Sample records for measuring multi-phase fluid

  1. Method and apparatus for measuring the mass flow rate of a fluid

    DOEpatents

    Evans, Robert P.; Wilkins, S. Curtis; Goodrich, Lorenzo D.; Blotter, Jonathan D.

    2002-01-01

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  2. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J.

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  3. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, M.G.

    1998-02-10

    A system is described for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  4. Device and method for measuring multi-phase fluid flow in a conduit having an abrupt gradual bend

    DOEpatents

    Ortiz, Marcos German

    1998-01-01

    A system for measuring fluid flow in a conduit having an abrupt bend. The system includes pressure transducers, one disposed in the conduit at the inside of the bend and one or more disposed in the conduit at the outside of the bend but spaced a distance therefrom. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  5. Device and method for measuring multi-phase fluid flow and density of fluid in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-10-27

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  6. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  7. Velocity Profile measurements in two-phase flow using multi-wave sensors

    NASA Astrophysics Data System (ADS)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  8. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  9. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  10. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, Marcos G.; Boucher, Timothy J.

    1997-01-01

    A system for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit.

  11. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1998-11-10

    A system is described for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow. 1 fig.

  12. Device and method for measuring fluid flow in a conduit having a gradual bend

    DOEpatents

    Ortiz, Marcos German; Boucher, Timothy J

    1998-01-01

    A system for measuring fluid flow in a conduit having a gradual bend or arc, and a straight section. The system includes pressure transducers, one or more disposed in the conduit on the outside of the arc, and one disposed in the conduit in a straight section thereof. The pressure transducers measure the pressure of fluid in the conduit at the locations of the pressure transducers and this information is used by a computational device to calculate fluid flow rate in the conduit. For multi-phase fluid, the density of the fluid is measured by another pair of pressure transducers, one of which is located in the conduit elevationally above the other. The computation device then uses the density measurement along with the fluid pressure measurements, to calculate fluid flow.

  13. Device and method for measuring multi-phase fluid flow in a conduit using an elbow flow meter

    DOEpatents

    Ortiz, M.G.; Boucher, T.J.

    1997-06-24

    A system is described for measuring fluid flow in a conduit. The system utilizes pressure transducers disposed generally in line upstream and downstream of the flow of fluid in a bend in the conduit. Data from the pressure transducers is transmitted to a microprocessor or computer. The pressure differential measured by the pressure transducers is then used to calculate the fluid flow rate in the conduit. Control signals may then be generated by the microprocessor or computer to control flow, total fluid dispersed, (in, for example, an irrigation system), area of dispersal or other desired effect based on the fluid flow in the conduit. 2 figs.

  14. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids

    NASA Astrophysics Data System (ADS)

    Jerzy, MIZERACZYK; Artur, BERENDT

    2018-05-01

    Research interests have recently been directed towards electrical discharges in multi-phase environments. Natural electrical discharges, such as lightning and coronas, occur in the Earth’s atmosphere, which is actually a mixture of gaseous phase (air) and suspended solid and liquid particulate matters (PMs). An example of an anthropogenic gaseous multi-phase environment is the flow of flue gas through electrostatic precipitators (ESPs), which are generally regarded as a mixture of a post-combustion gas with solid PM and microdroplets suspended in it. Electrical discharges in multi-phase environments, the knowledge of which is scarce, are becoming an attractive research subject, offering a wide variety of possible discharges and multi-phase environments to be studied. This paper is an introduction to electrical discharges in multi-phase environments. It is focused on DC negative coronas and accompanying electrohydrodynamic (EHD) flows in a gaseous two-phase fluid formed by air (a gaseous phase) and solid PM (a solid phase), run under laboratory conditions. The introduction is based on a review of the relevant literature. Two cases will be considered: the first case is of a gaseous two-phase fluid, initially motionless in a closed chamber before being subjected to a negative corona (with the needle-to-plate electrode arrangement), which afterwards induces an EHD flow in the chamber, and the second, of a gaseous two-phase fluid flowing transversely with respect to the needle-to-plate electrode axis along a chamber with a corona discharge running between the electrodes. This review-based introductory paper should be of interest to theoretical researchers and modellers in the field of negative corona discharges in single- or two-phase fluids, and for engineers who work on designing EHD devices (such as ESPs, EHD pumps, and smoke detectors).

  15. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura J. Pyrak-Nolte; Ping Yu; JiangTao Cheng

    2002-12-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally that the coherence detection can be performed in a borescope. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures has shown the existence of a unique relationship among these hydraulic parameters for different pore geometry. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, is essentially completed for imbibition conditions.« less

  16. NMR studies of multiphase flows II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  17. Sampling device for withdrawing a representative sample from single and multi-phase flows

    DOEpatents

    Apley, Walter J.; Cliff, William C.; Creer, James M.

    1984-01-01

    A fluid stream sampling device has been developed for the purpose of obtaining a representative sample from a single or multi-phase fluid flow. This objective is carried out by means of a probe which may be inserted into the fluid stream. Individual samples are withdrawn from the fluid flow by sampling ports with particular spacings, and the sampling parts are coupled to various analytical systems for characterization of the physical, thermal, and chemical properties of the fluid flow as a whole and also individually.

  18. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JiangTao Cheng; Ping Yu; William Headley

    2001-12-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally and theoretically that the optical coherence imaging system is optimized for sandstone. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures that are statistically similar to real porous media has shown the existence of a unique relationship among these hydraulic parameters. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, has the same length-scale as the values of IAV determined for the two-dimensional micro-models.« less

  19. Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants

    NASA Astrophysics Data System (ADS)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-11-01

    Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.

  20. Technology Transfer at Edgar Mine: Phase 1; October 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad R.; Bauer, Stephen; Nakagawa, Masami

    The objective of this project is to study the flow of fluid through the fractures and to characterize the efficiency of heat extraction (heat transfer) from the test rock mass in the Edgar Mine, managed by Colorado School of Mines in Idaho Springs, CO. The experiment consists of drilling into the wall of the mine and fracturing the rock, characterizing the size and nature of the fracture network, circulating fluid through the network, and measuring the efficiency of heat extraction from the 'reservoir' by monitoring the temperature of the 'produced' fluid with time. This is a multi-year project performed asmore » a collaboration between the National Renewable Energy Laboratory, Colorado School of Mines and Sandia National Laboratories and carried out in phases. This report summarizes Phase 1: Selection and characterization of the location for the experiment, and outlines the steps for Phase 2: Circulation Experiments.« less

  1. Multi-phase-fluid discrimination with local fibre-optical probes: III. Three-phase flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Ramos, R. T.; Holmes, A.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    Local fibre-optical sensors (or `local probes') for immiscible-fluid discrimination are demonstrated in three-phase (oil/water/gas) flows. The probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with surface treatment for wettability control. They use total internal reflection to distinguish among drops, bubbles and other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Dual probes, using two sensors each with a quasi-binary output, are used to determine profiles of three-phase volume fraction in a flow of kerosene, water and air in a pipe. The individual sensors used discriminate oil from `not-oil' and gas from liquid; their logical combination discriminates among the three phases. Companion papers deal with the sensor designs used and quantitative results achieved in the simpler two-phase cases of liquid/liquid flows and gas/liquid flows.

  2. EXPERIMENTAL INVESTIGATION OF RELATIVE PERMEABILITY UPSCALING FROM THE MICRO-SCALE TO THE MACRO-SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laura J. Pyrak-Nolte; Nicholas J. Giordano; David D. Nolte

    2004-03-01

    The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. This project on the experimental investigation of relative permeability upscaling has produced a unique combination of three quite different technical approaches to the upscaling problem of obtaining pore-related microscopic properties and using them to predict macroscopic behavior. Several important ''firsts'' have been achieved during the course of the project. (1) Optical coherence imaging, a laser-based ranging and imaging technique, has produced the first images of grain and pore structure up to 1 mm beneath the surface of the sandstone and in a laboratory borehole. (2) Woods metal injection has connected for the first time microscopic pore-scale geometric measurements with macroscopic saturation in real sandstone cores. (3) The micro-model technique has produced the first invertible relationship between saturation and capillary pressure--showing that interfacial area per volume (IAV) provides the linking parameter. IAV is a key element in upscaling theories, so this experimental finding may represent the most important result of this project, with wide ramifications for predictions of fluid behavior in porous media.« less

  3. Multi-phase-fluid discrimination with local fibre-optical probes: I. Liquid/liquid flows

    NASA Astrophysics Data System (ADS)

    Fordham, E. J.; Holmes, A.; Ramos, R. T.; Simonian, S.; Huang, S.-M.; Lenn, C. P.

    1999-12-01

    We demonstrate the use of a novel design of fibre-optical sensor (or `local probe') for immiscible-fluid discrimination in multi-phase flows. These probes are made from standard silica fibres with plane oblique facets polished at the fibre tip, with various surface treatments, including a crucial one for wettability control. Total internal reflection is used to distinguish drops, bubbles or other regions of fluid in multi-phase flows, on the basis of refractive-index contrast. Such probes have quasi-binary outputs; we demonstrate in this paper their use in distinguishing water from oil (kerosene) in oil/water two-phase flows and compare the results with those obtained from a simple cleaved fibre relying on the (small) difference in Fresnel reflectivity for discrimination. Quantitative accuracy is demonstrated by comparison of profiles, across a pipe diameter, of local, time-averaged volume fractions (`hold-ups'), with pipe-averaged hold-ups determined from a carefully calibrated gradio-manometer in a fully developed region of the flow. Companion papers deal with the sensors used and results achieved in gas/liquid flows and three-phase flows.

  4. Numerical study of Tallinn storm-water system flooding conditions using CFD simulations of multi-phase flow in a large-scale inverted siphon

    NASA Astrophysics Data System (ADS)

    Kaur, K.; Laanearu, J.; Annus, I.

    2017-10-01

    The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.

  5. Control and measurement of the phase behavior of aqueous solutions using microfluidics

    PubMed Central

    Shim, Jung-uk; Cristobal, Galder; Link, Darren R.; Thorsen, Todd; Jia, Yanwei; Piattelli, Katie; Fraden, Seth

    2008-01-01

    A microfluidic device denoted the Phase Chip has been designed to measure and manipulate the phase diagram of multi-component fluid mixtures. The Phase Chip exploits the permeation of water through poly(dimethylsiloxane) (PDMS) in order to controllably vary the concentration of solutes in aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The Phase Chip operates by first creating drops of the water/solute mixture whose composition varies sequentially. Next, drops are transported down channels and guided into storage wells using surface tension forces. Finally, the solute concentration of each stored drop is simultaneously varied and measured. Two applications of the Phase Chip are presented. First, the phase diagram of a polymer/salt mixture is measured on-chip and validated off-chip and second, protein crystallization rates are enhanced through the manipulation of the kinetics of nucleation and growth. PMID:17580868

  6. Measurement of the refractive index of solutions based on digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Sujuan; Wang, Weiping; Zeng, Junzhang; Yan, Cheng; Lin, Yunyi; Wang, Tingyun

    2018-01-01

    A new approach for the refractive index (RI) measurement of solutions is proposed based on digital holographic microscopy. The experimental system consists of a modified Mach-Zehnder interferometer and related lab-developed analysis software. The high quality digital hologram of the tested solution is obtained by the real-time analysis software, which is firstly encapsulated into a capillary tube, and then the capillary tube is inserted in a matching fluid. An angular spectrum algorithm is adopted to extract the phase distribution from the hologram recorded by a CCD. Based on a capillary multi-layer calculation model, the RI of the tested solution is obtained at high accuracy. The results of transparent glycerol solution measured by the proposed method are more accurate than those measured by the Abbe refractometer. We also measure the RI of translucent magnetic fluid, which is not suitable to be measured by the Abbe refractometer. The relationship between the RI and the concentration of magnetic fluid is experimentally studied, and the results show that the RI is linearly related to the concentration of dilute magnetic fluid.

  7. Universality Results for Multi-phase Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2013-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of displacement processes in a Hele-Shaw cell involving an arbitrary number of immiscible fluid phases. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-phase immiscible flow in the sense that the results hold for arbitrary number of interfaces. These stability results have been applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on the following paper. This work was supported by the Qatar National Research Fund (a member of The Qatar Foundation).

  8. A conservative fully implicit algorithm for predicting slug flows

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Boris I.; Lukyanov, Alexander A.

    2018-02-01

    An accurate and predictive modelling of slug flows is required by many industries (e.g., oil and gas, nuclear engineering, chemical engineering) to prevent undesired events potentially leading to serious environmental accidents. For example, the hydrodynamic and terrain-induced slugging leads to unwanted unsteady flow conditions. This demands the development of fast and robust numerical techniques for predicting slug flows. The presented in this paper study proposes a multi-fluid model and its implementation method accounting for phase appearance and disappearance. The numerical modelling of phase appearance and disappearance presents a complex numerical challenge for all multi-component and multi-fluid models. Numerical challenges arise from the singular systems of equations when some phases are absent and from the solution discontinuity when some phases appear or disappear. This paper provides a flexible and robust solution to these issues. A fully implicit formulation described in this work enables to efficiently solve governing fluid flow equations. The proposed numerical method provides a modelling capability of phase appearance and disappearance processes, which is based on switching procedure between various sets of governing equations. These sets of equations are constructed using information about the number of phases present in the computational domain. The proposed scheme does not require an explicit truncation of solutions leading to a conservative scheme for mass and linear momentum. A transient two-fluid model is used to verify and validate the proposed algorithm for conditions of hydrodynamic and terrain-induced slug flow regimes. The developed modelling capabilities allow to predict all the major features of the experimental data, and are in a good quantitative agreement with them.

  9. A unified monolithic approach for multi-fluid flows and fluid-structure interaction using the Particle Finite Element Method with fixed mesh

    NASA Astrophysics Data System (ADS)

    Becker, P.; Idelsohn, S. R.; Oñate, E.

    2015-06-01

    This paper describes a strategy to solve multi-fluid and fluid-structure interaction (FSI) problems using Lagrangian particles combined with a fixed finite element (FE) mesh. Our approach is an extension of the fluid-only PFEM-2 (Idelsohn et al., Eng Comput 30(2):2-2, 2013; Idelsohn et al., J Numer Methods Fluids, 2014) which uses explicit integration over the streamlines to improve accuracy. As a result, the convective term does not appear in the set of equations solved on the fixed mesh. Enrichments in the pressure field are used to improve the description of the interface between phases.

  10. Thermophysical Properties of Fluid Latent Heat Storage Material using Urea-Water Mixture

    NASA Astrophysics Data System (ADS)

    Hokamura, Taku; Ohkubo, Hidetoshi; Ashizawa, Kiyonori

    This study is concerned with the measurement of thermophysical properties of a urea-water mixture with the aim of adopting the mixture as a latent heat storage material for air-conditioning systems. The urea-water mixture is made of natural substances and has a good fluidity. The urea concentration in the mixture was controlled by measuring the refractive index of the mixture. Being a multi-component substance, a urea-water solution has a liquid-solid co-existent phase on a phase-diagram. Therefore, the liquidus temperature was measured to establish a relationship between the fraction of the solid-phase and temperature. Furthermore, apparent values of specific heat and coefficient of viscosity were measured in the two-phase region where the solid phase is ice. The apparent specific heat and coefficient of viscosity were measure by using an adiabatic calorimeter and a stirring torque meter respectively. The results revealed that the urea-water mixture can probably be used as a latent heat storage material of good fluidity.

  11. Can multi-scale calibrations allow MT-derived resistivities to be used to probe the structure of the deep crust?

    NASA Astrophysics Data System (ADS)

    Toy, Virginia; Billia, Marco; Easingwood, Richard; Kirilova, Martina; Kluge, Emma; Sauer, Katrina; Sutherland, Rupert; Timms, Nicholas; Townend, John

    2017-04-01

    Our current knowledge of microstructural and mechanical controls on rock resistivity is such that identical magnetotelluric (MT) anomalies could result from a highly mineralized but extinct shear zone, or from an unmineralized, fluid saturated, active shear zone. In pursuit of the ability to interpret the structure and activity (rather than just the presence) of buried geological structures from electromagnetic data, we are investigating correlations between rock structure and electrical properties of ductile shear zone rocks recovered from the active Alpine Fault Zone, New Zealand. Multi-scale measurements of resistivity exist for this zone: its ductile portions have anomalously high electrical conductivity identified in MT models constructed as part of the South Island Geophysical Transect (SIGHT). Additionally wireline resistivities were measured in situ to 820 m depth during the recent Deep Fault Drilling Project (DFDP-2), and resisistivity of hand samples has been measured at laboratory conditions [Kluge et al., Abstract EGU2017-10139]. In exhumed and borehole samples, the distributions and arrangements of conductivity carriers - graphite, amorphous carbon, and grain boundary pores that would have contained brines or other conductive fluids at depth, have been characterised. These vary systematically according to the total ductile shear strain they have accommodated [Kirilova et al., Abstract EGU2017-5773; Sauer et al., Abstract EGU2017-10485]. Transmission electron microscopy analyses of grain boundaries also indicate that they contain carbon. The next phases of our investigation involve: (i) construction of crustal fluid composition models by quantitative microstructural and compositional/mineralogical mapping of fluid remnants and their solid residues and calibration of these using in situ measurements of fluid composition in DFDP-2 at depths to 820 m; (ii) calculation of resistivities for real microstructures based on electrical properties of the individual component minerals and fluids - for microstructures fully characterised in three-dimensions; (iii) measurement of the effects of dynamic linking of phases during ductile creep of solid rock on complex resistivity of DFDP samples at a range of realistic crustal temperatures and pressures. A particular challenge in this study is to determine appropriate scaling relationships of electrical properties among samples, boreholes, and MT models because dielectric constants of minerals depend on frequency of the imposed current, which varies with scale and, consequently, measurement method. We invite discussion of strategies to overcome this.

  12. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    NASA Astrophysics Data System (ADS)

    Kou, Jisheng; Sun, Shuyu

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.

  13. Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kou, Jisheng; Sun, Shuyu, E-mail: shuyu.sun@kaust.edu.sa; School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049

    2016-08-01

    In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng–Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from themore » microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young–Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young–Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young–Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests are carried out to verify the effectiveness of the proposed multi-scale method.« less

  14. BIGHORN Computational Fluid Dynamics Theory, Methodology, and Code Verification & Validation Benchmark Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yidong; Andrs, David; Martineau, Richard Charles

    This document presents the theoretical background for a hybrid finite-element / finite-volume fluid flow solver, namely BIGHORN, based on the Multiphysics Object Oriented Simulation Environment (MOOSE) computational framework developed at the Idaho National Laboratory (INL). An overview of the numerical methods used in BIGHORN are discussed and followed by a presentation of the formulation details. The document begins with the governing equations for the compressible fluid flow, with an outline of the requisite constitutive relations. A second-order finite volume method used for solving the compressible fluid flow problems is presented next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation for timemore » integration is also presented. The multi-fluid formulation is being developed. Although multi-fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems. Due to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and can accommodate both multi-species and multi-phase formulations. This document also presents a suite of verification & validation benchmark test problems for BIGHORN. The intent for this suite of problems is to provide baseline comparison data that demonstrates the performance of the BIGHORN solution methods on problems that vary in complexity from laminar to turbulent flows. Wherever possible, some form of solution verification has been attempted to identify sensitivities in the solution methods, and suggest best practices when using BIGHORN.« less

  15. Relative resolution: A hybrid formalism for fluid mixtures.

    PubMed

    Chaimovich, Aviel; Peter, Christine; Kremer, Kurt

    2015-12-28

    We show here that molecular resolution is inherently hybrid in terms of relative separation. While nearest neighbors are characterized by a fine-grained (geometrically detailed) model, other neighbors are characterized by a coarse-grained (isotropically simplified) model. We notably present an analytical expression for relating the two models via energy conservation. This hybrid framework is correspondingly capable of retrieving the structural and thermal behavior of various multi-component and multi-phase fluids across state space.

  16. Relative resolution: A hybrid formalism for fluid mixtures

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Peter, Christine; Kremer, Kurt

    2015-12-01

    We show here that molecular resolution is inherently hybrid in terms of relative separation. While nearest neighbors are characterized by a fine-grained (geometrically detailed) model, other neighbors are characterized by a coarse-grained (isotropically simplified) model. We notably present an analytical expression for relating the two models via energy conservation. This hybrid framework is correspondingly capable of retrieving the structural and thermal behavior of various multi-component and multi-phase fluids across state space.

  17. Carbonate Mineral Assemblages as Inclusions in Yakutian Diamonds: TEM Verifications

    NASA Astrophysics Data System (ADS)

    Logvinova, A. M.; Wirth, R.; Sobolev, N. V.; Taylor, L. A.

    2014-12-01

    Carbonate mineral inclusions are quite rare in diamonds from the upper mantle, but are evidence for a carbonate abundance in the mantle. It is believed that such carbonatitic inclusions originated from high-density fluids (HDFs) that were enclosed in diamond during its growth. Using TEM and EPMA, several kinds of carbonate inclusions have been identified in Yakutian diamonds : aragonite, dolomite, magnesite, Ba-, Sr-, and Fe-rich carbonates. Most of them are represented by multi-phase inclusions of various chemically distinct carbonates, rich in Ca, Mg, and K and associated with minor amounts of silicate, oxide, saline, and volatile phases. Volatiles, leaving some porosity, played a significant role in the diamond growth. A single crystal of aragonite (60μm) is herein reported for the first time. This inclusion is located in the center of a diamond from the Komsomolskaya pipe. Careful CL imaging reveals the total absence of cracks around the aragonite inclusion - i.e., closed system. This inclusion has been identified by X-ray diffraction and microprobe analysis. At temperatures above 1000 0C, aragonite is only stable at high pressures of 5-6 GPa. Inside this aragonite, we observed nanocrystalline inclusions of titanite, Ni-rich sulfide, magnetite, water-bearing Mg-silicate, and fluid bubbles. Dolomite is common in carbonate multi-phase inclusions in diamonds from the Internatsionalnaya, Yubileinaya, and Udachnaya kimberlite pipes. Alluvial diamonds of the northeastern Siberian Platform are divided into two groups based on the composition of HDFs: 1) Mg-rich multi-phase inclusions (60% magnesite + dolomite + Fe-spinel + Ti-silicate + fluid bubbles); and 2) Ca-rich multi-phase inclusions (Ca,Ba-, Ca,Sr-, Ca,Fe-carbonates + Ti-silicate + Ba-apatite + fluid bubbles). High-density fluids also contain K. Volatiles in the fluid bubbles are represented by water, Cl, F, S, CO2, CH4, and heavy hydrocarbons. Origin of the second group of HDFs may be related to the non-silicate carbonatitic melt. We consider the primary hydrous, Сa-rich and Mg-poor carbonate melts as having formed in subducted oceanic crust. Variations of carbonate-inclusion compositions among diamonds indicate the variability in the source media during the formation of diamond and may be the result of metasomatic interaction with host rocks.

  18. A Generalized Multi-Phase Framework for Modeling Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet

    2003-01-01

    A generalized multi-phase formulation for cavitation in fluids operating at temperatures elevated relative to their critical temperatures is presented. The thermal effects and the accompanying property variations due to phase change are modeled rigorously. Thermal equilibrium is assumed and fluid thermodynamic properties are specified along the saturation line using the NIST-12 databank. Fundamental changes in the physical characteristics of the cavity when thermal effects become pronounced are identified; the cavity becomes more porous, the interface less distinct, and has increased entrainment when temperature variations are present. Quantitative estimates of temperature and pressure depressions in both liquid nitrogen and liquid hydrogen were computed and compared with experimental data of Hord for hydrofoils. Excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable. Liquid nitrogen cavities were consistently found to be in thermal equilibrium while liquid hydrogen cavities exhibited small, but distinct, non-equilibrium effects.

  19. Spin echo SPI methods for quantitative analysis of fluids in porous media.

    PubMed

    Li, Linqing; Han, Hui; Balcom, Bruce J

    2009-06-01

    Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the spatially resolved T(2) distribution. These 1D images do not suffer from a T(2) related blurring. The above SE-SPI measurements are combined to generate 1D images of the local saturation and T(2) distribution as a function of saturation, upon centrifugation of petroleum reservoir core samples. The logarithm mean T(2) is observed to shift linearly with water saturation. This new reservoir core analysis measurement may provide a valuable calibration of the Coates equation for irreducible water saturation, which has been widely implemented in NMR well logging measurements.

  20. Multi-fluid MHD Study of the Solar Wind Interaction with Mars' Upper Atmosphere during the 2015 March 8th ICME Event

    NASA Astrophysics Data System (ADS)

    Dong, C.; Ma, Y.; Bougher, S. W.; Toth, G.; Nagy, A. F.; Halekas, J. S.; Dong, Y.; Curry, S.; Luhmann, J. G.; Brain, D. A.; Connerney, J. E. P.; Espley, J. R.; Mahaffy, P. R.; Benna, M.; McFadden, J. P.; Mitchell, D. L.; DiBraccio, G. A.; Lillis, R. J.; Jakosky, B. M.; Grebowsky, J. M.

    2015-12-01

    The 3-D Mars multi-fluid BATS-R-US MHD code is used to study the solar wind interaction with the Martian upper atmosphere during the 2015 March 8th interplanetary coronal mass ejection (ICME). We studied four steady-state cases, corresponding to three major ICME phases: pre-ICME phase (Case 1), sheath phase (Cases 2--3), and ejecta phase (Case 4). Detailed data-model comparisons demonstrate that the simulation results are in good agreement with Mars Atmosphere and Volatile EvolutioN (MAVEN) measurements, indicating that the multi-fluid MHD model can reproduce most of the features observed by MAVEN, thus providing confidence in the estimate of ion escape rates from its calculation. The total ion escape rate is increased by an order of magnitude, from 2.05×1024 s-1 (pre-ICME phase) to 2.25×1025 s-1 (ICME sheath phase), during this time period. The calculated ion escape rates were used to examine the relative importance of the two major ion loss channels from the planet: energetic pickup ion loss through the dayside plume and cold ionospheric ion loss through the nightside plasma wake region. We found that the energetic pickup ions escaping from the dayside plume could be as much as ~23% of the total ion loss prior to the ICME arrival. Interestingly, the tailward ion escape rate is significantly increased at the ejecta phase, leading to a reduction of the dayside ion escape to ~5% of the total ion loss. Under such circumstance, the cold ionospheric ions escaping from the plasma wake comprise the majority of the ion loss from the planet. Furthermore, by comparing four simulation results along the same MAVEN orbit, we note that there is no significant variation in the Martian lower ionosphere. Finally, both bow shock and magnetic pileup boundary (BS, MPB) locations are decreased from (1.2 RMars, 1.57 RMars) at the pre-ICME phase to (1.16 RMars, 1.47 RMars) respectively during the sheath phase along the dayside Sun-Mars line. MAVEN has provided a great opportunity to study the evolution of the Martian atmosphere and climate over its history. A large quantity of useful data has been returned for future studies. These kinds of data-model comparisons can help the community to better understand the Martian upper atmosphere response to the (extreme) variation in the solar wind and its interplanetary environment from a global perspective.

  1. Non-Invasive Characterization Of A Flowing Multi-Phase Fluid Using Ultrasonic Interferometry

    DOEpatents

    Sinha, Dipen N.

    2005-11-01

    An apparatus for noninvasively monitoring the flow and/or the composition of a flowing liquid using ultrasound is described. The position of the resonance peaks for a fluid excited by a swept-frequency ultrasonic signal have been found to change frequency both in response to a change in composition and in response to a change in the flow velocity thereof. Additionally, the distance between successive resonance peaks does not change as a function of flow, but rather in response to a change in composition. Thus, a measurement of both parameters (resonance position and resonance spacing), once calibrated, permits the simultaneous determination of flow rate and composition using the apparatus and method of the present invention.

  2. Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2014-03-01

    We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.

  3. Experience in using a numerical scheme with artificial viscosity at solving the Riemann problem for a multi-fluid model of multiphase flow

    NASA Astrophysics Data System (ADS)

    Bulovich, S. V.; Smirnov, E. M.

    2018-05-01

    The paper covers application of the artificial viscosity technique to numerical simulation of unsteady one-dimensional multiphase compressible flows on the base of the multi-fluid approach. The system of the governing equations is written under assumption of the pressure equilibrium between the "fluids" (phases). No interfacial exchange is taken into account. A model for evaluation of the artificial viscosity coefficient that (i) assumes identity of this coefficient for all interpenetrating phases and (ii) uses the multiphase-mixture Wood equation for evaluation of a scale speed of sound has been suggested. Performance of the artificial viscosity technique has been evaluated via numerical solution of a model problem of pressure discontinuity breakdown in a three-fluid medium. It has been shown that a relatively simple numerical scheme, explicit and first-order, combined with the suggested artificial viscosity model, predicts a physically correct behavior of the moving shock and expansion waves, and a subsequent refinement of the computational grid results in a monotonic approaching to an asymptotic time-dependent solution, without non-physical oscillations.

  4. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    NASA Astrophysics Data System (ADS)

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles; Rousselle, François; Renaud, Christophe

    2014-10-01

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan & Chen [1] [2] (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence to isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented [4] [5]. Multi-range interactions have been used for SC model [8], but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong & Cheng [6] [7]. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.

  5. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles

    2014-10-06

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan and Chen (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence tomore » isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented. Multi-range interactions have been used for SC model, but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong and Cheng. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.« less

  6. Measurement of average density and relative volumes in a dispersed two-phase fluid

    DOEpatents

    Sreepada, Sastry R.; Rippel, Robert R.

    1992-01-01

    An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.

  7. Experimental investigation of the flow dynamics and rheology of complex fluids in pipe flow by hybrid multi-scale velocimetry

    NASA Astrophysics Data System (ADS)

    Haavisto, Sanna; Cardona, Maria J.; Salmela, Juha; Powell, Robert L.; McCarthy, Michael J.; Kataja, Markku; Koponen, Antti I.

    2017-11-01

    A hybrid multi-scale velocimetry method utilizing Doppler optical coherence tomography in combination with either magnetic resonance imaging or ultrasound velocity profiling is used to investigate pipe flow of four rheologically different working fluids under varying flow regimes. These fluids include water, an aqueous xanthan gum solution, a softwood fiber suspension, and a microfibrillated cellulose suspension. The measurement setup enables not only the analysis of the rheological (bulk) behavior of a studied fluid but gives simultaneously information on their wall layer dynamics, both of which are needed for analyzing and solving practical fluid flow-related problems. Preliminary novel results on rheological and boundary layer flow properties of the working fluids are reported and the potential of the hybrid measurement setup is demonstrated.

  8. An innovative multi-gap clutch based on magneto-rheological fluids and electrodynamic effects: magnetic design and experimental characterization

    NASA Astrophysics Data System (ADS)

    Rizzo, R.

    2017-01-01

    In this paper an innovative multi-gap magnetorheological clutch is described. It is inspired by a device previously developed by the author’s research group and contains a novel solution based on electrodynamic effects, capable to considerably improve the transmissible torque during the engagement phase. Since this (transient) phase is characterized by a non-zero angular speed between the two clutch shafts, the rotation of a permanent magnets system, used to excite the fluid, induces eddy currents on some conductive material strategically positioned in the device. As a consequence, an electromagnetic torque is produced which is added to the torque transmitted by the magnetorheological fluid only. Once the clutch is completely engaged and the relative speed between the two shafts is zero, the electrodynamic effects vanish and the device operates like a conventional magnetorheological clutch. The system is investigated and designed by means a 3D FEM model and the performance of the device is experimentally validated on a prototype.

  9. Simulations of Cavitating Cryogenic Inducers

    NASA Technical Reports Server (NTRS)

    Dorney, Dan (Technical Monitor); Hosangadi, Ashvin; Ahuja, Vineet; Ungewitter, Ronald J.

    2004-01-01

    Simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss, numbers extending from single-phase flow conditions through the critical head break down point are discussed. The flow characteristics and performance of a subscale geometry designed for water testing are compared with the fullscale configuration that employs LOX. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified. The simulations have been performed using the CRUNCH CFD[R] code that has a generalized multi-element unstructured framework suitable for turbomachinery applications. An advanced multi-phase formulation for cryogenic fluids that models temperature depression and real fluid property variations is employed. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils; excellent estimates of the leading edge temperature and pressure depression were obtained while the comparisons in the cavity closure region were reasonable.

  10. Experimental multi-phase CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.J.; Koksalan, T.

    2004-01-01

    Long-term CO2 saturated brine-rock experiments were conducted to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration mineral phases within deep-saline aquifers. Experimental results were consistent with theoretical thermodynamic calculations when CO2-saturated brines were reacted with limestone rocks. The CO2-saturated brine-limestone reactions were characterized by compositional and mineralogical-changes in the aquifer fluid and formation rocks that were dependent on initial brine composition as were the changes in formation porosity, especially dissolved sulfate. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone rocks relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions occured on a measurable but kinetically slow time scale at 120??C.

  11. Validity of Molecular Tagging Velocimetry in a Cavitating Flow for Turbopump Analysis

    NASA Astrophysics Data System (ADS)

    Kuzmich, Kayla; Bohl, Doug

    2012-11-01

    This research establishes multi-phase molecular tagging velocimetry (MTV) use and explores its limitations. The flow conditions and geometry in the inducer of an upper stage liquid Oxygen (LOX)/LH2 engine frequently cause cavitation which decreases turbopump performance. Complications arise in performing experiments in liquid hydrogen and oxygen due to high costs, high pressures, extremely low fluid temperatures, the presence of cavitation, and associated safety risks. Due to the complex geometry and hazardous nature of the fluids, a simplified throat geometry with water as a simulant fluid is used. Flow characteristics are measured using MTV, a noninvasive flow diagnostic technique. MTV is found to be an applicable tool in cases of low cavitation. Highly cavitating flows reflect and scatter most of the laser beam disallowing penetration into the cavitation cloud. However, data can be obtained in high cavitation cases near the cloud boundary layer. Distribution A: Public Release, Public Affairs Clearance Number: 12654

  12. The partitioning of Fe, Ni, Cu, Pt, and Au between sulfide, metal, and fluid phases: A pilot study

    NASA Astrophysics Data System (ADS)

    Ballhaus, C.; Ryan, C. G.; Mernagh, T. P.; Green, D. H.

    1994-01-01

    This paper describes new experimental and analytical techniques to study element partitioning behavior between crystalline material and a late- to post-magmatic fluid phase. Samples of the fluid phase are isolated at experimental run conditions as synthetic fluid in quartz. Individual fluid inclusions are later analyzed for dissolved metals using Proton Induced X-ray Emission (PIXE). Back reactions between fluid and solid phases during quenching are prevented because the fluid is isolated at the experimental pressure, temperature ( P, T) conditions before quenching occurs. The technique is applied to study the partitioning of chalcophile elements (Fe, Ni, Cu, Pt and Au) between sulfide phases, metal alloys and supercritical SiO 2-NaCl-saturated H2O ± CH4- CO2- H2S fluids. Synthetic Ni-Cu-rich monosulfide solid solution (mss) doped with PtS or Au is packed in a quartz capsule and, together with a hydrogen buffer capsule and compounds to generate a fluid phase, welded shut in an outer Pt or Au metal capsule. The fluid phase is generated by combustion and reaction of various C-H-O fluid components during heating. Depending on capsule material and sample composition, the run products consist of platiniferous or auriferous mss, Pt-Fe, or ( Au, Cu) alloy phases, PtS, Fe 3O 4, sometimes a Cu-rich sulfide melt, and a fluid phase. Samples of the fluid are trapped in the walls of the quartz sample capsule as polyphase fluid inclusions. All phases are now available for analysis: fluid speciation is analyzed by piercing the outer metal capsule under vacuum and feeding the released fluid into a mass spectrometer. Phases and components within fluid inclusions are identified with Raman spectroscopy. Platinum and gold in solid solution in mss are determined with a CAMECA SX50 electron microanalyser. Metal contents trapped in selected fluid inclusions are determined quantitatively by in situ analysis with a proton microprobe using PIXE and a correction procedure specifically developed for quantitative fluid inclusion analysis. Initial results of metal solubilities in the fluid are as follows. Iron decreases from above 6,000 ppm under reduced conditions in the presence of H 2S in the fluid, to less than 1,000 ppm if hematite is stable in the crystalline run product. Copper and gold concentrations in the fluid range from about 600 to over 1200 and from 150 to about 270 ppm, respectively. The solubilities of these two metals in NaCl-saturated fluids are apparently independent of fluid speciations covered here. Nickel is mostly below detection limit (<10 ppm) and apparently poorly soluble in high-temperature fluid phases. Platinum concentrations in fluid inclusions are highly variable even among fluid inclusions of single runs, possibly because Pt tends to form multi-atom complexes in fluid phases.

  13. The Pore-scale modeling of multiphase flows in reservoir rocks using the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Mu, Y.; Baldwin, C. H.; Toelke, J.; Grader, A.

    2011-12-01

    Digital rock physics (DRP) is a new technology to compute the physical and fluid flow properties of reservoir rocks. In this approach, pore scale images of the porous rock are obtained and processed to create highly accurate 3D digital rock sample, and then the rock properties are evaluated by advanced numerical methods at the pore scale. Ingrain's DRP technology is a breakthrough for oil and gas companies that need large volumes of accurate results faster than the current special core analysis (SCAL) laboratories can normally deliver. In this work, we compute the multiphase fluid flow properties of 3D digital rocks using D3Q19 immiscible LBM with two relaxation times (TRT). For efficient implementation on GPU, we improved and reformulated color-gradient model proposed by Gunstensen and Rothmann. Furthermore, we only use one-lattice with the sparse data structure: only allocate memory for pore nodes on GPU. We achieved more than 100 million fluid lattice updates per second (MFLUPS) for two-phase LBM on single Fermi-GPU and high parallel efficiency on Multi-GPUs. We present and discuss our simulation results of important two-phase fluid flow properties, such as capillary pressure and relative permeabilities. We also investigate the effects of resolution and wettability on multiphase flows. Comparison of direct measurement results with the LBM-based simulations shows practical ability of DRP to predict two-phase flow properties of reservoir rock.

  14. Online capacitive densitometer

    DOEpatents

    Porges, K.G.

    1988-01-21

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained. 7 figs.

  15. Online capacitive densitometer

    DOEpatents

    Porges, Karl G.

    1990-01-01

    This invention is an apparatus for measuring fluid density of mixed phase fluid flow. The apparatus employs capacitive sensing of the mixed phased flow combined with means for uniformizing the electric field between the capacitor plates to account for flow line geometry. From measurement of fluid density, the solids feedrate can be ascertained.

  16. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  17. Cu-Mo-Au mineralization in Qarachilar area, Qaradagh batholith (NW Iran): Fluid inclusion and stable isotope studies and Re-Os dating

    NASA Astrophysics Data System (ADS)

    Simmonds, Vartan; Moazzen, Mohssen

    2015-04-01

    The Qaradagh batholith is located in NW Iran, neighboring the Meghri-Ordubad granitoid in southern Armenia. This magmatic complex is emplaced in the northwestern part of the Urumieh-Dokhtar magmatic arc, which formed through north-eastward subduction of Neo-Tethyan oceanic crust beneath the central Iranian domain in the late-Mesozoic and early-Cenozoic and hosts most of the porphyry copper deposits and prospects in Iran, such as Sarcheshmeh and Sungun. The Qaradagh batholith is comprised of Eocene-Oligocene intrusive rocks occurring as multi-episode stocks, where the dominant rock type is granodiorite. Hydrothermal alterations have also occurred in these rocks including potassic, phyllic-sericitic, argillic and propylitic alterations and silicification. These alterations are accompanied by vein-type and disseminated Cu, Mo and Au mineralization. The Qarachilar area is located in the central part of the Qaradagh batholith, which hosts mono-mineralic and quartz-sulfide veins and veinlets (several mm to <1 m thick and 50-700 m long) and silicic zones containing Cu-Mo-Au-Ag ore minerals (mainly pyrite, chalcopyrite and molybdenite). Microthermometric studies on the fluid inclusions of quartz-sulfide veins-veinlets show that the salinity ranges between 15-70 wt% NaCl, with the highest peak between 35-40 wt% NaCl. The homogenization temperature for primary 2-phase and multi-phase inclusions ranges between 220 and 540 °C. Two-phase inclusions homogenizing by vapor disappearance have TH values between 280 and 440 °C (mainly between 300 and 360 °C). A few of them homogenize into vapor state with TH values of 440-540 °C. Multi-phase inclusions show 3 types of homogenization. Most of them homogenize by simultaneous disappearance of vapor bubble and dissolution of halite daughter crystal, for which the TH value is 240-420 °C (mostly between 260 and 340 °C). Those homogenizing by halite dissolution show TH values about 220-360 °C and a few homogenizing by vapor disappearance display TH values between 300 and 360 °C. The data-point trend in TH(L-V)-Salinity plot may signify boiling of low-salinity fluids and distillation by superficial fluids. Therefore, it can be concluded that the ore-forming magmatic-hydrothermal aqueous fluids have most likely experienced boiling and also mixed with low temperature and low salinity superficial fluids. Occurrence of boiling is also supported by the coexistence of liquid-rich and vapor-rich 2-phase inclusions as well as multi-phase halite-bearing inclusions which homogenize in a similar range of TH. The calculated minimum pressure at the time of entrapment is estimated about 50 to 120 bar, which is equal to the hydrostatic depth of 500-1100 m. Stable isotope studies of O, H and S on the quartz and sulfide samples taken from quartz-sulfide veins-veinlets reveal a magmatic origin for the ore-bearing fluid and its sulfur content. The δ18O values for quartz and fluid are about 11.13-12.47 ‰ and 5.78-6.89 ‰ (SMOW), respectively, the δD values are about -93 and -50 ‰ and the δ34S values of sulfide minerals are about -1.37-0.49‰ (VCDT). Re-Os model ages calculated for molybdenite samples range between 25.19±0.19 and 31.22±0.28 Ma, referring to middle-late Oligocene, contemporaneous with the third metallogenic epoch in the Lesser Caucasus (especially Kadjaran and Paragachai PCDs in South Armenian Block).

  18. Study of a Multi-phase Hybrid Heat Exchanger-Reaction (HEX Reactor): Part 1 - Experimental Characterization

    DTIC Science & Technology

    2014-01-01

    considerably higher frictional losses than if the liquid and gas phases were simply injected at the inlet as in references [11,12]. Although the...individual channel face opposite directions to form a tor- tuous network of crisscrossing passageways. Fluid streams direc - ted along the upper and...gravity SP single-phase TP two-phase c corrugated section e equivalent g gas phase h hydraulic l liquid phase pp port-to-port N. Niedbalski et al

  19. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    PubMed Central

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599

  20. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.

  1. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, Bernard M.; Ketterson, John B.; Bohanon, Thomas M.; Mikrut, John M.

    1994-01-01

    A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.

  2. Innovative Multi-Environment, Multimode Thermal Control System

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.; Hasan, Mohammad H.

    2007-01-01

    Innovative multi-environment multimode thermal management architecture has been described that is capable of meeting widely varying thermal control requirements of various exploration mission scenarios currently under consideration. The proposed system is capable of operating in a single-phase or two-phase mode rejecting heat to the colder environment, operating in a two-phase mode with heat pump for rejecting heat to a warm environment, as well as using evaporative phasechange cooling for the mission phases where the radiator is incapable of rejecting the required heat. A single fluid loop can be used internal and external to the spacecraft for the acquisition, transport and rejection of heat by the selection of a working fluid that meets NASA safety requirements. Such a system may not be optimal for each individual mode of operation but its ability to function in multiple modes may permit global optimization of the thermal control system. The architecture also allows flexibility in partitioning of components between the various Constellation modules to take advantage of operational requirements in various modes consistent with the mission needs. Preliminary design calculations using R-134 as working fluid show the concept to be feasible to meet the heat rejection requirements that are representative of the Crew Exploration Vehicle and Lunar Access Module for nominal cases. More detailed analyses to establish performance under various modes and environmental conditions are underway.

  3. Universality Results for Multi-layer Radial Hele-Shaw Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig; Daripa Research Team

    2014-03-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface separating two immiscible fluids. We study linear stability of this displacement process in multi-layer radial Hele-Shaw geometry involving an arbitrary number of immiscible fluid phases. Universal stability results have been obtained and applied to design displacement processes that are considerably less unstable than the pure Saffman-Taylor case. In particular, we derive universal formula which gives specific values of the viscosities of the fluid layers corresponding to smallest unstable band. Other similar universal results will also be presented. The talk is based on ongoing work. Supported by an NPRP Grant # 08-777-1-141 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors.

  4. A Numerical Study of Factors Affecting Fracture-Fluid Cleanup and Produced Gas/Water in Marcellus Shale: Part II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay

    Horizontal wells combined with successful multi-stage hydraulic fracture treatments are currently the most established method for effectively stimulating and enabling economic development of gas bearing organic-rich shale formations. Fracture cleanup in the Stimulated Reservoir Volume (SRV) is critical to stimulation effectiveness and long-term well performance. However, fluid cleanup is often hampered by formation damage, and post-fracture well performance frequently falls below expectations. A systematic study of the factors that hinder fracture fluid cleanup in shale formations can help optimize fracture treatments and better quantify long term volumes of produced water and gas. Fracture fluid cleanup is a complex process influencedmore » by multi-phase flow through porous media (relative permeability hysteresis, capillary pressure etc.), reservoir rock and fluid properties, fracture fluid properties, proppant placement, fracture treatment parameters, and subsequent flowback and field operations. Changing SRV and fracture conductivity as production progresses further adds to the complexity of this problem. Numerical simulation is the best, and most practical approach to investigate such a complicated blend of mechanisms, parameters, their interactions, and subsequent impact on fracture fluid cleanup and well deliverability. In this paper, a 3-dimensional, 2-phase, dual-porosity model was used to investigate the impact of multiphase flow, proppant crushing, proppant diagenesis, shut-in time, reservoir rock compaction, gas slippage, and gas desorption on fracture fluid cleanup, and well performance in Marcellus shale. The research findings have shed light on the factors that substantially constrains efficient fracture fluid cleanup in gas shales, and provided guidelines for improved fracture treatment designs and water management.« less

  5. Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Cheng-Hsien; Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan; Low, Ying Min, E-mail: ceelowym@nus.edu.sg

    2016-05-15

    Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial,more » and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.« less

  6. Multi-scale X-ray Microtomography Imaging of Immiscible Fluids After Imbibition

    NASA Astrophysics Data System (ADS)

    Garing, C.; de Chalendar, J.; Voltolini, M.; Ajo Franklin, J. B.; Benson, S. M.

    2015-12-01

    A major issue for CO2 storage security is the efficiency and long-term reliability of the trapping mechanisms occurring in the reservoir where CO2 is injected. Residual trapping is one of the key processes for storage security beyond the primary stratigraphic seal. Although classical conceptual models of residual fluid trapping assume that disconnected ganglia are permanently immobilized, multiple mechanisms exist which could allow the remobilization of residually trapped CO2. The aim of this study is to quantify fluid phases saturation, connectivity and morphology after imbibition using x-ray microtomography in order to evaluate potential changes in droplets organization due to differences in capillary pressure between disconnected ganglia. Particular emphasis is placed on the effect of image resolution. Synchrotron-based x-ray microtomographic datasets of air-water spontaneous imbibition were acquired in sintered glass beads and sandstone samples with voxel sizes varying from 0.64 to 4.44 μm. The results show that for both sandstones the residual air phase is homogeneously distributed within the entire pore space and consists of disconnected clusters of multiple sizes and morphologies. The multi-scale analysis of subsamples of few pores and throats imaged at the same location of the sample reveals significant variations in the estimation of connectivity, size and shape of the fluid phases. This is particularly noticeable when comparing the results from the images with voxel sizes above 1 μm with the results from the images acquired with voxel sizes below 1 μm.

  7. STAR-CCM+ Verification and Validation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pointer, William David

    2016-09-30

    The commercial Computational Fluid Dynamics (CFD) code STAR-CCM+ provides general purpose finite volume method solutions for fluid dynamics and energy transport. This document defines plans for verification and validation (V&V) of the base code and models implemented within the code by the Consortium for Advanced Simulation of Light water reactors (CASL). The software quality assurance activities described herein are port of the overall software life cycle defined in the CASL Software Quality Assurance (SQA) Plan [Sieger, 2015]. STAR-CCM+ serves as the principal foundation for development of an advanced predictive multi-phase boiling simulation capability within CASL. The CASL Thermal Hydraulics Methodsmore » (THM) team develops advanced closure models required to describe the subgrid-resolution behavior of secondary fluids or fluid phases in multiphase boiling flows within the Eulerian-Eulerian framework of the code. These include wall heat partitioning models that describe the formation of vapor on the surface and the forces the define bubble/droplet dynamic motion. The CASL models are implemented as user coding or field functions within the general framework of the code. This report defines procedures and requirements for V&V of the multi-phase CFD capability developed by CASL THM. Results of V&V evaluations will be documented in a separate STAR-CCM+ V&V assessment report. This report is expected to be a living document and will be updated as additional validation cases are identified and adopted as part of the CASL THM V&V suite.« less

  8. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    NASA Astrophysics Data System (ADS)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  9. Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics

    DOEpatents

    Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.

    1994-04-12

    A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.

  10. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Thanh X. (Inventor); Carl, James R. (Inventor)

    1997-01-01

    Method and apparatus for making measurements on fluids related to their complex permeability are disclosed. A microwave probe is provided for exposure to the fluids. The probe can be non-intrusive or can also be positioned at the location where measurements are to be made. The impedance of the probe is determined. in part. by the complex dielectric constant of the fluids at the probe. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids. Multiple probes may be selectively positioned to monitor the behavior of the fluids including their flow rate. Fluids may be identified as between two or more different fluids as well as multiple phases of the same fluid based on differences between their complex permittivities.

  11. Materials science of the gel to fluid phase transition in a supported phospholipid bilayer.

    PubMed

    Xie, Anne Feng; Yamada, Ryo; Gewirth, Andrew A; Granick, Steve

    2002-12-09

    We report the results of in situ AFM measurements examining the phase transition of bilayers formed from the zwitterionic phospholipid, DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, supported on mica. The images show that the fluid to gel phase transition process features substantial tearing of the bilayer due to the density change between the two phases. The gel to fluid transition is strongly affected by the resultant stress introduced into the gel phase, which changes the degree of cooperativity, the shape of developing fluid phase regions, and the course of the transition.

  12. Persistent Homology to describe Solid and Fluid Structures during Multiphase Flow

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Robins, V.; Liu, Z.; Armstrong, R. T.; Sheppard, A.

    2017-12-01

    The question of how to accurately and effectively characterize essential fluid and solid distributions and structures is a long-standing topic within the field of porous media and fluid transport. For multiphase flow applications, considerable research effort has been made to describe fluid distributions under a range of conditions; including quantification of saturation levels, fluid-fluid pressure differences and interfacial areas, and fluid connectivity. Recent research has effectively used topological metrics to describe pore space and fluid connectivity, with researchers demonstrating links between pore-scale nonwetting phase topology to fluid mobilization and displacement mechanisms, relative permeability, fluid flow regimes, and thermodynamic models of multiphase flow. While topology is clearly a powerful tool to describe fluid distribution, topological metrics by definition provide information only on the connectivity of a phase, not its geometry (shape or size). Physical flow characteristics, e.g. the permeability of a fluid phase within a porous medium, are dependent on the connectivity of the pore space or fluid phase as well as the size of connections. Persistent homology is a technique which provides a direct link between topology and geometry via measurement of topological features and their persistence from the signed Euclidean distance transform of a segmented digital image (Figure 1). We apply persistent homology analysis to measure the occurrence and size of pore-scale topological features in a variety of sandstones, for both the dry state and the nonwetting phase fluid during two-phase fluid flow (drainage and imbibition) experiments, visualized with 3D X-ray microtomography. The results provide key insights into the dominant topological features and length scales of a media which control relevant field-scale engineering properties such as fluid trapping, absolute permeability, and relative permeability.

  13. Phase field modeling of crack propagations in fluid-saturated porous media with anisotropic surface energy

    NASA Astrophysics Data System (ADS)

    Na, S.; Sun, W.; Yoon, H.; Choo, J.

    2016-12-01

    Directional mechanical properties of layered geomaterials such as shale are important on evaluating the onset and growth of fracture for engineering applications such as hydraulic fracturing, geologic carbon storage, and geothermal recovery. In this study, a continuum phase field modeling is conducted to demonstrate the initiation and pattern of cracks in fluid-saturated porous media. The discontinuity of sharp cracks is formulated using diffusive crack phase field modeling and the anisotropic surface energy is incorporated to account for the directional fracture toughness. In particular, the orientation of bedding in geomaterials with respect to the loading direction is represented by the directional critical energy release rate. Interactions between solid skeleton and fluid are also included to analyze the mechanical behavior of fluid-saturated geologic materials through the coupled hydro-mechanical model. Based on the linear elastic phase field modeling, we also addressed how the plasticity in crack phase field influences the crack patterns by adopting the elasto-plastic model with Drucker-Prager yield criterion. Numerical examples exhibit the features of anisotropic surface energy, the interactions between solid and fluid and the effects of plasticity on crack propagations.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. High-resolution simulations of multi-phase flow in magmatic-hydrothermal systems with realistic fluid properties

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.

    2002-12-01

    Realistic modelling of multi-phase fluid flow, energy and component transport in magmatic-hydrothermal systems is very challenging because hydrological properties of fluids and rocks vary over many orders of magnitude and the geometric complexities of such systems. Furthermore, density dependent component transport and transient permeability variations due to P-T changes and fluid-rock interactions introduce additional difficulties. As a result, the governing equations for the hydrodynamics, energy and component transport, and thermodynamics in magmatic hydrothermal systems are highly non-linear and strongly coupled. Essential requirements of a numerical formulation for such a system are: (1) a treatment of the hydrodynamics that can accurately resolve complex geological structures and represent the highly variable fluid velocities herein, (2) a realistic thermodynamic representation of the fluid properties including the wide P-T-X range of liquid+vapour coexistence for the highly saline fluids, and (3) an accurate handling of the highly contrasting transport properties of the two fluids. We are combining higher order finite-element (FE) methods with total variation diminishing finite volume (TVDFV) methods to model the hydrodynamics and energy and component transport of magmatic hydrothermal systems. Combined FE and TVDFV methods are mass and shock preserving, yield great geometric flexibility in 2D and 3D [2]. Furthermore, efficient matrix solvers can be employed to model fluid flow in geologically realistic structures [5]. The governing equations are linearized by operator-splitting and solved sequentially using a Picard iteration scheme. We chose the system water-NaCl as a realistic proxy for natural fluids occurring in magmatic-hydrothermal systems. An in-depth evaluation of the available experimental and theoretical data led to a consistent and accurate set of formulations for the PVTXH relations that are valid from 0 to 800 C, 0 to 500 MPa, and 0 to 1 XNaCl. Dynamic viscosities are currently approximated by the approach of Palliser and McKibbin [4]. The numerical solutions of the governing equations and the equation of state are embedded in our object-oriented C++ code CSP3D4.0 [6]. Comparisons of the numerical solutions carried out with CSP for solute transport with analytical solutions and classical test cases for density dependent flow (i.e., Elder problem [1]) show very good agreement. The numerical solutions carried out with CSP and the established United States Geological Survey code HYDROTHERM [3] for multi-phase flow and energy transport also yield a very good agreement. Fluid inclusion data can be used to constrain the PTX properties of the hydrothermal fluids in numerical solutions. [1] Journal of Fluid Mechanics 27, 609-623 [2] ANU Mathematical Research Report, MRR01-023 [3] USGS Water Investigations Report 94-4045 [4] Transport in Porous Media 33, 155-171 [5] AAPG Bulletin 80, 1763-1779 [6] CSP User's Guide, Dept. of Earth Sciences ETH Zurich

  15. Device for measuring the fluid density of a two-phase mixture

    DOEpatents

    Cole, Jack H.

    1980-01-01

    A device for measuring the fluid density of a two-phase mixture flowing through a tubular member. A rotor assembly is rotatively supported within the tubular member so that it can also move axially within the tubular member. The rotor assembly is balanced against a pair of springs which exert an axial force in the opposite direction upon the rotor assembly. As a two-phase mixture flows through the tubular member it contacts the rotor assembly causing it to rotate about its axis. The rotor assembly is forced against and partially compresses the springs. Means are provided to measure the rotational speed of the rotor assembly and the linear displacement of the rotor assembly. From these measurements the fluid density of the two-phase mixture is calculated.

  16. Dynamical systems characterization of inertial effects of fluid flow in a curved artery model under pulsatile flow forcing

    NASA Astrophysics Data System (ADS)

    Leggiero, Michael; Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    The main objective of this study was to examine inertial effects in a 180-degree model of curved arteries under pulsatile inflow conditions. Two-component, two-dimensional particle image velocimetery (2C-2D PIV) data were acquired upstream of and at several cross-sectional locations in the curved artery model. A blood-analog fluid comprised of 71% saturated sodium iodide solution, 28% glycerol and 1% distilled water (by volume) was subjected to multi-harmonic pulsatile inflow functions. First, signal time-lag was quantified by cross-correlating the input (voltage-time) supplied to a programmable pump and the output PIV (flow rate-time) measurements. The experiment was then treated as a linear, time-invariant system, and frequency response was estimated for phase shifts across a certain spectrum. Input-output signal dissimilarities were attributable to intrinsic inertial effects of flow. By coupling pressure-time and upstream flow rate-time measurements, the experiment was modeled using system identification methods. Results elucidate the role of inertial effects in fluid flow velocity measurements and the effect of these delays on secondary flow structure detection in a curved artery model. Supported by the NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  17. Parametric Analysis of Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    A parametric study on cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, has been performed. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results in the two-phase regime. Results indicate that parametric changes in receiver gas inlet temperature and receiver heat input effects higher sensitivity to changes in receiver gas exit temperatures.

  18. Modeling Cyclic Phase Change and Energy Storage in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1997-01-01

    Numerical results pertaining to cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, have been reported. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed and results compared with available experimental data. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results for comparisons with GTD data for both the subcooled and two-phase regimes. While qualitative trends were in close agreement for the balanced orbit modes, excellent quantitative agreement was observed for steady-state modes.

  19. Towards building a robust computational framework to simulate multi-physics problems - a solution technique for three-phase (gas-liquid-solid) interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Lucy

    In this talk, we show a robust numerical framework to model and simulate gas-liquid-solid three-phase flows. The overall algorithm adopts a non-boundary-fitted approach that avoids frequent mesh-updating procedures by defining independent meshes and explicit interfacial points to represent each phase. In this framework, we couple the immersed finite element method (IFEM) and the connectivity-free front tracking (CFFT) method that model fluid-solid and gas-liquid interactions, respectively, for the three-phase models. The CFFT is used here to simulate gas-liquid multi-fluid flows that uses explicit interfacial points to represent the gas-liquid interface and for its easy handling of interface topology changes. Instead of defining different levels simultaneously as used in level sets, an indicator function naturally couples the two methods together to represent and track each of the three phases. Several 2-D and 3-D testing cases are performed to demonstrate the robustness and capability of the coupled numerical framework in dealing with complex three-phase problems, in particular free surfaces interacting with deformable solids. The solution technique offers accuracy and stability, which provides a means to simulate various engineering applications. The author would like to acknowledge the supports from NIH/DHHS R01-2R01DC005642-10A1 and the National Natural Science Foundation of China (NSFC) 11550110185.

  20. Advanced computational multi-fluid dynamics: a new model for understanding electrokinetic phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Gulamali, M. Y.; Saunders, J. H.; Jackson, M. D.; Pain, C. C.

    2009-04-01

    We present results from a new computational multi-fluid dynamics code, designed to model the transport of heat, mass and chemical species during flow of single or multiple immiscible fluid phases through porous media, including gravitational effects and compressibility. The model also captures the electrical phenomena which may arise through electrokinetic, electrochemical and electrothermal coupling. Building on the advanced computational technology of the Imperial College Ocean Model, this new development leads the way towards a complex multiphase code using arbitrary unstructured and adaptive meshes, and domains decomposed to run in parallel over a cluster of workstations or a dedicated parallel computer. These facilities will allow efficient and accurate modelling of multiphase flows which capture large- and small-scale transport phenomena, while preserving the important geology and/or surface topology to make the results physically meaningful and realistic. Applications include modelling of contaminant transport in aquifers, multiphase flow during hydrocarbon production, migration of carbon dioxide during sequestration, and evaluation of the design and safety of nuclear reactors. Simulations of the streaming potential resulting from multiphase flow in laboratory- and field-scale models demonstrate that streaming potential signals originate at fluid fronts, and at geologic boundaries where fluid saturation changes. This suggests that downhole measurements of streaming potential may be used to inform production strategies in oil and gas reservoirs. As water encroaches on an oil production well, the streaming-potential signal associated with the water front encompasses the well even when the front is up to 100 m away, so the potential measured at the well starts to change significantly relative to a distant reference electrode. Variations in the geometry of the encroaching water front could be characterized using an array of electrodes positioned along the well, but a good understanding of the local reservoir geology will be required to identify signals caused by the front. The streaming potential measured at a well will be maximized in low-permeability reservoirs produced at a high rate, and in thick reservoirs with low shale content.

  1. Method and Apparatus for Measuring Fluid Flow

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Nguyen, Than X. (Inventor); Carl, James R. (Inventor)

    1995-01-01

    The invention is a method and apparatus for monitoring the presence, concentration, and the movement of fluids. It is based on utilizing electromagnetic measurements of the complex permittivity of the fluids for detecting and monitoring the fluid. More particularly the apparatus uses one or more microwave probes which are placed at the locations where the measurements are to be made. A radio frequency signal is transmitted to the probe and the reflected signal is phase and amplitude detected at a rapid rate for the purpose of identifying the fluids, based on their dielectric constant at the probe. The apparatus can be used for multiple purposes including measures of flow rates, turbulence, dispersion, fluid identification, and changes in flow conditions of multiple fluids or multiple states of a single fluid in a flowline or a holding container. The apparatus includes a probe consisting of two electrical conductors separated by an insulator. A radio frequency signal is communicated to the probe and is reflected back from the portion of the probe exposed to the fluid. The radio frequency signal also provides a reference signal. An oscillator generates a second signal which combined with each of the reference signal and the reflected signal to produce signals of lower frequencies to facilitate filtering and amplifying those signals. The two signals are then mixed in a detector to produce an output signal that is representative of the phase and amplitude change caused by the reflection of the signal at the probe exposed to the fluid. The detector may be a dual phase detector that provides two such output signals that are in phase quadrature. A phase shifter may be provided for selectively changing the phase of the reference signal to improve the sensitivity of at least one of the output signals for more accurate readings and/or for calibration purposes. The two outputs that are in quadrature with respect to each other may be simultaneously monitored to account for drift errors. The output signals are digitized and provided to a computer at a sample rate which may be very high. The computer is operable to identify the fluid based on its complex permittivity as may be useful for identifying the flow rates, determining the fluid mixture ratio, detecting impurities in the fluid, and so forth. Novelty is believed to reside in the use of the real part of complex permittivity to measure small difference in permittivity of the fluid.

  2. Multi-component fluid flow through porous media by interacting lattice gas computer simulation

    NASA Astrophysics Data System (ADS)

    Cueva-Parra, Luis Alberto

    In this work we study structural and transport properties such as power-law behavior of trajectory of each constituent and their center of mass, density profile, mass flux, permeability, velocity profile, phase separation, segregation, and mixing of miscible and immiscible multicomponent fluid flow through rigid and non-consolidated porous media. The considered parameters are the mass ratio of the components, temperature, external pressure, and porosity. Due to its solid theoretical foundation and computational simplicity, the selected approaches are the Interacting Lattice Gas with Monte Carlo Method (Metropolis Algorithm) and direct sampling, combined with particular collision rules. The percolation mechanism is used for modeling initial random porous media. The introduced collision rules allow to model non-consolidated porous media, because part of the kinetic energy of the fluid particles is transfered to barrier particles, which are the components of the porous medium. Having gained kinetic energy, the barrier particles can move. A number of interesting results are observed. Some findings include, (i) phase separation in immiscible fluid flow through a medium with no barrier particles (porosity p P = 1). (ii) For the flow of miscible fluids through rigid porous medium with porosity close to percolation threshold (p C), the flux density (measure of permeability) shows a power law increase ∝ (pC - p) mu with mu = 2.0, and the density profile is found to decay with height ∝ exp(-mA/Bh), consistent with the barometric height law. (iii) Sedimentation and driving of barrier particles in fluid flow through non-consolidated porous medium. This study involves developing computer simulation models with efficient serial and parallel codes, extensive data analysis via graphical utilities, and computer visualization techniques.

  3. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  4. A Raman micro-spectroscopic study of fluid inclusions in yellow danburite

    NASA Astrophysics Data System (ADS)

    Huong, Le T. T.; Krenn, Kurt; Hauzenberger, Christoph A.

    2017-04-01

    Danburite, a calcium borosilicate, CaB2Si2O8, can be associated genetically with rocks of magmatic (pegmatoid), metasomatic (skarn) and sedimentary (evaporite) origin. Yellow danburite belongs to the extremely rare gem group. Recently, several yellow danburite crystals were discovered in an alluvial deposit, in the Luc Yen mining area, northern Vietnam. The identification of sassolite crystals in fluid inclusions points to a pegmatite origin of the Luc Yen danburite (Smirnov et al., 2000) and this confirms with the low-density values of carbon dioxides which were obtained from Raman measurements using the Fermi doublet as a function of fluid density. Materials and Methods Three danburite crystals (158, 3.8 and 3.3 ct) were used for this study. Raman spectra of inclusions were collected in the confocal mode using a Jobin Yvon LabRam HR800 micro-spectrometer equipped with an Olympus BX41 optical microscope and a Si-based CCD (charged-coupled device) detector. Peak analysis of CO2 was performed with an OriginLab 9.0 professional software package, and the peaks were fitted using a Gauss-Lorentz function. Results and Discussion Fluid inclusions arrange as single or along trails inside the danburite crystal. Trails are oriented both parallel and perpendicular to the c-axis of the host crystals, composed of two- or multi-phase inclusions. Two-phase inclusions typically consist of a liquid (H2O-rich) phase and a vapor bubble (CO2) phase that differ in their degrees of fill suggesting heterogeneous entrapment of the dominant fluid during crystal growth. The dominant multi-phase is characterized by multiple sassolite crystals, a liquid H2O phase and a pure CO2 vapor bubble. The sassolite crystals appear usually as colourless pseudohexagonal plates showing more or less perfect crystal faces and vary from 5μm to 50μm in size. Sassolite shows two distinct bands at 500 and 880 cm-1 and two additional bands at 3165 and 3247 cm-1. Raman spectra of CO2 show two main bands at about 1388 cm-1 and 1285 cm 1 which are known as the Fermi diad. The separation between the Fermi diad bands (Δ) was found to be a function of CO2 density in fluid inclusions whereby the separation increases with increasing density of CO2. The Δ values fall in the range from 102.7 to 103.7 cm 1 which corresponds to densities lower than 0.4 g/cm3 (Wang et al., 2011). The low-density CO2 in liquid inclusions in danburite from Luc Yen is in accordance with those found in minerals of granitic pegmatite origin (Bakker and Schilli, 2016). References Bakker R.J. and Schilli S.E., 2016, Mineralogy and Petrology, 110, 43-63. Smirnov S.Z., Peretyazhko I.S., Prokofiev V.Y., Zagorskii V.E., and Shebanin A.P., 2000. Russian Geology and Geophysics, 41(2), 193-205. Wang X., Chou I., Hua W., Robert B., 2011. Geochimica et Cosmochimica Acta, 75, 4080-4093. Acknowledgment The support from ASEA-Uninet is gratefully acknowledged.

  5. Determining Individual Phase Properties in a Multi-phase Q&P Steel using Multi-scale Indentation Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Guang; Choi, Kyoo Sil; Hu, Xiaohua

    2016-01-15

    A new inverse method was developed to predict the stress-strain behaviors of constituent phases in a multi-phase steel using the load-depth curves measured in nanoindentation tests combined with microhardness measurements. A power law hardening response was assumed for each phase, and an empirical relationship between hardness and yield strength was assumed. Adjustment was made to eliminate the indentation size effect and indenter bluntness effect. With the newly developed inverse method and statistical analysis of the hardness histogram for each phase, the average stress-strain curves of individual phases in a quench and partitioning (Q&P) steel, including austenite, tempered martensite and untemperedmore » martensite, were calculated and the results were compared with the phase properties obtained by in-situ high energy X-ray diffraction (HEXRD) test. It is demonstrated that multi-scale instrumented indentation tests together with the new inverse method are capable of determining the individual phase flow properties in multi-phase alloys.« less

  6. Label-free viscosity measurement of complex fluids using reversal flow switching manipulation in a microfluidic channel

    PubMed Central

    Jun Kang, Yang; Ryu, Jeongeun; Lee, Sang-Joon

    2013-01-01

    The accurate viscosity measurement of complex fluids is essential for characterizing fluidic behaviors in blood vessels and in microfluidic channels of lab-on-a-chip devices. A microfluidic platform that accurately identifies biophysical properties of blood can be used as a promising tool for the early detections of cardiovascular and microcirculation diseases. In this study, a flow-switching phenomenon depending on hydrodynamic balancing in a microfluidic channel was adopted to conduct viscosity measurement of complex fluids with label-free operation. A microfluidic device for demonstrating this proposed method was designed to have two inlets for supplying the test and reference fluids, two side channels in parallel, and a junction channel connected to the midpoint of the two side channels. According to this proposed method, viscosities of various fluids with different phases (aqueous, oil, and blood) in relation to that of reference fluid were accurately determined by measuring the switching flow-rate ratio between the test and reference fluids, when a reverse flow of the test or reference fluid occurs in the junction channel. An analytical viscosity formula was derived to measure the viscosity of a test fluid in relation to that of the corresponding reference fluid using a discrete circuit model for the microfluidic device. The experimental analysis for evaluating the effects of various parameters on the performance of the proposed method revealed that the fluidic resistance ratio (RJL/RL, fluidic resistance in the junction channel (RJL) to fluidic resistance in the side channel (RL)) strongly affects the measurement accuracy. The microfluidic device with smaller RJL/RL values is helpful to measure accurately the viscosity of the test fluid. The proposed method accurately measured the viscosities of various fluids, including single-phase (Glycerin and plasma) and oil-water phase (oil vs. deionized water) fluids, compared with conventional methods. The proposed method was also successfully applied to measure viscosities of blood with varying hematocrits, chemically fixed RBCS, and channel sizes. Based on these experimental results, the proposed method can be effectively used to measure the viscosities of various fluids easily, without any fluorescent labeling and tedious calibration procedures. PMID:24404040

  7. Multi-scale kinetics of a field-directed colloidal phase transition.

    PubMed

    Swan, James W; Vasquez, Paula A; Whitson, Peggy A; Fincke, E Michael; Wakata, Koichi; Magnus, Sandra H; De Winne, Frank; Barratt, Michael R; Agui, Juan H; Green, Robert D; Hall, Nancy R; Bohman, Donna Y; Bunnell, Charles T; Gast, Alice P; Furst, Eric M

    2012-10-02

    Polarizable colloids are expected to form crystalline equilibrium phases when exposed to a steady, uniform field. However, when colloids become localized this field-induced phase transition arrests and the suspension persists indefinitely as a kinetically trapped, percolated structure. We anneal such gels formed from magneto-rheological fluids by toggling the field strength at varied frequencies. This processing allows the arrested structure to relax periodically to equilibrium--colloid-rich, cylindrical columns. Two distinct growth regimes are observed: one in which particle domains ripen through diffusive relaxation of the gel, and the other where the system-spanning structure collapses and columnar domains coalesce apparently through field-driven interactions. There is a stark boundary as a function of magnetic field strength and toggle frequency distinguishing the two regimes. These results demonstrate how kinetic barriers to a colloidal phase transition are subverted through measured, periodic variation of driving forces. Such directed assembly may be harnessed to create unique materials from dispersions of colloids.

  8. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    NASA Astrophysics Data System (ADS)

    Dahms, Rainer N.

    2016-04-01

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized which determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.

  9. Fluid inclusions in vadose cement with consistent vapor to liquid ratios, Pleistocene Miami Limestone, southeastern Florida

    USGS Publications Warehouse

    Barker, C.E.; Halley, R.B.

    1988-01-01

    Vadose cements in the Late Pleistocene Miami Limestone contain regions with two-phase aqueous fluid inclusions that have consistent vapor to liquid (V-L) ratios. When heated, these seemingly primary inclusions homogenize to a liquid phase in a range between 75??C and 130??C (mean = 100??C) and have final melting temperatures between -0.3?? and 0.0??C. The original distribution of Th was broadened during measurements because of fluid inclusion reequilibration. The narrow range of Th in these fluid inclusions suggest unusually consistent V-L ratios. They occur with small, obscure, single phase liquid-filled inclusions, which infer a low temperature origin (less than 60??C), and contradict the higher temperature origin implied by the two phase inclusions. The diagenetic environment producing these seemingly primary fluid inclusions can be inferred from the origin of the host calcite enclosing them. The ??18O composition of these cements (-4 to-5.5%., PDB) and the fresh water in the fluid inclusions are consistent with precipitation from low-temperature meteoric water. The carbon-isotope composition of the vadose cements that contain only rare two-phase fluid inclusions are comparable to the host rock matrix (??13C between 0 and +4%., PDB). Cements that contain common two-phase fluid-inclusions have a distinctly lighter carbon isotopic composition of -3 to -5%.. The carbon isotope composition of cements that contain common two-phase inclusions are about 6%. lighter than those of other vadose cements; models of early meteoric diagenesis indicate that this is the result of precipitation from water that has been influenced by soil gas CO2. Our hypothesis is that the primary fluid inclusions, those with consistent V-L ratios and the single-phase liquid inclusions, form at near-surface temperature (25??C) and pressure when consistent proportions of soil gas and meteoric water percolating through the vadose zone are trapped within elongate vacuoles. This study corroborates that Th measurements on two phase inclusions in vadose cements can be misleading evidence of thermal diagenesis, even if the measurements are well grouped. ?? 1988.

  10. Multiphase flow models for hydraulic fracturing technology

    NASA Astrophysics Data System (ADS)

    Osiptsov, Andrei A.

    2017-10-01

    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and drift-flux approaches. The derivation of the drift-flux model from conservation olaws is criticall revisited in order to define the list of underlying assumptions and to mark the applicability margins of the model. All these fundamental problems share the same technological application (hydraulic fracturing) and the same method of research, namely, the multi-fluid approach to multiphase flow modeling and the consistent use of asymptotic methods. Multi-fluid models are then discussed in comparison with semi-empirical (often postulated) models widely used in the industry.

  11. Universality Results for Multi-Layer Hele-Shaw and Porous Media Flows

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir

    2012-11-01

    Saffman-Taylor instability is a well known viscosity driven instability of an interface. Motivated by a need to understand the effect of various injection policies currently in practice for chemical enhanced oil recovery, we study linear stability of displacement processes in a Hele-Shaw cell involving injection of an arbitrary number of immiscible fluid phases in succession. This is a problem involving many interfaces. Universal stability results have been obtained for this multi-layer (multi-region) flow in the sense that the results hold with arbitrary number of interfaces. These stability results have been applied to design injection policies that are considerably less unstable than the pure Saffman-Taylor case. In particular, we determine specific values of the viscosity of the fluid layers corresponding to smallest unstable band. Moreover, we discuss universal selection principle of optimal viscous profiles. The talk is based on following papers. Qatar National Fund (a member of the Qatar Foundation).

  12. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

    NASA Astrophysics Data System (ADS)

    Redford, J. A.; Ghidaglia, J.-M.; Faure, S.

    2018-06-01

    Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

  13. Suppression of turbulent energy cascade due to phase separation in homogenous binary mixture fluid

    NASA Astrophysics Data System (ADS)

    Takagi, Youhei; Okamoto, Sachiya

    2015-11-01

    When a multi-component fluid mixture becomes themophysically unstable state by quenching from well-melting condition, phase separation due to spinodal decomposition occurs, and a self-organized structure is formed. During phase separation, free energy is consumed for the structure formation. In our previous report, the phase separation in homogenous turbulence was numerically simulated and the coarsening process of phase separation was discussed. In this study, we extended our numerical model to a high Schmidt number fluid corresponding to actual polymer solution. The governing equations were continuity, Navier-Stokes, and Chan-Hiliard equations as same as our previous report. The flow filed was an isotropic homogenous turbulence, and the dimensionless parameters in the Chan-Hilliard equation were estimated based on the thermophysical condition of binary mixture. From the numerical results, it was found that turbulent energy cascade was drastically suppressed in the inertial subrange by phase separation for the high Schmidt number flow. By using the identification of turbulent and phase separation structure, we discussed the relation between total energy balance and the structures formation processes. This study is financially supported by the Grand-in-Aid for Young Scientists (B) (No. T26820045) from the Ministry of Education, Cul-ture, Sports, Science and Technology of Japan.

  14. Recovery Act: An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saar, Martin O.; Seyfried, Jr., William E.; Longmire, Ellen K.

    2016-06-24

    A total of 12 publications and 23 abstracts were produced as a result of this study. In particular, the compilation of a thermodynamic database utilizing consistent, current thermodynamic data is a major step toward accurately modeling multi-phase fluid interactions with solids. Existing databases designed for aqueous fluids did not mesh well with existing solid phase databases. Addition of a second liquid phase (CO2) magnifies the inconsistencies between aqueous and solid thermodynamic databases. Overall, the combination of high temperature and pressure lab studies (task 1), using a purpose built apparatus, and solid characterization (task 2), using XRCT and more developed technologies,more » allowed observation of dissolution and precipitation processes under CO2 reservoir conditions. These observations were combined with results from PIV experiments on multi-phase fluids (task 3) in typical flow path geometries. The results of the tasks 1, 2, and 3 were compiled and integrated into numerical models utilizing Lattice-Boltzmann simulations (task 4) to realistically model the physical processes and were ultimately folded into TOUGH2 code for reservoir scale modeling (task 5). Compilation of the thermodynamic database assisted comparisons to PIV experiments (Task 3) and greatly improved Lattice Boltzmann (Task 4) and TOUGH2 simulations (Task 5). PIV (Task 3) and experimental apparatus (Task 1) have identified problem areas in TOUGHREACT code. Additional lab experiments and coding work has been integrated into an improved numerical modeling code.« less

  15. A multi-frequency inverse-phase error compensation method for projector nonlinear in 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Mao, Cuili; Lu, Rongsheng; Liu, Zhijian

    2018-07-01

    In fringe projection profilometry, the phase errors caused by the nonlinear intensity response of digital projectors needs to be correctly compensated. In this paper, a multi-frequency inverse-phase method is proposed. The theoretical model of periodical phase errors is analyzed. The periodical phase errors can be adaptively compensated in the wrapped maps by using a set of fringe patterns. The compensated phase is then unwrapped with multi-frequency method. Compared with conventional methods, the proposed method can greatly reduce the periodical phase error without calibrating measurement system. Some simulation and experimental results are presented to demonstrate the validity of the proposed approach.

  16. Assessment of multi-phase movements in a gas-gathering pipeline and the relevance to on-line, real-time corrosion monitoring and inhibitor injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, M.A.; Asperger, R.G.

    1988-01-01

    A study was conducted to determine the time required for aqueous fluid to travel 100 miles (160 km) from an offshore platform in the Gulf of Mexico to landfill. If this time is short, the corrosivity of the water at landfall may be used as the basis for setting the offshore corrosion inhibitor injection rates. But, for this particular system, the traveling time was found to be long, greater than 65 days. Therefore, the corrosivity as measured on-shore can not be used for online, real-time adjustments of the offshore, corrosion inhibitor chemical pumps.

  17. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    NASA Astrophysics Data System (ADS)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  18. Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Guobin; Jiao, Kui

    2018-07-01

    The 3D (three-dimensional) multi-phase CFD (computational fluid dynamics) model is widely utilized in optimizing water and thermal management of PEM (proton exchange membrane) fuel cell. However, a satisfactory 3D multi-phase CFD model which is able to simulate the detailed gas and liquid two-phase flow in channels and reflect its effect on performance precisely is still not developed due to the coupling difficulties and computation amount. Meanwhile, the agglomerate model of CL (catalyst layer) should also be added in 3D CFD model so as to better reflect the concentration loss and optimize CL structure in macroscopic scale. Besides, the effect of thermal management is perhaps underestimated in current 3D multi-phase CFD simulations due to the lack of coolant channel in computation domain and constant temperature boundary condition. Therefore, the 3D CFD simulations in cell and stack levels with convection boundary condition are suggested to simulate the water and thermal management more accurately. Nevertheless, with the rapid development of PEM fuel cell, current 3D CFD simulations are far from practical demand, especially at high current density and low to zero humidity and for the novel designs developed recently, such as: metal foam flow field, 3D fine mesh flow field, anode circulation etc.

  19. Simulation of reactive polydisperse sprays strongly coupled to unsteady flows in solid rocket motors: Efficient strategy using Eulerian Multi-Fluid methods

    NASA Astrophysics Data System (ADS)

    Sibra, A.; Dupays, J.; Murrone, A.; Laurent, F.; Massot, M.

    2017-06-01

    In this paper, we tackle the issue of the accurate simulation of evaporating and reactive polydisperse sprays strongly coupled to unsteady gaseous flows. In solid propulsion, aluminum particles are included in the propellant to improve the global performances but the distributed combustion of these droplets in the chamber is suspected to be a driving mechanism of hydrodynamic and acoustic instabilities. The faithful prediction of two-phase interactions is a determining step for future solid rocket motor optimization. When looking at saving computational ressources as required for industrial applications, performing reliable simulations of two-phase flow instabilities appears as a challenge for both modeling and scientific computing. The size polydispersity, which conditions the droplet dynamics, is a key parameter that has to be accounted for. For moderately dense sprays, a kinetic approach based on a statistical point of view is particularly appropriate. The spray is described by a number density function and its evolution follows a Williams-Boltzmann transport equation. To solve it, we use Eulerian Multi-Fluid methods, based on a continuous discretization of the size phase space into sections, which offer an accurate treatment of the polydispersion. The objective of this paper is threefold: first to derive a new Two Size Moment Multi-Fluid model that is able to tackle evaporating polydisperse sprays at low cost while accurately describing the main driving mechanisms, second to develop a dedicated evaporation scheme to treat simultaneously mass, moment and energy exchanges with the gas and between the sections. Finally, to design a time splitting operator strategy respecting both reactive two-phase flow physics and cost/accuracy ratio required for industrial computations. Using a research code, we provide 0D validations of the new scheme before assessing the splitting technique's ability on a reference two-phase flow acoustic case. Implemented in the industrial-oriented CEDRE code, all developments allow to simulate realistic solid rocket motor configurations featuring the first polydisperse reactive computations with a fully Eulerian method.

  20. Macroscopic constitutive equations of thermo-poroelasticity derived using eigenstrain-eigenstress approaches

    NASA Astrophysics Data System (ADS)

    Suvorov, Alexander P.; Selvadurai, A. P. S.

    2011-06-01

    Macroscopic constitutive equations for thermoelastic processes in a fluid-saturated porous medium are re-derived using the notion of eigenstrain or, equivalently, eigenstress. The eigenstrain-stress approach is frequently used in micromechanics of solid multi-phase materials, such as composites. Simple derivations of the stress-strain constitutive relations and the void occupancy relationship are presented for both fully saturated and partially saturated porous media. Governing coupled equations for the displacement components and the fluid pressure are also obtained.

  1. In-space experiment on thermoacoustic convection heat transfer phenomenon-experiment definition

    NASA Technical Reports Server (NTRS)

    Parang, M.; Crocker, D. S.

    1991-01-01

    The definition phase of an in-space experiment in thermoacoustic convection (TAC) heat transfer phenomenon is completed and the results are presented and discussed in some detail. Background information, application and potential importance of TAC in heat transfer processes are discussed with particular focus on application in cryogenic fluid handling and storage in microgravity space environment. Also included are the discussion on TAC space experiment objectives, results of ground support experiments, hardware information, and technical specifications and drawings. The future plans and a schedule for the development of experiment hardware (Phase 1) and flight tests and post-flight analysis (Phase 3/4) are also presented. The specific experimental objectives are rapid heating of a compressible fluid and the measurement of the fluid temperature and pressure and the recording and analysis of the experimental data for the establishment of the importance of TAC heat transfer process. The ground experiments that were completed in support of the experiment definition included fluid temperature measurement by a modified shadowgraph method, surface temperature measurements by thermocouples, and fluid pressure measurements by strain-gage pressure transducers. These experiments verified the feasibility of the TAC in-space experiment, established the relevance and accuracy of the experimental results, and specified the nature of the analysis which will be carried out in the post-flight phase of the report.

  2. Lithium isotope as a proxy for water/rock interaction between hydrothermal fluids and oceanic crust at Milos, Greece

    NASA Astrophysics Data System (ADS)

    Lou, U.-Lat; You, Chen-Feng; Wu, Shein-Fu; Chung, Chuan-Hsiung

    2014-05-01

    Hydrothermal activity at Milos in the Aegean island (Greece) is mainly located at rather shallow depth (about 5 m). It is interesting to compare these chemical compositions and the evolution processes of the hydrothermal fluids at deep sea hydrothermal vents in Mid-ocean Ridge (MOR). Lithium (Li) is a highly mobile element and its isotopic composition varies at different geological settings. Therefore, Li and its isotope could be used as an indicator for many geochemical processes. Since 6Li preferential retained in the mineral phase where 7Li is leached into fluid phase during basalt alteration, the Li isotopic fractionation between the rocks and the fluids reflect sensitively the degree of water-rock interaction. In this study, Bio-Rad AG-50W X8 cation exchange resin was used for purifying the hydrothermal fluids to separate Li from other matrix elements. The Li isotopic composition (δ7Li) was determined by Multi-collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) with precision better than 0.2‰ (2σ, n=20). The Li concentration in the hydrothermal fluids falls between 0.02 to 10.31 mM. The δ7Li values vary from +1.9 to +29.7‰, indicating significant seawater contamination have occurred. These hydrothermal fluids fit well with seawater and brine two end-member binary mixing model. During phase separation, lithium, boron, chlorine, iodine, bromine, sodium and potassium were enriched in the brine phase. On the other hand, aluminum, sulphur and iron were enriched in the vapor phase. There is no significant isotope fractionation between the two phases. The water/rock ratio (W/R) calculated is low (about 1.5 to 1.8) for the Milos fluids, restricted seawater recharge into the oceanic crust. Moreover, the oceanic crust in the region becomes less altered since the W/R is low. The δ7Li value of the hydrothermal fluids can be used as a sensitive tool for studying water-rock interaction.

  3. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out.

  4. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    DOE PAGES

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun; ...

    2018-02-27

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less

  5. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai

    2018-02-01

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.

  6. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. In this study, to investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as themore » water saturation decreases to an intermediate value (about 0.4–0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. Lastly, the relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.« less

  7. Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models

    USGS Publications Warehouse

    Berndt, M.E.; Seal, R.R.; Shanks, Wayne C.; Seyfried, W.E.

    1996-01-01

    Hydrogen isotope fractionation factors were measured for coexisting brines and vapors formed by phase separation of NaCl/H2O fluids at temperatures ranging from 399-450??C and pressures from 277-397 bars. It was found that brines are depleted in D compared to coexisting vapors at all conditions studied. The magnitude of hydrogen isotope fractionation is dependent on the relative amounts of Cl in the two phases and can be empirically correlated to pressure using the following relationship: 1000 ln ??(vap-brine) = 2.54(??0.83) + 2.87(??0.69) x log (??P), where ??(vap-brine) is the fractionation factor and ??P is a pressure term representing distance from the critical curve in the NaCl/H2O system. The effect of phase separation on hydrogen isotope distribution in subseafloor hydrothermal systems depends on a number of factors, including whether phase separation is induced by heating at depth or by decompression of hydrothermal fluids ascending to the seafloor. Phase separation in most subseafloor systems appears to be a simple process driven by heating of seawater to conditions within the two-phase region, followed by segregation and entrainment of brine or vapor into a seawater dominated system. Resulting vent fluids exhibit large ranges in Cl concentration with no measurable effect on ??D. Possible exceptions to this include hydrothermal fluids venting at Axial and 9??N on the East Pacific Rise. High ??D values of low Cl fluids venting at Axial are consistent with phase separation taking place at relatively shallow levels in the oceanic crust while negative ??D values in some low Cl fluids venting at 9??N suggest involvement of a magmatic fluid component or phase separation of D-depleted brines derived during previous hydrothermal activity.

  8. Simulating immiscible multi-phase flow and wetting with 3D stochastic rotation dynamics (SRD)

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan; Brinkmann, Martin

    2013-11-01

    We use a variant of the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the multi-color SRD method, first proposed by Inoue et al., we present an implementation that accounts for complex wettability on heterogeneous surfaces. In order to demonstrate the versatility of this algorithm, we consider immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. We show that these patterns have a significant effect on the interface dynamics. Furthermore, the implementation of angular momentum conservation into the SRD algorithm allows us to extent the applicability of SRD also to micro-fluidic systems. It is now possible to study e.g. the internal flow behaviour of a droplet depending on the driving velocity of the surrounding bulk fluid or the splitting of droplets by an obstacle.

  9. Multi-phase CFD modeling of solid sorbent carbon capture system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, E. M.; DeCroix, D.; Breault, R.

    2013-07-01

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian–Eulerian and Eulerian–Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian–Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian–Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian–Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less

  10. Multi-Phase CFD Modeling of Solid Sorbent Carbon Capture System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Emily M.; DeCroix, David; Breault, Ronald W.

    2013-07-30

    Computational fluid dynamics (CFD) simulations are used to investigate a low temperature post-combustion carbon capture reactor. The CFD models are based on a small scale solid sorbent carbon capture reactor design from ADA-ES and Southern Company. The reactor is a fluidized bed design based on a silica-supported amine sorbent. CFD models using both Eulerian-Eulerian and Eulerian-Lagrangian multi-phase modeling methods are developed to investigate the hydrodynamics and adsorption of carbon dioxide in the reactor. Models developed in both FLUENT® and BARRACUDA are presented to explore the strengths and weaknesses of state of the art CFD codes for modeling multi-phase carbon capturemore » reactors. The results of the simulations show that the FLUENT® Eulerian-Lagrangian simulations (DDPM) are unstable for the given reactor design; while the BARRACUDA Eulerian-Lagrangian model is able to simulate the system given appropriate simplifying assumptions. FLUENT® Eulerian-Eulerian simulations also provide a stable solution for the carbon capture reactor given the appropriate simplifying assumptions.« less

  11. A Hele-Shaw-Cahn-Hilliard Model for Incompressible Two-Phase Flows with Different Densities

    NASA Astrophysics Data System (ADS)

    Dedè, Luca; Garcke, Harald; Lam, Kei Fong

    2017-07-01

    Topology changes in multi-phase fluid flows are difficult to model within a traditional sharp interface theory. Diffuse interface models turn out to be an attractive alternative to model two-phase flows. Based on a Cahn-Hilliard-Navier-Stokes model introduced by Abels et al. (Math Models Methods Appl Sci 22(3):1150013, 2012), which uses a volume-averaged velocity, we derive a diffuse interface model in a Hele-Shaw geometry, which in the case of non-matched densities, simplifies an earlier model of Lee et al. (Phys Fluids 14(2):514-545, 2002). We recover the classical Hele-Shaw model as a sharp interface limit of the diffuse interface model. Furthermore, we show the existence of weak solutions and present several numerical computations including situations with rising bubbles and fingering instabilities.

  12. Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection

    NASA Astrophysics Data System (ADS)

    Yang, Ruitao; Pollinger, Florian; Meiners-Hagen, Karl; Krystek, Michael; Tan, Jiubin; Bosse, Harald

    2015-08-01

    We present a dual-comb-based heterodyne multi-wavelength absolute interferometer capable of long distance measurements. The phase information of the various comb modes is extracted in parallel by a multi-channel digital lock-in phase detection scheme. Several synthetic wavelengths of the same order are constructed and the corresponding phases are averaged to deduce the absolute lengths with significantly reduced uncertainty. Comparison experiments with an incremental HeNe reference interferometer show a combined relative measurement uncertainty of 5.3 × 10-7 at a measurement distance of 20 m. Combining the advantage of synthetic wavelength interferometry and dual-comb interferometry, our compact and simple approach provides sufficient precision for many industrial applications.

  13. Selectivity enhancement in photoacoustic gas analysis via phase-sensitive detection at high modulation frequency

    NASA Technical Reports Server (NTRS)

    Kosterev, Anatoliy (Inventor)

    2010-01-01

    A method for detecting a target fluid in a fluid sample comprising a first fluid and the target fluid using photoacoustic spectroscopy (PAS), comprises a) providing a light source configured to introduce an optical signal having at least one wavelength into the fluid sample; b) modulating the optical signal at a desired modulation frequency such that the optical signal generates an acoustic signal in the fluid sample; c) measuring the acoustic signal in a resonant acoustic detector; and d) using the phase of the acoustic signal to detect the presence of the target fluid.

  14. Influence of the pore fluid on the phase velocity in bovine trabecular bone In Vitro: Prediction of the biot model

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2013-01-01

    The present study aims to investigate the influence of the pore fluid on the phase velocity in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 20 marrow-filled and water-filled bovine femoral trabecular bone samples. The mean phase velocities at frequencies between 0.6 and 1.2 MHz exhibited significant negative dispersions for both the marrow-filled and the water-filled samples. The magnitudes of the dispersions showed no significant differences between the marrow-filled and the water-filled samples. In contrast, replacement of marrow by water led to a mean increase in the phase velocity of 27 m/s at frequencies from 0.6 to 1.2 MHz. The theoretical phase velocities of the fast wave predicted by using the Biot model for elastic wave propagation in fluid-saturated porous media showed good agreements with the measurements.

  15. Extend of magnetic field interference in the natural convection of diamagnetic nanofluid

    NASA Astrophysics Data System (ADS)

    Roszko, Aleksandra; Fornalik-Wajs, Elzbieta

    2017-10-01

    Main objective of the paper was to experimentally investigate the thermo-magnetic convection of diamagnetic fluids in the Rayleigh-Benard configuration. For better understanding of the magnetic field influence on the phenomena occurring in cubical enclosure the following parameters were studied: absence or presence of nanoparticles (single and two-phase fluids), thermal conditions (temperature difference range of 5-25 K) and magnetic field strength (magnetic induction range of 0-10 T). A multi-stage approach was undertaken to achieve the aim. The multi-stage approach means that the forces system, flow structure and heat transfer were considered. Without understanding the reasons (forces) and the fluid behaviour it would be impossible to analyse the exchanged heat rates through the Nusselt number distribution. The forces were determined at the starting moment, so the inertia force was not considered. The flow structure was identified due to the FFT analysis and it proved that magnetic field application changed the diamagnetic fluid behaviour, either single or two-phase. Going further, the heat transfer analysis revealed dependence of the Nusselt number on the flow structure and at the same time on the magnetic field. It can be said that imposed magnetic field changed the energy transfer within the system. In the paper, it was shown that each of presented steps were linked together and that only a comprehensive approach could lead to better understanding of magnetic field interference in the convection phenomenon.

  16. Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.

  17. Melting of metasomatized peridotite at 4-6 GPa and up to 1200 °C: an experimental approach

    NASA Astrophysics Data System (ADS)

    Kessel, R.; Pettke, T.; Fumagalli, P.

    2015-04-01

    The phase assemblages and compositions in a K-bearing lherzolite + H2O system are determined between 4 and 6 GPa and 850-1200 °C, and the melting reactions occurring at subarc depth in subduction zones are constrained. Experiments were performed on a rocking multi-anvil apparatus. The experiments had around 16 wt% water content, and hydrous melt or aqueous fluid was segregated and trapped in a diamond aggregate layer. The compositions of the aqueous fluid and hydrous melt phases were measured using the cryogenic LA-ICP-MS technique. The residual lherzolite consists of olivine, orthopyroxene, clinopyroxene, and garnet, while diamond (C) is assumed to be inert. Hydrous and alkali-rich minerals were absent from the run products due to preferred dissolution of K2O (and Na2O) to the aqueous fluid/hydrous melt phases. The role of phlogopite in melting relations is, thus, controlled by the water content in the system: at the water content of around 16 wt% used here, phlogopite is unstable and thus does not participate in melting reactions. The water-saturated solidus, i.e., the first appearance of hydrous melt in the K-lherzolite composition, is located between 900 and 1000 °C at 4 GPa and between 1000 and 1100 °C at 5 and 6 GPa. Compositional jumps between hydrous melt and aqueous fluid at the solidus include a significant increase in the total dissolved solids load. All melts/fluids are peralkaline and calcium-rich. The melting reactions at the solidus are peritectic, as olivine, clinopyroxene, garnet, and H2O are consumed to generate hydrous melt plus orthopyroxene. Our fluid/melt compositional data demonstrate that the water-saturated hybrid peridotite solidus lies above 1000 °C at depths greater than 150 km and that the second critical endpoint is not reached at 6 GPa for a K2O-Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-Cr2O3(-TiO2) peridotite composition.

  18. Feasibility study of a low-energy gamma ray system for measuring quantity and flow rate of slush hydrogen

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Shen, Chih-Ping; Sprinkle, Danny R.

    1992-01-01

    As part of a study to demonstrate the suitability of an X-ray or gamma ray probe for monitoring the quality and flow rate of slush hydrogen, mass attenuation coefficients for Cd-109 X- and gamma radiation in five chemical compounds were measured. The Ag-109 K rays were used for water and acetic acid, whereas E3 transition from the first excited state at 87.7 keV in Ag-109 provided the probe radiation for bromobenzene, alpha (exp 2) chloroisodurene, and cetyl bromide. Measurements were made for a single phase (gas, liquid, solid) as well as mixed phases (liquid plus solid) in all cases. It was shown that the mass attenuation coefficient for the selected radiations is independent of the phase of the test fluids or phase ratios in the case of mixed phase fluids. Described here are the procedure and the results for the five fluid systems investigated.

  19. Effect of volumetric concentration of MWCNTs on the stability and thermal conductivity of nanofluids

    NASA Astrophysics Data System (ADS)

    Rehman, Wajid Ur; Bhat, A. H.; Suliamon, A. A.; Khan, Ihsan Ullah; Ullah, Hafeez

    2016-11-01

    Environmental concerns and running down of the fossil fuel deposits which are generally being used as base oil in Drilling Fluid/Mud have attended worldwide attention and thereby, researchers have focused on using environmentally friendly drilling fluids. This study demonstrates the preparation of drilling fluids and to explore the effect of increase in the volumetric concentration of nanoparticles on the stability and thermal conductivity of nanofluids. In this research, for the formation of nanofluids, Jatropha Seed Oil was used as the base oil with the addition of multi-walled carbon nanotubes as the nanoparticles using sonication technique. The raw multi-walled carbon nanotubes were characterized by using SEM for morphological examination. The prepared drilling fluid were characterized by using UV-Visible spectroscopic technique for analyzing the stability. Thermal Conductivity measurements were also carried out for heat transfer efficiency. It was observed that the heat transfer capability of the nanofluid ameliorates with the increase in the loading percentage of multi-walled carbon nanotubes.

  20. Segregated Methods for Two-Fluid Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prosperetti, Andrea; Sundaresan, Sankaran; Pannala, Sreekanth

    2007-01-01

    The previous chapter, with its direct simulation of the fluid flow and a modeling approach to the particle phase, may be seen as a transition between the methods for a fully resolved simulation described in the first part of this book and those for a coarse grained description based on the averaging approach described in chapter ??. We now turn to the latter, which in practice are the only methods able to deal with the complex flows encountered in most situations of practical interest such as fluidized beds, pipelines, energy generation, sediment transport, and others. This chapter and the nextmore » one are devoted to numerical methods for so-called two-fluid models in which the phases are treated as inter-penetrating continua describing, e.g., a liquid and a gas, or a fluid and a suspended solid phase. These models can be extended to deal with more than two continua and, then, the denomination multi-fluid models might be more appropriate. For example, the commercial code OLGA (Bendiksen et al. 1991), widely used in the oil industry, recognizes three phases, all treated as interpenetrating continua: a continuous liquid, a gas, and a disperse liquid phase present as drops suspended in the gas phase. The more recent PeTra (Petroleum Transport, Larsen et al. 1997) also describes three phases, gas, oil, and water. Recent approaches to the description of complex boiling flows recognize four inter-penetrating phases: a liquid phase present both as a continuum and as a dispersion of droplets, and a gas/vapor phase also present as a continuum and a dispersion of bubbles. Methods for these multi-fluid models are based on those developed for the two-fluid model to which we limit ourselves. In principle, one could simply take the model equations, discretize them, and solve them by a method suitable for non-linear problems, e.g. Newton-Raphson iteration. In practice, the computational cost of such a frontal attack is nearly always prohibitive in terms of storage requirement and execution time. It is therefore necessary to devise different, less direct strategies. Two principal classes of algorithms have been developed for this purpose. The first one, described in this chapter, consists of algorithms derived from the pressure based schemes widely used in single-phase flow, such as SIMPLE and its variations (see e.g. Patankar 1980). In this approach, the model equations are solved sequentially and, therefore, these methods are often referred to as segregated algorithms to distinguish them from a second class of methods, object of the next chapter, in which a coupled or semi-coupled time-marching solution strategy is adopted. Broadly speaking, the first class of methods is suitable for relatively slow transients, such as fluidized beds, or phenomena with a long duration, such as flow in pipelines. The methods in the second group have been designed to deal principally with fast transients, such as those hypothesized in nuclear reactor safety. Since in segregated solvers the equations are solved one by one, it is possible to add equations to the mathematical model - to describe e.g. turbulence - at a later stage after the development of the initial code without major modifications of the algorithm.« less

  1. Macroscopic constitutive equations of thermo-poroviscoelasticity derived using eigenstrains

    NASA Astrophysics Data System (ADS)

    Suvorov, A. P.; Selvadurai, A. P. S.

    2010-10-01

    Macroscopic constitutive equations for thermo-viscoelastic processes in a fully saturated porous medium are re-derived from basic principles of micromechanics applicable to solid multi-phase materials such as composites. Simple derivations of the constitutive relations and the void occupancy relationship are presented. The derivations use the notion of eigenstrain or, equivalently, eigenstress applied to the separate phases of a porous medium. Governing coupled equations for the displacement components and the fluid pressure are also obtained.

  2. CMT for transport in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, L.

    This session is comprised of an outline of uses for x-ray microtomography in the field of petroleum geology. Calculations, diagrams, and color photomicrographs depict the many applications of synchrotron x-ray microtomograpy in determining transport properties and fluid flow characteristics of reservoir rocks, micro-porosity in carbonates, and aspects of multi-phase transport.

  3. Simple interpretations of chemical transients in multi-feed, two-phase geothermal wells; Examples from Philippine Geothermal fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruaya, J.R.; Solis, R.P.; Solana, R.R.

    1991-01-01

    This paper reports that the main process responsible for the extreme variations in chloride concentrations in the water discharged by selected multi-feed, two-phase geothermal wells in the Philippines is steam addition brought about by fluid flashing in the formation or by a shallow and distinct steam zone. Correlation of enthalpy with chloride data over a span of seven years for well 106, Tongonan field, revealed the entry of reservoir fluid from the hotter portion of the field as the well responded to exploitation. Using a plot of discharge enthalpy versus total chloride, the deep chloride near well OP-3D which ismore » drilled at the periphery of the Bacon-Manito field, has been determined at about 8700 mg/k. This is somewhat higher than the inferred chloride level of 7000 mg/kg in the postulated main geothermal reservoir. The competing effects of returns of reinjected water and flashing in the formation on the observed chloride concentrations in the discharge water of well PN-20D, Palinpinon field, have been segregated using the technique described above.« less

  4. PREFACE: The 6th International Symposium on Measurement Techniques for Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Okamoto, Koji; Murai, Yuichi

    2009-02-01

    Research on multi-phase flows is very important for industrial applications, including power stations, vehicles, engines, food processing, and so on. Also, from the environmental viewpoint, multi-phase flows need to be investigated to overcome global warming. Multi-phase flows originally have non-linear features because they are multi-phased. The interaction between the phases plays a very interesting role in the flows. The non-linear interaction causes the multi-phase flows to be very difficult to understand phenomena. The International Symposium on Measurement Techniques for Multi-phase Flows (ISMTMF) is a unique symposium. The target of the symposium is to exchange the state-of-the-art knowledge on the measurement techniques for non-linear multi-phase flows. Measurement technique is the key technology to understanding non-linear phenomena. The ISMTMF began in 1995 in Nanjing, China. The symposium has continuously been held every two or three years. The ISMTMF-2008 was held in Okinawa, Japan as the 6th symposium of ISMTMF on 15-17 December 2008. Okinawa has a long history as the Ryukyus Kingdom. China and Japan have had cultural and economic exchanges through Okinawa for more than 1000 years. Please enjoy Okinawa and experience its history to enhance our international communication. The present symposium was attended by 124 participants, the program included 107 contributions with 5 plenary lectures, 2 keynote lectures, and 100 oral regular paper presentations. The topics include, besides the ordinary measurement techniques for multiphase flows, acoustic and electric sensors, bubbles and microbubbles, computed tomography, gas-liquid interface, laser-imaging and PIV, oil/coal/drop and spray, solid and powder, spectral and multi-physics. This volume includes the presented papers at ISMTMF-2008. In addition to this volume, ten selected papers will be published in a special issue of Measurement Science and Technology. We would like to express special thanks to all the participants and the contributors to the symposium, and also to the supporting organizations; The Japanese Society for Multiphase Flow, The Chinese Society for Measurement, National Natural Science Foundation of China, The Chinese Academy of Science, and University of the Ryukyus, Okinawa, Japan. Koji Okamoto Chair of 6th ISMTMF and proceedings editor The University of Tokyo, Japan Yuichi Murai Proceedings co-editor Hokkaido University, Japan

  5. A lattice Boltzmann investigation of steady-state fluid distribution, capillary pressure and relative permeability of a porous medium: Effects of fluid and geometrical properties

    NASA Astrophysics Data System (ADS)

    Li, Zi; Galindo-Torres, Sergio; Yan, Guanxi; Scheuermann, Alexander; Li, Ling

    2018-06-01

    Simulations of simultaneous steady-state two-phase flow in the capillary force-dominated regime were conducted using the state-of-the-art Shan-Chen multi-component lattice Boltzmann model (SCMC-LBM) based on two-dimensional porous media. We focused on analyzing the fluid distribution (i.e., WP fluid-solid, NP fluid-solid and fluid-fluid interfacial areas) as well as the capillary pressure versus saturation curve which was affected by fluid and geometrical properties (i.e., wettability, adhesive strength, pore size distribution and specific surface area). How these properties influenced the relative permeability versus saturation relation through apparent effective permeability and threshold pressure gradient was also explored. The SCMC-LBM simulations showed that, a thin WP fluid film formed around the solid surface due to the adhesive fluid-solid interaction, resulting in discrete WP fluid distributions and reduction of the WP fluid mobility. Also, the adhesive interaction provided another source of capillary pressure in addition to capillary force, which, however, did not affect the mobility of the NP fluid. The film fluid effect could be enhanced by large adhesive strength and fine pores in heterogeneous porous media. In the steady-state infiltration, not only the NP fluid but also the WP fluid were subjected to the capillary resistance. The capillary pressure effect could be alleviated by decreased wettability, large average pore radius and improved fluid connectivity in heterogeneous porous media. The present work based on the SCMC-LBM investigations elucidated the role of film fluid as well as capillary pressure in the two-phase flow system. The findings have implications for ways to improve the macroscopic flow equation based on balance of force for the steady-state infiltration.

  6. The Biot coefficient for a low permeability heterogeneous limestone

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P. S.

    2018-04-01

    This paper presents the experimental and theoretical developments used to estimate the Biot coefficient for the heterogeneous Cobourg Limestone, which is characterized by its very low permeability. The coefficient forms an important component of the Biot poroelastic model that is used to examine coupled hydro-mechanical and thermo-hydro-mechanical processes in the fluid-saturated Cobourg Limestone. The constraints imposed by both the heterogeneous fabric and its extremely low intact permeability [K \\in (10^{-23},10^{-20}) m2 ] require the development of alternative approaches to estimate the Biot coefficient. Large specimen bench-scale triaxial tests (150 mm diameter and 300 mm long) that account for the scale of the heterogeneous fabric are complemented by results for the volume fraction-based mineralogical composition derived from XRD measurements. The compressibility of the solid phase is based on theoretical developments proposed in the mechanics of multi-phasic elastic materials. An appeal to the theory of multi-phasic elastic solids is the only feasible approach for examining the compressibility of the solid phase. The presence of a number of mineral species necessitates the use of the theories of Voigt, Reuss and Hill along with the theories proposed by Hashin and Shtrikman for developing bounds for the compressibility of the multi-phasic geologic material composing the skeletal fabric. The analytical estimates for the Biot coefficient for the Cobourg Limestone are compared with results for similar low permeability rocks reported in the literature.

  7. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N.

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. As a result, the significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less

  8. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N., E-mail: Rndahms@sandia.gov

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. The significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less

  9. Understanding the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions

    DOE PAGES

    Dahms, Rainer N.

    2016-04-26

    A generalized framework for multi-component liquid injections is presented to understand and predict the breakdown of classic two-phase theory and spray atomization at engine-relevant conditions. The analysis focuses on the thermodynamic structure and the immiscibility state of representative gas-liquid interfaces. The most modern form of Helmholtz energy mixture state equation is utilized which exhibits a unique and physically consistent behavior over the entire two-phase regime of fluid densities. It is combined with generalized models for non-linear gradient theory and for liquid injections to quantify multi-component two-phase interface structures in global thermal equilibrium. Then, the Helmholtz free energy is minimized whichmore » determines the interfacial species distribution as a consequence. This minimal free energy state is demonstrated to validate the underlying assumptions of classic two-phase theory and spray atomization. However, under certain engine-relevant conditions for which corroborating experimental data are presented, this requirement for interfacial thermal equilibrium becomes unsustainable. A rigorously derived probability density function quantifies the ability of the interface to develop internal spatial temperature gradients in the presence of significant temperature differences between injected liquid and ambient gas. Then, the interface can no longer be viewed as an isolated system at minimal free energy. Instead, the interfacial dynamics become intimately connected to those of the separated homogeneous phases. Hence, the interface transitions toward a state in local equilibrium whereupon it becomes a dense-fluid mixing layer. A new conceptual view of a transitional liquid injection process emerges from a transition time scale analysis. Close to the nozzle exit, the two-phase interface still remains largely intact and more classic two-phase processes prevail as a consequence. Further downstream, however, the transition to dense-fluid mixing generally occurs before the liquid length is reached. As a result, the significance of the presented modeling expressions is established by a direct comparison to a reduced model, which utilizes widely applied approximations but fundamentally fails to capture the physical complexity discussed in this paper.« less

  10. Two-phase working fluids for the temperature range of 50 to 350 deg, phase 2

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Several two phase heat transfer fluids were tested in aluminum and carbon steel reflux capsules for over 25,000 hours at temperatures up to 300 C. Several fluids showed very good stability and would be useful for long duration heat transfer applications over the range 100 to 350 C. Instrumentation for the measurement of surface tension and viscosity were constructed for use with heat transfer fluids over the temperature range 0 to 300 C and with pressures from 0 to 10 atmospheres. The surface tension measuring device constructed requires less than a 1.0 cc sample and displays an accuracy of about 5 percent in preliminary tests, while the viscometer constructed for this program requires a 0.05 cc sample and shows an accuracy of about 5 percent in initial tests.

  11. Pore-scale Evaluation of Immiscible Fluid Characteristics and Displacements: Comparison Between Ambient- and Supercritical-Condition Experimental Studies

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Wildenschild, D.; Andersson, L.; Harper, E.; Sheppard, A.

    2015-12-01

    The transport of immiscible fluids within porous media is a topic of great importance for a wide range of subsurface processes; e.g. oil recovery, geologic sequestration of CO2, gas-water mass transfer in the vadose zone, and remediation of non-aqueous phase liquids (NAPLs) from groundwater. In particular, the trapping and mobilization of nonwetting phase fluids (e.g. oil, CO2, gas, or NAPL in water-wet media) is of significant concern; and has been well documented to be a function of both wetting and nonwetting fluid properties, morphological characteristics of the porous medium, and system history. However, generalization of empirical trends and results for application between different fluid-fluid-medium systems requires careful consideration and characterization of the relevant system properties. We present a comprehensive and cohesive description of nonwetting phase behaviour as observed via a suite of three dimensional x-ray microtomography imaging experiments investigating immiscible fluid flow, trapping, and interfacial interactions of wetting (brine) and nonwetting (air, oil, and supercritical CO2) phase in sandstones and synthetic media. Microtomographic images, acquired for drainage and imbibition flow processes, allow for precise and extensive characterization of nonwetting phase fluid saturation, topology, and connectivity; imaging results are paired with externally measured capillary pressure data to provide a comprehensive description of fluid states. Fluid flow and nonwetting phase trapping behaviour is investigated as a function of system history, morphological metrics of the geologic media, and nonwetting phase fluid characteristics; and particular emphasis is devoted to the differences between ambient condition (air-brine) and reservoir condition (supercritical CO2-brine) studies. Preliminary results provide insight into the applicability of using ambient condition experiments to explore reservoir condition processes, and also elucidate the underlying physics of trapping and mobilization of nonwetting phase fluids.

  12. In situ study of the factors controlling Fe, Cu and Zn scavenging during the early mixing between hydrothermal fluids and seawater

    NASA Astrophysics Data System (ADS)

    Cathalot, C.; Laes-Huon, A.; Pelleter, E.; Maillard, L.; Chéron, S.; Boissier, A.; Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Gayet, N.; Sarrazin, J.; Sarradin, P. M.

    2016-12-01

    Despite the importance of trace metals for marine ecosystems and in the global carbon cycle, dissolved metal sources in the deep ocean and their export mechanism are, today, still unconstrained. The historical view that dissolved metals are largely removed from hydrothermal plumes through precipitation of a range of iron-bearing minerals is now being challenged. Several potential mechanisms for the delivery of hydrothermally sourced metals to the open ocean have been suggested and require a thorough documentation of the early mixing processes between the hydrothermal fluids and the ambient seawater. The geochemistry of a plume, and specially the rising plume, is dictated by the nature and composition of the host rock, fluid temperature, phase separation at depth and subsurface mixing processes, and thus can vary in temperature, pH, metal and dissolved gases content between spatially close hydrothermal vents. Here, we present in situ chemical conditions during the early mixing gradient between hydrothermal fluids and seawater at the Lucky Strike site (Mid-Atlantic Ridge), using a multi proxy approach targeting both the dissolved and particulate phase and combining in situ measurements and analysis back in the lab. Indeed, in situ O2, H2S and temperature measurements were performed at a 1Hz frequency, coupled to lower frequency analysis of in situ Fe2+. In addition, particulate material filtered in situ was analyzed using Inductive Coupled Plasma - Mass Spectrometry, X-Ray Diffraction, X-Ray Fluorescence and Scanning Electron Microscopy and provided useful insights regarding the reactivity of metals during the mixing processes. Our results show different behavior within the Lucky Strike vent field. Fe and S co-precipitation through chalcopyrite formation at the newly discovered Capelinhos site seem to be the main process. At the White Caste site, on the other hand, wurzite and sphalerite precipitation seems to dominate the dilution processes, H2S being rapidly titrated with the available Zinc early in the mixing. Our results indicate a clear control by subsurface mixing processes, at a very local scale: within a single vent field, temperature outflow of the hydrothermal fluid clearly drives Cu, Fe and Zn scavenging in the particulate phase, and controlling hence the iron stability and export.

  13. Equilibrium gas-oil ratio measurements using a microfluidic technique.

    PubMed

    Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid

    2013-07-07

    A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.

  14. Analysis of the Performance of Heat Pipes and Phase-Change Materials with Multiple Localized Heat Sources for Space Applications

    DTIC Science & Technology

    1989-05-01

    NUMERICAL ANALYSIS OF STEFAN PROBLEMS FOR GENERALIZED MULTI- DIMENSIONAL PHASE-CHANGE STRUCTURES USING THE ENTHALPY TRANSFORMING MODEL 4.1 Summary...equation St Stefan number, cs(Tm-Tw)/H or cs(Tm-Ti)/H s circumferential distance coordinate, m, Section III s dimensionless interface position along...fluid, kg/m 3 0 viscous dissipation term in the energy eqn. (1.4), Section I; dummy variable, Section IV r dimensionless time, ta/L 2 a Stefan -Boltzmann

  15. Opto-mechano-fluidic viscometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kewen, E-mail: khan56@illinois.edu; Zhu, Kaiyuan; Bahl, Gaurav, E-mail: bahl@illinois.edu

    2014-07-07

    The recent development of opto-mechano-fluidic resonators has provided—by harnessing photon radiation pressure—a microfluidics platform for the optical sensing of fluid density and bulk modulus. Here, we show that fluid viscosity can also be determined through optomechanical measurement of the vibrational noise spectrum of the resonator mechanical modes. A linear relationship between the spectral linewidth and root-viscosity is predicted and experimentally verified in the low viscosity regime. Our result is a step towards multi-frequency measurement of viscoelasticity of arbitrary fluids, without sample contamination, using highly sensitive optomechanics techniques.

  16. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran

    NASA Astrophysics Data System (ADS)

    Calagari, Ali Asghar

    2004-05-01

    The porphyry copper deposit (PCD) at Sungun is located in East Azarbaidjan, in the NW of Iran.The Sungun porphyries occur as stocks and dikes ranging in composition from quartz monzodiorite through quartz monzonite and granodiorite to granite. The stocks are divided into two groups (1) Porphyry Stocks I and (2) Porphyry Stock II. Porphyry Stock II, hosting the copper ore, experienced intense hydro-fracturing leading to the formation of stockwork-type and anastomozing veinlets and micro-veinlets of quartz, sulfides, carbonates, and sulfates. Three distinct types of hydrothermal alteration and sulfide mineralization are recognized at Sungun (1) hypogene, (2) contact metasomatic (skarn), and (3) supergene. Four types of hypogene alteration are developed at Sungun, potassic, propylitic, potassic-phyllic, and phyllic. Four types of inclusion are common at Sungun based upon their phase content (1) mono-phase vapor, (2) vapor-rich 2-phase, (3) liquid-rich 2-phase, and (4) multi-phase solid. Halite is the principal solid phase. The distribution pattern, shape, and phase contents of fluid inclusions in quartz veinlets at Sungun are analogous to those from Bingham and Globe-Miami in western USA. The fluid inclusion data at Sungun showed that the liquid-vapor homogenization temperature [ TH(L-V)] values for liquid-rich 2-phase, vapor-rich 2-phase, and halite-bearing inclusions vary from 160 to 580 °C, from 200 to 600 °C, and from 160 to 580 °C, respectively. The ascending unboiled fluid at the onset of the phyllic alteration episode had temperatures ˜580 °C and was moderately saline (˜15 wt%). With the gradual decrease in temperature, the salinity of this fluid gradually decreased, so that its salinity at temperatures of ˜370 and <270 °C were ˜7 and <2 wt%, respectively. Multiple boiling events occurred in Porphyry Stock II during phyllic alteration. With each boiling event the salinity of the residual fluid increased substantially. The first boiling event occurred at temperatures 540-560 °C, and increased the salinity of the residual fluid up to ˜50 wt%. At temperatures >350 °C the residual fluid remained undersaturated (with respect to NaCl) however, at temperatures <350 °C they became saturated. The minimum internal pressures calculated for the inclusions having Ts(NaCl)≈ TH(L-V) showed that they were developed under the maximum hydrostatic pressure head of ˜1500 m during the boiling events.

  17. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    PubMed

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  18. Perioperative intravenous fluid prescribing: a multi-centre audit.

    PubMed

    Harris, Benjamin; Schopflin, Christian; Khaghani, Clare; Edwards, Mark

    2015-01-01

    Excessive or inadequate intravenous fluid given in the perioperative period can affect outcomes. A number of guidelines exist but these can conflict with the entrenched practice, evidence base and prescriber knowledge. We conducted a multi-centre audit of intraoperative and postoperative intravenous fluid therapy to investigate fluid administration practice and frequency of postoperative electrolyte disturbances. A retrospective audit was done in five hospitals of adult patients undergoing elective major abdominal, gastrointestinal tract or orthopaedic surgery. The type, volume and quantity of fluid and electrolytes administered during surgery and in 3 days postoperatively was calculated, and electrolyte disturbances were studied using clinical records. Data from four hundred thirty-one patients in five hospitals covering 1157 intravenous fluid days were collected. Balanced crystalloid solutions were almost universally used in the operating theatre and were also the most common fluid administered postoperatively, followed by hypotonic dextrose-saline solutions and 0.9 % sodium chloride. For three common uncomplicated elective operations, the volume of fluid administered intraoperatively demonstrated considerable variability. Over half of the patients received no postoperative fluid on day 1, and even more were commenced on free oral fluids immediately postoperatively or on day 1. Postoperative quantities of sodium exceeded the recommended amounts for maintenance in half of the patients who continued to receive intravenous fluids. Potassium administration in those receiving intravenous fluids was almost universally inadequate. Hypokalaemia and hyponatraemia were the common findings. We documented the current clinical practice and confirmed that early free oral fluids and cessation of any intravenous fluids is common postoperatively in keeping with the aims of enhanced recovery after surgery programmes. Excessive sodium and water and inadequate potassium in those given intravenous fluids postoperatively is common and needs to be investigated. The variation in intraoperative fluid volume administration for three common procedures is considerable and in keeping with other international studies. Future trials of fluid therapy should include the intraoperative and postoperative phases.

  19. Study of transient behavior of finned coil heat exchangers

    NASA Technical Reports Server (NTRS)

    Rooke, S. P.; Elissa, M. G.

    1993-01-01

    The status of research on the transient behavior of finned coil cross-flow heat exchangers using single phase fluids is reviewed. Applications with available analytical or numerical solutions are discussed. Investigation of water-to-air type cross-flow finned tube heat exchangers is examined through the use of simplified governing equations and an up-wind finite difference scheme. The degenerate case of zero air-side capacitance rate is compared with available exact solution. Generalization of the numerical model is discussed for application to multi-row multi-circuit heat exchangers.

  20. Noninvasive diagnosis of intraamniotic infection: proteomic biomarkers in vaginal fluid.

    PubMed

    Hitti, Jane; Lapidus, Jodi A; Lu, Xinfang; Reddy, Ashok P; Jacob, Thomas; Dasari, Surendra; Eschenbach, David A; Gravett, Michael G; Nagalla, Srinivasa R

    2010-07-01

    We analyzed the vaginal fluid proteome to identify biomarkers of intraamniotic infection among women in preterm labor. Proteome analysis was performed on vaginal fluid specimens from women with preterm labor, using multidimensional liquid chromatography, tandem mass spectrometry, and label-free quantification. Enzyme immunoassays were used to quantify candidate proteins. Classification accuracy for intraamniotic infection (positive amniotic fluid bacterial culture and/or interleukin-6 >2 ng/mL) was evaluated using receiver-operator characteristic curves obtained by logistic regression. Of 170 subjects, 30 (18%) had intraamniotic infection. Vaginal fluid proteome analysis revealed 338 unique proteins. Label-free quantification identified 15 proteins differentially expressed in intraamniotic infection, including acute-phase reactants, immune modulators, high-abundance amniotic fluid proteins and extracellular matrix-signaling factors; these findings were confirmed by enzyme immunoassay. A multi-analyte algorithm showed accurate classification of intraamniotic infection. Vaginal fluid proteome analyses identified proteins capable of discriminating between patients with and without intraamniotic infection. Copyright (c) 2010 Mosby, Inc. All rights reserved.

  1. A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de

    NASA Technical Reports Server (NTRS)

    Lopez Ortega, Alejandro; Mikellides, Ioannis G.

    2014-01-01

    We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.

  2. In-situ characterization of highly reversible phase transformation by synchrotron X-ray Laue microdiffraction

    DOE PAGES

    Chen, Xian; Tamura, Nobumichi; MacDowell, Alastair; ...

    2016-05-23

    The alloy Cu 25 Au 30 Zn 45 undergoes a huge first-order phase transformation (6% strain) and shows a high reversibility under thermal cycling and an unusual martensitc microstructure in sharp contrast to its nearby compositions. We discovered this alloy by systematically tuning the composition so that its lattice parameters satisfy the cofactor conditions (i.e., the kinematic conditions of compatibility between phases). It was conjectured that satisfaction of these conditions is responsible for the enhanced reversibility as well as the observed unusual fluid-like microstructure during transformation, but so far, there has been no direct evidence confirming that these observed microstructuresmore » are those predicted by the cofactor conditions. In order to verify this hypothesis, we use synchrotron X-ray Laue microdiffraction to measure the orientations and structural parameters of variants and phases near the austenite/martensite interface. The areas consisting of both austenite and multi-variants of martensite are scanned by microLaue diffraction. The cofactor conditions have been examined from the kinematic relation of lattice vectors across the interface. The continuity condition of the interface is precisely verified from the correspondent lattice vectors between two phases.« less

  3. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.

    2005-01-01

    A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

  4. Tackling some of the most intricate geophysical challenges via high-performance computing

    NASA Astrophysics Data System (ADS)

    Khosronejad, A.

    2016-12-01

    Recently, world has been witnessing significant enhancements in computing power of supercomputers. Computer clusters in conjunction with the advanced mathematical algorithms has set the stage for developing and applying powerful numerical tools to tackle some of the most intricate geophysical challenges that today`s engineers face. One such challenge is to understand how turbulent flows, in real-world settings, interact with (a) rigid and/or mobile complex bed bathymetry of waterways and sea-beds in the coastal areas; (b) objects with complex geometry that are fully or partially immersed; and (c) free-surface of waterways and water surface waves in the coastal area. This understanding is especially important because the turbulent flows in real-world environments are often bounded by geometrically complex boundaries, which dynamically deform and give rise to multi-scale and multi-physics transport phenomena, and characterized by multi-lateral interactions among various phases (e.g. air/water/sediment phases). Herein, I present some of the multi-scale and multi-physics geophysical fluid mechanics processes that I have attempted to study using an in-house high-performance computational model, the so-called VFS-Geophysics. More specifically, I will present the simulation results of turbulence/sediment/solute/turbine interactions in real-world settings. Parts of the simulations I present are performed to gain scientific insights into the processes such as sand wave formation (A. Khosronejad, and F. Sotiropoulos, (2014), Numerical simulation of sand waves in a turbulent open channel flow, Journal of Fluid Mechanics, 753:150-216), while others are carried out to predict the effects of climate change and large flood events on societal infrastructures ( A. Khosronejad, et al., (2016), Large eddy simulation of turbulence and solute transport in a forested headwater stream, Journal of Geophysical Research:, doi: 10.1002/2014JF003423).

  5. The source and significance of argon isotopes in fluid inclusions from areas of mineralization

    NASA Astrophysics Data System (ADS)

    Kelley, S.; Turner, G.; Butterfield, A. W.; Shepherd, T. J.

    1986-09-01

    Argon isotopes in fluid inclusions in quartz veins associated with granite-hosted tungsten mineralization in the southwest and north of England have been investigated in detail by the 40Ar- 39Ar technique. The natural argon is present as a number of discrete components which can be identified through correlations with 39Ar, 38Ar and 37Ar induced by neutron bombardment of potassium, chlorine and calcium. The potassium-correlated component arises principally from in situ decay of potassium in solid phases in the inclusions. In the case of the Hemerdon tungsten deposit of southwest England the phases responsible are small (≈ 25 μm) captive authigenic micas which are shown to have been deposited from a fluid 268 ± 20 Ma ago, shortly after the emplacement of the host granite. The chlorine-correlated component is present in the brines which constitute the fluid phase of the inclusions. The argon in these hydrothermal fluids is made up in part of "parentless" or "excess" 40Ar leached from surrounding crustal rocks, and in part of dissolved ancient atmospheric argon. Absolute concentrations of both atmospheric and excess components in the brine can be estimated from ( 40ArCl ) ratios and independent determinations of the salinity of the inclusions. The absolute concentrations of the atmospheric argon are close to those found in modern meteoric water, while those of the excess component can be interpreted in terms of the degree of interaction betwen the circulating fluids and country rock. A calcium-correlated component, with a much higher ratio of excess to atmospheric argon than that in the brine, was found to be a dominant phase in one sample from the Hemerdon deposit, indicating the presence of a solid phase (probably a CaSO 4 daughter mineral). Inclusions of this composition represent fluids which have had a more prolonged interaction- with crustal rocks. The results obtained from this study provide a systematization and a framework for future multi-component argon studies of fluid inclusions, together with an indication of the wide range of information which can be inferred.

  6. Experimental techniques and computational methods toward the estimation of the effective two-phase flow coefficients and multi-scale heterogeneities of soils

    NASA Astrophysics Data System (ADS)

    Tsakiroglou, C. D.; Aggelopoulos, C. A.; Sygouni, V.

    2009-04-01

    A hierarchical, network-type, dynamic simulator of the immiscible displacement of water by oil in heterogeneous porous media is developed to simulate the rate-controlled displacement of two fluids at the soil column scale. A cubic network is constructed, where each node is assigned a permeability which is chosen randomly from a distribution function. The intensity of heterogeneities is quantified by the width of the permeability distribution function. The capillary pressure at each node is calculated by combining a generalized Leverett J-function with a Corey type model. Information about the heterogeneity of soils at the pore network scale is obtained by combining mercury intrusion porosimetry (MIP) data with back-scattered scanning electron microscope (BSEM) images [1]. In order to estimate the two-phase flow properties of nodes (relative permeability and capillary pressure functions, permeability distribution function) immiscible and miscible displacement experiments are performed on undisturbed soil columns. The transient responses of measured variables (pressure drop, fluid saturation averaged over five successive segments, solute concentration averaged over three cross-sections) are fitted with models accounting for the preferential flow paths at the micro- (multi-region model) and macro-scale (multi flowpath model) because of multi-scale heterogeneities [2,3]. Simulating the immiscible displacement of water by oil (drainage) in a large netork, at each time step, the fluid saturation and pressure of each node are calculated formulating mass balances at each node, accounting for capillary, viscous and gravity forces, and solving the system of coupled equations. At each iteration of the algorithm, the pressure drop is so selected that the total flow rate of the injected fluid is kept constant. The dynamic large-scale network simulator is used (1) to examine the sensitivity of the transient responses of the axial distribution of fluid saturation and total pressure drop across the network to the permeability distribution function, spatial correlations of permeability, and capillary number, and (2) to estimate the effective (up-scaled) relative permeability functions at the soil column scale. In an attempt to clarify potential effects of the permeability distribution and spatial permeability correlations on the transient responses of the pressure drop across a soil column, signal analysis with wavelets is performed [4] on experimental and simulated results. The transient variation of signal energy and frequency of pressure drop fluctuations at the wavelet domain are correlated with macroscopic properties such as the effective water and oil relative permeabilities of the porous medium, and microscopic properties such as the variation of the permeability distribution of oil-occupied nodes. Toward the solution of the inverse problem, a general procedure is suggested to identify macro-heterogeneities from the fast analysis of pressure drop signals. References 1. Tsakiroglou, C.D. and M.A. Ioannidis, "Dual porosity modeling of the pore structure and transport properties of a contaminated soil", Eur. J. Soil Sci., 59, 744-761 (2008). 2. Aggelopoulos, C.A., and C.D. Tsakiroglou, "Quantifying the Soil Heterogeneity from Solute Dispersion Experiments", Geoderma, 146, 412-424 (2008). 3. Aggelopoulos, C.A., and C.D. Tsakiroglou, "A multi-flow path approach to model immiscible displacement in undisturbed heterogeneous soil columns", J. Contam. Hydrol., in press (2009). 4. Sygouni, V., C.D. Tsakiroglou, and A.C. Payatakes, "Using wavelets to characterize the wettability of porous materials", Phys. Rev. E, 76, 056304 (2007).

  7. Effect of Substrate Wetting on the Morphology and Dynamics of Phase Separating Multi-Component Mixture

    NASA Astrophysics Data System (ADS)

    Goyal, Abheeti; Toschi, Federico; van der Schoot, Paul

    2017-11-01

    We study the morphological evolution and dynamics of phase separation of multi-component mixture in thin film constrained by a substrate. Specifically, we have explored the surface-directed spinodal decomposition of multicomponent mixture numerically by Free Energy Lattice Boltzmann (LB) simulations. The distinguishing feature of this model over the Shan-Chen (SC) model is that we have explicit and independent control over the free energy functional and EoS of the system. This vastly expands the ambit of physical systems that can be realistically simulated by LB simulations. We investigate the effect of composition, film thickness and substrate wetting on the phase morphology and the mechanism of growth in the vicinity of the substrate. The phase morphology and averaged size in the vicinity of the substrate fluctuate greatly due to the wetting of the substrate in both the parallel and perpendicular directions. Additionally, we also describe how the model presented here can be extended to include an arbitrary number of fluid components.

  8. HAI: A novel airborne multi-channel hygrometer for fast multi-phase H2O quantification: Performance of the HAI instrument during the first flights on the German HALO aircraft

    NASA Astrophysics Data System (ADS)

    Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.

    2014-12-01

    Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.

  9. Radon and ammonia transects across the Cerro Prieto geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semprini, L.; Kruger, P.

    1981-01-01

    Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in themore » reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.« less

  10. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid.

    PubMed

    Khalili, V; Khalil-Allafi, J; Frenzel, J; Eggeler, G

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20wt% silicon, 1wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37°C. The results indicate that the compact structure of hydroxyapatite-20wt% silicon and hydroxyapatite-20wt% silicon-1wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Flow rate impacts on capillary pressure and interface curvature of connected and disconnected fluid phases during multiphase flow in sandstone

    NASA Astrophysics Data System (ADS)

    Herring, Anna L.; Middleton, Jill; Walsh, Rick; Kingston, Andrew; Sheppard, Adrian

    2017-09-01

    We investigate capillary pressure-saturation (PC-S) relationships for drainage-imbibition experiments conducted with air (nonwetting phase) and brine (wetting phase) in Bentheimer sandstone cores. Three different flow rate conditions, ranging over three orders of magnitude, are investigated. X-ray micro-computed tomographic imaging is used to characterize the distribution and amount of fluids and their interfacial characteristics. Capillary pressure is measured via (1) bulk-phase pressure transducer measurements, and (2) image-based curvature measurements, calculated using a novel 3D curvature algorithm. We distinguish between connected (percolating) and disconnected air clusters: curvatures measured on the connected phase interfaces are used to validate the curvature algorithm and provide an indication of the equilibrium condition of the data; curvature and volume distributions of disconnected clusters provide insight to the snap-off processes occurring during drainage and imbibition under different flow rate conditions.

  12. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    PubMed Central

    Lee, Pilhwa; Wolgemuth, Charles W.

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels. PMID:26858520

  13. Iron isotope fractionation among magnetite, pyrrhotite, chalcopyrite, rhyolite melt and aqueous fluid at magmatic-hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Bilenker, L. D.; Simon, A.; Lundstrom, C.; Gajos, N.

    2012-12-01

    Fractionation of non-traditional stable isotopes (NTSI) such as Fe in magmatic systems is a relatively understudied subject. The fractionation of Fe stable isotopes has been quantified in some natural igneous samples, but there is a paucity of experimental data that could provide further insight into the causative processes of the observed fractionation. Substantial experimental work has been performed at higher temperatures pertaining to the formation of chondrites and the Earth's core, but only a handful of studies have addressed crustal rocks. To fill this knowledge gap, we performed isothermal, isobaric experiments containing mineral (e.g., magnetite, Fe-sulfides) and fluid, or mineral, rhyolite melt, and fluid assemblages to quantify equilibrium fractionation factors (α). These data, to our knowledge, are the first data that quantify the effect of a fluid phase on iron isotope fractionation at conditions appropriate for evolving magmatic systems. Charges were run inside gold capsules held in a René-41 cold seal vessel, and heated to 400, 600, or 800°C at 150 MPa for mineral-fluid, and 800°C and 100 MPa for mineral-melt-fluid runs. Use of the René vessel fixed the fO2 at the NNO buffer, an oxidation state consistent with arc magmas. The isotopic compositions of the starting and quenched phases were obtained by using a Multi-Collector Plasma Mass Spectrometer (MC-ICP-MS). Equilibrium was assessed by performing time-series runs and the three-isotope method, used only once before in a similar Fe isotope study. Correlation between Fe isotope mass and oxidation state is also being explored. Magnetite-fluid results indicate enrichment of heavy Fe isotopes in the mineral relative to the fluid, consistent with measurements of felsic igneous rocks. Magnetite-melt-fluid relationships are also consistent with measurements of natural samples. In the latter assemblage, over the course of the run, the rhyolite melt becomes heavy relative to the fluid while magnetite takes on a heavier Fe isotope signature than the starting value. These data corroborate the hypothesis that fluid exsolution caused the isotopic patterns observed in highly-differentiated igneous rocks. Further, owing to the ubiquitous importance of melt degassing as a critical process for the formation of magmatic-hydrothermal ore deposits, these data may be potentially serve as an exploration tool. This work contributes to our overall understanding of igneous processes by elucidating the Fe isotope fingerprints observed in the field as well as develop the laboratory techniques needed to study NTSI fractionation in magmatic systems and build a reliable dataset for interpretation of natural systems.

  14. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    NASA Astrophysics Data System (ADS)

    Brandt, C.; Thakur, S. C.; Tynan, G. R.

    2016-04-01

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.

  15. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.

    2016-04-15

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less

  16. A Multi-physics Approach to Understanding Low Porosity Soils and Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Prasad, M.; Mapeli, C.; Livo, K.; Hasanov, A.; Schindler, M.; Ou, L.

    2017-12-01

    We present recent results on our multiphysics approach to rock physics. Thus, we evaluate geophysical measurements by simultaneously measuring petrophysical properties or imaging strains. In this paper, we present simultaneously measured acoustic and electrical anisotropy data as functions of pressure. Similarly, we present strains and strain localization images simultaneously acquired with acoustic measurements as well as NMR T2 relaxations on pressurized fluids as well as rocks saturated with these pressurized fluids. Such multiphysics experiments allow us to constrain and assign appropriate causative mechanisms to development rock physics models. They also allow us to decouple various effects, for example, fluid versus pressure, on geophysical measurements. We show applications towards reservoir characterization as well as CO2 sequestration applications.

  17. A randomized controlled trial to evaluate the effectiveness of a cognitive behavioural group approach to improve patient adherence to peritoneal dialysis fluid restrictions: a pilot study.

    PubMed

    Hare, Jennifer; Clark-Carter, David; Forshaw, Mark

    2014-03-01

    Peritoneal dialysis (PD) requires patients to take an active role in their adherence to fluid restrictions. Although fluid non-adherence had been identified among this patient group, no specific interventions have been researched or published with in the PD population. The current study sought to investigate whether an applied cognitive behavioural therapy (CBT-based intervention) used among haemodialysis patients would improve fluid adherence among PD patients; utilizing clinical indicators used in practice. Fifteen PD patients identified as fluid non-adherent were randomly assigned to an intervention group (IG) or a deferred-entry control group (CG). The study ran for a total of 21 weeks, with five data collection points; at baseline, post-intervention and at three follow-up points; providing a RCT phase and a combined longitudinal analysis phase. The content of the group intervention encompassed educational, cognitive and behavioural components, aimed to assist patients' self-management of fluid. No significant differences in weight (kg) reduction were found in either phase and undesirable changes in blood pressure (BP) were observed. However, in the longitudinal phase, a statistically significant difference in oedematous status was observed at 6-week follow-up; which may be indicative of fluid adherence. Positive and significant differences were observed in the desired direction for measures of psychological well-being, quality of life and health beliefs; areas correlated with enhanced fluid adherence in other research. This study reveals encouraging and significant changes in predictors of fluid adherence. Although there were no significant changes in weight as a crude clinical measure of fluid intake, significant reductions in oedematous status were observed as a consequence of this CBT-based group intervention.

  18. Fluid-chemical evidence for one billion years of fluid flow through Mesoproterozoic deep-water carbonate mounds (Nanisivik zinc district, Nunavut)

    NASA Astrophysics Data System (ADS)

    Hahn, K. E.; Turner, E. C.; Kontak, D. J.; Fayek, M.

    2018-02-01

    Ancient carbonate rocks commonly contain numerous post-depositional phases (carbonate minerals; quartz) recording successive diagenetic events that can be deciphered and tied to known or inferred geological events using a multi-pronged in situ analytical protocol. The framework voids of large, deep-water microbial carbonate seep-mounds in Arctic Canada (Mesoproterozoic Ikpiarjuk Formation) contain multiple generations of synsedimentary and late cement. An in situ analytical study of the post-seafloor cements used optical and cathodoluminescence petrography, SEM-EDS analysis, fluid inclusion (FI) microthermometry and evaporate mound analysis, LA-ICP-MS analysis, and SIMS δ18O to decipher the mounds' long-term diagenetic history. The six void-filling late cements include, in paragenetic order: inclusion-rich euhedral dolomite (ED), finely crystalline clear dolomite (FCD), hematite-bearing dolomite (HD), coarsely crystalline clear dolomite (CCD), quartz (Q), replacive calcite (RC) and late calcite (LC). Based on the combined analytical results, the following fluid-flow history is defined: (1) ED precipitation by autocementation during shallow burial (fluid 1; Mesoproterozoic); (2) progressive mixing of Ca-rich hydrothermal fluid with the connate fluid, resulting in precipitation of FCD followed by HD (fluid 2; also Mesoproterozoic); (3) precipitation of hydrothermal dolomite (CCD) from high-Ca and K-rich fluids (fluid 3; possibly Mesoproterozoic, but timing unclear); (4) hydrothermal Q precipitation (fluid 4; timing unclear), and (5) RC and LC precipitation from a meteoric-derived water (fluid 5) in or since the Mesozoic. Fluids associated with FCD, HD, and CCD may have been mobilised during deposition of the upper Bylot Supergroup; this time interval was the most tectonically active episode in the region's Mesoproterozoic to Recent history. The entire history of intermittent fluid migration and cement precipitation recorded in seemingly unimportant void-filling mineral phases spans over 1 billion years, and was decipherable only because of the in situ protocol used. The multiple-method in situ analytical protocol employed in this study substantially augments the knowledge of an area's geological history, parts of which cannot be discerned by means other than meticulous study of diagenetic phases, and should become routine in similar studies.

  19. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    NASA Astrophysics Data System (ADS)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high performance to cost ratio of this machine lends significant credence to the economic viability of small-scale, low-temperature ORCs. The experimental campaign covered two heat source temperatures, the full range of pump and expander speeds, a full range of heat source and heat sink fluid flow rates, and various charge levels for the three working fluids. This resulted in 366 steady-state measurements. The steady state measurements are used to develop a detailed ORC model. The model is based on multi-fluid performance maps for the pump and expander and a robust moving-boundary heat exchanger model. It is validated against the measured data and predicts the net power output of the tested ORC with a mean absolute percent error of 7.16%. Comparisons made with the detailed model confirm the predictions of the design-stage model. Using a conservative estimate of the condenser fan power, 19.1% improvement of the ZRC over the baseline ORC is indicated for a source temperature of 80 °C. For a 100 °C source temperature, 13.8% improvement is indicated. A key feature of the detailed ORC model is that it calculates the charge inventory of the working fluid in each heat exchanger and line set. Total system charge can also be specified as a model input. The model can represent the total charge well for R134a at low measured charge levels. As the measured charge level increases, the model becomes less accurate. Reasons for the deviation of the model at higher charge are investigated. It is expected that a charge tuning scheme could be employed to improve the accuracy of model-predicted charge.

  20. Visualizing and Quantifying Pore Scale Fluid Flow Processes With X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Hopmans, J. W.; Vaz, C. M.; Rivers, M. L.

    2001-05-01

    When using mathematical models based on Darcy's law it is often necessary to simplify geometry, physics or both and the capillary bundle-of-tubes approach neglects a fundamentally important characteristic of porous solids, namely interconnectedness of the pore space. New approaches to pore-scale modeling that arrange capillary tubes in two- or three-dimensional pore space have been and are still under development: Network models generally represent the pore space by spheres while the pore throats are usually represented by cylinders or conical shapes. Lattice Boltzmann approaches numerically solve the Navier-Stokes equations in a realistic microscopically disordered geometry, which offers the ability to study the microphysical basis of macroscopic flow without the need for a simplified geometry or physics. In addition to these developments in numerical modeling techniques, new theories have proposed that interfacial area should be considered as a primary variable in modeling of a multi-phase flow system. In the wake of this progress emerges an increasing need for new ways of evaluating pore-scale models, and for techniques that can resolve and quantify phase interfaces in porous media. The mechanisms operating at the pore-scale cannot be measured with traditional experimental techniques, however x-ray computerized microtomography (CMT) provides non-invasive observation of, for instance, changing fluid phase content and distribution on the pore scale. Interfacial areas have thus far been measured indirectly, but with the advances in high-resolution imaging using CMT it is possible to track interfacial area and curvature as a function of phase saturation or capillary pressure. We present results obtained at the synchrotron-based microtomography facility (GSECARS, sector 13) at the Advanced Photon Source at Argonne National Laboratory. Cylindrical sand samples of either 6 or 1.5 mm diameter were scanned at different stages of drainage and for varying boundary conditions. A significant difference in fluid saturation and phase distribution was observed for different drainage conditions, clearly showing preferential flow and a dependence on the applied flow rate. For the 1.5 mm sample individual pores and water/air interfaces could be resolved and quantified using image analysis techniques. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38.

  1. Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.

  2. Measuring P-V-T Phase Behavior with a Variable Volume View Cell

    ERIC Educational Resources Information Center

    Hoffmann, Markus M.; Salter, Jason D.

    2004-01-01

    An experiment using a variable volume cell is presented where students actively control and directly observe the phase equilibrium inside the view cell. Measuring and exploring P-V-T phase behavior through dielectric constant measurements conveys the important concept that solvent behavior can be changed continuously in the sc fluid state.

  3. Thermal Analysis of Magnetically-Coupled Pump for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Senocak, Inanc; Udaykumar, H. S.; Ndri, Narcisse; Francois, Marianne; Shyy, Wei

    1999-01-01

    Magnetically-coupled pump is under evaluation at Kennedy Space Center for possible cryogenic applications. A major concern is the impact of low temperature fluid flows on the pump performance. As a first step toward addressing this and related issues, a computational fluid dynamics and heat transfer tool has been adopted in a pump geometry. The computational tool includes (i) a commercial grid generator to handle multiple grid blocks and complicated geometric definitions, and (ii) an in-house computational fluid dynamics and heat transfer software developed in the Principal Investigator's group at the University of Florida. Both pure-conduction and combined convection-conduction computations have been conducted. A pure-conduction analysis gives insufficient information about the overall thermal distribution. Combined convection-conduction analysis indicates the significant influence of the coolant over the entire flow path. Since 2-D simulation is of limited help, future work on full 3-D modeling of the pump using multi-materials is needed. A comprehensive and accurate model can be developed to take into account the effect of multi-phase flow in the cooling flow loop, and the magnetic interactions.

  4. Design and Implementation of Energized Fracture Treatment in Tight Gas Sands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukul Sharma; Kyle Friehauf

    2009-12-31

    Hydraulic fracturing is essential for producing gas and oil at an economic rate from low permeability sands. Most fracturing treatments use water and polymers with a gelling agent as a fracturing fluid. The water is held in the small pore spaces by capillary pressure and is not recovered when drawdown pressures are low. The un-recovered water leaves a water saturated zone around the fracture face that stops the flow of gas into the fracture. This is a particularly acute problem in low permeability formations where capillary pressures are high. Depletion (lower reservoir pressures) causes a limitation on the drawdown pressuremore » that can be applied. A hydraulic fracturing process can be energized by the addition of a compressible, sometimes soluble, gas phase into the treatment fluid. When the well is produced, the energized fluid expands and gas comes out of solution. Energizing the fluid creates high gas saturation in the invaded zone, thereby facilitating gas flowback. A new compositional hydraulic fracturing model has been created (EFRAC). This is the first model to include changes in composition, temperature, and phase behavior of the fluid inside the fracture. An equation of state is used to evaluate the phase behavior of the fluid. These compositional effects are coupled with the fluid rheology, proppant transport, and mechanics of fracture growth to create a general model for fracture creation when energized fluids are used. In addition to the fracture propagation model, we have also introduced another new model for hydraulically fractured well productivity. This is the first and only model that takes into account both finite fracture conductivity and damage in the invaded zone in a simple analytical way. EFRAC was successfully used to simulate several fracture treatments in a gas field in South Texas. Based on production estimates, energized fluids may be required when drawdown pressures are smaller than the capillary forces in the formation. For this field, the minimum CO{sub 2} gas quality (volume % of gas) recommended is 30% for moderate differences between fracture and reservoir pressures (2900 psi reservoir, 5300 psi fracture). The minimum quality is reduced to 20% when the difference between pressures is larger, resulting in additional gas expansion in the invaded zone. Inlet fluid temperature, flow rate, and base viscosity did not have a large impact on fracture production. Finally, every stage of the fracturing treatment should be energized with a gas component to ensure high gas saturation in the invaded zone. A second, more general, sensitivity study was conducted. Simulations show that CO{sub 2} outperforms N{sub 2} as a fluid component because it has higher solubility in water at fracturing temperatures and pressures. In fact, all gas components with higher solubility in water will increase the fluid's ability to reduce damage in the invaded zone. Adding methanol to the fracturing solution can increase the solubility of CO{sub 2}. N{sub 2} should only be used if the gas leaks-off either during the creation of the fracture or during closure, resulting in gas going into the invaded zone. Experimental data is needed to determine if the gas phase leaks-off during the creation of the fracture. Simulations show that the bubbles in a fluid traveling across the face of a porous medium are not likely to attach to the surface of the rock, the filter cake, or penetrate far into the porous medium. In summary, this research has created the first compositional fracturing simulator, a useful tool to aid in energized fracture design. We have made several important and original conclusions about the best practices when using energized fluids in tight gas sands. The models and tools presented here may be used in the future to predict behavior of any multi-phase or multi-component fracturing fluid system.« less

  5. Multi-Phase Modeling of Rainbird Water Injection

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Moss, Nicholas; Sampson, Zoe

    2014-01-01

    This paper describes the use of a Volume of Fluid (VOF) multiphase model to simulate the water injected from a rainbird nozzle used in the sound suppression system during launch. The simulations help determine the projectile motion for different water flow rates employed at the pad, as it is critical to know if water will splash on the first-stage rocket engine during liftoff.

  6. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, Ashvin; Ahuja, Vineet

    2005-01-01

    Contents include the following: Background on thermal effects in cavitation. Physical properties of hydrogen. Multi-phase cavitation with thermal effect. Solution procedure. Cavitation model overview. Cavitation source terms. New cavitation model. Source term for bubble growth. One equation les model. Unsteady ogive simulations: liquid nitrogen. Unsteady incompressible flow in a pipe. Time averaged cavity length for NACA15 flowfield.

  7. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    NASA Astrophysics Data System (ADS)

    Sio, H.; Frenje, J. A.; Katz, J.; Stoeckl, C.; Weiner, D.; Bedzyk, M.; Glebov, V.; Sorce, C.; Gatu Johnson, M.; Rinderknecht, H. G.; Zylstra, A. B.; Sangster, T. C.; Regan, S. P.; Kwan, T.; Le, A.; Simakov, A. N.; Taitano, W. T.; Chacòn, L.; Keenan, B.; Shah, R.; Sutcliffe, G.; Petrasso, R. D.

    2016-11-01

    A Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D3He, and T3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, their time differences, and measurements of Ti(t) and Te(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.

  8. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sio, H.; Frenje, J. A.; Katz, J.

    Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D 3He, and T 3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, theirmore » time differences, and measurements of T i(t) and T e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.« less

  9. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited)

    DOE PAGES

    Sio, H.; Frenje, J. A.; Katz, J.; ...

    2016-09-14

    Here, a Particle X-ray Temporal Diagnostic (PXTD) has been implemented on OMEGA for simultaneous time-resolved measurements of several nuclear products as well as the x-ray continuum produced in High Energy Density Plasmas and Inertial Confinement Fusion implosions. The PXTD removes systematic timing uncertainties typically introduced by using multiple instruments, and it has been used to measure DD, DT, D 3He, and T 3He reaction histories and the emission history of the x-ray core continuum with relative timing uncertainties within ±10-20 ps. This enables, for the first time, accurate and simultaneous measurements of the x-ray emission histories, nuclear reaction histories, theirmore » time differences, and measurements of T i(t) and T e(t) from which an assessment of multiple-ion-fluid effects, kinetic effects during the shock-burn phase, and ion-electron equilibration rates can be made.« less

  10. Fluid Physics Experiments onboard International Space Station: Through the Eyes of a Scientist.

    NASA Astrophysics Data System (ADS)

    Shevtsova, Valentina

    Fluids are present everywhere in everyday life. They are also present as fuel, in support systems or as consumable in rockets and onboard of satellites and space stations. Everyone experiences every day that fluids are very sensitive to gravity: on Earth liquids flow downwards and gases mostly rise. Nowadays much of the interest of the scientific community is on studying the phenomena at microscales in so-called microfluidic systems. However, at smaller scales the experimental investigation of convective flows becomes increasingly difficult as the control parameter Ra scales with g L (3) (g; acceleration level, L: length scale). A unique alternative to the difficulty of investigating systems with small length scale on the ground is to reduce the gravity level g. In systems with interfaces, buoyancy forces are proportional to the volume of the liquid, while capillary forces act solely on the liquid surface. The importance of buoyancy diminishes either at very small scales or with reducing the acceleration level. Under the weightless conditions of space where buoyancy is virtually eliminated, other mechanisms such as capillary forces, diffusion, vibration, shear forces, electrostatic and electromagnetic forces are dominating in the fluid behaviour. This is why research in space represents a powerful tool for scientific research in this field. Understanding how fluids work really matters and so does measuring their properties accurately. Presently, a number of scientific laboratories, as usual goes with multi-user instruments, are involved in fluid research on the ISS. The programme of fluid physics experiments on-board deals with capillary flows, diffusion, dynamics in complex fluids (foams, emulsions and granular matter), heat transfer processes with phase change, physics and physico-chemistry near or beyond the critical point and it also extends to combustion physics. The top-level objectives of fluid research in space are as follows: (i) to investigate fluid behaviour in order to support the development of predictive models for the management of fluids and fluid mixtures on the ground as well as in space; (ii) to measure fluid properties that are either very difficult or not possible at all to measure on the ground and establish benchmarks; (iii) to exploit the absence of gravity forces to study new behaviours and implement new experimental configurations; Surely, all of you have seen movies about astronauts’ work and life on the ISS. Here you will learn another approach to the ISS activity, through the opinion of experienced scientist.

  11. Effects of liquid layers and distribution patterns on three-phase saturation and relative permeability relationships: a micromodel study.

    PubMed

    Tsai, Jui-Pin; Chang, Liang-Cheng; Hsu, Shao-Yiu; Shan, Hsin-Yu

    2017-12-01

    In the current study, we used micromodel experiments to study three-phase fluid flow in porous media. In contrast to previous studies, we simultaneously observed and measured pore-scale fluid behavior and three-phase constitutive relationships with digital image acquisition/analysis, fluid pressure control, and permeability assays. Our results showed that the fluid layers significantly influenced pore-scale, three-phase fluid displacement as well as water relative permeability. At low water saturation, water relative permeability not only depended on water saturation but also on the distributions of air and diesel. The results also indicate that the relative permeability-saturation model proposed by Parker et al. (1987) could not completely describe the experimental data from our three-phase flow experiments because these models ignore the effects of phase distribution. A simple bundle-of-tubes model shows that the water relative permeability was proportional to the number of apparently continuous water paths before the critical stage in which no apparently continuous water flow path could be found. Our findings constitute additional information about the essential constitutive relationships involved in both the understanding and the modeling of three-phase flows in porous media.

  12. Extension of lattice Boltzmann flux solver for simulation of compressible multi-component flows

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ming; Shu, Chang; Yang, Wen-Ming; Wang, Yan

    2018-05-01

    The lattice Boltzmann flux solver (LBFS), which was presented by Shu and his coworkers for solving compressible fluid flow problems, is extended to simulate compressible multi-component flows in this work. To solve the two-phase gas-liquid problems, the model equations with stiffened gas equation of state are adopted. In this model, two additional non-conservative equations are introduced to represent the material interfaces, apart from the classical Euler equations. We first convert the interface equations into the full conservative form by applying the mass equation. After that, we calculate the numerical fluxes of the classical Euler equations by the existing LBFS and the numerical fluxes of the interface equations by the passive scalar approach. Once all the numerical fluxes at the cell interface are obtained, the conservative variables at cell centers can be updated by marching the equations in time and the material interfaces can be identified via the distributions of the additional variables. The numerical accuracy and stability of present scheme are validated by its application to several compressible multi-component fluid flow problems.

  13. Injection System for Multi-Well Injection Using a Single Pump

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.

    2015-01-01

    Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014

  14. Experimental multi-phase H2O-CO2 brine interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    USGS Publications Warehouse

    Rosenbauer, R.; Koksalan, T.

    2004-01-01

    The burning of fossil fuel and other anthropogenic activities have caused a continuous and dramatic 30% increase of atmospheric CO2 over the past 150 yr. CO2 sequestration is increasingly being viewed as a tool for managing these anthropogenic CO2 emissions to the atmosphere. CO2-saturated brine-rock experiments were carried out to evaluate the effects of multiphase H2O-CO2 fluids on mineral equilibria and the potential for CO2 sequestration in mineral phases within deep-saline aquifers. Experimental results were generally consistent with theoretical thermodynamic calculations. The solubility of CO2 was enhanced in brines in the presence of both limestone and sandstone relative to brines alone. Reactions between CO2 saturated brines and arkosic sandstones were characterized by desiccation of the brine and changes in the chemical composition of the brine suggesting fixation of CO2 in mineral phases. These reactions were occurring on a measurable but kinetically slow time scale at 120??C.

  15. The Blended Finite Element Method for Multi-fluid Plasma Modeling

    DTIC Science & Technology

    2016-07-01

    Briefing Charts 3. DATES COVERED (From - To) 07 June 2016 - 01 July 2016 4. TITLE AND SUBTITLE The Blended Finite Element Method for Multi-fluid Plasma...BLENDED FINITE ELEMENT METHOD FOR MULTI-FLUID PLASMA MODELING Éder M. Sousa1, Uri Shumlak2 1ERC INC., IN-SPACE PROPULSION BRANCH (RQRS) AIR FORCE RESEARCH...MULTI-FLUID PLASMA MODEL 2 BLENDED FINITE ELEMENT METHOD Blended Finite Element Method Nodal Continuous Galerkin Modal Discontinuous Galerkin Model

  16. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017.

  17. Acrivos Award Talk

    NASA Astrophysics Data System (ADS)

    Datta, Sujit Sankar

    2015-11-01

    Filtering water and brewing coffee are familiar examples of forcing a fluid through a porous material. Such flows are also crucial to many technological applications, including oil recovery, groundwater remediation, waste CO2 sequestration, and even transporting nutrients through mammalian tissues. I will present an experimental approach by which we directly visualize flow within a disordered 3D porous medium over a broad range of length scales, from the scale of individual pores to that of the entire medium. I will describe how we use this approach to learn about fluctuations and instabilities in single-phase and multi-phase flows.

  18. The redox budget of crust-derived fluid phases at the slab-mantle interface

    NASA Astrophysics Data System (ADS)

    Malaspina, N.; Langenhorst, F.; Tumiati, S.; Campione, M.; Frezzotti, M. L.; Poli, S.

    2017-07-01

    The redox processes taking place in the portion of the mantle on top of the subducting slab are poorly investigated and the redox potential of crust-derived fluid phases is still poorly constrained. A case study of supra-subduction mantle affected by metasomatism from crust-derived fluid phases is represented by garnet orthopyroxenites from the Maowu Ultramafic Complex (China) deriving from harzburgite precursors metasomatised at ∼4 GPa, 750-800 °C by a silica- and incompatible trace element-rich fluid phase. This metasomatism produced poikilitic orthopyroxene and inclusion-rich garnet porphyroblasts. Solid multiphase primary micro-inclusions in garnet display negative crystal shapes and infilling minerals (spinel, ±orthopyroxene, amphiboles, chlorite, ±talc, ±mica) occur with constant modal proportions, indicating that they derive from trapped solute-rich aqueous fluids. FT-IR hyper spectral imaging analyses and Raman spectroscopy, together with X-ray microtomography performed on single inclusions indicate that liquid water is still preserved at least in some inclusions (±spinel). To investigate the redox budget of these fluid phases, we measured for the first time the Fe3+ concentration of the micron-sized precipitates of the multiphase inclusions using EELS on a TEM. Results indicate that spinel contains up to 12% of Fe3+ with respect to the total iron, amphibole about 30%, while the ratio in inclusion phases such as chlorite and phlogopite may reach 70%. The Fe3+ fraction of the host garnet is equal to that measured in spinel as also confirmed by Flank Method EPMA measurements. Forward modelling fO2 calculations indicate that the garnet orthopyroxenites record ΔFMQ = -1.8 ÷ -1.5, therefore resulting apparently more reduced with respect to metasomatised supra-subduction garnet-peridotites. On the other hand, oxygen mass balance, performed both on the Maowu hybrid orthopyroxenite and on metasomatised supra-subduction garnet peridotites, indicate that the excess of oxygen (nO2) is the same (10 mol m-3). The oxygen mass balance of the crust-derived fluids (multiphase inclusions) also indicates that the fluid precipitates are more oxidised than the host rock, reaching up to 400 mol m-3 of nO2. This suggests that even after their interaction with the metasomatic orthopyroxenites, the residual fluid phases could be potentially carrier of oxidised components when it escapes the slab-mantle interface. Because of this gradient in nO2, a metasomatic front develops from the oxidised slab to the overlying lithospheric mantle wedge passing through a transitional layer of hybrid rocks at the slab-mantle interface.

  19. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, B.

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. Themore » technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.« less

  20. Phase-resolved fluid dynamic forces of a flapping foil energy harvester based on PIV measurements

    NASA Astrophysics Data System (ADS)

    Liburdy, James

    2017-11-01

    Two-dimensional particle image velocimetry measurements are performed in a wind tunnel to evaluate the spatial and temporal fluid dynamic forces acting on a flapping foil operating in the energy harvesting regime. Experiments are conducted at reduced frequencies (k = fc/U) of 0.05 - 0.2, pitching angle of, and heaving amplitude of A / c = 0.6. The phase-averaged pressure field is obtained by integrating the pressure Poisson equation. Fluid dynamic forces are then obtained through the integral momentum equation. Results are compared with a simple force model based on the concept of flow impulse. These results help to show the detailed force distributions, their transient nature and aide in understanding the impact of the fluid flow structures that contribute to the power production.

  1. Lagrangian Fluid Element Tracking and Estimation of Local Displacement Speeds in Turbulent Premixed Flames

    NASA Astrophysics Data System (ADS)

    Ramji, Sarah Ann

    Improved understanding of turbulence-flame interactions in premixed combustion can be achieved using fully 3D time-resolved multi-kHz multi-scalar experimental measurements. These interactions may be represented by the evolution of various Lagrangian quantities described by theoretical Lagrangian Fluid Elements (LFEs). The data used in this work came from two experimental campaigns that used simultaneous T-PIV and OH/CH2O PLIF, at Sandia National Labs and the Air Force Research Lab at Wright-Patterson. In this thesis, an algorithm to accurately track LFEs through this 4D experimental space has been developed and verified by cross-correlation with the T-PIV seed particle fields. A novel method to measure the local instantaneous displacement speed in 3D has been developed, using this algorithm to track control masses of fluid that interact with the flame front. Statistics of the displacement speed have been presented, and the effects of local turbulence and flame topological properties on the displacement speed have been studied.

  2. Fluid surface compensation in digital holographic microscopy for topography measurement

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern

    2012-06-01

    A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.

  3. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  4. Construction of Joule Thomson inversion curves for mixtures using equation of state

    NASA Astrophysics Data System (ADS)

    Patankar, A. S.; Atrey, M. D.

    2017-02-01

    The Joule-Thomson effect is at the heart of Joule-Thomson cryocoolers and gas liquefaction cycles. The effective harnessing of this phenomenon necessitates the knowledge of Joule-Thomson coefficient and the inversion curve. When the working fluid is a mixture, (in mix refrigerant Joule-Thomson cryocooler, MRJT) the phase diagrams, equations of state and inversion curves of multi-component systems become important. The lowest temperature attainable by such a cryocooler depends on the inversion characteristics of the mixture used. In this work the construction of differential Joule-Thomson inversion curves of mixtures using Redlich-Kwong, Soave-Redlich-Kwong and Peng-Robinson equations of state is investigated assuming single phase. It is demonstrated that inversion curves constructed for pure fluids can be improved by choosing an appropriate value of acentric factor. Inversion curves are used to predict maximum inversion temperatures of multicomponent systems. An application where this information is critical is a two-stage J-T cryocooler using a mixture as the working fluid, especially for the second stage. The pre-cooling temperature that the first stage is required to generate depends on the maximum inversion temperature of the second stage working fluid.

  5. An Experimental Visualization and Image Analysis of Electrohydrodynamically Induced Vapor-Phase Silicon Oil Flow under DC Corona Discharge

    NASA Astrophysics Data System (ADS)

    Ohyama, Ryu-Ichiro; Fukumoto, Masaru

    A DC corona discharge induced electrohydrodynamic (EHD) flow phenomenon for a multi-phase fluid containing a vapor-phase dielectric liquid in the fresh air was investigated. The experimental electrode system was a simple arrangement of needle-plate electrodes for the corona discharges and high-resistivity silicon oil was used as the vapor-phase liquid enclosure. The qualitative observation of EHD flow patterns was conducted by an optical processing on computer tomography and the time-series of discharge current pulse generations at corona discharge electrode were measured simultaneously. These experimental results were analyzed in relationship between the EHD flow motions and the current pulse generations in synchronization. The current pulses and the EHD flow motions from the corona discharge electrode presented a continuous mode similar to the ionic wind in the fresh air and an intermittent mode. In the intermittent mode, the observed EHD flow motion was synchronized with the separated discharge pulse generations. From these experimental results, it was expected that the existence of silicon oil vapor trapped charges gave an occasion to the intermittent generations of the discharge pulses and the secondary EHD flow.

  6. A MIMO radar quadrature and multi-channel amplitude-phase error combined correction method based on cross-correlation

    NASA Astrophysics Data System (ADS)

    Yun, Lingtong; Zhao, Hongzhong; Du, Mengyuan

    2018-04-01

    Quadrature and multi-channel amplitude-phase error have to be compensated in the I/Q quadrature sampling and signal through multi-channel. A new method that it doesn't need filter and standard signal is presented in this paper. And it can combined estimate quadrature and multi-channel amplitude-phase error. The method uses cross-correlation and amplitude ratio between the signal to estimate the two amplitude-phase errors simply and effectively. And the advantages of this method are verified by computer simulation. Finally, the superiority of the method is also verified by measure data of outfield experiments.

  7. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    NASA Astrophysics Data System (ADS)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  8. Validated LC–MS-MS Method for Multiresidual Analysis of 13 Illicit Phenethylamines in Amniotic Fluid

    PubMed Central

    Burrai, Lucia; Nieddu, Maria; Carta, Antonio; Trignano, Claudia; Sanna, Raimonda; Boatto, Gianpiero

    2016-01-01

    A multi-residue analytical method was developed for the determination in amniotic fluid (AF) of 13 illicit phenethylamines, including 12 compounds never investigated in this matrix before. Samples were subject to solid-phase extraction using; hydrophilic–lipophilic balance cartridges which gave good recoveries and low matrix effects on analysis of the extracts. The quantification was performed by liquid chromatography electrospray tandem mass spectrometry. The water–acetonitrile mobile phase containing 0.1% formic acid, used with a C18 reversed phase column, provided adequate separation, resolution and signal-to-noise ratio for the analytes and the internal standard. The final optimized method was validated according to international guidelines. A monitoring campaign to assess fetal exposure to these 13 substances of abuse has been performed on AF test samples obtained from pregnant women. All mothers (n = 194) reported no use of drugs of abuse during pregnancy, and this was confirmed by the analytical data. PMID:26755540

  9. Using electrical impedance tomography to map subsurface hydraulic conductivity

    DOEpatents

    Berryman, James G.; Daily, William D.; Ramirez, Abelardo L.; Roberts, Jeffery J.

    2000-01-01

    The use of Electrical Impedance Tomography (EIT) to map subsurface hydraulic conductivity. EIT can be used to map hydraulic conductivity in the subsurface where measurements of both amplitude and phase are made. Hydraulic conductivity depends on at least two parameters: porosity and a length scale parameter. Electrical Resistance Tomography (ERT) measures and maps electrical conductivity (which can be related to porosity) in three dimensions. By introducing phase measurements along with amplitude, the desired additional measurement of a pertinent length scale can be achieved. Hydraulic conductivity controls the ability to flush unwanted fluid contaminants from the surface. Thus inexpensive maps of hydraulic conductivity would improve planning strategies for subsequent remediation efforts. Fluid permeability is also of importance for oil field exploitation and thus detailed knowledge of fluid permeability distribution in three-dimension (3-D) would be a great boon to petroleum reservoir analysts.

  10. Phase behavior of charged colloids at a fluid interface

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.; Guerra, Rodrigo E.; Hollingsworth, Andrew D.; Chaikin, Paul M.

    2017-02-01

    We study the phase behavior of a system of charged colloidal particles that are electrostatically bound to an almost flat interface between two fluids. We show that, despite the fact that our experimental system consists of only 103-104 particles, the phase behavior is consistent with the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson, and Young. Using spatial and temporal correlations of the bond-orientational order parameter, we classify our samples into solid, isotropic fluid, and hexatic phases. We demonstrate that the topological defect structure we observe in each phase corresponds to the predictions of Kosterlitz-Thouless-Halperin-Nelson-Young theory. By measuring the dynamic Lindemann parameter γL(τ ) and the non-Gaussian parameter α2(τ ) of the displacements of the particles relative to their neighbors, we show that each of the phases displays distinctive dynamical behavior.

  11. Zero Boil-Off Tank (ZBOT) Experiment

    NASA Technical Reports Server (NTRS)

    Mcquillen, John

    2016-01-01

    The Zero-Boil-Off Tank (ZBOT) experiment has been developed as a small scale ISS experiment aimed at delineating important fluid flow, heat and mass transport, and phase change phenomena that affect cryogenic storage tank pressurization and pressure control in microgravity. The experiments use a simulant transparent low boiling point fluid (PnP) in a sealed transparent Dewar to study and quantify: (a) fluid flow and thermal stratification during pressurization; (b) mixing, thermal destratification, depressurization, and jet-ullage penetration during pressure control by jet mixing. The experiment will provide valuable microgravity empirical two-phase data associated with the above-mentioned physical phenomena through highly accurate local wall and fluid temperature and pressure measurements, full-field phase-distribution and flow visualization. Moreover, the experiments are performed under tightly controlled and definable heat transfer boundary conditions to provide reliable high-fidelity data and precise input as required for validation verification of state-of-the-art two-phase CFD models developed as part of this research and by other groups in the international scientific and cryogenic fluid management communities.

  12. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE PAGES

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui; ...

    2018-04-30

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  13. Magnetic Polarization Measurements of the Multi-modal Plasma Response to 3D fields in the EAST Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Nikolas; Cui, L.; Wang, Hui -Hui

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n=2 fields in the same plasma for which the n=1 responses are well synchronized.more » Neither the maximum radial nor the maximum poloidal field response to n=2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n=1 and n=2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.« less

  14. Multi-Scale Morphological Analysis of Conductance Signals in Vertical Upward Gas-Liquid Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Lian, Enyang; Ren, Yingyu; Han, Yunfeng; Liu, Weixin; Jin, Ningde; Zhao, Junying

    2016-11-01

    The multi-scale analysis is an important method for detecting nonlinear systems. In this study, we carry out experiments and measure the fluctuation signals from a rotating electric field conductance sensor with eight electrodes. We first use a recurrence plot to recognise flow patterns in vertical upward gas-liquid two-phase pipe flow from measured signals. Then we apply a multi-scale morphological analysis based on the first-order difference scatter plot to investigate the signals captured from the vertical upward gas-liquid two-phase flow loop test. We find that the invariant scaling exponent extracted from the multi-scale first-order difference scatter plot with the bisector of the second-fourth quadrant as the reference line is sensitive to the inhomogeneous distribution characteristics of the flow structure, and the variation trend of the exponent is helpful to understand the process of breakup and coalescence of the gas phase. In addition, we explore the dynamic mechanism influencing the inhomogeneous distribution of the gas phase in terms of adaptive optimal kernel time-frequency representation. The research indicates that the system energy is a factor influencing the distribution of the gas phase and the multi-scale morphological analysis based on the first-order difference scatter plot is an effective method for indicating the inhomogeneous distribution of the gas phase in gas-liquid two-phase flow.

  15. Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to fluid phase transition

    DOE PAGES

    Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; ...

    2015-03-04

    Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. Lastly, the data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.« less

  16. Gradient Theory simulations of pure fluid interfaces using a generalized expression for influence parameters and a Helmholtz energy equation of state for fundamentally consistent two-phase calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Rainer N.

    2014-12-31

    The fidelity of Gradient Theory simulations depends on the accuracy of saturation properties and influence parameters, and require equations of state (EoS) which exhibit a fundamentally consistent behavior in the two-phase regime. Widely applied multi-parameter EoS, however, are generally invalid inside this region. Hence, they may not be fully suitable for application in concert with Gradient Theory despite their ability to accurately predict saturation properties. The commonly assumed temperature-dependence of pure component influence parameters usually restricts their validity to subcritical temperature regimes. This may distort predictions for general multi-component interfaces where temperatures often exceed the critical temperature of vapor phasemore » components. Then, the calculation of influence parameters is not well defined. In this paper, one of the first studies is presented in which Gradient Theory is combined with a next-generation Helmholtz energy EoS which facilitates fundamentally consistent calculations over the entire two-phase regime. Illustrated on pentafluoroethane as an example, reference simulations using this method are performed. They demonstrate the significance of such high-accuracy and fundamentally consistent calculations for the computation of interfacial properties. These reference simulations are compared to corresponding results from cubic PR EoS, widely-applied in combination with Gradient Theory, and mBWR EoS. The analysis reveals that neither of those two methods succeeds to consistently capture the qualitative distribution of obtained key thermodynamic properties in Gradient Theory. Furthermore, a generalized expression of the pure component influence parameter is presented. This development is informed by its fundamental definition based on the direct correlation function of the homogeneous fluid and by presented high-fidelity simulations of interfacial density profiles. As a result, the new model preserves the accuracy of previous temperature-dependent expressions, remains well-defined at supercritical temperatures, and is fully suitable for calculations of general multi-component two-phase interfaces.« less

  17. A New Wide-Range Equation of State for Xenon

    NASA Astrophysics Data System (ADS)

    Carpenter, John H.

    2011-06-01

    We describe the development of a new wide-range equation of state (EOS) for xenon. Three different prior EOS models predicted significant variations in behavior along the high pressure Hugoniot from an initial liquid state at 163.5 K and 2.97 g/cm3, which is near the triple point. Experimental measurements on Sandia's Z machine as well as density functional theory based molecular dynamics calculations both invalidate the prior EOS models in the pressure range from 200 to 840 GPa. The reason behind these EOS model disagreements is found to lie in the contribution from the thermal electronic models. A new EOS, based upon the standard separation of the Helmholtz free energy into ionic and electronic components, is constructed by combining the successful parts of prior models with a semi-empirical electronic model. Both the fluid and fcc solid phases are combined in a wide-range, multi-phase table. The new EOS is tabulated on a fine temperature and density grid, to preserve phase boundary information, and is available as table number 5191 in the LANL SESAME database. Improvements over prior EOS models are found not only along the Hugoniot, but also along the melting curve and in the region of the liquid-vapor critical point. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Numerical modeling of interface displacement in heterogeneously wetting porous media

    NASA Astrophysics Data System (ADS)

    Hiller, T.; Brinkmann, M.; Herminghaus, S.

    2013-12-01

    We use the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the standard SRD method, we present an approach on implementing complex wettability on heterogeneous surfaces. We use 3D SRD to simulate immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. The simulations are designed to resemble experimental measurements of capillary pressure saturation. We show that the correlation length of the wetting patterns influences the temporal evolution of the interface and thus percolation, residual saturation and work dissipated during the fluid displacement. Our numerical results are in qualitatively good agreement with the experimental data. Besides of modeling flow in porous media, our SRD implementation allows us to address various questions of interfacial dynamics, e.g. the formation of capillary bridges between spherical beads or droplets in microfluidic applications to name only a few.

  19. Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions

    NASA Astrophysics Data System (ADS)

    Golyshev, A. A.; Orishich, A. M.; Shulyatyev, V. B.

    2016-10-01

    The energy balance of the multi-phase medium flow is studied experimentally under the laser cutting. Experimental data are generalized due to the condition of minimal roughness of the created surface used as a quality criterion of the melt flow, and also due to the application of dimensionless parameters: Peclet number and dimensionless absorbed laser power. For the first time ever it is found that, regardless the assistant gas (oxygen or nitrogen), laser type (the fiber one with the wavelength of 1.07 µm or CO2-laser with the wavelength of 10.6 µm), the minimal roughness is provided at a certain energy input in a melt unit, about 26 J/mm3. With oxygen, 50% of this input is provided by the radiation, the other 50% - by the exothermic reaction of iron oxidation.

  20. Critical fluid thermal equilibration experiment (19-IML-1)

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    1992-01-01

    Gravity sometimes blocks all experimental techniques of making a desired measurement. Any pure fluid possesses a liquid-vapor critical point. It is defined by a temperature, pressure, and density state in thermodynamics. The critical issue that this experiment attempts to understand is the time it takes for a sample to reach temperature and density equilibrium as the critical point is approached; is it infinity due to mass and thermal diffusion, or do pressure waves speed up energy transport while mass is still under diffusion control. The objectives are to observe: (1) large phase domain homogenization without and with stirring; (2) time evolution of heat and mass after temperature step is applied to a one phase equilibrium sample; (3) phase evolution and configuration upon going two phase from a one phase equilibrium state; (4) effects of stirring on a low g two phase configuration; (5) two phase to one phase healing dynamics starting from a two phase low g configuration; and (6) effects of shuttle acceleration events on spatially and temporally varying compressible critical fluid dynamics.

  1. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models

    DOE PAGES

    Das, Sumanta; Yang, Pu; Singh, Sudhanshu S.; ...

    2015-09-02

    Microstructural and micromechanical investigation of a fly ash-based geopolymer using: (i) synchrotron x-ray tomography (XRT) to determine the volume fraction and tortuosity of pores that are influential in fluid transport, (ii) mercury intrusion porosimetry (MIP) to capture the volume fraction of smaller pores, (iii) scanning electron microscopy (SEM) combined with multi-label thresholding to identify and characterize the solid phases in the microstructure, and (iv) nanoindentation to determine the component phase elastic properties using statistical deconvolution, is reported in this paper. The phase volume fractions and elastic properties are used in multi-step mean field homogenization (Mori- Tanaka and double inclusion) modelsmore » to determine the homogenized macroscale elastic modulus of the composite. The homogenized elastic moduli are in good agreement with the flexural elastic modulus determined on macroscale paste beams. As a result, the combined use of microstructural and micromechanical characterization tools at multiple scales provides valuable information towards the material design of fly ash geopolymers.« less

  2. Using Ultrasonic Speckle Velocimetry to Detect Fluid Instabilities in a Surfactant Solution

    NASA Astrophysics Data System (ADS)

    Bice, Jason E.

    Rheometry is a leading technology used to define material properties of multi-phase viscoelastic fluid-like materials, such as the shear modulus and viscosity. However, traditional rheometry relies on a mechanical response from a rotating or oscillating rotor of various geometries which does not allow for any spatial or temporal quantification of the material characteristics. Further, the setup operates under the assumption of a uniform and homogeneous flow. Thus, only qualitative deductions can be realized when a complex fluid displays inhomogeneous behavior, such as wall slip or shear banding. Due to this lack of capability, non-intrusive imaging is required to define and quantify behavior that occurs in a complex fluid under shear conditions. This thesis outlines the design, fabrication, and experimental examples of an adapted ultrasonic speckle velocimetry device, which enables spatial and temporal resolution of inhomogeneous fluid behavior using ultrasound acoustics. For the experimental example, a commercial surfactant mixture (hair shampoo) was tested to show the utility and precision that ultrasonic speckle velocimetry possesses.

  3. A finite difference method for a coupled model of wave propagation in poroelastic materials.

    PubMed

    Zhang, Yang; Song, Limin; Deffenbaugh, Max; Toksöz, M Nafi

    2010-05-01

    A computational method for time-domain multi-physics simulation of wave propagation in a poroelastic medium is presented. The medium is composed of an elastic matrix saturated with a Newtonian fluid, and the method operates on a digital representation of the medium where a distinct material phase and properties are specified at each volume cell. The dynamic response to an acoustic excitation is modeled mathematically with a coupled system of equations: elastic wave equation in the solid matrix and linearized Navier-Stokes equation in the fluid. Implementation of the solution is simplified by introducing a common numerical form for both solid and fluid cells and using a rotated-staggered-grid which allows stable solutions without explicitly handling the fluid-solid boundary conditions. A stability analysis is presented which can be used to select gridding and time step size as a function of material properties. The numerical results are shown to agree with the analytical solution for an idealized porous medium of periodically alternating solid and fluid layers.

  4. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, Stuart F.; Spycher, Nicolas; Sonnenthal, Eric

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transportmore » model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.« less

  6. Method for measuring particulate and gaseous metals in a fluid stream, device for measuring particulate and gaseous metals in a fluid stream

    DOEpatents

    Farber, Paul S.; Huang, Hann-Shen

    2001-01-01

    A method for analyzing metal in a fluid is provided comprising maintaining a first portion of a continuous filter media substrate at a temperature coinciding with the phase in which the metal is to be analyzed; contacting the fluid to a first portion of said substrate to retain the metal on the first portion of said substrate; preventing further contact of the fluid to the first portion of substrate; and contacting the fluid to a second portion of said substrate to retain metal on the second portion of the said substrate while simultaneously analyzing the first portion for metal. Also provided is a device for the simultaneous monitoring and analysis of metal in a fluid comprising a continuous filter media substrate; means for maintaining a first portion of said filter media substrate at a temperature coinciding with the phase in which the metal is to be analyzed; a means for contacting the fluid to the first portion of said substrate; a means for preventing further contact of the fluid to the first portion of substrate; a means for contacting the fluid to a second portion of said substrate to retain metal on the second portion of the said substrate; and means for analyzing the first portion for metal.

  7. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  8. The effect of CO2 on the water-saturated solidus of K-poor peridotite between 4 and 6 GPa

    NASA Astrophysics Data System (ADS)

    Dvir, Omri; Kessel, Ronit

    2017-06-01

    The effect of various amounts of CO2 on the solidus of H2O-CO2-bearing peridotite was examined by determining the composition of H2O-CO2-bearing fluids and melts in equilibrium with garnet peridotite at 4-6 GPa and 900-1100 °C. Two capsules were placed in a rocking multi-anvil apparatus in each experiment. Both capsules contained a fertile peridotite with 10 wt% H2O, one with 1 (CLZ1) and the other with 5 wt% CO2 (CLZ5). In both capsules a diamond trap was placed on one end of the capsule as a fluid/melt trap. The H2O and CO2 content in the fluid or melt trapped in between the diamonds were measured using the quartz-tube-system technique by releasing the volatiles through infrared gas analyzer. The total dissolved solids in these phases were determined using the cryogenic laser-ablation - inductive couple plasma - mass spectrometry technique. The residual lherzolite consists of olivine, orthopyroxene, ±clinopyroxene, garnet, and ±magnesite as carbonate phase. The solidus of CLZ1 peridotite was located between 900 and 1000 °C at 4 GPa and between 1000 and 1100 °C at 5 and 6 GPa. CLZ5 peridotite melts below 900 °C at 4 GPa and between 900 and 1000 °C at 5 and 6 GPa. The results demonstrate a decrease in melting temperature of hydrous peridotite at pressures between 4 and 6 GPa with increasing amount of CO2. The H2O-CO2-bearing fluids found in this study at 900-1000 °C are similar in composition to low-Mg carbonatitic to silicic high-density fluids found in fluid inclusions in diamonds. With increasing temperature, the melts approach type II kimberlites. We propose that H2O-CO2-induced partial melting of metasomatized garnet lherzolite at 4-6 GPa is a possible origin for group II kimberlites.

  9. Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    1997-01-01

    The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wareing, Christopher J.; School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT; Fairweather, Michael

    Predicting the correct multi-phase fluid flow behaviour during the discharge process in the near-field of sonic CO{sub 2} jets is of particular importance in assessing the risks associated with transport aspects of carbon capture and storage schemes, given the very different hazard profiles of CO{sub 2} in the gaseous and solid states. In this paper, we apply our state-of-the-art mathematical model implemented in an efficient computational method to available data. Compared to previous applications, an improved equation of state is used. We also compare to all the available data, rather than just subsets as previously, and demonstrate both the improvedmore » performance of the fluid flow model and the variation between the available datasets. The condensed phase fraction at the vent, puncture or rupture release point is revealed to be of key importance in understanding the near-field dispersion of sonic CO{sub 2}.« less

  11. Performance of WPA Conductivity Sensor during Two-Phase Fluid Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Carter, Layne; O'Connor, Edward W.; Snowdon, Doug

    2003-01-01

    The Conductivity Sensor designed for use in the Node 3 Water Processor Assembly (WPA) was based on the existing Space Shuttle application for the fuel cell water system. However, engineering analysis has determined that this sensor design is potentially sensitive to two-phase fluid flow (gadliquid) in microgravity. The source for this sensitivity is the fact that gas bubbles will become lodged between the sensor probe and the wall of the housing without the aid of buoyancy in l-g. Once gas becomes lodged in the housing, the measured conductivity will be offset based on the volume of occluded gas. A development conductivity sensor was flown on the NASA Microgravity Plan to measure the offset, which was determined to range between 0 and 50%. Based on these findings, a development program was initiated at the sensor s manufacturer to develop a sensor design fully compatible with two-phase fluid flow in microgravity.

  12. Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal Adenocarcinoma.

    PubMed

    DuFort, Christopher C; DelGiorno, Kathleen E; Hingorani, Sunil R

    2016-06-01

    The microenvironment influences the pathogenesis of solid tumors and plays an outsized role in some. Our understanding of the stromal response to cancers, particularly pancreatic ductal adenocarcinoma, has evolved from that of host defense to tumor offense. We know that most, although not all, of the factors and processes in the microenvironment support tumor epithelial cells. This reappraisal of the roles of stromal elements has also revealed potential vulnerabilities and therapeutic opportunities to exploit. The high concentration in the stroma of the glycosaminoglycan hyaluronan, together with the large gel-fluid phase and pressures it generates, were recently identified as primary sources of treatment resistance in pancreas cancer. Whereas the relatively minor role of free interstitial fluid in the fluid mechanics and perfusion of tumors has been long appreciated, the less mobile, gel-fluid phase has been largely ignored for historical and technical reasons. The inability of classic methods of fluid pressure measurement to capture the gel-fluid phase, together with a dependence on xenograft and allograft systems that inaccurately model tumor vascular biology, has led to an undue emphasis on the role of free fluid in impeding perfusion and drug delivery and an almost complete oversight of the predominant role of the gel-fluid phase. We propose that a hyaluronan-rich, relatively immobile gel-fluid phase induces vascular collapse and hypoperfusion as a primary mechanism of treatment resistance in pancreas cancers. Similar properties may be operant in other solid tumors as well, so revisiting and characterizing fluid mechanics with modern techniques in other autochthonous cancers may be warranted. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE PAGES

    McClure, James E.; Berrill, Mark A.; Gray, William G.; ...

    2016-09-02

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  14. Influence of phase connectivity on the relationship among capillary pressure, fluid saturation, and interfacial area in two-fluid-phase porous medium systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClure, James E.; Berrill, Mark A.; Gray, William G.

    Here, multiphase flow in porous medium systems is typically modeled using continuum mechanical representations at the macroscale in terms of averaged quantities. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating fluid pressures, fluid saturations, and, in some cases, the interfacial area between the fluid phases, and the Euler characteristic. An unresolved question is whether the inclusion of these additional morphological and topological measures can lead to a non-hysteretic closure relation compared to the hysteretic forms that are used in traditional models, which typically do not include interfacial areas, ormore » the Euler characteristic. We develop a lattice-Boltzmann (LB) simulation approach to investigate the equilibrium states of a two-fluid-phase porous medium system, which include disconnected now- wetting phase features. The proposed approach is applied to a synthetic medium consisting of 1,964 spheres arranged in a random, non-overlapping, close-packed manner, yielding a total of 42,908 different equilibrium points. This information is evaluated using a generalized additive modeling approach to determine if a unique function from this family exists, which can explain the data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and non-hysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. This work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parameterizations investigated, and the broad set of functions examined. The conclusion of essentially non-hysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.« less

  15. Improved Topographic Mapping Through Multi-Baseline SAR Interferometry with MAP Estimation

    NASA Astrophysics Data System (ADS)

    Dong, Yuting; Jiang, Houjun; Zhang, Lu; Liao, Mingsheng; Shi, Xuguo

    2015-05-01

    There is an inherent contradiction between the sensitivity of height measurement and the accuracy of phase unwrapping for SAR interferometry (InSAR) over rough terrain. This contradiction can be resolved by multi-baseline InSAR analysis, which exploits multiple phase observations with different normal baselines to improve phase unwrapping accuracy, or even avoid phase unwrapping. In this paper we propose a maximum a posteriori (MAP) estimation method assisted by SRTM DEM data for multi-baseline InSAR topographic mapping. Based on our method, a data processing flow is established and applied in processing multi-baseline ALOS/PALSAR dataset. The accuracy of resultant DEMs is evaluated by using a standard Chinese national DEM of scale 1:10,000 as reference. The results show that multi-baseline InSAR can improve DEM accuracy compared with single-baseline case. It is noteworthy that phase unwrapping is avoided and the quality of multi-baseline InSAR DEM can meet the DTED-2 standard.

  16. Measurement and modeling of the acoustic field near an underwater vehicle and implications for acoustic source localization.

    PubMed

    Lepper, Paul A; D'Spain, Gerald L

    2007-08-01

    The performance of traditional techniques of passive localization in ocean acoustics such as time-of-arrival (phase differences) and amplitude ratios measured by multiple receivers may be degraded when the receivers are placed on an underwater vehicle due to effects of scattering. However, knowledge of the interference pattern caused by scattering provides a potential enhancement to traditional source localization techniques. Results based on a study using data from a multi-element receiving array mounted on the inner shroud of an autonomous underwater vehicle show that scattering causes the localization ambiguities (side lobes) to decrease in overall level and to move closer to the true source location, thereby improving localization performance, for signals in the frequency band 2-8 kHz. These measurements are compared with numerical modeling results from a two-dimensional time domain finite difference scheme for scattering from two fluid-loaded cylindrical shells. Measured and numerically modeled results are presented for multiple source aspect angles and frequencies. Matched field processing techniques quantify the source localization capabilities for both measurements and numerical modeling output.

  17. Interfacial Area Development in Two-Phase Fluid Flow: Transient vs. Quasi-Static Flow Conditions

    NASA Astrophysics Data System (ADS)

    Meisenheimer, D. E.; Wildenschild, D.

    2017-12-01

    Fluid-fluid interfaces are important in multiphase flow systems in the environment (e.g. groundwater remediation, geologic CO2 sequestration) and industry (e.g. air stripping, fuel cells). Interfacial area controls mass transfer, and therefore reaction efficiency, between the different phases in these systems but they also influence fluid flow processes. There is a need to better understand this relationship between interfacial area and fluid flow processes so that more robust theories and models can be built for engineers and policy makers to improve the efficacy of many multiphase flow systems important to society. Two-phase flow experiments were performed in glass bead packs under transient and quasi-static flow conditions. Specific interfacial area was calculated from 3D images of the porous media obtained using the fast x-ray microtomography capability at the Advanced Photon Source. We present data suggesting a direct relationship between the transient nature of the fluid-flow experiment (fewer equilibrium points) and increased specific interfacial area. The effect of flow condition on Euler characteristic (a representative measure of fluid topology) will also be presented.

  18. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow

    DOE PAGES

    Armstrong, Ryan T.; McClure, James E.; Berrill, Mark A.; ...

    2016-10-27

    Relative permeability quantifies the ease at which immiscible phases flow through porous rock and is one of the most well known constitutive relationships for petroleum engineers. It however exhibits troubling dependencies on experimental conditions and is not a unique function of phase saturation as commonly accepted in industry practices. The problem lies in the multi-scale nature of the problem where underlying disequilibrium processes create anomalous macroscopic behavior. Here we show that relative permeability rate dependencies are explained by ganglion dynamic flow. We utilize fast X-ray micro-tomography and pore-scale simulations to identify unique flow regimes during the fractional flow of immisciblemore » phases and quantify the contribution of ganglion flux to the overall flux of non-wetting phase. We anticipate our approach to be the starting point for the development of sophisticated multi-scale flow models that directly link pore-scale parameters to macro-scale behavior. Such models will have a major impact on how we recover hydrocarbons from the subsurface, store sequestered CO 2 in geological formations, and remove non-aqueous environmental hazards from the vadose zone.« less

  19. Magnetic polarization measurements of the multi-modal plasma response to 3D fields in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Cui, L.; Wang, H.; Sun, Y.; Gu, S.; Li, G.; Nazikian, R.; Paz-Soldan, C.

    2018-07-01

    A multi-modal plasma response to applied non-axisymmetric fields has been found in EAST tokamak plasmas. Here, multi-modal means the radial and poloidal structure of an individually driven toroidal harmonic is not fixed. The signature of such a multi-modal response is the magnetic polarization (ratio of radial and poloidal components) of the plasma response field measured on the low field side device mid-plane. A difference in the 3D coil phasing (the relative phase of two coil arrays) dependencies between the two responses is observed in response to n  =  2 fields in the same plasma for which the n  =  1 responses are well synchronized. Neither the maximum radial nor the maximum poloidal field response to n  =  2 fields agrees with the best applied phasing for mitigating edge localized modes, suggesting that the edge plasma response is not a dominant component of either polarization. GPEC modeling reproduces the discrepant phasing dependences of the experimental measurements, and confirms the edge resonances are maximized by the coil phasing that mitigates ELMs in the experiments. The model confirms the measured plasma response is not dominated by resonant current drive from the external field. Instead, non-resonant contributions play a large role in the diagnostic signal for both toroidal harmonics n  =  1 and n  =  2. The analysis in this paper demonstrates the ability of 3D modeling to connect external magnetic sensor measurements to the internal plasma physics and accurately predict optimal applied 3D field configurations in multi-modal plasmas.

  20. In Situ Steam Fracture Experiments.

    DTIC Science & Technology

    1984-12-31

    pressure and tempera- ture data for use in validation of multi-phase flow models describing - condensation/vaporization, heat-transfer, and fluid/vapor...provide an excellent base for development and/or verification of steam-fracture models for low- permeability materials where heat transfer is significant...representative of post-shot cavity conditions. Steam flow tests have been performed at S-CUBED in a 3-meter long by 20-centimeter diameter sand column. In

  1. Multi-Constituent Simulation of Thrombus Deposition

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Tao; Jamiolkowski, Megan A.; Wagner, William R.; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James F.

    2017-02-01

    In this paper, we present a spatio-temporal mathematical model for simulating the formation and growth of a thrombus. Blood is treated as a multi-constituent mixture comprised of a linear fluid phase and a thrombus (solid) phase. The transport and reactions of 10 chemical and biological species are incorporated using a system of coupled convection-reaction-diffusion (CRD) equations to represent three processes in thrombus formation: initiation, propagation and stabilization. Computational fluid dynamic (CFD) simulations using the libraries of OpenFOAM were performed for two illustrative benchmark problems: in vivo thrombus growth in an injured blood vessel and in vitro thrombus deposition in micro-channels (1.5 mm × 1.6 mm × 0.1 mm) with small crevices (125 μm × 75 μm and 125 μm × 137 μm). For both problems, the simulated thrombus deposition agreed very well with experimental observations, both spatially and temporally. Based on the success with these two benchmark problems, which have very different flow conditions and biological environments, we believe that the current model will provide useful insight into the genesis of thrombosis in blood-wetted devices, and provide a tool for the design of less thrombogenic devices.

  2. Multi-Constituent Simulation of Thrombus Deposition

    PubMed Central

    Wu, Wei-Tao; Jamiolkowski, Megan A.; Wagner, William R.; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James F.

    2017-01-01

    In this paper, we present a spatio-temporal mathematical model for simulating the formation and growth of a thrombus. Blood is treated as a multi-constituent mixture comprised of a linear fluid phase and a thrombus (solid) phase. The transport and reactions of 10 chemical and biological species are incorporated using a system of coupled convection-reaction-diffusion (CRD) equations to represent three processes in thrombus formation: initiation, propagation and stabilization. Computational fluid dynamic (CFD) simulations using the libraries of OpenFOAM were performed for two illustrative benchmark problems: in vivo thrombus growth in an injured blood vessel and in vitro thrombus deposition in micro-channels (1.5 mm × 1.6 mm × 0.1 mm) with small crevices (125 μm × 75 μm and 125 μm × 137 μm). For both problems, the simulated thrombus deposition agreed very well with experimental observations, both spatially and temporally. Based on the success with these two benchmark problems, which have very different flow conditions and biological environments, we believe that the current model will provide useful insight into the genesis of thrombosis in blood-wetted devices, and provide a tool for the design of less thrombogenic devices. PMID:28218279

  3. Multi-Constituent Simulation of Thrombus Deposition.

    PubMed

    Wu, Wei-Tao; Jamiolkowski, Megan A; Wagner, William R; Aubry, Nadine; Massoudi, Mehrdad; Antaki, James F

    2017-02-20

    In this paper, we present a spatio-temporal mathematical model for simulating the formation and growth of a thrombus. Blood is treated as a multi-constituent mixture comprised of a linear fluid phase and a thrombus (solid) phase. The transport and reactions of 10 chemical and biological species are incorporated using a system of coupled convection-reaction-diffusion (CRD) equations to represent three processes in thrombus formation: initiation, propagation and stabilization. Computational fluid dynamic (CFD) simulations using the libraries of OpenFOAM were performed for two illustrative benchmark problems: in vivo thrombus growth in an injured blood vessel and in vitro thrombus deposition in micro-channels (1.5 mm × 1.6 mm × 0.1 mm) with small crevices (125 μm × 75 μm and 125 μm × 137 μm). For both problems, the simulated thrombus deposition agreed very well with experimental observations, both spatially and temporally. Based on the success with these two benchmark problems, which have very different flow conditions and biological environments, we believe that the current model will provide useful insight into the genesis of thrombosis in blood-wetted devices, and provide a tool for the design of less thrombogenic devices.

  4. Collapse of tall granular columns in fluid

    NASA Astrophysics Data System (ADS)

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  5. Mixing and reactions in multiphase flow through porous media

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Le Borgne, T.; Meheust, Y.; Porter, M. L.; De Anna, P.; Hyman, J.; Tabuteau, H.; Turuban, R.; Carey, J. W.; Viswanathan, H. S.

    2016-12-01

    The understanding and quantification of flow and transport processes in multiphase systems remains a grand scientific and engineering challenge in natural and industrial systems (e.g., soils and vadose zone, CO2 sequestration, unconventional oil and gas extraction, enhanced oil recovery). Beyond the kinetic of the chemical reactions, mixing processes in porous media play a key role in controlling both fluid-fluid and fluid-solid reactions. However, conventional continuum-scale models and theories oversimplify and/or ignore many important pore-scale processes. Multiphase flows, with the creation of highly heterogeneous fluid velocity fields (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), makes conservative and reactive transport more complex. We present recent multi-scale experimental developments and theoretical approaches to quantify transport, mixing, and reaction and their coupling with multiphase flows. We discuss our main findings: i) the sustained concentration gradients and enhanced reactivity in a two-phase system for a continuous injection, and the comparison with a pulse line injection; ii) the enhanced mixing by a third mobile-immiscible phase; and iii) the role that capillary forces play in the localization of the fluid-solid reactions. These experimental results are for highly-idealized geometries, however, the proposed models are related to basic porous media and unsaturated flow properties, and could be tested on more complex systems.

  6. Preliminary fluid inclusions study in the Bucium Rodu-Frasin Neogene volcanic structure, Metaliferi Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Iatan, E. L.; Berbeleac, I.

    2012-04-01

    Bucium Rodu maar-diatreme and Frasin dome volcanic structures and related Au-Ag epithermal deposits are located in the northeastern part of the South Apuseni Mountains, and belong to Bucium-Rosia Montana-Baia de Aries metallogenic district, within so called "Golden Quadrilateral". The microthermometric measurements were carried out using double polished sections, on bipyramidal magmatic quartz phenocrysts and hydrothermal quartz phenocrysts. Depending on the clarity of the quartz, samples were polished down to 200 - 400 μm thick. A standard microscope for transmitted and reflected light was used for the sample petrography. Linkam THM SG600 heating-freezing stage, combined with a Nikon E 400 microscope and a Nikon DXM 1200F digital camera, were used to measure the fluid inclusions homogenization temperatures. The Frasin magmatic quartz phenocrysts, occurs as well-formed bipyramidal β -form quartz phenocrysts and contain apatite, zircon, melt inclusions and fluid inclusions. They reach up to 1 cm in diameter and their cracks are re-filled with carbonate, sericite and sulfides. The size of fluid inclusions ranges from very fine (2-3 μm) up to 25 μm. Primary and pseudosecondary fluid inclusions are not common, they occur in small groups with sizes ranging between 5-20 μm, having two phases: liquid and vapor. Based on the homogenization temperatures and phase proportions at room temperature, we could separate 2 types/fields of range for primary and pseudosecondary fluid inclusions as follows: 1. Liquid rich fluid inclusions (50-60 vol. % liquid) with Th=370-406°C and 2. Vapor rich fluid inclusions (10-30 vol. % liquid) with Th=420-519°C. All of the fluid inclusions homogenize by the disappearance of the vapor phase. Microthermometric data from hydrothermal quartz crystals were obtained from quartz phenocrysts of carbonate-quartz-base metal sulfides-gold veins of the dacite breccias. Primary fluid inclusions from hydrothermal quartz crystals have sizes up to 50 μm and comprise two phases: liquid and vapor. Liquid rich inclusions comprise 70% of fluid inclusion population and have the proportion of two liquid phase ranging between 60-90 vol. % liquid. Based on the homogenization temperatures and phase proportions at room temperature, we could separate 3 types/fields of range of hydrothermal fluid inclusions as follows: 1. Liquid rich fluid inclusions (80-90 vol. % liquid) with Th=234-293°C, 2. Liquid rich fluid inclusions (50-80 vol. % liquid) with Th=324-399°C; 3. Vapor rich inclusions (95-70 vol. % vapor) Th=424-497°C. Vapor rich inclusions comprise 30% of fluid inclusions population and have the proportion of vapor ranging between 95-70%. The microthermometric measurements showed high Th ranging between 424-497°C. The presence of high temperature fluids trapped in hydrothermal quartz that are not common with epithermal stage (<300°C) suggests the existence of a second vent of reheated fluids showing a polistadial activity in the region. Acknowledgements: This work was supported by the strategic grant POSDRU/89/1.5/S58852, Project "Postdoctoral program for training scientific researches" co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007-2013".

  7. Prediction of Shock-Induced Cavitation in Water

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron

    2013-06-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.

  8. Direct observation of the evolution of a seafloor 'black smoker' from vapor to brine

    USGS Publications Warehouse

    Von Damm, Karen L.; Buttermore, L.G.; Oosting, S.E.; Bray, A.M.; Fornari, D.J.; Lilley, M.D.; Shanks, Wayne C.

    1997-01-01

    A single hydrothermal vent, 'F' vent, occurring on very young crust at 9??16.8???N, East Pacific Rise, was sampled in 1991 and 1994. In 1991, at the measured temperature of 388??C and seafloor pressure of 258 bar, the fluids from this vent were on the two-phase curve for seawater. These fluids were very low in chlorinity and other dissolved species, and high in gases compared to seawater and most sampled seafloor hydrothermal vent fluids. In 1994, when this vent was next sampled, it had cooled to 351??C and was venting fluids ???1.5 times seawater chlorinity. This is the first reported example of a single seafloor hydrothermal vent evolving from vapor to brine. The 1991 and 1994 fluids sampled from this vent are compositionally conjugate pairs to one another. These results support the hypothesis that vapor-phase fluids vent in the early period following a volcanic eruption, and that the liquid-phase brines are stored within the oceanic crust, and vent at a later time, in this case 3 years. These results demonstrate that the venting of brines can occur in the same location, in fact from the same sulfide edifice, where the vapor-phase fluids vented previously.

  9. Multi-keV x-ray sources from metal-lined cylindrical hohlraums

    NASA Astrophysics Data System (ADS)

    Jacquet, L.; Girard, F.; Primout, M.; Villette, B.; Stemmler, Ph.

    2012-08-01

    As multi-keV x-ray sources, plastic hohlraums with inner walls coated with titanium, copper, and germanium have been fired on Omega in September 2009. For all the targets, the measured and calculated multi-keV x-ray power time histories are in a good qualitative agreement. In the same irradiation conditions, measured multi-keV x-ray conversion rates are ˜6%-8% for titanium, ˜2% for copper, and ˜0.5% for germanium. For titanium and copper hohlraums, the measured conversion rates are about two times higher than those given by hydroradiative computations. Conversely, for the germanium hohlraum, a rather good agreement is found between measured and computed conversion rates. To explain these findings, multi-keV integrated emissivities calculated with RADIOM [M. Busquet, Phys. Fluids 85, 4191 (1993)], the nonlocal-thermal-equilibrium atomic physics model used in our computations, have been compared to emissivities obtained from different other models. These comparisons provide an attractive way to explain the discrepancies between experimental and calculated quantitative results.

  10. 2011 Laser Diagnostics in Combustion Gordon Research Conference, (August 14-19, 2011, Waterville Valley Resort, Waterville Valley, NH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Settersten

    2011-08-19

    The vast majority of the world's energy needs are met by combustion of fossil fuels. Optimum utilization of limited resources and control of emissions of pollutants and greenhouse gases demand sustained improvement of combustion technology. This task can be satisfied only by detailed knowledge of the underlying physical and chemical processes. Non-intrusive laser diagnostics continuously contribute to our growing understanding of these complex and coupled multi-scale processes. The GRC on Laser Diagnostics in Combustion focuses on the most recent scientific advances and brings together scientists and engineers working at the leading edge of combustion research. Major tasks of the communitymore » are developing and applying methods for precise and accurate measurements of fluid motion and temperatures; chemical compositions; multi-phase phenomena appearing near walls, in spray and sooting combustion; improving sensitivities, precision, spatial resolution and tracking transients in their spatio-temporal development. The properties and behaviour of novel laser sources, detectors, optical systems that lead to new diagnostic capabilities are also part of the conference program.« less

  11. Visualization of the equilibrium position of colloidal particles at fluid-water interfaces by deposition of nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabapathy, Manigandan; Kollabattula, Viswas; Basavaraj, Madivala G.; Mani, Ethayaraja

    2015-08-01

    We present a general yet simple method to measure the contact angle of colloidal particles at fluid-water interfaces. In this method, the particles are spread at the required fluid-water interface as a monolayer. In the water phase a chemical reaction involving reduction of a metal salt such as aurochloric acid is initiated. The metal grows as a thin film or islands of nanoparticles on the particle surface exposed to the water side of the interface. Analyzing the images of particles by high resolution scanning microscopy (HRSEM), we trace the three phase contact line up to which deposition of the metal film occurs. From geometrical relations, the three phase contact angle is then calculated. We report the measurements of the contact angle of silica and polystyrene (PS) particles at different interfaces such as air-water, decane-water and octanol-water. We have also applied this method to measure the contact angle of surfactant treated polystyrene particles at the air-water interface, and we find a non-monotonic change of the contact angle with the concentration of the surfactant. Our results are compared with the well-known gel trapping technique and we find good comparison with previous measurements.We present a general yet simple method to measure the contact angle of colloidal particles at fluid-water interfaces. In this method, the particles are spread at the required fluid-water interface as a monolayer. In the water phase a chemical reaction involving reduction of a metal salt such as aurochloric acid is initiated. The metal grows as a thin film or islands of nanoparticles on the particle surface exposed to the water side of the interface. Analyzing the images of particles by high resolution scanning microscopy (HRSEM), we trace the three phase contact line up to which deposition of the metal film occurs. From geometrical relations, the three phase contact angle is then calculated. We report the measurements of the contact angle of silica and polystyrene (PS) particles at different interfaces such as air-water, decane-water and octanol-water. We have also applied this method to measure the contact angle of surfactant treated polystyrene particles at the air-water interface, and we find a non-monotonic change of the contact angle with the concentration of the surfactant. Our results are compared with the well-known gel trapping technique and we find good comparison with previous measurements. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03369a

  12. Two-dimensional fluid-filled closed-cell cellular solid as an acoustic metamaterial with negative index

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, V.; Van Damme, B.

    2016-04-01

    A concept for acoustic metamaterials consisting of a cellular medium with fluid-filled cells is fabricated and studied experimentally. In such a system, the fluid and solid structure explicitly interact, and elastic wave propagation is coupled to both phases. Focusing here on shear wave behavior, we confirm previous numerical studies in three steps. We first measure the material deformations pertaining to three qualitatively different shear wave modes in the frequency range below 3.5 kHz. We then measure the group velocity and demonstrate that, within a certain frequency interval, the group and phase velocity have opposite signs. This shows that the system acts as a negative-index metamaterial. Finally, we confirm the presence of band gaps due to the locally resonant behavior of the cell walls. The demonstrated concept of a closed, fluid-filled cellular material as an acoustic metamaterial opens a wide space for applications.

  13. Simulations & Measurements of Airframe Noise: A BANC Workshops Perspective

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Lockard, David

    2016-01-01

    Airframe noise corresponds to the acoustic radiation due to turbulent flow in the vicinity of airframe components such as high-lift devices and landing gears. Since 2010, the American Institute of Aeronautics and Astronautics has organized an ongoing series of workshops devoted to Benchmark Problems for Airframe Noise Computations (BANC). The BANC workshops are aimed at enabling a systematic progress in the understanding and high-fidelity predictions of airframe noise via collaborative investigations that integrate computational fluid dynamics, computational aeroacoustics, and in depth measurements targeting a selected set of canonical yet realistic configurations that advance the current state-of-the-art in multiple respects. Unique features of the BANC Workshops include: intrinsically multi-disciplinary focus involving both fluid dynamics and aeroacoustics, holistic rather than predictive emphasis, concurrent, long term evolution of experiments and simulations with a powerful interplay between the two, and strongly integrative nature by virtue of multi-team, multi-facility, multiple-entry measurements. This paper illustrates these features in the context of the BANC problem categories and outlines some of the challenges involved and how they were addressed. A brief summary of the BANC effort, including its technical objectives, strategy, and selective outcomes thus far is also included.

  14. The roles of the binodal curve and the spinodal curve in expansions from the supercritical state with flashing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knuth, Eldon L.; Miller, David R.; Even, Uzi

    2014-12-09

    Data extracted from time-of-flight (TOF) measurements made on steady-state He free jets at Göttingen already in 1986 and for pulsed Ne free jets investigated recently at Tel Aviv have been added to an earlier plot of terminal condensed-phase mass fraction x{sub 2∞} as a function of the dimensionless scaling parameter Γ. Γ characterizes the source (fluid species, temperature, pressure and throat diameter); values of x{sub 2∞} are extracted from TOF measurements using conservation of energy in the free-jet expansion. For nozzles consisting of an orifice in a thin plate; the extracted data yield 22 data points which are correlated satisfactorilymore » by a single curve. The Ne free jets were expanded from a conical nozzle with a 20° half angle; the three extracted data points stand together but apart from the aforementioned curve, indicating that the presence of the conical wall influences significantly the expansion and hence the condensation. The 22 data points for the expansions via an orifice consist of 15 measurements with expansions from the gas-phase side of the binodal curve which crossed the binodal curve downstream from the sonic point and 7 measurements with expansions of the gas-phase product of the flashing which occurred after an expansion from the liquid-phase side of the binodal curve crossed the binodal curve upstream from the sonic point. The association of these 22 points with a single curve supports the alternating-phase model for flows with flashing upstream from the sonic point proposed earlier. In order to assess the role of the spinodal curve in such expansions, the spinodal curves for He and Ne were computed using general multi-parameter Helmholtz-free-energy equation-of-state formulations. Then, for the several sets of source-chamber conditions used in the free-jet measurements, thermodynamic states at key locations in the free-jet expansions (binodal curve, sonic point and spinodal curve) were evaluated, with the expansion presumed to be metastable from the binodal curve to the spinodal curve. TOF distributions with more than two peaks (interpreted earlier as superimposed alternating-state TOF distributions) indicated flashing of the metastable flow downstream from the binodal curve but upstream from the sonic point. This relatively early flashing is due apparently to destabilizing interactions with the walls of the source. If the expansion crosses the binodal curve downstream from the nozzle, the metastable fluid does not interact with surfaces and flashing might be delayed until the expansion reaches the spinodal curve. It is concluded that, if the expansion crosses the binodal curve before reaching the sonic point, the resulting metastable fluid downstream from the binodal curve interacts with the adjacent surfaces and flashes into liquid and vapor phases which expand alternately through the nozzle; the two associated alternating TOF distributions are superposed by the chopping process so that the result has the appearance of a single distribution with three peaks.« less

  15. Multi-soliton solutions and Bäcklund transformation for a two-mode KdV equation in a fluid

    NASA Astrophysics Data System (ADS)

    Xiao, Zi-Jian; Tian, Bo; Zhen, Hui-Ling; Chai, Jun; Wu, Xiao-Yu

    2017-01-01

    In this paper, we investigate a two-mode Korteweg-de Vries equation, which describes the one-dimensional propagation of shallow water waves with two modes in a weakly nonlinear and dispersive fluid system. With the binary Bell polynomial and an auxiliary variable, bilinear forms, multi-soliton solutions in the two-wave modes and Bell polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton propagation and collisions between the two solitons are presented. Based on the graphic analysis, it is shown that the increase in s can lead to the increase in the soliton velocities under the condition of ?, but the soliton amplitudes remain unchanged when s changes, where s means the difference between the phase velocities of two-mode waves, ? and ? are the nonlinearity parameter and dispersion parameter respectively. Elastic collisions between the two solitons in both two modes are analyzed with the help of graphic analysis.

  16. A method to adapt thoracic impedance based on chest geometry and composition to assess congestion in heart failure patients.

    PubMed

    Cuba-Gyllensten, Illapha; Gastelurrutia, Paloma; Bonomi, Alberto G; Riistama, Jarno; Bayes-Genis, Antoni; Aarts, Ronald M

    2016-04-14

    Multi-frequency trans-thoracic bioimpedance (TTI) could be used to track fluid changes and congestion of the lungs, however, patient specific characteristics may impact the measurements. We investigated the effects of thoracic geometry and composition on measurements of TTI and developed an equation to calculate a personalized fluid index. Simulations of TTI measurements for varying levels of chest circumference, fat and muscle proportion were used to derive parameters for a model predicting expected values of TTI. This model was then adapted to measurements from a control group of 36 healthy volunteers to predict TTI and lung fluids (fluid index). Twenty heart failure (HF) patients treated for acute HF were then used to compare the changes in the personalized fluid index to symptoms of HF and predicted TTI to measurements at hospital discharge. All the derived body characteristics affected the TTI measurements in healthy volunteers and together the model predicted the measured TTI with 8.9% mean absolute error. In HF patients the estimated TTI correlated well with the discharged TTI (r=0.73,p <0.001) and the personalized fluid index followed changes in symptom levels during treatment. However, 37% (n=7) of the patients were discharged well below the model expected value. Accounting for chest geometry and composition might help in interpreting TTI measurements. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Sorption Phase of Supercritical CO2 in Silica Aerogel: Experiments and Mesoscale Computer Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw

    2014-01-01

    Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less

  18. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Dunn, Michael G.

    1988-01-01

    Significant progress was made toward the goal of developing a general purpose boundary element method for hot fluid-structure interaction. For the solid phase, a boundary-only formulation was developed and implemented for uncoupled transient thermoelasticity in two dimensions. The elimination of volume discretization not only drastically reduces required modeling effort, but also permits unconstrained variation of the through-the-thickness temperature distribution. Meanwhile, for the fluids, fundamental solutions were derived for transient incompressible and compressible flow in the absence of the convective terms. Boundary element formulations were developed and described. For the incompressible case, the necessary kernal functions, under transient and steady-state conditions, were derived and fully implemented into a general purpose, multi-region boundary element code. Several examples were examined to study the suitability and convergence characteristics of the various algorithms.

  19. Boiling vapour-type fluids from the Nifonea vent field (New Hebrides Back-Arc, Vanuatu, SW Pacific): Geochemistry of an early-stage, post-eruptive hydrothermal system

    NASA Astrophysics Data System (ADS)

    Schmidt, Katja; Garbe-Schönberg, Dieter; Hannington, Mark D.; Anderson, Melissa O.; Bühring, Benjamin; Haase, Karsten; Haruel, Christy; Lupton, John; Koschinsky, Andrea

    2017-06-01

    In 2013, high-temperature vent fluids were sampled in the Nifonea vent field. This field is located within the caldera of a large shield-type volcano of the Vate Trough, a young extensional rift in the New Hebrides back-arc. Hydrothermal venting occurs as clear and black smoker fluids with temperatures up to 368 °C, the hottest temperatures measured so far in the western Pacific. The physico-chemical conditions place the fluids within the two-phase field of NaCl-H2O, and venting is dominated by vapour phase fluids with Cl concentrations as low as 25 mM. The fluid composition, which differs between the individual vent sites, is interpreted to reflect the specific geochemical fluid signature of a hydrothermal system in its initial, post-eruptive stage. The strong Cl depletion is accompanied by low alkali/Cl ratios compared to more evolved hydrothermal systems, and very high Fe/Cl ratios. The concentrations of REY (180 nM) and As (21 μM) in the most Cl-depleted fluid are among the highest reported so far for submarine hydrothermal fluids, whereas the inter-element REY fractionation is only minor. The fluid signature, which has been described here for the first time in a back-arc setting, is controlled by fast fluid passage through basaltic volcanic rocks, with extremely high water-rock ratios and only limited water-rock exchange, phase separation and segregation, and (at least) two-component fluid mixing. Metals and metalloids are unexpectedly mobile in the vapour phase fluids, and the strong enrichments of Fe, REY, and As highlight the metal transport capacity of low-salinity, low-density vapours at the specific physico-chemical conditions at Nifonea. One possible scenario is that the fluids boiled before the separated vapour phase continued to react with fresh glassy lavas. The mobilization of metals is likely to occur by leaching from fresh glass and grain boundaries and is supported by the high water/rock ratios. The enrichment of B and As is further controlled by their high volatility, whereas the strong enrichment of REY is also a consequence of the elevated concentrations in the host rocks. However, a direct contribution of metals such as As from magmatic degassing cannot be ruled out. The different fluid end-member composition of individual vent sites could be explained by mixing of vapour phase fluids with another fluid phase of different water/rock interaction history.

  20. A general mixture equation of state for double bonding carboxylic acids with ≥2 association sites

    NASA Astrophysics Data System (ADS)

    Marshall, Bennett D.

    2018-05-01

    In this paper, we obtain the first general multi-component solution to Wertheim's thermodynamic perturbation theory for the case that molecules can participate in cyclic double bonds. In contrast to previous authors, we do not restrict double bonding molecules to a 2-site association scheme. Each molecule in a multi-component mixture can have an arbitrary number of donor and acceptor association sites. The one restriction on the theory is that molecules can have at most one pair of double bonding sites. We also incorporate the effect of hydrogen bond cooperativity in cyclic double bonds. We then apply this new association theory to 2-site and 3-site models for carboxylic acids within the polar perturbed chain statistical associating fluid theory equation of state. We demonstrate the accuracy of the approach by comparison to both pure and multi-component phase equilibria data. It is demonstrated that the 3-site association model gives substantially a different hydrogen bonding structure than a 2-site approach. We also demonstrate that inclusion of hydrogen bond cooperativity has a substantial effect on a liquid phase hydrogen bonding structure.

  1. SBIR Phase II Final Report: Low cost Autonomous NMR and Multi-sensor Soil Monitoring Instrument

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, David O.

    In this 32-month SBIR Phase 2 program, Vista Clara designed, assembled and successfully tested four new NMR instruments for soil moisture measurement and monitoring: An enhanced performance man-portable Dart NMR logging probe and control unit for rapid, mobile measurement in core holes and 2” PVC access wells; A prototype 4-level Dart NMR monitoring probe and prototype multi-sensor soil monitoring control unit for long-term unattended monitoring of soil moisture and other measurements in-situ; A non-invasive 1m x 1m Discus NMR soil moisture sensor with surface based magnet/coil array for rapid measurement of soil moisture in the top 50 cm of themore » subsurface; A non-invasive, ultra-lightweight Earth’s field surface NMR instrument for non-invasive measurement and mapping of soil moisture in the top 3 meters of the subsurface. The Phase 2 research and development achieved most, but not all of our technical objectives. The single-coil Dart in-situ sensor and control unit were fully developed, demonstrated and successfully commercialized within the Phase 2 period of performance. The multi-level version of the Dart probe was designed, assembled and demonstrated in Phase 2, but its final assembly and testing were delayed until close to the end of the Phase 2 performance period, which limited our opportunities for demonstration in field settings. Likewise, the multi-sensor version of the Dart control unit was designed and assembled, but not in time for it to be deployed for any long-term monitoring demonstrations. The prototype ultra-lightweight surface NMR instrument was developed and demonstrated, and this result will be carried forward into the development of a new flexible surface NMR instrument and commercial product in 2018.« less

  2. Validated LC-MS-MS Method for Multiresidual Analysis of 13 Illicit Phenethylamines in Amniotic Fluid.

    PubMed

    Burrai, Lucia; Nieddu, Maria; Carta, Antonio; Trignano, Claudia; Sanna, Raimonda; Boatto, Gianpiero

    2016-04-01

    A multi-residue analytical method was developed for the determination in amniotic fluid (AF) of 13 illicit phenethylamines, including 12 compounds never investigated in this matrix before. Samples were subject to solid-phase extraction using; hydrophilic-lipophilic balance cartridges which gave good recoveries and low matrix effects on analysis of the extracts. The quantification was performed by liquid chromatography electrospray tandem mass spectrometry. The water-acetonitrile mobile phase containing 0.1% formic acid, used with a C18 reversed phase column, provided adequate separation, resolution and signal-to-noise ratio for the analytes and the internal standard. The final optimized method was validated according to international guidelines. A monitoring campaign to assess fetal exposure to these 13 substances of abuse has been performed on AF test samples obtained from pregnant women. All mothers (n = 194) reported no use of drugs of abuse during pregnancy, and this was confirmed by the analytical data. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Toward multiscale modelings of grain-fluid systems

    NASA Astrophysics Data System (ADS)

    Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon

    2017-06-01

    Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.

  4. Multi-frequency bioimpedance in human muscle assessment

    PubMed Central

    Bartels, Else Marie; Sørensen, Emma Rudbæk; Harrison, Adrian Paul

    2015-01-01

    Bioimpedance analysis (BIA) is a well-known and tested method for body mass and muscular health assessment. Multi-frequency BIA (mfBIA) equipment now makes it possible to assess a particular muscle as a whole, as well as looking at a muscle at the fiber level. The aim of this study was to test the hypothesis that mfBIA can be used to assess the anatomical, physiological, and metabolic state of skeletal muscles. mfBIA measurements focusing on impedance, resistance, reactance, phase angle, center frequency, membrane capacitance, and both extracellular and intracellular resistance were carried out. Eight healthy human control subjects and three selected cases were examined to demonstrate the extent to which this method may be used clinically, and in relation to training in sport. The electrode setup is shown to affect the mfBIA parameters recorded. Our recommendation is the use of noble metal electrodes in connection with a conductance paste to accommodate the typical BIA frequencies, and to facilitate accurate impedance and resistance measurements. The use of mfBIA parameters, often in conjunction with each other, can be used to reveal indications of contralateral muscle loss, extracellular fluid differences, contracted state, and cell transport/metabolic activity, which relate to muscle performance. Our findings indicate that mfBIA provides a noninvasive, easily measurable and very precise momentary assessment of skeletal muscles. PMID:25896978

  5. Study on bubbly flow behavior in natural circulation reactor by thermal-hydraulic simulation tests with SF6-Gas and ethanol liquid

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro

    2009-02-01

    An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.

  6. Numerical Study of the Reduction Process in an Oxygen Blast Furnace

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Meng, Jiale; Guo, Lei; Guo, Zhancheng

    2016-02-01

    Based on computational fluid dynamics, chemical reaction kinetics, principles of transfer in metallurgy, and other principles, a multi-fluid model for a traditional blast furnace was established. The furnace conditions were simulated with this multi-fluid mathematical model, and the model was verified with the comparison of calculation and measurement. Then a multi-fluid model for an oxygen blast furnace in the gasifier-full oxygen blast furnace process was established based on this traditional blast furnace model. With the established multi-fluid model for an oxygen blast furnace, the basic characteristics of iron ore reduction process in the oxygen blast furnace were summarized, including the changing process of the iron ore reduction degree and the compositions of the burden, etc. The study found that compared to the traditional blast furnace, the magnetite reserve zone in the furnace shaft under oxygen blast furnace condition was significantly reduced, which is conducive to the efficient operation of blast furnace. In order to optimize the oxygen blast furnace design and operating parameters, the iron ore reduction process in the oxygen blast furnace was researched under different shaft tuyere positions, different recycling gas temperatures, and different allocation ratios of recycling gas between the hearth tuyere and the shaft tuyere. The results indicate that these three factors all have a substantial impact on the ore reduction process in the oxygen blast furnace. Moderate shaft tuyere position, high recycling gas temperature, and high recycling gas allocation ratio between hearth and shaft could significantly promote the reduction of iron ore, reduce the scope of the magnetite reserve zone, and improve the performance of oxygen blast furnace. Based on the above findings, the recommendations for improvement of the oxygen blast furnace design and operation were proposed.

  7. Are snakes particles or waves? Scattering of a limbless locomotor through a single slit

    NASA Astrophysics Data System (ADS)

    Qian, Feifei; Dai, Jin; Gong, Chaohui; Choset, Howie; Goldman, Daniel

    Droplets on vertically vibrated fluid surfaces can walk and diffract through a single slit by a pilot wave hydrodynamic interaction [Couder, 2006; Bush, 2015]. Inspired by the correspondence between emergent macroscale dynamics and phenomena in quantum systems, we tested if robotic snakes, which resemble wave packets, behave emergently like particles or waves when interacting with an obstacle. In lab experiments and numerical simulations we measured how a multi-module snake-like robot swam through a single slit. We controlled the snake undulation gait as a fixed serpenoid traveling wave pattern with varying amplitude and initial phase, and we examined the snake trajectory as it swam through a slit with width d. Robot trajectories were straight before interaction with the slit, then exited at different scattering angle θ after the interaction due to a complex interaction of the body wave with the slit. For fixed amplitude and large d, the snake passed through the slit with minimal interaction and theta was ~ 0 . For sufficiently small d, θ was finite and bimodally distributed, depending on the initial phase. For intermediate d, θ was sensitive to initial phase, and the width of the distribution of θ increased with decreasing d.

  8. Tracking interface and common curve dynamics for two-fluid flow in porous media

    DOE PAGES

    Mcclure, James E.; Miller, Cass T.; Gray, W. G.; ...

    2016-04-29

    Pore-scale studies of multiphase flow in porous medium systems can be used to understand transport mechanisms and quantitatively determine closure relations that better incorporate microscale physics into macroscale models. Multiphase flow simulators constructed using the lattice Boltzmann method provide a means to conduct such studies, including both the equilibrium and dynamic aspects. Moving, storing, and analyzing the large state space presents a computational challenge when highly-resolved models are applied. We present an approach to simulate multiphase flow processes in which in-situ analysis is applied to track multiphase flow dynamics at high temporal resolution. We compute a comprehensive set of measuresmore » of the phase distributions and the system dynamics, which can be used to aid fundamental understanding and inform closure relations for macroscale models. The measures computed include microscale point representations and macroscale averages of fluid saturations, the pressure and velocity of the fluid phases, interfacial areas, interfacial curvatures, interface and common curve velocities, interfacial orientation tensors, phase velocities and the contact angle between the fluid-fluid interface and the solid surface. Test cases are studied to validate the approach and illustrate how measures of system state can be obtained and used to inform macroscopic theory.« less

  9. Gastroenteritis Aggressive Versus Slow Treatment For Rehydration (GASTRO). A pilot rehydration study for severe dehydration: WHO plan C versus slower rehydration

    PubMed Central

    Houston, Kirsty A.; Gibb, Jack G.; Mpoya, Ayub; Obonyo, Nchafatso; Olupot-Olupot, Peter; Nakuya, Margeret; Evans, Jennifer A; George, Elizabeth C; Gibb, Diana M; Maitland, Kathryn

    2017-01-01

    Background: The World Health Organization (WHO) rehydration management guidelines (Plan C) for children with acute gastroenteritis (AGE) and severe dehydration are widely practiced in resource-poor settings, yet have never been formally evaluated in a clinical trial. A recent audit of outcome of AGE at Kilifi County Hospital, Kenya noted that 10% of children required high dependency care (20% mortality) and a number developed fluid-related complications. The fluid resuscitation trial, FEAST, conducted in African children with severe febrile illness, demonstrated higher mortality with fluid bolus therapy and raised concerns regarding the safety of rapid intravenous rehydration therapy. Those findings warrant a detailed physiological study of children’s responses to rehydration therapy incorporating quantification of myocardial performance and haemodynamic changes.  Methods: GASTRO is a multi-centre, unblinded Phase II randomised controlled trial of 120 children aged 2 months to 12 years admitted to hospital with severe dehydration secondary to AGE. Children with severe malnutrition, chronic diarrhoea and congenital/rheumatic heart disease are excluded. Children will be enrolled over 18 months in 3 centres in Kenya and Uganda and followed until 7 days post-discharge. The trial will randomise children 1:1 to standard rapid rehydration using Ringers Lactate  (WHO plan ‘C’ – 100mls/kg over 3-6 hours according to age, plus additional 0.9% saline boluses for children presenting in shock) or to a slower rehydration regimen (100mls/kg given over 8 hours and without the addition of fluid boluses). Enrolment started in November 2016 and is on-going. Primary outcome is frequency of adverse events, particularly related to cardiovascular compromise and neurological sequelae.  Secondary outcomes focus on clinical, biochemical, and physiological measures related to assessment of severity of dehydration, and response to treatment by intravenous rehydration. Discussion: Results from this pilot will contribute to generating robust definitions of outcomes (in particular for non-mortality endpoints) for a larger Phase III trial. PMID:28905004

  10. DEVELOPMENT OF NEW DRILLING FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David B. Burnett

    2003-08-01

    The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addressesmore » the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.« less

  11. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    DTIC Science & Technology

    2008-01-01

    various physical processes such as supercavitation and bubbles. A diagnostic- photographic method is developed in this study to determine the drag...nonlinear dynamics, body and multi-phase fluid interaction, supercavitation , and instability theory. The technical application of the hydrodynamics of...uV U ω= = − ×V e e e ei i , (29) where Eq.(9) is used. For a supercavitation area, a correction factor may be

  12. A non-oscillatory energy-splitting method for the computation of compressible multi-fluid flows

    NASA Astrophysics Data System (ADS)

    Lei, Xin; Li, Jiequan

    2018-04-01

    This paper proposes a new non-oscillatory energy-splitting conservative algorithm for computing multi-fluid flows in the Eulerian framework. In comparison with existing multi-fluid algorithms in the literature, it is shown that the mass fraction model with isobaric hypothesis is a plausible choice for designing numerical methods for multi-fluid flows. Then we construct a conservative Godunov-based scheme with the high order accurate extension by using the generalized Riemann problem solver, through the detailed analysis of kinetic energy exchange when fluids are mixed under the hypothesis of isobaric equilibrium. Numerical experiments are carried out for the shock-interface interaction and shock-bubble interaction problems, which display the excellent performance of this type of schemes and demonstrate that nonphysical oscillations are suppressed around material interfaces substantially.

  13. Multiple velocity encoding in the phase of an MRI signal

    NASA Astrophysics Data System (ADS)

    Benitez-Read, E. E.

    2017-01-01

    The measurement of fluid velocity by encoding it in the phase of a magnetic resonance imaging (MRI) signal could allow the discrimination of the stationary spins signals from those of moving spins. This results in a wide variety of applications i.e. in medicine, in order to obtain more than angiograms, blood velocity images of veins, arteries and other vessels without having static tissue perturbing the signal of fluid in motion. The work presented in this paper is a theoretical analysis of some novel methods for multiple fluid velocity encoding in the phase of an MRI signal. These methods are based on a tripolar gradient (TPG) and can be an alternative to the conventional methods based on a bipolar gradient (BPG) and could be more suitable for multiple velocity encoding in the phase of an MRI signal.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Clare L; Barrett, M; Heiss, Arno

    Inelastic neutron scattering was used to study the effect of 5 and 40 mol% cholesterol on the lateral nanoscale dynamics of phospholipid membranes. By measuring the excitation spectrum at several lateral q || values (up to q || = 3 1), complete dispersion curves were determined of gel, fluid and liquid-ordered phase bilayers. The inclusion of cholesterol had a distinct effect on the collective dynamics of the bilayer s hydrocarbon chains; specifically, we observed a pronounced stiffening of the membranes on the nanometer length scale in both gel and fluid bilayers, even though they were experiencing a higher degree ofmore » molecular disorder. Also, for the first time we determined the nanoscale dynamics in the high-cholesterol liquid-ordered phase of bilayers containing cholesterol. Namely, this phase appears to be softer than fluid bilayers, but better ordered than bilayers in the gel phase.« less

  15. Free-product plume distribution and recovery modeling prediction in a diesel-contaminated volcanic aquifer

    NASA Astrophysics Data System (ADS)

    Hernández-Espriú, Antonio; Martínez-Santos, Pedro; Sánchez-León, Emilio; Marín, Luis E.

    Light non-aqueous phase liquids (LNAPL) represent one of the most serious problems in aquifers contaminated with petroleum hydrocarbons liquids. To design an appropriate remediation strategy it is essential to understand the behavior of the plume. The aim of this paper is threefold: (1) to characterize the fluid distribution of an LNAPL plume detected in a volcanic low-conductivity aquifer (∼0.4 m/day from slug tests interpretation), (2) to simulate the recovery processes of the free-product contamination and (3) to evaluate the primary recovery efficiency of the following alternatives: skimming, dual-phase extraction, Bioslurping and multi-phase extraction wells. The API/Charbeneau analytical model was used to investigate the recovery feasibility based on the geological properties and hydrogeological conditions with a multi-phase (water, air, LNAPL) transport approach in the vadose zone. The modeling performed in this research, in terms of LNAPL distribution in the subsurface, show that oil saturation is 7% in the air-oil interface, with a maximum value of 70% in the capillary fringe. Equilibrium between water and LNAPL phases is reached at a depth of 1.80 m from the air-oil interface. On the other hand, the LNAPL recovery model results suggest a remarkable enhancement of the free-product recovery when simultaneous extra-phase extraction was simulated from wells, in addition to the LNAPL lens. Recovery efficiencies were 27%, 65%, 66% and 67% for skimming, dual-phase extraction, Bioslurping and multi-phase extraction, respectively. During a 3-year simulation, skimmer wells and multi-phase extraction showed the lowest and highest LNAPL recovery rates, with expected values from 207 to 163 and 2305 to 707 l-LNAPL/day, respectively. At a field level we are proposing a well distribution arrangement that alternates pairs of dual-phase well-Bioslurping well. This not only improves the recovery of the free-product plume, but also pumps the dissolve plume and enhances in situ biodegradation in the vadose zone. Thus, aquifer and soil remediation can be achieved at a shorter time. Rough calculations suggest that LNAPL can be recovered at an approximate cost of 6-10/l.

  16. Flow Pattern Phenomena in Two-Phase Flow in Microchannels

    NASA Astrophysics Data System (ADS)

    Keska, Jerry K.; Simon, William E.

    2004-02-01

    Space transportation systems require high-performance thermal protection and fluid management techniques for systems ranging from cryogenic fluid management devices to primary structures and propulsion systems exposed to extremely high temperatures, as well as for other space systems such as cooling or environment control for advanced space suits and integrated circuits. Although considerable developmental effort is being expended to bring potentially applicable technologies to a readiness level for practical use, new and innovative methods are still needed. One such method is the concept of Advanced Micro Cooling Modules (AMCMs), which are essentially compact two-phase heat exchangers constructed of microchannels and designed to remove large amounts of heat rapidly from critical systems by incorporating phase transition. The development of AMCMs requires fundamental technological advancement in many areas, including: (1) development of measurement methods/systems for flow-pattern measurement/identification for two-phase mixtures in microchannels; (2) development of a phenomenological model for two-phase flow which includes the quantitative measure of flow patterns; and (3) database development for multiphase heat transfer/fluid dynamics flows in microchannels. This paper focuses on the results of experimental research in the phenomena of two-phase flow in microchannels. The work encompasses both an experimental and an analytical approach to incorporating flow patterns for air-water mixtures flowing in a microchannel, which are necessary tools for the optimal design of AMCMs. Specifically, the following topics are addressed: (1) design and construction of a sensitive test system for two-phase flow in microchannels, one which measures ac and dc components of in-situ physical mixture parameters including spatial concentration using concomitant methods; (2) data acquisition and analysis in the amplitude, time, and frequency domains; and (3) analysis of results including evaluation of data acquisition techniques and their validity for application in flow pattern determination.

  17. Modulated phases of graphene quantum Hall polariton fluids

    PubMed Central

    Pellegrino, Francesco M. D.; Giovannetti, Vittorio; MacDonald, Allan H.; Polini, Marco

    2016-01-01

    There is a growing experimental interest in coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets. These media offer unique platforms to carry out fundamental studies of exciton-polariton condensation and cavity quantum electrodynamics in a regime, in which electron–electron interactions are expected to play a pivotal role. Here, focusing on graphene, we present a theoretical study of the impact of electron–electron interactions on a quantum Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons. We show that electron–electron interactions are responsible for an instability of graphene integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this phase can be detected by measuring the collective excitation spectra, which is often at a characteristic wave vector of the order of the inverse magnetic length. PMID:27841346

  18. Studying Suspended Sediment Mechanism with Two-Phase PIV

    NASA Astrophysics Data System (ADS)

    Matinpour, H.; Atkinson, J. F.; Bennett, S. J.; Guala, M.

    2017-12-01

    Suspended sediment transport affects soil erosion, agriculture and water resources quality. Turbulent diffusion is the most primary force to maintain sediments in suspension. Although extensive previous literature have been studying the interactions between turbulent motion and suspended sediment, mechanism of sediments in suspension is still poorly understood. In this study, we investigate suspension of sediments as two distinct phases: one phase of sediments and another phase of fluid with turbulent motions. We designed and deployed a state-of-the-art two-phase PIV measurement technique to discriminate these two phases and acquire velocities of each phase separately and simultaneously. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. Results indicate that fluid turbulence decreases in the presence of suspended sediments. Obtaining only sediment phase consecutive images enable us to compute fluctuation sediment concentration. This result enlightens understanding of complex interaction between the fluctuation velocities and the fluctuation of associated mass and compares turbulent viscosity with turbulent eddy diffusivity experimentally.

  19. A Lattice Boltzmann Framework for the simulation of boiling hydrodynamics in BWRs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, P. K.; Tentner, A.; Uddin, R.

    2008-01-01

    Multi phase and multi component flows are ubiquitous in nature as well as in many man-made processes. A specific example is the Boiling Water Reactor (BWR) core, in which the coolant enters the core as liquid, undergoes a phase change as it traverses the core and exits as a high quality two-phase mixture. Two-phase flows in BWRs typically manifest a wide variety of geometrical patterns of the co-existing phases depending on the local system conditions. Modeling of such flows currently relies on empirical correlations (for example, in the simulation of bubble nucleation, bubble growth and coalescence, and inter-phase surface topologymore » transitions) that hinder the accurate simulation of two-phase phenomena using Computational Fluid Dynamics (CFD) approaches. The Lattice Boltzmann Method (LBM) is in rapid development as a modeling tool to understand these macro-phenomena by coupling them with their underlying micro-dynamics. This paper presents a consistent LBM formulation for the simulation of a two-phase water-steam system. Results of initial model validation in a range of thermodynamic conditions typical for BWRs are also shown. The interface between the two coexisting phases is captured from the dynamics of the model itself, i.e., no interface tracking is needed. The model is based on the Peng-Robinson (P-R) non-ideal equation of state and can quantitatively approximate the phase-coexistence curve for water at different temperatures ranging from 125 to 325 oC. Consequently, coexisting phases with large density ratios (up to {approx}1000) may be simulated. Two-phase models in the 200-300 C temperature range are of significant importance to nuclear engineers since most BWRs operate under similar thermodynamic conditions. Simulation of bubbles and droplets in a gravity-free environment of the corresponding coexisting phase until steady state is reached satisfies Laplace law at different temperatures and thus, yield the surface tension of the fluid. Comparing the LBM surface tension thus calculated using the LBM to the corresponding experimental values for water, the LBM lattice unit (lu) can be scaled to the physical units. Using this approach, spatial scaling of the LBM emerges from the model itself and is not imposed externally.« less

  20. Correlators in simultaneous measurement of non-commuting qubit observables

    NASA Astrophysics Data System (ADS)

    Atalaya, Juan; Hacohen-Gourgy, Shay; Martin, Leigh S.; Siddiqi, Irfan; Korotkov, Alexander N.

    We consider simultaneous continuous measurement of non-commuting qubit observables and analyze multi-time correlators 〈i κ1 (t1) ^i κN (tN) 〉 for output signals i κ (t) from the detectors. Both informational (''spooky'') and phase backactions from cQED-type measurements with phase-sensitive amplifiers are taken into account. We find an excellent agreement between analytical results and experimental data for two-time correlators of the output signals from simultaneous measurement of qubit observables σx and σφ =σx cosφ +σy sinφ . The correlators can be used to extract small deviations of experimental parameters, e.g., phase backaction and residual Rabi frequency. The multi-time correlators are important in analysis of Bacon-Shor error correction/detection codes, operated with continuous measurements.

  1. ESTIMATION OF SHEAR STRESS WORKING ON SUBMERGED HOLLOW FIBRE MEMBRANE BY CFD METHOD IN MBRs

    NASA Astrophysics Data System (ADS)

    Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi

    This study was conducted to evaluate shear stress working on submerged hollow fibre membrane by CFD (Computation Fluid Dynamics) method in MBRs. Shear stress on hollow fibre membrane caused by aeration was measured directly using a two-direction load sensor. The measurement of water-phase flow velocity was done also by using laser doppler velocimeter. It was confirmed that the shear stress was possible to be evaluated from the water-phase flow velocityby the result of comparison of time average shear stress actually measured with one hollow fibre membrane and the one calculated by the water-phase flow velocity. In the estimation of the water-phase flow velocity using the CFD method, time average water-phase flow velocity estimated by consideration of the fluid resistance of the membrane module nearly coincided with the measured values, and it was shown that it was possible to be estimated also within the membrane module. Moreover, the measured shear stress and drag force well coincided with the values calculated from the estimated water-phase flow velocity outside of membrane module and in the center of membrane module, and it was suggested that the shear stress on the hollow fibre membrane could be estimated by the CFD method in MBRs.

  2. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    NASA Astrophysics Data System (ADS)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-01

    The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1-10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  3. Numerical simulation of multi-dimensional NMR response in tight sandstone

    NASA Astrophysics Data System (ADS)

    Guo, Jiangfeng; Xie, Ranhong; Zou, Youlong; Ding, Yejiao

    2016-06-01

    Conventional logging methods have limitations in the evaluation of tight sandstone reservoirs. The multi-dimensional nuclear magnetic resonance (NMR) logging method has the advantage that it can simultaneously measure transverse relaxation time (T 2), longitudinal relaxation time (T 1) and diffusion coefficient (D). In this paper, we simulate NMR measurements of tight sandstone with different wettability and saturations by the random walk method and obtain the magnetization decays of Carr-Purcell-Meiboom-Gill pulse sequences with different wait times (TW) and echo spacings (TE) under a magnetic field gradient, resulting in D-T 2-T 1 maps by the multiple echo trains joint inversion method. We also study the effects of wettability, saturation, signal-to-noise ratio (SNR) of data and restricted diffusion on the D-T 2-T 1 maps in tight sandstone. The results show that with decreasing wetting fluid saturation, the surface relaxation rate of the wetting fluid gradually increases and the restricted diffusion phenomenon becomes more and more obvious, which leads to the wetting fluid signal moving along the direction of short relaxation and the direction of the diffusion coefficient decreasing in D-T 2-T 1 maps. Meanwhile, the non-wetting fluid position in D-T 2-T 1 maps does not change with saturation variation. With decreasing SNR, the ability to identify water and oil signals based on NMR maps gradually decreases. The wetting fluid D-T 1 and D-T 2 correlations in NMR diffusion-relaxation maps of tight sandstone are obtained through expanding the wetting fluid restricted diffusion models, and are further applied to recognize the wetting fluid in simulated D-T 2 maps and D-T 1 maps.

  4. A General Formulation for Robust and Efficient Integration of Finite Differences and Phase Unwrapping on Sparse Multidimensional Domains

    NASA Astrophysics Data System (ADS)

    Costantini, Mario; Malvarosa, Fabio; Minati, Federico

    2010-03-01

    Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.

  5. Simulation on Thermocapillary-Driven Drop Coalescence by Hybrid Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Xie, Haiqiong; Zeng, Zhong; Zhang, Liangqi; Yokota, Yuui; Kawazoe, Yoshiyuki; Yoshikawa, Akira

    2016-04-01

    A hybrid two-phase model, incorporating lattice Boltzmann method (LBM) and finite difference method (FDM), was developed to investigate the coalescence of two drops during their thermocapillary migration. The lattice Boltzmann method with a multi-relaxation-time (MRT) collision model was applied to solve the flow field for incompressible binary fluids, and the method was implemented in an axisymmetric form. The deformation of the drop interface was captured with the phase-field theory, and the continuum surface force model (CSF) was adopted to introduce the surface tension, which depends on the temperature. Both phase-field equation and the energy equation were solved with the finite difference method. The effects of Marangoni number and Capillary numbers on the drop's motion and coalescence were investigated.

  6. Droplet Breakup in Expansion-contraction Microchannels

    PubMed Central

    Zhu, Pingan; Kong, Tiantian; Lei, Leyan; Tian, Xiaowei; Kang, Zhanxiao; Wang, Liqiu

    2016-01-01

    We investigate the influences of expansion-contraction microchannels on droplet breakup in capillary microfluidic devices. With variations in channel dimension, local shear stresses at the injection nozzle and focusing orifice vary, significantly impacting flow behavior including droplet breakup locations and breakup modes. We observe transition of droplet breakup location from focusing orifice to injection nozzle, and three distinct types of recently-reported tip-multi-breaking modes. By balancing local shear stresses and interfacial tension effects, we determine the critical condition for breakup location transition, and characterize the tip-multi-breaking mode quantitatively. In addition, we identify the mechanism responsible for the periodic oscillation of inner fluid tip in tip-multi-breaking mode. Our results offer fundamental understanding of two-phase flow behaviors in expansion-contraction microstructures, and would benefit droplet generation, manipulation and design of microfluidic devices. PMID:26899018

  7. Tracer SWIW tests in propped and un-propped fractures: parameter sensitivity issues, revisited

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2017-04-01

    Single-well injection-withdrawal (SWIW) or 'push-then-pull' tracer methods appear attractive for a number of reasons: less uncertainty on design and dimensioning, and lower tracer quantities required than for inter-well tests; stronger tracer signals, enabling easier and cheaper metering, and shorter metering duration required, reaching higher tracer mass recovery than in inter-well tests; last not least: no need for a second well. However, SWIW tracer signal inversion faces a major issue: the 'push-then-pull' design weakens the correlation between tracer residence times and georeservoir transport parameters, inducing insensitivity or ambiguity of tracer signal inversion w. r. to some of those georeservoir parameters that are supposed to be the target of tracer tests par excellence: pore velocity, transport-effective porosity, fracture or fissure aperture and spacing or density (where applicable), fluid/solid or fluid/fluid phase interface density. Hydraulic methods cannot measure the transport-effective values of such parameters, because pressure signals correlate neither with fluid motion, nor with material fluxes through (fluid-rock, or fluid-fluid) phase interfaces. The notorious ambiguity impeding parameter inversion from SWIW test signals has nourished several 'modeling attitudes': (i) regard dispersion as the key process encompassing whatever superposition of underlying transport phenomena, and seek a statistical description of flow-path collectives enabling to characterize dispersion independently of any other transport parameter, as proposed by Gouze et al. (2008), with Hansen et al. (2016) offering a comprehensive analysis of the various ways dispersion model assumptions interfere with parameter inversion from SWIW tests; (ii) regard diffusion as the key process, and seek for a large-time, asymptotically advection-independent regime in the measured tracer signals (Haggerty et al. 2001), enabling a dispersion-independent characterization of multiple-scale diffusion; (iii) attempt to determine both advective and non-advective transport parameters from one and the same conservative-tracer signal (relying on 'third-party' knowledge), or from twin signals of a so-called 'dual' tracer pair, e. g.: using tracers with contrasting reactivity and partitioning behavior to determine residual saturation in depleted oilfields (Tomich et al. 1973), or to determine advective parameters (Ghergut et al. 2014); using early-time signals of conservative and sorptive tracers for propped-fracture characterization (Karmakar et al. 2015); using mid-time signals of conservative tracers for a reservoir-borne inflow profiling in multi-frac systems (Ghergut et al. 2016), etc. The poster describes new uses of type-(iii) techniques for the specific purposes of shale-gas reservoir characterization, productivity monitoring, diagnostics and engineering of 're-frac' treatments, based on parameter sensitivity findings from German BMWi research project "TRENDS" (Federal Ministry for Economic Affairs and Energy, FKZ 0325515) and from the EU-H2020 project "FracRisk" (grant no. 640979).

  8. Multi-interface level in oil tanks and applications of optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Marques, Carlos; Frizera, Anselmo; Pontes, Maria José

    2018-01-01

    On the oil production also involves the production of water, gas and suspended solids, which are separated from the oil on three-phase separators. However, the control strategies of an oil separator are limited due to unavailability of suitable multi-interface level sensors. This paper presents a description of the multi-phase level problem on the oil industry and a review of the current technologies for multi-interface level assessment. Since optical fiber sensors present chemical stability, intrinsic safety, electromagnetic immunity, lightweight and multiplexing capabilities, it can be an alternative for multi-interface level measurement that can overcome some of the limitations of the current technologies. For this reason, Fiber Bragg Gratings (FBGs) based optical fiber sensor system for multi-interface level assessment is proposed, simulated and experimentally assessed. The results show that the proposed sensor system is capable of measuring interface level with a relative error of only 2.38%. Furthermore, the proposed sensor system is also capable of measuring the oil density with an error of 0.8 kg/m3.

  9. Proper Orthogonal Decomposition on Experimental Multi-phase Flow in a Pipe

    NASA Astrophysics Data System (ADS)

    Viggiano, Bianca; Tutkun, Murat; Cal, Raúl Bayoán

    2016-11-01

    Multi-phase flow in a 10 cm diameter pipe is analyzed using proper orthogonal decomposition. The data were obtained using X-ray computed tomography in the Well Flow Loop at the Institute for Energy Technology in Kjeller, Norway. The system consists of two sources and two detectors; one camera records the vertical beams and one camera records the horizontal beams. The X-ray system allows measurement of phase holdup, cross-sectional phase distributions and gas-liquid interface characteristics within the pipe. The mathematical framework in the context of multi-phase flows is developed. Phase fractions of a two-phase (gas-liquid) flow are analyzed and a reduced order description of the flow is generated. Experimental data deepens the complexity of the analysis with limited known quantities for reconstruction. Comparison between the reconstructed fields and the full data set allows observation of the important features. The mathematical description obtained from the decomposition will deepen the understanding of multi-phase flow characteristics and is applicable to fluidized beds, hydroelectric power and nuclear processes to name a few.

  10. Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: Dielectric spectroscopy and molecular simulation

    NASA Astrophysics Data System (ADS)

    Sliwinska-Bartkowiak, Malgorzata; Dudziak, Grazyna; Sikorski, Roman; Gras, Roman; Radhakrishnan, Ravi; Gubbins, Keith E.

    2001-01-01

    We report both experimental measurements and molecular simulations of the melting and freezing behavior of fluids in nanoporous media. The experimental studies are for nitrobenzene in the silica-based pores of controlled pore glass, Vycor, and MCM-41. Dielectric relaxation spectroscopy is used to determine melting points and the orientational relaxation times of the nitrobenzene molecules in the bulk and the confined phase. Monte Carlo simulations, together with a bond orientational order parameter method, are used to determine the melting point and fluid structure inside cylindrical pores modeled on silica. Qualitative comparison between experiment and simulation are made for the shift in the freezing temperatures and the structure of confined phases. From both the experiments and the simulations, it is found that the confined fluid freezes into a single crystalline structure for average pore diameters greater than 20σ, where σ is the diameter of the fluid molecule. For average pore sizes between 20σ and 15σ, part of the confined fluid freezes into a frustrated crystal structure with the rest forming an amorphous region. For pore sizes smaller than 15σ, even the partial crystallization did not occur. Our measurements and calculations show clear evidence of a novel intermediate "contact layer" phase lying between liquid and crystal; the contact layer is the confined molecular layer adjacent to the pore wall and experiences a deeper fluid-wall potential energy compared to the inner layers. We also find evidence of a liquid to "hexatic" transition in the quasi-two-dimensional contact layer at high temperatures.

  11. The Fluids And Combustion Facility Combustion Integrated Rack And The Multi-User Droplet Combustion Apparatus: Microgravity Combustion Science Using Modular Multi-User Hardware

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Myhre, Craig A.

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a multi-rack payload planned for the International Space Station (ISS) that will enable the study of fluid physics and combustion science in a microgravity environment. The Combustion Integrated Rack (CIR) is one of two International Standard Payload Racks of the FCF and is being designed primarily to support combustion science experiments. The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user apparatus designed to accommodate four different droplet combustion science experiments and is the first payload for CIR. The CIR will function independently until the later launch of the Fluids Integrated Rack component of the FCF. This paper provides an overview of the capabilities and the development status of the CIR and MDCA.

  12. Phase behavior of charged hydrophobic colloids on flat and spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm P.

    For a broad class of two-dimensional (2D) materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young (KTHNY). According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of topological defects, even at T=0. In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this thesis, we develop and characterize an experimental system of charged colloidal particles that bind electrostatically to the interface between an oil and an aqueous phase. Depending on how we prepare the sample, this fluid interface may be flat, spherical, or have a more complicated geometry. Focusing on the cases where the interface is flat or spherical, we measure the interactions between the particles, and probe various aspects of their phase behavior. On flat interfaces, this phase behavior is well-described by KTHNY theory. In spherical geometries, however, we observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that, in the spherical system, ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries ("scars"), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated "lakes" of fluid or glassy particles, situated at the icosahedron vertices. These lakes are embedded in a rigid, connected "continent" of locally crystalline particles.

  13. Modeling the cometary environment using a fluid approach

    NASA Astrophysics Data System (ADS)

    Shou, Yinsi

    Comets are believed to have preserved the building material of the early solar system and to hold clues to the origin of life on Earth. Abundant remote observations of comets by telescopes and the in-situ measurements by a handful of space missions reveal that the cometary environments are complicated by various physical and chemical processes among the neutral gases and dust grains released from comets, cometary ions, and the solar wind in the interplanetary space. Therefore, physics-based numerical models are in demand to interpret the observational data and to deepen our understanding of the cometary environment. In this thesis, three models using a fluid approach, which include important physical and chemical processes underlying the cometary environment, have been developed to study the plasma, neutral gas, and the dust grains, respectively. Although models based on the fluid approach have limitations in capturing all of the correct physics for certain applications, especially for very low gas density environment, they are computationally much more efficient than alternatives. In the simulations of comet 67P/Churyumov-Gerasimenko at various heliocentric distances with a wide range of production rates, our multi-fluid cometary neutral gas model and multi-fluid cometary dust model have achieved comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid in all collisional regimes. Therefore, our model is a powerful alternative to the particle-based model, especially for some computationally intensive simulations. Capable of accounting for the varying heating efficiency under various physical conditions in a self-consistent way, the multi-fluid cometary neutral gas model is a good tool to study the dynamics of the cometary coma with different production rates and heliocentric distances. The modeled H2O expansion speeds reproduce the general trend and the speed's nonlinear dependencies of production rate and heliocentric distance, which are found in remote observations. In the multi-fluid dust model, we use a newly developed numerical mesh to resolve the real shaped nucleus in the center and to facilitate prescription of the outer boundary conditions that accommodate the rotating frame. The model studies the effects of the rotating nucleus and the cometary activity in time-dependent simulations for the first time. The result also suggests that the rotation of the nucleus explains why there is no clear dust speed dependence on size in some of the dust observations. We developed a new multi-species comet MHD model to simulate the plasma environment of comet C/2006 P1 (McNaught) over a wide range of heliocentric distances from 0.17 AU to 1.75 AU, with the constraints provided by remote and in situ observations. Typical subsolar standoff distances of bow shock and contact surface are modeled and presented to characterize the solar wind interaction of the comet at various heliocentric distances. In addition, the model is also the first one to be used to study the composition and dynamics in the distant cometary tail. The results agree well with the measured water group ion abundances from the Ulysses/SWICS 1.7 AU down-tail from the comet and the velocity and temperature measured by Ulysses/SWOOPS.

  14. Application of process tomography in gas-solid fluidised beds in different scales and structures

    NASA Astrophysics Data System (ADS)

    Wang, H. G.; Che, H. Q.; Ye, J. M.; Tu, Q. Y.; Wu, Z. P.; Yang, W. Q.; Ocone, R.

    2018-04-01

    Gas-solid fluidised beds are commonly used in particle-related processes, e.g. for coal combustion and gasification in the power industry, and the coating and granulation process in the pharmaceutical industry. Because the operation efficiency depends on the gas-solid flow characteristics, it is necessary to investigate the flow behaviour. This paper is about the application of process tomography, including electrical capacitance tomography (ECT) and microwave tomography (MWT), in multi-scale gas-solid fluidisation processes in the pharmaceutical and power industries. This is the first time that both ECT and MWT have been applied for this purpose in multi-scale and complex structure. To evaluate the sensor design and image reconstruction and to investigate the effects of sensor structure and dimension on the image quality, a normalised sensitivity coefficient is introduced. In the meantime, computational fluid dynamic (CFD) analysis based on a computational particle fluid dynamic (CPFD) model and a two-phase fluid model (TFM) is used. Part of the CPFD-TFM simulation results are compared and validated by experimental results from ECT and/or MWT. By both simulation and experiment, the complex flow hydrodynamic behaviour in different scales is analysed. Time-series capacitance data are analysed both in time and frequency domains to reveal the flow characteristics.

  15. Hybrid Eulerian and Lagrangian Simulation of Steep and Breaking Waves and Surface Fluxes in High Winds

    DTIC Science & Technology

    2011-09-30

    simulation provides boundary condition to the SPH simulation in a sub- domain. For the test with surface wave propagation, the free surface and the...This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that can be used to study the fundamental physics...of horizontal velocity(normalized by wave phase speed c) obtained from SPH simulation and the corresponding free surface obtained from LSM

  16. Density and Phase State of a Confined Nonpolar Fluid

    NASA Astrophysics Data System (ADS)

    Kienle, Daniel F.; Kuhl, Tonya L.

    2016-07-01

    Measurements of the mean refractive index of a spherelike nonpolar fluid, octamethytetracylclosiloxane (OMCTS), confined between mica sheets, demonstrate direct and conclusive experimental evidence of the absence of a first-order liquid-to-solid phase transition in the fluid when confined, which has been suggested to occur from previous experimental and simulation results. The results also show that the density remains constant throughout confinement, and that the fluid is incompressible. This, along with the observation of very large increases (many orders of magnitude) in viscosity during confinement from the literature, demonstrate that the molecular motion is limited by the confining wall and not the molecular packing. In addition, the recently developed refractive index profile correction method, which enables the structural perturbation inherent at a solid-liquid interface and that of a liquid in confinement to be determined independently, was used to show that there was no measurable excess or depleted mass of OMCTS near the mica surface in bulk films or confined films of only two molecular layers.

  17. Lattice Boltzmann multi-phase simulations in porous media using Multiple GPUs

    NASA Astrophysics Data System (ADS)

    Toelke, J.; De Prisco, G.; Mu, Y.

    2011-12-01

    Ingrain's digital rock physics lab computes the physical properties and fluid flow characteristics of oil and gas reservoir rocks including shales, carbonates and sandstones. Ingrain uses advanced lattice Boltzmann methods (LBM) to simulate multiphase flow in the rocks (porous media). We present a very efficient implementation of these methods based on CUDA. Because LBM operates on a finite difference grid, is explicit in nature, and requires only next-neighbor interactions, it is suitable for implementation on GPUs. Since GPU hardware allows for very fine grain parallelism, every lattice site can be handled by a different core. Data has to be loaded from and stored to the device memory in such a way that dense access to the memory is ensured. This can be achieved by accessing the lattice nodes with respect to their contiguous memory locations [1,2]. The simulation engine uses a sparse data structure to represent the grid and advanced algorithms to handle the moving fluid-fluid interface. The simulations are accelerated on one GPU by one order of magnitude compared to a state of the art multicore desktop computer. The engine is parallelized using MPI and runs on multiple GPUs in the same node or across the Infiniband network. Simulations with up to 50 GPUs in parallel are presented. With this simulator using it is possible to perform pore scale multi-phase (oil-water-matrix) simulations in natural porous media in a commercial manner and to predict important rock properties like absolute permeability, relative permeabilites and capillary pressure [3,4]. Results and videos of these simulations in complex real world porous media and rocks are presented and discussed.

  18. Tide-driven fluid mud transport in the Ems estuary

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Winter, Christian

    2014-05-01

    The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and rapid vertical mixing, inducing the highest instantaneous suspended sediment flux measured during the tidal cycle. During decelerating flood currents a lutocline is again established at a certain distance above the consolidated river bed. During slack water after the flood phase the concentration gradient increases and the thickness of the fluid mud layer below is constant, also during a significant part of the ebb phase. As water depth decreases during ebb, entrainment occurs only at the upper part of the fluid mud layer. The suspended sediment flux is low compared to the flood phase. These observations are further elaborated using turbulence parameters obtained from ADV and ADCP, explaining the difference between ebb and flood concerning the vertical location of the maximum concentration gradient. This study is funded through DFG-Research Center / Excellence Cluster "The Ocean in the Earth System". The Senckenberg Institute and the Federal Waterways Engineering and Research Institute are acknowledged for technical support.

  19. Design and numerical simulation on an auto-cumulative flowmeter in horizontal oil-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang

    2017-11-01

    In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.

  20. Design and numerical simulation on an auto-cumulative flowmeter in horizontal oil-water two-phase flow.

    PubMed

    Xie, Beibei; Kong, Lingfu; Kong, Deming; Kong, Weihang; Li, Lei; Liu, Xingbin; Chen, Jiliang

    2017-11-01

    In order to accurately measure the flow rate under the low yield horizontal well conditions, an auto-cumulative flowmeter (ACF) was proposed. Using the proposed flowmeter, the oil flow rate in horizontal oil-water two-phase segregated flow can be finely extracted. The computational fluid dynamics software Fluent was used to simulate the fluid of the ACF in oil-water two-phase flow. In order to calibrate the simulation measurement of the ACF, a novel oil flow rate measurement method was further proposed. The models of the ACF were simulated to obtain and calibrate the oil flow rate under different total flow rates and oil cuts. Using the finite-element method, the structure of the seven conductance probes in the ACF was simulated. The response values for the probes of the ACF under the conditions of oil-water segregated flow were obtained. The experiments for oil-water segregated flow under different heights of the oil accumulation in horizontal oil-water two-phase flow were carried out to calibrate the ACF. The validity of the oil flow rate measurement in horizontal oil-water two-phase flow was verified by simulation and experimental results.

  1. Physics-Based Computational Algorithm for the Multi-Fluid Plasma Model

    DTIC Science & Technology

    2014-06-30

    applying it to study laser - 20 Physics-Based Multi-Fluid Plasma Algorithm Shumlak Figure 6: Blended finite element method applied to the species...separation problem in capsule implosions. Number densities and electric field are shown after the laser drive has compressed the multi-fluid plasma and...6 after the laser drive has started the compression. A separation clearly develops. The solution is found using an explicit advance (CFL=1) for the

  2. A pragmatic multi-centre randomised controlled trial of fluid loading and level of dependency in high-risk surgical patients undergoing major elective surgery: trial protocol

    PubMed Central

    2010-01-01

    Background Patients undergoing major elective or urgent surgery are at high risk of death or significant morbidity. Measures to reduce this morbidity and mortality include pre-operative optimisation and use of higher levels of dependency care after surgery. We propose a pragmatic multi-centre randomised controlled trial of level of dependency and pre-operative fluid therapy in high-risk surgical patients undergoing major elective surgery. Methods/Design A multi-centre randomised controlled trial with a 2 * 2 factorial design. The first randomisation is to pre-operative fluid therapy or standard regimen and the second randomisation is to routine intensive care versus high dependency care during the early post-operative period. We intend to recruit 204 patients undergoing major elective and urgent abdominal and thoraco-abdominal surgery who fulfil high-risk surgical criteria. The primary outcome for the comparison of level of care is cost-effectiveness at six months and for the comparison of fluid optimisation is the number of hospital days after surgery. Discussion We believe that the results of this study will be invaluable in determining the future care and clinical resource utilisation for this group of patients and thus will have a major impact on clinical practice. Trial Registration Trial registration number - ISRCTN32188676 PMID:20398378

  3. Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, K.; Ekström, G.

    2008-12-01

    The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.

  4. High-lift flow-physics flight experiments on a subsonic civil transport aircraft (B737-100)

    NASA Technical Reports Server (NTRS)

    Vandam, Cornelis P.

    1994-01-01

    As part of the subsonic transport high-lift program, flight experiments are being conducted using NASA Langley's B737-100 to measure the flow characteristics of the multi-element high-lift system at full-scale high-Reynolds-number conditions. The instrumentation consists of hot-film anemometers to measure boundary-layer states, an infra-red camera to detect transition from laminar to turbulent flow, Preston tubes to measure wall shear stress, boundary-layer rakes to measure off-surface velocity profiles, and pressure orifices to measure surface pressure distributions. The initial phase of this research project was recently concluded with two flights on July 14. This phase consisted of a total of twenty flights over a period of about ten weeks. In the coming months the data obtained in this initial set of flight experiments will be analyzed and the results will be used to finalize the instrumentation layout for the next set of flight experiments scheduled for Winter and Spring of 1995. The main goal of these upcoming flights will be: (1) to measure more detailed surface pressure distributions across the wing for a range of flight conditions and flap settings; (2) to visualize the surface flows across the multi-element wing at high-lift conditions using fluorescent mini tufts; and (3) to measure in more detail the changes in boundary-layer state on the various flap elements as a result of changes in flight condition and flap deflection. These flight measured results are being correlated with experimental data measured in ground-based facilities as well as with computational data calculated with methods based on the Navier-Stokes equations or a reduced set of these equations. Also these results provide insight into the extent of laminar flow that exists on actual multi-element lifting surfaces at full-scale high-life conditions. Preliminary results indicate that depending on the deflection angle, the slat and flap elements have significant regions of laminar flow over a wide range of angles of attack. Boundary-layer transition mechanisms that were observed include attachment-line contamination on the slat and inflectional instability on the slat and fore flap. Also, the results agree fairly well with the predictions reported in a paper presented at last year's AIAA Fluid Dynamics Conference. The fact that extended regions of laminar flow are shown to exist on the various elements of the high-lift system raises the question what the effect is of loss of laminar flow as a result of insect contamiantion, rain or ice accumulation on high-life performance.

  5. Multi-range force sensors utilizing shape memory alloys

    DOEpatents

    Varma, Venugopal K.

    2003-04-15

    The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.

  6. Multi-elemental analysis of jet engine lubricating oils and hydraulic fluids and their implication in aircraft air quality incidents.

    PubMed

    van Netten, C

    1999-05-07

    The flight crews of aircraft often report symptoms including dizziness, nausea, disorientation, blurred vision and tingling in legs and arms. Many of these incidents have been traced to contamination of cabin air with lubricating oil, as well as hydraulic fluid, constituents. Considering that these air contaminants are often subjected to temperatures in excess of 500 degrees C, a large number of different exposures can be expected. Although the reported symptoms are most consistent with exposures to volatile organic compounds, carbon monoxide, and the organophosphate constituents in these oils and fluids, the involvement of these agents has not been clearly demonstrated. Possible exposure to toxic elements, such as lead, mercury, thallium and others, have not been ruled out. In order to assess the potential of exposure to toxic elements a multi-elemental analysis was done on two hydraulic fluids and three lubricating oils which have been implicated in a number of air quality incidents. A secondary objective was to establish if the multi-elemental concentrations of the fluids tested are different enough to allow such an analysis to be used as a possible method of identifying the source of exposure that might have been present during aircraft air quality incidents. No significant concentrations of toxic elements were identified in any of the oils or hydraulic fluids. The elemental compositions of the samples were different enough to be used for identification purposes and the measurement of only three elements was able to achieve this. Whether these findings have an application, in aircraft air quality incident investigations, needs to be established with further studies.

  7. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  8. Development of a two-phase SPH model for sediment laden flows

    NASA Astrophysics Data System (ADS)

    Shi, Huabin; Yu, Xiping; Dalrymple, Robert A.

    2017-12-01

    A SPH model based on a general formulation for solid-fluid two-phase flows is proposed for suspended sediment motion in free surface flows. The water and the sediment are treated as two miscible fluids, and the multi-fluid system is discretized by a single set of SPH particles, which move with the water velocity and carry properties of the two phases. Large eddy simulation (LES) is introduced to deal with the turbulence effect, and the widely used Smagorinsky model is modified to take into account the influence of sediment particles on the turbulence. The drag force is accurately formulated by including the hindered settling effect. In the model, the water is assumed to be weakly compressible while the sediment is incompressible, and a new equation of state is proposed for the pressure in the sediment-water mixture. Dynamic boundary condition is employed to treat wall boundaries, and a new strategy of Shepard filtering is adopted to damp the pressure oscillation. The developed two-phase SPH model is validated by comparing the numerical results with analytical solutions for idealized cases of still water containing both neutrally buoyant and naturally settling sand and for plane Poiseuille flows carrying neutrally buoyant particles, and is then applied to sand dumping from a line source into a water tank, where the sand cloud settles with a response of the free water surface. It is shown that the numerical results are in good agreement with the experimental data as well as the empirical formulas. The characteristics of the settling sand cloud, the pressure field, and the flow vortices are studied. The motion of the free water surface is also discussed. The proposed two-phase SPH model is proven to be effective for numerical simulation of sand dumping into waters.

  9. Uncovering a Salt Giant. Deep-Sea Record of Mediterranean Messinian Events (DREAM) multi-phase drilling project

    NASA Astrophysics Data System (ADS)

    Camerlenghi, Angelo; Aoisi, Vanni; Lofi, Johanna; Hübscher, Christian; deLange, Gert; Flecker, Rachel; Garcia-Castellanos, Daniel; Gorini, Christian; Gvirtzman, Zohar; Krijgsman, Wout; Lugli, Stefano; Makowsky, Yizhaq; Manzi, Vinicio; McGenity, Terry; Panieri, Giuliana; Rabineau, Marina; Roveri, Marco; Sierro, Francisco Javier; Waldmann, Nicolas

    2014-05-01

    In May 2013, the DREAM MagellanPlus Workshop was held in Brisighella (Italy). The initiative builds from recent activities by various research groups to identify potential sites to perform deep-sea scientific drilling in the Mediterranean Sea across the deep Messinian Salinity Crisis (MSC) sedimentary record. In this workshop three generations of scientists were gathered: those who participated in formulation of the deep desiccated model, through DSDP Leg 13 drilling in 1973; those who are actively involved in present-day MSC research; and the next generation (PhD students and young post-docs). The purpose of the workshop was to identify locations for multiple-site drilling (including riser-drilling) in the Mediterranean Sea that would contribute to solve the several open questions still existing about the causes, processes, timing and consequences at local and planetary scale of an outstanding case of natural environmental change in the recent Earth history: the Messinian Salinity Crisis in the Mediterranean Sea. The product of the workshop is the identification of the structure of an experimental design of site characterization, riser-less and riser drilling, sampling, measurements, and down-hole analyses that will be the core for at least one compelling and feasible multiple phase drilling proposal. Particular focus has been given to reviewing seismic site survey data available from different research groups at pan-Mediterranean basin scale, to the assessment of additional site survey activity including 3D seismics, and to ways of establishing firm links with oil and gas industry. The scientific community behind the DREAM initiative is willing to proceed with the submission to IODP of a Multi-phase Drilling Project including several drilling proposals addressing specific drilling objectives, all linked to the driving objectives of the MSC drilling and understanding . A series of critical drilling targets were identified to address the still open questions related to the MSC event. Several proposal ideas also emerged to support the Multi-phase drilling project concept: Salt tectonics and fluids, Deep stratigraphic and crustal drilling in the Gulf of Lion (deriving from the GOLD drilling project), Deep stratigraphic and crustal drilling in the Ionian Sea, Deep Biosphere, Sapropels, and the Red Sea. A second MagellanPlus workshop held in January 2014 in Paris (France), has proceeded a step further towards the drafting of the Multi-phase Drilling Project and a set of pre-proposals for submission to IODP.

  10. Optical Electronic Bragg Reflection Sensor System with Hydrodynamic Flow Applications

    NASA Technical Reports Server (NTRS)

    Lyons, D. R.

    2003-01-01

    This project, as described in the following report, involved design and fabrication of fiber optic sensors for the detection and measurement of dynamic fluid density variations. These devices are created using UV (ultraviolet) ablation and generally modified transverse holographic fiber grating techniques. The resulting phase gratings created on or immediately underneath the flat portion of D-shaped optical waveguides are characterized as evanescent field sensing devices. The primary applications include the sensor portion of a real-time localized or distributed measurement system for hydrodynamic flow, fluid density measurements, and phase change phenomena. Several design modifications were implemented in an attempt to accomplish the tasks specified in our original proposal. In addition, we have established key collaborative relationships with numerous people and institutions.

  11. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation.

    PubMed

    Stenfelt, Stefan; Hato, Naohito; Goode, Richard L

    2004-02-01

    The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180 degrees for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.

  12. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation

    NASA Astrophysics Data System (ADS)

    Stenfelt, Stefan; Hato, Naohito; Goode, Richard L.

    2004-02-01

    The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180° for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.

  13. Multi-Fluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms, Initial Results

    NASA Technical Reports Server (NTRS)

    Gkocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J. C.; Kistler, L. M.

    2010-01-01

    The magnetosphere contains a significant amount of ionospheric O{+}, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the BATS-R-US model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multi-fluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single- fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multi-fluid MHD model (with outflow) gives comparable results to the multi-species MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multi-species and multi-fluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H{+} and O(+}, which is not possible when utilizing the other techniques considered.

  14. Simultaneous measurements of density field and wavefront distortions in high speed flows

    NASA Astrophysics Data System (ADS)

    George, Jacob; Jenkins, Thomas; Trolinger, James; Hess, Cecil; Buckner, Benjamin

    2017-09-01

    This paper presents results from simultaneous measurements of fluid density and the resulting wavefront distortions in a sonic underexpanded jet. The density measurements were carried out using Rayleigh scattering, and the optical distortions were measured using a wavefront sensor based on phase shifting interferometry. The measurements represent a preliminary step toward relating wavefront distortions to a specific flow structure. The measured density field is used to compute the phase distortions using a wave propagation model based on a geometric-optics approximation, and the computed phase map shows moderate agreement with that obtained using the wavefront sensor.

  15. Study of accuracy of precipitation measurements using simulation method

    NASA Astrophysics Data System (ADS)

    Nagy, Zoltán; Lajos, Tamás; Morvai, Krisztián

    2013-04-01

    Hungarian Meteorological Service1 Budapest University of Technology and Economics2 Precipitation is one of the the most important meteorological parameters describing the state of the climate and to get correct information from trends, accurate measurements of precipitation is very important. The problem is that the precipitation measurements are affected by systematic errors leading to an underestimation of actual precipitation which errors vary by type of precipitaion and gauge type. It is well known that the wind speed is the most important enviromental factor that contributes to the underestimation of actual precipitation, especially for solid precipitation. To study and correct the errors of precipitation measurements there are two basic possibilities: · Use of results and conclusion of International Precipitation Measurements Intercomparisons; · To build standard reference gauges (DFIR, pit gauge) and make own investigation; In 1999 at the HMS we tried to achieve own investigation and built standard reference gauges But the cost-benefit ratio in case of snow (use of DFIR) was very bad (we had several winters without significant amount of snow, while the state of DFIR was continously falling) Due to the problem mentioned above there was need for new approximation that was the modelling made by Budapest University of Technology and Economics, Department of Fluid Mechanics using the FLUENT 6.2 model. The ANSYS Fluent package is featured fluid dynamics solution for modelling flow and other related physical phenomena. It provides the tools needed to describe atmospheric processes, design and optimize new equipment. The CFD package includes solvers that accurately simulate behaviour of the broad range of flows that from single-phase to multi-phase. The questions we wanted to get answer to are as follows: · How do the different types of gauges deform the airflow around themselves? · Try to give quantitative estimation of wind induced error. · How does the use of wind shield improve the accuracy of precipitation measurements? · Try to find the source of the error that can be detected at tipping bucket raingauge in winter time because of use of heating power? On our poster we would like to present the answers to the questions listed above.

  16. Analysis of a multi-wavelength multi-camera phase-shifting profilometric system for real-time operation

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena; Gotchev, Atanas; Sainov, Ventseslav

    2011-01-01

    Real-time accomplishment of a phase-shifting profilometry through simultaneous projection and recording of fringe patterns requires a reliable phase retrieval procedure. In the present work we consider a four-wavelength multi-camera system with four sinusoidal phase gratings for pattern projection that implements a four-step algorithm. Successful operation of the system depends on overcoming two challenges which stem out from the inherent limitations of the phase-shifting algorithm, namely the demand for a sinusoidal fringe profile and the necessity to ensure equal background and contrast of fringes in the recorded fringe patterns. As a first task, we analyze the systematic errors due to the combined influence of the higher harmonics and multi-wavelength illumination in the Fresnel diffraction zone considering the case when the modulation parameters of the four gratings are different. As a second task we simulate the system performance to evaluate the degrading effect of the speckle noise and the spatially varying fringe modulation at non-uniform illumination on the overall accuracy of the profilometric measurement. We consider the case of non-correlated speckle realizations in the recorded fringe patterns due to four-wavelength illumination. Finally, we apply a phase retrieval procedure which includes normalization, background removal and denoising of the recorded fringe patterns to both simulated and measured data obtained for a dome surface.

  17. A connectivity-based modeling approach for representing hysteresis in macroscopic two-phase flow properties

    DOE PAGES

    Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; ...

    2014-12-31

    During CO 2 injection and storage in deep reservoirs, the injected CO 2 enters into an initially brine saturated porous medium, and after the injection stops, natural groundwater flow eventually displaces the injected mobile-phase CO 2, leaving behind residual non-wetting fluid. Accurate modeling of two-phase flow processes are needed for predicting fate and transport of injected CO 2, evaluating environmental risks and designing more effective storage schemes. The entrapped non-wetting fluid saturation is typically a function of the spatially varying maximum saturation at the end of injection. At the pore-scale, distribution of void sizes and connectivity of void space playmore » a major role for the macroscopic hysteresis behavior and capillary entrapment of wetting and non-wetting fluids. This paper presents development of an approach based on the connectivity of void space for modeling hysteretic capillary pressure-saturation-relative permeability relationships. The new approach uses void-size distribution and a measure of void space connectivity to compute the hysteretic constitutive functions and to predict entrapped fluid phase saturations. Two functions, the drainage connectivity function and the wetting connectivity function, are introduced to characterize connectivity of fluids in void space during drainage and wetting processes. These functions can be estimated through pore-scale simulations in computer-generated porous media or from traditional experimental measurements of primary drainage and main wetting curves. The hysteresis model for saturation-capillary pressure is tested successfully by comparing the model-predicted residual saturation and scanning curves with actual data sets obtained from column experiments found in the literature. A numerical two-phase model simulator with the new hysteresis functions is tested against laboratory experiments conducted in a quasi-two-dimensional flow cell (91.4cm×5.6cm×61cm), packed with homogeneous and heterogeneous sands. Initial results show that the model can predict spatial and temporal distribution of injected fluid during the experiments reasonably well. However, further analyses are needed for comprehensively testing the ability of the model to predict transient two-phase flow processes and capillary entrapment in geological reservoirs during geological carbon sequestration.« less

  18. Necessary Conditions for Accurate, Transient Hot-Wire Measurements of the Apparent Thermal Conductivity of Nanofluids are Seldom Satisfied

    NASA Astrophysics Data System (ADS)

    Antoniadis, Konstantinos D.; Tertsinidou, Georgia J.; Assael, Marc J.; Wakeham, William A.

    2016-08-01

    The paper considers the conditions that are necessary to secure accurate measurement of the apparent thermal conductivity of two-phase systems comprising nanoscale particles of one material suspended in a fluid phase of a different material. It is shown that instruments operating according to the transient hot-wire technique can, indeed, produce excellent measurements when a finite element method (FEM) is employed to describe the instrument for the exact geometry of the hot wire. Furthermore, it is shown that an approximate analytic solution can be employed with equal success, over the time range of 0.1 s to 1 s, provided that (a) two wires are employed, so that end effects are canceled, (b) each wire is very thin, less than 30 \\upmu m diameter, so that the line source model and the corresponding corrections are valid, (c) low values of the temperature rise, less than 4 K, are employed in order to minimize the effect of convection on the heat transfer in the time of measurement of 1 s, and (d) insulated wires are employed for measurements in electrically conducting or polar liquids to avoid current leakage or other electrical distortions. According to these criteria, a transient hot-wire instrument has been designed, constructed, and employed for the measurement of the enhancement of the thermal conductivity of water when TiO2 or multi-wall carbon nanotubes (MWCNT) are added. These new results, together with a critical evaluation of other measurements, demonstrate the importance of proper implementation of the technique.

  19. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  20. Wavefront reconstruction for multi-lateral shearing interferometry using difference Zernike polynomials fitting

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Wang, Jiannian; Wang, Hai; Li, Yanqiu

    2018-07-01

    For the multi-lateral shearing interferometers (multi-LSIs), the measurement accuracy can be enhanced by estimating the wavefront under test with the multidirectional phase information encoded in the shearing interferogram. Usually the multi-LSIs reconstruct the test wavefront from the phase derivatives in multiple directions using the discrete Fourier transforms (DFT) method, which is only suitable to small shear ratios and relatively sensitive to noise. To improve the accuracy of multi-LSIs, wavefront reconstruction from the multidirectional phase differences using the difference Zernike polynomials fitting (DZPF) method is proposed in this paper. For the DZPF method applied in the quadriwave LSI, difference Zernike polynomials in only two orthogonal shear directions are required to represent the phase differences in multiple shear directions. In this way, the test wavefront can be reconstructed from the phase differences in multiple shear directions using a noise-variance weighted least-squares method with almost no extra computational burden, compared with the usual recovery from the phase differences in two orthogonal directions. Numerical simulation results show that the DZPF method can maintain high reconstruction accuracy in a wider range of shear ratios and has much better anti-noise performance than the DFT method. A null test experiment of the quadriwave LSI has been conducted and the experimental results show that the measurement accuracy of the quadriwave LSI can be improved from 0.0054 λ rms to 0.0029 λ rms (λ = 632.8 nm) by substituting the DFT method with the proposed DZPF method in the wavefront reconstruction process.

  1. HPLC analysis of 6-mercaptopurine and metabolites in extracellular body fluids.

    PubMed

    Rudy, J L; Argyle, J C; Winick, N; Van Dreal, P

    1988-09-01

    A convenient HPLC assay, which allows for the simultaneous measurement in extracellular fluids of 6-mercaptopurine and four of its metabolites, 6-thioguanine, 6-mercaptopurine riboside, 6-thioxanthine and 6-thiouric acid is described. Solid phase extraction allows for the clean isolation of analytes from plasma, urine or cerebrospinal fluid. The simultaneous determination of 6-mercaptopurine and some of its major metabolites in extracellular fluids may contribute to the monitoring of patient compliance, bioavailability, and individual variation in metabolism and absorption.

  2. The Influence of Multi-Scale Stratal Architecture on Multi-Phase Flow

    NASA Astrophysics Data System (ADS)

    Soltanian, M.; Gershenzon, N. I.; Ritzi, R. W.; Dominic, D.; Ramanathan, R.

    2012-12-01

    Geological heterogeneity affects flow and transport in porous media, including the migration and entrapment patterns of oil, and efforts for enhanced oil recovery. Such effects are only understood through their relation to a hierarchy of reservoir heterogeneities over a range of scales. Recent work on modern rivers and ancient sediments has led to a conceptual model of the hierarchy of fluvial forms within channel-belts of gravelly braided rivers, and a quantitative model for the corresponding scales of heterogeneity within the stratal architecture (e.g. [Lunt et al (2004) Sedimentology, 51 (3), 377]). In related work, a three-dimensional digital model was developed which represents these scales of fluvial architecture, the associated spatial distribution of permeability, and the connectivity of high-permeability pathways across the different scales of the stratal hierarchy [Ramanathan et al, (2010) Water Resour. Res., 46, W04515; Guin et al, (2010) Water Resour. Res., 46, W04516]. In the present work we numerically examine three-phase fluid flow (water-oil-gas) incorporating the multi-scale model for reservoir heterogeneity spanning the scales from 10^-1 to 10^3 meters. Comparison with results of flow in a reservoir with homogeneous permeability is made showing essentially different flow dynamics.

  3. A Step Towards CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Brankovic, Andreja; Ryder, Robert C.; Hendricks, Robert C.; Huber, Marcia L.

    2007-01-01

    An approximation method for evaluation of the caloric equations used in combustion chemistry simulations is described. The method is applied to generate the equations of specific heat, static enthalpy, and Gibb's free energy for fuel mixtures of interest to gas turbine engine manufacturers. Liquid-phase fuel properties are also derived. The fuels include JP-8, synthetic fuel, and two fuel blends consisting of a mixture of JP-8 and synthetic fuel. The complete set of fuel property equations for both phases are implemented into a computational fluid dynamics (CFD) flow solver database, and multi-phase, reacting flow simulations of a well-tested liquid-fueled combustor are performed. The simulations are a first step in understanding combustion system performance and operational issues when using alternate fuels, at practical engine operating conditions.

  4. Development of Tripropellant CFD Design Code

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Cheng, Gary C.; Anderson, Peter G.

    1998-01-01

    A tripropellant, such as GO2/H2/RP-1, CFD design code has been developed to predict the local mixing of multiple propellant streams as they are injected into a rocket motor. The code utilizes real fluid properties to account for the mixing and finite-rate combustion processes which occur near an injector faceplate, thus the analysis serves as a multi-phase homogeneous spray combustion model. Proper accounting of the combustion allows accurate gas-side temperature predictions which are essential for accurate wall heating analyses. The complex secondary flows which are predicted to occur near a faceplate cannot be quantitatively predicted by less accurate methodology. Test cases have been simulated to describe an axisymmetric tripropellant coaxial injector and a 3-dimensional RP-1/LO2 impinger injector system. The analysis has been shown to realistically describe such injector combustion flowfields. The code is also valuable to design meaningful future experiments by determining the critical location and type of measurements needed.

  5. Pool Boiling Heat Transfer on structured Surfaces

    NASA Astrophysics Data System (ADS)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  6. Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations: Data used in Geosphere Journal Article

    DOE Data Explorer

    Thomas A. Buscheck

    2015-06-01

    This data submission is for Phase 2 of Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations, which focuses on multi-fluid (CO2 and brine) geothermal energy production and diurnal bulk energy storage in geologic settings that are suitable for geologic CO2 storage. This data submission includes all data used in the Geosphere Journal article by Buscheck et al (2016). All assumptions are discussed in that article.

  7. Simulation of Inviscid Compressible Multi-Phase Flow with Condensation

    NASA Technical Reports Server (NTRS)

    Kelleners, Philip

    2003-01-01

    Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.

  8. Beyond single-stream with the Schrödinger method

    NASA Astrophysics Data System (ADS)

    Uhlemann, Cora; Kopp, Michael

    2016-10-01

    We investigate large scale structure formation of collisionless dark matter in the phase space description based on the Vlasov-Poisson equation. We present the Schrödinger method, originally proposed by \\cite{WK93} as numerical technique based on the Schrödinger Poisson equation, as an analytical tool which is superior to the common standard pressureless fluid model. Whereas the dust model fails and develops singularities at shell crossing the Schrödinger method encompasses multi-streaming and even virialization.

  9. Multi-level storage and ultra-high speed of superlattice-like Ge50Te50/Ge8Sb92 thin film for phase-change memory application.

    PubMed

    Wu, Weihua; Chen, Shiyu; Zhai, Jiwei; Liu, Xinyi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-10-06

    Superlattice-like Ge 50 Te 50 /Ge 8 Sb 92 (SLL GT/GS) thin film was systematically investigated for multi-level storage and ultra-fast switching phase-change memory application. In situ resistance measurement indicates that SLL GT/GS thin film exhibits two distinct resistance steps with elevated temperature. The thermal stability of the amorphous state and intermediate state were evaluated with the Kissinger and Arrhenius plots. The phase-structure evolution revealed that the amorphous SLL GT/GS thin film crystallized into rhombohedral Sb phase first, then the rhombohedral GeTe phase. The microstructure, layered structure, and interface stability of SLL GT/GS thin film was confirmed by using transmission electron microscopy. The transition speed of crystallization and amorphization was measured by the picosecond laser pump-probe system. The volume variation during the crystallization was obtained from x-ray reflectivity. Phase-change memory (PCM) cells based on SLL GT/GS thin film were fabricated to verify the multi-level switching under an electrical pulse as short as 30 ns. These results illustrate that the SLL GT/GS thin film has great potentiality in high-density and high-speed PCM applications.

  10. Alfvén simple waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Burrows, R. H.; Ratkiewicz, R. E.

    2011-02-01

    Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ϕ, which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ϕ. This leads to an implicit equation for the phase function and a generalization of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure, and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigenequations require that the rate of change of the magnetic induction B with ϕ throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ϕ) or B(ϕ) are developed.

  11. Alfven Simple Waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Zank, G. P.; Burrows, R.

    2009-12-01

    Multi-dimensional Alfvén simple waves in magnetohydrodynamics (MHD) are investigated using Boillat's formalism. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function ǎrphi which is a function of the space and time variables. The simple wave ansatz requires that the wave normal and the normal speed of the wave front depend only on the phase function ǎrphi. This leads to an implicit equation for the phase function, and a generalisation of the concept of a plane wave. We obtain examples of Alfvén simple waves, based on the right eigenvector solutions for the Alfvén mode. The Alfvén mode solutions have six integrals, namely that the entropy, density, magnetic pressure and the group velocity (the sum of the Alfvén and fluid velocity) are constant throughout the wave. The eigen-equations require that the rate of change of the magnetic induction B with ǎrphi throughout the wave is perpendicular to both the wave normal n and B. Methods to construct simple wave solutions based on specifying either a solution ansatz for n(ǎrphi) or B(ǎrphi) are developed.

  12. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    USGS Publications Warehouse

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  13. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  14. Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging.

    PubMed

    Prodanović, M; Lindquist, W B; Seright, R S

    2006-06-01

    Using oil-wet polyethylene core models, we present the development of robust throat finding techniques for the extraction, from X-ray microtomographic images, of a pore network description of porous media having porosity up to 50%. Measurements of volume, surface area, shape factor, and principal diameters are extracted for pores and area, shape factor and principal diameters for throats. We also present results on the partitioning of wetting and non-wetting phases in the pore space at fixed volume increments of the injected fluid during a complete cycle of drainage and imbibition. We compare these results with fixed fractional flow injection, where wetting and non-wetting phase are simultaneously injected at fixed volume ratio. Finally we demonstrate the ability to differentiate three fluid phases (oil, water, air) in the pore space.

  15. Development of a new continuous process for mixing of complex non-Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Migliozzi, Simona; Mazzei, Luca; Sochon, Bob; Angeli, Panagiota; Thames Multiphase Team; Coral Project Collaboration

    2017-11-01

    Design of new continuous mixing operations poses many challenges, especially when dealing with highly viscous non-Newtonian fluids. Knowledge of complex rheological behaviour of the working mixture is crucial for development of an efficient process. In this work, we investigate the mixing performance of two different static mixers and the effects of the mixture rheology on the manufacturing of novel non-aqueous-based oral care products using experimental and computational fluid dynamic methods. The two liquid phases employed, i.e. a carbomer suspension in polyethylene glycol and glycerol, start to form a gel when they mix. We studied the structure evolution of the liquid mixture using time-resolved rheometry and we obtained viscosity rheograms at different phase ratios from pressure drop measurements in a customized mini-channel. The numerical results and rheological model were validated with experimental measurements carried out in a specifically designed setup. EPSRS-CORAL.

  16. Three-Dimensional Multi-fluid Moment Simulation of Ganymede

    NASA Astrophysics Data System (ADS)

    Wang, L.; Germaschewski, K.; Hakim, A.; Bhattacharjee, A.; Dong, C.

    2016-12-01

    Plasmas in space environments, such as solar wind and Earth's magnetosphere, are often constituted of multiple species. Conventional MHD-based, single-fluid systems, have additional complications when multiple fluid species are introduced. We suggest space application of an alternative multi-fluid moment approach, treating each species on equal footing using exact evolution equations for moments of their distribution function, and electromagnetic fields through full Maxwell equations. Non-ideal effects like Hall effect, inertia, and even tensorial pressures, are self-consistently embedded without the need to explicitly solve a complicated Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. Recently, we performed three-dimensional two-fluid simulation of the magnetosphere of Ganymede, using both five-moment (scalar pressures) and ten-moment (tensorial pressures) models. In both models, the formation of Alfven wing structure due to subsonic inflow is correctly captured, and the magnetic field data agree well with in-situ measurements from the Galileo flyby G8. The ten-moment simulation also showed the contribution of pressure tensor divergence to the reconnecting electric field. Initial results of coupling to state-of-art global simulation codes like OpenGGCM will also be shown, which will in the future provide a rigorous way for integration of ionospheric physics.

  17. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N.

    2016-01-12

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  18. Integrated acoustic phase separator and multiphase fluid composition monitoring apparatus and method

    DOEpatents

    Sinha, Dipen N

    2014-02-04

    An apparatus and method for down hole gas separation from the multiphase fluid flowing in a wellbore or a pipe, for determining the quantities of the individual components of the liquid and the flow rate of the liquid, and for remixing the component parts of the fluid after which the gas volume may be measured, without affecting the flow stream, are described. Acoustic radiation force is employed to separate gas from the liquid, thereby permitting measurements to be separately made for these two components; the liquid (oil/water) composition is determined from ultrasonic resonances; and the gas volume is determined from capacitance measurements. Since the fluid flows around and through the component parts of the apparatus, there is little pressure difference, and no protection is required from high pressure differentials.

  19. An interface tracking model for droplet electrocoalescence.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Lindsay Crowl

    This report describes an Early Career Laboratory Directed Research and Development (LDRD) project to develop an interface tracking model for droplet electrocoalescence. Many fluid-based technologies rely on electrical fields to control the motion of droplets, e.g. microfluidic devices for high-speed droplet sorting, solution separation for chemical detectors, and purification of biodiesel fuel. Precise control over droplets is crucial to these applications. However, electric fields can induce complex and unpredictable fluid dynamics. Recent experiments (Ristenpart et al. 2009) have demonstrated that oppositely charged droplets bounce rather than coalesce in the presence of strong electric fields. A transient aqueous bridge forms betweenmore » approaching drops prior to pinch-off. This observation applies to many types of fluids, but neither theory nor experiments have been able to offer a satisfactory explanation. Analytic hydrodynamic approximations for interfaces become invalid near coalescence, and therefore detailed numerical simulations are necessary. This is a computationally challenging problem that involves tracking a moving interface and solving complex multi-physics and multi-scale dynamics, which are beyond the capabilities of most state-of-the-art simulations. An interface-tracking model for electro-coalescence can provide a new perspective to a variety of applications in which interfacial physics are coupled with electrodynamics, including electro-osmosis, fabrication of microelectronics, fuel atomization, oil dehydration, nuclear waste reprocessing and solution separation for chemical detectors. We present a conformal decomposition finite element (CDFEM) interface-tracking method for the electrohydrodynamics of two-phase flow to demonstrate electro-coalescence. CDFEM is a sharp interface method that decomposes elements along fluid-fluid boundaries and uses a level set function to represent the interface.« less

  20. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOEpatents

    Armstrong, William D [Laramie, WY; Naughton, Jonathan [Laramie, WY; Lindberg, William R [Laramie, WY

    2008-09-02

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  1. Measurement of interstage fluid-annulus dynamical properties

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Makay, E.; Diaz-Tous, I. A.

    1982-01-01

    The work described in this paper is part of an Electric Power Research Institute sponsored effort to improve rotor vibrational performance on power plant feed water pumps. A major objective of this effort is to reduce vibration levels by devising inter-stage sealing configurations with optimized damping capacity, realizing that the typical multi-stage centrifugal pump has several ore inter-stage fluid annuli than it has journal bearings. Also, the fluid annuli are distributed between the journal bearings where vibration levels are highest and can therefore be 'exercised' more as dampers than can the bearings. Described in this paper is a test apparatus which has been built to experimentally determine fluid-annulus dynamical coefficients for various configurations of inter-stage sealing geometry.

  2. Proceedings of Workshop on Laser Diagnostics in Fluid Mechanics and Combustion

    NASA Astrophysics Data System (ADS)

    1993-10-01

    Proceedings of the Workshop on Laser Diagnostics in Fluid Mechanics and Combustion are presented. Topics included are: Accuracy of Laser Doppler Anemometry; Applications of Raman-Rayleigh-LIF Diagnostics in Combustion Research; Phase Doppler Anemometer Technique Concepts and Applications; CARS; Particle Image Velocimetry; Practical Consideration in the Use and Design of Laser Velocimetry Systems in Turbomachinery Applications; Phase Doppler Measurements of Gas-Particle Flow Through a Tube Bank; Degenerate Four Wave Mixing for Shock Tunnel Studies of Supersonic Combustion; Laser Induced Photodissociation and Fluorescence (LIPF) of Sodium Species Present in Coal Combustion; 3D Holographic Measurements Inside a Spark Ignition Engine; Laser Doppler Velocimeter Measurements in Compressible Flow; Bursting in a Tornado Vortex; Quantitative Imaging of OH and Temperature Using a Single Laser Source and Single Intensified Camera; and Laser Doppler Measurements Inside an Artificial Heart Valve.

  3. Two-fluid (plasma-neutral) Extended-MHD simulations of spheromak configurations in the HIT-SI experiment with PSI-Tet

    NASA Astrophysics Data System (ADS)

    Sutherland, D. A.; Hansen, C. J.; Jarboe, T. R.

    2017-10-01

    A self-consistent, two-fluid (plasma-neutral) dynamic neutral model has been implemented into the 3-D, Extended-MHD code PSI-Tet. A monatomic, hydrogenic neutral fluid reacts with a plasma fluid through elastic scattering collisions and three inelastic collision reactions: electron-impact ionization, radiative recombination, and resonant charge-exchange. Density, momentum, and energy are evolved for both the plasma and neutral species. The implemented plasma-neutral model in PSI-Tet is being used to simulate decaying spheromak configurations in the HIT-SI experimental geometry, which is being compare to two-photon absorption laser induced fluorescence measurements (TALIF) made on the HIT-SI3 experiment. TALIF is used to measure the absolute density and temperature of monatomic deuterium atoms. Neutral densities on the order of 1015 m-3 and neutral temperatures between 0.6-1.7 eV were measured towards the end of decay of spheromak configurations with initial toroidal currents between 10-12 kA. Validation results between TALIF measurements and PSI-Tet simulations with the implemented dynamic neutral model will be presented. Additionally, preliminary dynamic neutral simulations of the HIT-SI/HIT-SI3 spheromak plasmas sustained with inductive helicity injection will be presented. Lastly, potential benefits of an expansion of the two-fluid model into a multi-fluid model that includes multiple neutral species and tracking of charge states will be discussed.

  4. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Xiao, C. Z.; Wang, Q.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; He, X. T.

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number k λD e is small, such as k λD e=0.1 , the fluid NFS dominates in the total NFS and will reach as large as nearly 15 % when the wave amplitude |e ϕ / Te|˜0.1 , which indicates that in the condition of small k λD e , the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large.

  5. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in the small wave number region.

    PubMed

    Feng, Q S; Xiao, C Z; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T

    2016-08-01

    The properties of the nonlinear frequency shift (NFS), especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas, have been researched by Vlasov simulation. Pictures of the nonlinear frequency shift from harmonic generation and particle trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given, and the results of Vlasov simulation are consistent with the theoretical result of multi-ion species plasmas. When the wave number kλ_{De} is small, such as kλ_{De}=0.1, the fluid NFS dominates in the total NFS and will reach as large as nearly 15% when the wave amplitude |eϕ/T_{e}|∼0.1, which indicates that in the condition of small kλ_{De}, the fluid NFS dominates in the saturation of stimulated Brillouin scattering, especially when the nonlinear IAW amplitude is large.

  6. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capobianco, Ryan; Gruszkiewicz, Miroslaw; Wesolowski, David J

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densitiesmore » were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow themore » computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil recovery.« less

  8. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOEpatents

    Beller, Laurence S.

    1993-01-01

    A method and apparatus for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  9. Solar Wind Prediction at Pluto During the New Horizons Flyby: Results From a Two-Dimensional Multi-fluid MHD Model of the Outer Heliosphere

    NASA Astrophysics Data System (ADS)

    Zieger, B.; Toth, G.; Opher, M.; Gombosi, T. I.

    2015-12-01

    We adapted the outer heliosphere (OH) component of the Space Weather Modeling Framework, which is a 3-D global multi-fluid MHD model of the outer heliosphere with one ion fluid and four neutral populations, for time-dependent 2-D multi-fluid MHD simulations of solar wind propagation from a heliocentric distance of 1 AU up to 50 AU. We used this model to predict the solar wind plasma parameters as well as the interplanetary magnetic field components at Pluto and along the New Horizons trajectory during the whole calendar year of 2015 including the closest approach on July 14. The simulation is run in the solar equatorial plane in the heliographic inertial frame (HGI). The inner boundary conditions along a circle of 1 AU radius are set by near-Earth solar wind observations (hourly OMNI data), assuming that the global solar wind distribution does not change much during a Carrington rotation (27.2753 days). Our 2-D multi-fluid MHD code evolves one ion fluid and two neutral fluids, which are the primary interstellar neutral atoms and the interstellar neutral atoms deflected in the outer heliosheath between the slow bow shock and the heliopause. Spherical expansion effects are properly taken into account for the ions and the solar magnetic field. The inflow parameters of the two neutral fluids (density, temperature, and velocity components) are set at the negative X (HGI) boundary at 50 AU distance, which are taken from previous 3-D global multi-fluid MHD simulations of the heliospheric interface in a much larger simulation box (1500x1500x1500 AU). The inflow velocity vectors of the two neutral fluids define the so-called hydrogen deflection plane. The solar wind ions and the interstellar neutrals interact through charge exchange source terms included in the multi-fluid MHD equations, so the two neutral populations are evolved self-consistently. We validate our model with the available plasma data from New Horizons as well as with Voyager 2 plasma and magnetic field observations within the heliocentric distance of 50 AU. Our new time-dependent 2-D multi-fluid MHD model is generally applicable for solar wind predictions at any outer planet (Jupiter, Saturn, Uranus, Neptune) or spacecraft in the outer heliosphere where charge exchange between solar wind ions and interstellar neutrals play an important role.

  10. Quantification of Single- and Multi-Phase Hydrodynamic Dispersion in Rocks Using Dynamic 3D PET Imaging

    NASA Astrophysics Data System (ADS)

    Pini, R.; Vandehey, N. T.; O'Neil, J.; Benson, S. M.

    2015-12-01

    We report results of an experimental investigation into the effects of small-scale (mm-cm) heterogeneities and hydrodynamic dispersion on miscible and immiscible displacements in a Berea Sandstone core. Pulse-radiotracer tests were carried out by measuring breakthrough curves at distinct flow rates and gas/water saturation ratios, while simultaneously imaging the internal displacement of the radioactive solution by [11C]PET. Dynamic multidimensional maps of the tracer concentration in the rock sample have been obtained with a spatial resolution of about 10 mm3 and provide evidence for significant macrodispersion effects caused by the presence of heterogeneities at the same scale. The numerical solution of the classic Advection-Dispersion Equation (ADE) applied in 1D form fails to describe the measured breakthrough curves and significantly overestimates longitudinal dispersivity. An excellent agreement with the experiments is attained by explicitly accounting for permeability heterogeneity, while reducing the contribution of "Fickian" dispersivity. Heterogeneity was introduced in the model by discretising the rock sample into independent parallel streamlines, which were generated based on a previously determined 3D permeability map, and by solving the 1D ADE for each of them. The use of streamlines is supported by direct quantitative observations from the PET scans; remarkably, this approach leads to an accurate representation of both the temporal behaviour and spatial distribution of the tracer concentration in the sample. It is shown that when the length-scale of permeability variations is similar in order as the size of the sample, the effect of the former can be as significant as hydrodynamic dispersion. The presence of a second immiscible fluid phase further complicates the flow field and, accordingly, the interpretation of the experiments. The ability to decouple these effects leads to the estimation of dispersion coefficients that aren't sample specific and are therefore better suited for up-scaling fluid mixing and dispersion in rocks. In this context, PET provides significant opportunities to advance our understanding of fluids displacements in rocks, thus including complex flows that involve additional phenomena, such as adsorption and chemical reactions.

  11. Advanced Supercritical Carbon Dioxide Brayton Cycle Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Sienicki, James; Moisseytsev, Anton

    2015-10-21

    Fluids operating in the supercritical state have promising characteristics for future high efficiency power cycles. In order to develop power cycles using supercritical fluids, it is necessary to understand the flow characteristics of fluids under both supercritical and two-phase conditions. In this study, a Computational Fluid Dynamic (CFD) methodology was developed for supercritical fluids flowing through complex geometries. A real fluid property module was implemented to provide properties for different supercritical fluids. However, in each simulation case, there is only one species of fluid. As a result, the fluid property module provides properties for either supercritical CO 2 (S-CO 2)more » or supercritical water (SCW). The Homogeneous Equilibrium Model (HEM) was employed to model the two-phase flow. HEM assumes two phases have same velocity, pressure, and temperature, making it only applicable for the dilute dispersed two-phase flow situation. Three example geometries, including orifices, labyrinth seals, and valves, were used to validate this methodology with experimental data. For the first geometry, S-CO 2 and SCW flowing through orifices were simulated and compared with experimental data. The maximum difference between the mass flow rate predictions and experimental measurements is less than 5%. This is a significant improvement as previous works can only guarantee 10% error. In this research, several efforts were made to help this improvement. First, an accurate real fluid module was used to provide properties. Second, the upstream condition was determined by pressure and density, which determines supercritical states more precise than using pressure and temperature. For the second geometry, the flow through labyrinth seals was studied. After a successful validation, parametric studies were performed to study geometric effects on the leakage rate. Based on these parametric studies, an optimum design strategy for the see-through labyrinth seals was proposed. A stepped labyrinth seal, which mimics the behavior of the labyrinth seal used in the Sandia National Laboratory (SNL) S-CO 2 Brayton cycle, was also tested in the experiment along with simulations performed. The rest of this study demonstrates the difference of valves' behavior under supercritical fluid and normal fluid conditions. A small-scale valve was tested in the experiment facility using S-CO 2. Different percentages of opening valves were tested, and the measured mass flow rate agreed with simulation predictions. Two transients from a real S-CO 2 Brayton cycle design provided the data for valve selection. The selected valve was studied using numerical simulation, as experimental data is not available.« less

  12. Implementation of Finite Volume based Navier Stokes Algorithm Within General Purpose Flow Network Code

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok

    2012-01-01

    This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.

  13. A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.

    2015-09-08

    A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales,more » as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.« less

  14. Measurement of in situ sulfur isotopes by laser ablation multi-collector ICPMS: opening Pandora’s Box

    USGS Publications Warehouse

    Ridley, William I.; Pribil, Michael; Koenig, Alan E.; Slack, John F.

    2015-01-01

    Laser ablation multi-collector ICPMS is a modern tool for in situ measurement of S isotopes. Advantages of the technique are speed of analysis and relatively minor matrix effects combined with spatial resolution sufficient for many applications. The main disadvantage is a more destructive sampling mechanism relative to the ion microprobe technique. Recent advances in instrumentation allow precise measurement with spatial resolutions down to 25 microns. We describe specific examples from economic geology where increased spatial resolution has greatly expanded insights into the sources and evolution of fluids that cause mineralization and illuminated genetic relations between individual deposits in single mineral districts.

  15. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure.

    PubMed

    Ravazzoli, C L; Santos, J E; Carcione, J M

    2003-04-01

    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  16. Shear-induced criticality near a liquid-solid transition of colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Miyama, Masamichi J.; Sasa, Shin-Ichi

    2011-02-01

    We investigate colloidal suspensions under shear flow through numerical experiments. By measuring the time-correlation function of a bond-orientational order parameter, we find a divergent time scale near a transition point from a disordered fluid phase to an ordered fluid phase, where the order is characterized by a nonzero value of the bond-orientational order parameter. We also present a phase diagram in the (ρ,γ˙ex) plane, where ρ is the density of the colloidal particles and γ˙ex is the shear rate of the solvent. The transition line in the phase diagram terminates at the equilibrium transition point, while a critical region near the transition line vanishes continuously as γ˙ex→0.

  17. A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fakhari, Abbas, E-mail: afakhari@nd.edu; Geier, Martin; Lee, Taehun

    2016-06-15

    A mass-conserving lattice Boltzmann method (LBM) for multiphase flows is presented in this paper. The proposed LBM improves a previous model (Lee and Liu, 2010 [21]) in terms of mass conservation, speed-up, and efficiency, and also extends its capabilities for implementation on non-uniform grids. The presented model consists of a phase-field lattice Boltzmann equation (LBE) for tracking the interface between different fluids and a pressure-evolution LBM for recovering the hydrodynamic properties. In addition to the mass conservation property and the simplicity of the algorithm, the advantages of the current phase-field LBE are that it is an order of magnitude fastermore » than the previous interface tracking LBE proposed by Lee and Liu (2010) [21] and it requires less memory resources for data storage. Meanwhile, the pressure-evolution LBM is equipped with a multi-relaxation-time (MRT) collision operator to facilitate attainability of small relaxation rates thereby allowing simulation of multiphase flows at higher Reynolds numbers. Additionally, we reformulate the presented MRT-LBM on nonuniform grids within an adaptive mesh refinement (AMR) framework. Various benchmark studies such as a rising bubble and a falling drop under buoyancy, droplet splashing on a wet surface, and droplet coalescence onto a fluid interface are conducted to examine the accuracy and versatility of the proposed AMR-LBM. The proposed model is further validated by comparing the results with other LB models on uniform grids. A factor of about 20 in savings of computational resources is achieved by using the proposed AMR-LBM. As a more demanding application, the Kelvin–Helmholtz instability (KHI) of a shear-layer flow is investigated for both density-matched and density-stratified binary fluids. The KHI results of the density-matched fluids are shown to be in good agreement with the benchmark AMR results based on the sharp-interface approach. When a density contrast between the two fluids exists, a typical chaotic structure in the flow field is observed at a Reynolds number of 10000, which indicates that the proposed model is a promising tool for direct numerical simulation of two-phase flows.« less

  18. [Bioimpedometry and its utilization in dialysis therapy].

    PubMed

    Lopot, František

    2016-01-01

    Measurement of living tissue impedance - bioimpedometry - started to be used in medicine some 50 years ago, first exclusively for estimation of extracellular and intracellular compartment volumes. Its most simple single frequency (50 kHz) version works directly with the measured impedance vector. Technically more sophisticated versions convert the measured impedance in values of volumes of different compartments of body fluids and calculate also principal markers of nutritional status (lean body mass, adipose tissue mass). The latest version specifically developed for application in dialysis patients includes body composition modelling and provides even absolute value of overhydration (excess fluid). Still in experimental phase is the bioimpedance exploitation for more precise estimation of residual glomerular filtration. Not yet standardized is also segmental bioimpedance measurement which should enable separate assessment of hydration status of the trunk segment and ultrafiltration capacity of peritoneum in peritoneal dialysis patients.Key words: assessment - bioimpedance - excess fluid - fluid status - glomerular filtration - haemodialysis - nutritional status - peritoneal dialysis.

  19. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review

    DOE PAGES

    Zuo, Chao; Huang, Lei; Zhang, Minliang; ...

    2016-05-06

    In fringe projection pro lometry (FPP), temporal phase unwrapping is an essential procedure to recover an unambiguous absolute phase even in the presence of large discontinuities or spatially isolated surfaces. So far, there are typically three groups of temporal phase unwrapping algorithms proposed in the literature: multi-frequency (hierarchical) approach, multi-wavelength (heterodyne) approach, and number-theoretical approach. In this paper, the three methods are investigated and compared in details by analytical, numerical, and experimental means. The basic principles and recent developments of the three kind of algorithms are firstly reviewed. Then, the reliability of different phase unwrapping algorithms is compared based onmore » a rigorous stochastic noise model. Moreover, this noise model is used to predict the optimum fringe period for each unwrapping approach, which is a key factor governing the phase measurement accuracy in FPP. Simulations and experimental results verified the correctness and validity of the proposed noise model as well as the prediction scheme. The results show that the multi-frequency temporal phase unwrapping provides the best unwrapping reliability, while the multi-wavelength approach is the most susceptible to noise-induced unwrapping errors.« less

  20. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy.

    PubMed

    Malbrain, Manu L N G; Van Regenmortel, Niels; Saugel, Bernd; De Tavernier, Brecht; Van Gaal, Pieter-Jan; Joannes-Boyau, Olivier; Teboul, Jean-Louis; Rice, Todd W; Mythen, Monty; Monnet, Xavier

    2018-05-22

    In patients with septic shock, the administration of fluids during initial hemodynamic resuscitation remains a major therapeutic challenge. We are faced with many open questions regarding the type, dose and timing of intravenous fluid administration. There are only four major indications for intravenous fluid administration: aside from resuscitation, intravenous fluids have many other uses including maintenance and replacement of total body water and electrolytes, as carriers for medications and for parenteral nutrition. In this paradigm-shifting review, we discuss different fluid management strategies including early adequate goal-directed fluid management, late conservative fluid management and late goal-directed fluid removal. In addition, we expand on the concept of the "four D's" of fluid therapy, namely drug, dosing, duration and de-escalation. During the treatment of patients with septic shock, four phases of fluid therapy should be considered in order to provide answers to four basic questions. These four phases are the resuscitation phase, the optimization phase, the stabilization phase and the evacuation phase. The four questions are "When to start intravenous fluids?", "When to stop intravenous fluids?", "When to start de-resuscitation or active fluid removal?" and finally "When to stop de-resuscitation?" In analogy to the way we handle antibiotics in critically ill patients, it is time for fluid stewardship.

  1. A multi-scale network method for two-phase flow in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces withinmore » each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.« less

  2. Experimental Observations of Multiscale Dynamics of Viscous Fluid Behavior: Implications in Volcanic Systems

    NASA Astrophysics Data System (ADS)

    Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.

  3. Multi-Element Unstructured Analyses of Complex Valve Systems

    NASA Technical Reports Server (NTRS)

    Sulyma, Peter (Technical Monitor); Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy

    2004-01-01

    The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we will present a series of high fidelity computational analyses of systems ranging from cryogenic control valves and pressure regulator systems to cavitating venturis that are used to support rocket engine and component testing at NASA Stennis Space Center. A generalized multi-element framework with sub-models for grid adaption, grid movement and multi-phase flow dynamics has been used to carry out the simulations. Such a framework provides the flexibility of resolving the structural and functional complexities that are typically associated with valve-based high pressure feed systems and have been difficult to deal with traditional CFD methods. Our simulations revealed a rich variety of flow phenomena such as secondary flow patterns, hydrodynamic instabilities, fluctuating vapor pockets etc. In the paper, we will discuss performance losses related to cryogenic control valves, and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior in cryogenic control elements. Additionally, we will provide detailed analyses of the modal instability that is observed in the operation of the dome pressure regulator valve. Such instabilities are usually not localized and manifest themselves as a system wide phenomena leading to an undesirable chatter at high flow conditions.

  4. Multi-fluid CFD analysis in Process Engineering

    NASA Astrophysics Data System (ADS)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  5. Airborne Shaped Sonic Boom Demonstration Pressure Measurements with Computational Fluid Dynamics Comparisons

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Murray, James E.; Purifoy, Dana D.; Graham, David H.; Meredith, Keith B.; Ashburn, Christopher E.; Stucky, Mark

    2005-01-01

    The Shaped Sonic Boom Demonstration project showed for the first time that by careful design of aircraft contour the resultant sonic boom can maintain a tailored shape, propagating through a real atmosphere down to ground level. In order to assess the propagation characteristics of the shaped sonic boom and to validate computational fluid dynamics codes, airborne measurements were taken of the pressure signatures in the near field by probing with an instrumented F-15B aircraft, and in the far field by overflying an instrumented L-23 sailplane. This paper describes each aircraft and their instrumentation systems, the airdata calibration, analysis of the near- and far-field airborne data, and shows the good to excellent agreement between computational fluid dynamics solutions and flight data. The flights of the Shaped Sonic Boom Demonstration aircraft occurred in two phases. Instrumentation problems were encountered during the first phase, and corrections and improvements were made to the instrumentation system for the second phase, which are documented in the paper. Piloting technique and observations are also given. These airborne measurements of the Shaped Sonic Boom Demonstration aircraft are a unique and important database that will be used to validate design tools for a new generation of quiet supersonic aircraft.

  6. Experimental and computational fluid dynamics studies of mixing of complex oral health products

    NASA Astrophysics Data System (ADS)

    Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team

    2017-11-01

    Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).

  7. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  8. Supercritical fluid reverse micelle separation

    DOEpatents

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  9. Discriminating fluid source regions in orogenic gold deposits using B-isotopes

    NASA Astrophysics Data System (ADS)

    Lambert-Smith, James S.; Rocholl, Alexander; Treloar, Peter J.; Lawrence, David M.

    2016-12-01

    The genesis of orogenic gold deposits is commonly linked to hydrothermal ore fluids derived from metamorphic devolatilization reactions. However, there is considerable debate as to the ultimate source of these fluids and the metals they transport. Tourmaline is a common gangue mineral in orogenic gold deposits. It is stable over a very wide P-T range, demonstrates limited volume diffusion of major and trace elements and is the main host of B in most rock types. We have used texturally resolved B-isotope analysis by secondary ion mass spectrometry (SIMS) to identify multiple fluid sources within a single orogenic gold ore district. The Loulo Mining District in Mali, West Africa hosts several large orogenic gold ore bodies with complex fluid chemistry, associated with widespread pre-ore Na- and multi-stage B-metasomatism. The Gara deposit, as well as several smaller satellites, formed through partial mixing between a dilute aqueous-carbonic fluid and a hypersaline brine. Hydrothermal tourmaline occurs as a pre-ore phase in the matrix of tourmalinite units, which host mineralization in several ore bodies. Clasts of these tourmalinites occur in mineralized breccias. Disseminated hydrothermal and vein hosted tourmaline occur in textural sites which suggest growth during and after ore formation. Tourmalines show a large range in δ11B values from -3.5 to 19.8‰, which record a change in fluid source between paragenetic stages of tourmaline growth. Pre-mineralization tourmaline crystals show heavy δ11B values (8-19.8‰) and high X-site occupancy (Na ± Ca; 0.69-1 apfu) suggesting a marine evaporite source for hydrothermal fluids. Syn-mineralization and replacement phases show lighter δ11B values (-3.5 to 15.1‰) and lower X-site occupancy (0.62-0.88 apfu), suggesting a subsequent influx of more dilute fluids derived from devolatilization of marine carbonates and clastic metasediments. The large, overlapping range in isotopic compositions and a skew toward the opposing population in the δ11B data for both tourmaline groups reflects continual tourmaline growth throughout mineralization, which records the process of fluid mixing. A peak in δ11B values at ∼8‰ largely controlled by tourmalines of syn- to post-ore timing represents a mixture of the two isotopically distinct fluids. This paper demonstrates that B-isotopes in tourmaline can be instrumental in interpreting complex and dynamic hydrothermal systems. The importance of B as an integral constituent of orogenic ore forming fluids and as a gangue phase in orogenic gold deposits makes B-isotope analysis a powerful tool for testing the level of source region variability in these fluids, and by extension, that of metal sources.

  10. Discretization limits of multi-component lattice-Boltzmann methods and implications on the real porous media simulations

    NASA Astrophysics Data System (ADS)

    Herring, A. L.; Li, Z.; Middleton, J.; Varslot, T.; McClure, J. E.; Sheppard, A.

    2017-12-01

    Multicomponent lattice-Boltzmann (LB) modeling is widely applied to study two-phase flow in various porous media. However, the impact on LB modeling of the fundamental trade-off between image resolution and field of view has received relatively little attention. This is important since 3D images of geological samples rarely have both sufficient resolution to capture fine structure and sufficient field of view to capture a full representative elementary volume of the medium. To optimize the simulations, it is important to know the minimum number of grid points that LB methods require to deliver physically meaningful results, and allow for the sources of measurement uncertainty to be appropriately balanced. In this work, we study the behavior of the Shan-Chen (SC) and Rothman-Keller (RK) models when the phase interfacial radius of curvature and the feature size of the medium approach the discrete unit size of the computational grid. Both simple, small-scale test geometries and real porous media are considered. Models' behavior in the extreme discrete limit is classified ranging from gradual loss of accuracy to catastrophic numerical breakdown. Based on this study, we provide guidance for experimental data collection and how to apply the LBM to accurately resolve physics of interest for two-fluid flow in porous media. Resolution effects are particularly relevant to the study of low-porosity systems, including fractured materials, when the typical pore width may only be a few voxels across.Overall, we find that the shortcoming of the SC model predominantly arises from the strongly pressure-dependent miscibility of the fluid components, where small droplets with high interfacial curvature have an exaggerated tendency to dissolve into the surrounding fluid. For the RK model, the most significant shortcoming is unphysical flow of non-wetting phase through narrow channels and crevices (2 voxels across or smaller), which we observed both in simple capillary tube and realistic porous medium. This process generates unphysical non-wetting phase ganglia that are hard to distinguish from ganglia of physical origin (e.g. arising from snap-off). While both methods have advantages and shortcomings, the RK model with modern enhancements seems to exhibit fewer instabilities, and is more suitable for system of low miscibility.

  11. Two Phase Flow Measurements by Nuclear Magnetic Resonance (NMR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altobelli, Stephen A; Fukushima, Eiichi

    In concentrated suspensions, there is a tendency for the solid phase to migrate from regions of high shear rate to regions of low shear (Leighton & Acrivos, 1987). In the early years that our effort was funded by the DOE Division of Basic Energy Science, quantitative measurement of this process in neutrally buoyant suspensions was a major focus (Abbott, et al., 1991; Altobelli, et al., 1991). Much of this work was used to improve multi-phase numerical models at Sandia National Laboratories. Later, our collaborators at Sandia and the University of New Mexico incorporated body forces into their numerical models ofmore » suspension flow (Rao, Mondy, Sun, et al., 2002). We developed experiments that allow us to study flows driven by buoyancy, to characterize these flows in well-known and useful engineering terms (Altobelli and Mondy, 2002) and to begin to explore the less well-understood area of flows with multiple solid phases (Beyea, Altobelli, et al., 2003). We also studied flows that combine the effects of shear and buoyancy, and flows of suspensions made from non-Newtonian liquids (Rao, Mondy, Baer, et al, 2002). We were able to demonstrate the usefulness of proton NMR imaging of liquid phase concentration and velocity and produced quantitative data not obtainable by other methods. Fluids flowing through porous solids are important in geophysics and in chemical processing. NMR techniques have been widely used to study liquid flow in porous media. We pioneered the extension of these studies to gas flows (Koptyug, et al, 2000, 2000, 2001, 2002). This extension allows us to investigate a wider range of Peclet numbers, and to gather data on problems of interest in catalysis. We devised two kinds of NMR experiments for three-phase systems. Both experiments employ two NMR visible phases and one phase that gives no NMR signal. The earlier method depends on the two visible phases differing in a NMR relaxation property. The second method (Beyea, Altobelli, et al., 2003) uses two different nuclei, protons and 19F. It also uses two different types of NMR image formation, a conventional spin-echo and a single-point method. The single-point method is notable for being useful for imaging materials which are much more rigid than can usually be studied by NMR imaging. We use it to image “low density” polyethylene (LDPE) plastic in this application. We have reduced the imaging time for this three-phase imaging method to less than 10 s per pair of profiles by using new hardware. Directly measuring the solid LDPE signal was a novel feature for multi-phase flow studies. We also used thermally polarized gas NMR (as opposed to hyper-polarized gas) which produces low signal to noise ratios because gas densities are on the order of 1000 times smaller than liquid densities. However since we used multi-atom molecules that have short T1's and operated at elevated pressures we could overcome some of the losses. Thermally polarized gases have advantages over hyperpolarized gases in the ease of preparation, and in maintaining a well-defined polarization. In these studies (Codd and Altobelli, 2003), we used stimulated echo sequences to successfully obtain propagators of gas in bead packs out to observation times of 300 ms. Zarraga, et al. (2000) used laser-sheet profilometry to investigate normal stress differences in concentrated suspensions. Recently we developed an NMR imaging analog for comparison with numerical work that is being performed by Rekha Rao at Sandia National Laboratories (Rao, Mondy, Sun, et al, 2002). A neutrally buoyant suspension of 100 mm PMMA spheres in a Newtonian liquid was sheared in a vertical Couette apparatus inside the magnet. The outer cylinder rotates and the inner cylinder is fixed. At these low rotation rates, the free-surface of the Newtonian liquid shows no measurable deformation, but the suspension clearly shows its non-Newtonian character.« less

  12. Method for measuring the rate of cell reproduction by analysis of nanoliter cell samples

    DOEpatents

    Gourley, Paul L.

    2005-04-26

    A method of detecting cancer using a laser biocavity having a semiconductor laser including a microchannel through which cells in fluid traverse, comprising determining the laser wavelength of the laser biocavity with only fluid in the microchannel; determining the wavelength shift of the biocavity when each cell passes through the microchannel; and determining the percentage of cells in G2 phase from the wavelength shift of the cells; wherein an increased percentage of G2 phase cells is an indication of cancer.

  13. Monitoring of tritium

    DOEpatents

    Corbett, James A.; Meacham, Sterling A.

    1981-01-01

    The fluid from a breeder nuclear reactor, which may be the sodium cooling fluid or the helium reactor-cover-gas, or the helium coolant of a gas-cooled reactor passes over the portion of the enclosure of a gaseous discharge device which is permeable to hydrogen and its isotopes. The tritium diffused into the discharge device is radioactive producing beta rays which ionize the gas (argon) in the discharge device. The tritium is monitored by measuring the ionization current produced when the sodium phase and the gas phase of the hydrogen isotopes within the enclosure are in equilibrium.

  14. Two phase flow and heat transfer in porous beds under variable body forces, part 2

    NASA Technical Reports Server (NTRS)

    Evers, J. L.; Henry, H. R.

    1969-01-01

    Analytical and experimental investigations of a pilot model of a channel for the study of two-phase flow under low or zero gravity are presented. The formulation of dimensionless parameters to indicate the relative magnitude of the effects of capillarity, gravity, pressure gradient, viscosity, and inertia is described. The investigation is based on the principal equations of fluid mechanics and thermodynamics. Techniques were investigated by using a laser velocimeter for measuring point velocities of the fluid within the porous material without disturbing the flow.

  15. Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases.

    PubMed

    Siders, Paul D

    2017-12-08

    In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å -3 . Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Identifying Methane Sources in Groundwater; Quantifying Changes in Compositional and Stable Isotope Values during Multiphase Transport

    NASA Astrophysics Data System (ADS)

    Larson, T.; Sathaye, K.

    2014-12-01

    A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish thermogenic and microbial methane.

  17. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.

  18. Improving estimates of subsurface gas transport in unsaturated fractured media using experimental Xe diffusion data and numerical methods

    NASA Astrophysics Data System (ADS)

    Ortiz, J. P.; Ortega, A. D.; Harp, D. R.; Boukhalfa, H.; Stauffer, P. H.

    2017-12-01

    Gas transport in unsaturated fractured media plays an important role in a variety of applications, including detection of underground nuclear explosions, transport from volatile contaminant plumes, shallow CO2 leakage from carbon sequestration sites, and methane leaks from hydraulic fracturing operations. Gas breakthrough times are highly sensitive to uncertainties associated with a variety of hydrogeologic parameters, including: rock type, fracture aperture, matrix permeability, porosity, and saturation. Furthermore, a couple simplifying assumptions are typically employed when representing fracture flow and transport. Aqueous phase transport is typically considered insignificant compared to gas phase transport in unsaturated fracture flow regimes, and an assumption of instantaneous dissolution/volatilization of radionuclide gas is commonly used to reduce computational expense. We conduct this research using a twofold approach that combines laboratory gas experimentation and numerical modeling to verify and refine these simplifying assumptions in our current models of gas transport. Using a gas diffusion cell, we are able to measure air pressure transmission through fractured tuff core samples while also measuring Xe gas breakthrough measured using a mass spectrometer. We can thus create synthetic barometric fluctuations akin to those observed in field tests and measure the associated gas flow through the fracture and matrix pore space for varying degrees of fluid saturation. We then attempt to reproduce the experimental results using numerical models in PLFOTRAN and FEHM codes to better understand the importance of different parameters and assumptions on gas transport. Our numerical approaches represent both single-phase gas flow with immobile water, as well as full multi-phase transport in order to test the validity of assuming immobile pore water. Our approaches also include the ability to simulate the reaction equilibrium kinetics of dissolution/volatilization in order to identify when the assumption of instantaneous equilibrium is reasonable. These efforts will aid us in our application of such models to larger, field-scale tests and improve our ability to predict gas breakthrough times.

  19. A new laboratory approach to shale analysis using NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically kerogen, thermally degraded kerogen, and char. Integrated peak areas from the LF-NMR results representative of kerogen and bitumen were found to be well correlated with S1 and S2 parameters from Rock-Eval programmed pyrolysis. This study demonstrates that LFNMR relaxometry can provide a wide range of information on shales and other reservoir rocks that goes well beyond porosity and pore-fluid analysis.

  20. Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.

  1. Blood volume-monitored regulation of ultrafiltration in fluid-overloaded hemodialysis patients: study protocol for a randomized controlled trial.

    PubMed

    Hecking, Manfred; Antlanger, Marlies; Winnicki, Wolfgang; Reiter, Thomas; Werzowa, Johannes; Haidinger, Michael; Weichhart, Thomas; Polaschegg, Hans-Dietrich; Josten, Peter; Exner, Isabella; Lorenz-Turnheim, Katharina; Eigner, Manfred; Paul, Gernot; Klauser-Braun, Renate; Hörl, Walter H; Sunder-Plassmann, Gere; Säemann, Marcus D

    2012-06-08

    Data generated with the body composition monitor (BCM, Fresenius) show, based on bioimpedance technology, that chronic fluid overload in hemodialysis patients is associated with poor survival. However, removing excess fluid by lowering dry weight can be accompanied by intradialytic and postdialytic complications. Here, we aim at testing the hypothesis that, in comparison to conventional hemodialysis, blood volume-monitored regulation of ultrafiltration and dialysate conductivity (UCR) and/or regulation of ultrafiltration and temperature (UTR) will decrease complications when ultrafiltration volumes are systematically increased in fluid-overloaded hemodialysis patients. BCM measurements yield results on fluid overload (in liters), relative to extracellular water (ECW). In this prospective, multicenter, triple-arm, parallel-group, crossover, randomized, controlled clinical trial, we use BCM measurements, routinely introduced in our three maintenance hemodialysis centers shortly prior to the start of the study, to recruit sixty hemodialysis patients with fluid overload (defined as ≥15% ECW). Patients are randomized 1:1:1 into UCR, UTR and conventional hemodialysis groups. BCM-determined, 'final' dry weight is set to normohydration weight -7% of ECW postdialysis, and reached by reducing the previous dry weight, in steps of 0.1 kg per 10 kg body weight, during 12 hemodialysis sessions (one study phase). In case of intradialytic complications, dry weight reduction is decreased, according to a prespecified algorithm. A comparison of intra- and post-dialytic complications among study groups constitutes the primary endpoint. In addition, we will assess relative weight reduction, changes in residual renal function, quality of life measures, and predialysis levels of various laboratory parameters including C-reactive protein, troponin T, and N-terminal pro-B-type natriuretic peptide, before and after the first study phase (secondary outcome parameters). Patients are not requested to revert to their initial degree of fluid overload after each study phase. Therefore, the crossover design of the present study merely serves the purpose of secondary endpoint evaluation, for example to determine patient choice of treatment modality. Previous studies on blood volume monitoring have yielded inconsistent results. Since we include only patients with BCM-determined fluid overload, we expect a benefit for all study participants, due to strict fluid management, which decreases the mortality risk of hemodialysis patients. ClinicalTrials.gov, NCT01416753.

  2. Blood volume-monitored regulation of ultrafiltration in fluid-overloaded hemodialysis patients: study protocol for a randomized controlled trial

    PubMed Central

    2012-01-01

    Background Data generated with the body composition monitor (BCM, Fresenius) show, based on bioimpedance technology, that chronic fluid overload in hemodialysis patients is associated with poor survival. However, removing excess fluid by lowering dry weight can be accompanied by intradialytic and postdialytic complications. Here, we aim at testing the hypothesis that, in comparison to conventional hemodialysis, blood volume-monitored regulation of ultrafiltration and dialysate conductivity (UCR) and/or regulation of ultrafiltration and temperature (UTR) will decrease complications when ultrafiltration volumes are systematically increased in fluid-overloaded hemodialysis patients. Methods/design BCM measurements yield results on fluid overload (in liters), relative to extracellular water (ECW). In this prospective, multicenter, triple-arm, parallel-group, crossover, randomized, controlled clinical trial, we use BCM measurements, routinely introduced in our three maintenance hemodialysis centers shortly prior to the start of the study, to recruit sixty hemodialysis patients with fluid overload (defined as ≥15% ECW). Patients are randomized 1:1:1 into UCR, UTR and conventional hemodialysis groups. BCM-determined, ‘final’ dry weight is set to normohydration weight −7% of ECW postdialysis, and reached by reducing the previous dry weight, in steps of 0.1 kg per 10 kg body weight, during 12 hemodialysis sessions (one study phase). In case of intradialytic complications, dry weight reduction is decreased, according to a prespecified algorithm. A comparison of intra- and post-dialytic complications among study groups constitutes the primary endpoint. In addition, we will assess relative weight reduction, changes in residual renal function, quality of life measures, and predialysis levels of various laboratory parameters including C-reactive protein, troponin T, and N-terminal pro-B-type natriuretic peptide, before and after the first study phase (secondary outcome parameters). Discussion Patients are not requested to revert to their initial degree of fluid overload after each study phase. Therefore, the crossover design of the present study merely serves the purpose of secondary endpoint evaluation, for example to determine patient choice of treatment modality. Previous studies on blood volume monitoring have yielded inconsistent results. Since we include only patients with BCM-determined fluid overload, we expect a benefit for all study participants, due to strict fluid management, which decreases the mortality risk of hemodialysis patients. Trial registration ClinicalTrials.gov, NCT01416753 PMID:22682149

  3. Numerical simulation of two-phase flow for sediment transport in the inner-surf and swash zones

    NASA Astrophysics Data System (ADS)

    Bakhtyar, R.; Barry, D. A.; Yeganeh-Bakhtiary, A.; Li, L.; Parlange, J.-Y.; Sander, G. C.

    2010-03-01

    A two-dimensional two-phase flow framework for fluid-sediment flow simulation in the surf and swash zones was described. Propagation, breaking, uprush and backwash of waves on sloping beaches were studied numerically with an emphasis on fluid hydrodynamics and sediment transport characteristics. The model includes interactive fluid-solid forces and intergranular stresses in the moving sediment layer. In the Euler-Euler approach adopted, two phases were defined using the Navier-Stokes equations with interphase coupling for momentum conservation. The k-ɛ closure model and volume of fluid approach were used to describe the turbulence and tracking of the free surface, respectively. Numerical simulations explored incident wave conditions, specifically spilling and plunging breakers, on both dissipative and intermediate beaches. It was found that the spatial variation of sediment concentration in the swash zone is asymmetric, while the temporal behavior is characterized by maximum sediment concentrations at the start and end of the swash cycle. The numerical results also indicated that the maximum turbulent kinetic energy and sediment flux occurs near the wave-breaking point. These predictions are in general agreement with previous observations, while the model describes the fluid and sediment phase characteristics in much more detail than existing measurements. With direct quantifications of velocity, turbulent kinetic energy, sediment concentration and flux, the model provides a useful approach to improve mechanistic understanding of hydrodynamic and sediment transport in the nearshore zone.

  4. Advanced technology development multi-color holography

    NASA Technical Reports Server (NTRS)

    Vikram, Chandra S.

    1993-01-01

    This is the final report of the Multi-color Holography project. The comprehensive study considers some strategic aspects of multi-color holography. First, various methods of available techniques for accurate fringe counting are reviewed. These are heterodyne interferometry, quasi-heterodyne interferometry, and phase-shifting interferometry. Phase-shifting interferometry was found to be the most suitable for multi-color holography. Details of experimentation with a sugar solution are also reported where better than 1/200 of a fringe order measurement capability was established. Rotating plate glass phase shifter was used for the experimentation. The report then describes the possible role of using more than two wavelengths with special reference-to-object beam intensity ratio needs in multicolor holography. Some specific two- and three-color cases are also described in detail. Then some new analysis methods of the reconstructed wavefront are considered. These are deflectometry, speckle metrology, confocal optical signal processing, and phase shifting technique related applications. Finally, design aspects of an experimental breadboard are presented.

  5. Focus on Methodology: Salivary Bioscience and Research on Adolescence: An Integrated Perspective

    ERIC Educational Resources Information Center

    Granger, Douglas A.; Fortunato, Christine K.; Beltzer, Emilie K.; Virag, Marta; Bright, Melissa A.; Out, Dorothee

    2012-01-01

    The characterization of the salivary proteome and advances in biotechnology create an opportunity for developmental scientists to measure multi-level components of biological systems in oral fluids and identify relationships with developmental processes and behavioral and social forces. The implications for developmental science are profound…

  6. Complete measurement of spatiotemporally complex multi-spatial-mode ultrashort pulses from multimode optical fibers using delay-scanned wavelength-multiplexed holography.

    PubMed

    Zhu, Ping; Jafari, Rana; Jones, Travis; Trebino, Rick

    2017-10-02

    We introduce a simple delay-scanned complete spatiotemporal intensity-and-phase measurement technique based on wavelength-multiplexed holography to characterize long, complex pulses in space and time. We demonstrate it using pulses emerging from multi-mode fiber. This technique extends the temporal range and spectral resolution of the single-frame STRIPED FISH technique without using an otherwise-required expensive ultranarrow-bandpass filter. With this technique, we measured the complete intensity and phase of up to ten fiber modes from a multi-mode fiber (normalized frequency V ≈10) over a ~3ps time range. Spatiotemporal complexities such as intermodal delay, modal dispersion, and material dispersion were also intuitively displayed by the retrieved results. Agreement between the reconstructed color movies and the monitored time-averaged spatial profiles confirms the validity to this delay-scanned STRIPED FISH method.

  7. A pilot study evaluating protein abundance in pressure ulcer fluid from people with and without spinal cord injury

    PubMed Central

    Edsberg, Laura E.; Wyffels, Jennifer T.; Ogrin, Rajna; Craven, B. Catharine; Houghton, Pamela

    2015-01-01

    Objective To determine whether the biochemistry of chronic pressure ulcers differs between patients with and without chronic spinal cord injury (SCI) through measurement and comparison of the concentration of wound fluid inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases. Design Survey. Setting Tertiary spinal cord rehabilitation center and skilled nursing facilities. Participants Twenty-nine subjects with SCI and nine subjects without SCI (>18 years) with at least one chronic pressure ulcer Stage II, III, or IV were enrolled. Outcome measures Total protein and 22 target analyte concentrations including inflammatory mediators, growth factors, cytokines, acute phase proteins, and proteases were quantified in the wound fluid and blood serum samples. Blood samples were tested for complete blood count, albumin, hemoglobin A1c, total iron binding capacity, iron, percent (%) saturation, C-reactive protein, and erythrocyte sedimentation rate. Results Wound fluid concentrations were significantly different between subjects with SCI and subjects without SCI for total protein concentration and nine analytes, MMP-9, S100A12, S100A8, S100A9, FGF2, IL-1b, TIMP-1, TIMP-2, and TGF-b1. Subjects without SCI had higher values for all significantly different analytes measured in wound fluid except FGF2, TGF-b1, and wound fluid total protein. Subject-matched circulating levels of analytes and the standardized local concentration of the same proteins in the wound fluid were weakly or not correlated. Conclusions The biochemical profile of chronic pressure ulcers is different between SCI and non-SCI populations. These differences should be considered when selecting treatment options. Systemic blood serum properties may not represent the local wound environment. PMID:24968005

  8. Numerical simulation of compressible fluid flow in an ultrasonic suction pump.

    PubMed

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2016-08-01

    Characteristics of an ultrasonic suction pump that uses a vibrating piston surface and a pipe are numerically simulated and compared with experimental results. Fluid analysis based on the finite-difference time-domain (FDTD) routine is performed, where the nonlinear term and the moving fluid-surface boundary condition are considered. As a result, the suction mechanism of the pump is found to be similar to that of a check valve, where the gap is open during the inflow phase, and it is nearly closed during the outflow phase. The effects of Reynolds number, vibration amplitude and gap thickness on the pump performance are analyzed. The calculated result is in good agreement with the previously measured results. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ultrasonic tomography for in-process measurements of temperature in a multi-phase medium

    DOEpatents

    Beller, L.S.

    1993-01-26

    A method and apparatus are described for the in-process measurement of internal particulate temperature utilizing ultrasonic tomography techniques to determine the speed of sound through a specimen material. Ultrasonic pulses are transmitted through a material, which can be a multi-phase material, over known flight paths and the ultrasonic pulse transit times through all sectors of the specimen are measured to determine the speed of sound. The speed of sound being a function of temperature, it is possible to establish the correlation between speed of sound and temperature, throughout a cross-section of the material, which correlation is programmed into a computer to provide for a continuous in-process measurement of temperature throughout the specimen.

  10. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    NASA Astrophysics Data System (ADS)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  11. A review of solid-fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid-liquid and multiphase solid-liquid flows

    NASA Astrophysics Data System (ADS)

    Wright, Stuart F.; Zadrazil, Ivan; Markides, Christos N.

    2017-09-01

    Experimental techniques based on optical measurement principles have experienced significant growth in recent decades. They are able to provide detailed information with high-spatiotemporal resolution on important scalar (e.g., temperature, concentration, and phase) and vector (e.g., velocity) fields in single-phase or multiphase flows, as well as interfacial characteristics in the latter, which has been instrumental to step-changes in our fundamental understanding of these flows, and the development and validation of advanced models with ever-improving predictive accuracy and reliability. Relevant techniques rely upon well-established optical methods such as direct photography, laser-induced fluorescence, laser Doppler velocimetry/phase Doppler anemometry, particle image/tracking velocimetry, and variants thereof. The accuracy of the resulting data depends on numerous factors including, importantly, the refractive indices of the solids and liquids used. The best results are obtained when the observational materials have closely matched refractive indices, including test-section walls, liquid phases, and any suspended particles. This paper reviews solid-liquid and solid-liquid-liquid refractive-index-matched systems employed in different fields, e.g., multiphase flows, turbomachinery, bio-fluid flows, with an emphasis on liquid-liquid systems. The refractive indices of various aqueous and organic phases found in the literature span the range 1.330-1.620 and 1.251-1.637, respectively, allowing the identification of appropriate combinations to match selected transparent or translucent plastics/polymers, glasses, or custom materials in single-phase liquid or multiphase liquid-liquid flow systems. In addition, the refractive indices of fluids can be further tuned with the use of additives, which also allows for the matching of important flow similarity parameters such as density and viscosity.

  12. Simultaneous velocity measurements of particle and gas phase in particle-laden co-flowing pipe jets

    NASA Astrophysics Data System (ADS)

    Saridakis, Isaac; Lau, Timothy; Djenidi, Lyazid; Nathan, Graham

    2016-11-01

    Simultaneous planar velocity measurements of both the carrier gas and particles are reported of well-characterized particle-laden co-flowing pipe jets. It is proposed to present measurements that were obtained through application of a median-filter discrimination technique to separate the Particle Image Velocimetry (PIV) signals of the 0.5 μm diameter fluid tracers from those of the larger particles of diameter 20 μm and 40 μm. Instantaneous particle and fluid planar velocity distributions were measured for three Reynold's numbers ranging from 10,000 to 40,000 and five Stokes numbers from 1 to 22, at a jet bulk fluid velocity to co-flow velocity ratio of 12. Selected results will be presented which show that the slip velocity is dependent on the local Stokes number. These are the first simultaneous carrier gas and particle velocity measurements in particle-laden jets and provide new understanding of fluid-particle interactions. Financial support from Australian Research Council and Australian Renewable Energy Agency.

  13. Multi-physics CFD simulations in engineering

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto

    2013-08-01

    Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been sufficiently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in developing machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and efficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.

  14. Kinetic multi-layer model of the epithelial lining fluid (KM-ELF): Reactions of ozone and OH with antioxidants and surfactant molecules

    NASA Astrophysics Data System (ADS)

    Lakey, Pascale; Pöschl, Ulrich; Shiraiwa, Manabu

    2015-04-01

    Oxidants cause damage to biosurfaces such as the lung epithelium unless they are effectively scavenged. The respiratory tract is covered in a thin layer of fluid which extends from the nasal cavity to the alveoli and contain species that scavenge ozone and other incoming oxidants. The kinetic multi-layer model of the epithelial lining fluid (KM-ELF) has been developed in order to investigate the reactions of ozone and OH with antioxidants (ascorbate, uric acid, glutathione and α-tocopherol) and surfactant lipids and proteins within the epithelial lining fluid (ELF). The model incorporates different processes: gas phase diffusion, adsorption and desorption from the surface, bulk phase diffusion and known reactions at the surface and in the bulk. The ELF is split into many layers: a sorption layer, a surfactant layer, a near surface bulk layer and several bulk layers. Initial results using KM-ELF indicate that at ELF thicknesses of 80 nm and 1 × 10-4cm the ELF would become rapidly saturated with ozone with saturation occurring in less than a second. However, at an ELF thickness of 1 × 10-3cm concentration gradients were observed throughout the ELF and the presence of antioxidants reduced the O3 reaching the lung cells and tissues by 40% after 1 hour of exposure. In contrast, the antioxidants were efficient scavengers of OH radicals, although the large rate constants of OH reacting with the antioxidants resulted in the antioxidants decaying away rapidly. The chemical half-lives of the antioxidants and surface species were also calculated using KM-ELF as a function of O3 and OH concentration and ELF thickness. Finally, the pH dependence of the products of reactions between antioxidants and O3 were investigated. The KM-ELF model predicted that a harmful ascorbate ozonide product would increase from 1.4 × 1011cm-3at pH 7.4 to 1.1 × 1014 cm-3 at pH 4after 1 hour although a uric acid ozonide product would decrease from 2.0 × 1015cm-3to 5.9 × 1012cm-3.

  15. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  16. Localized Scale Coupling and New Educational Paradigms in Multiscale Mathematics and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LEAL, L. GARY

    2013-06-30

    One of the most challenging multi-scale simulation problems in the area of multi-phase materials is to develop effective computational techniques for the prediction of coalescence and related phenomena involving rupture of a thin liquid film due to the onset of instability driven by van der Waals or other micro-scale attractive forces. Accurate modeling of this process is critical to prediction of the outcome of milling processes for immiscible polymer blends, one of the most important routes to new advanced polymeric materials. In typical situations, the blend evolves into an ?emulsion? of dispersed phase drops in a continuous matrix fluid. Coalescencemore » is then a critical factor in determining the size distribution of the dispersed phase, but is extremely difficult to predict from first principles. The thin film separating two drops may only achieve rupture at dimensions of approximately 10 nm while the drop sizes are 0(10 ?m). It is essential to achieve very accurate solutions for the flow and for the interface shape at both the macroscale of the full drops, and within the thin film (where the destabilizing disjoining pressure due to van der Waals forces is proportional approximately to the inverse third power of the local film thickness, h-3). Furthermore, the fluids of interest are polymeric (through Newtonian) and the classical continuum description begins to fail as the film thins ? requiring incorporation of molecular effects, such as a hybrid code that incorporates a version of coarse grain molecular dynamics within the thin film coupled with a classical continuum description elsewhere in the flow domain. Finally, the presence of surface active additions, either surfactants (in the form of di-block copolymers) or surface-functionalized micro- or nano-scale particles, adds an additional level of complexity, requiring development of a distinct numerical method to predict the nonuniform concentration gradients of these additives that are responsible for Marangoni stresses at the interface. Again, the physical dimensions of these additives may become comparable to the thin film dimensions, requiring an additional layer of multi-scale modeling.« less

  17. In situ Raman spectroscopic investigation of the structure of subduction-zone fluids

    USGS Publications Warehouse

    Mibe, Kenji; Chou, I.-Ming; Bassett, William A.

    2008-01-01

    In situ Raman spectra of synthetic subduction-zone fluids (KAlSi3O8-H2O system) were measured to 900?? and 2.3 GPa using a hydrothermal diamond-anvil cell. The structures of aqueous fluid and hydrous melt become closer when conditions approach the second critical endpoint. Almost no three-dimensional network was observed in the supercritical fluid above 2 GPa although a large amount of silicate component is dissolved, suggesting that the physical and chemical properties of these phases change drastically at around the second critical endpoint. Our experimental results indicate that the fluids released from a subducting slab change from aqueous fluid to supercritical fluid with increasing depth under the volcanic arcs. Copyright 2008 by the American Geophysical Union.

  18. Analysis of dynamic characteristics of fluid force induced by labyrinth seal

    NASA Technical Reports Server (NTRS)

    Iwatsubo, T.; Kawai, R.; Kagawa, N.; Kakiuchi, T.; Takahara, K.

    1984-01-01

    Flow patterns of the labyrinth seal are experimentally investigated for making a mathematical model of labyrinth seal and to obtain the flow induced force of the seal. First, the flow patterns in the labyrinth chamber are studied on the circumferential flow using bubble and on the cross section of the seal chamber using aluminum powder as tracers. And next, the fluid force and its phase angle are obtained from the measured pressure distribution in the chamber and the fluid force coefficients are derived from the fluid force and the phase angle. Those are similar to the expression of oil film coefficients. As a result, it is found that the vortices exist in the labyrinth chambers and its center moves up and down periodically. The pressure drop is biggest in the first stage of chambers and next in the last stage of chambers.

  19. Dynamic evolution of liquid–liquid phase separation during continuous cooling

    DOE PAGES

    Imhoff, Seth D.; Gibbs, Paul J.; Katz, Martha R.; ...

    2015-01-06

    Solidification from a multiphase fluid involves many unknown quantities due to the difficulty of predicting the impact of fluid flow on chemical partitioning. Real-time x-ray radiography was used to observe liquid-liquid phase separation in Al 90In 10 prior to solidification. Quantitative image analysis was used to measure the motion and population characteristics of the dispersed indium-rich liquid phase during cooling. Here we determine that the droplet growth characteristics resemble well known steady-state coarsening laws with likely enhancement by concurrent growth due to supersaturation. Simplistic views of droplet motion are found to be insufficient until late in the reaction due tomore » a hydrodynamic instability caused by the large density difference between the dispersed and matrix liquid phases.« less

  20. Nonequilibrium Interfacial Tension in Simple and Complex Fluids

    NASA Astrophysics Data System (ADS)

    Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca

    2016-10-01

    Interfacial tension between immiscible phases is a well-known phenomenon, which manifests itself in everyday life, from the shape of droplets and foam bubbles to the capillary rise of sap in plants or the locomotion of insects on a water surface. More than a century ago, Korteweg generalized this notion by arguing that stresses at the interface between two miscible fluids act transiently as an effective, nonequilibrium interfacial tension, before homogenization is eventually reached. In spite of its relevance in fields as diverse as geosciences, polymer physics, multiphase flows, and fluid removal, experiments and theoretical works on the interfacial tension of miscible systems are still scarce, and mostly restricted to molecular fluids. This leaves crucial questions unanswered, concerning the very existence of the effective interfacial tension, its stabilizing or destabilizing character, and its dependence on the fluid's composition and concentration gradients. We present an extensive set of measurements on miscible complex fluids that demonstrate the existence and the stabilizing character of the effective interfacial tension, unveil new regimes beyond Korteweg's predictions, and quantify its dependence on the nature of the fluids and the composition gradient at the interface. We introduce a simple yet general model that rationalizes nonequilibrium interfacial stresses to arbitrary mixtures, beyond Korteweg's small gradient regime, and show that the model captures remarkably well both our new measurements and literature data on molecular and polymer fluids. Finally, we briefly discuss the relevance of our model to a variety of interface-driven problems, from phase separation to fracture, which are not adequately captured by current approaches based on the assumption of small gradients.

  1. Characterising Dynamic Instability in High Water-Cut Oil-Water Flows Using High-Resolution Microwave Sensor Signals

    NASA Astrophysics Data System (ADS)

    Liu, Weixin; Jin, Ningde; Han, Yunfeng; Ma, Jing

    2018-06-01

    In the present study, multi-scale entropy algorithm was used to characterise the complex flow phenomena of turbulent droplets in high water-cut oil-water two-phase flow. First, we compared multi-scale weighted permutation entropy (MWPE), multi-scale approximate entropy (MAE), multi-scale sample entropy (MSE) and multi-scale complexity measure (MCM) for typical nonlinear systems. The results show that MWPE presents satisfied variability with scale and anti-noise ability. Accordingly, we conducted an experiment of vertical upward oil-water two-phase flow with high water-cut and collected the signals of a high-resolution microwave resonant sensor, based on which two indexes, the entropy rate and mean value of MWPE, were extracted. Besides, the effects of total flow rate and water-cut on these two indexes were analysed. Our researches show that MWPE is an effective method to uncover the dynamic instability of oil-water two-phase flow with high water-cut.

  2. Singular value decomposition based impulsive noise reduction in multi-frequency phase-sensitive demodulation of electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Hao, Zhenhua; Cui, Ziqiang; Yue, Shihong; Wang, Huaxiang

    2018-06-01

    As an important means in electrical impedance tomography (EIT), multi-frequency phase-sensitive demodulation (PSD) can be viewed as a matched filter for measurement signals and as an optimal linear filter in the case of Gaussian-type noise. However, the additive noise usually possesses impulsive noise characteristics, so it is a challenging task to reduce the impulsive noise in multi-frequency PSD effectively. In this paper, an approach for impulsive noise reduction in multi-frequency PSD of EIT is presented. Instead of linear filters, a singular value decomposition filter is employed as the pre-stage filtering module prior to PSD, which has advantages of zero phase shift, little distortion, and a high signal-to-noise ratio (SNR) in digital signal processing. Simulation and experimental results demonstrated that the proposed method can effectively eliminate the influence of impulsive noise in multi-frequency PSD, and it was capable of achieving a higher SNR and smaller demodulation error.

  3. Interface behavior of a multi-layer fluid configuration subject to acceleration in a microgravity environment, supplement 1. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.; Roh, Michael

    1991-01-01

    With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.

  4. Modeling and comparative study of fluid velocities in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally

    2013-04-01

    Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed permeabilities were then correlated with the ones based on the porosity maps and the Kozeny-Carman relationship. The findings of the comparative modeling study are discussed and its potential impact on the modeling of fluid residence times and kinetic reaction rates of fluid-rock interactions in rocks containing meso-scale heterogeneities are reviewed.

  5. Temperature-Controlled High-Speed AFM: Real-Time Observation of Ripple Phase Transitions.

    PubMed

    Takahashi, Hirohide; Miyagi, Atsushi; Redondo-Morata, Lorena; Scheuring, Simon

    2016-11-01

    With nanometer lateral and Angstrom vertical resolution, atomic force microscopy (AFM) has contributed unique data improving the understanding of lipid bilayers. Lipid bilayers are found in several different temperature-dependent states, termed phases; the main phases are solid and fluid phases. The transition temperature between solid and fluid phases is lipid composition specific. Under certain conditions some lipid bilayers adopt a so-called ripple phase, a structure where solid and fluid phase domains alternate with constant periodicity. Because of its narrow regime of existence and heterogeneity ripple phase and its transition dynamics remain poorly understood. Here, a temperature control device to high-speed atomic force microscopy (HS-AFM) to observe dynamics of phase transition from ripple phase to fluid phase reversibly in real time is developed and integrated. Based on HS-AFM imaging, the phase transition processes from ripple phase to fluid phase and from ripple phase to metastable ripple phase to fluid phase could be reversibly, phenomenologically, and quantitatively studied. The results here show phase transition hysteresis in fast cooling and heating processes, while both melting and condensation occur at 24.15 °C in quasi-steady state situation. A second metastable ripple phase with larger periodicity is formed at the ripple phase to fluid phase transition when the buffer contains Ca 2+ . The presented temperature-controlled HS-AFM is a new unique experimental system to observe dynamics of temperature-sensitive processes at the nanoscopic level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Wettability Control on Fluid-Fluid Displacements in Patterned Microfluidics

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Trojer, M.; Cueto-Felgueroso, L.; Juanes, R.

    2014-12-01

    Two-phase flow in porous media is important in many natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and water infiltration in soil. While it is well known that the wetting properties of porous media can vary drastically depending on the type of media and the pore fluids, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We confirm that wettability exerts a fundamental control on meniscus deformation, and synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We compare our experiments to a macroscopic phase-field model of two-phase flow. We use the insights gained from the capillary tube experiments to explore the viscous fingering instability in the Hele-Shaw geometry in the partial-wetting regime. A key difference between a Hele-Shaw cell and a porous medium is the existence of micro-structures (i.e. pores and pore throats). To investigate how these micro-structrues impact fluid-fluid displacement, we conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  7. Modeling electrical double-layer effects for microfluidic impedance spectroscopy from 100 kHz to 110 GHz.

    PubMed

    Little, Charles A E; Orloff, Nathan D; Hanemann, Isaac E; Long, Christian J; Bright, Victor M; Booth, James C

    2017-07-25

    Broadband microfluidic-based impedance spectroscopy can be used to characterize complex fluids, with applications in medical diagnostics and in chemical and pharmacological manufacturing. Many relevant fluids are ionic; during impedance measurements ions migrate to the electrodes, forming an electrical double-layer. Effects from the electrical double-layer dominate over, and reduce sensitivity to, the intrinsic impedance of the fluid below a characteristic frequency. Here we use calibrated measurements of saline solution in microfluidic coplanar waveguide devices at frequencies between 100 kHz and 110 GHz to directly measure the double-layer admittance for solutions of varying ionic conductivity. We successfully model the double-layer admittance using a combination of a Cole-Cole response with a constant phase element contribution. Our analysis yields a double-layer relaxation time that decreases linearly with solution conductivity, and allows for double-layer effects to be separated from the intrinsic fluid response and quantified for a wide range of conducting fluids.

  8. Multi-port valve

    DOEpatents

    Lewin, Keith F.

    1997-04-15

    A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.

  9. Multi-port valve

    DOEpatents

    Lewin, K.F.

    1997-04-15

    A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.

  10. Methods and systems for integrating fluid dispensing technology with stereolithography

    DOEpatents

    Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.

    2010-02-09

    An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.

  11. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    PubMed

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  12. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  13. Advances in Quantum Trajectory Approaches to Dynamics

    NASA Astrophysics Data System (ADS)

    Askar, Attila

    2001-03-01

    The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)

  14. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2010-01-01

    A comprehensive numerical framework utilizing multi-element unstructured CFD and rigorous real fluid property routines has been developed to carry out analyses of propellant tank and delivery systems at NASA SSC. Traditionally CFD modeling of pressurization and mixing in cryogenic tanks has been difficult primarily because the fluids in the tank co-exist in different sub-critical and supercritical states with largely varying properties that have to be accurately accounted for in order to predict the correct mixing and phase change between the ullage and the propellant. For example, during tank pressurization under some circumstances, rapid mixing of relatively warm pressurant gas with cryogenic propellant can lead to rapid densification of the gas and loss of pressure in the tank. This phenomenon can cause serious problems during testing because of the resulting decrease in propellant flow rate. With proper physical models implemented, CFD can model the coupling between the propellant and pressurant including heat transfer and phase change effects and accurately capture the complex physics in the evolving flowfields. This holds the promise of allowing the specification of operational conditions and procedures that could minimize the undesirable mixing and heat transfer inherent in propellant tank operation. In our modeling framework, we incorporated two different approaches to real fluids modeling: (a) the first approach is based on the HBMS model developed by Hirschfelder, Beuler, McGee and Sutton and (b) the second approach is based on a cubic equation of state developed by Soave, Redlich and Kwong (SRK). Both approaches cover fluid properties and property variation spanning sub-critical gas and liquid states as well as the supercritical states. Both models were rigorously tested and properties for common fluids such as oxygen, nitrogen, hydrogen etc were compared against NIST data in both the sub-critical as well as supercritical regimes.

  15. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  16. Numerical modeling of the solar wind flow with observational boundary conditions

    DOE PAGES

    Pogorelov, N. V.; Borovikov, S. N.; Burlaga, L. F.; ...

    2012-11-20

    In this paper we describe our group efforts to develop a self-consistent, data-driven model of the solar wind (SW) interaction with the local interstellar medium. The motion of plasma in this model is described with the MHD approach, while the transport of neutral atoms is addressed by either kinetic or multi-fluid equations. The model and its implementation in the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) are continuously tested and validated by comparing our results with other models and spacecraft measurements. In particular, it was successfully applied to explain an unusual SW behavior discovered by the Voyager 1 spacecraft, i.e., the developmentmore » of a substantial negative radial velocity component, flow turning in the transverse direction, while the latitudinal velocity component goes to very small values. We explain recent SW velocity measurements at Voyager 1 in the context of our 3-D, MHD modeling. We also present a comparison of different turbulence models in their ability to reproduce the SW temperature profile from Voyager 2 measurements. Lastly, the boundary conditions obtained at 50 solar radii from data-driven numerical simulations are used to model a CME event throughout the heliosphere.« less

  17. Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves

    NASA Technical Reports Server (NTRS)

    Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan

    2016-01-01

    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudasaini, Shiva P.; Miller, Stephen A.

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include amore » dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.« less

  19. Miscible displacement of a non-Newtonian fluid in a capillary tube

    NASA Astrophysics Data System (ADS)

    Soori, Tejaswi; Ward, Thomas

    2017-11-01

    This talk focuses on experiments conducted to further our understanding of how to displace an aqueous polymer within a capillary tube (diameter < 1 mm) using a Newtonian fluid. Estimates of the residual film were measured as a function of Reynolds (Re), viscous Atwood (At) and Péclet (Pé) numbers. Aqueous polymers were prepared by mixing ϕ = 0.01-0.1% (wt/wt) Carboxymethyl Cellulose (CMC) in water. We measure the shear viscosity of the aqueous polymer over a broad range of shear rates and fit the data obtained to the Carreau fluid parameters. Separately we measure the average bulk diffusion coefficient of the aqueous polymer and water in water and aqueous polymer phases respectively. Previous studies on the immiscible displacement of polymers have shown residual film thickness to be dependent on the tube diameter. We will investigate if this is true when the two fluids are miscible in nature. American Chemical Society Petroleum Research Fund.

  20. Condition of Development of Channeled Flow in Analogue Partially Molten Medium

    NASA Astrophysics Data System (ADS)

    Takashima, S.; Kumagai, I.; Kurita, K.

    2003-12-01

    Melt migration in partially molten medium is conceptually classified into two contrasting models; homogeneous permeable flow and localized channeled flow. The transition from homogeneous flow to localized one is promoted with advance of melting and deformation of the medium, but the physics behind this transition is not yet clarified well. Here we show two kinds of experimental results which are mutually related. One is a development of the channeled flow in a so-called Rayleigh-Taylor Instability experiments. Dense viscous fluid is poured at the top of the matrix fluid; homogeneous mixture of soft transparent gel and viscous fluid having equal density. Liquid fraction is varied for this matrix fluid to see how the fraction controls the development. At the intermediate gel fraction (between70% to about 40%) the dense fluid at first migrates through the grain boundary as permeable flow. But local heterogeneity in the gel fraction induces relative movement of solid phase, which in turns enhances the localization of the flow and deformation. We measured the motion of fluid phase and solid phase separately by PIV/PTV methods. Estimated relative motion and divergence of velocity field of the solid phase show that the state in the relative movement of the solid phase could cause heterogeneous distribution of the solid fraction. The deformation-induced compaction plays an important role. The second experimental result is rheology of the dense suspension of soft gel and viscous fluid. Deformation experiment with concentric cylinders shows that the mixture system has yield strength at the intermediate gel fraction. In the stress state above the yield strength the region where deformation rate is large has low viscosity and its internal structure evolves to the state in heterogeneous distribution of viscosity. We would like to show that this nature is critical in the development of flow from homogeneous one to localized one.

  1. The influence of interfacial slip on two-phase flow in rough pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucala, Alec; Martinez, Mario J.; Wang, Yifeng

    The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less

  2. The influence of interfacial slip on two-phase flow in rough pores

    DOE PAGES

    Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; ...

    2017-08-01

    The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less

  3. The influence of interfacial slip on two-phase flow in rough pores

    NASA Astrophysics Data System (ADS)

    Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.

    2017-08-01

    The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.

  4. Origin of the megabreccias in the Katanga Copperbelt (D.R.Congo)

    NASA Astrophysics Data System (ADS)

    Cailteux, Jacques L. H.; Muchez, Philippe; De Cuyper, Jana; Dewaele, Stijn; De Putter, Thierry

    2018-04-01

    The megabreccias in the Katanga part of the Neoproterozoic Central African Copperbelt contain up to several km-long blocks and fragments of the Mines Subgroup which host most of the stratiform Cu-Co deposits. New observations, particularly on cores from boreholes drilled at Luiswishi indicate three types of fracturing: 1) brittle post-folding in the Mines Subgroup; 2) hydraulic; and 3) ductile in soft incompetent siltstones of the R.A.T. and Dipeta subgroups. These fracturing phases dislocated the Roan succession into blocks and fragments and, in particular, clearly showed that there is an evolution from an in situ hydraulic fracturing, to a heterometric brecciation implying some movement and abrasion of the fragments. The process points to significant compression, and was accompanied by fluid expulsion and precipitation of dolomite after decompression. Fluid inclusion microthermometry in dolomite grains shows that the fluids were of high salinity and high temperature, suggesting dissolution of evaporites most likely contained in the Roan sedimentary pile. These saline fluids allowed the fluidization of the breccias, facilitating the displacement of the nappes, pinching out (extrusion-like) megabreccias along thrust-faults, and resulting in intrusion of breccias between the blocks or into large fractures. Breccias between the blocks are clearly identified as friction breccias. They contain a fine material, as part of the matrix, resulting from abrasion of the fragments during transportation. Abrasion and attrition explain the rounding of the fragments. A late cementation phase from less saline and lower temperature fluids suggests the addition of meteoric water in the system, and the mixing with the ambient fluids. The minimum burial depth of the meteoric water incursion is estimated at 2.8 km. Such under-saturated fluids may have contributed to the dissolution of residual evaporites and of the evaporitic material from the Kiubo rocks at the base of the nappes, and led to further brecciation, possibly explaining the multi-phase features of the breccia. The megabreccias occur at the base of the thrusts sheets and are marked by thrust-fault zones. Results of the study support a process of formation of the megabreccias related to a fold-and-trust event, and invalidate a syn-orogenic sedimentary origin as an olistostrome formed by subaqueous conglomeratic debris flows and clastic syn-orogenic sediments. They also contradict a pure salt tectonic hypothesis that propose the extrusions and enlargements of allochthonous evaporites-gigabreccia before the Lufilian deformation. However, the model is compatible with a "fluid behaviour" of pressured saline fluids trapped in folds and/or thrust sheets, and resulting from evaporites dissolution at variable depth.

  5. Pore-Lining Composition and Capillary Breakthrough Pressure of Mudstone Caprocks: Sealing Efficiency of Geologic CO2 Storage Sites

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Kotula, P. G.

    2010-12-01

    Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < ~800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock—thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability. We thank the U.S. Department of Energy’s National Energy Technology Laboratory and the Office of Basic Energy Sciences, and the Southeast and Southwest Carbon Sequestration Partnerships for supporting this work. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Accuracy of non-invasive measurement of haemoglobin concentration by pulse co-oximetry during steady-state and dynamic conditions in liver surgery.

    PubMed

    Vos, J J; Kalmar, A F; Struys, M M R F; Porte, R J; Wietasch, J K G; Scheeren, T W L; Hendriks, H G D

    2012-10-01

    The Masimo Radical 7 (Masimo Corp., Irvine, CA, USA) pulse co-oximeter(®) calculates haemoglobin concentration (SpHb) non-invasively using transcutaneous spectrophotometry. We compared SpHb with invasive satellite-lab haemoglobin monitoring (Hb(satlab)) during major hepatic resections both under steady-state conditions and in a dynamic phase with fluid administration of crystalloid and colloid solutions. Thirty patients undergoing major hepatic resection were included and randomized to receive a fluid bolus of 15 ml kg(-1) colloid (n=15) or crystalloid (n=15) solution over 30 min. SpHb was continuously measured on the index finger, and venous blood samples were analysed in both the steady-state phase (from induction until completion of parenchymal transection) and the dynamic phase (during fluid bolus). Correlation was significant between SpHb and Hb(satlab) (R(2)=0.50, n=543). The modified Bland-Altman analysis for repeated measurements showed a bias (precision) of -0.27 (1.06) and -0.02 (1.07) g dl(-1) for the steady-state and dynamic phases, respectively. SpHb accuracy increased when Hb(satlab) was <10 g dl(-1), with a bias (precision) of 0.41 (0.47) vs -0.26 (1.12) g dl(-1) for values >10 g dl(-1), but accuracy decreased after colloid administration (R(2)=0.25). SpHb correlated moderately with Hb(satlab) with a slight underestimation in both phases in patients undergoing major hepatic resection. Accuracy increased for lower Hb(satlab) values but decreased in the presence of colloid solution. Further improvements are necessary to improve device accuracy under these conditions, so that SpHb might become a sensitive screening device for clinically significant anaemia.

  7. Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements.

    PubMed

    Borrell, Jordi H; Montero, M Teresa; Morros, Antoni; Domènech, Òscar

    2015-11-01

    In this work, we will describe in quantitative terms the unspecific recognition between lactose permease (LacY) of Escherichia coli, a polytopic model membrane protein, and one of the main components of the inner membrane of this bacterium. Supported lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) (3:1, mol/mol) in the presence of Ca(2+) display lateral phase segregation that can be distinguished by atomic force microscopy (AFM) as well as force spectroscopy. LacY shows preference for fluid (Lα) phases when it is reconstituted in POPE : POPG (3:1, mol/mol) proteoliposomes at a lipid-to-protein ratio of 40. When the lipid-to-protein ratio is decreased down to 0.5, two domains can be distinguished by AFM. While the upper domain is formed by self-segregated units of LacY, the lower domain is constituted only by phospholipids in gel (Lβ) phase. On the one hand, classical differential scanning calorimetry (DSC) measurements evidenced the segregation of a population of phospholipids and point to the existence of a boundary region at the lipid-protein interface. On the other hand, Förster Resonance Energy Transfer (FRET) measurements in solution evidenced that POPE is selectively recognized by LacY. A binary pseudophase diagram of POPE : POPG built from AFM observations enables to calculate the composition of the fluid phase where LacY is inserted. These results are consistent with a model where POPE constitutes the main component of the lipid-LacY interface segregated from the fluid bulk phase where POPG predominates. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Measurement of K-27, an oxime-type cholinesterase reactivator by high-performance liquid chromatography with electrochemical detection from different biological samples.

    PubMed

    Gyenge, Melinda; Kalász, Huba; Petroianu, George A; Laufer, Rudolf; Kuca, Kamil; Tekes, Kornélia

    2007-08-17

    K-27 is a bisquaternary asymmetric pyridinium aldoxime-type cholinesterase reactivator of use in the treatment of poisoning with organophosphorous esterase inhibitors. A sensitive, simple and reliable reverse-phase high-performance liquid chromatographic method with electrochemical detection was developed for the measurement of K-27 concentrations in rat brain, cerebrospinal fluid, serum and urine samples. Male Wistar rats were treated intramuscularly with K-27 and the samples were collected 60 min later. Separation was carried out on an octadecyl silica stationary phase and a disodium phosphate solution (pH 3.7) containing citric acid, octane sulphonic acid and acetonitrile served as mobile phase. Measurements were carried out at 30 degrees C at E(ox) 0.65 V. The calibration curve was linear through the range of 10-250 ng/mL. Accuracy, precision and the limit of detection calculated were satisfactory according to internationally accepted criteria. Limit of quantitation was 10 ng/mL. The method developed is reliable and sensitive enough for monitoring K-27 levels from different biological samples including as little as 10 microL of cerebrospinal fluid. The method--with slight modification in the composition of the mobile phase--can be used to measure a wide range of other related pyridinium aldoxime-type cholinesterase reactivators.

  9. The application of CFD to the modelling of fires in complex geometries

    NASA Astrophysics Data System (ADS)

    Burns, A. D.; Clarke, D. S.; Guilbert, P.; Jones, I. P.; Simcox, S.; Wilkes, N. S.

    The application of Computational Fluid Dynamics (CFD) to industrial safety is a challenging activity. In particular it involves the interaction of several different physical processes, including turbulence, combustion, radiation, buoyancy, compressible flow and shock waves in complex three-dimensional geometries. In addition, there may be multi-phase effects arising, for example, from sprinkler systems for extinguishing fires. The FLOW3D software (1-3) from Computational Fluid Dynamics Services (CFDS) is in widespread use in industrial safety problems, both within AEA Technology, and also by CFDS's commercial customers, for example references (4-13). This paper discusses some other applications of FLOW3D to safety problems. These applications illustrate the coupling of the gas flows with radiation models and combustion models, particularly for complex geometries where simpler radiation models are not applicable.

  10. A scintillator purification plant and fluid handling system for SNO+

    NASA Astrophysics Data System (ADS)

    Ford, Richard J.

    2015-08-01

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with 130Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPO and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.

  11. A novel partitioning method for block-structured adaptive meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtainmore » the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.« less

  12. A novel partitioning method for block-structured adaptive meshes

    NASA Astrophysics Data System (ADS)

    Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-07-01

    We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.

  13. Methods for improved forewarning of critical events across multiple data channels

    DOEpatents

    Hively, Lee M [Philadelphia, TN

    2007-04-24

    This disclosed invention concerns improvements in forewarning of critical events via phase-space dissimilarity analysis of data from mechanical devices, electrical devices, biomedical data, and other physical processes. First, a single channel of process-indicative data is selected that can be used in place of multiple data channels without sacrificing consistent forewarning of critical events. Second, the method discards data of inadequate quality via statistical analysis of the raw data, because the analysis of poor quality data always yields inferior results. Third, two separate filtering operations are used in sequence to remove both high-frequency and low-frequency artifacts using a zero-phase quadratic filter. Fourth, the method constructs phase-space dissimilarity measures (PSDM) by combining of multi-channel time-serial data into a multi-channel time-delay phase-space reconstruction. Fifth, the method uses a composite measure of dissimilarity (C.sub.i) to provide a forewarning of failure and an indicator of failure onset.

  14. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.

    PubMed

    Pau, George S H; Almgren, Ann S; Bell, John B; Lijewski, Michael J

    2009-11-28

    In this paper, we present a second-order accurate adaptive algorithm for solving multi-phase, incompressible flow in porous media. We assume a multi-phase form of Darcy's law with relative permeabilities given as a function of the phase saturation. The remaining equations express conservation of mass for the fluid constituents. In this setting, the total velocity, defined to be the sum of the phase velocities, is divergence free. The basic integration method is based on a total-velocity splitting approach in which we solve a second-order elliptic pressure equation to obtain a total velocity. This total velocity is then used to recast component conservation equations as nonlinear hyperbolic equations. Our approach to adaptive refinement uses a nested hierarchy of logically rectangular grids with simultaneous refinement of the grids in both space and time. The integration algorithm on the grid hierarchy is a recursive procedure in which coarse grids are advanced in time, fine grids are advanced multiple steps to reach the same time as the coarse grids and the data at different levels are then synchronized. The single-grid algorithm is described briefly, but the emphasis here is on the time-stepping procedure for the adaptive hierarchy. Numerical examples are presented to demonstrate the algorithm's accuracy and convergence properties and to illustrate the behaviour of the method.

  15. Lateral Organization of Lipids in Multi-component Liposomes

    NASA Astrophysics Data System (ADS)

    Ramachandran, Sanoop; Laradji, Mohamed; Sunil Kumar, P. B.

    2009-04-01

    Inspite of the fluid nature and low elastic modulus, membranes play a crucial role in maintaining the structural integrity of the cell. Recent experiments have challenged the passive nature of the membrane as proposed by the classical fluid mosaic model. Experiments indicate that biomembranes of eukaryotic cells may be laterally organized into small nanoscopic domains, called rafts, which are rich in sphingomyelin and cholesterol. It is largely believed that this in-plane organization is essential for a variety of physiological functions such as signaling, recruitment of specific proteins and endocytosis. However, elucidation of the fundamental issues including the mechanisms leading to the formation of lipid rafts, their stability, and their size remain difficult. This has reiterated the importance of understanding the equilibrium phase behavior and the kinetics of fluid multicomponent lipid membranes before attempts are made to find the effects of more complex mechanisms that may be involved in the formation and stability of lipid rafts. Current increase in interest in the domain formation in multicomponent membranes also stems from the experiments demonstrating fluid-fluid coexistence in mixtures of lipids and cholesterol and the success of several computational models in predicting their behavior. Here we review time dependent Ginzburg Landau model, dynamical triangulation Monte Carlo, and dissipative particle dynamics which are some of the methods that are commonly employed.

  16. Mud extrusion and ring-fault gas seepage - upward branching fluid discharge at a deep-sea mud volcano.

    PubMed

    Loher, M; Pape, T; Marcon, Y; Römer, M; Wintersteller, P; Praeg, D; Torres, M; Sahling, H; Bohrmann, G

    2018-04-19

    Submarine mud volcanoes release sediments and gas-rich fluids at the seafloor via deeply-rooted plumbing systems that remain poorly understood. Here the functioning of Venere mud volcano, on the Calabrian accretionary prism in ~1,600 m water depth is investigated, based on multi-parameter hydroacoustic and visual seafloor data obtained using ship-borne methods, ROVs, and AUVs. Two seepage domains are recognized: mud breccia extrusion from a summit, and hydrocarbon venting from peripheral sites, hosting chemosynthetic ecosystems and authigenic carbonates indicative of long-term seepage. Pore fluids in freshly extruded mud breccia (up to 13 °C warmer than background sediments) contained methane concentrations exceeding saturation by 2.7 times and chloride concentrations up to five times lower than ambient seawater. Gas analyses indicate an underlying thermogenic hydrocarbon source with potential admixture of microbial methane during migration along ring faults to the peripheral sites. The gas and pore water analyses point to fluids sourced deep (>3 km) below Venere mud volcano. An upward-branching plumbing system is proposed to account for co-existing mud breccia extrusion and gas seepage via multiple surface vents that influence the distribution of seafloor ecosystems. This model of mud volcanism implies that methane-rich fluids may be released during prolonged phases of moderate activity.

  17. High fidelity phase locked PIV measurements analysing the flow fields surrounding an oscillating piezoelectric fan

    NASA Astrophysics Data System (ADS)

    Jeffers, Nicholas; Nolan, Kevin; Stafford, Jason; Donnelly, Brian

    2014-07-01

    Piezoelectric fans have been studied extensively and are seen as a promising technology for thermal management due to their ability to provide quiet, reliable cooling with low power consumption. The fluid mechanics of an unconfined piezoelectric fan are complex which is why the majority of the literature to date confines the fan in an attempt to simplify the flow field. This paper investigates the fluid mechanics of an unconfined fan operating in its first vibration frequency mode. The piezoelectric fan used in this study measures 12.7mm × 70mm and resonates at 92.5Hz in air. A custom built experimental facility was developed to capture the fan's flow field using phase locked Particle Image Velocimetry (PIV). The phase locked PIV results are presented in terms of vorticity and show the formation of a horse shoe vortex. A three dimensional A2 criterion constructed from interpolated PIV measurements was used to identify the vortex core in the vicinity of the fan. This analysis was used to clearly identify the formation of a horse shoe vortex that turns into a hairpin vortex before it breaks up due to a combination of vortex shedding and flow along the fan blade. The results presented in this paper contribute to both the fluid dynamics and heat transfer literature concerning first mode fan oscillation.

  18. The Impact of Fluid Inertia on In Vivo Estimation of Mitral Valve Leaflet Constitutive Properties and Mechanics.

    PubMed

    Bark, David L; Dasi, Lakshmi P

    2016-05-01

    We examine the influence of the added mass effect (fluid inertia) on mitral valve leaflet stress during isovolumetric phases. To study this effect, oscillating flow is applied to a flexible membrane at various frequencies to control inertia. Resulting membrane strain is calculated through a three-dimensional reconstruction of markers from stereo images. To investigate the effect in vivo, the analysis is repeated on a published dataset for an ovine mitral valve (Journal of Biomechanics 42(16): 2697-2701). The membrane experiment demonstrates that the relationship between pressure and strain must be corrected with a fluid inertia term if the ratio of inertia to pressure differential approaches 1. In the mitral valve, this ratio reaches 0.7 during isovolumetric contraction for an acceleration of 6 m/s(2). Acceleration is reduced by 72% during isovolumetric relaxation. Fluid acceleration also varies along the leaflet during isovolumetric phases, resulting in spatial variations in stress. These results demonstrate that fluid inertia may be the source of the temporally and spatially varying stiffness measurements previously seen through inverse finite element analysis of in vivo data during isovolumetric phases. This study demonstrates that there is a need to account for added mass effects when analyzing in vivo constitutive relationships of heart valves.

  19. Process-scale modelling of microstructure in direct chill casting of aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bedel, M.; Heyvaert, L.; Založnik, M.; Combeau, H.; Daloz, D.; Lesoult, G.

    2015-06-01

    The mechanical properties of an alloy being related to its microstructure, the understanding of the mechanisms responsible for the grain structure formation in direct chill casting is crucial. However, the grain size prediction by modelling is difficult since a variety of multi-scale coupled phenomena have to be considered. Nucleation and growth of the grains are interrelated, and the macroscopic transport phenomena such as the motion of grains and inoculant particles with the flow impact the nucleation-gowth competition. Thus we propose to study the grain size distribution of a 5182 alloy industrial scale slab of 510 mm thickness, both non-inoculated and inoculated with Al-3Ti-1B, for which experimental grain size measurements are available. We use a volume-averaged two-phase multi-scale model that describes nucleation from inoculant particles and grain growth, fully coupled with macroscopic transport phenomena: fluid flow induced by natural convection and solidification shrinkage, heat, mass and solute mass transport, grains and inoculant particles motion. We analyze the effect of liquid and grain motion as the effect of grain morphology on microstructure formation and we show in which extent those phenomena are responsible for the grain size distribution observed experimentally. The effect of the refiner level is also studied.

  20. Predicting the Fluid-Phase Behavior of Aqueous Solutions of ELP (VPGVG) Sequences Using SAFT-VR.

    PubMed

    Zhao, Binwu; Lindeboom, Tom; Benner, Steven; Jackson, George; Galindo, Amparo; Hall, Carol K

    2017-10-24

    The statistical associating fluid theory for potentials of variable range (SAFT-VR) is used to predict the fluid phase behavior of elastin-like polypeptide (ELP) sequences in aqueous solution with special focus on the loci of lower critical solution temperatures (LCSTs). A SAFT-VR model for these solutions is developed following a coarse-graining approach combining information from atomistic simulations and from previous SAFT models for previously reported relevant systems. Constant-pressure temperature-composition phase diagrams are determined for solutions of (VPGVG) n sequences + water with n = 1 to 300. The SAFT-VR equation of state lends itself to the straightforward calculation of phase boundaries so that complete fluid-phase equilibria can be calculated efficiently. A broad range of thermodynamic conditions of temperature and pressure are considered, and regions of vapor-liquid and liquid-liquid coexistence, including LCSTs, are found. The calculated phase boundaries at low concentrations match those measured experimentally. The temperature-composition phase diagrams of the aqueous ELP solutions at low pressure (0.1 MPa) are similar to those of types V and VI phase behavior in the classification of Scott and van Konynenburg. An analysis of the high-pressure phase behavior confirms, however, that a closed-loop liquid-liquid immiscibility region, separate from the gas-liquid envelope, is present for aqueous solutions of (VPGVG) 30 ; such a phase diagram is typical of type VI phase behavior. ELPs with shorter lengths exhibit both liquid-liquid and gas-liquid regions, both of which become less extensive as the chain length of the ELP is decreased. The strength of the hydrogen-bonding interaction is also found to affect the phase diagram of the (VPGVG) 30 system in that the liquid-liquid and gas-liquid regions expand as the hydrogen-bonding strength is decreased and shrink as it is increased. The LCSTs of the mixtures are seen to decrease as the ELP chain length is increased.

  1. Phase-Imaging with a Sharpened Multi-Walled Carbon Nanotube AFM Tip: Investigation of Low-k Dielectric Polymer Hybrids

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Stevens, Ramsey M.; Meyyappan, M.; Volksen, Willi; Miller, Robert D.

    2005-01-01

    Phase shift tapping mode scanning force microscopy (TMSFM) has evolved into a very powerful technique for the nanoscale surface characterization of compositional variations in heterogeneous samples. Phase shift signal measures the difference between the phase angle of the excitation signal and the phase angle of the cantilever response. The signal correlates to the tip-sample inelastic interactions, identifying the different chemical and/or physical property of surfaces. In general, the resolution and quality of scanning probe microscopic images are highly dependent on the size of the scanning probe tip. In improving AFM tip technology, we recently developed a technique for sharpening the tip of a multi-walled carbon nanotube (CNT) AFM tip, reducing the radius of curvature of the CNT tip to less than 5 nm while still maintaining the inherent stability of multi-walled CNT tips. Herein we report the use of sharpened (CNT) AFM tips for phase-imaging of polymer hybrids, a precursor for generating nanoporous low-k dielectrics for on-chip interconnect applications. Using sharpened CNT tips, we obtained phase-contrast images having domains less than 10 nm. In contrast, conventional Si tips and unsharpened CNT tips (radius greater than 15 nm) were not able to resolve the nanoscale domains in the polymer hybrid films. C1early, the size of the CNT tip contributes significantly to the resolution of phase-contrast imaging. In addition, a study on the nonlinear tapping dynamics of the multi-walled CNT tip indicates that the multi-walled CNT tip is immune to conventional imaging instabilities related to the coexistence of attractive and repulsive tapping regimes. This factor may also contribute to the phase-contrast image quality of multi-walled CNT AFM tips. This presentation will also offer data in support of the stability of the CNT tip for phase shift TMSFM.

  2. Supersaturation of Dissolved Hydrogen and Methane in Rumen of Tibetan Sheep

    PubMed Central

    Wang, Min; Ungerfeld, Emilio M.; Wang, Rong; Zhou, Chuan She; Basang, Zhu Zha; Ao, Si Man; Tan, Zhi Liang

    2016-01-01

    Hydrogen (H2) is an essential substrate for methanogens to produce methane (CH4), and also influences pathways of volatile fatty acids (VFA) production in the rumen. Dissolved H2 (H2 (aq)) is the form of H2 available to microbes, and dissolved CH4 (CH4 (aq)) is important for indicating methanogens activity. Rumen H2 (aq) concentration has been estimated by assuming equilibrium with headspace gaseous H2 (H2 (g)) concentration using Henry's law, and has also been directly measured in the liquid phase in some in vitro and in vivo experiments. In this in vivo study, H2 (aq) and CH4 (aq) concentration measured directly in rumen fluid and their corresponding concentrations estimated from their gaseous phase concentrations, were compared to investigate the existence of equilibrium between the gas and liquid phases. Twenty-four Tibetan sheep were randomly assigned to two mixed diets containing the same concentrate mixed with oat grass (OG diet) or barley straw (BS diet). Rumen gaseous phase and contents were sampled using rumenocentesis and oral stomach tubing, respectively. Rumen H2 (aq) and CH4 (aq) concentration and VFA profile differed between sheep fed OG and BS diets. Measured H2 (aq) and CH4 (aq) concentration were greater than H2 (aq) and CH4 (aq) concentrations estimated using gas concentrations, indicating lack of equilibrium between gas and liquid phase and supersaturation of H2 and CH4 in rumen fluid. As a consequence, Gibbs energy changes (ΔG) estimated for various metabolic pathways were different when calculated using dissolved gases concentrations directly measured and when using dissolved gases concentrations assuming equilibrium with the gaseous phase. Dissolved CH4, but not CH4 (g), was positively correlated with H2 (aq). Both H2 (aq) and H2 (g) concentrations were positively correlated with the molar percentage of butyrate and negatively correlated with the molar percentage of acetate. In summary, rumen fluid was supersaturated with both H2 and CH4, and H2 (aq) was closely associated with the VFA profile and CH4 (aq) concentration. The assumption of equilibrium between dissolved gases and gaseous phase affected ΔG estimation. PMID:27379028

  3. Dusty gas with one fluid in smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Laibe, Guillaume; Price, Daniel J.

    2014-05-01

    In a companion paper we have shown how the equations describing gas and dust as two fluids coupled by a drag term can be re-formulated to describe the system as a single-fluid mixture. Here, we present a numerical implementation of the one-fluid dusty gas algorithm using smoothed particle hydrodynamics (SPH). The algorithm preserves the conservation properties of the SPH formalism. In particular, the total gas and dust mass, momentum, angular momentum and energy are all exactly conserved. Shock viscosity and conductivity terms are generalized to handle the two-phase mixture accordingly. The algorithm is benchmarked against a comprehensive suit of problems: DUSTYBOX, DUSTYWAVE, DUSTYSHOCK and DUSTYOSCILL, each of them addressing different properties of the method. We compare the performance of the one-fluid algorithm to the standard two-fluid approach. The one-fluid algorithm is found to solve both of the fundamental limitations of the two-fluid algorithm: it is no longer possible to concentrate dust below the resolution of the gas (they have the same resolution by definition), and the spatial resolution criterion h < csts, required in two-fluid codes to avoid over-damping of kinetic energy, is unnecessary. Implicit time-stepping is straightforward. As a result, the algorithm is up to ten billion times more efficient for 3D simulations of small grains. Additional benefits include the use of half as many particles, a single kernel and fewer SPH interpolations. The only limitation is that it does not capture multi-streaming of dust in the limit of zero coupling, suggesting that in this case a hybrid approach may be required.

  4. TOUGH3 v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PAU, GEORGE; JUNG, YOOJIN; FINSTERLE, STEFAN

    2016-09-14

    TOUGH3 V1.0 capabilities to simulate multi-dimensional, multi-phase, multi-component, non-isothermal flow and transport in fractured porous media, with applications geosciences and reservoir engineering and other application areas. TOUGH3 V1.0 supports a number of different combinations of fluids and components (updated equation-of-state (EOS) modules from previous versions of TOUGH, including EOS1, EOS2, EOS3, EOS4, EOS5, EOS7, EOS7R, EOS7C, EOS7CA, EOS8, EOS9, EWASG, TMVOC, ECO2N, and ECO2M). This upgrade includes (a) expanded list of updated equation-of-state (EOS) modules, (b) new hysteresis models, (c) new implementation of parallel and solver functionalities, (d) new linear solver options based on PETSc libraries, (e) new automatic buildmore » system that automatically downloads and builds third-party libraries and TOUGH3, (f) new printout in CSV format, (g) dynamic memory allocation, (h) various user features, and (i) bug fixes.« less

  5. Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals.

    PubMed

    Porter, Daniel; Savage, John R; Cohen, Itai; Spicer, Patrick; Caggioni, Marco

    2012-04-01

    Droplet breakup of many Newtonian fluids is well described by current experiments, theory, and simulations. Breakup in complex fluids where interactions between mesoscopic structural features can affect the flows remains poorly understood and a burgeoning area of research. Here, we report on our investigations of droplet breakup in thermotropic liquid crystals. We investigate breakup in the smectic, nematic, and isotropic phases of 4-cyano 4-octylbiphenyl (8CB) and the nematic and isotropic phases of 4-cyano 4-pentylbiphenyl (5CB). The experiment consists of varying the ambient temperature to control liquid crystalline phase and imaging breakup using a fast video camera at up to 110000 frames/s. We expand on previous work [John R. Savage et al., Soft Matter 6, 892 (2010)] that shows breakup in the smectic phase is symmetric, producing no satellite droplets, and is well described by a similarity solution for a shear-thinning power-law fluid. We show that in the nematic phase the breakup occurs in two stages. In the first stage, the breakup is symmetric and the power-law exponent for the minimum radius dependence on the time left to breakup is 1.2

  6. Termination Shock Transition in Multi-ion Multi-fluid MHD Models of the Heliosphere

    NASA Astrophysics Data System (ADS)

    Zieger, B.; Opher, M.; Toth, G.

    2013-12-01

    As evidenced by Voyager 2 observations, pickup ions (PUIs) play a significant role in the termination shock (TS) transition of the solar wind [Richardson et al., Nature, 2008]. Recent kinetic simulations [Ariad and Gedalin, JGR, 2013] came to the conclusion that the contribution of the high energy tail of PUIs is negligible at the shock transition. The Rankine-Hugoniot (R-H) relations are determined by the low energy body of PUIs. Particle-in-cell simulations by Wu et al. [JGR, 2010] have shown that the sum of the thermal solar wind and non-thermal PUI distributions downstream of the TS can be approximated with a 2-Maxwellian distribution. It is important to note that this 2-Maxwellian distribution neglects the suprathermal tail population that has a characteristic power-law distribution. These results justify the fluid description of PUIs in our large-scale multi-ion multi-fluid MHD simulations of the heliospheric interface [Prested et al., JGR, 2013; Zieger et al., GRL, 2013]. The closure of the multi-ion MHD equations could be implemented with separate momentum and energy equations for the different ion species (thermal solar wind and PUIs) where the transfer rate of momentum and energy between the two ion species are considered as source terms, like in Glocer et al. [JGR, 2009]. Another option is to solve for the total energy equation with an additional equation for the PUI pressure, as suggested by Fahr and Chalov [A&A, 2008]. In this paper, we validate the energy conservation and the R-H relations across the TS in different numerical implementations of our latest multi-ion multi-fluid MHD model. We assume an instantaneous pickup process, where the convection velocity of the two ion fluids are the same, and the so-called strong scattering approximation, where newly born PUIs attain their spherical shell distribution within a short distance on fluid scales (spatial scales much larger than the respective ion gyroradius).

  7. Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Menon, Surabi

    2005-01-01

    The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.

  8. HYDRATE v1.5 OPTION OF TOUGH+ v1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, George

    HYDRATE v1.5 is a numerical code that for the simulation of the behavior of hydrate-bearing geologic systems, and represents the third update of the code since its first release [Moridis et al., 2008]. It is an option of TOUGH+ v1.5 [Moridis and Pruess, 2014], a successor to the TOUGH2 [Pruess et al., 1999, 2012] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. HYDRATE v1.5 needs the TOUGH+ v1.5 core code in order to compile and execute. It is written in standard FORTRAN 95/2003, and can be run on any computational platformmore » (workstation, PC, Macintosh) for which such compilers are available. By solving the coupled equations of mass and heat balance, the fully operational TOUGH+HYDRATE code can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH 4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy's law is valid. TOUGH+HYDRATE v1.5 includes both an equilibrium and a kinetic model of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH 4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects.« less

  9. TOUGH+HYDRATE v1.2 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moridis, George J.; Kowalsky, Michael B.; Pruess, Karsten

    TOUGH+HYDRATE v1.2 is a code for the simulation of the behavior of hydratebearing geologic systems, and represents the second update of the code since its first release [Moridis et al., 2008]. By solving the coupled equations of mass and heat balance, TOUGH+HYDRATE can model the non-isothermal gas release, phase behavior and flow of fluids and heat under conditions typical of common natural CH4-hydrate deposits (i.e., in the permafrost and in deep ocean sediments) in complex geological media at any scale (from laboratory to reservoir) at which Darcy’s law is valid. TOUGH+HYDRATE v1.2 includes both an equilibrium and a kinetic modelmore » of hydrate formation and dissociation. The model accounts for heat and up to four mass components, i.e., water, CH4, hydrate, and water-soluble inhibitors such as salts or alcohols. These are partitioned among four possible phases (gas phase, liquid phase, ice phase and hydrate phase). Hydrate dissociation or formation, phase changes and the corresponding thermal effects are fully described, as are the effects of inhibitors. The model can describe all possible hydrate dissociation mechanisms, i.e., depressurization, thermal stimulation, salting-out effects and inhibitor-induced effects. TOUGH+HYDRATE is a member of TOUGH+, the successor to the TOUGH2 [Pruess et al., 1991] family of codes for multi-component, multiphase fluid and heat flow developed at the Lawrence Berkeley National Laboratory. It is written in standard FORTRAN 95/2003, and can be run on any computational platform (workstation, PC, Macintosh) for which such compilers are available.« less

  10. Multi-delay, phase coherent pulse pair generation for precision Ramsey-frequency comb spectroscopy.

    PubMed

    Morgenweg, J; Eikema, K S E

    2013-03-11

    We demonstrate the generation of phase-stable mJ-pulse pairs at programmable inter-pulse delays up to hundreds of nanoseconds. A detailed investigation of potential sources for phase shifts during the parametric amplification of the selected pulses from a Ti:Sapphire frequency comb is presented, both numerically and experimentally. It is shown that within the statistical error of the phase measurement of 10 mrad, there is no dependence of the differential phase shift over the investigated inter-pulse delay range of more than 300 ns. In combination with nonlinear upconversion of the amplified pulses, the presented system will potentially enable short wavelength (<100 nm), multi-transition Ramsey-frequency comb spectroscopy at the kHz-level.

  11. Mechanical properties of in situ consolidated nanocrystalline multi-phase Al-Pb-W alloy studied by nanoindentation

    NASA Astrophysics Data System (ADS)

    Varam, Sreedevi; Prasad, Muvva D.; Rao, K. Bhanu Sankara; Rajulapati, Koteswararao V.

    2016-12-01

    Formation of chunks of various sizes ranging between 2 and 6 mm was achieved using high-energy ball milling in Al-1at.%Pb-1at.%W alloy system at room temperature during milling itself, aiding in in situ consolidation. X-ray diffraction and transmission electron microscopy (TEM) studies indicate the formation of multi-phase structure with nanocrystalline structural features. From TEM data, an average grain size of 23 nm was obtained for Al matrix and the second-phase particles were around 5 nm. A high strain rate sensitivity (SRS) of 0.071 ± 0.004 and an activation volume of 4.71b3 were measured using nanoindentation. Modulus mapping studies were carried out using Berkovich tip in dynamic mechanical analysis mode coupled with in situ scanning probe microscopy imaging. The salient feature of this investigation is highlighting the role of different phases, their crystal structures and the resultant interfaces on the overall SRS and activation volume of a multi-phase nc material.

  12. Final Scientific/Technical Report: Correlations and Fluctuations in Weakly Collisional Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiff, Frederick

    Plasma is a state of matter that exhibits a very rich range of phenomena. To begin with, plasma is both electrical and mechanical - bringing together theories of particle motion and the electromagnetic field. Furthermore, and especially important for this project, a weakly-collisional plasma, such as is found in high-temperature (fusion energy) experiments on earth and the majority of contexts in space and astrophysics, has many moving parts. For example, sitting in earth’s atmosphere we are immersed in a mechanical wave field (sound), a possibly turbulent fluid motion (wind), and an electromagnetic vector wave field with two polarizations (light). Thismore » is already enough to produce a rich range of possibilities. In plasma, the electromagnetic field is coupled to the mechanical motion of the medium because it is ionized. Furthermore, a weakly-collisional plasma supports an infinite number of mechanically independent fluids. Thus, plasmas support an infinite number of independent electromechanical waves. Much has been done to describe plasmas with "reduced models" of various kinds. The goal of this project was to both explore the validity of reduced plasma models that are in use, and to propose and validate new models of plasma motion. The primary means to his end was laboratory experiments employing both electrical probes and laser spectroscopy. Laser spectroscopy enables many techniques which can separate the spectrum of independent fluid motions in the ion phase-space. The choice was to focus on low frequency electrostatic waves because the electron motion is relatively simple, the experiments can be on a spatial scale of a few meters, and all the relevant parameters can be measured with a few lasers systems. No study of this kind had previously been undertaken for the study of plasmas. The validation of theories required that the experimental descriptions be compared with theory and simulation in detail. It was found that even multi-fluid theories leave out a large part of the complexity of plasma motion. Reduced descriptions were found to fail under most circumstances. A new technique was developed that enabled a measurement of the phase-space resolved ion correlation function for the first time. The wide range of plasma dynamics possible became clear through this technique. It was found that collisionless (Vlasov) theory has a large field of application even when the plasma is weakly-collisional. A new approach, the kinetic wave expansion, was proposed, tested and found to be very useful for describing electrostatic ion waves. This project demonstrated a new way of looking at the "degrees-of-freedom" of plasmas and provided significant validation tests of fluid and kinetic plasma descriptions.« less

  13. Linear induction pump

    DOEpatents

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  14. Computational Analyses of Pressurization in Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Ahuja, Vineet; Hosangadi, Ashvin; Mattick, Stephen; Lee, Chun P.; Field, Robert E.; Ryan, Harry

    2008-01-01

    A) Advanced Gas/Liquid Framework with Real Fluids Property Routines: I. A multi-fluid formulation in the preconditioned CRUNCH CFD(Registered TradeMark) code developed where a mixture of liquid and gases can be specified: a) Various options for Equation of state specification available (from simplified ideal fluid mixtures, to real fluid EOS such as SRK or BWR models). b) Vaporization of liquids driven by pressure value relative to vapor pressure and combustion of vapors allowed. c) Extensive validation has been undertaken. II. Currently working on developing primary break-up models and surface tension effects for more rigorous phase-change modeling and interfacial dynamics B) Framework Applied to Run-time Tanks at Ground Test Facilities C) Framework Used For J-2 Upper Stage Tank Modeling: 1) NASA MSFC tank pressurization: a) Hydrogen and oxygen tank pre-press, repress and draining being modeled at NASA MSFC. 2) NASA AMES tank safety effort a) liquid hydrogen and oxygen are separated by a baffle in the J-2 tank. We are modeling pressure rise and possible combustion if a hole develops in the baffle and liquid hydrogen leaks into the oxygen tank. Tank pressure rise rates simulated and risk of combustion evaluated.

  15. In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials.

    PubMed

    Wang, Henan; Zheng, Yang; Liu, Jinghua; Jiang, Chengbao; Li, Yan

    2017-02-01

    The in vitro biodegradable properties and cytocompatibility of Fe-Ga alloys including Fe 81 Ga 19 , (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 , and pure Fe were investigated for biomedical applications. The microstructure of the alloys was characterized using X-ray diffraction spectroscopy and optical microscopy. The results showed that A2 and D0 3 phases were detected for the three types of Fe-Ga alloys, and additional Fe 2 B and TaC phases were found in the (Fe 81 Ga 19 ) 98 B 2 and (Fe 81 Ga 19 ) 99.5 (TaC) 0.5 alloys, respectively. The corrosion rates of the Fe-Ga alloys were higher than that of pure Fe, as demonstrated by both potentiodynamic polarization measurements and immersion tests in simulated body fluid. The alloying element Ga lowered the corrosion potential of the Fe matrix and made it more susceptible to corrosion. Severe pitting corrosion developed on the surface of the Fe 81 Ga 19 alloy after the addition of ternary B or TaC due to the multi-phase microstructures. The MC3T3-E1 cells exhibited good adhesion and proliferation behavior on the surfaces of the Fe-Ga alloys after culture for 4h and 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Kassemi, Mohammad; Kartuzova, Olga

    2016-03-01

    Pressurization and pressure control in cryogenic storage tanks are to a large extent affected by heat and mass transport across the liquid-vapor interface. These mechanisms are, in turn, controlled by the kinetics of the phase change process and the dynamics of the turbulent recirculating flows in the liquid and vapor phases. In this paper, the effects of accommodation coefficient and interfacial turbulence on tank pressurization and pressure control simulations are examined. Comparison between numerical predictions and ground-based measurements in two large liquid hydrogen tank experiments, performed in the K-site facility at NASA Glenn Research Center (GRC) and the Multi-purpose Hydrogen Test Bed (MHTB) facility at NASA Marshall Space Flight Center (MSFC), are used to show the impact of accommodation coefficient and interfacial and vapor phase turbulence on evolution of pressure and temperatures in the cryogenic storage tanks. In particular, the self-pressurization comparisons indicate that: (1) numerical predictions are essentially independent of the magnitude of the accommodation coefficient; and (2) surprisingly, laminar models sometimes provide results that are in better agreement with experimental self-pressurization rates, even in parametric ranges where the bulk flow is deemed fully turbulent. In this light, shortcomings of the present CFD models, especially, numerical treatments of interfacial mass transfer and turbulence, as coupled to the Volume-of-Fluid (VOF) interface capturing scheme, are underscored and discussed.

  17. Development and validation of an instrument to measure nurse educator perceived confidence in clinical teaching.

    PubMed

    Nguyen, Van N B; Forbes, Helen; Mohebbi, Mohammadreza; Duke, Maxine

    2017-12-01

    Teaching nursing in clinical environments is considered complex and multi-faceted. Little is known about the role of the clinical nurse educator, specifically the challenges related to transition from clinician, or in some cases, from newly-graduated nurse to that of clinical nurse educator, as occurs in developing countries. Confidence in the clinical educator role has been associated with successful transition and the development of role competence. There is currently no valid and reliable instrument to measure clinical nurse educator confidence. This study was conducted to develop and psychometrically test an instrument to measure perceived confidence among clinical nurse educators. A multi-phase, multi-setting survey design was used. A total of 468 surveys were distributed, and 363 were returned. Data were analyzed using exploratory and confirmatory factor analyses. The instrument was successfully tested and modified in phase 1, and factorial validity was subsequently confirmed in phase 2. There was strong evidence of internal consistency, reliability, content, and convergent validity of the Clinical Nurse Educator Skill Acquisition Assessment instrument. The resulting instrument is applicable in similar contexts due to its rigorous development and validation process. © 2017 The Authors. Nursing & Health Sciences published by John Wiley & Sons Australia, Ltd.

  18. Blast and the Consequences on Traumatic Brain Injury-Multiscale Mechanical Modeling of Brain

    DTIC Science & Technology

    2011-02-17

    blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi- material fluid –structure interaction problem. The 3-D head...formulation is implemented to model the air-blast simulation. LS-DYNA as an explicit FE code has been employed to simulate this multi-material fluid ...Biomechanics Study of Influencing Parameters for brain under Impact ............................... 12 5.1 The Impact of Cerebrospinal Fluid

  19. Fluid nonlinear frequency shift of nonlinear ion acoustic waves in multi-ion species plasmas in small wave number region

    NASA Astrophysics Data System (ADS)

    Feng, Qingsong; Xiao, Chengzhuo; Wang, Qing; Zheng, Chunyang; Liu, Zhanjun; Cao, Lihua; He, Xiantu

    2016-10-01

    The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas has been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to theoretical result of multi-ion species plasmas. When the wave number kλDe is small, such as kλDe = 0.1 , the fluid NFS dominates in the total NFS and will reach as large as nearly 15% when the wave amplitude | eϕ / Te | 0.1 , which indicates that in the condition of small kλDe , the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large. National Natural Science Foundation of China (Grant Nos. 11575035, 11475030 and 11435011) and National Basic Research Program of China (Grant No. 2013CB834101).

  20. Fluid Power Multi-actuator Circuit Board with Microcomputer Control Option.

    ERIC Educational Resources Information Center

    McKechnie, R. E.; Vickers, G. W.

    1981-01-01

    Describes a portable fluid power engineering laboratory and class demonstration apparatus designed to enable students to design, build, and test multi-actuator circuits. Features a variety of standard pneumatic values and actuators fitted with quick disconnect couplings. Discusses sequencing circuit boards, microcomputer control, cost, and…

  1. Measuring pleural fluid pH: high correlation of a handheld unit to a traditional tabletop blood gas analyzer.

    PubMed

    Kohn, G L; Hardie, W D

    2000-12-01

    STUDY PURPOSES: To survey hospital laboratories in the United States to determine methods used for measuring pleural fluid pH, and to compare pleural fluid pH values obtained with a traditional tabletop blood gas analyzer (BGA) to those obtained with a handheld analyzer. Hospital laboratories nationwide were contacted by telephone to survey the methods used to measure pleural fluid pH. In a second phase, pleural fluid was prospectively collected from 19 pediatric and adult patients with pleural effusions, and pleural fluid pH was measured simultaneously with a traditional tabletop BGA and with a handheld unit. A total of 220 hospital laboratories were contacted by telephone, and 166 responded (75%). The methods for determining pleural fluid pH for all hospital laboratories were pH meter (35%; n = 59), BGA (32%; n = 53), and litmus paper (31%: n = 51); 2% (n = 3) did not perform the test. University hospitals were more likely to use a BGA, compared to community hospitals (p < 0.014) or children's hospitals (p < 0.001). In the comparison of pleural fluid measurements, the mean pH for the traditional BGA was 7.358 +/- 0.189, and the mean pH for the handheld unit was 7.382 +/- 0.203. The absolute difference between the two machines was 0.024 U, and the two methods were correlated (p < 0.01; r = 0.993; degrees of freedom = 36). Most hospital laboratories in the United States do not measure pleural fluid pH using a traditional BGA and use alternative methods that have previously been shown to be inaccurate. Pleural fluid pH obtained by a handheld unit has a high degree of correlation to that of a traditional tabletop BGA, and it offers a satisfactory alternative for laboratories reluctant to measure pleural fluid pH with a BGA.

  2. Bridge permeameter

    DOEpatents

    Graf, Darin C.; Warpinski, Norman R.

    1996-01-01

    A system for single-phase, steady-state permeability measurements of porous rock utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors.

  3. Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions on SOA Loadings and their Spatial and Temporal Evolution in the Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan

    2013-04-27

    Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwindmore » of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.« less

  4. Nanopore Confinement of C-O-H Fluids Relevant to Subsurface Energy Systems

    NASA Astrophysics Data System (ADS)

    Cole, D. R.

    2016-12-01

    Complex intermolecular interactions of C-O-H fluids (e.g., H2O, CO2, CH4) result in their unique thermophysical properties, including large deviations in the volumetric properties from ideality, vapor-liquid equilibria, and critical phenomena as these fluids encounter different pressure-temperature-pore network conditions in the crust. Development of a comprehensive understanding of the structures, dynamics, and reactivity at multiple length scales (molecular to macroscopic) over wide ranges of state conditions and composition is foundational to advances in quantifying geochemical processes involving mineral-fluid interfaces. The size, distribution and connectivity of these confined geometries dictate how fluids migrate into and through these micro- and nano-environments, wet and react with the solid. This presentation will provide an overview of the application of state-of-the-art experimental, analytical and computational tools to assess key features of the fluid-matrix interaction. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of different mixtures of C-O-H fluids in nanpores. Key results include: (1) The addition of a second carbon-bearing phase or water has a profound effect on the competition for sorption sites, phase chemistry and the dynamical properties of all phases present in the pore. (2) Low solubility phases such as methane may exhibit profound increases in concentration in nanopores in the presence of water at elevated pressures and ambient temperature compared to bulk values. (3) Methane permeability through the hydrated pores is strongly dependent on the solid substrate and local properties of confined water, including its structure and, more importantly, evolution of solvation free energy and hydrogen bond structure. (4) Under certain conditions preferential adsorption of the fluids in the narrow pores can produce a shift in the equilibrium distribution of mixed volatiles present in adjoining fractures (aka the bulk portion of the system).

  5. Phase diagram of a symmetric electron–hole bilayer system: a variational Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Sharma, Rajesh O.; Saini, L. K.; Prasad Bahuguna, Bhagwati

    2018-05-01

    We study the phase diagram of a symmetric electron–hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater–Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at and the ferromagnetic fluid phase being particularly stable at . As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s   =  20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s   <  20 and a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.

  6. Use of U and Th Decay-Series Disequilibrium to Characterize Geothermal Systems: An Example from the Coso Geothermal System

    NASA Astrophysics Data System (ADS)

    Leslie, B. W.; Hammond, D.

    2007-12-01

    Uranium and thorium decay series isotopes were measured in fluids and solids in the Coso geothermal system to assess the utility and constrain the limitations of the radioisotopic approach to the investigation of rock-water interaction. Fluid radioisotope measurements indicate substantial kilometer-scale variability in chemistry. Between 1988 and 1990, radium isotope activity ratios indicate temporal variability, which is exhibited by apparent mixing relationships observed as a function of time for single wells. Activity ratios of Ra-224/Ra-226 and Ra- 228/Ra-226, and the processes that contribute and remove these radionuclide to and from the fluids, constrain residence times of fluids and may help constrain fluid velocities in the geothermal system. Activity ratios of Ra- 224/Ra-226 > ten were measured. In groundwater and geothermal systems ratios of Ra-224/Ra-226 > ten are limited to zones of thermal upwelling or very young (days to weeks) waters in mountainous areas. Rn-222 results indicate that radon is also an effective tracer for steam velocities within the geothermal system. Analysis of carbon dioxide and Rn-222 data indicates that the residence time of steam (time since separation from the liquid) is short (probably less than four days). Estimates of fluid velocities derived from Rn-222 and radium isotopic measurements are within an order of magnitude of velocities derived from a fluorescein tracer test. Both Rn-222 and Ra-224 activities are higher in single-phase fluids in the northwest as compared to the southeast, indicating a higher rock-surface-area/water-volume ratio in the northwest. Thus, measurements of short-lived radioisotopes and gaseous phase constituents can constrain processes and characteristics of geothermal systems that are usually difficult to constrain (e.g., surface area/volume, residence times). The NRC staff views expressed herein are preliminary and do not constitute a final judgment or determination of the matters addressed or of the acceptability of a license application for a geologic repository at Yucca Mountain.

  7. The Fluids Integrated Rack and Light Microscopy Module Integrated Capabilities

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Gati, Frank; Snead, John H.; Hill, Myron E.; Griffin, DeVon W.

    2003-01-01

    The Fluids Integrated Rack (FIR), a facility class payload, and the Light Microscopy Module (LMM), a subrack payload, are scheduled to be launched in 2005. The LMM integrated into the FIR will provide a unique platform for conducting fluids and biological experiments on ISS. The FIR is a modular, multi-user scientific research facility that will fly in the U.S. laboratory module, Destiny, of the International Space Station (ISS). The first payload in the FIR will be the Light Microscopy Module (LMM). The LMM is planned as a remotely controllable, automated, on-orbit microscope subrack facility, allowing flexible scheduling and control of fluids and biology experiments within the FIR. Key diagnostic capabilities for meeting science requirements include video microscopy to observe microscopic phenomena and dynamic interactions, interferometry to make thin film measurements with nanometer resolution, laser tweezers for particle manipulation, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure photonic properties of materials. The LMM also provides experiment sample containment for frangibles and fluids. This paper will provide a description of the current FIR and LMM designs, planned capabilities and key features. In addition a brief description of the initial five experiments planned for LMM/FIR will be provided.

  8. Multi-channel electrical impedance tomography for regional tissue hydration monitoring.

    PubMed

    Chen, Xiaohui; Kao, Tzu-Jen; Ashe, Jeffrey M; Boverman, Gregory; Sabatini, James E; Davenport, David M

    2014-06-01

    Poor assessment of hydration status during hemodialysis can lead to under- or over-hydration in patients with consequences of increased morbidity and mortality. In current practice, fluid management is largely based on clinical assessments to estimate dry weight (normal hydration body weight). However, hemodialysis patients usually have co-morbidities that can make the signs of fluid status ambiguous. Therefore, achieving normal hydration status remains a major challenge for hemodialysis therapy. Electrical impedance technology has emerged as a promising method for hydration monitoring due to its non-invasive nature, low cost and ease-of-use. Conventional electrical impedance-based hydration monitoring systems employ single-channel current excitation (either 2-electrode or 4-electrode methods) to perturb and extract averaged impedance from bulk tissue and use generalized models from large populations to derive hydration estimates. In the present study, a prototype, single-frequency electrical impedance tomography (EIT) system with simultaneous multi-channel current excitation was used to enable regional hydration change detection. We demonstrated the capability to detect a difference in daily impedance change between left leg and right leg in healthy human subjects, who wore a compression sock only on one leg to reduce daily gravitational fluid accumulation. The impedance difference corresponded well with the difference of lower leg volume change between left leg and right leg measured by volumetry, which on average is ~35 ml, accounting for 0.7% of the lower leg volume. We have demonstrated the feasibility of using multi-channel EIT to extract hydration information in different tissue layers with minimal skin interference. Our simultaneous, multi-channel current excitation approach provides an effective method to separate electrode contact impedance and skin condition artifacts from hydration signals. The prototype system has the potential to be used in clinical settings for helping optimize patient fluid management during hemodialysis as well as for home monitoring of patients with congestive heart failure, chronic kidney disease, diabetes and other diseases with peripheral edema symptoms.

  9. Two-phase reduced gravity experiments for a space reactor design

    NASA Technical Reports Server (NTRS)

    Antoniak, Zenen I.

    1987-01-01

    Future space missions researchers envision using large nuclear reactors with either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed to coordinate all ongoing and planned reduced gravity flow experiments.

  10. Field-scale multi-phase LNAPL remediation: Validating a new computational framework against sequential field pilot trials.

    PubMed

    Sookhak Lari, Kaveh; Johnston, Colin D; Rayner, John L; Davis, Greg B

    2018-03-05

    Remediation of subsurface systems, including groundwater, soil and soil gas, contaminated with light non-aqueous phase liquids (LNAPLs) is challenging. Field-scale pilot trials of multi-phase remediation were undertaken at a site to determine the effectiveness of recovery options. Sequential LNAPL skimming and vacuum-enhanced skimming, with and without water table drawdown were trialled over 78days; in total extracting over 5m 3 of LNAPL. For the first time, a multi-component simulation framework (including the multi-phase multi-component code TMVOC-MP and processing codes) was developed and applied to simulate the broad range of multi-phase remediation and recovery methods used in the field trials. This framework was validated against the sequential pilot trials by comparing predicted and measured LNAPL mass removal rates and compositional changes. The framework was tested on both a Cray supercomputer and a cluster. Simulations mimicked trends in LNAPL recovery rates (from 0.14 to 3mL/s) across all remediation techniques each operating over periods of 4-14days over the 78day trial. The code also approximated order of magnitude compositional changes of hazardous chemical concentrations in extracted gas during vacuum-enhanced recovery. The verified framework enables longer term prediction of the effectiveness of remediation approaches allowing better determination of remediation endpoints and long-term risks. Copyright © 2017 Commonwealth Scientific and Industrial Research Organisation. Published by Elsevier B.V. All rights reserved.

  11. Acoustic auditing as a real-time, non-invasive quality control process for both source and assay plates.

    PubMed

    Olechno, Joseph; Ellson, Richard; Browning, Brent; Stearns, Richard; Mutz, Mitchell; Travis, Michael; Qureshi, Shehrzad; Shieh, Jean

    2005-08-01

    Acoustic auditing is a non-destructive, non-invasive technique to monitor the composition and volume of fluids in open or sealed microplates and storage tubes. When acoustic energy encounters an interface between two materials, some of the energy passes through the interface, while the remainder is reflected. Acoustic energy applied to the bottom of a multi-well plate or a storage tube is reflected by the fluid contents of the microplate or tube. The amplitude of these reflections or echoes correlates directly with properties of the fluid, including the speed of sound and the concentration of water in the fluid. Once the speed of sound in the solution is known from the analysis of these echoes, it is easy to determine the depth of liquid and, thereby, the volume by monitoring how long it takes for sound energy to reflect off the fluid meniscus. This technique is rapid (>100,000 samples per day), precise (<1% coefficient of variation for hydration measurements, <4% coefficient of variation for volume measurements), and robust. It does not require uncapping tubes or unsealing or unlidding microplates. The sound energy is extremely gentle and has no deleterious impact upon the fluid or compounds dissolved in it.

  12. Decreased levels of sRAGE in follicular fluid from patients with PCOS.

    PubMed

    Wang, BiJun; Li, Jing; Yang, QingLing; Zhang, FuLi; Hao, MengMeng; Guo, YiHong

    2017-03-01

    This study aimed to explore the association between soluble receptor for advanced glycation end products (sRAGE) levels in follicular fluid and the number of oocytes retrieved and to evaluate the effect of sRAGE on vascular endothelial growth factor (VEGF) in granulosa cells in patients with polycystic ovarian syndrome (PCOS). Two sets of experiments were performed in this study. In part one, sRAGE and VEGF protein levels in follicular fluid samples from 39 patients with PCOS and 35 non-PCOS patients were measured by ELISA. In part two, ovarian granulosa cells were isolated from an additional 10 patients with PCOS and cultured. VEGF and SP1 mRNA and protein levels, as well as pAKT levels, were detected by real-time PCR and Western blotting after cultured cells were treated with different concentrations of sRAGE. Compared with the non-PCOS patients, patients with PCOS had lower sRAGE levels in follicular fluid. Multi-adjusted regression analysis showed that high sRAGE levels in follicular fluid predicted a lower Gn dose, more oocytes retrieved, and a better IVF outcome in the non-PCOS group. Logistic regression analysis showed that higher sRAGE levels predicted favorably IVF outcomes in the non-PCOS group. Multi-adjusted regression analysis also showed that high sRAGE levels in follicular fluid predicted a lower Gn dose in the PCOS group. Treating granulosa cells isolated from patients with PCOS with recombinant sRAGE decreased VEGF and SP1 mRNA and protein expression and pAKT levels in a dose-dependent manner. © 2017 Society for Reproduction and Fertility.

  13. Key Gaps for Enabling Plant Growth in Future Missions

    NASA Technical Reports Server (NTRS)

    Anderson, Molly S.; Barta, Daniel; Douglas, Grace; Fritsche, Ralph; Massa, Gioia; Wheeler, Ray; Quincy, Charles; Romeyn, Matthew; Motil, Brian; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented both in media and in serious concept studies. The complexity of controlled environment agriculture and of plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. The criticality of the research, and the ideal solution, will vary depending on the mission and type of system implementation being considered.

  14. An improved method for estimating capillary pressure from 3D microtomography images and its application to the study of disconnected nonwetting phase

    NASA Astrophysics Data System (ADS)

    Li, Tianyi; Schlüter, Steffen; Dragila, Maria Ines; Wildenschild, Dorthe

    2018-04-01

    We present an improved method for estimating interfacial curvatures from x-ray computed microtomography (CMT) data that significantly advances the potential for this tool to unravel the mechanisms and phenomena associated with multi-phase fluid motion in porous media. CMT data, used to analyze the spatial distribution and capillary pressure-saturation (Pc-S) relationships of liquid phases, requires accurate estimates of interfacial curvature. Our improved method for curvature estimation combines selective interface modification and distance weighting approaches. It was verified against synthetic (analytical computer-generated) and real image data sets, demonstrating a vast improvement over previous methods. Using this new tool on a previously published data set (multiphase flow) yielded important new insights regarding the pressure state of the disconnected nonwetting phase during drainage and imbibition. The trapped and disconnected non-wetting phase delimits its own hysteretic Pc-S curve that inhabits the space within the main hysteretic Pc-S loop of the connected wetting phase. Data suggests that the pressure of the disconnected, non-wetting phase is strongly modified by the pore geometry rather than solely by the bulk liquid phase that surrounds it.

  15. New insights into earthquake precursors from InSAR.

    PubMed

    Moro, Marco; Saroli, Michele; Stramondo, Salvatore; Bignami, Christian; Albano, Matteo; Falcucci, Emanuela; Gori, Stefano; Doglioni, Carlo; Polcari, Marco; Tallini, Marco; Macerola, Luca; Novali, Fabrizio; Costantini, Mario; Malvarosa, Fabio; Wegmüller, Urs

    2017-09-20

    We measured ground displacements before and after the 2009 L'Aquila earthquake using multi-temporal InSAR techniques to identify seismic precursor signals. We estimated the ground deformation and its temporal evolution by exploiting a large dataset of SAR imagery that spans seventy-two months before and sixteen months after the mainshock. These satellite data show that up to 15 mm of subsidence occurred beginning three years before the mainshock. This deformation occurred within two Quaternary basins that are located close to the epicentral area and are filled with sediments hosting multi-layer aquifers. After the earthquake, the same basins experienced up to 12 mm of uplift over approximately nine months. Before the earthquake, the rocks at depth dilated, and fractures opened. Consequently, fluids migrated into the dilated volume, thereby lowering the groundwater table in the carbonate hydrostructures and in the hydrologically connected multi-layer aquifers within the basins. This process caused the elastic consolidation of the fine-grained sediments within the basins, resulting in the detected subsidence. After the earthquake, the fractures closed, and the deep fluids were squeezed out. The pre-seismic ground displacements were then recovered because the groundwater table rose and natural recharge of the shallow multi-layer aquifers occurred, which caused the observed uplift.

  16. Shear test on viscoelastic granular material using Contact Dynamics simulations

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Sagnol, Loba; Chazallon, Cyrille

    2017-06-01

    By means of 3D contact dynamic simulations, the behavior of a viscoelastic granular material under shear loading is investigated. A viscoelastic fluid phase surrounding the solid particles is simulated by a contact model acting between them. This contact law was implemented in the LMGC90 software, based on the Burgers model. This model is able to simulate also the effect of creep relaxation. To validate the proposed contact model, several direct shear tests were performed, experimentally and numerically using the Leutner device. The numerical samples were created using spheres with two particle size distribution, each one identified for two layers from a road structure. Our results show a reasonable agreement between experimental and numerical data regarding the strain-stress evolution curves and the stress levels measured at failure. The proposed model can be used to simulate the mechanical behavior of multi-layer road structure and to study the influence of traffic on road deformation, cracking and particles pull-out induced by traffic loading.

  17. X-Ray Radiography Measurements of Shear Coaxial Rocket Injectors

    DTIC Science & Technology

    2013-02-01

    turbofan engine exhaust, air blast furnaces, and liquid rocket engines) shear coaxial jets have been stud- ied for over sixty years [1]. In all applications...fluids as either single or multiple phases. Most of the fundamental coaxial jet research has been done using a single phase (either gas-gas or liquid ... liquid mixing). A brief review of single-phase coaxial jet research can be found in Schumaker and Driscoll [5]. Single-phase cases also include work

  18. Modeling of Soft Poroelastic Tissue in Time-Harmonic MR Elastography

    PubMed Central

    Perriñez, Phillip R.; Kennedy, Francis E.; Van Houten, Elijah E. W.; Weaver, John B.; Paulsen, Keith D.

    2010-01-01

    Elastography is an emerging imaging technique that focuses on assessing the resistance to deformation of soft biological tissues in vivo. Magnetic resonance elastography (MRE) uses measured displacement fields resulting from low-amplitude, low-frequency (10 Hz–1 kHz) time-harmonic vibration to recover images of the elastic property distribution of tissues including breast, liver, muscle, prostate, and brain. While many soft tissues display complex time-dependent behavior not described by linear elasticity, the models most commonly employed in MRE parameter reconstructions are based on elastic assumptions. Further, elasticity models fail to include the interstitial fluid phase present in vivo. Alternative continuum models, such as consolidation theory, are able to represent tissue and other materials comprising two distinct phases, generally consisting of a porous elastic solid and penetrating fluid. MRE reconstructions of simulated elastic and poroelastic phantoms were performed to investigate the limitations of current-elasticity-based methods in producing accurate elastic parameter estimates in poroelastic media. The results indicate that linearly elastic reconstructions of fluid-saturated porous media at amplitudes and frequencies relevant to steady-state MRE can yield misleading effective property distributions resulting from the complex interaction between their solid and fluid phases. PMID:19272864

  19. Modelisation de l'instabilite fluidelastique d'un faisceau de tubes soumis a un ecoulement diphasique transverse

    NASA Astrophysics Data System (ADS)

    Sawadogo, Teguewinde

    This study focuses on the modeling of fluidelastic instability induced by two-phase cross-flow in tube bundles of steam generators. The steam generators in CANDU type nuclear power plants for e.g., designed in Canada by AECL and exploited worldwide, have thousands of tubes assembled in bundles that ensure the heat exchange between the internal circuit of heated heavy water coming from the reactor core and the external circuit of light water evaporated and directed toward the turbines. The main objective of this research project is to extend the theoretical models for fluidelastic instability to two-phase flow, validate the models and develop a computer program for simulating flow induced vibrations in tube bundles. The quasi-steady model has been investigated in scope of this research project. The time delay between the structure motion and the fluid forces generated thereby has been extensively studied in two-phase flow. The study was conducted for a rotated triangular tube array. Firstly, experimental measurements of unsteady and quasi-static fluid forces (in the lift direction) acting on a tube subject to two-phase flow were conducted. Quasi-static fluid force coefficients were measured at the same Reynolds number, Re = 2.8x104, for void fractions ranging from 0% to 80%. The derivative of the lift coefficient with respect to the quasi-static dimensionless displacement in the lift direction was deduced from the experimental measurements. This derivative is one of the most important parameters of the quasi-steady model because this parameter, in addition to the time delay, generates the fluid negative damping that causes the instability. This derivative was found to be positive in liquid flow and negative in two-phase flow. It seemed to vanish at 5% of void fraction, challenging the ability of the quasi-steady model to predict fluidelastic instability in this case. However, stability tests conducted at 5% void fraction clearly showed fluidelastic instability. Stability tests were conducted in the second stage of the project to validate the theoretical model. The two phase damping, the added mass and the critical velocity for fluidelastic instability were measured in two-phase flow. A viscoelastic damper was designed to vary the damping of the flexible tube and thus measure the critical velocity for a certain range of the mass-damping parameter. A new formulation of the added mass as a function of the void fraction was proposed. This formulation has a better agreement with the experimental results because it takes into account the reduction of the void fraction in the vicinity of the tubes in a rotated triangular tube array. The experimental data were used to validate the theoretical results of the quasi-steady model. The validity of the quasi-steady model for two-phase flow was confirmed by the good agreement between its results and the experimental data. The time delay parameter determined in the first stage of the project has improved significantly the theoretical results, especially for high void fractions (90%). However, the model could not be verified for void fractions lower or equal to 50% because of the limitation of the water pump capability. Further studies are consequently required to clarify this point. However, this model can be used to simulate the flow induced vibrations in steam generators' tube bundles as their most critical parts operate at high void fractions (≥ 60%). Having verified the quasi-steady model for high void fractions in two-phase flow, the third and final stage of the project was devoted to the development of a computer code for simulating flow induced vibrations of a steam generator tube subjected to fluidelastic and turbulence forces. This code was based on the ABAQUS finite elements code for solving the equation of motion of the fluid-structure system, and a development of a subroutine in which the fluid forces are calculated and applied to the tube. (Abstract shortened by UMI.)

  20. Experimental investigation and numerical simulation of a copper micro-channel heat exchanger with HFE-7200 working fluid

    NASA Astrophysics Data System (ADS)

    Borquist, Eric

    Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, time, and required equipment. Testing involved filling the micro-channel heat exchanger with 3MTM NovecTM HFE-7200 working fluid. The working fluid was chosen for appropriate physical and environmental properties for the prototypes intended application. Using a dry heat exchanger as the baseline, the addition of the working fluid proved advantageous by increasing energy output by 8% while decreasing overall device temperatures. Upon successful experimental testing of the physical device, internal operation was determined based on implementation of the lattice Boltzmann method, a physics-based statistical method that actively tracked the phase change occurring in a simulated micro-channel. The simulation demonstrated three primary areas of phase change occurring, surfaces adjacent to where the heat source and heat sink were located and the bulk vapor-liquid interface, which agreed with initial device design intentions. Condensation film thickness grew to 5microm over the time interval, while the bulk interface tracked from initial 12microm from the lid to 20microm from the lid. Surface tension effects dominating vapor pressure kept the liquid near the heat source; however, the temperature and pressure VLE data suggested vapor interface growth from the heated surface to 5microm above the heated copper plate. Reinforcing the simulation results, including location and movement of phase interfaces, was accomplished through a thorough ten dimensionless number analyses. These specialized ratios indicated dominant fluid and heat transfer behavior including phase change conditions. Thus, fabrication and empirical results for the heat energy harvesting prototype were successful and computational modeling provided understanding of applicable internal system behavior.

  1. MRI-based noninvasive measurement of intracranial compliance derived from the relationship between transcranial blood and cerebrospinal fluid flows: modeling vs. direct approach

    NASA Astrophysics Data System (ADS)

    Tain, Rong-Wen; Alperin, Noam

    2008-03-01

    Intracranial compliance (ICC) determines the ability of the intracranial space to accommodate increase in volume (e.g., brain swelling) without a large increase in intracranial pressure (ICP). Therefore, measurement of ICC is potentially important for diagnosis and guiding treatment of related neurological problems. Modeling based approach uses an assumed lumped-parameter model of the craniospinal system (CSS) (e.g., RCL circuit), with either the arterial or the net transcranial blood flow (arterial inflow minus venous outflow) as input and the cranio-spinal cerebrospinal fluid (CSF) flow as output. The phase difference between the output and input is then often used as a measure of ICC However, it is not clear whether there is a predetermined relationship between ICC and the phase difference between these waveforms. A different approach for estimation of ICC has been recently proposed. This approach estimates ICC from the ratio of the intracranial volume and pressure changes that occur naturally with each heartbeat. The current study evaluates the sensitivity of the phase-based and the direct approach to changes in ICC. An RLC circuit model of the cranio-spinal system is used to simulate the cranio-spinal CSF flow for 3 different ICC states using the transcranial blood flows measured by MRI phase contrast from healthy human subjects. The effect of the increase in the ICC on the magnitude and phase response is calculated from the system's transfer function. We observed that within the heart rate frequency range, changes in ICC predominantly affected the amplitude of CSF pulsation and less so the phases. The compliance is then obtained for the different ICC states using the direct approach. The measures of compliance calculated using the direct approach demonstrated the highest sensitivity for changes in ICC. This work explains why phase shift based measure of ICC is less sensitive than amplitude based measures such as the direct approach method.

  2. Quick connect coupling

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Webbon, Bruce (Inventor)

    1995-01-01

    A cooling apparatus includes a container filled with a quantity of coolant fluid initially cooled to a solid phase, a cooling loop disposed between a heat load and the container, a pump for circulating a quantity of the same type of coolant fluid in a liquid phase through the cooling loop, and a pair of couplings for communicating the liquid phase coolant fluid into the container in a direct interface with the solid phase coolant fluid.

  3. Wettability control on fluid-fluid displacements in patterned microfluidics and porous media

    NASA Astrophysics Data System (ADS)

    Juanes, Ruben; Trojer, Mathias; Zhao, Benzhong

    2014-11-01

    While it is well known that the wetting properties are critical in two-phase flows in porous media, the effect of wettability on fluid displacement continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a capillary tube. We image the shape of the meniscus and measure the associated capillary pressure for a wide range of capillary numbers. We synthesize new observations on the dependence of the dynamic capillary pressure on wetting properties (contact angle) and flow conditions (viscosity contrast and capillary number). We then conduct experiments on a planar microfluidic device patterned with vertical posts. We track the evolution of the fluid-fluid interface and elucidate the impact of wetting on the cooperative nature of fluid displacement during pore invasion events. We use the insights gained from the capillary tube and patterned microfluidics experiments to elucidate the effect of wetting properties on viscous fingering and capillary fingering in a Hele-Shaw cell filled with glass beads, where we observe a contact-angle-dependent stabilizing behavior for the emerging flow instabilities, as the system transitions from drainage to imbibition.

  4. Solid H2 in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Füglistaler, A.; Pfenniger, D.

    2018-06-01

    Context. Condensation of H2 in the interstellar medium (ISM) has long been seen as a possibility, either by deposition on dust grains or thanks to a phase transition combined with self-gravity. H2 condensation might explain the observed low efficiency of star formation and might help to hide baryons in spiral galaxies. Aims: Our aim is to quantify the solid fraction of H2 in the ISM due to a phase transition including self-gravity for different densities and temperatures in order to use the results in more complex simulations of the ISM as subgrid physics. Methods: We used molecular dynamics simulations of fluids at different temperatures and densities to study the formation of solids. Once the simulations reached a steady state, we calculated the solid mass fraction, energy increase, and timescales. By determining the power laws measured over several orders of magnitude, we extrapolated to lower densities the higher density fluids that can be simulated with current computers. Results: The solid fraction and energy increase of fluids in a phase transition are above 0.1 and do not follow a power law. Fluids out of a phase transition are still forming a small amount of solids due to chance encounters of molecules. The solid mass fraction and energy increase of these fluids are linearly dependent on density and can easily be extrapolated. The timescale is below one second, the condensation can be considered instantaneous. Conclusions: The presence of solid H2 grains has important dynamic implications on the ISM as they may be the building blocks for larger solid bodies when gravity is included. We provide the solid mass fraction, energy increase, and timescales for high density fluids and extrapolation laws for lower densities.

  5. Over-hydration detection in brain by magnetic induction spectroscopy

    NASA Astrophysics Data System (ADS)

    González, César A.; Pérez, María; Hevia, Nidiyare; Arámbula, Fernándo; Flores, Omar; Aguilar, Eliot; Hinojosa, Ivonne; Joskowicz, Leo; Rubinsky, Boris

    2010-04-01

    Detection and continuous monitoring of edema in the brain in early stages is useful for assessment of medical condition and treatment. We have proposed a solution in which the bulk measurements of the tissue electrical properties to detect edema or in general accumulation of fluids are made through measurement of the magnetic induction phase shift between applied and measured currents at different frequencies (Magnetic Induction Spectroscopy; MIS). Magnetic Resonant Imaging (MRI) has been characterized because its capability to detect different levels of brain tissue hydration by differences in diffusion-weighted (DW) sequences and it's involve apparent diffusion coefficient (ADC). The objective of this study was to explore the viability to use measurements of the bulk tissue electrical properties to detect edema or in general accumulation of fluids by MIS. We have induced a transitory and generalized tissue over-hydration condition in ten volunteers ingesting 1.5 to 2 liters of water in ten minutes. Basal and over-hydration conditions were monitored by MIS and MRI. Changes in the inductive phase shift at certain frequencies were consistent with changes in the brain tissue hydration level observed by DW-ADC. The results suggest that MIS has the potential to detect pathologies associated to changes in the content of fluids in brain tissue such as edema and hematomas.

  6. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications.

    PubMed

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-11-04

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(V excit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min) -0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.

  7. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †

    PubMed Central

    Mansoor, Mohtashim; Haneef, Ibraheem; Akhtar, Suhail; Rafiq, Muhammad Aftab; De Luca, Andrea; Ali, Syed Zeeshan; Udrea, Florin

    2016-01-01

    An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA–0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C–1.79 mV/°C in the range 20–300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)−0.1 in the tested range of 0–4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries. PMID:27827904

  8. Transport models for desorption from natural soils packed in flushed columns

    NASA Astrophysics Data System (ADS)

    Brouwers, H. J. H.

    1999-06-01

    This paper addresses an experimental and theoretical study of sorbed contaminant removal from a column (or reactor) by flushing. This removal may take place by either volatilization or rinsing, and nonlinear sorption is accounted for by employing a Freundlich relationship. A one-dimensional nonequilibrium transport model is proposed which describes the unsteady mass transfer between flushing medium and soil phases in the column, using a linear chemical transfer model. The moving boundary problem is transferred, and a perturbation method is employed to obtain an approximate solution of the governing equations for a small Merkel number Me (this dimensionless number comprises the product of fluid residence time and the mass transfer coefficient). The solution reveals the effect of the various parameters, such as the Freundlich parameter n, on the contaminant transport in fluid phase and decay in solid phase. Applying the model to various experimental data results in values for the overall mass transfer coefficients, which are useful for engineering computations. Furthermore, the model enables the prediction of the initial soil contamination level as well as the parameter n solely from the measured exit contaminant concentrations in the flushing fluid. A thorough comparison of this prediction with the measured soil concentration (prior to the experiments) yields good agreement.

  9. Phase-Controlled Bistability of a Dark Soliton Train in a Polariton Fluid.

    PubMed

    Goblot, V; Nguyen, H S; Carusotto, I; Galopin, E; Lemaître, A; Sagnes, I; Amo, A; Bloch, J

    2016-11-18

    We use a one-dimensional polariton fluid in a semiconductor microcavity to explore the nonlinear dynamics of counterpropagating interacting Bose fluids. The intrinsically driven-dissipative nature of the polariton fluid allows us to use resonant pumping to impose a phase twist across the fluid. When the polariton-polariton interaction energy becomes comparable to the kinetic energy, linear interference fringes transform into a train of solitons. A novel type of bistable behavior controlled by the phase twist across the fluid is experimentally evidenced.

  10. Phase diagram of a symmetric electron-hole bilayer system: a variational Monte Carlo study.

    PubMed

    Sharma, Rajesh O; Saini, L K; Bahuguna, Bhagwati Prasad

    2018-05-10

    We study the phase diagram of a symmetric electron-hole bilayer system at absolute zero temperature and in zero magnetic field within the quantum Monte Carlo approach. In particular, we conduct variational Monte Carlo simulations for various phases, i.e. the paramagnetic fluid phase, the ferromagnetic fluid phase, the anti-ferromagnetic Wigner crystal phase, the ferromagnetic Wigner crystal phase and the excitonic phase, to estimate the ground-state energy at different values of in-layer density and inter-layer spacing. Slater-Jastrow style trial wave functions, with single-particle orbitals appropriate for different phases, are used to construct the phase diagram in the (r s , d) plane by finding the relative stability of trial wave functions. At very small layer separations, we find that the fluid phases are stable, with the paramagnetic fluid phase being particularly stable at [Formula: see text] and the ferromagnetic fluid phase being particularly stable at [Formula: see text]. As the layer spacing increases, we first find that there is a phase transition from the ferromagnetic fluid phase to the ferromagnetic Wigner crystal phase when d reaches 0.4 a.u. at r s   =  20, and before there is a return to the ferromagnetic fluid phase when d approaches 1 a.u. However, for r s   <  20 and [Formula: see text] a.u., the excitonic phase is found to be stable. We do not find that the anti-ferromagnetic Wigner crystal is stable over the considered range of r s and d. We also find that as r s increases, the critical layer separations for Wigner crystallization increase.

  11. Multiphase flow experiments, mathematical modeling and numerical simulation of the water - gas - solute movement

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ma, X.; Su, N.

    2013-12-01

    The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.

  12. Imbibition of hydraulic fracturing fluids into partially saturated shale

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Lackey, Greg

    2015-08-01

    Recent studies suggest that imbibition of hydraulic fracturing fluids into partially saturated shale is an important mechanism that restricts their migration, thus reducing the risk of groundwater contamination. We present computations of imbibition based on an exact semianalytical solution for spontaneous imbibition. These computations lead to quantitative estimates of an imbibition rate parameter (A) with units of LT-1/2 for shale, which is related to porous medium and fluid properties, and the initial water saturation. Our calculations suggest that significant fractions of injected fluid volumes (15-95%) can be imbibed in shale gas systems, whereas imbibition volumes in shale oil systems is much lower (3-27%). We present a nondimensionalization of A, which provides insights into the critical factors controlling imbibition, and facilitates the estimation of A based on readily measured porous medium and fluid properties. For a given set of medium and fluid properties, A varies by less than factors of ˜1.8 (gas nonwetting phase) and ˜3.4 (oil nonwetting phase) over the range of initial water saturations reported for the Marcellus shale (0.05-0.6). However, for higher initial water saturations, A decreases significantly. The intrinsic permeability of the shale and the viscosity of the fluids are the most important properties controlling the imbibition rate.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R.D.; Duke, T.W.; Macauley, J.M.

    Effects of a used drilling fluid on an experimental seagrass community (Thalassia testudinum) were measured by exposing the community to the suspended particulate phase (SPP) in laboratory microcosms. Structure of the macroinvertebrate assemblage, growth and chlorophyll content of grass and associated epiphytes, and rates of decomposition as indicated by weight loss of grass leaves in treated and untreated microcosms were compared. There were statistically significant differences in community structure and function among untreated microcosms and those receiving the clay and drilling fluid. For example, drilling fluid and clay caused a significant loss in the number of the ten most numericallymore » abundant (dominant) macroinvertebrates, and drilling fluid decreased the rate at which Thalassia leaves decomposed.« less

  14. Solution of the mean spherical approximation for polydisperse multi-Yukawa hard-sphere fluid mixture using orthogonal polynomial expansions

    NASA Astrophysics Data System (ADS)

    Kalyuzhnyi, Yurij V.; Cummings, Peter T.

    2006-03-01

    The Blum-Høye [J. Stat. Phys. 19 317 (1978)] solution of the mean spherical approximation for a multicomponent multi-Yukawa hard-sphere fluid is extended to a polydisperse multi-Yukawa hard-sphere fluid. Our extension is based on the application of the orthogonal polynomial expansion method of Lado [Phys. Rev. E 54, 4411 (1996)]. Closed form analytical expressions for the structural and thermodynamic properties of the model are presented. They are given in terms of the parameters that follow directly from the solution. By way of illustration the method of solution is applied to describe the thermodynamic properties of the one- and two-Yukawa versions of the model.

  15. 3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.

    2009-05-01

    Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow the interface boundaries between the phases before the application of segmentation routines. In turn, we found that an active contour segmentation technique works best for these types of geomaterials. The method was developed by adapting a medical software package implemented using the Insight Toolkit (ITK) set of algorithms developed for segmentation of anatomical structures. We have developed a manual analysis procedure with the potential of 2 micron resolution in 3D volume rendering that is specifically designed for application to fluid inclusion volume measurements.

  16. Experimental study of two-phase fluid flow in two different porosity types of sandstone by P-wave velocity and electrical Impedance measurement

    NASA Astrophysics Data System (ADS)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Takaki, S.

    2015-12-01

    Carbon dioxide (CO2) capture and storage (CCS) is recently expected as the promising method to reduce greenhouse gas emissions. It is important to investigate CO2 behavior in the reservoir, to evaluate the safety and to account the stored CO2 volume. In this study, experimental investigation is conducted to discuss the relationships between injected fluid speed (Flow rate: FR) or capillary number (Ca) and non-wetting fluid flow by compressional wave velocity (Vp) and electrical impedance (Z). In the experiment, N2 and supercritical CO2 were injected into the two sandstones with different porosity (φ), Berea sandstone (φ: 18 %), and Ainoura sandstone (φ: 11.9 %). The dimension of the rock specimens is cored cylinder with a 35 mm diameter and 70 mm height. Experimental conditions are nearly same as the reservoir of deep underground (Confining pressure:15MPa, 40℃). Initial conditions of the specimen are brine (0.1wt%-KCl) saturated. Four piezo-electrical transducers (PZTs) are set on the each surface of the top, middle, lower of the specimen to monitor the CO2 bahavior by Vp. To measuring Z, we use for electrodes method with Ag-AgCl electrodes. Four electrodes are wounded around specimen on the both sides of PZTs. We measured the changes of these parameters with injecting N2, injected fluid speed (FR), the differential pore pressure (DP), N2 saturation (SN2), P-wave velocity (Vp) and electrical impedance (Z), respectively. We also estimated the Ca from measured FR. From these experimental results, there are no obvious Vp changes with increasing Ca, while Z measurement indicates clear and continuous increment. In regards to Vp, Vp reduced at the small FR (0.1 to 0.2 ml/min). As the Ca increases, Vp doesn't indicate large reduction. On the other hand, Z is more sensitive to change the fluid saturation than Vp. It is well-known that both of Vp and Z are the function of fluid saturation. Though, these experimental results are not consistent with previous studies. In this study, we will discuss this mismatch by using fluid mechanical theory and numerical simulation of two-phase fluid flow in porous geological medium based on experimental results of two different types of sandstone.

  17. Permeability determination through NMR detection of acoustically induced fluid oscillation.

    PubMed

    Looyestijn, Wim J; Smits, Robert M M; Abu-Shiekah, Issa; Kuvshinov, Boris; Hofman, Jan P; Schwing, Alex

    2006-11-01

    We present a novel approach for directly measuring the permeability of reservoir rocks by an instrument lowered in a well bore. The measurement is made by creating an oscillatory motion of fluids in the pores by acoustic stimulation and by detecting the amplitude response as a phase shift on a nuclear magnetic resonance relaxation signal. A full theoretical description is given. The feasibility of the method has been verified in the laboratory on a set of sandstone and carbonate samples spanning the entire range of practical interest.

  18. Development of a Hybrid Optical Biopsy Probe to Improve Prostate Cancer Diagnosis

    DTIC Science & Technology

    2011-06-01

    integrated needle probe can be developed for guiding needle biopsy for prostate cancer diagnosis. Multi-modal optical measurements to be utilized for... needle probe can be developed for guiding needle biopsy for prostate cancer diagnosis. Multi-modal optical measurements to be utilized for the study...tissue, into a transrectal- ultrasound , needle - biopsy probe. In the development phase, documentation to obtain IRB approval for ex vivo human prostate

  19. Carbon Dioxide: The Other Planetary Fluid

    NASA Astrophysics Data System (ADS)

    Glaser, S.; Gamez, D.; Shock, E.

    2016-12-01

    Cometary and interstellar ices have carbon dioxide to water mole ratios of up to 0.3. When melted, such high levels of carbon dioxide cannot all be dissolved in the aqueous phase and instead partition into a CO2-rich (carbonic) fluid. This implies that during the accretion and formation of planetary systems carbonic fluids are not only possible, but common. In fact, they make up the atmosphere of Venus, are found bubbling out of Champagne Vent in the Pacific Ocean, and are documented by metamorphic fluid inclusions. Examination of phase diagrams reveals the conditions where carbonic fluids will exist or predominate. Carbonic fluids are predicted to exist in Earth's subduction zones and under the ice of small ocean worlds. CO2 had previously been shown to completely dissolve into NH­­3­-H­­2O oceans on small icy bodies by forming ammonium carbonate, but the newer measurements of CO2­ abundances indicate that not all of the CO2 can partition into the aqueous fluid as ammonium carbonate. The remaining CO2 would necessarily form a separate carbonic fluid making it likely that liquid CO2 would be a major oceanic component on some small icy bodies. The enhanced solubility of nonpolar and slightly polar organic compounds in carbonic fluids relative to aqueous fluids means that generation, transport, and deposition processes can be greatly enhanced in those cases where carbonic fluids occur. As an example, the solubility of benzoic acid, a polar compound, is about an order of magnitude greater in carbonic than in aqueous fluids, which is surprising given that water is a polar solvent and carbon dioxide is a nonpolar solvent. Anthracene, a nonpolar compound, has an even greater solubility difference between carbonic and aqueous fluids at approximately four orders of magnitude. Highly polar compounds, including most of the building blocks of life, are more soluble in aqueous fluids than in carbonic fluids. The solubility difference of organic molecules in carbonic fluids relative to aqueous fluids determines the distribution of the building blocks of life in planetary systems. Partitioning of organics into a carbonic fluid may be the mechanism of removing biochemically irrelevant molecules from the aqueous phase and enabling the emergence of life.

  20. An Internal Thermal Environment Model of an Aluminized Solid Rocket Motor with Experimental Validation

    NASA Technical Reports Server (NTRS)

    Martin, Heath T.

    2015-01-01

    Due to the severity of the internal solid rocket motor (SRM) environment, very few direct measurements of that environment exist; therefore, the appearance of such data provides a unique opportunity to assess current thermal/fluid modeling capabilities. As part of a previous study of SRM internal insulation performance, the internal thermal environment of a laboratory-scale SRM featuring aluminized propellant was characterized with two types of custom heat-flux calorimeters: one that measured the total heat flux to a graphite slab within the SRM chamber and another that measured the thermal radiation flux. Therefore, in the current study, a thermal/fluid model of this lab-scale SRM was constructed using ANSYS Fluent to predict not only the flow field structure within the SRM and the convective heat transfer to the interior walls, but also the resulting dispersion of alumina droplets and the radiative heat transfer to the interior walls. The dispersion of alumina droplets within the SRM chamber was determined by employing the Lagrangian discrete phase model that was fully coupled to the Eulerian gas-phase flow. The P1-approximation was engaged to model the radiative heat transfer through the SRM chamber where the radiative contributions of the gas phase were ignored and the aggregate radiative properties of the alumina dispersion were computed from the radiative properties of its individual constituent droplets, which were sourced from literature. The convective and radiative heat fluxes computed from the thermal/fluid model were then compared with those measured in the lab-scale SRM test firings and the modeling approach evaluated.

  1. A scintillator purification plant and fluid handling system for SNO+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Richard J., E-mail: ford@snolab.ca

    A large capacity purification plant and fluid handling system has been constructed for the SNO+ neutrino and double-beta decay experiment, located 6800 feet underground at SNOLAB, Canada. SNO+ is a refurbishment of the SNO detector to fill the acrylic vessel with liquid scintillator based on Linear Alkylbenzene (LAB) and 2 g/L PPO, and also has a phase to load natural tellurium into the scintillator for a double-beta decay experiment with {sup 130}Te. The plant includes processes multi-stage dual-stream distillation, column water extraction, steam stripping, and functionalized silica gel adsorption columns. The plant also includes systems for preparing the scintillator with PPOmore » and metal-loading the scintillator for double-beta decay exposure. We review the basis of design, the purification principles, specifications for the plant, and the construction and installations. The construction and commissioning status is updated.« less

  2. Reflection of processes of non-equilibrium two-phase filtration in oil-saturated hierarchical medium in data of active wave geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Andrey; Khachay, Oleg

    2016-04-01

    The processes of oil extraction from deposit are linked with the movement of multi-phase multi-component media, which are characterized by non-equilibrium and non-linear rheological features. The real behavior of layered systems is defined by the complexity of the rheology of moving fluids and the morphology structure of the porous medium, and also by the great variety of interactions between the fluid and the porous medium [Hasanov and Bulgakova, 2003]. It is necessary to take into account these features in order to informatively describe the filtration processes due to the non-linearity, non-equilibrium and heterogeneity that are features of real systems. In this way, new synergetic events can be revealed (namely, a loss of stability when oscillations occur, and the formation of ordered structures). This allows us to suggest new methods for the control and management of complicated natural systems that are constructed on account of these phenomena. Thus the layered system, from which it is necessary to extract the oil, is a complicated dynamical hierarchical system. A comparison is provided of non-equilibrium effects of the influence of independent hydrodynamic and electromagnetic induction on an oil layer and the medium which it surrounds. It is known that by drainage and steeping the hysteresis effect on curves of the relative phase permeability in dependence on the porous medium's water saturation in some cycles of influence (drainage-steep-drainage) is observed. Using the earlier developed 3D method of induction electromagnetic frequency geometric monitoring, we showed the possibility of defining the physical and structural features of a hierarchical oil layer structure and estimating the water saturation from crack inclusions. This effect allows managing the process of drainage and steeping the oil out of the layer by water displacement. An algorithm was constructed for 2D modeling of sound diffraction on a porous fluid-saturated intrusion of a hierarchical structure located in layer number J of an N-layered elastic medium. The algorithm developed for modeling, and the method of mapping and monitoring of heterogenic highly complicated two-phase medium can be used for managing viscous oil extraction in mining conditions and light oil in sub-horizontal boreholes. The demand for effective economic parameters and fuller extraction of oil and gas from deposits dictates the necessity of developing new geotechnology based on the fundamental achievements in the area of geophysics and geomechanics

  3. On the consistency of scale among experiments, theory, and simulation

    DOE PAGES

    McClure, James E.; Dye, Amanda L.; Miller, Cass T.; ...

    2017-02-20

    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examinemore » a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. Here, we demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.« less

  4. On the consistency of scale among experiments, theory, and simulation

    NASA Astrophysics Data System (ADS)

    McClure, James E.; Dye, Amanda L.; Miller, Cass T.; Gray, William G.

    2017-02-01

    As a tool for addressing problems of scale, we consider an evolving approach known as the thermodynamically constrained averaging theory (TCAT), which has broad applicability to hydrology. We consider the case of modeling of two-fluid-phase flow in porous media, and we focus on issues of scale as they relate to various measures of pressure, capillary pressure, and state equations needed to produce solvable models. We apply TCAT to perform physics-based data assimilation to understand how the internal behavior influences the macroscale state of two-fluid porous medium systems. A microfluidic experimental method and a lattice Boltzmann simulation method are used to examine a key deficiency associated with standard approaches. In a hydrologic process such as evaporation, the water content will ultimately be reduced below the irreducible wetting-phase saturation determined from experiments. This is problematic since the derived closure relationships cannot predict the associated capillary pressures for these states. We demonstrate that the irreducible wetting-phase saturation is an artifact of the experimental design, caused by the fact that the boundary pressure difference does not approximate the true capillary pressure. Using averaging methods, we compute the true capillary pressure for fluid configurations at and below the irreducible wetting-phase saturation. Results of our analysis include a state function for the capillary pressure expressed as a function of fluid saturation and interfacial area.

  5. Rotational motion of elongated particles in isotropic turbulent flow: statistical perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Lihao; Andersson, Helge; Variano, Evan

    2014-11-01

    We consider the rotational motion of non-spherical particles in turbulent flow, comparing the statistics of particles' angular velocity to the corresponding quantities computed in the fluid phase. We use numerical (DNS) and laboratory measurements for particles that are both larger and smaller than the Kolmogorov lengthscale. The particles are spheroids or rods, with aspect ratios between 1 and 10. We will discuss the subtleties of defining a meaningful Stokes number for these particles, focusing on the effect of asphericity and the fact that our interest is in rotation and not translation. Comparing the probability density function of angular velocity between fluid and particle phase indicates that the angular velocity of particles has a narrower distribution than that of the fluid phase, and that. particles do respond to extreme events in the fluid phase. The first four moments of the PDFs are analyzed, and these show that the ``filtering'' effect is very similar between DNS and lab experiments, despite differences in particle sizes and mass. We propose a nondimensional curve for predicting the magnitude of the filtering effect, and discuss the implications of this curve for the definition of Stokes number, as discussed earlier. This work has been supported by grants from the Peder Sather Center for Advanced Study at UC Berkeley and from the Research Council of Norway (Contract No. 213917/F20).

  6. Lagrangian particle method for compressible fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  7. Lagrangian particle method for compressible fluid dynamics

    DOE PAGES

    Samulyak, Roman; Wang, Xingyu; Chen, Hsin -Chiang

    2018-02-09

    A new Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multi-phase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) a second-order particle-based algorithm that reduces to the first-order upwind method at local extremalmore » points, providing accuracy and long term stability, and (c) more accurate resolution of entropy discontinuities and states at free inter-faces. While the method is consistent and convergent to a prescribed order, the conservation of momentum and energy is not exact and depends on the convergence order . The method is generalizable to coupled hyperbolic-elliptic systems. As a result, numerical verification tests demonstrating the convergence order are presented as well as examples of complex multiphase flows.« less

  8. Fast 2D fluid-analytical simulation of ion energy distributions and electromagnetic effects in multi-frequency capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-12-01

    A fast 2D axisymmetric fluid-analytical plasma reactor model using the finite elements simulation tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency capacitive argon discharges. A bulk fluid plasma model, which solves the time-dependent plasma fluid equations for the ion continuity and electron energy balance, is coupled with an analytical sheath model, which solves for the sheath parameters. The time-independent Helmholtz equation is used to solve for the fields and a gas flow model solves for the steady-state pressure, temperature and velocity of the neutrals. The results of the fluid-analytical model are used as inputs to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the target electrode. Each 2D fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 min. The multi-frequency 2D fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel-plate discharge, showing good agreement. We also conducted fluid-analytical simulations of a multi-frequency argon capacitively coupled plasma (CCP) with a typical asymmetric reactor geometry at 2/60/162 MHz. The low frequency 2 MHz power controlled the sheath width and sheath voltage while the high frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. We noticed that adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge can enhance the plasma uniformity. We found that multiple frequencies were not only useful for controlling IEDs but also plasma uniformity in CCP reactors.

  9. Multi-stage flash degaser

    DOEpatents

    Rapier, P.M.

    1980-06-26

    A multi-stage flash degaser is incorporated in an energy conversion system having a direct-contact, binary-fluid heat exchanger to remove essentially all of the noncondensable gases from geothermal brine ahead of the direct-contact binary-fluid heat exchanger in order that the heat exchanger and a turbine and condenser of the system can operate at optimal efficiency.

  10. Kerr-AdS analogue of triple point and solid/liquid/gas phase transition

    NASA Astrophysics Data System (ADS)

    Altamirano, Natacha; Kubizňák, David; Mann, Robert B.; Sherkatghanad, Zeinab

    2014-02-01

    We study the thermodynamic behavior of multi-spinning d = 6 Kerr-anti de Sitter black holes in the canonical ensemble of fixed angular momenta J1 and J2. We find, dependent on the ratio q = J2/J1, qualitatively different interesting phenomena known from the ‘every day thermodynamics’ of simple substances. For q = 0 the system exhibits recently observed reentrant large/small/large black hole phase transitions, but for 0 < q ≪ 1 we find an analogue of a ‘solid/liquid’ phase transition. Furthermore, for q ∈ (0.00905, 0.0985) the system displays the presence of a large/intermediate/small black hole phase transition with two critical and one triple (or tricritical) points. This behavior is reminiscent of the solid/liquid/gas phase transition except that the coexistence line of small and intermediate black holes does not continue for an arbitrary value of pressure (similar to the solid/liquid coexistence line) but rather terminates at one of the critical points. Finally, for q > 0.0985 we observe the ‘standard liquid/gas behavior’ of the Van der Waals fluid.

  11. Method of analysis of polymerizable monomeric species in a complex mixture

    DOEpatents

    Hermes, Robert E

    2014-03-18

    Method of selective quantitation of a polymerizable monomeric species in a well spacer fluid, said method comprising the steps of adding at least one solvent having a refractive index of less than about 1.33 to a sample of the complex mixture to produce a solvent phase, and measuring the refractive index of the solvent phase.

  12. Results of investigation at the Miravalles Geothermal Field, Costa Rica: Part 1, Well logging. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica: Parte 1, Registros de pozos (in EN;SP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, B.R.; Lawton, R.G.; Kolar, J.D.

    The well-logging operations performed in the Miravalles Geothermal Field in Costa Rica were conducted during two separate field trips. The Phase I program provided the deployment of a suite of high-temperature borehole instruments, including the temperature/rabbit, fluid sampler, and three-arm caliper in Well PGM-3. These same tools were deployed in Well PGM-10 along with an additional survey run with a combination fluid velocity/temperature/pressure instrument used to measure thermodynamic properties under flowing well conditions. The Phase II program complemented Phase I with the suite of tools deployed in Wells PGM-5, PGM-11, and PGM-12. 4 refs., 25 figs., 1 tab.

  13. Fluid Shifts

    NASA Technical Reports Server (NTRS)

    Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.; hide

    2015-01-01

    INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described, including novel hardware and countermeasures.

  14. Finite Element Methods and Multiphase Continuum Theory for Modeling 3D Air-Water-Sediment Interactions

    NASA Astrophysics Data System (ADS)

    Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.

    2016-12-01

    The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air/water flow via operator splitting (fractional step) schemes. Particular attention will be given to verification and validation of the numerical model and important qualitative features of the numerical methods including phase conservation, wave energy dissipation, and computational efficiency in regimes of interest.

  15. Bridge permeameter

    DOEpatents

    Graf, D.C.; Warpinski, N.R.

    1996-08-13

    A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.

  16. Bridge permeameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, D.C.; Warpinski, N.R.

    A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.

  17. A Review of Electrical Impedance Spectrometry Methods for Parametric Estimation of Physiologic Fluid Volumes

    NASA Technical Reports Server (NTRS)

    Dewberry, B.

    2000-01-01

    Electrical impedance spectrometry involves measurement of the complex resistance of a load at multiple frequencies. With this information in the form of impedance magnitude and phase, or resistance and reactance, basic structure or function of the load can be estimated. The "load" targeted for measurement and estimation in this study consisted of the water-bearing tissues of the human calf. It was proposed and verified that by measuring the electrical impedance of the human calf and fitting this data to a model of fluid compartments, the lumped-model volume of intracellular and extracellular spaces could be estimated, By performing this estimation over time, the volume dynamics during application of stimuli which affect the direction of gravity can be viewed. The resulting data can form a basis for further modeling and verification of cardiovascular and compartmental modeling of fluid reactions to microgravity as well as countermeasures to the headward shift of fluid during head-down tilt or spaceflight.

  18. Gas production and migration in landfills and geological materials.

    PubMed

    Nastev, M; Therrien, R; Lefebvre, R; Gélinas, P

    2001-11-01

    Landfill gas, originating from the anaerobic biodegradation of the organic content of waste, consists mainly of methane and carbon dioxide, with traces of volatile organic compounds. Pressure, concentration and temperature gradients that develop within the landfill result in gas emissions to the atmosphere and in lateral migration through the surrounding soils. Environmental and safety issues associated with the landfill gas require control of off-site gas migration. The numerical model TOUGH2-LGM (Transport of Unsaturated Groundwater and Heat-Landfill Gas Migration) has been developed to simulate landfill gas production and migration processes within and beyond landfill boundaries. The model is derived from the general non-isothermal multiphase flow simulator TOUGH2, to which a new equation of state module is added. It simulates the migration of five components in partially saturated media: four fluid components (water, atmospheric air, methane and carbon dioxide) and one energy component (heat). The four fluid components are present in both the gas and liquid phases. The model incorporates gas-liquid partitioning of all fluid components by means of dissolution and volatilization. In addition to advection in the gas and liquid phase, multi-component diffusion is simulated in the gas phase. The landfill gas production rate is proportional to the organic substrate and is modeled as an exponentially decreasing function of time. The model is applied to the Montreal's CESM landfill site, which is located in a former limestone rock quarry. Existing data were used to characterize hydraulic properties of the waste and the limestone. Gas recovery data at the site were used to define the gas production model. Simulations in one and two dimensions are presented to investigate gas production and migration in the landfill, and in the surrounding limestone. The effects of a gas recovery well and landfill cover on gas migration are also discussed.

  19. Phase behavior of charged colloids on spherical surfaces

    NASA Astrophysics Data System (ADS)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  20. Assessment of sedimentary Cu availability: A comparison of biomimetic and AVS approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Mayer, L.M.

    1999-02-15

    Sedimentary Cu bioavailability during deposit feeding is determined by both the digestive physiology of the organisms and the geochemistry of the sediments. The authors assessed the contribution of these two factors by using a biomimetic approach involving extraction of Cu with digestive fluids of two deposit feeders and one suspension feeder and a geochemical approach measuring Cu associated with acid-volatile sulfide (AVS) in sediments. Cu bioavailability determined by the biomimetic method varied among species with varying digestive physiology but all showed a marked increase when SEM{sub Cu}-AVS {ge} 0, corroborating the premise underlying the AVS method in determining sedimentary Cumore » bioavailability. The existence of a positive SEM{sub Cu}-AVS threshold suggests the existence of additional Cu-binding phases or mixed Cu(I)--Cu(II) sulfides in sediments. In addition, Cu bioavailable to digestive fluids was much less than that measured as SEM{sub Cu}-AVS, indicating that the AVS method overestimates Cu bioavailability to digestive fluid of deposit feeders. Incubation of digestive fluids with two Cu-bound model phases, goethite and sulfide, corroborated the relative unavailability of sulfide-bound Cu. Subsurface deposit feeders feeding on anoxic sediments may be exposed to less Cu than their surface-feeding counterparts in Cu-contaminated environments.« less

Top