used to calculate the correct oil viscosities, and these viscosities and the constant nominal viscosity at 298 K have been used to calculate two different sets of skin-friction coefficients. These sets have been compared to each other and with theoretical values. This comparison shows that the effects of wall temperature on the accuracy of skin-friction measurements are sensible, and more so as wall temperature differs from 298 K. Nonetheless, they are effectively neutralized by the use of wall temperature measurements in combination with the correct oil viscosity-temperature law. In this regard, the special temperature-sensitive paint developed for this study shows advantages with respect to more traditional wall temperature measurement techniques.

  17. Improved analysis and visualization of friction loop data: unraveling the energy dissipation of meso-scale stick-slip motion

    NASA Astrophysics Data System (ADS)

    Kokorian, Jaap; Merlijn van Spengen, W.

    2017-11-01

    In this paper we demonstrate a new method for analyzing and visualizing friction force measurements of meso-scale stick-slip motion, and introduce a method for extracting two separate dissipative energy components. Using a microelectromechanical system tribometer, we execute 2 million reciprocating sliding cycles, during which we measure the static friction force with a resolution of \

  18. Skin Friction Measurements Using Luminescent Oil Films

    NASA Astrophysics Data System (ADS)

    Husen, Nicholas M.

    As aircraft are designed to a greater extent on computers, the need for accurate and fast CFD algorithms has never been greater. The development of CFD algorithms requires experimental data against which CFD output can be validated and from which insight about flow physics can be acquired. Skin friction, in particular, is an important quantity to predict with CFD, and experimental skin friction data sets aid not only with the validation of the CFD predictions, but also in tuning the CFD models to predict specific flow fields. However, a practical experimental technique for collecting spatially and temporally resolved skin friction data on complex models does not yet exist. This dissertation develops and demonstrates a new luminescent oil film skin friction meter which can produce spatially-resolved quantitative steady and unsteady skin friction data on models with complex curvature. The skin friction acting on the surface of a thin film of oil can be approximated by the expression tauw =mu ouh/h, where mu o is the dynamic viscosity of the oil, uh is the velocity of the surface of the oil film, and h is the thickness of the oil film. The new skin friction meter determines skin friction by measuring h and uh. The oil film thickness h is determined by ratioing the intensity of the fluorescent emissions from the oil film with the intensity of the incident light which is scattered from the surface of the model. When properly calibrated, that ratio provides an absolute oil film thickness value. This oil film thickness meter is therefore referred as the Ratioed-Image Film-Thickness (RIFT) Meter. The oil film velocity uh is determined by monitoring the evolution of tagged molecules within the oil film: Photochromic molecules are dissolved into the fluorescent oil and a pattern is written into the oil film using an ultraviolet laser. The evolution of the pattern is recorded, and standard cross-correlation techniques are applied to the resulting sequence of images. This newly developed skin friction meter is therefore called the Luminescent Oil Film Flow-Tagging skin friction meter, or the LOFFT skin friction meter. The LOFFT skin friction meter is demonstrated by collecting time-averaged skin friction measurements on NASA's FAITH model and by collecting unsteady skin friction measurements with a frequency response of 600Hz. Higher frequency response is possible and is dependent on the experimental setup. This dissertation also contributes to the work done on the Global Luminescent Oil Film Skin Friction Meter (GLOFSFM) by noting that the technique could be influenced by ripples at the oil-air interface. An experiment studying the evolution of ripples at the oil-air interface was conducted to determine under what oil film conditions the GLOFSFM can be appropriately applied. The RIFT meter was crucial for this experiment, as it facilitated quantitative distributed oil film thickness measurements during the wind-tunnel run. The resulting data set is rich in content, permitting the computation of mean wavelengths, peak-to-trough ripple heights, wave speeds, and mean thicknesses. In addition to determining under what oil film conditions the GLOFSFM may be applied, this experiment directly determined the oil film conditions under which the velocity of the ripples may be used to proxy the velocity of the oil film surface. The RIFT meter and the ability to determine oil film surface velocity by monitoring ripple velocities admit yet another time-averaged skin friction meter, the Fluorescent-Oil Ripple-Velocity (FORV) skin friction meter. The FORV skin friction meter recovers skin friction as tau w = muovrip/H, where vrip is the velocity of the ripples, and H is the oil film thickness averaged over the thickness fluctuations due to the ripples. The FORV skin friction meter is demonstrated on NASA's FAITH model.

  19. Static-dynamic friction transition of FRP esthetic orthodontic wires on various brackets by suspension-type friction test.

    PubMed

    Suwa, N; Watari, F; Yamagata, S; Iida, J; Kobayashi, M

    2003-11-15

    A new testing apparatus for the measurement of frictional properties was designed and the frictional coefficients were obtained and compared with each other in various combinations of brackets and orthodontic wires, including esthetic fiber-reinforced plastic (FRP) wire that was especially designed and manufactured. Three kinds of wires (stainless steel, nickel-titanium, and FRP) and four brackets (single-crystal alumina, polycrystalline alumina, polycarbonate, and stainless steel) were used. The testing was done under dry and wet conditions. The friction testing equipment was designed to attach the bracket to a C-shaped bar suspended with a variable mass, and sliding along a fixed wire. The transition between static and dynamic friction was measured as a breakaway force, with the use of a universal test machine. In addition to material properties, this testing fixture eliminates geometrical factors, such as the rotational moment at the edge of the bracket slot, deflection of the orthodontic wire, and tension of the ligature wire. Nearly ideal frictional properties between materials are obtained. The frictional properties of FRP wire were similar to those of metal wires on all brackets, except the polycrystalline alumina bracket. The frictional coefficient between the polycrystalline ceramic bracket and FRP wire was larger than that of other combinations. There was little difference in frictional coefficients between dry and wet conditions. Copyright 2003 Wiley Periodicals, Inc.

  20. A reduced Iwan model that includes pinning for bolted joint mechanics

    DOE PAGES

    Brake, M. R. W.

    2016-10-28

    Bolted joints are prevalent in most assembled structures; however, predictive models for their behavior do not exist. Calibrated models, such as the Iwan model, are able to predict the response of a jointed structure over a range of excitations once calibrated at a nominal load. The Iwan model, though, is not widely adopted due to the high computational expense of implementation. To address this, an analytical solution of the Iwan model is derived under the hypothesis that for an arbitrary load reversal, there is a new distribution of dry friction elements, which are now stuck, that approximately resemble a scaledmore » version of the original distribution of dry friction elements. The dry friction elements internal to the Iwan model do not have a uniform set of parameters and are described by a distribution of parameters, i.e., which internal dry friction elements are stuck or slipping at a given load, that ultimately governs the behavior of the joint as it transitions from microslip to macroslip. This hypothesis allows the model to require no information from previous loading cycles. Additionally, the model is extended to include the pinning behavior inherent in a bolted joint. Modifications of the resulting framework are discussed to highlight how the constitutive model for friction can be changed (in the case of an Iwan–Stribeck formulation) or how the distribution of dry friction elements can be changed (as is the case for the Iwan plasticity model). Finally, the reduced Iwan plus pinning model is then applied to the Brake–Reuß beam in order to discuss methods to deduce model parameters from experimental data.« less

  1. Ice friction of flared ice hockey skate blades.

    PubMed

    Federolf, Peter A; Mills, Robert; Nigg, Benno

    2008-09-01

    In ice hockey, skating performance depends on the skill and physical conditioning of the players and on the characteristics of their equipment. CT Edge have recently designed a new skate blade that angles outward near the bottom of the blade. The objective of this study was to compare the frictional characteristics of three CT Edge blades (with blade angles of 4 degrees, 60, and 8 degrees, respectively) with the frictional characteristics of a standard skate blade. The friction coefficients of the blades were determined by measuring the deceleration of an aluminium test sled equipped with three test blades. The measurements were conducted with an initial sled speed of 1.8 m s(-1) and with a load of 53 kg on each blade. The friction coefficient of the standard blades was 0.0071 (s = 0.0005). For the CT Edge blades with blade angles of 4 degrees, 6 degrees, and 8 degrees, friction coefficients were lower by about 13%, 21%, and 22%, respectively. Furthermore, the friction coefficients decreased with increasing load. The results of this study show that widely accepted paradigms such as "thinner blades cause less friction" need to be revisited. New blade designs might also be able to reduce friction in speed skating, figure skating, bobsledding, and luge.

  2. On the motion of a rigid body with an internal moving point mass on a horizontal plane

    NASA Astrophysics Data System (ADS)

    Bardin, B. S.; Panev, A. S.

    2018-05-01

    We consider motions of a body carrying movable internal mass. The internal mass is a particle moving in a circle inside the body, which performs a rectilinear motion on a horizontal plane. We suppose that viscous and dry friction acts between the plane and the body. We also assume that the body moves without jumps on the plane. Our study has shown that depending on values of parameters the body moves either periodically stoping and resting for certain time intervals or it approaches a periodic mode of motion without quiescence intervals. The above conclusions are in good correspondence with results obtained in our previous papers, where the above problem has been studied under assumption that the viscous friction is absent.

  3. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  4. Load-Dependent Friction Hysteresis on Graphene.

    PubMed

    Ye, Zhijiang; Egberts, Philip; Han, Gang Hee; Johnson, A T Charlie; Carpick, Robert W; Martini, Ashlie

    2016-05-24

    Nanoscale friction often exhibits hysteresis when load is increased (loading) and then decreased (unloading) and is manifested as larger friction measured during unloading compared to loading for a given load. In this work, the origins of load-dependent friction hysteresis were explored through atomic force microscopy (AFM) experiments of a silicon tip sliding on chemical vapor deposited graphene in air, and molecular dynamics simulations of a model AFM tip on graphene, mimicking both vacuum and humid air environmental conditions. It was found that only simulations with water at the tip-graphene contact reproduced the experimentally observed hysteresis. The mechanisms underlying this friction hysteresis were then investigated in the simulations by varying the graphene-water interaction strength. The size of the water-graphene interface exhibited hysteresis trends consistent with the friction, while measures of other previously proposed mechanisms, such as out-of-plane deformation of the graphene film and irreversible reorganization of the water molecules at the shearing interface, were less correlated to the friction hysteresis. The relationship between the size of the sliding interface and friction observed in the simulations was explained in terms of the varying contact angles in front of and behind the sliding tip, which were larger during loading than unloading.

  5. [Evaluation of orthodontic friction using a tribometer with alternating movement].

    PubMed

    Pernier, C M; Jablonska-Mazanek, E D; Ponsonnet, L; Grosgogeat, B

    2005-12-01

    It is essential for orthodontists to control the complex phenomenon of friction. The in vitro techniques, usually dynamometers or tensile testing machines, used to measure the frictional resistance between arch wires and brackets are linear and unidirectional and can be criticised because tooth movements, such as tipping and uprighting, as well everyday oral activities, primarily chewing, are not uni-dimensional but more closely resemble the small amplitude oscillatory phenomena known as fretting. We therefore decided to develop a fretting machine not with linear but with alternating movements better suited to evaluate the frictional behaviour of orthodontic bracket-wire combinations. Once we had completed construction of this device, we proceeded to measure the frictional resistance between one stainless steel bracket (MicroArch GAC) and five wires currently used in orthodontics (Two nickel-titanium shape memory alloys: Neo Sentalloy and Neo Sentalloy with Ionguard GAC--Three titanium-molybdenum alloys: TMA and Low Friction TMA Ormco and Resolve GAC). We were able to set up a classification of the wires according to their coefficient of friction, demonstrating the inefficacy of ion implantation and quantifying the increase in the coefficient of friction which occurs when Resolve wires are placed in the oral environment for approximately one year.

  6. Reciprocal Sliding Friction Model for an Electro-Deposited Coating and Its Parameter Estimation Using Markov Chain Monte Carlo Method

    PubMed Central

    Kim, Kyungmok; Lee, Jaewook

    2016-01-01

    This paper describes a sliding friction model for an electro-deposited coating. Reciprocating sliding tests using ball-on-flat plate test apparatus are performed to determine an evolution of the kinetic friction coefficient. The evolution of the friction coefficient is classified into the initial running-in period, steady-state sliding, and transition to higher friction. The friction coefficient during the initial running-in period and steady-state sliding is expressed as a simple linear function. The friction coefficient in the transition to higher friction is described with a mathematical model derived from Kachanov-type damage law. The model parameters are then estimated using the Markov Chain Monte Carlo (MCMC) approach. It is identified that estimated friction coefficients obtained by MCMC approach are in good agreement with measured ones. PMID:28773359

  7. The impact of particle shape on the angle of internal friction and the implications for sediment dynamics at a steep, mixed sand-gravel beach

    NASA Astrophysics Data System (ADS)

    Stark, N.; Hay, A. E.; Cheel, R.; Lake, C. B.

    2014-08-01

    The impact of particle shape on the angle of internal friction, and the resulting impact on beach sediment dynamics, is still poorly understood. In areas characterized by sediments of specific shape, particularly non-rounded particles, this can lead to large departures from the expected sediment dynamics. The steep slope (1 : 10) of the mixed sand-gravel beach at Advocate Harbour is stable in large-scale morphology over decades, despite a high tidal range of 10 m or more, and intense shore-break action during storms. The Advocate sand (d < 2 mm) was found to have an elliptic, plate-like shape (Corey Shape Index, CSI ≈ 0.2-0.6). High angles of internal friction of this material were determined using direct shear, ranging from φ ≈ 41 to 49°, while the round to angular gravel was characterized as φ = 33°. The addition of 25% of the elliptic plate-like sand-sized material to the gravel led to an immediate increase in friction angle to φ = 38°. Furthermore, re-organization of the particles occurred during shearing, characterized by a short phase of settling and compaction, followed by a pronounced strong dilatory behavior and an accompanying strong increase of resistance to shear and, thus, shear stress. Long-term shearing (24 h) using a ring shear apparatus led to destruction of the particles without re-compaction. Finally, submerged particle mobilization was simulated using a tilted tray submerged in a water-filled tank. Despite a smooth tray surface, particle motion was not initiated until reaching tray tilt angles of 31° and more, being ≥7° steeper than for motion initiation of the gravel mixtures. In conclusion, geotechnical laboratory experiments quantified the important impact of the elliptic, plate-like shape of Advocate Beach sand on the angles of internal friction of both pure sand and sand-gravel mixtures. The resulting effect on initiation of particle motion was confirmed in tilting tray experiments. This makes it a vivid example of how particle shape can contribute to the stabilization of the beach face.

  8. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.

  9. Tactile texture and friction of soft sponge surfaces.

    PubMed

    Takahashi, Akira; Suzuki, Makoto; Imai, Yumi; Nonomura, Yoshimune

    2015-06-01

    We evaluated the tactile texture and frictional properties of five soft sponges with various cell sizes. The frictional forces were measured by a friction meter containing a contact probe with human-finger-like geometry and mechanical properties. When the subjects touched these sponges with their fingers, hard-textured sponges were deemed unpleasant. This tactile feeling changed with friction factors including friction coefficients, their temporal patterns, as well as mechanical and shape factors. These findings provide useful information on how to control the tactile textures of various sponges. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Load-bearing Characters Analysis of Large Diameter Rock-Socketed Filling Piles Based on Self-Balanced Method

    NASA Astrophysics Data System (ADS)

    tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao

    2018-03-01

    Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.

  11. Influence of friction forces on the motion of VTOL aircraft during landing operations on ships at sea

    NASA Technical Reports Server (NTRS)

    Howard, J. C.; Chin, D. O.

    1981-01-01

    Equations describing the friction forces generated during landing operations on ships at sea were formulated. These forces depend on the platform reaction and the coefficient of friction. The platform reaction depends on the relative sink rate and the shock absorbing capability of the landing gear. The friction coefficient varies with the surface condition of the landing platform and the angle of yaw of the aircraft relative to the landing platform. Landings by VTOL aircraft, equipped with conventional oleopneumatic landing gears are discussed. Simplifications are introduced to reduce the complexity of the mathematical description of the tire and shock strut characteristics. Approximating the actual complicated force deflection characteristic of the tire by linear relationship is adequate. The internal friction forces in the shock strut are included in the landing gear model. A set of relatively simple equations was obtained by including only those tire and shock strut characteristics that contribute significantly to the generation of landing gear forces.

  12. Estimation of sediment friction coefficient from heating upon APC penetration during the IODP NanTroSEIZE

    NASA Astrophysics Data System (ADS)

    Kinoshita, M.; Kawamura, K.; Lin, W.

    2015-12-01

    During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at Site C0012, which dominates in the hemipelagic sediment in the Shikoku Basin. The anomalously low values suggest either fluid injection between the pipe and the sediment during the measurement, or some other uncertainties in converting the observed temperature rise to the frictional heat generation.

  13. In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain.

    PubMed

    Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa

    2014-11-30

    Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in tissue damage which can promote flowback along the needle track and improper targeting. The goal of this study was to evaluate friction stress (calculated from needle insertion force) as a measure of tissue contact and damage during needle insertion for varying insertion speeds. Forces and surface dimpling during needle insertion were measured in rat brain in vivo. Needle retraction forces were used to calculate friction stresses. These measures were compared to track damage from a previous study. Differences between brain tissues and soft hydrogels were evaluated for varying insertion speeds: 0.2, 2, and 10mm/s. In brain tissue, average insertion force and surface dimpling increased with increasing insertion speed. Average friction stress along the needle-tissue interface decreased with insertion speed (from 0.58 ± 0.27 to 0.16 ± 0.08 kPa). Friction stress varied between brain regions: cortex (0.227 ± 0.27 kPa), external capsule (0.222 ± 0.19 kPa), and CPu (0.383 ± 0.30 kPa). Hydrogels exhibited opposite trends for dimpling and friction stress with insertion speed. Previously, increasing needle damage with insertion speed has been measured with histological methods. Friction stress appears to decrease with increasing tissue damage and decreasing tissue contact, providing the potential for in vivo and real time evaluation along the needle track. Force derived friction stress decreased with increasing insertion speed and was smaller within white matter regions. Hydrogels exhibited opposite trends to brain tissue. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  15. Dry friction of microstructured polymer surfaces inspired by snake skin.

    PubMed

    Baum, Martina J; Heepe, Lars; Fadeeva, Elena; Gorb, Stanislav N

    2014-01-01

    The microstructure investigated in this study was inspired by the anisotropic microornamentation of scales from the ventral body side of the California King Snake (Lampropeltis getula californiae). Frictional properties of snake-inspired microstructured polymer surface (SIMPS) made of epoxy resin were characterised in contact with a smooth glass ball by a microtribometer in two perpendicular directions. The SIMPS exhibited a considerable frictional anisotropy: Frictional coefficients measured along the microstructure were about 33% lower than those measured in the opposite direction. Frictional coefficients were compared to those obtained on other types of surface microstructure: (i) smooth ones, (ii) rough ones, and (iii) ones with periodic groove-like microstructures of different dimensions. The results demonstrate the existence of a common pattern of interaction between two general effects that influence friction: (1) molecular interaction depending on real contact area and (2) the mechanical interlocking of both contacting surfaces. The strongest reduction of the frictional coefficient, compared to the smooth reference surface, was observed at a medium range of surface structure dimensions suggesting a trade-off between these two effects.

  16. Measuring the Coefficient of Friction of a Small Floating Liquid Marble

    PubMed Central

    Ooi, Chin Hong; Nguyen, Anh Van; Evans, Geoffrey M.; Dao, Dzung Viet; Nguyen, Nam-Trung

    2016-01-01

    This paper investigates the friction coefficient of a moving liquid marble, a small liquid droplet coated with hydrophobic powder and floating on another liquid surface. A floating marble can easily move across water surface due to the low friction, allowing for the transport of aqueous solutions with minimal energy input. However, the motion of a floating marble has yet to be systematically characterised due to the lack of insight into key parameters such as the coefficient of friction between the floating marble and the carrier liquid. We measured the coefficient of friction of a small floating marble using a novel experimental setup that exploits the non-wetting properties of a liquid marble. A floating liquid marble pair containing a minute amount magnetite particles were immobilised and then released in a controlled manner using permanent magnets. The capillarity-driven motion was analysed to determine the coefficient of friction of the liquid marbles. The “capillary charge” model was used to fit the experimental results. We varied the marble content and carrier liquid to establish a relationship between the friction correction factor and the meniscus angle. PMID:27910916

  17. A novel pendulum test for measuring roller chain efficiency

    NASA Astrophysics Data System (ADS)

    Wragge-Morley, R.; Yon, J.; Lock, R.; Alexander, B.; Burgess, S.

    2018-07-01

    This paper describes a novel pendulum decay test for determining the transmission efficiency of chain drives. The test involves releasing a pendulum with an initial potential energy and measuring its decaying oscillations: under controlled conditions the decay reveals the losses in the transmission to a high degree of accuracy. The main advantage over motorised rigs is that there are significantly fewer sources of friction and inertia and hence measurement error. The pendulum rigs have an accuracy around 0.6% for the measurement of the coefficient of friction, giving an accuracy of transmission efficiency measurement around 0.012%. A theoretical model of chain friction combined with the equations of motion enables the coefficient of friction to be determined from the decay rate of pendulum velocity. The pendulum rigs operate at relatively low speeds. However, they allow an accurate determination of the coefficient of friction to estimate transmission efficiency at higher speeds. The pendulum rig revealed a previously undetected rocking behaviour in the chain links at very small articulation angles. In this regime, the link interfaces were observed to roll against one another rather than slide. This observation indicates that a very high-efficiency transmission can be achieved if the articulation angle is very low.

  18. Optimal filtering and Bayesian detection for friction-based diagnostics in machines.

    PubMed

    Ray, L R; Townsend, J R; Ramasubramanian, A

    2001-01-01

    Non-model-based diagnostic methods typically rely on measured signals that must be empirically related to process behavior or incipient faults. The difficulty in interpreting a signal that is indirectly related to the fundamental process behavior is significant. This paper presents an integrated non-model and model-based approach to detecting when process behavior varies from a proposed model. The method, which is based on nonlinear filtering combined with maximum likelihood hypothesis testing, is applicable to dynamic systems whose constitutive model is well known, and whose process inputs are poorly known. Here, the method is applied to friction estimation and diagnosis during motion control in a rotating machine. A nonlinear observer estimates friction torque in a machine from shaft angular position measurements and the known input voltage to the motor. The resulting friction torque estimate can be analyzed directly for statistical abnormalities, or it can be directly compared to friction torque outputs of an applicable friction process model in order to diagnose faults or model variations. Nonlinear estimation of friction torque provides a variable on which to apply diagnostic methods that is directly related to model variations or faults. The method is evaluated experimentally by its ability to detect normal load variations in a closed-loop controlled motor driven inertia with bearing friction and an artificially-induced external line contact. Results show an ability to detect statistically significant changes in friction characteristics induced by normal load variations over a wide range of underlying friction behaviors.

  19. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

    PubMed

    Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W

    2014-05-27

    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

  20. Modified friction factor correlation for CICC's based on a porous media analogy

    NASA Astrophysics Data System (ADS)

    Lewandowska, Monika; Bagnasco, Maurizio

    2011-09-01

    A modified correlation for the bundle friction factor in CICC's based on a porous media analogy is presented. The correlation is obtained by the analysis of the collected pressure drop data measured for 23 CICC's. The friction factors predicted by the proposed correlation are compared with those resulting from the pressure drop data for two CICC's measured recently using cryogenic helium in the SULTAN test facility at EPFL-CRPP.

  1. A cohesive-frictional force field (CFFF) for colloidal calcium-silicate-hydrates

    NASA Astrophysics Data System (ADS)

    Palkovic, Steven D.; Yip, Sidney; Büyüköztürk, Oral

    2017-12-01

    Calcium-silicate-hydrate (C-S-H) gel is a cohesive-frictional material that exhibits strength asymmetry in compression and tension and normal-stress dependency of the maximum shear strength. Experiments suggest the basic structural component of C-S-H is a colloidal particle with an internal layered structure. These colloids form heterogeneous assemblies with a complex pore network at the mesoscale. We propose a cohesive-frictional force field (CFFF) to describe the interactions in colloidal C-S-H materials that incorporates the strength anisotropy fundamental to the C-S-H molecular structure that has been omitted from recent mesoscale models. We parameterize the CFFF from reactive force field simulations of an internal interface that controls mechanical performance, describing the behavior of thousands of atoms through a single effective pair interaction. We apply the CFFF to study the mesoscale elastic and Mohr-Coulomb strength properties of C-S-H with varying polydispersity and packing density. Our results show that the consideration of cohesive-frictional interactions lead to an increase in stiffness, shear strength, and normal-stress dependency, while also changing the nature of local deformation processes. The CFFF and our coarse-graining approach provide an essential connection between nanoscale molecular interactions and macroscale continuum behavior for hydrated cementitious materials.

  2. Friction and surface chemistry of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  3. Heat Control via Torque Control in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Colligan, Kevin; Knapp, Alan

    2004-01-01

    In a proposed advance in friction stir welding, the torque exerted on the workpiece by the friction stir pin would be measured and controlled in an effort to measure and control the total heat input to the workpiece. The total heat input to the workpiece is an important parameter of any welding process (fusion or friction stir welding). In fusion welding, measurement and control of heat input is a difficult problem. However, in friction stir welding, the basic principle of operation affords the potential of a straightforward solution: Neglecting thermal losses through the pin and the spindle that supports it, the rate of heat input to the workpiece is the product of the torque and the speed of rotation of the friction stir weld pin and, hence, of the spindle. Therefore, if one acquires and suitably processes data on torque and rotation and controls the torque, the rotation, or both, one should be able to control the heat input into the workpiece. In conventional practice in friction stir welding, one uses feedback control of the spindle motor to maintain a constant speed of rotation. According to the proposal, one would not maintain a constant speed of rotation: Instead, one would use feedback control to maintain a constant torque and would measure the speed of rotation while allowing it to vary. The torque exerted on the workpiece would be estimated as the product of (1) the torque-multiplication ratio of the spindle belt and/or gear drive, (2) the force measured by a load cell mechanically coupled to the spindle motor, and (3) the moment arm of the load cell. Hence, the output of the load cell would be used as a feedback signal for controlling the torque (see figure).

  4. Study of the dislocation contribution to the internal friction background of gold

    NASA Astrophysics Data System (ADS)

    Baur, J.; Benoit, W.

    1987-04-01

    The dislocation contribution to the internal friction (IF) background is studied in annealed gold samples containing various dilute concentrations of platinum impurities. The measurements are performed in the kHz frequency range in order to determine the loss mechanism responsible for the high IF background observed at these low frequencies. To this end, the IF background was systematically measured as a function of frequency, vibration amplitude, temperature, and impurity concentration. The experimental results show that the high dislocation contribution observed in annealed samples is strain-amplitude independent for amplitudes in the range 10-7 to 2×10-6, but rapidly decreases for amplitudes smaller than 10-7. In particular, the dislocation contribution tends to zero when the strain amplitude tends to zero. Furthermore, this contribution is frequency independent. These observations demonstrate that the dislocation contribution cannot be explained by relaxations. In particular, this contribution cannot be attributed to a viscous damping of the dislocation motion. On the contrary, the experiments show that the IF background due to dislocations must be explained by hysteretic and athermal motions of dislocations interacting with point defects. However, these hysteretic motions are not due to breakaway of dislocations from pinning points distributed along their length. The experimental results can be explained by the presence of point defects close to the dislocations, but not on them. The mechanical energy loss is attributed to hysteretic motions of dislocations between potential minima created by point defects.

  5. The Effect of Drying-Wetting Cycle’s Repetition to the Characteristic of Natural and Stabilization Residual Soils Jawa Timur - Indonesia

    NASA Astrophysics Data System (ADS)

    Muntaha, M.

    2017-11-01

    Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.

  6. CAM/LIFTER forces and friction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabbey, D.J.; Lee, J.; Patterson, D.J.

    1992-02-01

    This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less

  7. Facts or friction: the evolving role of science in phytosanitary issues

    Treesearch

    Eric Allen

    2008-01-01

    With the expansion of global trade, problems with invasive alien pests have also grown. In order to reduce the international movement of plant pests and protect valuable plant resources, national plant protection regulations and international standards continue to be developed. Science is critical to the development of effective national and international plant...

  8. Chirality-dependent friction of bulk molecular solids.

    PubMed

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  9. Real-time observation of slipping and rolling events in DLC wear nanoparticles.

    PubMed

    Sato, Takaaki; Nabeya, Shinsuke; Menon, Vivek; Ishida, Tadashi; Kometani, Reo; Fujita, Hiroyuki

    2018-08-10

    Real-time observation of the actual contact area between surface interfaces at the nanoscale enables more precise examination of what happens during friction. We have combined micro electro mechanical system actuators and transmission electron microscopy (TEM) observation, to both apply and measure forces across nanoscale junctions and contacts. This custom-designed experimental system can measure the true surface area of a contact site from a lateral viewpoint, while simultaneously measuring the friction force. We scratched surfaces coated with diamond like carbon, a classical solid lubricant, and observed the formation of wear particles that slipped and rolled between the interface. TEM images showed that the shape of the surface at the nanoscale underwent permanent deformation when acted upon with forces as low as several tens of nano newtons. The results demonstrated the limitations of friction analyses relying on friction force measurements without real-time surface profiling.

  10. Friction behavior of 304 stainless steel of varying hardness lubricated with benzene and some benzyl structures

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1974-01-01

    The lubricating properties of some benzyl and benzene structures were determined by using 304 stainless steel surfaces strained to various hardness. Friction coefficients and wear track widths were measured with a Bowden-Leben type friction apparatus by using a pin-on-disk specimen configuration. Results obtained indicate that benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol resulted in the lowest friction coefficients for 304 stainless steel, while benzyl ether provided the least surface protection and gave the highest friction. Strainhardening of the 304 stainless steel prior to sliding resulted in reduced friction in dry sliding. With benzyl monosulfide, dibenzyl disulfide, and benzyl alcohol changes in 304 stainless steel hardness had no effect upon friction behavior.

  11. Friction coefficient dependence on electrostatic tribocharging

    PubMed Central

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  12. Friction of Aviation Engines

    NASA Technical Reports Server (NTRS)

    Sparrow, S W; Thorne, M A

    1928-01-01

    The first portion of this report discusses measurements of friction made in the altitude laboratory of the Bureau of Standards between 1920 and 1926 under research authorization of the National Advisory Committee for Aeronautics. These are discussed with reference to the influence of speed, barometric pressure, jacket-water temperature, and throttle opening upon the friction of aviation engines. The second section of the report deals with measurements of the friction of a group of pistons differing from each other in a single respect, such as length, clearance, area of thrust face, location of thrust face, etc. Results obtained with each type of piston are discussed and attention is directed particularly to the fact that the friction chargeable to piston rings depends upon piston design as well as upon ring design. This is attributed to the effect of the rings upon the thickness and distribution of the oil film which in turn affects the friction of the piston to an extent which depends upon its design.

  13. Direct measurements and analysis of skin friction and cooling downstream of multiple flush-slot injection into a turbulent Mach 6 boundary layer

    NASA Technical Reports Server (NTRS)

    Howard, F. G.; Strokowski, A. J.

    1978-01-01

    Experiments were conducted to determine the reduction in surface skin friction and the effectiveness of surface cooling downstream of one to four successive flush slots injecting cold air at an angle of 10 deg into a turbulent Mach 6 boundary layer. Data were obtained by direct measurement of surface shear and equilibrium temperatures, respectively. Increasing the number of slots decreased the skin friction, but the incremental improvement in skin-friction reduction decreased as the number of slots was increased. Cooling effectiveness was found to improve, for a given total mass injection, as the number of slots was increased from one to four. Comparison with previously reported step-slot data, however, indicated that step slots with tangential injection are more effective for both reducing skin friction and cooling than the present flush-slot configuration. Finite-difference predictions are in reasonable agreement with skin-friction data and with boundary-layer profile data.

  14. Effect of ternary addition and gamma-irradiation on the characteristics of rapidly solidified Pb-base alloys

    NASA Astrophysics Data System (ADS)

    Abd El-Khalek, A. M.

    The properties of a series of rapidly solidified Pb-Sb-3-Sn-x alloys ( x =0-2.5 wt.%) irradiated with gamma-rays were studied. Variations in the internal friction, Q(-1) , thermal diffusivity D th and dynamic Young's modulus Y were traced before and after irradiation by applying the resonance technique. Variations of specific heat C-p were obtained from DTA thermograms. Structure parameters were obtained from the X-rays diffraction patterns. A marked change in the behaviour of the measured parameters was observed at 1.5 wt.% Sn addition. Besides, irradiation induced defects increased the level of the measured hardening parameters.

  15. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  16. Ratchet due to broken friction symmetry.

    PubMed

    Nordén, B; Zolotaryuk, Y; Christiansen, P L; Zolotaryuk, A V

    2002-01-01

    A ratchet mechanism that occurs due to asymmetric dependence of the friction of a moving system on its velocity or a driving force is reported. For this kind of ratchet, instead of a particle moving in a periodic potential, the dynamics of which have broken space-time symmetry, the system must be provided with some internal structure realizing such a velocity- or force-friction dependence. For demonstration of a ratchet mechanism of this type, an experimental setup (gadget) that converts longitudinal oscillating or fluctuating motion into a unidirectional rotation has been built and experiments with it have been carried out. In this device, an asymmetry of friction dependence on an applied force appears, resulting in rectification of rotary motion. In experiments, our setup is observed to rotate only in one direction, which is in accordance with given theoretical arguments. Despite the setup being three dimensional, the ratchet rotary motion is proved to be described by one dynamical equation. This kind of motion is a result of the interplay of friction and inertia. We also consider a case with viscous friction, which is irrelevant to this gadget, but it can be a possible mechanism of rotary unidirectional motion of some swimming organisms in a liquid.

  17. Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness

    NASA Astrophysics Data System (ADS)

    Barros, Julio; Flack, Karen; Schultz, Michael

    2017-11-01

    Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).

  18. Comparison of Friction Characteristics on TN and VA Mode Alignment Films with Friction Force Microscopy

    NASA Astrophysics Data System (ADS)

    Kwak, Musun; Chung, Hanrok; Kwon, Hyukmin; Kim, Jehyun; Han, Daekyung; Yi, Yoonseon; Lee, Sangmun; Lee, Chulgu; Cha, Sooyoul

    Using frictional force microscopy (FFM), the friction surface characteristics were compared between twisted nematic (TN) mode and vertical alignment (VA) mode alignment films (AFs). The friction asymmetry was detected depending on temperature conditions on TN mode AF, but not on VA mode AF. The difference between two modes was explained by leaning intermolecular repulsion caused by the pre-tilt angle uniformity and the density of side chain. No level difference according to temperature conditions appeared when the pre-tilt angle were measured after liquid crystal (LC) injection.

  19. Evaluation of Static Friction of Polycrystalline Ceramic Brackets after Conditioning with Different Powers of Er:YAG Laser.

    PubMed

    Arash, Valiollah; Javanmard, Saeed; Eftekhari, Zeinab; Rahmati-Kamel, Manouchehr; Bahadoram, Mohammad

    2015-01-01

    This research aimed to reduce the friction between the wire and brackets by Er:YAG laser. To measure the friction between the wires and brackets in 0° and 10° of wire angulations, 40 polycrystalline ceramic brackets (Hubit, South Korea) were divided into 8 study groups and irradiated by 100, 200, and 300 mj/s of Er:YAG laser power. Two groups of brackets were not irradiated. The friction between the wires and brackets was measured with universal testing machine (SANTAM) with a segment of .019 × .025 SS wire pulled out of the slot of bracket. ANOVA and t-test were used for analyzing the results. To evaluate the effect of the laser on surface morphology of the bracket, SEM evaluations were carried out. The mean frictional resistances between the brackets and wires with 0° of angulation by increasing the laser power decreased compared with control group, but, in 10° of angulation, the friction increased regardless of the laser power and was comparable to the friction of nonirradiated brackets. Furthermore, with each laser power, frictional resistance of brackets in 10° of angulation was significantly higher than 0° of angulation. These results were explained by SEM images too.

  20. Friction Forces during Sliding of Various Brackets for Malaligned Teeth: An In Vitro Study

    PubMed Central

    Crincoli, Vito; Di Bisceglie, Maria Beatrice; Balsamo, Antonio; Serpico, Vitaliano; Chiatante, Francesco; Pappalettere, Carmine; Boccaccio, Antonio

    2013-01-01

    Aims. To measure the friction force generated during sliding mechanics with conventional, self-ligating (Damon 3 mx, Smart Clip, and Time 3) and low-friction (Synergy) brackets using different archwire diameters and ligating systems in the presence of apical and buccal malalignments of the canine. Methods. An experimental setup reproducing the right buccal segment of the maxillary arch was designed to measure the friction force generated at the bracket/wire and wire/ligature interfaces of different brackets. A complete factorial plan was drawn up and a three-way analysis of variance (ANOVA) was carried out to investigate whether the following factors affect the values of friction force: (i) degree of malalignment, (ii) diameter of the orthodontic wire, and (iii) bracket/ligature combination. Tukey post hoc test was also conducted to evaluate any statistically significant differences between the bracket/ligature combinations analyzed. Results. ANOVA showed that all the above factors affect the friction force values. The friction force released during sliding mechanics with conventional brackets is about 5-6times higher than that released with the other investigated brackets. A quasilinear increase of the frictional forces was observed for increasing amounts of apical and buccal malalignments. Conclusion. The Synergy bracket with silicone ligature placed around the inner tie-wings appears to yield the best performance. PMID:23533364

  1. High-velocity frictional strength across the Tohoku-Oki megathrust determined from surface drilling torque

    NASA Astrophysics Data System (ADS)

    Ujiie, K.; Inoue, T.; Ishiwata, J.

    2015-12-01

    Frictional strength at seismic slip rates is a key to evaluate fault weakening and rupture propagation during earthquakes. The Japan Trench First Drilling Project (JFAST) drilled through the shallow plate-boundary thrust, where huge displacements of ~50 m occurred during the 2011 Tohoku-Oki earthquake. To determine the downhole frictional strength at drilled site (Site C0019), we analyzed surface drilling data. The equivalent slip rate estimated from the rotation rate and inner and outer radiuses of the drill bit ranges from 0.8 to 1.3 m/s. The measured torque includes the frictional torque between the drilling string and borehole wall, the viscous torque between the drilling string and seawater/drilling fluid, and the drilling torque between the drill bit and sediments. We subtracted the former two from the measured torque using the torque data during bottom-up rotating operations at several depths. Then, the shear stress was calculated from the drilling torque taking the configuration of the drill bit into consideration. The normal stress was estimated from the weight on bit data and the projected area of the drill bit. Assuming negligible cohesion, the frictional strength was obtained by dividing shear stress by normal stress. The results show a clear contrast in high-velocity frictional strength across the plate-boundary thrust: the friction coefficient of frontal prism sediments (hemipelagic mudstones) in hanging wall is 0.1-0.2, while that in subducting sediments (hemipelagic to pelagic mudstones and chert) in footwall increases to 0.2-0.4. The friction coefficient of smectite-rich pelagic clay in the plate-boundary thrust is ~0.1, which is consistent with that obtained from high-velocity (1.3 m/s) friction experiments and temperature measurements. We conclude that surface drilling torque provides useful data to obtain a continuous downhole frictional strength.

  2. Postoperative Changes in In Vivo Measured Friction in Total Hip Joint Prosthesis during Walking

    PubMed Central

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by ‘running-in’ effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different ‘running-in’ effects that were influenced by the individual activity levels and synovia properties. PMID:25806805

  3. Optical skin friction measurement technique in hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Chen, Xing; Yao, Dapeng; Wen, Shuai; Pan, Junjie

    2016-10-01

    Shear-sensitive liquid-crystal coatings (SSLCCs) have an optical characteristic that they are sensitive to the applied shear stress. Based on this, a novel technique is developed to measure the applied shear stress of the model surface regarding both its magnitude and direction in hypersonic flow. The system of optical skin friction measurement are built in China Academy of Aerospace Aerodynamics (CAAA). A series of experiments of hypersonic vehicle is performed in wind tunnel of CAAA. Global skin friction distribution of the model which shows complicated flow structures is discussed, and a brief mechanism analysis and an evaluation on optical measurement technique have been made.

  4. A Simple Measurement of the Sliding Friction Coefficient

    ERIC Educational Resources Information Center

    Gratton, Luigi M.; Defrancesco, Silvia

    2006-01-01

    We present a simple computer-aided experiment for investigating Coulomb's law of sliding friction in a classroom. It provides a way of testing the possible dependence of the friction coefficient on various parameters, such as types of materials, normal force, apparent area of contact and sliding velocity.

  5. Friction coefficient determination by electrical resistance measurements

    NASA Astrophysics Data System (ADS)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-05-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino and compatible sensor-based experiments in physics class in order to ensure a better understanding of phenomena, develop theoretical knowledge and multiple experimental skills.

  6. Characterization of Al-ALLOYS (50xx) by Using Positron Annihilation, X-Ray Diffraction and Vibrating Reed Techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Uday; Badawi, Emad; Mukhopadhyay, P. K.

    A series of Al-Mgx alloys, with x = 0.82, 2.09, 2.28, 2.49 and 4.47 wt.%, respectively were characterized by using positron annihilation lifetime studies (PAL), X-ray diffraction (XRD), and sound velocity and internal friction using a vibrating reed technique (VRT). PAL lifetime values increase linearly as the composition is varied, but texturing or preferential orientation is maximum at an intermediate value of composition (x = 2.49%). The internal friction shows a minimum at the same composition, and the sound velocity changes show the maximum value here too. This means that at this composition the sample is the most ordered and defect free.

  7. Internal friction Q factor measurements in lunar rocks

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1978-01-01

    In order to better interpret recently reported values for the variation of seismic Q as a function of depth below the lunar surface, we have developed apparatus and made laboratory measurements of Q as a function of hydrostatic pressure, temperature and frequency. Our measurements of the Q associated with shear deformations have demonstrated that the large difference in Q between well outgassed and volatile rich rocks persists to pressures corresponding to a depth of at least 50 km. Here we report new measurements of Q as a function of temperature, on the development of techniques to measure the Q associated with extensional deformations under hydrostatic pressure, on the derivation of theoretical relations between our laboratory Q values and the attenuation coefficient of seismic waves, and on the development of a model for mechanism of adsorption.

  8. The Influence of Friction Between Football Helmet and Jersey Materials on Force: A Consideration for Sport Safety.

    PubMed

    Rossi, Anthony M; Claiborne, Tina L; Thompson, Gregory B; Todaro, Stacey

    2016-09-01

    The pocketing effect of helmet padding helps to dissipate forces experienced by the head, but if the player's helmet remains stationary in an opponent's shoulder pads, the compressive force on the cervical spine may increase. To (1) measure the coefficient of static friction between different football helmet finishes and football jersey fabrics and (2) calculate the potential amount of force on a player's helmet due to the amount of friction present. Cross-sectional study. Laboratory. Helmets with different finishes and different football jersey fabrics. The coefficient of friction was determined for 2 helmet samples (glossy and matte), 3 football jerseys (collegiate, high school, and youth), and 3 types of jersey numbers (silkscreened, sublimated, and stitched on) using the TAPPI T 815 standard method. These measurements determined which helmet-to-helmet, helmet-to-jersey number, and helmet-to-jersey material combination resulted in the least amount of static friction. The glossy helmet versus glossy helmet combination produced a greater amount of static friction than the other 2 helmet combinations (P = .013). The glossy helmet versus collegiate jersey combination produced a greater amount of static friction than the other helmet-to-jersey material combinations (P < .01). The glossy helmet versus silkscreened numbers combination produced a greater amount of static friction than the other helmet-to-jersey number combinations (P < .01). The force of static friction experienced during collisions can be clinically relevant. Conditions with higher coefficients of static friction result in greater forces. In this study, the highest coefficient of friction (glossy helmet versus silkscreened number) could increase the forces on the player's helmet by 3553.88 N when compared with other helmet-to-jersey combinations. Our results indicate that the makeup of helmet and uniform materials may affect sport safety.

  9. Prediction and validation of the energy dissipation of a friction damper

    NASA Astrophysics Data System (ADS)

    Lopez, I.; Nijmeijer, H.

    2009-12-01

    Friction dampers can be a cheap and efficient way to reduce the vibration levels of a wide range of mechanical systems. In the present work it is shown that the maximum energy dissipation and corresponding optimum friction force of friction dampers with stiff localized contacts and large relative displacements within the contact, can be determined with sufficient accuracy using a dry (Coulomb) friction model. Both the numerical calculations with more complex friction models and the experimental results in a laboratory test set-up show that these two quantities are relatively robust properties of a system with friction. The numerical calculations are performed with several friction models currently used in the literature. For the stick phase smooth approximations like viscous damping or the arctan function are considered but also the non-smooth switch friction model is used. For the slip phase several models of the Stribeck effect are used. The test set-up for the laboratory experiments consists of a mass sliding on parallel ball-bearings, where additional friction is created by a sledge attached to the mass, which is pre-stressed against a friction plate. The measured energy dissipation is in good agreement with the theoretical results for Coulomb friction.

  10. In-situ-measurement of the friction coefficient in the deep drawing process

    NASA Astrophysics Data System (ADS)

    Recklin, V.; Dietrich, F.; Groche, P.

    2017-09-01

    The surface texture plays an important role in the tribological behaviour of deep drawn components. It influences both the process of sheet metal forming as well as the properties for post processing, such as paint appearance, bonding, or corrosion tendency. During the forming process, the texture of the sheet metal and therefore its friction coefficient, changes due to process related strains. This contribution focuses on the development and validation of a tool to investigate the friction coefficient of the flange region of deep drawn components. The influence of biaxial strain on the friction coefficient will be quantified through a comparison of the experimental results with a conventional friction test (stand). The presented method will be applied on a cup drawing test, using a segmented and sensor-monitored blankholder. This setup allows the measurement of the friction coefficient in-situ without simplification of the real process. The experiments were carried out using DX 56D+Z as sheet metal and PL61 as lubricant. The results show a characteristic change in the friction coefficient over the displacement of the punch, which is assumed to be caused by strain induced change of the surface texture.

  11. Friction on a granular-continuum interface: Effects of granular media

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Geller, Drew

    We consider the frictional interactions of two soft plates with interposed granular material subject to normal and shear forces. The plates are soft photo-elastic material, have length 50 cm, and are separated by a gap of variable width from 0 to 20 granular particle diameters. The granular materials are two-dimensional rods that are bi-dispersed in size to prevent crystallization. Different rod materials with frictional coefficients between 0 . 04 < μ < 0 . 5 are used to explore the effects of inter-granular friction on the effective friction of a granular medium. The gap is varied to test the dependence of the friction coefficient on the thickness of the granular layer. Because the soft plates absorb most of the displacement associated with the compressional normal force, the granular packing fractions are close to a jamming threshold, probably a shear jamming criterion. The overall shear and normal forces are measured using force sensors and the local strain tensor over a central portion of the gap is obtained using relative displacements of fiducial markers on the soft elastic material. These measurements provide a good characterization of the global and local forces giving rise to an effective friction coefficient. Funded by US DOE LDRD Program.

  12. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    NASA Technical Reports Server (NTRS)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  13. A force balance system for the measurement of skin friction drag force

    NASA Technical Reports Server (NTRS)

    Moore, J. W.; Mcvey, E. S.

    1971-01-01

    Research on force balance instrumentation to measure the skin friction of hypersonic vehicles at extreme temperatures, high altitudes and in a vibration field is discussed. A rough overall summary and operating instructions for the equipment are presented.

  14. Compact friction and wear machine

    NASA Astrophysics Data System (ADS)

    Hannigan, James W.; Schwarz, Ricardo B.

    1988-08-01

    We have developed a compact ring-on-ring wear machine that measures the friction coefficient between large area surfaces as a function of time, normal stress, and sliding velocity. The machine measures the temperature of the sliding surfaces and collects the wear debris.

  15. Skin-friction measurements by laser interferometry

    NASA Technical Reports Server (NTRS)

    Kim, K.-S.; Settles, G. S.

    1989-01-01

    The measurement of skin friction in rapidly distorted compressible flows is difficult, and very few reliable techniques are available. A recent development, the laser interferometer skin friction (LISF) meter, promises to be useful for this purpose. This technique interferometrically measures the time rate of thinning of an oil film applied to an aerodynamic surface. Under the proper conditions the wall shear stress may thus be found directly, without reference to flow properties. The applicability of the LISF meter to supersonic boundary layers is examined experimentally. Its accuracy and repeatability are assessed, and conditions required for its successful application are considered.

  16. CAM/LIFTER forces and friction. Final report, September 15, 1988--November 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabbey, D.J.; Lee, J.; Patterson, D.J.

    1992-02-01

    This report details the procedures used to measure the cam/lifter forces and friction. The present effort employed a Cummins LTA-10, and focuses on measurements and dynamic modeling of the injector train. The program was sponsored by the US Department of Energy in support of advanced diesel engine technology. The injector train was instrumented to record the instantaneous roller speed, roller pin friction torque, pushrod force, injector link force and cam speed. These measurements, together with lift profiles for pushrod and injector link displacement, enabled the friction work loss in the injector train to be determined. Other significant design criteria suchmore » as camshaft roller follower slippage and maximum loads on components were also determined. Future efforts will concentrate on the dynamic model, with tests run as required for correlation.« less

  17. Friction factor data for flat plate tests of smooth and honeycomb surfaces. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ha, Tae Woong

    1989-01-01

    Friction factors for honeycomb surfaces were measured with a flat plate tester. The flat plate test apparatus was described and a method was discussed for determining the friction factor experimentally. The friction factor model was developed for the flat plate test based on the Fanno Line Flow. The comparisons of the friction factor were plotted for smooth surfaces and six-honeycomb surfaces with three-clearances, 6.9 bar to 17.9 bar range of inlet pressures, and 5,000 to 100,000 range of the Reynolds number. The optimum geometries for the maximum friction factor were found as a function of cell width to cell depth and cell width to clearance ratios.

  18. A study of kinetic friction: The Timoshenko oscillator

    NASA Astrophysics Data System (ADS)

    Henaff, Robin; Le Doudic, Gabriel; Pilette, Bertrand; Even, Catherine; Fischbach, Jean-Marie; Bouquet, Frédéric; Bobroff, Julien; Monteverde, Miguel; Marrache-Kikuchi, Claire A.

    2018-03-01

    Friction is a complex phenomenon that is of paramount importance in everyday life. We present an easy-to-build and inexpensive experiment illustrating Coulomb's law of kinetic friction. The so-called friction, or Timoshenko, oscillator consists of a plate set into periodic motion through the competition between gravity and friction on its rotating supports. The period of such an oscillator gives a measurement of the coefficient of kinetic friction μk between the plate and the supports. Our prototype is mainly composed of a motor, LEGO blocks, and a low-cost microcontroller, but despite its simplicity, the results obtained are in good agreement with values of μk found in the literature (enhanced online).

  19. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    PubMed Central

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach. PMID:26727881

  20. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  1. Internal friction controls the speed of protein folding from a compact configuration.

    PubMed

    Pabit, Suzette A; Roder, Heinrich; Hagen, Stephen J

    2004-10-05

    Several studies have found millisecond protein folding reactions to be controlled by the viscosity of the solvent: Reducing the viscosity allows folding to accelerate. In the limit of very low solvent viscosity, however, one expects a different behavior. Internal interactions, occurring within the solvent-excluded interior of a compact molecule, should impose a solvent-independent upper limit to folding speed once the bulk diffusional motions become sufficiently rapid. Why has this not been observed? We have studied the effect of solvent viscosity on the folding of cytochrome c from a highly compact, late-stage intermediate configuration. Although the folding rate accelerates as the viscosity declines, it tends toward a finite limiting value approximately 10(5) s(-1) as the viscosity tends toward zero. This limiting rate is independent of the cosolutes used to adjust solvent friction. Therefore, interactions within the interior of a compact denatured polypeptide can limit the folding rate, but the limiting time scale is very fast. It is only observable when the solvent-controlled stages of folding are exceedingly rapid or else absent. Interestingly, we find a very strong temperature dependence in these "internal friction"-controlled dynamics, indicating a large energy scale for the interactions that govern reconfiguration within compact, near-native states of a protein.

  2. Debris-bed friction of hard-bedded glaciers

    USGS Publications Warehouse

    Cohen, D.; Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Jackson, M.; Moore, P.L.

    2005-01-01

    [1] Field measurements of debris-bed friction on a smooth rock tablet at the bed of Engabreen, a hard-bedded, temperate glacier in northern Norway, indicated that basal ice containing 10% debris by volume exerted local shear traction of up to 500 kPa. The corresponding bulk friction coefficient between the dirty basal ice and the tablet was between 0.05 and 0.08. A model of friction in which nonrotating spherical rock particles are held in frictional contact with the bed by bed-normal ice flow can account for these measurements if the power law exponent for ice flowing past large clasts is 1. A small exponent (n < 2) is likely because stresses in ice are small and flow is transient. Numerical calculations of the bed-normal drag force on a sphere in contact with a flat bed using n = 1 show that this force can reach values several hundred times that on a sphere isolated from the bed, thus drastically increasing frictional resistance. Various estimates of basal friction are obtained from this model. For example, the shear traction at the bed of a glacier sliding at 20 m a-1 with a geothermally induced melt rate of 0.006 m a-1 and an effective pressure of 300 kPa can exceed 100 kPa. Debris-bed friction can therefore be a major component of sliding resistance, contradicting the common assumption that debris-bed friction is negligible. Copyright 2005 by the American Geophysical Union.

  3. Static coefficient of friction between stainless steel and PMMA used in cemented hip and knee implants.

    PubMed

    Nuño, N; Groppetti, R; Senin, N

    2006-11-01

    Design of cemented hip and knee implants, oriented to improve the longevity of artificial joints, is largely based on numerical models. The static coefficient of friction between the implant and the bone cement is necessary to characterize the interface conditions in these models and must be accurately provided. The measurement of this coefficient using a repeatable and reproducible methodology for materials used in total hip arthroplasty is missing from the literature. A micro-topographic surface analysis characterized the surfaces of the specimens used in the experiments. The coefficient of friction between stainless steel and bone cement in dry and wet conditions using bovine serum was determined using a prototype computerized sliding friction tester. The effects of surface roughness (polished versus matt) and of contact pressure on the coefficient of friction have also been investigated. The serum influences little the coefficient of friction for the matt steel surface, where the mechanical interactions due to higher roughness are still the most relevant factor. However, for polished steel surfaces, the restraining effect of proteins plays a very relevant role in increasing the coefficient of friction. When the coefficient of friction is used in finite element analysis, it is used for the debonded stem-cement situation. It can thus be assumed that serum will propagate between the stem and the cement mantle. The authors believe that the use of a static coefficient of friction of 0.3-0.4, measured in the present study, is appropriate in finite element models.

  4. Subdigital setae of chameleon feet: friction-enhancing microstructures for a wide range of substrate roughness.

    PubMed

    Spinner, Marlene; Westhoff, Guido; Gorb, Stanislav N

    2014-06-27

    Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion.

  5. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets.

    PubMed

    Akaike, Shun; Hayakawa, Tohru; Kobayashi, Daishiro; Aono, Yuko; Hirata, Atsushi; Hiratsuka, Masanori; Nakamura, Yoshiki

    2015-01-01

    In orthodontics, a reduction in static friction between the brackets and wire is important to enable easy tooth movement. The aim of this study was to examine the effects of a homogeneous diamond-like carbon (DLC) coating on the whole surfaces of slots in stainless steel orthodontic brackets on reducing the static friction between the brackets and the wire. The DLC coating was characterized using Raman spectroscopy, surface roughness and contact angle measurements, and SEM observations. Rectangular stainless steel and titanium-molybdenum alloy wires with two different sizes were employed, and the static friction between the brackets and wire was measured under dry and wet conditions. The DLC coating had a thickness of approximately 1.0 μm and an amorphous structure was identified. The results indicated that the DLC coating always led to a reduction in static friction.

  6. Subdigital setae of chameleon feet: Friction-enhancing microstructures for a wide range of substrate roughness

    NASA Astrophysics Data System (ADS)

    Spinner, Marlene; Westhoff, Guido; Gorb, Stanislav N.

    2014-06-01

    Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion.

  7. Mechanism of laser-induced stress relaxation in cartilage

    NASA Astrophysics Data System (ADS)

    Sobol, Emil N.; Sviridov, Alexander P.; Omelchenko, Alexander I.; Bagratashvili, Victor N.; Bagratashvili, Nodar V.; Popov, Vladimir K.

    1997-06-01

    The paper presents theoretical and experimental results allowing to discuss and understand the mechanism of stress relaxation and reshaping of cartilage under laser radiation. A carbon dioxide and a Holmium laser was used for treatment of rabbits and human cartilage. We measured temperature, stress, amplitude of oscillation by free and forced vibration, internal friction, and light scattering in the course of laser irradiation. Using experimental data and theoretical modeling of heat and mass transfer in cartilaginous tissue we estimated the values of transformation heat, diffusion coefficients and energy activation for water movement.

  8. Data reduction formulas for the 16-foot transonic tunnel: NASA Langley Research Center, revision 2

    NASA Technical Reports Server (NTRS)

    Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.

    1992-01-01

    The equations used by the 16-Foot Transonic Wind Tunnel in the data reduction programs are presented in nine modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: (1) tunnel parameters; (2) jet exhaust measurements; (3) skin friction drag; (4) balance loads and model attitudes calculations; (5) internal drag (or exit-flow distribution); (6) pressure coefficients and integrated forces; (7) thrust removal options; (8) turboprop options; and (9) inlet distortion.

  9. Folding of the four-helix bundle FF domain from a compact on-pathway intermediate state is governed predominantly by water motion.

    PubMed

    Sekhar, Ashok; Vallurupalli, Pramodh; Kay, Lewis E

    2012-11-20

    Friction plays a critical role in protein folding. Frictional forces originating from random solvent and protein fluctuations both retard motion along the folding pathway and activate protein molecules to cross free energy barriers. Studies of friction thus may provide insights into the driving forces underlying protein conformational dynamics. However, the molecular origin of friction in protein folding remains poorly understood because, with the exception of the native conformer, there generally is little detailed structural information on the other states participating in the folding process. Here, we study the folding of the four-helix bundle FF domain that proceeds via a transiently formed, sparsely populated compact on-pathway folding intermediate whose structure was elucidated previously. Because the intermediate is stabilized by both native and nonnative interactions, friction in the folding transition between intermediate and folded states is expected to arise from intrachain reorganization in the protein. However, the viscosity dependencies of rates of folding from or unfolding to the intermediate, as established by relaxation dispersion NMR spectroscopy, clearly indicate that contributions from internal friction are small relative to those from solvent, so solvent frictional forces drive the folding process. Our results emphasize the importance of solvent dynamics in mediating the interconversion between protein configurations, even those that are highly compact, and in equilibrium folding/unfolding fluctuations in general.

  10. High-resolution compact shear stress sensor for direct measurement of skin friction in fluid flow

    NASA Astrophysics Data System (ADS)

    Xu, Muchen; Kim, Chang-Jin ``Cj''

    2015-11-01

    The high-resolution measurement of skin friction in complex flows has long been of great interest but also a challenge in fluid mechanics. Compared with indirect measurement methods (e.g., laser Doppler velocimetry), direct measurement methods (e.g., floating element) do not involve any analogy and assumption but tend to suffer from instrumentation challenges, such as low sensing resolution or misalignments. Recently, silicon micromachined floating plates showed good resolution and perfect alignment but were too small for general purposes and too fragile to attach other surface samples repeatedly. In this work, we report a skin friction sensor consisting of a monolithic floating plate and a high-resolution optical encoder to measure its displacement. The key for the high resolution is in the suspension beams, which are very narrow (e.g., 0.25 mm) to sense small frictions along the flow direction but thick (e.g., 5 mm) to be robust along all other directions. This compact, low profile, and complete sensor is easy to use and allows repeated attachment and detachment of surface samples. The sheer-stress sensor has been tested in water tunnel and towing tank at different flow conditions, showing high sensing resolution for skin friction measurement. Supported by National Science Foundation (NSF) (No. 1336966) and Defense Advanced Research Projects Agency (DARPA) (No. HR0011-15-2-0021).

  11. The influence of stem design on critical squeaking friction with ceramic bearings.

    PubMed

    Fan, Na; Morlock, Michael M; Bishop, Nicholas E; Huber, Gerd; Hoffmann, Norbert; Ciavarella, Michele; Chen, Guang X; Hothan, Arne; Witt, Florian

    2013-10-01

    Ceramic-on-ceramic hip joints have been reported to squeak, a phenomenon that may occur in compromised lubrication conditions. One factor related to the incidence of in vivo squeaking is the stem design. However, it has not yet been possible to relate stem design to squeaking in deteriorating lubrication conditions. The purpose of this study was to determine critical friction factors for different stem designs. A hip simulator was used to measure the friction factor of a ceramic bearing with different stem designs and gradually deteriorating lubrication represented by evaporation of a volatile fluid lubricant. The critical squeaking friction factor was measured at the onset of squeaking for each stem. Critical friction was higher for the long cobalt chrome (0.32 ± 0.02) and short titanium stems (0.39 ± 0.02) in comparison with a long titanium stem (0.29 ± 0.02). The onset of squeaking occurred at a friction factor lower than that measured for dry conditions, in which squeaking is usually investigated experimentally. The results suggest that shorter or heavier stems might limit the possibility of squeaking as lubrication deteriorates. The method developed can be used to investigate the influence of design parameters on squeaking probability. Copyright © 2013 Orthopaedic Research Society.

  12. Field study of mussel impact on turbulent structure in the internal boundary layer of a low energetic deep lake

    NASA Astrophysics Data System (ADS)

    Wang, B.; Liao, Q.; Bootsma, H. A.; Troy, C. D.

    2013-12-01

    The impact of invasive mussels on Great Lake aquatic ecosystem attracted wide attentions. Their strong ability on phytoplankton consumption and impact on nutrient and oxygen dynamics greatly change the behavior of benthic communities. The hydrodynamics in the internal boundary layer (IBL) at low energetic deep lakes is of great importance on food delivery. Meantime, the filtration activities of mussels provide feedback to turbulence structure in the IBL. This filed study was carried out at the 55 meters station in Lake Michigan using an in situ PIV system to measure high resolution turbulence immediately above the mussel bed. A HR acoustic profiler was used to measure three dimensional velocities within 1 meter above the bed. Quadrant-Hole analysis method was used to identify the organized structures of turbulent motion on contributing Reynolds shear stress. Sufficiently close to the mussels, turbulence sources were mostly contributed to flow-mussel interaction and mussel filtration, rather than shear production. Bed shear stress, friction velocity and bottom roughness were also investigated. Our results suggest measurement should be made in the IBL to accurate estimate the bed friction and erodability. A particle concentration depletion layer was observed within 7~8 centimeters above the mussel bed. Significant enhancement of turbulent mixing was found due to filtration activities, which tends to help food supply for benthic mussels in low energetic aquatic systems A sample PIV image superimposed with 2-D velocity map Vertical profiles of (a) fraction for each quadrant event (b) conditional averaged Reynolds shear stress for each quadrant event. Two dash lines represent z = 1.3 cm and 3.6 cm.

  13. On the Similarity of Deformation Mechanisms During Friction Stir Welding and Sliding Friction of the AA5056 Alloy

    NASA Astrophysics Data System (ADS)

    Kolubaev, A. V.; Zaikina, A. A.; Sizova, O. V.; Ivanov, K. V.; Filippov, A. V.; Kolubaev, E. A.

    2018-04-01

    A comparative investigation of the structure of an aluminum-manganese alloy is performed after its friction stir welding and sliding friction. Using the methods of optical and electron microscopy, it is shown that during friction identical ultrafine-grained structures are formed in the weld nugget and in the surface layer, in which the grains measure 5 μm irrespective of the initial grain size of the alloy. An assumption is made that the microstructure during both processes under study is formed by the mechanism of rotational plasticity.

  14. Adhesion, friction, and wear of a copper bicrystal with (111) and (210) grains

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Buckley, D. H.

    1973-01-01

    Sliding friction experiments were conducted in air with polycrystalline copper and ruby riders sliding against a copper bicrystal. Friction coefficient was measured across the bicrystal surface, and the initiation of adhesive wear was examined with scanning electron microscopy. Results indicate a marked increase in friction coefficient as the copper rider crossed the grain boundary from the (111) plane to the (210) plane of the bicrystal. Adhesion, friction, and initiation of adhesive wear was notably different in the adjacent grains of differing orientation. A slip-band adhesion-generated fracture mechanism for wear particle formation is proposed.

  15. The laser interferometer skin-friction meter - A numerical and experimental study

    NASA Technical Reports Server (NTRS)

    Murphy, J. D.; Westphal, R. V.

    1986-01-01

    Limits to the applicability of thin-film lubrication theory are established. The following two problems are considered: (1) the response of the oil film to a time-varying skin friction such as is encountered in turbulent boundary layers, and (2) a 'surface-wave instability' encountered at high skin-friction levels. Results corresponding to the first problem reveal that the laser interferometer skin-friction meter may, in principle, be applied to the measurement of instantaneous skin friction. In addressing the second problem, it is shown that the observed surface waves are not the result of a hydrodynamic instability.

  16. In-flight Compressible Turbulent Boundary Layer Measurements on a Hollow Cylinder at a Mach Number of 3.0

    NASA Technical Reports Server (NTRS)

    Quinn, R. D.; Gong, L.

    1978-01-01

    Skin temperatures, shearing forces, surface static pressures, and boundary layer pitot pressures and total temperatures were measured on a hollow cylinder 3.04 meters long and 0.437 meter in diameter mounted beneath the fuselage of the YF-12A airplane. The data were obtained at a nominal free stream Mach number of 3.0 and at wall-to-recovery temperature ratios of 0.66 to 0.91. The free stream Reynolds number had a minimal value of 4.2 million per meter. Heat transfer coefficients and skin friction coefficients were derived from skin temperature time histories and shear force measurements, respectively. Boundary layer velocity profiles were derived from pitot pressure measurements, and a Reynolds analogy factor of 1.11 was obtained from the measured heat transfer and skin friction data. The skin friction coefficients predicted by the theory of van Driest were in excellent agreement with the measurements. Theoretical heat transfer coefficients, in the form of Stanton numbers calculated by using a modified Reynolds analogy between skin friction and heat transfer, were compared with measured values. The measured velocity profiles were compared to Coles' incompressible law-of-the-wall profile.

  17. Skin friction fields on delta wings

    NASA Astrophysics Data System (ADS)

    Woodiga, S. A.; Liu, Tianshu

    2009-12-01

    The normalized skin friction fields on a 65° delta wing and a 76°/40° double-delta wing are measured by using a global luminescent oil-film skin friction meter. The detailed topological structures of skin friction fields on the wings are revealed for different angles of attack and the important features are detected such as reattachment lines, secondary separation lines, vortex bursting and vortex interaction. The comparisons with the existing flow visualization results are discussed.

  18. Recent progress towards predicting aircraft ground handling performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    Capability implemented in simulating aircraft ground handling performance is reviewed and areas for further expansion and improvement are identified. Problems associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior are discussed and efforts to improve tire/runway friction definition, and simulator fidelity are described. Aircraft braking performance data obtained on several wet runway surfaces are compared to ground vehicle friction measurements. Research to improve methods of predicting tire friction performance are discussed.

  19. Implications of loading/unloading a subduction zone with a heterogeneously coupled interface

    NASA Astrophysics Data System (ADS)

    Herman, M. W.; Furlong, K. P.; Govers, R. M. A.

    2017-12-01

    Numerical models of subduction zones with appropriate physical properties may help understand deformation throughout great earthquake cycles, as well as associated observations such as the distribution of smaller magnitude megathrust earthquakes and surface displacements. Of particular interest are displacements near the trench, where tsunamis are generated. The patterns of co-seismic strain release in great megathrust earthquakes depend on the frictional coupling of the plate interface prior to the event. Geodetic observations during the inter-seismic stage suggest that the plates are fully locked at asperities surrounded by zones of apparent partial coupling. We simulate the accumulation (and release) of elastic strain in the subduction system using a finite element model with a relatively simple geometry and material properties. We demonstrate that inter-seismic apparent partial coupling can be dominantly explained by a distribution of completely locked asperities and zero friction elsewhere. In these models, the interface up-dip of the locked zone (< 15 km depth) accumulates large slip deficit even if its coefficient of friction is zero, as might be inferred from the scarcity of megathrust earthquakes shallower than 15 km in global earthquake catalogs. In addition, the upper plate above a low-friction shallow megathrust accumulates large displacements with little internal strain, potentially leading to large co-seismic block displacements (low displacement gradients) of the near-trench seafloor like those observed following the 2011 Mw 9.0 Tohoku earthquake. This is also consistent with anomalously low co-seismic frictional heating of the shallow megathrust indicated by borehole heat flow measurements after the Tohoku event. Our models also yield insights into slip partitioning throughout multiple earthquake cycles. In smaller ruptures, fault slip is inhibited by nearby locked zones; in subsequent multi-segment ruptures, the rest of this slip deficit may be released, producing significantly larger slip than might be expected based on historical earthquake magnitudes. Finally, because low-friction areas around asperities accumulate some slip deficit but may not rupture co-seismically, these regions may be the primary locations of afterslip following the rupture of the locked patch.

  20. Analysis of the characteristics of slot design affecting resistance to sliding during active archwire configurations

    PubMed Central

    2013-01-01

    Background During orthodontic treatment, a low resistance to slide (RS) is desirable when sliding mechanics are used. Many studies showed that several variables affect the RS at the bracket-wire interface; among these, the design of the bracket slot has not been deeply investigated yet. This study aimed to clarify the effect of different slot designs on the RS expressed by five types of low-friction brackets in vertical and horizontal active configurations of the wire. Methods Five low-friction brackets (Damon SL II, Ormco, Orange, CA, USA; In-Ovation, GAC International, Bohemia, NY, USA; Quick, Forestadent, Pforzheim, Germany; Time 2, AO, Sheboygan, WI, USA; Synergy, RMO, Denver, CO, USA) coupled with an 0.014-in NiTi thermal wire (Therma-Lite, AO) were tested in two three-bracket experimental models simulating vertical and horizontal bracket displacements. A custom-made machine was used to measure frictional resistance with tests repeated on ten occasions for each bracket-wire combination. Design characteristics such as the mesio-distal slot width, slot depth, and presence of chamfered edges at the extremities of the slot were evaluated on SEM images (SUPRA, Carl Zeiss, Oberkochen, Germany) and analyzed in relation to the data of RS recorded. Results Time 2 was found to show the higher frictional forces (1.50 and 1.35 N) in both experimental models (p < 0.05), while Quick and Synergy brackets showed the lower frictional values in the vertical (0.66 N) and in the horizontal (0.68 N) bracket displacements, respectively. With vertically displaced brackets, the increased mesio-distal slot width and the presence of clear angle at mesial and distal slot edges increase the values of RS. With brackets horizontally displaced, the RS expressed by the wire is influenced simultaneously by the depth of the slot, the mesio-distal slot width, and the presence of clear angle at the extremities of the slot base, the clip, or the slide. Conclusion In order to select the proper low-friction bracket system, clinicians should consider specific characteristics of slot design apart from the wire engaging method. PMID:24325837

  1. Elastic wave induced by friction as a signature of human skin ageing and gender effect.

    PubMed

    Djaghloul, M; Morizot, F; Zahouani, H

    2016-08-01

    In this work, we propose an innovative approach based on a rotary tribometer coupled with laser velocimetry for measuring the elastic wave propagation on the skin. The method is based on a dynamic contact with the control of the normal force (Fn ), the contact length and speed. During the test a quantification of the friction force is produced. The elastic wave generated by friction is measured at the surface of the skin 35 mm from the source of friction exciter. In order to quantify the spectral range and the energy property of the wave generated, we have used laser velocimetry whose spot laser diameter is 120 μm, which samples the elastic wave propagation at a frequency which may reach 100 kHz. In this configuration, the speaker is the friction exciter and the listener the laser velocimetry. In order to perform non-invasive friction tests, the normal stress has been set to 0.3 N and the rotary velocity to 3 revolutions per second, which involves a sliding velocity of 63 mm/s. This newly developed innovative tribometer has been used for the analysis of the elastic wave propagation induced by friction on human skin during chronological ageing and gender effect. Measurements in vivo have been made on 60 healthy men and women volunteers, aged from 25 to 70. The results concerning the energy of the elastic wave signature induced by friction show a clear difference between the younger and older groups in the range of a low band of frequencies (0-200 Hz). The gender effect was marked by a 20% decrease in the energy of elastic wave propagation in the female group. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Magnetic Viscous Drag for Friction Labs

    ERIC Educational Resources Information Center

    Gaffney, Chris; Catching, Adam

    2016-01-01

    The typical friction lab performed in introductory mechanics courses is usually not the favorite of either the student or the instructor. The measurements are not all that easy to make, and reproducibility is usually a troublesome issue. This paper describes the augmentation of such a friction lab with a study of the viscous drag on a magnet…

  3. Measurment of threshold friction velocities at potential dust sources in semi-arid regions

    NASA Astrophysics Data System (ADS)

    King, Matthew A.

    The threshold friction velocities of potential dust sources in the US Southwest were measured in the field using a Portable Wind Tunnel, which is based on the Desert Research Institute's Portable In-Situ Wind Erosion Laboratory (PI-SWERL). A mix of both disturbed and undisturbed surfaces were included in this study. It was found that disturbed surfaces, such as those at the Iron King Mine tailings site, which is part of the EPA's Superfund program and contains surface concentrations of arsenic and lead reaching as high as 0.5% (w/w), had lower threshold friction velocities (0.32 m s -1 to 0.40 m s-1) in comparison to those of undisturbed surfaces (0.48 to 0.61 m s-1). Surface characteristics, such as particle size distribution, had effects on the threshold friction velocity (smaller grain sized distributions resulted in lower threshold friction velocities). Overall, the threshold friction velocities of disturbed surfaces were within the range of natural wind conditions, indicating that surfaces disturbed by human activity are more prone to causing windblown dust.

  4. The development of the friction coefficient inspection equipment for skin using a load cell.

    PubMed

    Song, Han Wook; Park, Yon Kyu; Lee, Sung Jun; Woo, Sam Yong; Kim, Sun Hyung; Kim, Dal Rae

    2008-01-01

    The skin is an indispensible organ for human because it contributes to the metabolism using its own biochemical functions as well as it protects the human body from the exterior stimuli. Recently, the friction coefficient have been used as the decision index of the progress for the bacterial aliments in the field of the skin physiology and the importance of friction coefficient have been increased in the skin care market because of the needs of the well being times. In addition, the usage of friction coefficient is known to have the big discrimination ability in classification of human constitutions, which is utilized in the alternative medicine. In this study, we designed a system which used the multi axes load cell and hemi-circular probe and tried to measure the friction coefficient of hand skins repeatedly. Using this system, the relative repeatability error for the measurement of the friction coefficient was below 4 %. The coefficient is not concerned in curvatures of tips. Using this system, we will try to establish the standard for classification of constitutions.

  5. Lateral Variations of Interplate Coupling along the Mexican Subduction Interface: Relationships with Long-Term Morphology and Fault Zone Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Rousset, Baptiste; Lasserre, Cécile; Cubas, Nadaya; Graham, Shannon; Radiguet, Mathilde; DeMets, Charles; Socquet, Anne; Campillo, Michel; Kostoglodov, Vladimir; Cabral-Cano, Enrique; Cotte, Nathalie; Walpersdorf, Andrea

    2016-10-01

    Although patterns of interseismic strain accumulation above subduction zones are now routinely characterised using geodetic measurements, their physical origin, persistency through time, and relationships to seismic hazard and long-term deformation are still debated. Here, we use GPS and morphological observations from southern Mexico to explore potential mechanical links between variations in inter-SSE (in between slow slip events) coupling along the Mexico subduction zone and the long-term topography of the coastal regions from Guerrero to Oaxaca. Inter-SSE coupling solutions for two different geometries of the subduction interface are derived from an inversion of continuous GPS time series corrected from slow slip events. They reveal strong along-strike variations in the shallow coupling (i.e. at depths down to 25 km), with high-coupling zones (coupling >0.7) alternating with low-coupling zones (coupling <0.3). Coupling below the continent is typically strong (>0.7) and transitions to uncoupled, steady slip at a relatively uniform ˜ 175-km inland from the trench. Along-strike variations in the coast-to-trench distances are strongly correlated with the GPS-derived forearc coupling variations. To explore a mechanical explanation for this correlation, we apply Coulomb wedge theory, constrained by local topographic, bathymetric, and subducting-slab slopes. Critical state areas, i.e. areas where the inner subduction wedge deforms, are spatially correlated with transitions at shallow depth between uncoupled and coupled areas of the subduction interface. Two end-member models are considered to explain the correlation between coast-to-trench distances and along-strike variations in the inter-SSE coupling. The first postulates that the inter-SSE elastic strain is partitioned between slip along the subduction interface and homogeneous plastic permanent deformation of the upper plate. In the second, permanent plastic deformation is postulated to depend on frictional transitions along the subduction plate interface. Based on the location and friction values of the critical state areas identified by our Coulomb wedge analysis, we parameterise frictional transitions in plastic-static models of deformation over several seismic cycles. This predicts strong shear dissipation above frictional transitions on the subduction interface. The comparison of modelled surface displacements over a critical zone at a frictional transition and over a stable area with no internal wedge deformation shows differences of long-term uplift consistent with the observed along-strike variations in the coast-to-trench distances. Our work favours a model in which frictional asperities partly control short-term inter-SSE coupling as measured by geodesy and in which those asperities persist through time.

  6. Reflection-Type Oil-Film Skin-Friction Meter

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Promode R.; Weinstein, Leonard M.

    1993-01-01

    Oil-film skin-friction meter for both flight and wind-tunnel applications uses internal reflection and is self-contained, compact unit. Contained in palm-sized housing, in which source of light, mirrors, and sensor mounted rigidly in alignment. Entire unit mounted rigidly under skin of aircraft or wind tunnel, eliminating any relative vibration between optical elements and skin of aircraft or wind tunnel. Meter primarily applicable to flight and wind-tunnel tests, also used in chemical-processing plants.

  7. Direct measurement of friction of a fluctuating contact line

    NASA Astrophysics Data System (ADS)

    Guo, Shuo; Gao, Min; Xiong, Xiaomin; Wang, Yong Jian; Wang, Xiaoping; Sheng, Ping; Tong, Penger

    2013-03-01

    What happens at a moving contact line, where one fluid displaces another (immiscible) fluid over a solid surface, is a fundamental issue in fluid dynamics. In this presentation, we report a direct measurement of the friction coefficient in the immediate vicinity of a fluctuating contact line using a micron-sized vertical glass fiber with one end glued to an atomic force microscope (AFM) cantilever beam and the other end touching a liquid-air interface. By measuring the broadening of the resonance peak of the cantilever system with varying liquid viscosity η, we obtain the friction coefficient ξc associated with the contact line fluctuations on the glass fiber of diameter d and find it has the universal form, ξc = 0 . 8 πdη , independent of the contact angle. The result is further confirmed by using a soap film system whose bulk effect is negligibly small. This is the first time that the friction coefficient of a fluctuating contact line is measured. *Work supported by the Research Grants Council of Hong Kong SAR.

  8. Nondestructive ultrasonic measurement of bolt preload using the pulsed-phase locked-loop interferometer

    NASA Technical Reports Server (NTRS)

    Allison, S. G.; Heyman, J. S.

    1985-01-01

    Achieving accurate preload in threaded fasteners is an important and often critical problem which is encountered in nearly all sectors of government and industry. Conventional tensioning methods which rely on torque carry with them the disadvantage of requiring constant friction in the fastener in order to accurately correlate torque to preload. Since most of the applied torque typically overcomes friction rather than tensioning the fastener, small variations in friction can cause large variations in preload. An instrument called a pulsed phase locked loop interferometer, which was recently developed at NASA Langley, has found widespread use for measurement of stress as well as material properties. When used to measure bolt preload, this system detects changes in the fastener length and sound velocity which are independent of friction. The system is therefore capable of accurately establishing the correct change in bolt tension. This high resolution instrument has been used for precision measurement of preload in critical fasteners for numerous applications such as the space shuttle landing gear and helicopter main rotors.

  9. Single-Molecule Tribology: Force Microscopy Manipulation of a Porphyrin Derivative on a Copper Surface.

    PubMed

    Pawlak, Rémy; Ouyang, Wengen; Filippov, Alexander E; Kalikhman-Razvozov, Lena; Kawai, Shigeki; Glatzel, Thilo; Gnecco, Enrico; Baratoff, Alexis; Zheng, Quanshui; Hod, Oded; Urbakh, Michael; Meyer, Ernst

    2016-01-26

    The low-temperature mechanical response of a single porphyrin molecule attached to the apex of an atomic force microscope (AFM) tip during vertical and lateral manipulations is studied. We find that approach-retraction cycles as well as surface scanning with the terminated tip result in atomic-scale friction patterns induced by the internal reorientations of the molecule. With a joint experimental and computational effort, we identify the dicyanophenyl side groups of the molecule interacting with the surface as the dominant factor determining the observed frictional behavior. To this end, we developed a generalized Prandtl-Tomlinson model parametrized using density functional theory calculations that includes the internal degrees of freedom of the side group with respect to the core and its interactions with the underlying surface. We demonstrate that the friction pattern results from the variations of the bond length and bond angles between the dicyanophenyl side group and the porphyrin backbone as well as those of the CN group facing the surface during the lateral and vertical motion of the AFM tip.

  10. Optical tweezers reveal force plateau and internal friction in PEG-induced DNA condensation.

    PubMed

    Ojala, Heikki; Ziedaite, Gabija; Wallin, Anders E; Bamford, Dennis H; Hæggström, Edward

    2014-03-01

    The simplified artificial environments in which highly complex biological systems are studied do not represent the crowded, dense, salty, and dynamic environment inside the living cell. Consequently, it is important to investigate the effect of crowding agents on DNA. We used a dual-trap optical tweezers instrument to perform force spectroscopy experiments at pull speeds ranging from 0.3 to 270 μm/s on single dsDNA molecules in the presence of poly(ethylene glycol) (PEG) and monovalent salt. PEG of sizes 1,500 and 4,000 Da condensed DNA, and force-extension data contained a force plateau at approximately 1 pN. The level of the force plateau increased with increasing pull speed. During slow pulling the dissipated work increased linearly with pull speed. The calculated friction coefficient did not depend on amount of DNA incorporated in the condensate, indicating internal friction is independent of the condensate size. PEG300 had no effect on the dsDNA force-extension curve. The force plateau implies that condensation induced by crowding agents resembles condensation induced by multivalent cations.

  11. Rubber friction on road surfaces: Experiment and theory for low sliding speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenz, B.; Persson, B. N. J.; Oh, Y. R.

    We study rubber friction for tire tread compounds on asphalt road surfaces. The road surface topographies are measured using a stylus instrument and atomic force microscopy, and the surface roughness power spectra are calculated. The rubber viscoelastic modulus mastercurves are obtained from dynamic mechanical analysis measurements and the large-strain effective modulus is obtained from strain sweep data. The rubber friction is measured at different temperatures and sliding velocities, and is compared to the calculated data obtained using the Persson contact mechanics theory. We conclude that in addition to the viscoelastic deformations of the rubber surface by the road asperities, theremore » is an important contribution to the rubber friction from shear processes in the area of contact. The analysis shows that the latter contribution may arise from rubber molecules (or patches of rubber) undergoing bonding-stretching-debonding cycles as discussed in a classic paper by Schallamach.« less

  12. Some considerations in the evaluation of Seasat-A scatterometer /SASS/ measurements

    NASA Technical Reports Server (NTRS)

    Halberstam, I.

    1980-01-01

    A study is presented of the geophysical algorithms relating the Seasat-A scatterometer (SASS) backscatter measurements with a wind parameter. Although these measurements are closely related to surface features, an identification with surface layer parameters such as friction velocity or the roughness length is difficult. It is shown how surface truth in the form of wind speeds and coincident stability can be used to derive friction velocity or the equivalent neutral wind at an arbitrary height; it is also shown that the derived friction velocity values are sensitive to contested formulations relating friction velocity to the roughness length, while the derived values of the equivalent neutral wind are not. Examples of geophysical verification are demonstrated using values obtained from the Gulf of Alaska Seasat Experiment; these results show very little sensitivity to the type of wind parameter employed, suggesting that this insensitivity is mainly due to a large scatter in the SASS and surface truth data.

  13. Fragility and hysteretic creep in frictional granular jamming.

    PubMed

    Bandi, M M; Rivera, M K; Krzakala, F; Ecke, R E

    2013-04-01

    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular temperature). Three primary results are presented in this experimental study. First, using disks with different static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at progressively lower packing fractions with increasing friction. Second, we show that the first compression cycle measurably differs from subsequent cycles. The first cycle is fragile-a metastable configuration with simultaneous jammed and unjammed clusters-over a small packing fraction interval (φ(1)<φ<φ(2)) and exhibits simultaneous exponential rise in pressure and exponential decrease in disk displacements over the same packing fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing fragility in frictional jamming. Control experiments show that the fragile state results from the experimental incompatibility between the requirements for zero friction and zero granular temperature. Measurements with several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading (compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical packing fraction φ(c) increases slowly with repetition number. This friction-induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend on the quasistatic step size Δφ, which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ, which acts to stabilize the pack.

  14. Characterization of friction and moisture of porcine lingual tissue in vitro in response to artificial saliva and mouthwash solutions.

    PubMed

    Zundel, J; Ansari, S A; Trivedi, H M; Masters, J G; Mascaro, S

    2018-05-07

    The purpose of this research is to characterize the effects of mouthwash solutions on oral friction and moisture using a quantitative in vitro approach. The frictional coefficient of in vitro porcine tongue samples was measured using a magnetic levitation haptic device equipped with a custom tactor designed to mimic human skin. A commercially available moisture meter was used to measure moisture content of the samples. Tongue samples were first tested before treatment, then after application of saliva (either human or artificial), and again after application of 1 of 11 different mouthwash solutions. The data indicate that the samples treated with artificial saliva vs real saliva have comparable friction coefficient and moisture content. Furthermore, the moisture and friction coefficient remain relatively constant for up to 60 minutes after exposure to ambient conditions. Samples treated with artificial saliva have an average friction coefficient in the range of 0.70-0.80. Application of mouthwash solutions produced an average friction coefficient of 0.39-0.49 but retained the high moisture content of the artificial salivary layer. Several mouthwash solutions resulted in statistically significant differences in the friction coefficient relative to each other. The results of this study demonstrate that a magnetic levitation device can be an effective tool for in vitro oral tribology and that artificial saliva is an effective substitute for real saliva in extended in vitro experiments. The application of mouthwash generally reduces the coefficient of friction of the tongue samples while preserving a relatively high moisture level, and some mouthwashes reduce friction significantly more than others. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Remote Estimation of River Discharge and Bathymetry: Sensitivity to Turbulent Dissipation and Bottom Friction

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2016-12-01

    We investigated the fidelity of a hierarchy of inverse models that estimate river bathymetry and discharge using measurements of surface currents and water surface elevation. Our most comprehensive depth inversion was based on the Shiono and Knight (1991) model that considers the depth-averaged along-channel momentum balance between the downstream pressure gradient due to gravity, the bottom drag and the lateral stresses induced by turbulence. The discharge was determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The bottom friction coefficient was assumed to be known or determined by alternative means. We also considered simplifications of the comprehensive inversion model that exclude the lateral mixing term from the momentum balance and assessed the effect of neglecting this term on the depth and discharge estimates for idealized in-bank flow in symmetric trapezoidal channels with width/depth ratio of 40 and different side-wall slopes. For these simple gravity-friction models, we used two different bottom friction parameterizations - a constant Darcy-Weisbach local friction and a depth-dependent friction related to the local depth and a constant Manning (roughness) coefficient. Our results indicated that the Manning gravity-friction model provides accurate estimates of the depth and the discharge that are within 1% of the assumed values for channels with side-wall slopes between 1/2 and 1/17. On the other hand, the constant Darcy-Weisbach friction model underpredicted the true depth and discharge by 7% and 9%, respectively, for the channel with side-wall slope of 1/17. These idealized modeling results suggest that a depth-dependent parameterization of the bottom friction is important for accurate inversion of depth and discharge and that the lateral turbulent mixing is not important. We also tested the comprehensive and the simplified inversion models for the Kootenai River near Bonners Ferry (Idaho) using in situ and remote sensing measurements of surface currents and water surface elevation obtained during a 2010 field experiment.

  16. Effects of annealing and additions on dynamic mechanical properties of SnSb quenched alloy

    NASA Astrophysics Data System (ADS)

    El-Bediwi, A. B.

    2004-08-01

    The elastic modulus, internal friction and stiffness values of quenched SnSb bearing alloy have been evaluated using the dynamic resonance technique. Annealing for 2 and 4 h at 120, 140 and 160degreesC caused variations in the elastic modulus. internal friction and stiffness values. This is due to structural changes in the SnSb matrix during isothermal annealing such as coarsening in the phases (Sn, Sb or intermetallic compounds), recrystallization and stress relief. In addition, adding a small amount (1 wt.%) of Cu or Ag improved the bearing mechanical properties of the SnSb bearing alloy. The SnSbCu1 alloy has the best bearing mechanical properties with thermo-mechanical stability for long time at high temperature.

  17. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics.

    PubMed

    Ramakrishna, Shivaprakash N; Nalam, Prathima C; Clasohm, Lucy Y; Spencer, Nicholas D

    2013-01-08

    We have previously investigated the dependence of adhesion on nanometer-scale surface roughness by employing a roughness gradient. In this study, we correlate the obtained adhesion forces on nanometer-scale rough surfaces to their frictional properties. A roughness gradient with varying silica particle (diameter ≈ 12 nm) density was prepared, and adhesion and frictional forces were measured across the gradient surface in perfluorodecalin by means of atomic force microscopy with a polyethylene colloidal probe. Similarly to the pull-off measurements, the frictional forces initially showed a reduction with decreasing particle density and later an abrupt increase as the colloidal sphere began to touch the flat substrate beneath, at very low particle densities. The friction-load relation is found to depend on the real contact area (A(real)) between the colloid probe and the underlying particles. At high particle density, the colloidal sphere undergoes large deformations over several nanoparticles, and the contact adhesion (JKR type) dominates the frictional response. However, at low particle density (before the colloidal probe is in contact with the underlying surface), the colloidal sphere is suspended by a few particles only, resulting in local deformations of the colloid sphere, with the frictional response to the applied load being dominated by long-range, noncontact (DMT-type) interactions with the substrate beneath.

  18. The MEMS process of a micro friction sensor

    NASA Astrophysics Data System (ADS)

    Yuan, Ming-Quan; Lei, Qiang; Wang, Xiong

    2018-02-01

    The research and testing techniques of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the MEMS skin friction sensor has the advantages of small size, high sensitivity, good stability and dynamic response. The MEMS skin friction sensor can be integrated with other flow field sensors whose process is compatible with MEMS skin friction sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enable to achieve large area and accurate measurement for the near-wall flow. A MEMS skin friction sensor structure is proposed, which sensing element not directly contacted with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon DRIE. The optimized process parameters of silicon DRIE: etching power 1600W/LF power 100 W; SF6 flux 360 sccm; C4F8 flux 300 sccm; O2 flux 300 sccm. With Cr/Au mask, etch depth of glass shallow groove can be controlled in 30°C low concentration HF solution; the spray etch and wafer rotate improve the corrosion surface quality of glass shallow groove. The MEMS skin friction sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 μm, the depth error of the shallow groove is less than 0.03 μm, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.

  19. Coefficient of friction and wear rate effects of different composite nanolubricant concentrations on Aluminium 2024 plate

    NASA Astrophysics Data System (ADS)

    Zawawi, N. N. M.; Azmi, W. H.; Redhwan, A. A. M.; Sharif, M. Z.

    2017-10-01

    Wear of sliding parts and operational machine consistency enhancement can be avoided with good lubrication. Lubrication reduce wear between two contacting and sliding surfaces and decrease the frictional power losses in compressor. The coefficient of friction and wear rate effects study were carried out to measure the friction and anti-wear abilities of Al2O3-SiO2 composite nanolubricants a new type of compressor lubricant to enhanced the compressor performances. The tribology test rig employing reciprocating test conditions to replicate a piston ring contact in the compressor was used to measure the coefficient of friction and wear rate. Coefficient of friction and wear rate effects of different Al2O3-SiO2/PAG composite nanolubricants of Aluminium 2024 plate for 10-kg load at different speed were investigated. Al2O3 and SiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using two-steps method of preparation. The result shows that the coefficient friction and wear rate of composite nanolubricants decreased compared to pure lubricant. The maximum reduction achievement for friction of coefficient and wear rate by Al2O3-SiO2 composite nanolubricants by 4.78% and 12.96% with 0.06% volume concentration. Therefore, 0.06% volume concentration is selected as the most enhanced composite nanolubricants with effective coefficient of friction and wear rate reduction compared to other volume concentrations. Thus, it is recommended to be used as the compressor lubrication to enhanced compressor performances.

  20. A Study of Three Intrinsic Problems of the Classic Discrete Element Method Using Flat-Joint Model

    NASA Astrophysics Data System (ADS)

    Wu, Shunchuan; Xu, Xueliang

    2016-05-01

    Discrete element methods have been proven to offer a new avenue for obtaining the mechanics of geo-materials. The standard bonded-particle model (BPM), a classic discrete element method, has been applied to a wide range of problems related to rock and soil. However, three intrinsic problems are associated with using the standard BPM: (1) an unrealistically low unconfined compressive strength to tensile strength (UCS/TS) ratio, (2) an excessively low internal friction angle, and (3) a linear strength envelope, i.e., a low Hoek-Brown (HB) strength parameter m i . After summarizing the underlying reasons of these problems through analyzing previous researchers' work, flat-joint model (FJM) is used to calibrate Jinping marble and is found to closely match its macro-properties. A parametric study is carried out to systematically evaluate the micro-parameters' effect on these three macro-properties. The results indicate that (1) the UCS/TS ratio increases with the increasing average coordination number (CN) and bond cohesion to tensile strength ratio, but it first decreases and then increases with the increasing crack density (CD); (2) the HB strength parameter m i has positive relationships to the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle, but a negative relationship to the average coordination number (CN); (3) the internal friction angle increases as the crack density (CD), bond cohesion to tensile strength ratio, and local friction angle increase; (4) the residual friction angle has little effect on these three macro-properties and mainly influences post-peak behavior. Finally, a new calibration procedure is developed, which not only addresses these three problems, but also considers the post-peak behavior.

  1. The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates

    NASA Astrophysics Data System (ADS)

    Roy, Aditi; Xie, Hongtao; Wang, Shiliang; Huang, Han

    2016-12-01

    ZnO nanowires were bent on amorphous SiO2 and SiN substrates in an ambient atmosphere using optical nanomanipulation. The kinetic friction between the nanowires and substrate was determined from the bent shape of the nanowires. The kinetic friction force per unit area, i.e. frictional shear stress, for the ZnO/SiO2 and ZnO/SiN nanowire/substrate systems being measured were 1.05 ± 0.28 and 2.08 ± 0.33 MPa, respectively. The surface roughness and the Hamaker constant of SiO2 and SiN substrates had significant effect on the frictional stresses.

  2. Articulated Multimedia Physics, Lesson 13, Internal Energy, Heat, and Temperature.

    ERIC Educational Resources Information Center

    New York Inst. of Tech., Old Westbury.

    As the thirteenth lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide with relation to internal energy, heat, and temperature. The topics are concerned with collisions, thermometers, friction forces, degrees Centigrade and Fahrenheit, calories, Brownian motion, and state changes. The…

  3. Seminar on Education for International Understanding.

    ERIC Educational Resources Information Center

    Australian National Advisory Committee for Unesco, Canberra.

    This report presents three seminar papers and associated discussion session reports from the Adelaide seminar which focused on education as it relates to the advancement of international understanding. In the first paper, A. M. Thomas stressed the necessity for continuing cooperation among nations to solve problems of friction and poverty.…

  4. Effect of friction on vibrotactile sensation of normal and dehydrated skin.

    PubMed

    Chen, S; Ge, S; Tang, W; Zhang, J

    2016-02-01

    Vibrotactile sensation mediated is highly dependent on surface mechanical and frictional properties. Dehydration of skin could change these properties. To investigate the relationship between friction and vibrotactile sensation of normal and dehydrated skin. Vibrations were firstly measured during surface exploration using a biomimetic sensor. Piglet skin was used as human skin model to study frictional properties for both normal and dehydrated skin using an atomic force microscope on nanoscale and a pin-on-disk tribometer on macroscale. Effect of vibrational frequency on friction and vibrotactile perception was also observed on nano and macro scale for normal and dehydrated skin. The result indicated that dehydrated skin was less sensitive than normal skin. The coefficient of friction of dehydrated skin is smaller than that of normal skin on both nano and macro scale. The coefficient of friction increases as increasing scanning frequencies. There is a positive correlation between coefficient of friction and vibrotactile sensation on nanoscale and macroscale. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Multiscale physics of rubber-ice friction

    NASA Astrophysics Data System (ADS)

    Tuononen, Ari J.; Kriston, András; Persson, Bo

    2016-09-01

    Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

  6. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  7. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  8. Velocity Dependence of the Kinetic Friction of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre

    2010-03-01

    The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)

  9. Solid friction between soft filaments

    DOE PAGES

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less

  10. Estimating Fault Friction From Seismic Signals in the Laboratory

    NASA Astrophysics Data System (ADS)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; Ren, Christopher X.; Riviere, Jacques; Marone, Chris; Guyer, Robert A.; Johnson, Paul A.

    2018-02-01

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress and frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. These results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.

  11. Nonlinear shear wave interaction at a frictional interface: energy dissipation and generation of harmonics.

    PubMed

    Meziane, A; Norris, A N; Shuvalov, A L

    2011-10-01

    Analytical and numerical modeling of the nonlinear interaction of shear wave with a frictional interface is presented. The system studied is composed of two homogeneous and isotropic elastic solids, brought into frictional contact by remote normal compression. A shear wave, either time harmonic or a narrow band pulse, is incident normal to the interface and propagates through the contact. Two friction laws are considered and the influence on interface behavior is investigated: Coulomb's law with a constant friction coefficient and a slip-weakening friction law which involves static and dynamic friction coefficients. The relationship between the nonlinear harmonics and the dissipated energy, and the dependence on the contact dynamics (friction law, sliding, and tangential stress) and on the normal contact stress are examined in detail. The analytical and numerical results indicate universal type laws for the amplitude of the higher harmonics and for the dissipated energy, properly non-dimensionalized in terms of the pre-stress, the friction coefficient and the incident amplitude. The results suggest that measurements of higher harmonics can be used to quantify friction and dissipation effects of a sliding interface. © 2011 Acoustical Society of America

  12. Some effects of finite spatial resolution on skin friction measurements in turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Westphal, Russell V.

    1988-01-01

    The effects of finite spatial resolution often cause serious errors in measurements in turbulent boundary layers, with particularly large effects for measurements of fluctuating skin friction and velocities within the sublayer. However, classical analyses of finite spatial resolution effects have generally not accounted for the substantial inhomogeneity and anisotropy of near-wall turbulence. The present study has made use of results from recent computational simulations of wall-bounded turbulent flows to examine spatial resolution effects for measurements made at a wall using both single-sensor probes and those employing two sensing volumes in a V shape. Results are presented to show the effects of finite spatial resolution on a variety of quantitites deduced from the skin friction field.

  13. Deep Friction Massage Versus Steroid Injection in the Treatment of Lateral Epicondylitis.

    PubMed

    Yi, Rosemary; Bratchenko, Walter W; Tan, Virak

    2018-01-01

    The aim of the study was to determine the efficacy of deep friction massage in the treatment of lateral epicondylitis by comparing outcomes with a control group treated with splinting and therapy and with an experimental group receiving a local steroid injection. A randomized clinical trial was conducted to compare outcomes after recruitment of consecutive patients presenting with lateral epicondylitis. Patients were randomized to receive one of 3 treatments: group 1: splinting and stretching, group 2: a cortisone injection, or group 3: a lidocaine injection with deep friction massage. Pretreatment and posttreatment parameters of visual analog scale (VAS) pain ratings, Disabilities of the Arm, Shoulder and Hand (DASH) scores, and grip strength were measured. Outcomes were measured at early follow-up (6-12 weeks) and at 6-month follow-up. There was a significant improvement in VAS pain score in all treatment groups at early follow-up. DASH score and grip strength improved in the cortisone injection group and the deep friction massage group at early follow-up; these parameters did not improve in the splinting and stretching group. At 6-month follow-up, only patients in the deep friction massage group demonstrated a significant improvement in all outcome measures, including VAS pain score, DASH score, and grip strength. Deep friction massage is an effective treatment for lateral epicondylitis and can be used in patients who have failed other nonoperative treatments, including cortisone injection.

  14. Effect of the vertical position of the canine on the frictional/orthodontic force ratio of Ni-Ti archwires during the levelling phase of orthodontic treatment.

    PubMed

    Kato, Moeko; Namura, Yasuhiro; Yoneyama, Takayuki; Shimizu, Noriyoshi

    2018-05-31

    This study investigated the effect of the vertical position of the canine on changes in the frictional/orthodontic (F/O) force ratio of nickel-titanium (Ni-Ti) archwires during the initial levelling phase of orthodontic treatment. Frictional and orthodontic forces were measured by using low-friction brackets and Ni-Ti archwires with three different cross-sectional sizes and force types. To simulate canine malocclusion (first premolar extraction case), the upper right canine was displaced gingivally by 1 to 3 mm and the inter-bracket distance between the upper right lateral incisor and second premolar was set at 15 mm or 20 mm. A three-point bending test was performed to measure the orthodontic force of each Ni-Ti archwire. Frictional forces were measured with a universal testing machine and dental arch models by pulling parallel to the end of the archwire at a crosshead speed of 0.5 mm/min. F/O force ratio was calculated and analysed statistically. At a displacement of 3 mm, few archwires had F/O force ratios of less than 1.0, at which orthodontic force overcame frictional force, thus ensuring extrusion of the canine. For effective tooth movement, orthodontists should use Ni-Ti archwires with an F/O force ratio of less than 1.0.

  15. Laser interferometer skin-friction measurements of crossing-shock-wave/turbulent-boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.; Narayanswami, N.; Knight, D. D.

    1994-01-01

    Wall shear stress measurements beneath crossing-shock-wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 deg at Mach 3 and 15 deg at Mach 3.85. The measurements were made using a laser interferometer skin-friction meter, a device that determines the wall shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin-friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction center line. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k-epsilon model, are compared with the experimental results for the Mach 3.85, 15-deg interaction case. Although the k-epsilon model did a reasonable job of predicting the overall trend in portions of the skin-friction distribution, neither computation fully captured the physics of the near-surface flow in this complex interaction.

  16. Laser Interferometer Skin-Friction measurements of crossing-shock wave/turbulent boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Garrison, T. J.; Settles, G. S.

    1993-01-01

    Wall shear stress measurements beneath crossingshock wave/turbulent boundary-layer interactions have been made for three interactions of different strengths. The interactions are generated by two sharp fins at symmetric angles of attack mounted on a flat plate. The shear stress measurements were made for fin angles of 7 and 11 degrees at Mach 3 and 15 degrees at Mach 4. The measurements were made using a Laser Interferometer Skin Friction (LISF) meter; a device which determines the wail shear by optically measuring the time rate of thinning of an oil film placed on the test model surface. Results of the measurements reveal high skin friction coefficients in the vicinity of the fin/plate junction and the presence of quasi-two-dimensional flow separation on the interaction centerline. Additionally, two Navier-Stokes computations, one using a Baldwin-Lomax turbulence model and one using a k- model, are compared to the experimental results for the Mach 4, 15 degree interaction case. While the k- model did a reasonable job of predicting the overall trend in portions of the skin friction distribution, neither computation fully captured the physics of the near surface flow in this complex interaction.

  17. Friction coefficient and effective interference at the implant-bone interface.

    PubMed

    Damm, Niklas B; Morlock, Michael M; Bishop, Nicholas E

    2015-09-18

    Although the contact pressure increases during implantation of a wedge-shaped implant, friction coefficients tend to be measured under constant contact pressure, as endorsed in standard procedures. Abrasion and plastic deformation of the bone during implantation are rarely reported, although they define the effective interference, by reducing the nominal interference between implant and bone cavity. In this study radial forces were analysed during simulated implantation and explantation of angled porous and polished implant surfaces against trabecular bone specimens, to determine the corresponding friction coefficients. Permanent deformation was also analysed to determine the effective interference after implantation. For the most porous surface tested, the friction coefficient initially increased with increasing normal contact stress during implantation and then decreased at higher contact stresses. For a less porous surface, the friction coefficient increased continually with normal contact stress during implantation but did not reach the peak magnitude measured for the rougher surface. Friction coefficients for the polished surface were independent of normal contact stress and much lower than for the porous surfaces. Friction coefficients were slightly lower for pull-out than for push-in for the porous surfaces but not for the polished surface. The effective interference was as little as 30% of the nominal interference for the porous surfaces. The determined variation in friction coefficient with radial contact force, as well as the loss of interference during implantation will enable a more accurate representation of implant press-fitting for simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions

    PubMed Central

    Tuononen, Ari J.

    2016-01-01

    Rubber friction is critical in many applications ranging from automotive tyres to cylinder seals. The process where a static rubber sample transitions to frictional sliding is particularly poorly understood. The experimental and simulation results in this paper show a completely different detachment process from the static situation to sliding motion under dry and lubricated conditions. The results underline the contribution of the rubber bulk properties to the static friction force. In fact, simple Amontons’ law is sufficient as a local friction law to produce the correct detachment pattern when the rubber material and loading conditions are modelled properly. Simulations show that micro-sliding due to vertical loading can release initial shear stresses and lead to a high static/dynamic friction coefficient ratio, as observed in the measurements. PMID:27291939

  19. Frictional properties of the end-grafted polymer layer in presence of salt solution

    NASA Astrophysics Data System (ADS)

    Raftari, Maryam; Zhang, Zhenyu; Leggett, Graham J.; Geoghegan, Mark

    2012-02-01

    We have studied the frictional behaviour of grafted poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) films using friction force microscopy (FFM). The films were prepared on native oxide-terminated silicon substrates using the technique of atom transfer radical polymerization (ATRP). These brushes had constant grafting density (1.18 nm2), and of a thickness of ˜66 nm, as measured by ellipsometry. We show that single asperity contact mechanics (Johnson-Kendall-Roberts (JKR) and Derjaguin-M"uller-Toporov (DMT) models) as well as a linear (Amontons) relation between applied load and frictional load all apply to these systems depending on the concentration of salt and the nature of the FFM probe. Measurements were made using gold-coating and polymer functionalized silicon nitride triangular probes. Polymer functionalized probe included growth the PDMAEMA with same method on tips. The frictional behaviour are investigated between PDMAEMA and gold coated and PDMAEMA tips immersed in different concentrations of KCl, KBr and KI.

  20. Application of a laser interferometer skin-friction meter in complex flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Driver, D. M.; Szodruch, J.

    1981-01-01

    The application of a nonintrusive laser-interferometer skin-friction meter, which measures skin friction with a remotely located laser interferometer that monitors the thickness change of a thin oil film, is extended both experimentally and theoretically to several complex wind-tunnel flows. These include two-dimensional seperated and reattached subsonic flows with large pressure and shear gradients, and two and three-dimensional supersonic flows at high Reynolds number, which include variable wall temperatures and cross-flows. In addition, it is found that the instrument can provide an accurate location of the mean reattachment length for separated flows. Results show that levels up to 120 N/sq m, or 40 times higher than previous tests, can be obtained, despite encountering some limits to the method for very high skin-friction levels. It is concluded that these results establish the utility of this instrument for measuring skin friction in a wide variety of flows of interest in aerodynamic testing.

  1. Subdigital setae of chameleon feet: Friction-enhancing microstructures for a wide range of substrate roughness

    PubMed Central

    Spinner, Marlene; Westhoff, Guido; Gorb, Stanislav N.

    2014-01-01

    Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion. PMID:24970387

  2. Frictional conditions between alloy AA6060 aluminium and tool steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wideroee, Fredrik; Welo, Torgeir

    The frictional conditions in the new process of screw extrusion of aluminium have been investigated. The contact behaviour between the aluminum alloy and the tool steel in the extruder is vital for understanding the extrusion process. Using a compressive-rotational method for frictional measurements the conditions for unlubricated sticking friction between aluminum alloy AA6060 and tool steel at different combinations of temperatures and pressures have been investigated. In this method the samples in the form of disks are put under hydrostatic pressure while simultaneously being rotated at one end. Pins made from contrast material have been inserted into the samples tomore » measure the deformation introduced. This approach along with 3D simulations form a method for determining the frictional conditions. The paper describes the test method and the results. It was found that the necessary pressure for sticking to occur between the aluminum AA6060 and the different parts of the extruder is heavily influenced by the temperature.« less

  3. Force measurement-based discontinuity detection during friction stir welding

    DOE PAGES

    Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.; ...

    2017-02-23

    Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less

  4. Force measurement-based discontinuity detection during friction stir welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Amber; Zinn, Michael; Duffie, Neil A.

    Here, the objective of this work is to develop a method for detecting the creation of discontinuities ( i.e., voids, volume defects) during friction stir welding. Friction stir welding is inherently cost effective, however, the need for significant weld inspection can make the process cost prohibitive. A new approach to weld inspection is required in which an in situ characterization of weld quality can be obtained, reducing the need for postprocess inspection. To this end, friction stir welds with subsurface voids and without voids were created. The subsurface voids were generated by reducing the friction stir tool rotation frequency andmore » increasing the tool traverse speed in order to create “colder” welds. Process forces were measured during welding, and the void sizes were measured postprocess by computerized tomography ( i.e., 3D X-ray imaging). Two parameters, based on frequency domain content and time-domain average of the force signals, were found to be correlated with void size. Criteria for subsurface void detection and size prediction were developed and shown to be in good agreement with experimental observations. Furthermore, with the proper choice of data acquisition system and frequency analyzer the occurrence of subsurface voids can be detected in real time.« less

  5. Depth-dependent resistance of granular media to vertical penetration.

    PubMed

    Brzinski, T A; Mayor, P; Durian, D J

    2013-10-18

    We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity rather than by the motion of the intruder itself. Lastly, by measuring the final penetration depth versus airspeed and using an earlier result for inertial drag, we demonstrate that the same quasistatic friction force acts during impact. Altogether this force is set by a friction coefficient, hydrostatic pressure, projectile size and shape, and a dimensionless proportionality constant. The latter is the same in nearly all experiments, and is surprisingly greater than one.

  6. Skin friction reduction in supersonic flow by injection through slots, porous sections and combinations of the two

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Vanovereem, J.

    1975-01-01

    An experimental study of skin friction reduction in a Mach 3.0 air steam with gaseous injection through a tangential slot, a porous wall section, and combinations of the two was conducted. The primary data obtained were wall shear values measured directly with a floating element balance and also inferred from Preston Tube measurements. Detailed profiles at several axial stations, wall pressure distributions and schlieren photographs are presented. The data indicate that a slot provides the greatest skin friction reduction in comparison with a reference flat plate experiment. The porous wall section arrangement suffers from an apparent roughness-induced rise in skin friction at low injection rates compared to the flat plate. The combination schemes demonstrated a potential for gain.

  7. The effects of silver coating on friction coefficient and shear bond strength of steel orthodontic brackets.

    PubMed

    Arash, Valiollah; Anoush, Keivan; Rabiee, Sayed Mahmood; Rahmatei, Manuchehr; Tavanafar, Saeid

    2015-01-01

    Aims of the present study was to measure frictional resistance between silver coated brackets and different types of arch wires, and shear bond strength of these brackets to the tooth. In an experimental clinical research 28 orthodontic brackets (standard, 22 slots) were coated with silver ions using electroplate method. Six brackets (coated: 3, uncoated: 3) were evaluated with Scanning Electron Microscopy and Atomic Force Microscopy. The amount of friction in 15 coated brackets was measured with three different kinds of arch wires (0.019 × 0.025-in stainless steel [SS], 0.018-in stainless steel [SS], 0.018-in Nickel-Titanium [Ni-Ti]) and compared with 15 uncoated steel brackets. In addition, shear bond strength values were compared between 10 brackets with silver coating and 10 regular brackets. Universal testing machine was used to measure shear bond strength and the amount of friction between the wires and brackets. SPSS 18 was used for data analysis with t-test. SEM and AFM results showed deposition of a uniform layer of silver, measuring 8-10 μm in thickness on bracket surfaces. Silver coating led to higher frictional forces in all the three types of arch wires, which was statistically significant in 0.019 × 0.025-in SS and 0.018-in Ni-Ti, but it did not change the shear bond strength significantly. Silver coating with electroplating method did not affect the bond strength of the bracket to enamel; in addition, it was not an effective method for decreasing friction in sliding mechanics. © Wiley Periodicals, Inc.

  8. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE PAGES

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; ...

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  9. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata

    PubMed Central

    Han, C. J.

    2015-01-01

    This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines. PMID:26103460

  10. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  11. Soil classification based on cone penetration test (CPT) data in Western Central Java

    NASA Astrophysics Data System (ADS)

    Apriyono, Arwan; Yanto, Santoso, Purwanto Bekti; Sumiyanto

    2018-03-01

    This study presents a modified friction ratio range for soil classification i.e. gravel, sand, silt & clay and peat, using CPT data in Western Central Java. The CPT data was obtained solely from Soil Mechanic Laboratory of Jenderal Soedirman University that covers more than 300 sites within the study area. About 197 data were produced from data filtering process. IDW method was employed to interpolated friction ratio values in a regular grid point for soil classification map generation. Soil classification map was generated and presented using QGIS software. In addition, soil classification map with respect to modified friction ratio range was validated using 10% of total measurements. The result shows that silt and clay dominate soil type in the study area, which is in agreement with two popular methods namely Begemann and Vos. However, the modified friction ratio range produces 85% similarity with laboratory measurements whereby Begemann and Vos method yields 70% similarity. In addition, modified friction ratio range can effectively distinguish fine and coarse grains, thus useful for soil classification and subsequently for landslide analysis. Therefore, modified friction ratio range proposed in this study can be used to identify soil type for mountainous tropical region.

  12. Investigation of the effect of wall friction on the flow rate in 2D and 3D Granular Flow

    NASA Astrophysics Data System (ADS)

    Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Birwa, Sumit; Shah, Neil; Tewari, Shubha

    We have measured the mass flow rate of spherical steel spheres under gravity in vertical, straight-walled 2 and 3-dimensional hoppers, where the flow velocity is controlled by the opening size. Our measurements focus on the role of friction and its placement along the walls of the hopper. In the 2D case, an increase in the coefficient of static friction from μ = 0.2 to 0.6 is seen to decrease the flow rate significantly. We have changed the placement of frictional boundaries/regions from the front and back walls of the 2D hopper to the side walls and floor to investigate the relative importance of the different regions in determining the flow rate. Fits to the Beverloo equation show significant departure from the expected exponent of 1.5 in the case of 2D flow. In contrast, 3D flow rates do not show much dependence on wall friction and its placement. We compare the experimental data to numerical simulations of gravity driven hopper granular flow with varying frictional walls constructed using LAMMPS*. *http://lammps.sandia.gov Supported by NSF MRSEC DMR 0820506.

  13. Development and Testing of a Friction-Based Post-Installable Fiber-Optic Monitoring System for Subsea Applications

    NASA Technical Reports Server (NTRS)

    Bentley, Nicole L.; Brower, David V.; Le, Suy Q.; Seaman, Calvin H.; Tang, Henry H.

    2017-01-01

    This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system capable of measuring pressure, strain, and temperature that can be deployed on existing subsea structures. A summary is provided of the design concept, prototype development, prototype performance testing, and subsequent design refinements of the device. The results of laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are also included. Limitations of the initial concept were identified during testing and future design improvements were proposed and later implemented. These new features enhance the coupling of the sensor device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on flowlines, risers, and other subsea structures. The work described in this paper investigates the design and test of a friction-based coupling device (herein referred to as a friction clamp) which is suitable for pipelines and structures that are suspended in the water column as well as for those that are resting on the seabed. The monitoring elements consist of fiberoptic sensors that are bonded to a stainless steel clamshell assembly with a high-friction surface coating. The friction clamp incorporates a single hinge design to facilitate installation of the clamp and dual rows of opposing fasteners to distribute the clamping force along the structure. The friction clamp can be modified to be installed by commercial divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance technologies that will benefit the environment, the public, and commercial industries.

  14. Progressive friction mobilization and enhanced Janssen's screening in confined granular rafts

    NASA Astrophysics Data System (ADS)

    Saavedra V., Oscar; Elettro, Hervé; Melo, Francisco

    2018-04-01

    Confined two-dimensional assemblies of floating particles, known as granular rafts, are prone to develop a highly nonlinear response under compression. Here we investigate the transition to the friction-dominated jammed state and map the gradual development of the internal stress profile with flexible pressure sensors distributed along the raft surface. Surprisingly, we observe that the surface stress screening builds up much more slowly than previously thought and that the typical screening distance later dramatically decreases. We explain this behavior in terms of progressive friction mobilization, where the full amplitude of the frictional forces is only reached after a macroscopic local displacement. At further stages of compression, rafts of large length-to-width aspect ratio experience much stronger screenings than the full mobilization limit described by the Janssen's model. We solve this paradox using a simple mathematical analysis and show that such enhanced screening can be attributed to a localized compaction front, essentially shielding the far field from compressive stresses.

  15. Meniscus formation in a capillary and the role of contact line friction.

    PubMed

    Andrukh, Taras; Monaenkova, Daria; Rubin, Binyamin; Lee, Wah-Keat; Kornev, Konstantin G

    2014-01-28

    We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 μm to 350 μm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.

  16. Self-Lubricating, Wear-Resistant Diamond Films Developed for Use in Vacuum Environment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Diamond's outstanding properties--extreme hardness, chemical and thermal inertness, and high strength and rigidity--make it an ideal material for many tribological applications, such as the bearings, valves, and engine parts in the harsh environment found in internal-combustion engines, jet engines, and space propulsion systems. It has been demonstrated that chemical-vapor-deposited diamond films have low coefficients of friction (on the order of 0.01) and low wear rates (less than 10(sup -7) mm (sup 3/N-m)) both in humid air and dry nitrogen but that they have both high coefficients of friction (greater than 0.4) and high wear rates (on the order of 1(sup -4) mm sup 3/N-m)) in vacuum. It is clear that surface modifications that provide acceptable levels of friction and wear properties will be necessary before diamond films can be used for tribological applications in a space-like, vacuum environment. Previously, it was found that coatings of amorphous, non-diamond carbon can provide low friction in vacuum. Therefore, to reduce the friction and wear of diamond film in vacuum, carbon ions were implanted in an attempt to form a surface layer of amorphous carbon phases on the diamond films.

  17. Scalar model for frictional precursors dynamics

    PubMed Central

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-01-01

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective. PMID:25640079

  18. Scalar model for frictional precursors dynamics.

    PubMed

    Taloni, Alessandro; Benassi, Andrea; Sandfeld, Stefan; Zapperi, Stefano

    2015-02-02

    Recent experiments indicate that frictional sliding occurs by nucleation of detachment fronts at the contact interface that may appear well before the onset of global sliding. This intriguing precursory activity is not accounted for by traditional friction theories but is extremely important for friction dominated geophysical phenomena as earthquakes, landslides or avalanches. Here we simulate the onset of slip of a three dimensional elastic body resting on a surface and show that experimentally observed frictional precursors depend in a complex non-universal way on the sample geometry and loading conditions. Our model satisfies Archard's law and Amontons' first and second laws, reproducing with remarkable precision the real contact area dynamics, the precursors' envelope dynamics prior to sliding, and the normal and shear internal stress distributions close to the interfacial surface. Moreover, it allows to assess which features can be attributed to the elastic equilibrium, and which are attributed to the out-of-equilibrium dynamics, suggesting that precursory activity is an intrinsically quasi-static physical process. A direct calculation of the evolution of the Coulomb stress before and during precursors nucleation shows large variations across the sample, explaining why earthquake forecasting methods based only on accumulated slip and Coulomb stress monitoring are often ineffective.

  19. Demonstration of a Large-Scale Tank Assembly via Circumferential Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.; Adams, Glynn; Colligan, Kevin

    2000-01-01

    A collaborative effort between NASA/Marshall Space Flight Center and the Michoud Unit of Lockheed Martin Space Systems Company was undertaken to demonstrate assembly of a large-scale aluminum tank using circumferential friction stir welds. The hardware used to complete this demonstration was fabricated as a study of near-net- shape technologies. The tooling used to complete this demonstration was originally designed for assembly of a tank using fusion weld processes. This presentation describes the modifications and additions that were made to the existing fusion welding tools required to accommodate circumferential friction stir welding, as well as the process used to assemble the tank. The tooling modifications include design, fabrication and installation of several components. The most significant components include a friction stir weld unit with adjustable pin length capabilities, a continuous internal anvil for 'open' circumferential welds, a continuous closeout anvil, clamping systems, an external reaction system and the control system required to conduct the friction stir welds and integrate the operation of the tool. The demonstration was intended as a development task. The experience gained during each circumferential weld was applied to improve subsequent welds. Both constant and tapered thickness 14-foot diameter circumferential welds were successfully demonstrated.

  20. Development and Testing of a Friction-Based Post-Installable Sensor for Subsea Fiber-Optic Monitoring System

    NASA Technical Reports Server (NTRS)

    Bentley, Nicole L.; Brower, David V.; Le, Suy Q.; Seaman, Calvin H.; Tang, Henry H.

    2017-01-01

    This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology, Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance these technologies that would benefit the environment, the public, and commercial industries.

  1. Development and Testing of a Friction-Based Post-Installable Sensor for Subsea Fiber-Optic Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Bentley, Nicole; Brower, David; Le, Suy Q.; Seaman, Calvin; Tang, Henry

    2017-01-01

    This paper presents the design and development of a friction-based coupling device for a fiber-optic monitoring system that can be deployed on existing subsea structures. This paper provides a summary of the design concept, prototype development, prototype performance testing, and design refinements of the device. The results of the laboratory testing of the first prototype performed at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are included in this paper. Limitations of the initial design were identified and future design improvements were proposed. These new features will enhance the coupling of the device and improve the monitoring system measurement capabilities. A major challenge of a post-installed instrumentation monitoring system is to ensure adequate coupling between the instruments and the structure of interest for reliable measurements. Friction-based coupling devices have the potential to overcome coupling limitations caused by marine growth and soil contamination on subsea structures, flowlines or risers. The work described in this paper investigates the design of a friction-based coupling device (friction clamp), which is applicable for pipelines and structures that are suspended in the water column and those that are resting on the seabed. The monitoring elements consist of fiber-optic sensors that are bonded to a metal clamshell with a high-friction coating. The friction clamp has a single hinge design to facilitate the operation of the clamp and dual rows of opposing fasteners to distribute the clamping force on the structure. The friction clamp can be installed by divers in shallow depths or by remotely operated vehicles in deep-water applications. NASA-JSC was involved in the selection and testing of the friction coating, and in the design and testing of the prototype clamp device. Four-inch diameter and eight-inch diameter sub-scale friction clamp prototypes were built and tested to evaluate the strain measuring capabilities of the design under different loading scenarios. The testing revealed some limitations of the initial design concept, and subsequent refinements were explored to improve the measurement performance of the system. This study was part of a collaboration between NASA-JSC and Astro Technology, Inc. within a study called Clear Gulf. The primary objective of the Clear Gulf study is to develop advanced instrumentation technologies that will improve operational safety and reduce the risk of hydrocarbon spillage. NASA provided unique insights, expansive test facilities, and technical expertise to advance these technologies that would benefit the environment, the public, and commercial industries.

  2. Analysis of the NASA White Sands Test Facility (WSTF) Test System for Friction-Ignition of Metallic Materials

    NASA Technical Reports Server (NTRS)

    Shoffstall, Michael S.; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    Friction is a known ignition source for metals in oxygen-enriched atmospheres. The test system developed by the NASA White Sands Test Facility in response to ASTM G-94 has been used successfully to determine the relative ignition from friction of numerous metallic materials and metallic materials pairs. These results have been ranked in terms of a pressure-velocity product (PV) as measured under the prescribed test conditions. A high value of 4.1(exp 8) watts per square meter for Inconel MA 754 is used to imply resistance to friction ignition, whereas a low value of 1.04(exp 8) watts per square meter for stainless steel 304 is taken as indicating material susceptible to friction ignition. No attempt has been made to relate PV values to other material properties. This work reports the analysis of the WSTF friction-ignition test system for producing fundamental properties of metallic materials relating to ignition through friction. Three materials, aluminum, titanium, and nickel were tested in the WSTF frictional ignition instrument system under atmospheres of oxygen or nitrogen. Test conditions were modified to reach a steady state of operation, that is applied, the force was reduced and the rotational speed was reduced. Additional temperature measurements were made on the stator sample. The aluminum immediately galled on contact (reproducible) and the test was stopped. Titanium immediately ignited as a result of non-uniform contact of the stator and rotor. This was reproducible. A portion of the stator sampled burned, but the test continued. Temperature measurements on the stator were used to validate the mathematical model used for estimating the interface (stator/rotor) temperature. These interface temperature measurements and the associate thermal flux into the stator were used to distinguish material-phase transitions, chemical reaction, and mechanical work. The mechanical work was used to analyze surface asperities in the materials and to estimate a coefficient of fiction. The coefficient of fiction was analyzed in terms of material properties that is, hardness, Young's modulus and elasticity/plasticity of the material.

  3. Why Low Bounce Balls Exhibit High Rolling Resistance

    ERIC Educational Resources Information Center

    Cross, Rod

    2015-01-01

    A simple experiment is described to measure the coefficient of rolling friction for a low bounce ball rolling on a horizontal surface. As observed previously by others, the coefficient increased with rolling speed. The energy loss due to rolling friction can be explained in terms of the measured coefficient of restitution for the ball, meaning…

  4. A Real-Time Method for Estimating Viscous Forebody Drag Coefficients

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Hurtado, Marco; Rivera, Jose; Naughton, Jonathan W.

    2000-01-01

    This paper develops a real-time method based on the law of the wake for estimating forebody skin-friction coefficients. The incompressible law-of-the-wake equations are numerically integrated across the boundary layer depth to develop an engineering model that relates longitudinally averaged skin-friction coefficients to local boundary layer thickness. Solutions applicable to smooth surfaces with pressure gradients and rough surfaces with negligible pressure gradients are presented. Model accuracy is evaluated by comparing model predictions with previously measured flight data. This integral law procedure is beneficial in that skin-friction coefficients can be indirectly evaluated in real-time using a single boundary layer height measurement. In this concept a reference pitot probe is inserted into the flow, well above the anticipated maximum thickness of the local boundary layer. Another probe is servomechanism-driven and floats within the boundary layer. A controller regulates the position of the floating probe. The measured servomechanism position of this second probe provides an indirect measurement of both local and longitudinally averaged skin friction. Simulation results showing the performance of the control law for a noisy boundary layer are then presented.

  5. Determination of oral mucosal Poisson's ratio and coefficient of friction from in-vivo contact pressure measurements.

    PubMed

    Chen, Junning; Suenaga, Hanako; Hogg, Michael; Li, Wei; Swain, Michael; Li, Qing

    2016-01-01

    Despite their considerable importance to biomechanics, there are no existing methods available to directly measure apparent Poisson's ratio and friction coefficient of oral mucosa. This study aimed to develop an inverse procedure to determine these two biomechanical parameters by utilizing in vivo experiment of contact pressure between partial denture and beneath mucosa through nonlinear finite element (FE) analysis and surrogate response surface (RS) modelling technique. First, the in vivo denture-mucosa contact pressure was measured by a tactile electronic sensing sheet. Second, a 3D FE model was constructed based on the patient CT images. Third, a range of apparent Poisson's ratios and the coefficients of friction from literature was considered as the design variables in a series of FE runs for constructing a RS surrogate model. Finally, the discrepancy between computed in silico and measured in vivo results was minimized to identify the best matching Poisson's ratio and coefficient of friction. The established non-invasive methodology was demonstrated effective to identify such biomechanical parameters of oral mucosa and can be potentially used for determining the biomaterial properties of other soft biological tissues.

  6. An exact closed form solution for constant area compressible flow with friction and heat transfer

    NASA Technical Reports Server (NTRS)

    Sturas, J. I.

    1971-01-01

    The well-known differential equation for the one-dimensional flow of a compressible fluid with heat transfer and wall friction has no known solution in closed form for the general case. This report presents a closed form solution for the special case of constant heat flux per unit length and constant specific heat. The solution was obtained by choosing the square of a dimensionless flow parameter as one of the independent variables to describe the flow. From this exact solution, an approximate simplified form is derived that is applicable for predicting subsonic flow performance characteristics for many types of constant area passages in internal flow. The data included in this report are considered sufficiently accurate for use as a guide in analyzing and designing internal gas flow systems.

  7. Impact of formulation and saliva on acid milk gel friction behavior.

    PubMed

    Joyner Melito, Helen S; Pernell, Chris W; Daubert, Christopher R

    2014-05-01

    Rheological analysis is commonly used to evaluate mechanical properties in studies of food behavior. However, rheological analysis is often insufficient to describe food texture as evaluated by descriptive sensory analysis. Additionally, traditional rheometry does not account for changes in food behavior as a function of saliva incorporation into the food during mastication. The objectives of this study were to evaluate friction behavior of acid milk gels with and without the addition of saliva, and to determine relationships between frictional behaviors and mechanical and sensory behaviors. Acid milk gels were prepared with 12.5% total solids comprising nonfat dry milk, whey protein isolate, waxy maize starch, and gelatin in different ratios. The addition of starch was found to have significant impact on acid milk gel frictional behavior. Addition of saliva resulted in a change in frictional behavior over the entire sliding speed range measured. Correlations were found between rheological, tribological, and sensory behavior, suggesting that an underlying mechanism may impact both viscosity and friction behavior. Additional study is needed to further explore the links between food structure, rheology, tribology, and sensory texture. Application of tribology in food science allows measurement of friction behavior of foods. Matching both rheological and tribological behavior is important to creating reduced-fat or reduced-sugar products with similar mouthfeel to the original product. © 2014 Institute of Food Technologists®

  8. The tribology of rosin

    NASA Astrophysics Data System (ADS)

    Smith, J. H.; Woodhouse, J.

    2000-08-01

    Rosin is well known for its ability to excite stick-slip vibration on a violin string but the precise characteristics of the material which enable it to exhibit this behaviour have not been studied in any detail. A method is described in which the coefficient of friction of rosin is measured during individual cycles of a stick-slip vibration. Friction versus sliding velocity characteristics deduced in this way exhibit hysteresis, similar to that found in other investigations using different materials. No part of the hysteresis loops follow the friction/velocity curve found from steady-sliding experiments. Possible constitutive laws are examined to describe this frictional behaviour. It is suggested by a variety of evidence that contact temperature plays an important role. Friction laws are developed by considering that the friction arises primarily from the shear of a softened or molten layer of rosin, with a temperature-dependent viscosity or shear strength. The temperature of the rosin layer is calculated by modelling the heat flow around the sliding contact. The temperature-based models are shown to reproduce some features of the measurements which are not captured in the traditional model, in which friction depends only on sliding speed. A model based on viscous behaviour of a thin melted layer of rosin gives predictions at variance with observations. However, a model based on plastic yielding at the surface of the rosin gives good agreement with these observations.

  9. Morphology and frictional properties of scales of Pseudopus apodus (Anguidae, Reptilia).

    PubMed

    Spinner, Marlene; Bleckmann, Horst; Westhoff, Guido

    2015-06-01

    In the lizard family Anguidae different levels of limb reduction exist up to a completely limbless body. The locomotion patterns of limbless anguid lizards are similar to the undulating and concertina movements of snakes. Additionally, anguid lizards frequently use a third mode of locomotion, called slide-pushing. During slide-pushing the undulating moving body slides on the ground, while the posterior part of the body is pressed against the substrate. Whereas the macroscopic and microscopic adaptations of snake scales to limbless locomotion are well described, the micromorphology of anguid lizard scales has never been examined. Therefore we studied the macro- and micromorphology of the scales of Pseudopus apodus, an anguid lizard with a snakelike body. In addition, we measured the frictional properties of Pseudopus scales. Our data show that the microstructures of the ventral scales of this anguid lizard are less developed than in snakes. We found, however, a rostro-caudal gradient in macroscopic structuring. Whereas the ventral side of the anterior body was nearly unstructured, the tail had macroscopic longitudinal ridges. Our frictional measurements on rough substrates revealed that the ridges provide a frictional anisotropy: friction was higher in the lateral than in the rostral direction. The observed frictional properties are advantageous for a tail-based slide-pushing locomotion, for which a tail with a high lateral friction is most effective in generating propulsion. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. On the role of electronic friction for dissociative adsorption and scattering of hydrogen molecules at a Ru(0001) surface.

    PubMed

    Füchsel, Gernot; Schimka, Selina; Saalfrank, Peter

    2013-09-12

    The role of electronic friction and, more generally, of nonadiabatic effects during dynamical processes at the gas/metal surface interface is still a matter of discussion. In particular, it is not clear if electronic nonadiabaticity has an effect under "mild" conditions, when molecules in low rovibrational states interact with a metal surface. In this paper, we investigate the role of electronic friction on the dissociative sticking and (inelastic) scattering of vibrationally and rotationally cold H2 molecules at a Ru(0001) surface theoretically. For this purpose, classical molecular dynamics with electronic friction (MDEF) calculations are performed and compared to MD simulations without friction. The two H atoms move on a six-dimensional potential energy surface generated from gradient-corrected density functional theory (DFT), that is, all molecular degrees of freedom are accounted for. Electronic friction is included via atomic friction coefficients obtained from an embedded atom, free electron gas (FEG) model, with embedding densities taken from gradient-corrected DFT. We find that within this model, dissociative sticking probabilities as a function of impact kinetic energies and impact angles are hardly affected by nonadiabatic effects. If one accounts for a possibly enhanced electronic friction near the dissociation barrier, on the other hand, reduced sticking probabilities are observed, in particular, at high impact energies. Further, there is always an influence on inelastic scattering, in particular, as far as the translational and internal energy distribution of the reflected molecules is concerned. Additionally, our results shed light on the role played by the velocity distribution of the incident molecular beam for adsorption probabilities, where, in particular, at higher impact energies, large effects are found.

  11. Cross-Cultural "Distance", "Friction" and "Flow": Exploring the Experiences of Pre-Service Teachers on International Practicum

    ERIC Educational Resources Information Center

    Uusimaki, Liisa; Swirski, Teresa

    2016-01-01

    The focus of this paper is to illustrate Australian regional pre-service teachers' perceptions of an international practicum: their cross-cultural understanding, notions of privilege and teacher/professional identity development. Findings indicate that there were three overlapping dimensions of cross-cultural understanding for pre-service…

  12. Computations for the 16-foot transonic tunnel, NASA, Langley Research Center, revision 1

    NASA Technical Reports Server (NTRS)

    Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; Grayston, Alan M.; Sherman, C. D.

    1987-01-01

    The equations used by the 16 foot transonic tunnel in the data reduction programs are presented in eight modules. Each module consists of equations necessary to achieve a specific purpose. These modules are categorized in the following groups: tunnel parameters; jet exhaust measurements; skin friction drag; balance loads and model attitudes calculations; internal drag (or exit-flow distributions); pressure coefficients and integrated forces; thrust removal options; and turboprop options. This document is a companion document to NASA TM-83186, A User's Guide to the Langley 16 Foot Transonic Tunnel, August 1981.

  13. A nonintrusive laser interferometer method for measurement of skin friction

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1982-01-01

    A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows.

  14. Friction, wear, and noise of slip ring and brush contacts for synchronous satellite use.

    NASA Technical Reports Server (NTRS)

    Lewis, N. E.; Cole, S. R.; Glossbrenner, E. W.; Vest, C. E.

    1973-01-01

    A program is being conducted for testing of slip rings for synchronous orbit application. Instrumentation systems necessary for monitoring electrical noise, friction, and brush wear at atmospheric pressure and at less than 50 nanotorr have been developed. A multiplex scheme necessary for the simultaneous recording of brush displacement, friction, and electrical noise has also been developed. Composite brushes consisting of silver-molybdenum disulfide-graphite and silver-niobium diselenide-graphite have been employed on rings of coin silver and rhodium plate. Brush property measurements made included measurement of density, electrical resistivity, shear strength, and microstructure.

  15. A Micro-Electrochemical Study of Friction Stir Welded Aluminum 6061-T6

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz M.

    2005-01-01

    The corrosion behavior of friction stir welded Aluminum alloy 606 1-T6 was studied using a micro-electrochemical cell. The micro-electrochemical cell has a measurement area of about 0.25 square mm which allows for measurement of corrosion properties at a very small scale. The corrosion and breakdown potentials were measured at many points inside and outside the weld along lines perpendicular to the weld. The breakdown potential is approximately equal inside and outside the weld; however, it is lower in the narrow border between the weld and base material. The results of electrochemical measurements were correlated to micro-structural analysis. The corrosion behavior of the friction stir welded samples was compared to tungsten inert gas (TIG) welded samples of the same material.

  16. Frictional stability-permeability relationships for fractures in shales: Friction-Permeability Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO 2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS).more » We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.« less

  17. Frictional stability-permeability relationships for fractures in shales

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  18. Frictional properties of single crystals HMX, RDX and PETN explosives.

    PubMed

    Wu, Y Q; Huang, F L

    2010-11-15

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The XPS depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Friction properties were measured with a gold film; the graded interface between gold and nickel substrate; and the nickel substrate. All sliding was conducted against hard silicon carbide pins in two processes. In the adhesive process, friction arises primarily from adhesion between sliding surfaces. In the abrasion process, friction occurs as a result of the hard pin sliding against the film, indenting into it, and plowing a series of grooves. Copper and 440 C stainless steel substrates were also used. Results indicate that the friction related to both adhesion and abrasion is influenced by coating depth. The trends in friction behavior as a function of film depth are, however, just the opposite. The graded interface exhibited the highest adhesion and friction, while the graded interface resulted in the lowest abrasion and friction. The coefficient of friction due to abrasion is inversely related to the hardness. The greater the hardness of the surface, the lower is the abrasion and friction. The microhardness in the graded interface exhibited the highest hardness due to an alloy hardening effect. Almost no graded interface between the vapor-deposited gold film and the substrates was detected.

  20. Effect of blocking tactile information from the fingertips on adaptation and execution of grip forces to friction at the grasping surface.

    PubMed

    Bilaloglu, Seda; Lu, Ying; Geller, Daniel; Rizzo, John Ross; Aluru, Viswanath; Gardner, Esther P; Raghavan, Preeti

    2016-03-01

    Adaptation of fingertip forces to friction at the grasping surface is necessary to prevent use of inadequate or excessive grip forces. In the current study we investigated the effect of blocking tactile information from the fingertips noninvasively on the adaptation and efficiency of grip forces to surface friction during precision grasp. Ten neurologically intact subjects grasped and lifted an instrumented grip device with 18 different frictional surfaces under three conditions: with bare hands or with a thin layer of plastic (Tegaderm) or an additional layer of foam affixed to the fingertips. The coefficient of friction at the finger-object interface of each surface was obtained for each subject with bare hands and Tegaderm by measuring the slip ratio (grip force/load force) at the moment of slip. We found that the foam layer reduced sensibility for two-point discrimination and pressure sensitivity at the fingertips, but Tegaderm did not. However, Tegaderm reduced static, but not dynamic, tactile discrimination. Adaptation of fingertip grip forces to surface friction measured by the rate of change of peak grip force, and grip force efficiency measured by the grip-load force ratio at lift, showed a proportional relationship with bare hands but were impaired with Tegaderm and foam. Activation of muscles engaged in precision grip also varied with the frictional surface with bare hands but not with Tegaderm and foam. The results suggest that sensitivity for static tactile discrimination is necessary for feedforward and feedback control of grip forces and for adaptive modulation of muscle activity during precision grasp. Copyright © 2016 the American Physiological Society.

  1. The Prediction of the Work of Friction Force on the Arbitrary Path

    ERIC Educational Resources Information Center

    Matehkolaee, Mehdi Jafari; Majidian, Kourosh

    2013-01-01

    In this paper we have calculated the work of friction force on the arbitrary path. In our method didn't use from energy conservative conceptions any way. The distinction of this procedure is that at least do decrease measurement on the path once. Thus we can forecast the amount of work of friction force without information about speed of…

  2. Tire/runway friction interface

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  3. Influence of physico-chemical, mechanical and morphological fingerpad properties on the frictional distinction of sticky/slippery surfaces

    PubMed Central

    Cornuault, Pierre-Henri; Carpentier, Luc; Bueno, Marie-Ange; Cote, Jean-Marc; Monteil, Guy

    2015-01-01

    This study investigates how the fingerpad hydrolipid film, shape, roughness and rigidity influence the friction when it rubs surfaces situated in the slippery psychophysical dimension. The studied counterparts comprised two ‘real’ (physical) surfaces and two ‘virtual’ surfaces. The latter were simulated with a tactile stimulator named STIMTAC. Thirteen women and 13 men rubbed their right forefingers against the different surfaces as their arms were displaced by a DC motor providing constant velocity and sliding distance. Tangential and normal forces were measured with a specific tribometer. The fingerpad hydrolipid film was characterized by Fourier transform infrared spectroscopy. The shape and roughness of fingers were extrapolated from replicas. Indentation measurements were carried out to determine fingerpad effective elastic modulus. A clear difference was observed between women and men in terms of friction behaviour. The concept of tactile frictional contrast (TFC) which was introduced quantifies an individual's propensity to distinguish two surfaces frictionally. The lipids/water ratio and water amount on the finger skin significantly influenced the TFC. A correlation was observed between the TFC and fingerpad roughness, i.e. the height of the fingerpad ridges. This is essentially owing to gender differences. A significant difference between men's and women's finger topography was also noted, because our results suggested that men have rougher fingers than women. The friction measurements did not correlate with the fingerpad curvature nor with the epidermal ridges' spatial period. PMID:26269232

  4. Friction behavior of ceramic injection-molded (CIM) brackets.

    PubMed

    Reimann, Susanne; Bourauel, Christoph; Weber, Anna; Dirk, Cornelius; Lietz, Thomas

    2016-07-01

    Bracket material, bracket design, archwire material, and ligature type are critical modifiers of friction behavior during archwire-guided movement of teeth. We designed this in vitro study to compare the friction losses of ceramic injection-molded (CIM) versus pressed-ceramic (PC) and metal injection-molded (MIM) brackets-used with different ligatures and archwires-during archwire-guided retraction of a canine. Nine bracket systems were compared, including five CIM (Clarity™ and Clarity™ ADVANCED, both by 3M Unitek; discovery(®) pearl by Dentaurum; Glam by Forestadent; InVu by TP Orthodontics), two PC (Inspire Ice by Ormco; Mystique by DENTSPLY GAC), and two MIM (discovery(®) and discovery(®) smart, both by Dentaurum) systems. All of these were combined with archwires made of either stainless steel or fiberglass-reinforced resin (remanium(®) ideal arch or Translucent pearl ideal arch, both by Dentaurum) and with elastic ligatures or uncoated or coated stainless steel (all by Dentaurum). Archwire-guided retraction of a canine was simulated with a force of 0.5 N in the orthodontic measurement and simulation system (OMSS). Friction loss was determined by subtracting the effective orthodontic forces from the applied forces. Based on five repeated measurements performed on five brackets each, weighted means were calculated and evaluated by analysis of variance and a Bonferroni post hoc test with a significance level of 0.05. Friction losses were significantly (p < 0.05) higher (58-79 versus 20-30 %) for the combinations involving the steel versus the resin archwire in conjunction with the elastic ligature. The uncoated steel ligatures were associated with the lowest friction losses with Clarity™ (13 %) and discovery(®) pearl (16 %) on the resin archwire and the highest friction losses with Clarity™ ADVANCED (53 %) and Mystique (63 %) on the steel archwire. The coated steel ligatures were associated with friction losses similar to the uncoated steel ligatures on the steel archwire. Regardless of ligature types, mild signs of abrasion were noted on the resin archwire. The lowest friction losses were measured with rounded ceramic brackets used with a stainless-steel ligature and the resin archwire. No critical difference to friction behavior was apparent between the various manufacturing technologies behind the bracket systems.

  5. Estimating Fault Friction From Seismic Signals in the Laboratory

    DOE PAGES

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.; ...

    2018-01-29

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress andmore » frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. Finally, these results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.« less

  6. Estimating Fault Friction From Seismic Signals in the Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouet-Leduc, Bertrand; Hulbert, Claudia; Bolton, David C.

    Nearly all aspects of earthquake rupture are controlled by the friction along the fault that progressively increases with tectonic forcing but in general cannot be directly measured. We show that fault friction can be determined at any time, from the continuous seismic signal. In a classic laboratory experiment of repeating earthquakes, we find that the seismic signal follows a specific pattern with respect to fault friction, allowing us to determine the fault's position within its failure cycle. Using machine learning, we show that instantaneous statistical characteristics of the seismic signal are a fingerprint of the fault zone shear stress andmore » frictional state. Further analysis of this fingerprint leads to a simple equation of state quantitatively relating the seismic signal power and the friction on the fault. Finally, these results show that fault zone frictional characteristics and the state of stress in the surroundings of the fault can be inferred from seismic waves, at least in the laboratory.« less

  7. Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions

    PubMed Central

    Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie

    2017-01-01

    The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening. PMID:28561032

  8. Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions.

    PubMed

    Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie

    2017-05-31

    The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening.

  9. Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds

    NASA Astrophysics Data System (ADS)

    Rajauria, Sukumar; Canchi, Sripathi V.; Schreck, Erhard; Marchon, Bruno

    2015-02-01

    The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5-10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.

  10. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  11. 49 CFR 173.308 - Lighters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., must be capable of withstanding, without leakage or rupture, an internal pressure of at least two times... plastic tray, a plastic, fiberboard or paperboard partition must be used to prevent friction between the...

  12. 49 CFR 173.308 - Lighters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., must be capable of withstanding, without leakage or rupture, an internal pressure of at least two times... plastic tray, a plastic, fiberboard or paperboard partition must be used to prevent friction between the...

  13. High Temperature Tribometer. Phase 1

    DTIC Science & Technology

    1989-06-01

    13 Figure 2.3.2 Setpoint and Gain Windows in FW.EXE ......... . Figure 2.4.1 Data-Flow Diagram for Data-Acquisition Module ..... .. 23 I Figure...mounted in a friction force measuring device. Optimally , material testing results should not be test machine sensitiye; but due to equipment variables...fixed. The friction force due to sliding should be continuously measured. This is optimally done in conjunction with the normal force measurement via

  14. On the relationship between forearc deformation, frictional properties and megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Cubas, Nadaya; Singh, Satish

    2014-05-01

    A better understanding of the relation between the structural geology and the morphology of forearc wedges with frictional properties could provide insights on earthquake mechanics. Therefore, we study, with simple mechanical analysis allowing for inverse studies, the three subduction zones that produced the major earthquakes of the 21st century : Central Chile (Maule 2010 Mw 8.8), NE Japan (Tohoku-Oki 2011 Mw 9.0) and Sumatra (Sumatra-Andaman 2004 Mw 9.1, Nias 2005 Mw 8.7). We first apply the critical taper theory that yields the effective friction of the subduction interface, the wedge internal friction and pore fluid pressure. We then apply the limit analysis approach to constrain variations of frictional properties along the megathrust from the location and style of forearc faulting. We show that seismic ruptures most often coincide with the mechanically stable part of the wedge whereas regions undergoing aseismic slip are at critical state, consistent with evidence for active deformation. In the rupture area, we found a low effective dynamic friction, probably reflecting strong dynamic weakening. Where no frontal rupture was observed, we obtain intermediate values of long-term effective friction along the frontal aseismic zone, implying hydrostatic pore pressure. On the contrary, where the rupture reached the seafloor (Tohoku-Oki earthquake, parts of the Sumatra-Andaman 2004 earthquake), a very low long-term effective friction and a high pore pressure are observed. The difference of properties of the frontal wedge might reflect differences in permeability. A lower permeability would enhance dynamic weakening and allow for frontal propagation of ruptures. We also show that spatial variations of frictional properties between aseismic and seismogenic zones can lead to the activation of splay faults. We also show that a high pore pressure along accretionary wedges can change the vergence of frontal thrusts. As a consequence, wedge morphology and deformation can be used to improve seismic and tsunamigenic risk assessment.

  15. Slipping and Tipping: Measuring Static Friction with a Straightedge

    ERIC Educational Resources Information Center

    Dietz, Eric; Aguilar, Isaac

    2012-01-01

    Following a discussion of forces, torques, and the conditions for static equilibrium, I tell my introductory mechanics class that I will show them how to measure the coefficient of static friction, us, between the surfaces of a block and the front bench using "nothing but a straightedge". After a few seconds of hushed anticipation, I nudge the…

  16. Friction-Testing Machine

    NASA Technical Reports Server (NTRS)

    Benz, F. J.; Dixon, D. S.; Shaw, R. C.

    1986-01-01

    Testing machine evaluates wear and ignition characteristics of materials in rubbing contact. Offers advantages over other laboratory methods of measuring wear because it simulates operating conditions under which material will actually be used. Machine used to determine wear characteristics, rank and select materials for service with such active oxidizers as oxygen, halogens, and oxides of nitrogen, measure wear characteristics, and determine coefficients of friction.

  17. Comparison of experiment with calculations using curvature-corrected zero and two equation turbulence models for a two-dimensional U-duct

    NASA Astrophysics Data System (ADS)

    Monson, D. J.; Seegmiller, H. L.; McConnaughey, P. K.

    1990-06-01

    In this paper experimental measurements are compared with Navier-Stokes calculations using seven different turbulence models for the internal flow in a two-dimensional U-duct. The configuration is representative of many internal flows of engineering interst that experience strong curvature. In an effort to improve agreement, this paper tests several versions of the two-equation k-epsilon turbulence model including the standard version, an extended version with a production range time scale, and a version that includes curvature time scales. Each is tested in its high and low Reynolds number formulations. Calculations using these new models and the original mixing length model are compared here with measurements of mean and turbulence velocities, static pressure and skin friction in the U-duct at two Reynolds numbers. The comparisons show that only the low Reynolds number version of the extended k-epsilon model does a reasonable job of predicting the important features of this flow at both Reynolds numbers tested.

  18. Development of High-Speed Copper Chemical Mechanical Polishing Slurry for Through Silicon Via Application Based on Friction Analysis Using Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko

    2011-05-01

    In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.

  19. Friction measurements in piston-cylinder apparatus using quartz-coesite reversible transition

    NASA Technical Reports Server (NTRS)

    Akella, J.

    1979-01-01

    The value of friction determined by monitoring piston displacement as a function of nominal pressure on compression and decompression cycles at 1273 K is compared with the friction value obtained by reversing the quartz-coesite transition at 1273 and 1073 K in a talc-glass-alsimag cell (Akella and Kennedy, 1971) and a low-friction salt cell (Mirwald et al., 1975). Quenching runs at 1273 K gave double values of friction of 0.25 GPa for the talc-glass-alsimag cell and 0.03 GPa for the salt cell. The piston-displacement technique gave somewhat higher values. Use of piston-displacement hysteresis loops in evaluating the actual pressure on a sample may lead to overestimates for decompression runs and underestimates for compression runs.

  20. Translational Dielectric Friction on a Chain of Charged Spheres

    PubMed Central

    Boughammoura, Sondès; M'halla, Jalel

    2014-01-01

    We have proved in details that the dielectric friction remains the principal frictional effect for a stretched polyion modeled as a chain of charged spheres, whereas, in the case of Manning's model (infinite thread with a continuous distribution of charge), this friction effect is nonexistent. According to this chain model, it is therefore possible to detect by conductivity measurements any transition from a coiled configuration (ellipsoidal model) to a stretched configuration during dilution process. We have also underlined the important interdependence between the dielectric friction and the ionic condensation of the counterions, in order to distinguish between the Ostwald regime and the Manning regime for which the degree of condensation is practically constant in a large range of concentrations. PMID:24672333

  1. Stick-slip chaos in a mechanical oscillator with dry friction

    NASA Astrophysics Data System (ADS)

    Kousaka, Takuji; Asahara, Hiroyuki; Inaba, Naohiko

    2018-03-01

    This study analyzes a forced mechanical dynamical system with dry friction that can generate chaotic stick-slip vibrations. We find that the dynamics proposed by Yoshitake et al. [Trans. Jpn. Soc. Mech. Eng. C 61, 768 (1995)] can be expressed as a nonautonomous constraint differential equation owing to the static friction force. The object is constrained to the surface of a moving belt by a static friction force from when it sticks to the surface until the force on the object exceeds the maximal static friction force. We derive a 1D Poincaré return map from the constrained mechanical system, and prove numerically that this 1D map has an absolutely continuous invariant measure and a positive Lyapunov exponent, providing strong evidence for chaos.

  2. Development of surface friction guidelines for LADOTD : tech summary.

    DOT National Transportation Integrated Search

    2012-04-01

    The current Louisiana Department of Transportation and Development (LADOTD) surface friction guidelines deal with the polished : stone values (PSV) of coarse aggregates (which is a relative British Pendulum skid-resistance number measured on polished...

  3. A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement.

    PubMed

    Campbell, Caroline L; Foegeding, E Allen; van de Velde, Fred

    2017-08-01

    Lubrication is an important factor in the sensory evaluation of food products. Tribology provides a theoretical framework and instrumental methods for evaluating frictional properties between two moving surfaces and the lubrication behavior of products between these surfaces. Relating frictional measurements to sensory properties detected during oral processing requires careful and pertinent choices in surface materials and testing conditions. The aims of this study were to investigate: (a) differences in lubrication behavior of a range of food textures and (b) the differences between linear and elliptical movement and added saliva to understand the contribution of food structure to friction. Six whey protein model food samples, ranging in texture from fluid to semisolid to soft solid, were analyzed using a pin on disk tribometer to determine the coefficient of friction (COF) across a range of sliding speeds. The samples were analyzed in their initial form and post-oral processing (n = 4) in both linear and elliptical movements. Elliptical movement slightly decreased coefficients of friction and extended the shape of the friction curve. Increases in test food viscosity decreased the COF but differences in viscosity were not apparent when test foods were mixed with saliva. Data correction for viscosity shifted the friction curves horizontally, indicating that lubrication had a greater impact upon friction than viscosity. This study provides initial insights for further comparison of linear and elliptical movement with a variety of sample compositions. Sensory perception of smoothness and creaminess are often major contributors to overall hedonic food liking and are a major reason why products high in fat and sugar are more highly preferred over other foods. These parameters are influenced by friction and lubrication between the tongue, palate, teeth, food products, and saliva during oral processing. Tribology provides an instrumental method to evaluate friction between moving surfaces that mimic oral surfaces and the lubrication behavior of foods. Trends in frictional measurements can be correlated with sensory ratings of the same foods to better understand why preferences exist for certain foods or food compositions and how to effectively improve the acceptability and enjoyment of healthier foods. © 2017 Wiley Periodicals, Inc.

  4. Viscosity of confined two-dimensional Yukawa liquids: A nonequilibrium method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landmann, S.; Kählert, H.; Thomsen, H.

    2015-09-15

    We present a nonequilibrium method that allows one to determine the viscosity of two-dimensional dust clusters in an isotropic confinement. By applying a tangential external force to the outer parts of the cluster (e.g., with lasers), a sheared velocity profile is created. The decay of the angular velocity towards the center of the confinement potential is determined by a balance between internal (viscosity) and external friction (neutral gas damping). The viscosity can then be calculated from a fit of the measured velocity profile to a solution of the Navier-Stokes equation. Langevin dynamics simulations are used to demonstrate the feasibility ofmore » the method. We find good agreement of the measured viscosity with previous results for macroscopic Yukawa plasmas.« less

  5. Internal friction Q factor measurements in lunar rocks

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.

    1977-01-01

    Investigations to aid in the interpretation of seismic data obtained below the lunar surface are reported. Fine grained basalt with about 1.0% open core porosity was encapsulated under hard vacuum and measured. A Q value just under 2,000 at 0.5 kbar was achieved for a terrestrial analog of lunar basalt. In contrast to the modulus which increases by as much as 10%, the quality factor Q shows little or no change with pressure (a well outgassed sample maintains a high Q, whereas one exposed to laboratory atmosphere maintains a low Q). This result suggests that the absence of volatiles plays an important role in determining the q factor even at a depth of 10 km below the lunar surface.

  6. Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1992-01-01

    Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.

  7. Mesospheric heating due to intense tropospheric convection

    NASA Technical Reports Server (NTRS)

    Taylor, L. L.

    1979-01-01

    A series of rocket measurements made twice daily at Wallops Island, Va., revealed a rapid heating of the mesosphere on the order of 10 K on days when thunderstorms or squall lines were in the area. This heating is explained as the result of frictional dissipation of vertically propagating internal gravity waves generated by intense tropospheric convection. Ray-tracing theory is used to determine the spectrum of gravity wave groups that actually reach mesospheric heights. This knowledge is used in an equation describing the spectral energy density of a penetrative convective element to calculate the fraction of the total energy initially available to excite those waves that do reach the level of heating. This value, converted into a vertical velocity, is used as the lower boundary condition for a multilayer model used to determine the detailed structure of the vertically propagating waves. The amount of frictional dissipation produced by the waves is calculated from the solutions of the frictionless model by use of a vertically varying eddy viscosity coefficient. The heating produced by the dissipation is then calculated from the thermodynamic equation.

  8. Sliding temperatures of ice skates

    NASA Astrophysics Data System (ADS)

    Colbeck, S. C.; Najarian, L.; Smith, H. B.

    1997-06-01

    The two theories developed to explain the low friction of ice, pressure melting and frictional heating, require opposite temperature shifts at the ice-skate interface. The arguments against pressure melting are strong, but only theoretical. A set of direct temperature measurements shows that frictional heating is the dominant mechanism because temperature behaves in the manner predicted by the theory of frictional heating. Like snow skis, ice skates are warmed by sliding and then cool when the sliding stops. The temperature increases with speed and with thermal insulation. The sliding leaves a warm track on the ice surface behind the skate and the skate sprays warm ejecta.

  9. An Overview of the Annual NASA Tire/Runway Friction Workshop and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    2005-01-01

    This paper summarizes the organization efforts, objectives, scope, agenda, test procedures and results from eleven years of conducting the NASA Tire/Runway Friction Workshop. The paper will also summarize the lessons learned between 1994 and 2004. A description of the various friction, texture and roughness equipment used during these workshops at NASA Wallops Flight Facility on the eastern shore of Virginia will be provided together with the range of test surfaces available for evaluation. The need for friction measuring equipment calibration centers is discussed and plans for future workshops are identified.

  10. Sliding seal materials for adiabatic engines

    NASA Technical Reports Server (NTRS)

    Lankford, J.

    1985-01-01

    The sliding friction coefficients and wear rates of promising carbide, oxide, and nitride materials were measured under temperature, environmental, velocity, loading conditions that are representative of the adiabatic engine environment. In order to provide guidance needed to improve materials for this application, the program stressed fundamental understanding of the mechanisms involved in friction and wear. Microhardness tests were performed on the candidate materials at elevated temperatures, and in atmospheres relevant to the piston seal application, and optical and electron microscopy were used to elucidate the micromechanisms of wear following wear testing. X-ray spectroscopy was used to evaluate interface/environment interactions which seemed to be important in the friction and wear process. Electrical effects in the friction and wear processes were explored in order to evaluate the potential usefulness of such effects in modifying the friction and wear rates in service. However, this factor was found to be of negligible significance in controlling friction and wear.

  11. Molecular Insight into the Slipperiness of Ice.

    PubMed

    Weber, Bart; Nagata, Yuki; Ketzetzi, Stefania; Tang, Fujie; Smit, Wilbert J; Bakker, Huib J; Backus, Ellen H G; Bonn, Mischa; Bonn, Daniel

    2018-05-16

    Measurements of the friction coefficient of steel-on-ice over a large temperature range reveal very high friction at low temperatures (-100 °C) and a steep decrease in the friction coefficient with increasing temperature. Very low friction is only found over the limited temperature range typical for ice skating. The strong decrease in the friction coefficient with increasing temperature exhibits Arrhenius behavior with an activation energy of E a ≈ 11.5 kJ mol -1 . Remarkably, molecular dynamics simulations of the ice-air interface reveal a very similar activation energy for the mobility of surface molecules. Weakly hydrogen-bonded surface molecules diffuse over the surface in a rolling motion, their number and mobility increasing with increasing temperature. This correlation between macroscopic friction and microscopic molecular mobility indicates that slippery ice arises from the high mobility of its surface molecules, making the ice surface smooth and the shearing of the weakly bonded surface molecules easy.

  12. Psychophysical evaluation of a variable friction tactile interface

    NASA Astrophysics Data System (ADS)

    Samur, Evren; Colgate, J. Edward; Peshkin, Michael A.

    2009-02-01

    This study explores the haptic rendering capabilities of a variable friction tactile interface through psychophysical experiments. In order to obtain a deeper understanding of the sensory resolution associated with the Tactile Pattern Display (TPaD), friction discrimination experiments are conducted. During the experiments, subjects are asked to explore the glass surface of the TPaD using their bare index fingers, to feel the friction on the surface, and to compare the slipperiness of two stimuli, displayed in sequential order. The fingertip position data is collected by an infrared frame and normal and translational forces applied by the finger are measured by force sensors attached to the TPaD. The recorded data is used to calculate the coefficient of friction between the fingertip and the TPaD. The experiments determine the just noticeable difference (JND) of friction coefficient for humans interacting with the TPaD.

  13. Extraction of skin-friction fields from surface flow visualizations as an inverse problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu

    2013-12-01

    Extraction of high-resolution skin-friction fields from surface flow visualization images as an inverse problem is discussed from a unified perspective. The surface flow visualizations used in this study are luminescent oil-film visualization and heat-transfer and mass-transfer visualizations with temperature- and pressure-sensitive paints (TSPs and PSPs). The theoretical foundations of these global methods are the thin-oil-film equation and the limiting forms of the energy- and mass-transport equations at a wall, which are projected onto the image plane to provide the relationships between a skin-friction field and the relevant quantities measured by using an imaging system. Since these equations can be re-cast in the same mathematical form as the optical flow equation, they can be solved by using the variational method in the image plane to extract relative or normalized skin-friction fields from images. Furthermore, in terms of instrumentation, essentially the same imaging system for measurements of luminescence can be used in these surface flow visualizations. Examples are given to demonstrate the applications of these methods in global skin-friction diagnostics of complex flows.

  14. Poroelasticity-driven lubrication in hydrogel interfaces.

    PubMed

    Reale, Erik R; Dunn, Alison C

    2017-01-04

    It is widely accepted that hydrogel surfaces are slippery, and have low friction, but dynamic applied stresses alter the hydrogel composition at the interface as water is displaced. The induced osmotic imbalance of compressed hydrogel which cannot swell to equilibrium should drive the resistance to slip against it. This paper demonstrates the driving role of poroelasticity in the friction of hydrogel-glass interfaces, specifically how poroelastic relaxation of hydrogels increases adhesion. We translate the work of adhesion into an effective surface energy density that increases with the duration of applied pressure from 10 to 50 mJ m -2 , as measured by micro-indentation. A model of static friction coefficient is derived from an area-based rules of mixture for the surface energies, and predicts the friction coefficient changes upon initiation of slip. For kinetic friction, the competition between duration of contact and relaxation time is quantified by a contacting Péclet number, Pe C . A single length parameter on the scale of micrometers fits these two models to experimental micro-friction data. These models predict how short durations of applied pressure and faster sliding speeds, do not disrupt interfacial hydration; this prevailing water maintains low friction. At low speeds where interface drainage dominates, the osmotic suction works against slip for higher friction. The prediction of friction coefficients after adhesion characterization by micro-indentation makes use of the interplay between poroelasticity, adhesion, and friction. This approach provides a starting point for prediction of, and design for, hydrogel interfacial friction.

  15. Manipulation of nanoparticles of different shapes inside a scanning electron microscope

    PubMed Central

    Polyakov, Boris; Dorogin, Leonid M; Butikova, Jelena; Antsov, Mikk; Oras, Sven; Lõhmus, Rünno; Kink, Ilmar

    2014-01-01

    Summary In this work polyhedron-like gold and sphere-like silver nanoparticles (NPs) were manipulated on an oxidized Si substrate to study the dependence of the static friction and the contact area on the particle geometry. Measurements were performed inside a scanning electron microscope (SEM) that was equipped with a high-precision XYZ-nanomanipulator. To register the occurring forces a quartz tuning fork (QTF) with a glued sharp probe was used. Contact areas and static friction forces were calculated by using different models and compared with the experimentally measured force. The effect of NP morphology on the nanoscale friction is discussed. PMID:24605279

  16. A nonintrusive laser interferometer method for measurement of skin friction

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows, including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows. Previously announced in STAR as N83-12393

  17. Friction between a surrogate skin (Lorica Soft) and nonwoven fabrics used in hygiene products

    NASA Astrophysics Data System (ADS)

    Falloon, Sabrina S.; Cottenden, Alan

    2016-09-01

    Incontinence pad wearers often suffer from sore skin, and a better understanding of friction between pads and skin is needed to inform the development of less damaging materials. This work investigated friction between a skin surrogate (Lorica Soft) and 13 nonwoven fabrics representing those currently used against the skin in commercial pads. All fabrics were found to behave consistently with Amontons’ law: coefficients of friction did not differ systematically when measured under two different loads. Although the 13 fabrics varied considerably in composition and structure, their coefficients of friction (static and dynamic) against Lorica Soft were remarkably similar, especially for the ten fabrics comprising just polypropylene (PP) fibres. The coefficients of friction for one PP fabric never differed by more than 15.7% from those of any other, suggesting that the ranges of fibre decitex (2.0-6.5), fabric area density (13-30 g m-2) and bonding area (11%-25%) they exhibited had only limited impact on their friction properties. It is likely that differences were largely attributable to variability in properties between multiple samples of a given fabric. Of the remaining fabrics, the one comprising polyester fibres had significantly higher coefficients of friction than the highest friction PP fabric (p < 0.005), while the one comprising PP fibres with a polyethylene sheath had significantly lower coefficients of friction than the lowest friction PP fabric (p < 10-8). However, fabrics differed in too many other ways to confidently attribute these differences in friction properties just to the choice of base polymer.

  18. In-Flight Capability for Evaluating Skin-Friction Gages and Other Near-Wall Flow Sensors

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Pipitone, Brett J.; Krake, Keith L.; Richwine, Dave (Technical Monitor)

    2003-01-01

    An 8-in.-square boundary-layer sensor panel has been developed for in-flight evaluation of skin-friction gages and other near-wall flow sensors on the NASA Dryden Flight Research Center F-15B/Flight Test Fixture (FTF). Instrumentation on the sensor panel includes a boundary-layer rake, temperature sensors, static pressure taps, and a Preston tube. Space is also available for skin-friction gages or other near-wall flow sensors. Pretest analysis of previous F-15B/FTF flight data has identified flight conditions suitable for evaluating skin-friction gages. At subsonic Mach numbers, the boundary layer over the sensor panel closely approximates the two-dimensional (2D), law-of-the-wall turbulent boundary layer, and skin-friction estimates from the Preston tube and the rake (using the Clauser plot method) can be used to evaluate skin-friction gages. At supersonic Mach numbers, the boundary layer over the sensor panel becomes complex, and other means of measuring skin friction are needed to evaluate the accuracy of new skin-friction gages. Results from the flight test of a new rubber-damped skin-friction gage confirm that at subsonic Mach numbers, nearly 2D, law-of-the-wall turbulent boundary layers exist over the sensor panel. Sensor panel data also show that this new skin-friction gage prototype does not work in flight.

  19. Application of a Laser Interferometer Skin-Friction Meter in Complex Flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.; Driver, D. M.; Szodruch, J.

    1981-01-01

    A nonintrusive skin-friction meter has been found useful for a variety of complex wind-tunnel flows. This meter measures skin friction with a remotely located laser interferometer that monitors the thickness change of a thin oil film. Its accuracy has been proven in a low-speed flat-plate flow. The wind-tunnel flows described here include sub-sonic separated and reattached flow over a rearward-facing step, supersonic flow over a flat plate at high Reynolds numbers, and supersonic three - dimensional vortical flow over the lee of a delta wing at angle of attack. The data-reduction analysis was extended to apply to three-dimensional flows with unknown flow direction, large pressure and shear gradients, and large oil viscosity changes with time. The skin friction measurements were verified, where possible, with results from more conventional techniques and also from theoretical computations.

  20. The Application of Vibration Accelerations in the Assessment of Average Friction Coefficient of a Railway Brake Disc

    NASA Astrophysics Data System (ADS)

    Sawczuk, Wojciech

    2017-06-01

    Due to their wide range of friction characteristics resulting from the application of different friction materials and good heat dissipation conditions, railway disc brakes have long replaced block brakes in many rail vehicles. A block brake still remains in use, however, in low speed cargo trains. The paper presents the assessment of the braking process through the analysis of vibrations generated by the components of the brake system during braking. It presents a possibility of a wider application of vibroacoustic diagnostics (VA), which aside from the assessment of technical conditions (wear of brake pads) also enables the determination of the changes of the average friction coefficient as a function of the braking onset speed. Vibration signals of XYZ were measured and analyzed. The analysis of the results has shown that there is a relation between the values of the point measures and the wear of the brake pads.

  1. Internal friction and modulus in rocks at depth

    NASA Technical Reports Server (NTRS)

    Tittmann, B. R.; Clark, V. A.; Anlberg, L.

    1980-01-01

    Experimental results relevant to the seismic wave attenuation observed for the lunar crust are presented along with some results bearing on the mechanism by which the presence of volatiles increases the attenuation.

  2. Internal friction and absence of dilatancy of packings of frictionless polygons.

    PubMed

    Azéma, Émilien; Radjaï, Farhang; Roux, Jean-Noël

    2015-01-01

    By means of numerical simulations, we show that assemblies of frictionless rigid pentagons in slow shear flow possess an internal friction coefficient (equal to 0.183±0.008 with our choice of moderately polydisperse grains) but no macroscopic dilatancy. In other words, despite side-side contacts tending to hinder relative particle rotations, the solid fraction under quasistatic shear coincides with that of isotropic random close packings of pentagonal particles. Properties of polygonal grains are thus similar to those of disks in that respect. We argue that continuous reshuffling of the force-bearing network leads to frequent collapsing events at the microscale, thereby causing the macroscopic dilatancy to vanish. Despite such rearrangements, the shear flow favors an anisotropic structure that is at the origin of the ability of the system to sustain shear stress.

  3. Temperature dependences of internal friction and shear modulus in glass-textolites irradiated with electrons

    NASA Astrophysics Data System (ADS)

    Zaikin, Yu. A.; Kozhamkulov, B. A.; Koztaeva, U. P.

    1997-07-01

    A study is made of mechanical relaxation mechanisms and the correlation between parameters characterizing the temperature dependence of internal friction and shear modulus when the mechanical and electrical properties of glass-textolites of grades ST-11 and ST-ETF are altered by exposure to different doses of high-energy electrons. High-temperature α- and α'- transformation are observed, these transformations being due to the unfreezing of segmental mobility in the polymer matrix and the boundary layers at the surfaces of the glass fibers under the influence of the radiation. A discussion is presented of features of radiation-induced degradation processes in the polymer binder and at points where it contacts the filler. The data that is obtained shows that glass-texolites ST-ETF and ST-11 are highly resistant to radiation.

  4. Measuring Micro-Friction Torque in MEMS Gas Bearings

    PubMed Central

    Fang, Xudong; Liu, Huan

    2016-01-01

    An in situ measurement of micro-friction torque in MEMS gas bearings, which has been a challenging research topic for years, is realized by a system designed in this paper. In the system, a high accuracy micro-force sensor and an electronically-driven table are designed, fabricated and utilized. With appropriate installation of the sensor and bearings on the table, the engine rotor can be driven to rotate with the sensor using a silicon lever beam. One end of the beam is fixed to the shaft of the gas bearing, while the other end is free and in contact with the sensor probe tip. When the sensor begins to rotate with the table, the beam is pushed by the sensor probe to rotate in the same direction. For the beam, the friction torque from the gas bearing is balanced by the torque induced by pushing force from the sensor probe. Thus, the friction torque can be calculated as a product of the pushing force measured by the sensor and the lever arm, which is defined as the distance from the sensor probe tip to the centerline of the bearing. Experimental results demonstrate the feasibility of this system, with a sensitivity of 1.285 mV/μN·m in a range of 0 to 11.76 μN·m when the lever arm is 20 mm long. The measuring range can be modified by varying the length of the lever arm. Thus, this system has wide potential applications in measuring the micro-friction torque of gas bearings in rotating MEMS machines. PMID:27213377

  5. Influence of the chemical surface structure on the nanoscale friction in plasma nitrided and post-oxidized ferrous alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freislebem, Márcia; Menezes, Caren M.; Cemin, Felipe

    2014-09-15

    Friction is a ubiquitous phenomenon in everyday activities spanning from vehicles where efficient brakes are mandatory up to mechanical devices where its minimum effects are pursued for energy efficiency issues. Recently, theoretical models succeed correlating the friction behavior with energy transference via phonons between sliding surfaces. Therefore, considering that the energy losses by friction are prompted through phonons, the chemical surface structure between sliding surfaces is very important to determine the friction phenomenon. In this work, we address the issue of friction between a conical diamond tip sliding on different functionalized flat steel surfaces by focusing the influence of themore » chemical bonds in the outermost layers on the sliding resistance. This geometry allows probing the coupling of the sharp tip with terminator species on the top and underneath material surface at in-depth friction measurements from 20 to 200 nm. Experimentally, the friction coefficient decreases when nitrogen atoms are substituted for oxygen in the iron network. This effect is interpreted as due to energy losses through phonons whilst lower vibrational frequency excitation modes imply lower friction coefficients and a more accurate adjustment is obtained when a theoretical model with longitudinal adsorbate vibration is used.« less

  6. Comparison of predicted and measured low-speed performance of two 51 centimeter-diameter inlets at incidence angle

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1973-01-01

    Theoretical and experimental internal flow characteristics of two 51-cm-diameter inlets are compared. Theoretical flow characteristics along the inlet surface were obtained from an axisymmetric potential flow and boundary layer analysis. The experimental data were obtained from low-speed tests of a high-bypass-ratio turbofan engine simulator. Comparisons between calculated internal surface pressure distributions and experimental data are presented for a free-system velocity of 45 m/sec and for incidence angles from 0 deg to 50 deg. Analysis of boundary layer separation on the inlet lip at incidence angle is the major emphasis of this report. Theoretical boundary layer shape factors, skin friction coefficients, and velocity profiles in the boundary layer are presented, along with the location of the transition region. Theoretical and experimental separation locations are also discussed.

  7. Bottom friction optimization for a better barotropic tide modelling

    NASA Astrophysics Data System (ADS)

    Boutet, Martial; Lathuilière, Cyril; Son Hoang, Hong; Baraille, Rémy

    2015-04-01

    At a regional scale, barotropic tides are the dominant source of variability of currents and water heights. A precise representation of these processes is essential because of their great impacts on human activities (submersion risks, marine renewable energies, ...). Identified sources of error for tide modelling at a regional scale are the followings: bathymetry, boundary forcing and dissipation due to bottom friction. Nevertheless, bathymetric databases are nowadays known with a good accuracy, especially over shelves, and global tide models performances are better than ever. The most promising improvement is thus the bottom friction representation. The method used to estimate bottom friction is the simultaneous perturbation stochastic approximation (SPSA) which consists in the approximation of the gradient based on a fixed number of cost function measurements, regardless of the dimension of the vector to be estimated. Indeed, each cost function measurement is obtained by randomly perturbing every component of the parameter vector. An important feature of SPSA is its relative ease of implementation. In particular, the method does not require the development of tangent linear and adjoint version of the circulation model. Experiments are carried out to estimate bottom friction with the HYbrid Coordinate Ocean Model (HYCOM) in barotropic mode (one isopycnal layer). The study area is the Northeastern Atlantic margin which is characterized by strong currents and an intense dissipation. Bottom friction is parameterized with a quadratic term and friction coefficient is computed with the water height and the bottom roughness. The latter parameter is the one to be estimated. Assimilated data are the available tide gauge observations. First, the bottom roughness is estimated taking into account bottom sediment natures and bathymetric ranges. Then, it is estimated with geographical degrees of freedom. Finally, the impact of the estimation of a mixed quadratic/linear friction is evaluated.

  8. The instantaneous rate dependence in low temperature laboratory rock friction and rock deformation experiments

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.

    2007-01-01

    Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.

  9. Ultralow Friction in a Superconducting Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Bornemann, Hans J.; Siegel, Michael; Zaitsev, Oleg; Bareiss, Martin; Laschuetza, Helmut

    1996-01-01

    Passive levitation by superconducting magnetic bearings can be utilized in flywheels for energy storage. Basic design criteria of such a bearing are high levitation force, sufficient vertical and horizontal stability and low friction. A test facility was built for the measurement and evaluation of friction in a superconducting magnetic bearing as a function of operating temperature and pressure in the vacuum vessel. The bearing consists of a commercial disk shaped magnet levitated above single grain, melt-textured YBCO high-temperature superconductor material. The superconductor was conduction cooled by an integrated AEG tactical cryocooler. The temperature could be varied from 50 K to 80 K. The pressure in the vacuum chamber was varied from 1 bar to 10(exp -5) mbar. At the lowest pressure setting, the drag torque shows a linear frequency dependence over the entire range investigated (0 less than f less than 40 Hz). Magnetic friction, the frequency independent contribution, is very low. The frequency dependent drag torque is generated by molecular friction from molecule-surface collisions and by eddy currents. Given the specific geometry of the set-up and gas pressure, the molecular drag torque can be estimated. At a speed of 40 Hz, the coefficient of friction (drag-to-lift ratio) was measured to be mu = 1.6 x 10(exp -7) at 10(exp -5) mbar and T = 60 K. This is equivalent to a drag torque of 7.6 x 10(exp -10) Nm. Magnetic friction causes approx. 1% of the total losses. Molecular friction accounts for about 13% of the frequency dependent drag torque, the remaining 87% being due to eddy currents and losses from rotor unbalance. The specific energy loss is only 0.3% per hour.

  10. A simple method for measurement of maximal downstroke power on friction-loaded cycle ergometer.

    PubMed

    Morin, Jean-Benoît; Belli, Alain

    2004-01-01

    The aim of this study was to propose and validate a post-hoc correction method to obtain maximal power values taking into account inertia of the flywheel during sprints on friction-loaded cycle ergometers. This correction method was obtained from a basic postulate of linear deceleration-time evolution during the initial phase (until maximal power) of a sprint and included simple parameters as flywheel inertia, maximal velocity, time to reach maximal velocity and friction force. The validity of this model was tested by comparing measured and calculated maximal power values for 19 sprint bouts performed by five subjects against 0.6-1 N kg(-1) friction loads. Non-significant differences between measured and calculated maximal power (1151+/-169 vs. 1148+/-170 W) and a mean error index of 1.31+/-1.20% (ranging from 0.09% to 4.20%) showed the validity of this method. Furthermore, the differences between measured maximal power and power neglecting inertia (20.4+/-7.6%, ranging from 9.5% to 33.2%) emphasized the usefulness of power correcting in studies about anaerobic power which do not include inertia, and also the interest of this simple post-hoc method.

  11. The coupled effects of environmental composition, temperature and contact size-scale on the tribology of molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Khare, Harmandeep S.

    Liquid lubricants are precluded in an exceedingly large number of consumer as well as extreme applications as a means to reduce friction and wear at the sliding interface of two bodies. The extraterrestrial environment is one such example of an extreme environment which has motivated the development of advanced solid lubricant materials. Mechanical systems for space require fabrication, assembly, transportation and testing on earth before launch and deployment. Solid lubricants for space are expected to not only operate efficiently in the hard vacuum of space but also withstand interactions with moisture or oxygen during the terrestrial storage, transportation and assembly prior to deployment and launch. Molybdenum disulfide (MoS2) is considered the gold standard in solid lubricants for space due to its excellent tribological properties in ultra-high vacuum. However in the presence of environmental species such as water and oxygen or at elevated temperatures, the lubricity and endurance of MoS2 is severely limited. Past studies have offered several hypotheses for the breakdown of lubrication of MoS2 under the influence of water and oxygen, although exact mechanisms remain unknown. Furthermore, it is unclear if temperature acts as a driver solely for oxidation or for thermally activated slip and thermally activated desorption as well. The answers to these questions are of fundamental importance to improving the reliability of existing MoS2-based solid lubricants for space, as well as for guiding the design of advanced lamellar solid lubricant coatings. This dissertation aims to elucidate: (1) the role of water on MoS2 oxidation, (2) the role of water on MoS2 friction, (3) the role of oxygen on MoS2 friction, (4) the contribution of thermal activation to ambient-temperature friction, and (5) effects of length-scale. The results of this study showed that water does not cause oxidation of MoS2. Water increases ambient-temperature friction of MoS2 directly through a combination of both surface adsorption and diffusion into the coating subsurface. Thermally activated desiccation effectively dries the bulk of the coating, yielding low values of friction coefficient even at ambient humidity and temperature. Friction of MoS2 decreases with increasing temperature between 25°C and 100°C in the presence of environmental water and increases in the presence of oxygen alone. At temperatures greater than 100°C, friction generally increases with temperature only in the presence of environmental oxygen; at these elevated temperatures, friction decreases with increasing humidity. The transition from room-temperature increase to elevated-temperature decrease in friction with increasing humidity is found to be a strong function of the contact history as well as coating microstructure. Lastly, the contribution of nanoscale tribofilms to macroscale friction was studied through nanotribometry. Friction measured on the worn MoS2 coating with a nano-scale AFM probe showed direct and quantifiable evidence of sliding-induced surface modification of MoS2; friction measured on the perfectly ordered single crystal MoS2 was nearly an order of magnitude lower than friction on worn MoS2. Although friction coefficients measured with a nanoscale probe showed high surface sensitivity, micron-sized AFM probes gave friction coefficients similar to those obtained in the macroscale, suggesting the formation of surface films in-situ during sliding with the colloidal probe. A reduction in friction is observed after annealing for both the nanoscale and microscale probes, suggesting a strong overriding effect of the desiccated bulk over surface adsorption in driving the friction response at these length-scales.

  12. Internal structure of inertial granular flows.

    PubMed

    Azéma, Emilien; Radjaï, Farhang

    2014-02-21

    We analyze inertial granular flows and show that, for all values of the inertial number I, the effective friction coefficient μ arises from three different parameters pertaining to the contact network and force transmission: (1) contact anisotropy, (2) force chain anisotropy, and (3) friction mobilization. Our extensive 3D numerical simulations reveal that μ increases with I mainly due to an increasing contact anisotropy and partially by friction mobilization whereas the anisotropy of force chains declines as a result of the destabilizing effect of particle inertia. The contact network undergoes topological transitions, and beyond I≃0.1 the force chains break into clusters immersed in a background "soup" of floating particles. We show that this transition coincides with the divergence of the size of fluidized zones characterized from the local environments of floating particles and a slower increase of μ with I.

  13. Internal Structure of Inertial Granular Flows

    NASA Astrophysics Data System (ADS)

    Azéma, Emilien; Radjaï, Farhang

    2014-02-01

    We analyze inertial granular flows and show that, for all values of the inertial number I, the effective friction coefficient μ arises from three different parameters pertaining to the contact network and force transmission: (1) contact anisotropy, (2) force chain anisotropy, and (3) friction mobilization. Our extensive 3D numerical simulations reveal that μ increases with I mainly due to an increasing contact anisotropy and partially by friction mobilization whereas the anisotropy of force chains declines as a result of the destabilizing effect of particle inertia. The contact network undergoes topological transitions, and beyond I≃0.1 the force chains break into clusters immersed in a background "soup" of floating particles. We show that this transition coincides with the divergence of the size of fluidized zones characterized from the local environments of floating particles and a slower increase of μ with I.

  14. Rock mechanics. Superplastic nanofibrous slip zones control seismogenic fault friction.

    PubMed

    Verberne, Berend A; Plümper, Oliver; de Winter, D A Matthijs; Spiers, Christopher J

    2014-12-12

    Understanding the internal mechanisms controlling fault friction is crucial for understanding seismogenic slip on active faults. Displacement in such fault zones is frequently localized on highly reflective (mirrorlike) slip surfaces, coated with thin films of nanogranular fault rock. We show that mirror-slip surfaces developed in experimentally simulated calcite faults consist of aligned nanogranular chains or fibers that are ductile at room conditions. These microstructures and associated frictional data suggest a fault-slip mechanism resembling classical Ashby-Verrall superplasticity, capable of producing unstable fault slip. Diffusive mass transfer in nanocrystalline calcite gouge is shown to be fast enough for this mechanism to control seismogenesis in limestone terrains. With nanogranular fault surfaces becoming increasingly recognized in crustal faults, the proposed mechanism may be generally relevant to crustal seismogenesis. Copyright © 2014, American Association for the Advancement of Science.

  15. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann; Burkholder, Jonathon

    2011-01-01

    NASA fs Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for External Tank. FPPW was easily selected as the primary process used to close out the termination hole on the Constellation Program fs ARES I Upper Stage circumferential Self ] Reacting Friction Stir Welds (SR ]FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR ]FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process fs limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  16. Friction Pull Plug Welding in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  17. Geometrical and Friction Properties of Perennial Grasses and Their Weeds in View of an Electro-Separation Method

    NASA Astrophysics Data System (ADS)

    Kovalyshyn, Stepan J.; Dadak, Viktor O.; Sokolyk, Vitalij V.; Grundas, Stanisław; Stasiak, Mateusz; Tys, Jerzy

    2015-04-01

    Many seed mixtures of herbs are difficult to separate. This is confirmed by studies determining the basic geometrical and friction properties of the seeds of perennial grasses and seeds of their weeds. The results show that in most cases the value of their geometrical parameters (length, thickness, and width) and friction properties (friction coefficients for different external surfaces of internal friction coefficients) are substantially similar and differ slightly among each other. This is the evidence that these properties are impractical to use in the process of separation as signs of divisibility. In the paper, a method for electro-separation of seed mixtures of herbs based on the use of complex physical, mechanical properties and electrical components in the separation are presented. The electric field that acts as an additional working body allows considering the surface conditions and biological status of seed mixtures of particles and significantly expands the functionality of the separators. Confirmation of the effectiveness of the proposed method for separation can be seen in the example of purification of red clover and sorrel seeds. By imposition of an electric field on an inclined moving separating plane, we can completely separate weed seeds from the main crop. The results confirm the effectiveness of the electro-separating method.

  18. Analysis of Mold Friction in a Continuous Casting Using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Fang, Bohan; Ding, Qiqi; Wang, Fangyin

    2018-04-01

    Mold friction (MDF) is an important parameter reflecting the lubrication condition between the initial shell and the mold during continuous casting. In this article, based on practical MDF from the slab continuous casting driven by a mechanical vibration device, the characteristics of friction were analyzed by continuous wavelet transform (CWT) and discrete wavelet transform (DWT) in different casting conditions, such as normal casting, level fluctuation, and alarming of the temperature measurement system. The results show that the CWT of friction accurately captures the subtle changes in friction force, such as the periodic characteristic of MDF during normal casting and the disordered feature of MDF during level fluctuation. Most important, the results capture the occurrence of abnormal casting and display the friction frequency characteristics at this abnormal time. In addition, in this article, there are some abnormal casting conditions, and the friction signal is stable until there is a sudden large change when abnormal casting, such as split breakout and submerged entry nozzle breakage, occurs. The DWT has a good ability to capture the friction characteristics for such abnormal situations. In particular, the potential abnormal features of MDF were presented in advance, which provides strong support for identifying abnormal casting and even preventing abnormal casting.

  19. Temperature dependence of ice-on-rock friction at realistic glacier conditions

    PubMed Central

    Savage, H.; Nettles, M.

    2017-01-01

    Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297

  20. Effect of pendent chains on the interfacial properties of thin polydimethylsiloxane (PDMS) networks.

    PubMed

    Landherr, Lucas J T; Cohen, Claude; Archer, Lynden A

    2011-05-17

    The interfacial properties of end-linked polydimethylsiloxane (PDMS) films on silicon are examined. Thin cross-linked PDMS films (∼10 μm thick) were synthesized over a self-assembled monolayer supported on a silicon wafer. By systematically varying the concentration of monofunctional PDMS in a mixture with telechelic precursor molecules, structures ranging from near-ideal elastic networks to poorly cross-linked networks composed of a preponderance of dangling/pendent chains were synthesized. Lateral force microscopy (LFM) employing bead probes was used to quantify the effect of network structure on the interfacial friction coefficient and residual force. Indentation measurements employing an AFM in force mode were used to characterize the elastic modulus and the pull-off force for the films as a function of pendent chain content. These measurements were complemented with conventional mechanical rheometry measurements on similar thick network films to determine their bulk rheological properties. All networks studied manifested interfacial friction coefficients substantially lower than that of bare silicon. PDMS networks with the lowest pendent chain content displayed friction coefficients close to 1 order of magnitude lower than that of bare silicon, whereas networks with the highest pendent chain content manifested friction coefficients about 3 times lower than that of bare silicon. At intermediate sliding velocities, a crossover in the interfacial friction coefficient was observed, wherein cross-linked PDMS films with the least amount of pendent chains exhibit the highest friction coefficient. These observations are discussed in terms of the structure of the films and relaxation dynamics of elastic strands and dangling chains in tethered network films.

Top