Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide.
Duvall, Rachelle M; Long, Russell W; Beaver, Melinda R; Kronmiller, Keith G; Wheeler, Michael L; Szykman, James J
2016-10-13
This study reports on the performance of electrochemical-based low-cost sensors and their use in a community application. CairClip sensors were collocated with federal reference and equivalent methods and operated in a network of sites by citizen scientists (community members) in Houston, Texas and Denver, Colorado, under the umbrella of the NASA-led DISCOVER-AQ Earth Venture Mission. Measurements were focused on ozone (O₃) and nitrogen dioxide (NO₂). The performance evaluation showed that the CairClip O₃/NO₂ sensor provided a consistent measurement response to that of reference monitors (r² = 0.79 in Houston; r² = 0.72 in Denver) whereas the CairClip NO₂ sensor measurements showed no agreement to reference measurements. The CairClip O₃/NO₂ sensor data from the citizen science sites compared favorably to measurements at nearby reference monitoring sites. This study provides important information on data quality from low-cost sensor technologies and is one of few studies that reports sensor data collected directly by citizen scientists.
Metrics and the effective computational scientist: process, quality and communication.
Baldwin, Eric T
2012-09-01
Recent treatments of computational knowledge worker productivity have focused upon the value the discipline brings to drug discovery using positive anecdotes. While this big picture approach provides important validation of the contributions of these knowledge workers, the impact accounts do not provide the granular detail that can help individuals and teams perform better. I suggest balancing the impact-focus with quantitative measures that can inform the development of scientists. Measuring the quality of work, analyzing and improving processes, and the critical evaluation of communication can provide immediate performance feedback. The introduction of quantitative measures can complement the longer term reporting of impacts on drug discovery. These metric data can document effectiveness trends and can provide a stronger foundation for the impact dialogue. Copyright © 2012 Elsevier Ltd. All rights reserved.
Do scientists trace hot topics?
Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan
2013-01-01
Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.
Do scientists trace hot topics?
Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan
2013-01-01
Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects. PMID:23856680
Do scientists trace hot topics?
NASA Astrophysics Data System (ADS)
Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; di, Zengru; Wu, Jinshan
2013-07-01
Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.
Characterization of real-time computers
NASA Technical Reports Server (NTRS)
Shin, K. G.; Krishna, C. M.
1984-01-01
A real-time system consists of a computer controller and controlled processes. Despite the synergistic relationship between these two components, they have been traditionally designed and analyzed independently of and separately from each other; namely, computer controllers by computer scientists/engineers and controlled processes by control scientists. As a remedy for this problem, in this report real-time computers are characterized by performance measures based on computer controller response time that are: (1) congruent to the real-time applications, (2) able to offer an objective comparison of rival computer systems, and (3) experimentally measurable/determinable. These measures, unlike others, provide the real-time computer controller with a natural link to controlled processes. In order to demonstrate their utility and power, these measures are first determined for example controlled processes on the basis of control performance functionals. They are then used for two important real-time multiprocessor design applications - the number-power tradeoff and fault-masking and synchronization.
Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide
Duvall, Rachelle M.; Long, Russell W.; Beaver, Melinda R.; Kronmiller, Keith G.; Wheeler, Michael L.; Szykman, James J.
2016-01-01
This study reports on the performance of electrochemical-based low-cost sensors and their use in a community application. CairClip sensors were collocated with federal reference and equivalent methods and operated in a network of sites by citizen scientists (community members) in Houston, Texas and Denver, Colorado, under the umbrella of the NASA-led DISCOVER-AQ Earth Venture Mission. Measurements were focused on ozone (O3) and nitrogen dioxide (NO2). The performance evaluation showed that the CairClip O3/NO2 sensor provided a consistent measurement response to that of reference monitors (r2 = 0.79 in Houston; r2 = 0.72 in Denver) whereas the CairClip NO2 sensor measurements showed no agreement to reference measurements. The CairClip O3/NO2 sensor data from the citizen science sites compared favorably to measurements at nearby reference monitoring sites. This study provides important information on data quality from low-cost sensor technologies and is one of few studies that reports sensor data collected directly by citizen scientists. PMID:27754370
Scientific Measure of Africa's Connectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zennaro, M.; Canessa, E.; Sreenivasan, K.R.
2006-04-24
Data on Internet performance and the analysis of its trend can be useful for decision makers and scientists alike. Such performance measurements are possible using the PingER methodology. We use the data thus obtained to quantify the difference in performance between developed and developing countries, sometimes referred to as the Digital Divide. Motivated by the recent interest of G8 countries in African development, we particularly focus on the African countries.
H-Index of Astrophysicists at Raman Research Institute: Performance of Different Calculators
NASA Astrophysics Data System (ADS)
Meera, B. M.; Manjunath, M.
2012-08-01
H-index, a single number proposed by J. E. Hirsch in 2005 has gained popularity as an index number to measure the research performance of individuals, institutions, universities, etc. There are many calculators to derive the h-in dex number, such as Google Scholar, Web of Science, Scopus, etc. However, h-index can be calculated manually, provided we have access to a complete list of publications of a scientist and the number of citations received by them. It is observed that h-index for a given scientist at a ny given point of time differs from one calculator to the other. Here is an attempt to calculate the H-index of scientists of the Astronomy and Astrophysics Group at Raman Research Institute using Google Scholar Free calculator, Web of Science Paid calculator and The SAO/NASA As trophysics Data System manual calculation and comparison of the results. Application of this h- index phenomenon to the research output of RRI scientists in a group is done while keeping in mi nd Hirsch's systematic in vestigation to predict the position of a scientist using h-index in physics. It is believed that the higher the academic age of a scientist, the higher will be the h-index. An attempt is made to find whether this assumption is true with respect to the sample studied by including the superannuated scientists from Astronomy and Astrophysics Group at Raman Research Institute under the purview of this study.
2018-01-01
The h-index is frequently used to measure the performance of single scientists in Korea (and beyond). No single indicator alone, however, is able to provide a stable and complete assessment of performance. The Stata command bibrep.ado is introduced which automatically produces bibliometric reports for single researchers (senior researchers working in the natural or life sciences). The user of the command receives a comprehensive bibliometric report which can be used in research evaluation instead of the h-index. PMID:29713257
The effects of gender stereotypic and counter-stereotypic textbook images on science performance.
Good, Jessica J; Woodzicka, Julie A; Wingfield, Lylan C
2010-01-01
We investigated the effect of gender stereotypic and counter-stereotypic images on male and female high school students' science comprehension and anxiety. We predicted stereotypic images to induce stereotype threat in females and impair science performance. Counter-stereotypic images were predicted to alleviate threat and enhance female performance. Students read one of three chemistry lessons, each containing the same text, with photograph content varied according to stereotype condition. Participants then completed a comprehension test and anxiety measure. Results indicate that female students had higher comprehension after viewing counter-stereotypic images (female scientists) than after viewing stereotypic images (male scientists). Male students had higher comprehension after viewing stereotypic images than after viewing counter-stereotypic images. Implications for alleviating the gender gap in science achievement are discussed.
Robertson, Sam; Kremer, Peter; Aisbett, Brad; Tran, Jacqueline; Cerin, Ester
2017-12-01
Performance tests are used for multiple purposes in exercise and sport science. Ensuring that a test displays an appropriate level of measurement properties for use within a population is important to ensure confidence in test findings. The aim of this study was to obtain subject matter expert consensus on the measurement and feasibility properties that should be considered for performance tests used in the exercise and sport sciences and how these should be defined. This information was used to develop a checklist for broader dissemination. A two-round Delphi study was undertaken including 33 exercise scientists, academics and sport scientists. Participants were asked to rate the importance of a range of measurement properties relevant to performance tests in exercise and sport science. Responses were obtained in binary and Likert-scale formats, with consensus defined as achieving 67% agreement on each question. Consensus was reached on definitions and terminology for all items. Ten level 1 items (those that achieved consensus on all four questions) and nine level 2 items (those achieving consensus on ≥2 questions) were included. Both levels were included in the final checklist. The checklist developed from this study can be used to inform decision-making and test selection for practitioners and researchers in the exercise and sport sciences. This can facilitate knowledge sharing and performance comparisons across sub-disciplines, thereby improving existing field practice and research methodological quality.
Shibayama, Sotaro; Tanikawa, Kunihiro; Fujimoto, Ryuhei; Kimura, Hiromichi
2008-01-01
The pharmaceutical industry has experienced intermittent waves of mergers and acquisitions (M&As) since the 1980s and recently appeared to be in yet another wave. Previous studies indicated rather negative impacts of consolidation on research and development, suggesting that they do not necessarily lead to long-term reinforcement of research capabilities, although they may enrich the drug pipeline in the short term. However, recent studies have implied a positive side in terms of knowledge-base transfer. Further micro-organizational studies suggested that scientists learned new knowledge and approaches from partner scientists and improved their performance and innovation. These findings imply that measures for the scientist-level integration after M&As would reinforce fundamental research capabilities in the long term.
Art-Science-Technology collaboration through immersive, interactive 3D visualization
NASA Astrophysics Data System (ADS)
Kellogg, L. H.
2014-12-01
At the W. M. Keck Center for Active Visualization in Earth Sciences (KeckCAVES), a group of geoscientists and computer scientists collaborate to develop and use of interactive, immersive, 3D visualization technology to view, manipulate, and interpret data for scientific research. The visual impact of immersion in a CAVE environment can be extremely compelling, and from the outset KeckCAVES scientists have collaborated with artists to bring this technology to creative works, including theater and dance performance, installations, and gamification. The first full-fledged collaboration designed and produced a performance called "Collapse: Suddenly falling down", choreographed by Della Davidson, which investigated the human and cultural response to natural and man-made disasters. Scientific data (lidar scans of disaster sites, such as landslides and mine collapses) were fully integrated into the performance by the Sideshow Physical Theatre. This presentation will discuss both the technological and creative characteristics of, and lessons learned from the collaboration. Many parallels between the artistic and scientific process emerged. We observed that both artists and scientists set out to investigate a topic, solve a problem, or answer a question. Refining that question or problem is an essential part of both the creative and scientific workflow. Both artists and scientists seek understanding (in this case understanding of natural disasters). Differences also emerged; the group noted that the scientists sought clarity (including but not limited to quantitative measurements) as a means to understanding, while the artists embraced ambiguity, also as a means to understanding. Subsequent art-science-technology collaborations have responded to evolving technology for visualization and include gamification as a means to explore data, and use of augmented reality for informal learning in museum settings.
Scientific impact: the story of your big hit
NASA Astrophysics Data System (ADS)
Sinatra, Roberta; Wang, Dashun; Deville, Pierre; Song, Chaoming; Barabasi, Albert-Laszlo
2014-03-01
A gradual increase in performance through learning and practice characterize most trades, from sport to music or engineering, and common sense suggests this to be true in science as well. This prompts us to ask: what are the precise patterns that lead to scientific excellence? Does performance indeed improve throughout a scientific career? Are there quantifiable signs of an impending scientific hit? Using citation-based measures as a proxy of impact, we show that (i) major discoveries are not preceded by works of increasing impact, nor are followed by work of higher impact, (ii) the precise time ranking of the highest impact work in a scientist's career is uniformly random, with the higher probability to have a major discovery in the middle of scientific careers being due only to changes in productivity, (iii) there is a strong correlation between the highest impact work and average impact of a scientist's work. These findings suggest that the impact of a paper is drawn randomly from an impact distribution that is unique for each scientist. We present a model which allows to reconstruct the individual impact distribution, making possible to create synthetic careers that exhibit the same properties of the real data and to define a ranking based on the overall impact of a scientist. RS acknowledges support from the James McDonnell Foundation.
Democratization of Nanoscale Imaging and Sensing Tools Using Photonics
2015-01-01
Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future. PMID:26068279
Democratization of Nanoscale Imaging and Sensing Tools Using Photonics.
McLeod, Euan; Wei, Qingshan; Ozcan, Aydogan
2015-07-07
Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.
HRP Chief Scientist's Office: Conducting Research to Enable Deep Space Exploration
NASA Technical Reports Server (NTRS)
Charles, J. B.; Fogarty, J.; Vega, L.; Cromwell, R. L.; Haven, C. P.; McFather, J. C.; Savelev, I.
2017-01-01
The HRP Chief Scientist's Office sets the scientific agenda for the Human Research Program. As NASA plans for deep space exploration, HRP is conducting research to ensure the health of astronauts, and optimize human performance during extended duration missions. To accomplish this research, HRP solicits for proposals within the U.S., collaborates with agencies both domestically and abroad, and makes optimal use of ISS resources in support of human research. This session will expand on these topics and provide an opportunity for questions and discussion with the HRP Chief Scientist. Presentations in this session will include: NRA solicitations - process improvements and focus for future solicitations, Multilateral Human Research Panel for Exploration - future directions (MHRPE 2.0), Extramural liaisons - National Science Foundation (NSF) and Department of Defense (DOD), Standardized Measures for spaceflight, Ground-based Analogs - international collaborations, and International data sharing.
Marks, Nicola J
2014-07-01
Scientists play an important role in framing public engagement with science. Their language can facilitate or impede particular interactions taking place with particular citizens: scientists' "speech acts" can "perform" different types of "scientific citizenship". This paper examines how scientists in Australia talked about therapeutic cloning during interviews and during the 2006 parliamentary debates on stem cell research. Some avoided complex labels, thereby facilitating public examination of this field. Others drew on language that only opens a space for publics to become educated, not to participate in a more meaningful way. Importantly, public utterances made by scientists here contrast with common international utterances: they did not focus on the therapeutic but the research promises of therapeutic cloning. Social scientists need to pay attention to the performative aspects of language in order to promote genuine citizen involvement in techno-science. Speech Act Theory is a useful analytical tool for this.
Scout: high-performance heterogeneous computing made simple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jablin, James; Mc Cormick, Patrick; Herlihy, Maurice
2011-01-26
Researchers must often write their own simulation and analysis software. During this process they simultaneously confront both computational and scientific problems. Current strategies for aiding the generation of performance-oriented programs do not abstract the software development from the science. Furthermore, the problem is becoming increasingly complex and pressing with the continued development of many-core and heterogeneous (CPU-GPU) architectures. To acbieve high performance, scientists must expertly navigate both software and hardware. Co-design between computer scientists and research scientists can alleviate but not solve this problem. The science community requires better tools for developing, optimizing, and future-proofing codes, allowing scientists to focusmore » on their research while still achieving high computational performance. Scout is a parallel programming language and extensible compiler framework targeting heterogeneous architectures. It provides the abstraction required to buffer scientists from the constantly-shifting details of hardware while still realizing higb-performance by encapsulating software and hardware optimization within a compiler framework.« less
Measurement of Dam Deformations: Case Study of Obruk Dam (Turkey)
NASA Astrophysics Data System (ADS)
Gulal, V. Engin; Alkan, R. Metin; Alkan, M. Nurullah; İlci, Veli; Ozulu, I. Murat; Tombus, F. Engin; Kose, Zafer; Aladogan, Kayhan; Sahin, Murat; Yavasoglu, Hakan; Oku, Guldane
2016-04-01
In the literature, there is information regarding the first deformation and displacement measurements in dams that were conducted in 1920s Switzerland. Todays, deformation measurements in the dams have gained very different functions with improvements in both measurement equipment and evaluation of measurements. Deformation measurements and analysis are among the main topics studied by scientists who take interest in the engineering measurement sciences. The Working group of Deformation Measurements and Analysis, which was established under the International Federation of Surveyors (FIG), carries out its studies and activities with regard to this subject. At the end of the 1970s, the subject of the determination of fixed points in the deformation monitoring network was one of the main subjects extensively studied. Many theories arose from this inquiry, as different institutes came to differing conclusions. In 1978, a special commission with representatives of universities has been established within the FIG 6.1 working group; this commission worked on the issue of determining a general approach to geometric deformation analysis. The results gleaned from the commission were discussed at symposiums organized by the FIG. In accordance with these studies, scientists interested in the subject have begun to work on models that investigate cause and effect relations between the effects that cause deformation and deformation. As of the scientist who interest with the issue focused on different deformation methods, another special commission was established within the FIG engineering measurements commission in order to classify deformation models and study terminology. After studying this material for a long time, the official commission report was published in 2001. In this prepared report, studies have been carried out by considering the FIG Engineering Surveying Commission's report entitled, 'MODELS AND TERMINOLOGY FOR THE ANALYSIS OF GEODETIC MONITORING OBSERVATIONS'. In October of 2015, geodetic deformation measurements were conducted by considering FIG reports related to deformation measurements and German DIN 18710 Engineering Measurements norms in the Çorum province of Turkey. The main purpose of the study is to determine optimum measurement and evaluation methods that will be used to specify movements in the horizontal and vertical directions for the fill dam. For this purpose; • In reference networks consisting of 8 points, measurements were performed by using long-term dual-frequency GNSS receivers for duration of 8 hours. • GNSS measurements were conducted in varying times between 30 minutes and 120 minutes at the 44 units object points on the body of the dam. • Two repetitive measurements of real time kinematic (RTK) GNSS were conducted at the object points on dam. • Geometric leveling measurements were performed between reference and object points. • Trigonometric leveling measurements were performed between reference and object points. • Polar measurements were performed between references and object points. GNSS measurements performed at reference points of the monitoring network for 8 hours have been evaluated by using GAMIT software in accordance with the IGS points in the region. In this manner, regional and local movements in the network can be determined. It is aimed to determine measurement period which will provide 1-2mm accuracy that expected in local GNSS network by evaluating GNSS measurements performed on body of dam. Results will be compared by offsetting GNSS and terrestrial measurements. This study will investigate whether or not there is increased accuracy provided by GNSS measurements carried out among reference points without the possibility of vision.
Science& Technology Review June 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D
This month's issue has the following articles: (1) Livermore's Three-Pronged Strategy for High-Performance Computing, Commentary by Dona Crawford; (2) Riding the Waves of Supercomputing Technology--Livermore's Computation Directorate is exploiting multiple technologies to ensure high-performance, cost-effective computing; (3) Chromosome 19 and Lawrence Livermore Form a Long-Lasting Bond--Lawrence Livermore biomedical scientists have played an important role in the Human Genome Project through their long-term research on chromosome 19; (4) A New Way to Measure the Mass of Stars--For the first time, scientists have determined the mass of a star in isolation from other celestial bodies; and (5) Flexibly Fueled Storage Tank Bringsmore » Hydrogen-Powered Cars Closer to Reality--Livermore's cryogenic hydrogen fuel storage tank for passenger cars of the future can accommodate three forms of hydrogen fuel separately or in combination.« less
The Value of Information: Approaches in Economics, Accounting, and Management Science.
ERIC Educational Resources Information Center
Repo, Aatto J.
1989-01-01
This review and analysis of research on the economics of information performed by economists, accounting researchers, and management scientists focuses on their approaches to describing and measuring the value of information. The discussion includes comparisons of research approaches based on cost effectiveness and on the value of information. (77…
Paul V. Ellefson; Michael A. Kilgore; Kenneth E. Skog; Christopher D. Risbrudt
2007-01-01
Located in 23 countries, 40 forest-products research and development organizations outside the United States were reviewed in 2004 and 2005. The intent was to obtain a better understanding of how such organizations are structured and administered and their performance judged. Investing over $600 million annually, the 40 organizations employed 7,000 to 7,500 scientists...
The Strength of the Strongest Ties in Collaborative Problem Solving
NASA Astrophysics Data System (ADS)
de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune
2014-06-01
Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.
The strength of the strongest ties in collaborative problem solving.
de Montjoye, Yves-Alexandre; Stopczynski, Arkadiusz; Shmueli, Erez; Pentland, Alex; Lehmann, Sune
2014-06-20
Complex problem solving in science, engineering, and business has become a highly collaborative endeavor. Teams of scientists or engineers collaborate on projects using their social networks to gather new ideas and feedback. Here we bridge the literature on team performance and information networks by studying teams' problem solving abilities as a function of both their within-team networks and their members' extended networks. We show that, while an assigned team's performance is strongly correlated with its networks of expressive and instrumental ties, only the strongest ties in both networks have an effect on performance. Both networks of strong ties explain more of the variance than other factors, such as measured or self-evaluated technical competencies, or the personalities of the team members. In fact, the inclusion of the network of strong ties renders these factors non-significant in the statistical analysis. Our results have consequences for the organization of teams of scientists, engineers, and other knowledge workers tackling today's most complex problems.
7 CFR 91.18 - Financial interest of a scientist.
Code of Federal Regulations, 2013 CFR
2013-01-01
... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist shall perform a laboratory analysis on any product in which he is directly or indirectly financially...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Burrows, Susannah M.; Han, Kyungsik
Scientists working in a particular domain often adhere to conventional data analysis and presentation methods and this leads to familiarity with these methods over time. But does high familiarity always lead to better analytical judgment? This question is especially relevant when visualizations are used in scientific tasks, as there can be discrepancies between visualization best practices and domain conventions. However, there is little empirical evidence of the relationships between scientists’ subjective impressions about familiar and unfamiliar visualizations and objective measures of their effect on scientific judgment. To address this gap and to study these factors, we focus on the climatemore » science domain, specifically on visualizations used for comparison of model performance. We present a comprehensive user study with 47 climate scientists where we explored the following factors: i) relationships between scientists’ familiarity, their perceived levels of com- fort, confidence, accuracy, and objective measures of accuracy, and ii) relationships among domain experience, visualization familiarity, and post-study preference.« less
Incorporating the patient experience into regulatory decision making in the USA, Europe, and Canada.
Kluetz, Paul G; O'Connor, Daniel J; Soltys, Katherine
2018-05-01
The clinical development of cancer therapeutics is a global undertaking, and incorporation of the patient experience into the clinical decision-making process is of increasing interest to the international regulatory and health policy community. Disease and treatment-related symptoms and their effect on patient function and health-related quality of life are important outcomes to consider. The identification of methods to scientifically assess, analyse, interpret, and present these clinical outcomes requires sustained international collaboration by multiple stakeholders including patients, clinicians, scientists, and policy makers. Several data sources can be considered to capture the patient experience, including patient-reported outcome (PRO) measures, performance measures, wearable devices, and biosensors, as well as the careful collection and analysis of clinical events and supportive care medications. In this Policy Review, we focus on PRO measures and present the perspectives of three international regulatory scientists to identify areas of common ground regarding opportunities to incorporate rigorous PRO data into the regulatory decision-making process. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dasgupta, Aritra; Burrows, Susannah M.; Han, Kyungsik
2017-05-08
Scientists often use specific data analysis and presentation methods familiar within their domain. But does high familiarity drive better analytical judgment? This question is especially relevant when familiar methods themselves can have shortcomings: many visualizations used conventionally for scientific data analysis and presentation do not follow established best practices. This necessitates new methods that might be unfamiliar yet prove to be more effective. But there is little empirical understanding of the relationships between scientists’ subjective impressions about familiar and unfamiliar visualizations and objective measures of their visual analytic judgments. To address this gap and to study these factors, we focusmore » on visualizations used for comparison of climate model performance. We report on a comprehensive survey-based user study with 47 climate scientists and present an analysis of : i) relationships among scientists’ familiarity, their perceived lev- els of comfort, confidence, accuracy, and objective measures of accuracy, and ii) relationships among domain experience, visualization familiarity, and post-study preference.« less
7 CFR 91.18 - Financial interest of a scientist.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Financial interest of a scientist. 91.18 Section 91.18... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist shall perform a laboratory analysis on any product in which he is directly or indirectly financially...
7 CFR 91.18 - Financial interest of a scientist.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Financial interest of a scientist. 91.18 Section 91.18... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist shall perform a laboratory analysis on any product in which he is directly or indirectly financially...
Crowdsourcing Stream Stage in Data Scarce Regions: Applications of CrowdHydrology
NASA Astrophysics Data System (ADS)
Lowry, C.; Fienen, M. N.
2013-12-01
Crowdsourced data collection using citizen scientists and mobile phones is a promising way to collect supplemental information in data scarce or remote regions. The research presented here explore the possibilities and pitfalls of crowdsourcing hydrologic data via mobile phone text messaging through the example of CrowdHydrology, a distributed network of over 40 stream gages in four states. Signage at the CrowdHydrology gages ask citizen scientists to answer to a simple question via text message: 'What is the water height?'. While these data in no way replace more traditional measurements of stream stage, they do provide low cost supplemental measurements in data scarce regions. Results demonstrate the accuracy of crowdsourced data and provide insight for successful future crowdsourced data collection efforts. A less recognized benefit is that even in data rich areas, crowdsourced data collection is a cost-effective way to perform quality assurance on more sophisticated, and costly, data collection efforts.
USDA-ARS?s Scientific Manuscript database
Despite the peer review process, it sometimes happens that scientific papers are published that give misleading or incorrect conclusions. Scientists with the USDA-ARS Soil and Water Management Research Unit, Bushland, Texas, found that a paper on soil water sensors published in an engineering journa...
Reputation and impact in academic careers.
Petersen, Alexander Michael; Fortunato, Santo; Pan, Raj K; Kaski, Kimmo; Penner, Orion; Rungi, Armando; Riccaboni, Massimo; Stanley, H Eugene; Pammolli, Fabio
2014-10-28
Reputation is an important social construct in science, which enables informed quality assessments of both publications and careers of scientists in the absence of complete systemic information. However, the relation between reputation and career growth of an individual remains poorly understood, despite recent proliferation of quantitative research evaluation methods. Here, we develop an original framework for measuring how a publication's citation rate Δc depends on the reputation of its central author i, in addition to its net citation count c. To estimate the strength of the reputation effect, we perform a longitudinal analysis on the careers of 450 highly cited scientists, using the total citations Ci of each scientist as his/her reputation measure. We find a citation crossover c×, which distinguishes the strength of the reputation effect. For publications with c < c×, the author's reputation is found to dominate the annual citation rate. Hence, a new publication may gain a significant early advantage corresponding to roughly a 66% increase in the citation rate for each tenfold increase in Ci. However, the reputation effect becomes negligible for highly cited publications meaning that, for c ≥ c×, the citation rate measures scientific impact more transparently. In addition, we have developed a stochastic reputation model, which is found to reproduce numerous statistical observations for real careers, thus providing insight into the microscopic mechanisms underlying cumulative advantage in science.
Reputation and impact in academic careers
Petersen, Alexander Michael; Fortunato, Santo; Pan, Raj K.; Kaski, Kimmo; Penner, Orion; Rungi, Armando; Riccaboni, Massimo; Stanley, H. Eugene; Pammolli, Fabio
2014-01-01
Reputation is an important social construct in science, which enables informed quality assessments of both publications and careers of scientists in the absence of complete systemic information. However, the relation between reputation and career growth of an individual remains poorly understood, despite recent proliferation of quantitative research evaluation methods. Here, we develop an original framework for measuring how a publication’s citation rate Δc depends on the reputation of its central author i, in addition to its net citation count c. To estimate the strength of the reputation effect, we perform a longitudinal analysis on the careers of 450 highly cited scientists, using the total citations Ci of each scientist as his/her reputation measure. We find a citation crossover c×, which distinguishes the strength of the reputation effect. For publications with c < c×, the author’s reputation is found to dominate the annual citation rate. Hence, a new publication may gain a significant early advantage corresponding to roughly a 66% increase in the citation rate for each tenfold increase in Ci. However, the reputation effect becomes negligible for highly cited publications meaning that, for c ≥ c×, the citation rate measures scientific impact more transparently. In addition, we have developed a stochastic reputation model, which is found to reproduce numerous statistical observations for real careers, thus providing insight into the microscopic mechanisms underlying cumulative advantage in science. PMID:25288774
Crowdsourcing to Acquire Hydrologic Data and Engage Citizen Scientists: CrowdHydrology
Fienen, Michael N.; Lowry, Chris
2013-01-01
Spatially and temporally distributed measurements of processes, such as baseflow at the watershed scale, come at substantial equipment and personnel cost. Research presented here focuses on building a crowdsourced database of inexpensive distributed stream stage measurements. Signs on staff gauges encourage citizen scientists to voluntarily send hydrologic measurements (e.g., stream stage) via text message to a server that stores and displays the data on the web. Based on the crowdsourced stream stage, we evaluate the accuracy of citizen scientist measurements and measurement approach. The results show that crowdsourced data collection is a supplemental method for collecting hydrologic data and a promising method of public engagement.
Spiroski, Mirko
2016-06-15
The aim of this study was to analyze relative citation ratio (RCR) of top twenty Macedonian biomedical scientists with a new metric that uses citation rates to measure influence at the article level. Top twenty Macedonian biomedical scientists were identified by GoPubMed on the base of the number of deposited abstracts in PubMed, corrected with the data from previously published paper, and completed with the Macedonian biomedical scientists working in countries outside the Republic of Macedonia, but born or previously worked in the country. iCite was used as a tool to access a dashboard of bibliometrics for papers associated with a portfolio. The biggest number of top twenty Macedonian biomedical scientists has RCR lower than one. Only four Macedonian biomedical scientists have bigger RCR in comparison with those in PubMed. The most prominent RCR of 2.29 has Rosoklija G. RCR of the most influenced individual papers deposited in PubMed has shown the biggest value for the paper of Efremov D (35.19). This paper has the biggest number of authors (860). It is necessary to accept top twenty Macedonian biomedical scientists as an example of new metric that uses citation rates to measure influence at the article level, rather than qualification of the best Macedonian biomedical scientists.
From big data to rich data: The key features of athlete wheelchair mobility performance.
van der Slikke, R M A; Berger, M A M; Bregman, D J J; Veeger, H E J
2016-10-03
Quantitative assessment of an athlete׳s individual wheelchair mobility performance is one prerequisite needed to evaluate game performance, improve wheelchair settings and optimize training routines. Inertial Measurement Unit (IMU) based methods can be used to perform such quantitative assessment, providing a large number of kinematic data. The goal of this research was to reduce that large amount of data to a set of key features best describing wheelchair mobility performance in match play and present them in meaningful way for both scientists and athletes. To test the discriminative power, wheelchair mobility characteristics of athletes with different performance levels were compared. The wheelchair kinematics of 29 (inter-)national level athletes were measured during a match using three inertial sensors mounted on the wheelchair. Principal component analysis was used to reduce 22 kinematic outcomes to a set of six outcomes regarding linear and rotational movement; speed and acceleration; average and best performance. In addition, it was explored whether groups of athletes with known performance differences based on their impairment classification also differed with respect to these key outcomes using univariate general linear models. For all six key outcomes classification showed to be a significant factor (p<0.05). We composed a set of six key kinematic outcomes that accurately describe wheelchair mobility performance in match play. The key kinematic outcomes were displayed in an easy to interpret way, usable for athletes, coaches and scientists. This standardized representation enables comparison of different wheelchair sports regarding wheelchair mobility, but also evaluation at the level of an individual athlete. By this means, the tool could enhance further development of wheelchair sports in general. Copyright © 2016 Elsevier Ltd. All rights reserved.
Edwards, Marc A; Roy, Siddhartha
2017-01-01
Over the last 50 years, we argue that incentives for academic scientists have become increasingly perverse in terms of competition for research funding, development of quantitative metrics to measure performance, and a changing business model for higher education itself. Furthermore, decreased discretionary funding at the federal and state level is creating a hypercompetitive environment between government agencies (e.g., EPA, NIH, CDC), for scientists in these agencies, and for academics seeking funding from all sources-the combination of perverse incentives and decreased funding increases pressures that can lead to unethical behavior. If a critical mass of scientists become untrustworthy, a tipping point is possible in which the scientific enterprise itself becomes inherently corrupt and public trust is lost, risking a new dark age with devastating consequences to humanity. Academia and federal agencies should better support science as a public good, and incentivize altruistic and ethical outcomes, while de-emphasizing output.
Edwards, Marc A.; Roy, Siddhartha
2017-01-01
Abstract Over the last 50 years, we argue that incentives for academic scientists have become increasingly perverse in terms of competition for research funding, development of quantitative metrics to measure performance, and a changing business model for higher education itself. Furthermore, decreased discretionary funding at the federal and state level is creating a hypercompetitive environment between government agencies (e.g., EPA, NIH, CDC), for scientists in these agencies, and for academics seeking funding from all sources—the combination of perverse incentives and decreased funding increases pressures that can lead to unethical behavior. If a critical mass of scientists become untrustworthy, a tipping point is possible in which the scientific enterprise itself becomes inherently corrupt and public trust is lost, risking a new dark age with devastating consequences to humanity. Academia and federal agencies should better support science as a public good, and incentivize altruistic and ethical outcomes, while de-emphasizing output. PMID:28115824
Community-led Air Sensor Evaluation: New Tools for Citizen Scientists Fact Sheet
EPA has developed a guide and analysis tool for citizen scientists to evaluate the performance of low-cost sensors and interpret the data they collect to help citizen scientists interested in learning about local air quality.
Elementary School Children Contribute to Environmental Research as Citizen Scientists.
Miczajka, Victoria L; Klein, Alexandra-Maria; Pufal, Gesine
2015-01-01
Research benefits increasingly from valuable contributions by citizen scientists. Mostly, participating adults investigate specific species, ecosystems or phenology to address conservation issues, but ecosystem functions supporting ecosystem health are rarely addressed and other demographic groups rarely involved. As part of a project investigating seed predation and dispersal as ecosystem functions along an urban-rural gradient, we tested whether elementary school children can contribute to the project as citizen scientists. Specifically, we compared data estimating vegetation cover, measuring vegetation height and counting seeds from a seed removal experiment, that were collected by children and scientists in schoolyards. Children counted seeds similarly to scientists but under- or overestimated vegetation cover and measured different heights. We conclude that children can be involved as citizen scientists in research projects according to their skill level. However, more sophisticated tasks require specific training to become familiarized with scientific experiments and the development of needed skills and methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A U
2007-02-06
Setting performance goals is part of the business plan for almost every company. The same is true in the world of supercomputers. Ten years ago, the Department of Energy (DOE) launched the Accelerated Strategic Computing Initiative (ASCI) to help ensure the safety and reliability of the nation's nuclear weapons stockpile without nuclear testing. ASCI, which is now called the Advanced Simulation and Computing (ASC) Program and is managed by DOE's National Nuclear Security Administration (NNSA), set an initial 10-year goal to obtain computers that could process up to 100 trillion floating-point operations per second (teraflops). Many computer experts thought themore » goal was overly ambitious, but the program's results have proved them wrong. Last November, a Livermore-IBM team received the 2005 Gordon Bell Prize for achieving more than 100 teraflops while modeling the pressure-induced solidification of molten metal. The prestigious prize, which is named for a founding father of supercomputing, is awarded each year at the Supercomputing Conference to innovators who advance high-performance computing. Recipients for the 2005 prize included six Livermore scientists--physicists Fred Streitz, James Glosli, and Mehul Patel and computer scientists Bor Chan, Robert Yates, and Bronis de Supinski--as well as IBM researchers James Sexton and John Gunnels. This team produced the first atomic-scale model of metal solidification from the liquid phase with results that were independent of system size. The record-setting calculation used Livermore's domain decomposition molecular-dynamics (ddcMD) code running on BlueGene/L, a supercomputer developed by IBM in partnership with the ASC Program. BlueGene/L reached 280.6 teraflops on the Linpack benchmark, the industry standard used to measure computing speed. As a result, it ranks first on the list of Top500 Supercomputer Sites released in November 2005. To evaluate the performance of nuclear weapons systems, scientists must understand how materials behave under extreme conditions. Because experiments at high pressures and temperatures are often difficult or impossible to conduct, scientists rely on computer models that have been validated with obtainable data. Of particular interest to weapons scientists is the solidification of metals. ''To predict the performance of aging nuclear weapons, we need detailed information on a material's phase transitions'', says Streitz, who leads the Livermore-IBM team. For example, scientists want to know what happens to a metal as it changes from molten liquid to a solid and how that transition affects the material's characteristics, such as its strength.« less
NASA Astrophysics Data System (ADS)
Willson, D.; Rask, J. C.; George, S. C.; de Leon, P.; Bonaccorsi, R.; Blank, J.; Slocombe, J.; Silburn, K.; Steele, H.; Gargarno, M.; McKay, C. P.
2014-01-01
We conducted simulated Apollo Extravehicular Activity's (EVA) at the 3.45 Ga Australian 'Pilbara Dawn of life' (Western Australia) trail with field and non-field scientists using the University of North Dakota's NDX-1 pressurizable space suit to overview the effectiveness of scientist astronauts employing their field observation skills while looking for stromatolite fossil evidence. Off-world scientist astronauts will be faced with space suit limitations in vision, human sense perception, mobility, dexterity, the space suit fit, time limitations, and the psychological fear of death from accidents, causing physical fatigue reducing field science performance. Finding evidence of visible biosignatures for past life such as stromatolite fossils, on Mars, is a very significant discovery. Our preliminary overview trials showed that when in simulated EVAs, 25% stromatolite fossil evidence is missed with more incorrect identifications compared to ground truth surveys but providing quality characterization descriptions becomes less affected by simulated EVA limitations as the science importance of the features increases. Field scientists focused more on capturing high value characterization detail from the rock features whereas non-field scientists focused more on finding many features. We identified technologies and training to improve off-world field science performance. The data collected is also useful for NASA's "EVA performance and crew health" research program requirements but further work will be required to confirm the conclusions.
USDA-ARS?s Scientific Manuscript database
Soil microtopography or soil roughness is a property of critical importance in many earth surface processes but is often difficult to measure. Advances in computer vision technologies have made image-based 3D depiction of the soil surface or Structure-from-Motion (SfM) available to many scientists ...
Field and Experience Influences on Ethical Decision-Making in the Sciences
Mumford, Michael D.; Connelly, Shane; Murphy, Stephen T.; Devenport, Lynn D.; Antes, Alison L.; Brown, Ryan P.; Hill, Jason H.; Waples, Ethan P.
2009-01-01
Differences across fields and experience levels are frequently considered in discussions of ethical decision-making and ethical behavior. In the present study, doctoral students in the health, biological, and social sciences completed measures of ethical decision-making. The effects of field and level of experience with respect to ethical decision-making, metacognitive reasoning strategies, social-behavioral responses, and exposure to unethical events were examined. Social and biological scientists performed better than health scientists with respect to ethical decision-making. Furthermore, the ethical decision-making of health science students decreased as experience increased. Moreover, these effects appeared to be linked to the specific strategies underlying participants' ethical decision-making. The implications of these findings for ethical decision-making are discussed. PMID:19750129
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerber, T P; Ball, D Y
How do scientists react when the institutional setting in which they conduct their work changes radically? How do long-standing norms regarding the social responsibility of scientists fare? What factors influence whether scientists embrace or reject the new institutions and norms? We examine these questions using data from a unique survey of 602 scientists in Russia, whose science system experienced a sustained crisis and sweeping changes in science institutions following the collapse of the Soviet Union. We develop measures of how respondents view financing based on grants and other institutional changes in the Russian science system, as well as measures ofmore » two norms regarding scientists social responsibility. We find that the majority of scientists have adapted, in the sense that they hold positive views of the new institutions, but a diversity of orientations remains. Social responsibility norms are common among Russian scientists, but far from universal. The main correlates of adaptation are age and current success at negotiating the new institutions, though prospective success, work context, and ethnicity have some of the hypothesized associations. As for social responsibility norms, the main source of variation is age: younger scientists are more likely to embrace individualistic rather than socially-oriented norms.« less
Spiroski, Mirko
2016-01-01
AIM: The aim of this study was to analyze relative citation ratio (RCR) of top twenty Macedonian biomedical scientists with a new metric that uses citation rates to measure influence at the article level. MATERIAL AND METHODS: Top twenty Macedonian biomedical scientists were identified by GoPubMed on the base of the number of deposited abstracts in PubMed, corrected with the data from previously published paper, and completed with the Macedonian biomedical scientists working in countries outside the Republic of Macedonia, but born or previously worked in the country. iCite was used as a tool to access a dashboard of bibliometrics for papers associated with a portfolio. RESULTS: The biggest number of top twenty Macedonian biomedical scientists has RCR lower than one. Only four Macedonian biomedical scientists have bigger RCR in comparison with those in PubMed. The most prominent RCR of 2.29 has Rosoklija G. RCR of the most influenced individual papers deposited in PubMed has shown the biggest value for the paper of Efremov D (35.19). This paper has the biggest number of authors (860). CONCLUSION: It is necessary to accept top twenty Macedonian biomedical scientists as an example of new metric that uses citation rates to measure influence at the article level, rather than qualification of the best Macedonian biomedical scientists. PMID:27335586
NASA Technical Reports Server (NTRS)
Pippin, Margaret R.; Creilson, John K.; Henderson, Bryana L.; Ladd, Irene H.; Fishman, Jack; Votapkova, Dana; Krpcova, Ilona
2008-01-01
GLOBE (Global Learning and Observations to Benefit the Environment) is a worldwide hands-on, primary and secondary school-based education and science program, developed to give students a chance to perform real science by making measurements, analyzing data, and participating in research in collaboration with scientists. As part of the GLOBE Surface Ozone Protocol and with the assistance of the TEREZA Association in the Czech Republic, schools in the Czech Republic have been making and reporting daily measurements of surface ozone and surface meteorological data since 2001. Using a hand-held ozone monitor developed for GLOBE, students at several Czech schools have generated multiyear data records of surface ozone from 2001 to 2005. Analysis of the data shows surface ozone levels were anomalously high during the summer of 2003 relative to other summers. These findings are consistent with measurements by the European Environment Agency that highlights the summer of 2003 as having exceptionally long-lasting and spatially extensive episodes of high surface ozone, especially during the first half of August. Further analysis of the summer s prevailing meteorology shows not only that it was one of the hottest on record, a finding also seen in the student data, but the conditions for production of ozone were ideal. Findings such as these increase student, teacher, and scientist confidence in the utility of the GLOBE data for engaging budding scientists in the collection, analysis, and eventual interpretation of the data for inquiry-based education.
Effect of prolonged space flight on cardiac function and dimensions
NASA Technical Reports Server (NTRS)
Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.
1974-01-01
Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.
A numerical algorithm with preference statements to evaluate the performance of scientists.
Ricker, Martin
Academic evaluation committees have been increasingly receptive for using the number of published indexed articles, as well as citations, to evaluate the performance of scientists. It is, however, impossible to develop a stand-alone, objective numerical algorithm for the evaluation of academic activities, because any evaluation necessarily includes subjective preference statements. In a market, the market prices represent preference statements, but scientists work largely in a non-market context. I propose a numerical algorithm that serves to determine the distribution of reward money in Mexico's evaluation system, which uses relative prices of scientific goods and services as input. The relative prices would be determined by an evaluation committee. In this way, large evaluation systems (like Mexico's Sistema Nacional de Investigadores ) could work semi-automatically, but not arbitrarily or superficially, to determine quantitatively the academic performance of scientists every few years. Data of 73 scientists from the Biology Institute of Mexico's National University are analyzed, and it is shown that the reward assignation and academic priorities depend heavily on those preferences. A maximum number of products or activities to be evaluated is recommended, to encourage quality over quantity.
Values in environmental research: Citizens' views of scientists who acknowledge values.
Elliott, Kevin C; McCright, Aaron M; Allen, Summer; Dietz, Thomas
2017-01-01
Scientists who perform environmental research on policy-relevant topics face challenges when communicating about how values may have influenced their research. This study examines how citizens view scientists who publicly acknowledge values. Specifically, we investigate whether it matters: if citizens share or oppose a scientist's values, if a scientist's conclusions seem contrary to or consistent with the scientist's values, and if a scientist is assessing the state of the science or making a policy recommendation. We conducted two 3x2 factorial design online experiments. Experiment 1 featured a hypothetical scientist assessing the state of the science on the public-health effects of exposure to Bisphenol A (BPA), and Experiment 2 featured a scientist making a policy recommendation on use of BPA. We manipulated whether or not the scientist expressed values and whether the scientist's conclusion appeared contrary to or consistent with the scientist's values, and we accounted for whether or not subjects' values aligned with the scientist's values. We analyzed our data with ordinary least squares (OLS) regression techniques. Our results provide at least preliminary evidence that acknowledging values may reduce the perceived credibility of scientists within the general public, but this effect differs depending on whether scientists and citizens share values, whether scientists draw conclusions that run contrary to their values, and whether scientists make policy recommendations.
CrowdHydrology: crowdsourcing hydrologic data and engaging citizen scientists.
Lowry, Christopher S; Fienen, Michael N
2013-01-01
Spatially and temporally distributed measurements of processes, such as baseflow at the watershed scale, come at substantial equipment and personnel cost. Research presented here focuses on building a crowdsourced database of inexpensive distributed stream stage measurements. Signs on staff gauges encourage citizen scientists to voluntarily send hydrologic measurements (e.g., stream stage) via text message to a server that stores and displays the data on the web. Based on the crowdsourced stream stage, we evaluate the accuracy of citizen scientist measurements and measurement approach. The results show that crowdsourced data collection is a supplemental method for collecting hydrologic data and a promising method of public engagement. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.
Crowdsourcing as an Analytical Method: Metrology of Smartphone Measurements in Heritage Science.
Brigham, Rosie; Grau-Bové, Josep; Rudnicka, Anna; Cassar, May; Strlic, Matija
2018-06-18
This research assesses the precision, repeatability, and accuracy of crowdsourced scientific measurements, and whether their quality is sufficient to provide usable results. Measurements of colour and area were chosen because of the possibility of producing them with smartphone cameras. The quality of the measurements was estimated experimentally by comparing data contributed by anonymous participants in heritage sites with reference measurements of known accuracy and precision. Participants performed the measurements by taking photographs with their smartphones, from which colour and dimensional data could be extracted. The results indicate that smartphone measurements provided by citizen scientists can be used to measure changes in colour, but that the performance is strongly dependent on the measured colour coordinate. The same method can be used to measure areas when the difference in colour with the neighbouring areas is large enough. These results render the method useful in some heritage science contexts, but higher precision would be desirable. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong
2014-01-01
This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030
Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong
2014-01-01
This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.
Overcoming the obstacles: Life stories of scientists with learning disabilities
NASA Astrophysics Data System (ADS)
Force, Crista Marie
Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed beliefs that they developed these special abilities as a result of their learning differences, which made them better than their non-learning disabled peers in certain areas. Finally, the researcher discusses implications of these findings in the light of special accommodations that can be made by teachers, school counselors, and parents to encourage learning disabled children who demonstrate interest in becoming scientists.
Ozone measurements in the Amazon
NASA Astrophysics Data System (ADS)
Kirchhoff, V. W. J. H.
Several scientists of the Brazilian Institute for Space Research (Instituto de Pesquisas Espacias, or INPE; headquarters at Sāo Jose dos Campos, Sao Paulo) went to Manaus (3°S, 60°W), in the central region of the Amazon forest during July-August 1985 to study the atmosphere of the equatorial rainforest. The expedition to the Amazon was part of a large binational atmospheric chemistry field campaign that was organized to measure several atmospheric gases of the forest environment. This was definitely the largest scientific field expedition in this field ever performed on Brazilian territory.
Training young scientists across empirical and modeling approaches
NASA Astrophysics Data System (ADS)
Moore, D. J.
2014-12-01
The "fluxcourse," is a two-week program of study on Flux Measurements and Advanced Modeling (www.fluxcourse.org). Since 2007, this course has trained early career scientists to use both empirical observations and models to tackle terrestrial ecological questions. The fluxcourse seeks to cross train young scientists in measurement techniques and advanced modeling approaches for quantifying carbon and water fluxes between the atmosphere and the biosphere. We invited between ten and twenty volunteer instructors depending on the year ranging in experience and expertise, including representatives from industry, university professors and research specialists. The course combines online learning, lecture and discussion with hands on activities that range from measuring photosynthesis and installing an eddy covariance system to wrangling data and carrying out modeling experiments. Attendees are asked to develop and present two different group projects throughout the course. The overall goal is provide the next generation of scientists with the tools to tackle complex problems that require collaboration.
NASA Astrophysics Data System (ADS)
Varga, M.; Worcester, J.
2017-12-01
The Union of Concerned Scientists (UCS) Science Network is a community of over 20,000 scientists, engineers, economists, public health specialists, and technical experts that inform and advocate for science-based solutions to some of our nation's most pressing problems. The role of the community manager here is to train and prepare Science Network members to be effective advocates for science-based decision making, and also to identify opportunities for them to put their skills and expertise into action on science and public health issues. As an organizational asset, but also an important resource to its members, it is crucial that the Science Network demonstrate its impact. But measuring impact when it comes to engagement and advocacy can be difficult. Here we will define a glossary of terms relating to community management and scientist engagement, delve into tracking and measurement of actions taken within a community, and connect the dots between tracking metrics and measuring impact. Measuring impact in community management is a growing field, and here we will also suggest future research that will help standardize impact measurement, as well as bring attention to the growing and unique role that scientist communities can have on policy and public engagement goals. This work has been informed by the American Association for the Advancement of Science's inaugural cohort of the Community Engagement Fellows Program.
Issues in NASA program and project management
NASA Technical Reports Server (NTRS)
Hoban, Francis T. (Editor)
1990-01-01
This volume is the third in an ongoing series on aerospace project management at NASA. Articles in this volume cover the attitude of the program manager, program control and performance measurement, risk management, cost plus award fee contracting, lessons learned from the development of the Far Infrared Absolute Spectrometer (FIRAS), small projects management, and age distribution of NASA scientists and engineers. A section on resources for NASA managers rounds out the publication.
Issues in NASA program and project management
NASA Technical Reports Server (NTRS)
Hoban, Francis T. (Editor)
1991-01-01
This volume is the third in an ongoing series on aerospace project management at NASA. Articles in this volume cover the attitude of the program manager, program control and performance measurement, risk management, cost plus award fee contracting, lessons learned from the development of the Far Infrared Absolute Spectrometer (FIRAS), small projects management, and age distribution of NASA scientists and engineers. A section on resources for NASA managers rounds out the publication.
Measuring co-authorship and networking-adjusted scientific impact.
Ioannidis, John P A
2008-07-23
Appraisal of the scientific impact of researchers, teams and institutions with productivity and citation metrics has major repercussions. Funding and promotion of individuals and survival of teams and institutions depend on publications and citations. In this competitive environment, the number of authors per paper is increasing and apparently some co-authors don't satisfy authorship criteria. Listing of individual contributions is still sporadic and also open to manipulation. Metrics are needed to measure the networking intensity for a single scientist or group of scientists accounting for patterns of co-authorship. Here, I define I(1) for a single scientist as the number of authors who appear in at least I(1) papers of the specific scientist. For a group of scientists or institution, I(n) is defined as the number of authors who appear in at least I(n) papers that bear the affiliation of the group or institution. I(1) depends on the number of papers authored N(p). The power exponent R of the relationship between I(1) and N(p) categorizes scientists as solitary (R>2.5), nuclear (R = 2.25-2.5), networked (R = 2-2.25), extensively networked (R = 1.75-2) or collaborators (R<1.75). R may be used to adjust for co-authorship networking the citation impact of a scientist. I(n) similarly provides a simple measure of the effective networking size to adjust the citation impact of groups or institutions. Empirical data are provided for single scientists and institutions for the proposed metrics. Cautious adoption of adjustments for co-authorship and networking in scientific appraisals may offer incentives for more accountable co-authorship behaviour in published articles.
Evaluating Academic Scientists Collaborating in Team-Based Research: A Proposed Framework
Mazumdar, Madhu; Messinger, Shari; Finkelstein, Dianne M.; Goldberg, Judith D.; Lindsell, Christopher J.; Morton, Sally C.; Pollock, Brad H.; Rahbar, Mohammad H.; Welty, Leah J.; Parker, Robert A.
2015-01-01
Criteria for evaluating faculty are traditionally based on a triad of scholarship, teaching, and service. Research scholarship is often measured by first or senior authorship on peer-reviewed scientific publications and being principal investigator on extramural grants. Yet scientific innovation increasingly requires collective rather than individual creativity, which traditional measures of achievement were not designed to capture and, thus, devalue. The authors propose a simple, flexible framework for evaluating team scientists that includes both quantitative and qualitative assessments. An approach for documenting contributions of team scientists in team-based scholarship, non-traditional education, and specialized service activities is also outlined. While biostatisticians are used for illustration, the approach is generalizable to team scientists in other disciplines. PMID:25993282
Yewdell, Jonathan W.
2009-01-01
Making discoveries is the most important part of being a scientist, and also the most fun. Young scientists need to develop the experimental and mental skill sets that enable them to make discoveries, including how to recognize and exploit serendipity when it strikes. Here, I provide practical advice to young scientists on choosing a research topic, designing, performing and interpreting experiments and, last but not least, on maintaining your sanity in the process. PMID:18401347
Yewdell, Jonathan W
2008-06-01
Making discoveries is the most important part of being a scientist, and also the most fun. Young scientists need to develop the experimental and mental skill sets that enable them to make discoveries, including how to recognize and exploit serendipity when it strikes. Here, I provide practical advice to young scientists on choosing a research topic, designing, performing and interpreting experiments and, last but not least, on maintaining your sanity in the process.
NASA Astrophysics Data System (ADS)
Moreira, Joao; Zeng, Xiaohan; Amaral, Luis
2013-03-01
Assessing the career performance of scientists has become essential to modern science. Bibliometric indicators, like the h-index are becoming more and more decisive in evaluating grants and approving publication of articles. However, many of the more used indicators can be manipulated or falsified by publishing with very prolific researchers or self-citing papers with a certain number of citations, for instance. Accounting for these factors is possible but it introduces unwanted complexity that drives us further from the purpose of the indicator: to represent in a clear way the prestige and importance of a given scientist. Here we try to overcome this challenge. We used Thompson Reuter's Web of Science database and analyzed all the papers published until 2000 by ~1500 researchers in the top 30 departments of seven scientific fields. We find that over 97% of them have a citation distribution that is consistent with a discrete lognormal model. This suggests that our model can be used to accurately predict the performance of a researcher. Furthermore, this predictor does not depend on the individual number of publications and is not easily ``gamed'' on. The authors acknowledge support from FCT Portugal, and NSF grants
ATLAS-3 correlative measurement opportunities with UARS and surface observations
NASA Technical Reports Server (NTRS)
Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.
1995-01-01
The third ATmospheric Laboratory for Applications and Science (ATLAS-3) mission was flown aboard the Space Shuttle launched on November 3, 1994. The mission length was approximately 10 days and 22 hours. The ATLAS-3 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on ATLAS-3 instrument operating schedules, simulations were performed to determine when and where correlative measurements occurred between ATLAS and UARS instruments, and between ATLAS and surface observations. Results of these orbital and instrument simulations provide valuable information for scientists to compare measurements between various instruments on the two satellites and at selected surface sites.
Correlative measurement opportunities between ATLAS-1 and UARS experiments
NASA Technical Reports Server (NTRS)
Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.
1992-01-01
The first ATmospheric Laboratory for Applications and Science (ATLAS-1) mission was flown aboard the Space Shuttle from March 24 to April 2, 1992. The ATLAS-1 instruments provided a large number of measurements which were coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). During the ATLAS-1 mission, simulations were performed to predict when and where coincident measurements between ATLAS and UARS instruments would occur. These predictions were used to develop instrument operation schedules to maximize the correlative opportunities between the two satellites. Results of the simulations provide valuable information for the ATLAS and UARS scientists to compare measurements between various instruments on the two satellites.
From Scientist to Data Scientist: What Students and Educators Need to Know
NASA Astrophysics Data System (ADS)
Carver, R. W.
2014-12-01
Institutions have found while it is relatively easy to collect large heterogenous datasets, it is often difficult to gain insight from these collections. In response, the career of the data scientist has emerged to acquire, process, and analyze datasets for a wide range of problems. The relatively recent introduction of data scientists and the diversity of the tasks they perform present challenges for educators who want to prepare students for that role. In this contribution, I will describe the skillsets and expertise data scientist candidates should have when searching for a position. I will also discuss how educators should foster these skillsets and expertise in their students.
Evaluating Academic Scientists Collaborating in Team-Based Research: A Proposed Framework.
Mazumdar, Madhu; Messinger, Shari; Finkelstein, Dianne M; Goldberg, Judith D; Lindsell, Christopher J; Morton, Sally C; Pollock, Brad H; Rahbar, Mohammad H; Welty, Leah J; Parker, Robert A
2015-10-01
Criteria for evaluating faculty are traditionally based on a triad of scholarship, teaching, and service. Research scholarship is often measured by first or senior authorship on peer-reviewed scientific publications and being principal investigator on extramural grants. Yet scientific innovation increasingly requires collective rather than individual creativity, which traditional measures of achievement were not designed to capture and, thus, devalue. The authors propose a simple, flexible framework for evaluating team scientists that includes both quantitative and qualitative assessments. An approach for documenting contributions of team scientists in team-based scholarship, nontraditional education, and specialized service activities is also outlined. Although biostatisticians are used for illustration, the approach is generalizable to team scientists in other disciplines.The authors offer three key recommendations to members of institutional promotion committees, department chairs, and others evaluating team scientists. First, contributions to team-based scholarship and specialized contributions to education and service need to be assessed and given appropriate and substantial weight. Second, evaluations must be founded on well-articulated criteria for assessing the stature and accomplishments of team scientists. Finally, mechanisms for collecting evaluative data must be developed and implemented at the institutional level. Without these three essentials, contributions of team scientists will continue to be undervalued in the academic environment.
Scientists May Have Put Their Names on Papers Written by Drug Companies
ERIC Educational Resources Information Center
Guterman, Lila
2008-01-01
This article describes how academic scientists appear to have put their names on papers that are actually ghostwritten by for-profit companies and then published in medical journals. Some of the scientists accused of doing so deny any wrongdoing, but journal editors are already outlining measures to prevent future breaches of academic integrity.…
Validating a Scale That Measures Scientists' Self-Efficacy for Public Engagement with Science
ERIC Educational Resources Information Center
Robertson Evia, Jane; Peterman, Karen; Cloyd, Emily; Besley, John
2018-01-01
Self-efficacy, or the beliefs people hold about their ability to succeed in certain pursuits, is a long-established construct. Self-efficacy for science communication distinguishes scientists who engage with the public and relates to scientists' attitudes about the public. As such, self-efficacy for public engagement has the potential to serve as…
Bateman, Thomas S; Hess, Andrew M
2015-03-24
Scientific journal publications, and their contributions to knowledge, can be described by their depth (specialized, domain-specific knowledge extensions) and breadth (topical scope, including spanning multiple knowledge domains). Toward generating hypotheses about how scientists' personal dispositions would uniquely predict deeper vs. broader contributions to the literature, we assumed that conducting broader studies is generally viewed as less attractive (e.g., riskier) than conducting deeper studies. Study 1 then supported our assumptions: the scientists surveyed considered a hypothetical broader study, compared with an otherwise-comparable deeper study, to be riskier, a less-significant opportunity, and of lower potential importance; they further reported being less likely to pursue it and, in a forced choice, most chose to work on the deeper study. In Study 2, questionnaire measures of medical researchers' personal dispositions and 10 y of PubMed data indicating their publications' topical coverage revealed how dispositions differentially predict depth vs. breadth. Competitiveness predicted depth positively, whereas conscientiousness predicted breadth negatively. Performance goal orientation predicted depth but not breadth, and learning goal orientation contrastingly predicted breadth but not depth. Openness to experience positively predicted both depth and breadth. Exploratory work behavior (the converse of applying and exploiting one's current knowledge) predicted breadth positively and depth negatively. Thus, this research distinguishes depth and breadth of published knowledge contributions, and provides new insights into how scientists' personal dispositions influence research processes and products.
OSIRIS-REx Visible And Infrared Spectrometer - OVIRS
NASA Technical Reports Server (NTRS)
Hair, Jason
2016-01-01
Goddard Space Flight Center: Overall Instrument Responsibility; Instrument Scientist and Deputy Instrument Scientist; Management Systems Engineering; Mechanical Hardware; Harness Assemblies; SIDECAR Assembly Code; OVIRS Integration and Environmental Qualification; OVIRS Performance Testing, Calibration and Characterization.
A critical evaluation of science outreach via social media: its role and impact on scientists.
McClain, Craig; Neeley, Liz
2014-01-01
The role of scientists in social media and its impact on their careers are not fully explored. While policies and best practices are still fluid, it is concerning that discourse is often based on little to no data, and some arguments directly contradict the available data. Here, we consider the relevant but subjective questions about science outreach via social media (SOSM), specifically: (1) Does a public relations nightmare exist for science?; (2) Why (or why aren't) scientists engaging in social media?; (3) Are scientists using social media well?; and (4) Will social media benefit a scientist's career? We call for the scientific community to create tangible plans that value, measure, and help manage scientists' social media engagement.
NASA Technical Reports Server (NTRS)
Eller, E. L.
1976-01-01
The project scientists is in a position which rates very high in terms of behavioral study recommendations. His influence over objectives is generally considered to be important. He is highly autonomous in a moderately coordinated environment. He has diverse managerial and technical functions and the performance of these functions require him to grow beyond his role as an experimenter. However, the position within the line organization for those interviewed is also very stimulating, rating almost as high by the same criteria. The role of project scientist may not be the dominant means of professional growth for the experienced scientific investigators. The influence which the project scientist exerts on the project and the stimulation of that position for him are determined largely by his position outside the defined project scientist role. The role of the project scientist is changing because the environment of those who become project scientists is changing.
Developing Science: Scientific Performance and Brain Drains in the Developing World
Weinberg, Bruce A.
2016-01-01
Establishing a strong scientific community is important as countries develop, which requires both producing and retaining of important scientists. We show that developing countries produce a sizeable number of important scientists, but that they experience a tremendous brain drain. Education levels, population, and per capita GDP are positively related to the number of important scientists born in and staying in a country. Our analysis indicates that democracy and urbanization are associated with the production of more important scientists although democracy is associated with more out-migration. PMID:27152061
... across a fault to learn about past earthquakes. Science Fair Projects A GPS instrument measures slow movements of the ground. Become an Earthquake Scientist Cool Earthquake Facts Today in Earthquake History A scientist stands in ...
ERIC Educational Resources Information Center
Schleigh, Sharon
2014-01-01
While most of us probably don't think of teachers as scientists, the truth of the matter is that teachers actually follow many of the scientific processes that scientists use to help them be effective. Teachers have to find ways to measure student learning and to use that measurement to inform their teaching practices. They need to know what…
Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks
2017-09-28
In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle of Stinger-Ghaffarian Technologies performs spacewalk tool fit-checks of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.
Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks
2017-09-28
In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle of Stinger-Ghaffarian Technologies performs a sharp edge inspection of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.
Global stratospheric change: Requirements for a Very-High-Altitude Aircraft for Atmospheric Research
NASA Technical Reports Server (NTRS)
1989-01-01
The workshop on Requirements for a Very-High-Altitude Aircraft for Atmospheric Research, sponsored by NASA Ames Research Center, was held July 15 to 16, 1989, at Truckee, CA. The workshop had two purposes: to assess the scientific justification for a new aircraft that will support stratospheric research beyond the altitudes accessible to the NASA ER-2; and to determine the aircraft characteristics (e.g., ceiling altitude, payload accommodations, range, flight duration, operational capabilities) required to perform the stratospheric research referred to in the justification. To accomplish these purposes, the workshop brought together a cross-section of stratospheric scientists with several aircraft design and operations experts. The stratospheric scientists included theoreticians as well as experimenters with experience in remote and in situ measurements from satellites, rockets, balloons, aircraft, and the ground. Discussions of required aircraft characteristics focused on the needs of stratospheric research. It was recognized that an aircraft optimal for stratospheric science would also be useful for other applications, including remote measurements of Earth's surface. A brief description of these other applications was given at the workshop.
Intelligent software for laboratory automation.
Whelan, Ken E; King, Ross D
2004-09-01
The automation of laboratory techniques has greatly increased the number of experiments that can be carried out in the chemical and biological sciences. Until recently, this automation has focused primarily on improving hardware. Here we argue that future advances will concentrate on intelligent software to integrate physical experimentation and results analysis with hypothesis formulation and experiment planning. To illustrate our thesis, we describe the 'Robot Scientist' - the first physically implemented example of such a closed loop system. In the Robot Scientist, experimentation is performed by a laboratory robot, hypotheses concerning the results are generated by machine learning and experiments are allocated and selected by a combination of techniques derived from artificial intelligence research. The performance of the Robot Scientist has been evaluated by a rediscovery task based on yeast functional genomics. The Robot Scientist is proof that the integration of programmable laboratory hardware and intelligent software can be used to develop increasingly automated laboratories.
eGY-Africa: addressing the digital divide for science in Africa
NASA Astrophysics Data System (ADS)
Petitdidier, Monique; Barton, Charles; Chukwuma, Victor; Cottrell, Les
2010-05-01
As the world of science becomes increasingly Internet-dependent, so the African scientists become increasingly isolated. eGY-Africa is a bottom-up initiative by African scientists and their collaborators to try to reduce this digital divide by a campaign of advocacy for better institutional facilities. The present status of Internet services, problems, and plans are being mapped via a combination of a survey questionnaire-based survey and direct measurement of Internet performance (the PingER Project). Information is being gathered on policy statements and initiatives aimed at reducing the Digital Divide. eGY-Africa is establishing National groups of concerned scientists and engaging with those initiatives with related goals. Finally, and perhaps most important of all, eGY-Africa is seeking to engage with the many other programs, initiatives, and bodies that share the goal of reducing the Digital Divide - either as a direct policy objective, or indirectly as a means to an end, such as the development of capabilities in science and technology in Africa. The expectation is that informed opinion from the scientific community at the institutional, national, and international levels can be used to influence the decision makers and donors who are in a position to deliver better Internet capabilities.
Forecasting natural hazards, performance of scientists, ethics, and the need for transparency
Guzzetti, Fausto
2016-01-01
Landslides are one of several natural hazards. As other natural hazards, landslides are difficult to predict, and their forecasts are uncertain. The uncertainty depends on the poor understanding of the phenomena that control the slope failures, and on the inherent complexity and chaotic nature of the landslides. This is similar to other natural hazards, including hurricanes, earthquakes, volcanic eruptions, floods, and droughts. Due to the severe impact of landslides on the population, the environment, and the economy, forecasting landslides is of scientific interest and of societal relevance, and scientists attempting to forecast landslides face known and new problems intrinsic to the multifaceted interactions between science, decision-making, and the society. The problems include deciding on the authority and reliability of individual scientists and groups of scientists, and evaluating the performances of individual scientists, research teams, and their institutions. Related problems lay in the increasing subordination of research scientists to politics and decision-makers, and in the conceptual and operational models currently used to organize and pay for research, based on apparently objective criteria and metrics, considering science as any other human endeavor, and favoring science that produces results of direct and immediate application. The paper argues that the consequences of these problems have not been considered fully. PMID:27695154
Forecasting natural hazards, performance of scientists, ethics, and the need for transparency.
Guzzetti, Fausto
2016-10-20
Landslides are one of several natural hazards. As other natural hazards, landslides are difficult to predict, and their forecasts are uncertain. The uncertainty depends on the poor understanding of the phenomena that control the slope failures, and on the inherent complexity and chaotic nature of the landslides. This is similar to other natural hazards, including hurricanes, earthquakes, volcanic eruptions, floods, and droughts. Due to the severe impact of landslides on the population, the environment, and the economy, forecasting landslides is of scientific interest and of societal relevance, and scientists attempting to forecast landslides face known and new problems intrinsic to the multifaceted interactions between science, decision-making, and the society. The problems include deciding on the authority and reliability of individual scientists and groups of scientists, and evaluating the performances of individual scientists, research teams, and their institutions. Related problems lay in the increasing subordination of research scientists to politics and decision-makers, and in the conceptual and operational models currently used to organize and pay for research, based on apparently objective criteria and metrics, considering science as any other human endeavor, and favoring science that produces results of direct and immediate application. The paper argues that the consequences of these problems have not been considered fully.
A gentle introduction to Rasch measurement models for metrologists
NASA Astrophysics Data System (ADS)
Mari, Luca; Wilson, Mark
2013-09-01
The talk introduces the basics of Rasch models by systematically interpreting them in the conceptual and lexical framework of the International Vocabulary of Metrology, third edition (VIM3). An admittedly simple example of physical measurement highlights the analogies between physical transducers and tests, as they can be understood as measuring instruments of Rasch models and psychometrics in general. From the talk natural scientists and engineers might learn something of Rasch models, as a specifically relevant case of social measurement, and social scientists might re-interpret something of their knowledge of measurement in the light of the current physical measurement models.
ERIC Educational Resources Information Center
Nadelson, Louis; Jorcyk, Cheryl; Yang, Dazhi; Jarratt Smith, Mary; Matson, Sam; Cornell, Ken; Husting, Virginia
2014-01-01
Trust in science and scientists can greatly influence consideration of scientific developments and activities. Yet, trust is a nebulous construct based on emotions, knowledge, beliefs, and relationships. As we explored the literature regarding trust in science and scientists we discovered that no instruments were available to assess the construct,…
Three scientists from the EPA, RTP facility in Research Triangle Park, N.C. worked with the State of Florida and BRACE scientists to provide accurate and precise NO and specific NO2 measurements at two monitoring sites, the rural Sydney site and the near-bay, suburban Gandy sit...
ALICE Masterclass on strangeness
NASA Astrophysics Data System (ADS)
Foka, Panagiota; Janik, Małgorzata
2014-04-01
An educational activity, the International Particle Physics Masterclasses, was developed by the International Particle Physics Outreach Group with the aim to bring the excitement of cutting-edge particle-physics research into the classroom. Thousands of pupils, every year since 2005, in many countries all over the world, are hosted in research centers or universities close to their schools and become "scientists for a day" as they are introduced to the mysteries of particle physics. The program of a typical day includes lectures that give insight to topics and methods of fundamental research followed by a "hands-on" session where the high-school students perform themselves measurements on real data from particle-physics experiments. The last three years data from the ALICE experiment at LHC were used. The performed measurement "strangeness enhancement" and the employed methodology are presented.
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess
2015-01-01
Scientists and engineers constantly face new challenges, despite myriad advances in computing. More sets of data are collected today from earth and sky than there is time or resources available to carefully analyze them. Some problems either don't have fast algorithms to solve them or have solutions that must be found among millions of options, a situation akin to finding a needle in a haystack. But all hope is not lost: advances in technology and the Internet have empowered the general public to participate in the scientific process via individual computational resources and brain cognition, which isn't matched by any machine. Citizen scientists are volunteers who perform scientific work by making observations, collecting and disseminating data, making measurements, and analyzing or interpreting data without necessarily having any scientific training. In so doing, individuals from all over the world can contribute to science in ways that wouldn't have been otherwise possible.
Translating Radiometric Requirements for Satellite Sensors to Match International Standards.
Pearlman, Aaron; Datla, Raju; Kacker, Raghu; Cao, Changyong
2014-01-01
International scientific standards organizations created standards on evaluating uncertainty in the early 1990s. Although scientists from many fields use these standards, they are not consistently implemented in the remote sensing community, where traditional error analysis framework persists. For a satellite instrument under development, this can create confusion in showing whether requirements are met. We aim to create a methodology for translating requirements from the error analysis framework to the modern uncertainty approach using the product level requirements of the Advanced Baseline Imager (ABI) that will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R). In this paper we prescribe a method to combine several measurement performance requirements, written using a traditional error analysis framework, into a single specification using the propagation of uncertainties formula. By using this approach, scientists can communicate requirements in a consistent uncertainty framework leading to uniform interpretation throughout the development and operation of any satellite instrument.
Translating Radiometric Requirements for Satellite Sensors to Match International Standards
Pearlman, Aaron; Datla, Raju; Kacker, Raghu; Cao, Changyong
2014-01-01
International scientific standards organizations created standards on evaluating uncertainty in the early 1990s. Although scientists from many fields use these standards, they are not consistently implemented in the remote sensing community, where traditional error analysis framework persists. For a satellite instrument under development, this can create confusion in showing whether requirements are met. We aim to create a methodology for translating requirements from the error analysis framework to the modern uncertainty approach using the product level requirements of the Advanced Baseline Imager (ABI) that will fly on the Geostationary Operational Environmental Satellite R-Series (GOES-R). In this paper we prescribe a method to combine several measurement performance requirements, written using a traditional error analysis framework, into a single specification using the propagation of uncertainties formula. By using this approach, scientists can communicate requirements in a consistent uncertainty framework leading to uniform interpretation throughout the development and operation of any satellite instrument. PMID:26601032
HERCULES: A Pattern Driven Code Transformation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kartsaklis, Christos; Hernandez, Oscar R; Hsu, Chung-Hsing
2012-01-01
New parallel computers are emerging, but developing efficient scientific code for them remains difficult. A scientist must manage not only the science-domain complexity but also the performance-optimization complexity. HERCULES is a code transformation system designed to help the scientist to separate the two concerns, which improves code maintenance, and facilitates performance optimization. The system combines three technologies, code patterns, transformation scripts and compiler plugins, to provide the scientist with an environment to quickly implement code transformations that suit his needs. Unlike existing code optimization tools, HERCULES is unique in its focus on user-level accessibility. In this paper we discuss themore » design, implementation and an initial evaluation of HERCULES.« less
How scientists view the public, the media and the political process.
Besley, John C; Nisbet, Matthew
2013-08-01
We review past studies on how scientists view the public, the goals of communication, the performance and impacts of the media, and the role of the public in policy decision-making. We add to these past findings by analyzing two recent large-scale surveys of scientists in the UK and US. These analyses show that scientists believe the public is uninformed about science and therefore prone to errors in judgment and policy preferences. Scientists are critical of media coverage generally, yet they also tend to rate favorably their own experience dealing with journalists, believing that such interactions are important both for promoting science literacy and for career advancement. Scientists believe strongly that they should have a role in public debates and view policy-makers as the most important group with which to engage. Few scientists view their role as an enabler of direct public participation in decision-making through formats such as deliberative meetings, and do not believe there are personal benefits for investing in these activities. Implications for future research are discussed, in particular the need to examine how ideology and selective information sources shape scientists' views.
The mobility of elite life scientists: Professional and personal determinants
Azoulay, Pierre; Ganguli, Ina; Zivin, Joshua Graff
2017-04-01
As scientists’ careers unfold, mobility can allow researchers to find environments where they are more productive and more effectively contribute to the generation of new knowledge. In this paper, we examine the determinants of mobility of elite academics within the life sciences, including individual productivity measures and for the first time, measures of the peer environment and family factors. Using a unique data set compiled from the career histories of 10,051 elite life scientists in the U.S., we paint a nuanced picture of mobility. Prolific scientists are more likely to move, but this impulse is constrained by recent NIH funding. The quality of peer environments both near and far is an additional factor that influences mobility decisions. We also identify a significant role for family structure. Scientists appear to be unwilling to move when their children are between the ages of 14–17, and this appears to be more pronounced for mothers than fathers. These results suggest that elite scientists find it costly to disrupt the social networks of their children during adolescence and take these costs into account when making career decisions.
The Mobility of Elite Life Scientists: Professional and Personal Determinants
Azoulay, Pierre; Ganguli, Ina; Zivin, Joshua Graff
2017-01-01
As scientists’ careers unfold, mobility can allow researchers to find environments where they are more productive and more effectively contribute to the generation of new knowledge. In this paper, we examine the determinants of mobility of elite academics within the life sciences, including individual productivity measures and for the first time, measures of the peer environment and family factors. Using a unique data set compiled from the career histories of 10,051 elite life scientists in the U.S., we paint a nuanced picture of mobility. Prolific scientists are more likely to move, but this impulse is constrained by recent NIH funding. The quality of peer environments both near and far is an additional factor that influences mobility decisions. We also identify a significant role for family structure. Scientists appear to be unwilling to move when their children are between the ages of 14-17, and this appears to be more pronounced for mothers than fathers. These results suggest that elite scientists find it costly to disrupt the social networks of their children during adolescence and take these costs into account when making career decisions. PMID:29058845
Using photosynthesis to detect plant stress
NASA Technical Reports Server (NTRS)
1994-01-01
Two Stennis Space Center scientists use a photosynthesis measuring system on a pine tree at the Harrison County Experimental Forest about 15 miles north of Gulfport, Miss. The scientists have discovered a new method of detecting plant stress.
Values in environmental research: Citizens’ views of scientists who acknowledge values
McCright, Aaron M.; Allen, Summer; Dietz, Thomas
2017-01-01
Scientists who perform environmental research on policy-relevant topics face challenges when communicating about how values may have influenced their research. This study examines how citizens view scientists who publicly acknowledge values. Specifically, we investigate whether it matters: if citizens share or oppose a scientist’s values, if a scientist’s conclusions seem contrary to or consistent with the scientist’s values, and if a scientist is assessing the state of the science or making a policy recommendation. We conducted two 3x2 factorial design online experiments. Experiment 1 featured a hypothetical scientist assessing the state of the science on the public-health effects of exposure to Bisphenol A (BPA), and Experiment 2 featured a scientist making a policy recommendation on use of BPA. We manipulated whether or not the scientist expressed values and whether the scientist’s conclusion appeared contrary to or consistent with the scientist’s values, and we accounted for whether or not subjects’ values aligned with the scientist’s values. We analyzed our data with ordinary least squares (OLS) regression techniques. Our results provide at least preliminary evidence that acknowledging values may reduce the perceived credibility of scientists within the general public, but this effect differs depending on whether scientists and citizens share values, whether scientists draw conclusions that run contrary to their values, and whether scientists make policy recommendations. PMID:29069087
Aggregating post-publication peer reviews and ratings
Florian, Răzvan V.
2012-01-01
Allocating funding for research often entails the review of the publications authored by a scientist or a group of scientists. For practical reasons, in many cases this review cannot be performed by a sufficient number of specialists in the core domain of the reviewed publications. In the meanwhile, each scientist reads thoroughly, on average, about 88 scientific articles per year, and the evaluative information that scientists can provide about these articles is currently lost. I suggest that aggregating in an online database reviews or ratings on the publications that scientists read anyhow can provide important information that can revolutionize the evaluation processes that support funding decisions. I also suggest that such aggregation of reviews can be encouraged by a system that would provide a publicly available review portfolio for each scientist, without prejudicing the anonymity of reviews. I provide some quantitative estimates on the number and distribution of reviews and ratings that can be obtained. PMID:22661941
A visiting scientist program for the burst and transient source experiment
NASA Technical Reports Server (NTRS)
Kerr, Frank J.
1995-01-01
During this project, Universities Space Research Association provided program management and the administration for overseeing the performance of the total contractual effort. The program director and administrative staff provided the expertise and experience needed to efficiently manage the program.USRA provided a program coordinator and v visiting scientists to perform scientific research with Burst and Transient Source Experiment (BATSE) data. This research was associated with the primary scientific objectives of BATSE and with the various BATSE collaborations which were formed in response to the Compton Gamma Ray Observatory Guest Investigator Program. USRA provided administration for workshops, colloquia, the preparation of scientific documentation, etc. and also provided flexible program support in order to meet the on-going needs of MSFC's BATSE program. USRA performed tasks associated with the recovery, archiving, and processing of scientific data from BATSE. A bibliography of research in the astrophysics discipline is attached as Appendix 1. Visiting Scientists and Research Associates performed activities on this project, and their technical reports are attached as Appendix 2.
Security Robots Lasers RSS Feed Prev Next Air Force scientists are developing an improved system for coating materials performance evaluations that will accelerate the implementation of new aircraft coatings . New Evaluation System Helps Air Force Better Understand Corrosion Air Force scientists are developing
NASA Astrophysics Data System (ADS)
Poli, N.; Oates, C. W.; Gill, P.; Tino, G. M.
2013-12-01
In the last ten years extraordinary results in time and frequency metrology have been demonstrated. Frequency-stabilization techniques for continuous-wave lasers and femtosecond optical frequency combs have enabled a rapid development of frequency standards based on optical transitions in ultra-cold neutral atoms and trapped ions. As a result, today's best performing atomic clocks tick at an optical rate and allow scientists to perform high-resolution measurements with a precision approaching a few parts in 1018. This paper reviews the history and the state of the art in optical-clock research and addresses the implementation of optical clocks in a possible future redefinition of the SI second as well as in tests of fundamental physics.
NASA Astrophysics Data System (ADS)
Gillette, S.; Wolf, D.; Harrison, J.
2017-12-01
(Abstract only) The Vanguard Double Star Workshop has been developed to teach eighth graders the technique of measuring position angle and separation of double stars. Through this program, the students follow in the footsteps of a professional scientist by researching the topic, performing the experiment, writing a scientific article, publishing a scientific article, and finally presenting the material to peers. An examination of current educational standards grounds this program in educational practice and philosophy.
NASA Astrophysics Data System (ADS)
Gillette, Sean; Wolf, Debbie; Harrison, Jeremiah
2017-06-01
The Vanguard Double Star Workshop has been developed to teach eighth graders the technique of measuring position angle and separation of double stars. Through this program, the students follow in the footsteps of a professional scientist by researching the topic, performing the experiment, writing a scientific article, publishing a scientific article, and finally presenting the material to peers. An examination of current educational standards grounds this program in educational practice and philosophy.
Global thunderstorm activity research survey
NASA Technical Reports Server (NTRS)
Coroniti, S. C.
1982-01-01
The published literature on the subject of the monitoring of global thunderstorm activity by instrumented satellites was reviewed. A survey of the properties of selected physical parameters of the thunderstorm is presented. The concepts used by satellites to identify and to measure terrestrial lightning pulses are described. The experimental data acquired by satellites are discussed. The scientific achievements of the satellites are evaluated against the needs of scientists and the potential requirements of user agencies. The performances of the satellites are rated according to their scientific and operational achievements.
NASA Astrophysics Data System (ADS)
Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David
2013-04-01
Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.
NASA Astrophysics Data System (ADS)
Hanson, Sandra L.; Fuchs, Stefan; Aisenbrey, Silke; Kravets, Natalyia
This research used a comparative approach and an elite framework to look at attitudes toward gender, work, and family among male and female scientists. The data came from the 1994 International Social Survey Program module measuring family and changing gender roles in (the former) East Germany, West Germany, and the United States. Research questions focused on the variation between the three samples in male scientists' attitudes regarding gender, work, and family; women's representation in science occupations; and the relation between the two. Another major concern was the extent to which female scientists express attitudes regarding gender, work, and family that resemble those of male scientists and the implications of these processes for increasing women's access to science. As predicted, male scientists in East Germany tended to have the most progressive attitudes (especially those regarding gender and work), East German women had the greatest access to science occupations, and there were virtually no sex differences in attitudes of East German scientists. West German male scientists were the most traditional on attitudes regarding gender and work, and U. S. male scientists tended to be the most traditional on attitudes regarding family. The attitudes of female scientists in West Germany and the United States reflected this larger trend, but there were sex differences within countries, with female scientists being more progressive than male scientists. Thus, the findings suggest that women s representation in science is related to the attitudes of male scientists regarding gender, work, and family. And although female scientists often hold quite similar attitudes as male scientists, there is considerable cross-country variation in how progressive the attitudes are and how similar men's and women's attitudes are. Implications for women's access to elite science occupations are discussed.
Soil Water and Temperature System (SWATS) Instrument Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
2016-04-01
The soil water and temperature system (SWATS) provides vertical profiles of soil temperature, soil-water potential, and soil moisture as a function of depth below the ground surface at hourly intervals. The temperature profiles are measured directly by in situ sensors at the Central Facility and many of the extended facilities of the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site. The soil-water potential and soil moisture profiles are derived from measurements of soil temperature rise in response to small inputs of heat. Atmospheric scientists use the data in climate models tomore » determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil.« less
Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks
2017-09-28
In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, left, of Stinger-Ghaffarian Technologies, and other payload team members performs spacewalk tool fit-checks of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.
Total & Spectral Solar Irradiance Sensor (TSIS) EVA Tool Fitchecks
2017-09-28
In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle of Stinger-Ghaffarian Technologies, and other payload team members performs spacewalk tool fit-checks of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.
ERIC Educational Resources Information Center
Pritchard, Matt
2017-01-01
Magicians and scientists have a curious relationship, with both conflicting views and common ground. Magicians use natural means to construct supernatural illusions. They exploit surprise and misdirected focus in their tricks. Scientists like to deconstruct and explain marvels. They methodically measure, evaluate and repeat observations. However,…
Reflections on the current and future roles of clinician-scientists.
Baumal, Reuben; Benbassat, Jochanan; Van, Julie A D
2014-08-01
"Clinician-scientists" is an all-inclusive term for board-certified specialists who engage in patient care and laboratory-based (biomedical) research, patient-based (clinical) research, or population-based (epidemiological) research. In recent years, the number of medical graduates who choose to combine patient care and research has declined, generating concerns about the future of medical research. This paper reviews: a) the various current categories of clinician-scientists, b) the reasons proposed for the declining number of medical graduates who opt for a career as clinician-scientists, c) the various interventions aimed at reversing this trend, and d) the projections for the future role of clinician-scientists. Efforts to encourage students to combine patient care and research include providing financial and institutional support, and reducing the duration of the training of clinician-scientists. However, recent advances in clinical and biomedical knowledge have increased the difficulties in maintaining the dual role of care-providers and scientists. It was therefore suggested that rather than expecting clinician-scientists to compete with full-time clinicians in providing patient care, and with full-time investigators in performing research, clinician-scientists will increasingly assume the role of leading/coordinating interdisciplinary teams. Such teams would focus either on patient-based research or on the clinical, biomedical and epidemiological aspects of specific clinical disorders, such as hypertension and diabetes.
Malanson, Katherine; Jacque, Berri; Faux, Russell; Meiri, Karina F.
2014-01-01
This small-scale comparison case study evaluates the impact of an innovative approach to teacher professional development designed to promote implementation of a novel cutting edge high school neurological disorders curriculum. ‘Modeling for Fidelity’ (MFF) centers on an extended mentor relationship between teachers and biomedical scientists carried out in a virtual format in conjunction with extensive online educative materials. Four teachers from different diverse high schools in Massachusetts and Ohio who experienced MFF contextualized to a 6-week Neurological Disorders curriculum with the same science mentor were compared to a teacher who had experienced an intensive in-person professional development contextualized to the same curriculum with the same mentor. Fidelity of implementation was measured directly using an established metric and indirectly via student performance. The results show that teachers valued MFF, particularly the mentor relationship and were able to use it effectively to ensure critical components of the learning objectives were preserved. Moreover their students performed equivalently to those whose teacher had experienced intensive in-person professional development. Participants in all school settings demonstrated large (Cohen's d>2.0) and significant (p<0.0001 per-post) changes in conceptual knowledge as well as self-efficacy towards learning about neurological disorders (Cohen's d>1.5, p<0.0001 pre-post). The data demonstrates that the virtual mentorship format in conjunction with extensive online educative materials is an effective method of developing extended interactions between biomedical scientists and teachers that are scalable and not geographically constrained, facilitating teacher implementation of novel cutting-edge curricula. PMID:25551645
Malanson, Katherine; Jacque, Berri; Faux, Russell; Meiri, Karina F
2014-01-01
This small-scale comparison case study evaluates the impact of an innovative approach to teacher professional development designed to promote implementation of a novel cutting edge high school neurological disorders curriculum. 'Modeling for Fidelity' (MFF) centers on an extended mentor relationship between teachers and biomedical scientists carried out in a virtual format in conjunction with extensive online educative materials. Four teachers from different diverse high schools in Massachusetts and Ohio who experienced MFF contextualized to a 6-week Neurological Disorders curriculum with the same science mentor were compared to a teacher who had experienced an intensive in-person professional development contextualized to the same curriculum with the same mentor. Fidelity of implementation was measured directly using an established metric and indirectly via student performance. The results show that teachers valued MFF, particularly the mentor relationship and were able to use it effectively to ensure critical components of the learning objectives were preserved. Moreover their students performed equivalently to those whose teacher had experienced intensive in-person professional development. Participants in all school settings demonstrated large (Cohen's d>2.0) and significant (p<0.0001 per-post) changes in conceptual knowledge as well as self-efficacy towards learning about neurological disorders (Cohen's d>1.5, p<0.0001 pre-post). The data demonstrates that the virtual mentorship format in conjunction with extensive online educative materials is an effective method of developing extended interactions between biomedical scientists and teachers that are scalable and not geographically constrained, facilitating teacher implementation of novel cutting-edge curricula.
Physical and Life Scientists. Bulletin 2205-5.
ERIC Educational Resources Information Center
Bureau of Labor Statistics (DOL), Washington, DC.
This document provides information about careers in the agricultural sciences, the biological sciences, chemistry, forestry and conservation, geology and geophysics, meteorology, and physics. The information, presented in separate sections for each of these disciplines, includes: (1) nature of the work performed by scientists in the discipline(s);…
Predicting the performance and innovativeness of scientists and engineers.
Keller, Robert T
2012-01-01
A study of 644 scientists and engineers from 5 corporate research and development organizations investigated hypotheses generated from an interactionist framework of 4 individual characteristics as longitudinal predictors of performance and innovativeness. An innovative orientation predicted 1-year-later and 5-years-later supervisory job performance ratings and 5-years-later counts of patents and publications. An internal locus of control predicted 5-years-later patents and publications, and self-esteem predicted performance ratings for both times and patents. Team-level nonroutine tasks moderated the individual-level relationships between an innovative orientation and performance ratings and patents such that the relationships were stronger in a nonroutine task environment. Implications for an interactionist framework of performance and innovativeness for knowledge workers are discussed.
2004-03-04
A butterfly photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A lizard photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A plant photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A tree trunk structure photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A unique tree trunk photographed in La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
A tree frog photographed in the La Selva region of the Costa Rican rain forest as part of NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
2004-03-04
This photograph shows a stream in the La Selva region of the Costa Rican rain forest, taken during NASA's AirSAR 2004 Mesoamerica campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to do. NASA's AIRSAR technolgy provides two essential elements to the ground-based scientists. First, it tests and provides accurate measurements of the forest structure. Secondly, AirSAR can study a larger area of the forest versus the smaller area that can be tested and plotted by the ground scientists. It also provides a unique one-of-a-kind system of measurement that obtains important information for the scientists, such as where forests are located and what exactly is in them.
A Collaborative Extensible User Environment for Simulation and Knowledge Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Vicky L.; Lansing, Carina S.; Porter, Ellen A.
2015-06-01
In scientific simulation, scientists use measured data to create numerical models, execute simulations and analyze results from advanced simulators executing on high performance computing platforms. This process usually requires a team of scientists collaborating on data collection, model creation and analysis, and on authorship of publications and data. This paper shows that scientific teams can benefit from a user environment called Akuna that permits subsurface scientists in disparate locations to collaborate on numerical modeling and analysis projects. The Akuna user environment is built on the Velo framework that provides both a rich client environment for conducting and analyzing simulations andmore » a Web environment for data sharing and annotation. Akuna is an extensible toolset that integrates with Velo, and is designed to support any type of simulator. This is achieved through data-driven user interface generation, use of a customizable knowledge management platform, and an extensible framework for simulation execution, monitoring and analysis. This paper describes how the customized Velo content management system and the Akuna toolset are used to integrate and enhance an effective collaborative research and application environment. The extensible architecture of Akuna is also described and demonstrates its usage for creation and execution of a 3D subsurface simulation.« less
Four Argonne National Laboratory scientists receive Early Career Research
Media Contacts Social Media Photos Videos Fact Sheets, Brochures and Reports Summer Science Writing Writing Internship Four Argonne National Laboratory scientists receive Early Career Research Program economic impact of cascading shortages. He will also seek to enable scaling on high-performance computing
Scientist | Center for Cancer Research
KEY ROLES/RESPONSIBILITIES The Scientist I will support research efforts to define the role of transcriptional regulators in myeloid cell development, and their potential role in leukemogenesis. This work will be accomplished performing both molecular and stem cell biology techniques, cloning and construction of retroviral vectors, quantitative RT-PCR, cloning of conditional
Physician-scientist, heal thyself . . .
Marks, Andrew R
2007-01-01
Historically, physician-scientists have had dual roles in caring for patients and in performing investigative research that could potentially lead to new diagnostics and therapeutics. Physician-scientists conducted teaching rounds in the hospital, surrounded by eager house staff and medical students, and were often avidly pursued as the most important sources of new knowledge for trainees. But alas, times have changed. Now physician-scientists are rarely seen in the hospital; they are most often spotted at their desks tapping out yet another grant application. Most struggle to find the time to mentor students and clinical trainees, let alone to care for patients in the hospital, even though these interactions are often the motivating forces for scientific creativity.
A measure for the impact of research
Aragón, Alejandro M.
2013-01-01
The last few years have seen the proliferation of measures that quantify the scientific output of researchers. Yet, most of these measures focus on productivity, thus fostering the “publish or perish” paradigm. This article proposes a measure that aims at quantifying the impact of research de-emphasizing productivity, thus providing scientists an alternative, conceivably fairer, evaluation of their work. The measure builds from a published manuscript, the literature's most basic building block. The impact of an article is defined as the number of lead authors that have been influenced by it. Thus, the measure aims at quantifying the manuscript's reach, putting emphasis on scientists rather than on raw citations. The measure is then extrapolated to researchers and institutions. PMID:23575957
McKay, E
2000-01-01
An innovative research program was devised to investigate the interactive effect of instructional strategies enhanced with text-plus-textual metaphors or text-plus-graphical metaphors, and cognitive style on the acquisition of programming concepts. The Cognitive Styles Analysis (CSA) program (Riding,1991) was used to establish the participants' cognitive style. The QUEST Interactive Test Analysis System (Adams and Khoo,1996) provided the cognitive performance measuring tool, which ensured an absence of error measurement in the programming knowledge testing instruments. Therefore, reliability of the instrumentation was assured through the calibration techniques utilized by the QUEST estimate; providing predictability of the research design. A means analysis of the QUEST data, using the Cohen (1977) approach to size effect and statistical power further quantified the significance of the findings. The experimental methodology adopted for this research links the disciplines of instructional science, cognitive psychology, and objective measurement to provide reliable mechanisms for beneficial use in the evaluation of cognitive performance by the education, training and development sectors. Furthermore, the research outcomes will be of interest to educators, cognitive psychologists, communications engineers, and computer scientists specializing in computer-human interactions.
Looking for Hazardous Pollutants in Your Kitchen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Brett
2013-07-22
For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.
Looking for Hazardous Pollutants in Your Kitchen
Singer, Brett
2018-02-14
For decades, teams of Berkeley Lab scientists have investigated the ways that indoor air quality affects human health. In Berkeley Lab's test kitchen scientist Brett Singer and his team are measuring the pollutants emitted by cooking foods and evaluating how effective various range hoods are in capturing the pollutants. In an unprecedented recent study, the scientists estimated that 60 percent of homes in California that cook at least once a week with a gas stove can reach pollutant levels that would be illegal if found outdoors.
Those Elusive Gravitational Waves
ERIC Educational Resources Information Center
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Probing stereotypes through students' drawings of scientists
NASA Astrophysics Data System (ADS)
Rahm, Jrène; Charbonneau, Paul
1997-08-01
The Draw-A-Scientist Test is an assessment tool devised to explore and measure children's stereotypical views of scientists. We administered this test to a group of 49 undergraduate and postgraduate students enrolled in a teacher certification program. While this was originally intended as a purely pedagogical exercise, we were struck by the degree to which the drawings so produced resembled, in stereotypical content, those usually produced by children. This suggests that stereotypes of science and scientists formed during childhood, presumably via the influence of the media, remain largely unaffected by the subsequent passage through high school and college, despite the fact that numerous real-life figures of science teachers and scientists are presumably encountered throughout those formative years. We argue that this state of affairs has subtle and far reaching consequences, and is worthy of our collective attention.
A semi-automated vascular access system for preclinical models
NASA Astrophysics Data System (ADS)
Berry-Pusey, B. N.; Chang, Y. C.; Prince, S. W.; Chu, K.; David, J.; Taschereau, R.; Silverman, R. W.; Williams, D.; Ladno, W.; Stout, D.; Tsao, T. C.; Chatziioannou, A.
2013-08-01
Murine models are used extensively in biological and translational research. For many of these studies it is necessary to access the vasculature for the injection of biologically active agents. Among the possible methods for accessing the mouse vasculature, tail vein injections are a routine but critical step for many experimental protocols. To perform successful tail vein injections, a high skill set and experience is required, leaving most scientists ill-suited to perform this task. This can lead to a high variability between injections, which can impact experimental results. To allow more scientists to perform tail vein injections and to decrease the variability between injections, a vascular access system (VAS) that semi-automatically inserts a needle into the tail vein of a mouse was developed. The VAS uses near infrared light, image processing techniques, computer controlled motors, and a pressure feedback system to insert the needle and to validate its proper placement within the vein. The VAS was tested by injecting a commonly used radiolabeled probe (FDG) into the tail veins of five mice. These mice were then imaged using micro-positron emission tomography to measure the percentage of the injected probe remaining in the tail. These studies showed that, on average, the VAS leaves 3.4% of the injected probe in the tail. With these preliminary results, the VAS system demonstrates the potential for improving the accuracy of tail vein injections in mice.
Green, Michael F.; Horan, William P.
2015-01-01
Effort-based decision making requires one to decide how much effort to expend for a certain amount of reward. As the amount of reward goes up most people are willing to exert more effort. This relationship between reward level and effort expenditure can be measured in specialized performance-based tasks that have only recently been applied to schizophrenia. Such tasks provide a way to measure objectively motivational deficits in schizophrenia, which now are only assessed with clinical interviews of negative symptoms. The articles in this theme provide reviews of the relevant animal and human literatures (first 2 articles), and then a psychometric evaluation of 5 effort-based decision making paradigms (last 2 articles). This theme section is intended to stimulate interest in this emerging area among basic scientists developing paradigms for preclinical studies, human experimentalists trying to disentangle factors that contribute to performance on effort-based tasks, and investigators looking for objective endpoints for clinical trials of negative symptoms in schizophrenia. PMID:26108868
Scientists' perspectives on consent in the context of biobanking research
Master, Zubin; Campo-Engelstein, Lisa; Caulfield, Timothy
2015-01-01
Most bioethics studies have focused on capturing the views of patients and the general public on research ethics issues related to informed consent for biobanking and only a handful of studies have examined the perceptions of scientists. Capturing the opinions of scientists is important because they are intimately involved with biobanks as collectors and users of samples and health information. In this study, we performed interviews with scientists followed by qualitative analysis to capture the diversity of perspectives on informed consent. We found that the majority of scientists in our study reported their preference for a general consent approach although they do not believe there to be a consensus on consent type. Despite their overall desire for a general consent model, many reported several concerns including donors needing some form of assurance that nothing unethical will be done with their samples and information. Finally, scientists reported mixed opinions about incorporating exclusion clauses in informed consent as a means of limiting some types of contentious research as a mechanism to assure donors that their samples and information are being handled appropriately. This study is one of the first to capture the views of scientists on informed consent in biobanking. Future studies should attempt to generalize findings on the perspectives of different scientists on informed consent for biobanking. PMID:25074466
NASA Astrophysics Data System (ADS)
Delaney, M. P.; Hoban, S.
2006-12-01
Rousing students to go beyond the textbook and apply science inquiry skills is one of the most difficult tasks of today`s teacher. Moreover, finding valuable inquiry-based activities that will interest a student can also be daunting. The NASA Exploring Space Challenges was developed last year to provide middle school teachers with an opportunity to get their students involved in real scientific investigations. The framework of the Challenges is not to just give a teacher an activity and leave it to their own timetables to perform in the classroom, if at all. Rather, teachers are provided with an activity with hands-on training, interactivity for their students with a real scientist and a strict timeline students must adhere to. The Challenges model requires students to emulate the same procedures as a scientist when conducting a research project. Students first design a project, submit a short proposal, receive feedback, then conduct an investigation by collecting real data. Students can then ground-truth their results by researching data that may already exist in similar context. Finally, students present their findings to a panel, just as a real scientist would at a professional conference. The activity is taken one step further by providing students with lessons on basic measurement and data collecting skills through a series of videoconferences. The golden carrot, however, is the incentive of a competition. Students have an opportunity to give their oral presentation to a panel of NASA scientists and educators. This format has been a huge success. For example, we found that students are more productive, often due to the need to impress the scientist during a videoconference. Students and teachers are also forced to use technology often under-utilized during the typical school day. We also found that teachers are given access to additional support during the activity, through the videoconferencing events or outside communication. Most importantly, teachers are provided with validation. Teachers report that their students "finally believe in them" if the same information is provided by a real scientist. An added bonus we found is that at the end, more students are inclined to consider a STEM career.
Physician as Scientist: Preparation, Performance, and Prospects
ERIC Educational Resources Information Center
Castle, William B.
1976-01-01
Greatly modifying the present medical curriculum for the future physician-scientist is not recommended. The value of his having a PhD is questioned and the importance of his working in a hospital-based clinical department is stressed. The author contends that emphasizing the interrelationship between basic and applied research will increase public…
Joost, Hans-Georg
2012-01-01
Carl Arthur Scheunert (1879-1957) was a German scientist who supervised several studies with prisoners that were designed to assess the optimal vitamin and nutrient supply, and were conducted by his associate Karl-Heinz Wagner (1911-2007) from 1938 to 1943. This contribution describes the aims, results and conclusions of Scheunert's research 1923 to 1945 in comparison with the national and international vitamin research and its consequences for public health measures. Conditions and results of the human experiments are reconstructed and compared with similar studies performed in other countries. Burden as well as health risks for the study participants are assessed. In addition, it is discussed whether general rules for human experimentation were followed (e.g. informed consent and minimizing of health risks). Although the available documents support the conclusion that no deaths or lasting injuries were caused, the experiments violated ethical standards, in particular because of the conditions in the Waldheim prison including progressive deterioration of nutrition and health.
Tessera: Open source software for accelerated data science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sego, Landon H.; Hafen, Ryan P.; Director, Hannah M.
2014-06-30
Extracting useful, actionable information from data can be a formidable challenge for the safeguards, nonproliferation, and arms control verification communities. Data scientists are often on the “front-lines” of making sense of complex and large datasets. They require flexible tools that make it easy to rapidly reformat large datasets, interactively explore and visualize data, develop statistical algorithms, and validate their approaches—and they need to perform these activities with minimal lines of code. Existing commercial software solutions often lack extensibility and the flexibility required to address the nuances of the demanding and dynamic environments where data scientists work. To address this need,more » Pacific Northwest National Laboratory developed Tessera, an open source software suite designed to enable data scientists to interactively perform their craft at the terabyte scale. Tessera automatically manages the complicated tasks of distributed storage and computation, empowering data scientists to do what they do best: tackling critical research and mission objectives by deriving insight from data. We illustrate the use of Tessera with an example analysis of computer network data.« less
As Threats of Violence Escalate, Primate Researchers Stand Firm.
ERIC Educational Resources Information Center
Schneider, Alison
1999-01-01
Scientists doing research on primates are increasingly being subjected to threats and acts of violence from animal rights groups. The intimidation has resulted in many laboratories taking extensive security measures. Some scientists claim, however, that there is no surrogate for animal research in understanding human diseases. There are fears that…
Assessing quality of citizen scientists’ soil texture estimates to evaluate land potential
USDA-ARS?s Scientific Manuscript database
Texture influences nearly all soil processes and is often the most measured parameter in soil science. Estimating soil texture is a universal and fundamental practice applied by resource scientists to classify and understand the behavior and management of soil systems. While trained soil scientist c...
NASA Astrophysics Data System (ADS)
Pinotsis, Antonios D.
2005-04-01
We perform a comparative study of the evolution of the most important methods for geographical, carto-graphical and astronomical measurements developed by ancient Greek scientists and philosophers until the time of Eratosthenes. It seems that the novel geometrical method invented by Eratosthenes for the measurement of the size of the Earth did not appear suddenly but was the final outcome of long-lasting intellectual activity. It is shown that Anaximander, Pytheas, Eudoxus of Cnidus, Dicaearchus, Aristotle and Archimedes, the most famous ancient Greek philosopher astronomers and geographers before Eratosthenes, affected his thinking and contributed to his discovery. Furthermore, we briefly describe and explain the method of Eratosthenes, its significance, new errors that intruded into Eratosthenes’ measurement, as well as its application for the determination of the shape and the size of the Earth.
A Brief Introduction into the Renin-Angiotensin-Aldosterone System: New and Old Techniques.
Thatcher, Sean E
2017-01-01
The renin-angiotensin-aldosterone system (RAAS) is a complex system of enzymes, receptors, and peptides that help to control blood pressure and fluid homeostasis. Techniques in studying the RAAS can be difficult due to such factors as peptide/enzyme stability and receptor localization. This paper gives a brief account of the different components of the RAAS and current methods in measuring each component. There is also a discussion of different methods in measuring stem and immune cells by flow cytometry, hypertension, atherosclerosis, oxidative stress, energy balance, and other RAAS-activated phenotypes. While studies on the RAAS have been performed for over 100 years, new techniques have allowed scientists to come up with new insights into this system. These techniques are detailed in this Methods in Molecular Biology Series and give students new to studying the RAAS the proper controls and technical details needed to perform each procedure.
Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'
NASA Technical Reports Server (NTRS)
Kempler, Steven
2014-01-01
What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.
2016-03-30
lesson 8.4, " Wind Turbine Design Inquiry." 13 The goal of her project was to combine a1t and science in project-based learning. Although pmt of an...challenged to design, test, and redesign wind turbine blades, defining variables and measuring performance. Their goal was to optimize perfonnance through...hydroelectric. In each model there are more than one variable. For example, the wind farm activity enables the user to select number of turbines
On the use of the h-index in evaluating chemical research
2013-01-01
Background The h index bibliometric indicator for evaluating scientists and scientific institutions plays an increasingly important role in evaluating contemporary scientific research, including chemistry. Results Citations are meaningful. The best way of measuring performance is to use the informed peer review, where peers judge on the base of a bibliometric report, once the limits and advantages of bibliometric indicators have been thoroughly understood. Conclusions Expanded and improved use of bibliometric indicators such as the h index in a useful and wise manner is suggested. PMID:23899251
Analysis of the Image of Scientists Portrayed in the Lebanese National Science Textbooks
NASA Astrophysics Data System (ADS)
Yacoubian, Hagop A.; Al-Khatib, Layan; Mardirossian, Taline
2017-07-01
This article presents an analysis of how scientists are portrayed in the Lebanese national science textbooks. The purpose of this study was twofold. First, to develop a comprehensive analytical framework that can serve as a tool to analyze the image of scientists portrayed in educational resources. Second, to analyze the image of scientists portrayed in the Lebanese national science textbooks that are used in Basic Education. An analytical framework, based on an extensive review of the relevant literature, was constructed that served as a tool for analyzing the textbooks. Based on evidence-based stereotypes, the framework focused on the individual and work-related characteristics of scientists. Fifteen science textbooks were analyzed using both quantitative and qualitative measures. Our analysis of the textbooks showed the presence of a number of stereotypical images. The scientists are predominantly white males of European descent. Non-Western scientists, including Lebanese and/or Arab scientists are mostly absent in the textbooks. In addition, the scientists are portrayed as rational individuals who work alone, who conduct experiments in their labs by following the scientific method, and by operating within Eurocentric paradigms. External factors do not influence their work. They are engaged in an enterprise which is objective, which aims for discovering the truth out there, and which involves dealing with direct evidence. Implications for science education are discussed.
Soil Temperature and Moisture Profile (STAMP) System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are alsomore » useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.« less
NASA Technical Reports Server (NTRS)
Klumpar, D. M.; Lapolla, M. V.; Horblit, B.
1995-01-01
A prototype system has been developed to aid the experimental space scientist in the display and analysis of spaceborne data acquired from direct measurement sensors in orbit. We explored the implementation of a rule-based environment for semi-automatic generation of visualizations that assist the domain scientist in exploring one's data. The goal has been to enable rapid generation of visualizations which enhance the scientist's ability to thoroughly mine his data. Transferring the task of visualization generation from the human programmer to the computer produced a rapid prototyping environment for visualizations. The visualization and analysis environment has been tested against a set of data obtained from the Hot Plasma Composition Experiment on the AMPTE/CCE satellite creating new visualizations which provided new insight into the data.
The Process of Science Communications at NASA/Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Horack, John M.; Treise, Deborah
1998-01-01
The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in operation for nearly two years. Serving scientists in Earth Science, Microgravity Science, and Space Science. Critical features of the design are illustrated, and essential skills required to operate the process are defined. Measures of success will also be presented.
Telescope Scientist on the Advanced X-ray Astrophysics Observatory
NASA Technical Reports Server (NTRS)
Smith, Carl M. (Technical Monitor); VanSpeybroeck, Leon; Tananbaum, Harvey D.
2004-01-01
In this period, the Chandra X-ray Observatory continued to perform exceptionally well, with many scientific observations and spectacular results. The HRMA performance continues to be essentially identical to that predicted from ground calibration data. The Telescope Scientist Team has improved the mirror model to provide a more accurate description to the Chandra observers, enabling them to reduce the systematic errors and uncertainties in their data reduction. There also has been good progress in the scientific program. Using the Telescope Scientist GTO time, we carried out an extensive Chandra program to observe distant clusters of galaxies. The goals of this program were to use clusters to derive cosmological constraints and to investigate the physics and evolution of clusters. A total of 71 clusters were observed with ACIS-I; the last observations were completed in December 2003.
Stevenson, Frazier T; Bowe, Connie M; Gandour-Edwards, Regina; Kumari, Vijaya G
2005-02-01
Many studies have evaluated the desirability of expert versus non-expert facilitators in problem-based learning (PBL), but performance differences between basic science and clinical facilitators has been less studied. In a PBL course at our university, pairs of faculty facilitators (1 clinician, 1 basic scientist) were assigned to student groups to maximise integration of basic science with clinical science. This study set out to establish whether students evaluate basic science and clinical faculty members differently when they teach side by side. Online questionnaires were used to survey 188 students about their faculty facilitators immediately after they completed each of 3 serial PBL cases. Overall satisfaction was measured using a scale of 1-7 and yes/no responses were gathered from closed questions describing faculty performance. results: Year 1 students rated basic science and clinical facilitators the same, but Year 2 students rated the clinicians higher overall. Year 1 students rated basic scientists higher in their ability to understand the limits of their own knowledge. Year 2 students rated the clinicians higher in several content expertise-linked areas: preparedness, promotion of in-depth understanding, and ability to focus the group, and down-rated the basic scientists for demonstrating overspecialised knowledge. Students' overall ratings of individual faculty best correlated with the qualities of stimulation, focus and preparedness, but not with overspecialisation, excessive interjection of the faculty member's own opinions, and encouragement of psychosocial issue discussion. When taught by paired basic science and clinical PBL facilitators, students in Year 1 rated basic science and clinical PBL faculty equally, while Year 2 students rated clinicians more highly overall. The Year 2 difference may be explained by perceived differences in content expertise.
Other ways of measuring `Big G'
NASA Astrophysics Data System (ADS)
Rothleitner, Christian
2016-03-01
In 1798, the British scientist Henry Cavendish performed the first laboratory experiment to determine the gravitational force between two massive bodies. From his result, Newton's gravitational constant, G, was calculated. Cavendish's measurement principle was the torsion balance invented by John Michell some 15 years before. During the following two centuries, more than 300 new measurements followed. Although technology - and physics - developed rapidly during this time, surprisingly, most experiments were still based on the same principle. In fact, the most accurate determination of G to date is a measurement based on the torsion balance principle. Despite the fact that G was one of the first fundamental physical constants ever measured, and despite the huge number of experiments performed on it to this day, its CODATA recommended value still has the highest standard measurement uncertainty when compared to other fundamental physical constants. Even more serious is the fact that even measurements based on the same principle often do not overlap within their attributed standard uncertainties. It must be assumed that various experiments are subject to one or more unknown biases. In this talk I will present some alternative experimental setups to the torsion balance which have been performed or proposed to measure G. Although their estimated uncertainties are often higher than most torsion balance experiments, revisiting such ideas is worthwhile. Advances in technology could offer solutions to problems which were previously insurmountable, these solutions could result in lower measurement uncertainties. New measurement principles could also help to uncover hidden systematic effects.
Statistical regularities in the rank-citation profile of scientists
Petersen, Alexander M.; Stanley, H. Eugene; Succi, Sauro
2011-01-01
Recent science of science research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate production and impact using the rank-citation profile ci(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper rank r, we fit each ci(r) to a common distribution function. Since two scientists with equivalent Hirsch h-index can have significantly different ci(r) profiles, our results demonstrate the utility of the βi scaling parameter in conjunction with hi for quantifying individual publication impact. We show that the total number of citations Ci tallied from a scientist's Ni papers scales as . Such statistical regularities in the input-output patterns of scientists can be used as benchmarks for theoretical models of career progress. PMID:22355696
NASA Astrophysics Data System (ADS)
Korte, Stefan; Berger, Roland; Hänze, Martin
2017-05-01
We assessed the impact of teaching methodological aspects of physics on students' scientistic beliefs and subject interest in physics in a repeated-measurement design with a total of 142 students of upper secondary physics classes. Students gained knowledge of methodological aspects from the pre-test to the post-test and reported reduced scientistic beliefs, both from their own views and from their presumed prototypical physicists' views. We found no direct impact of teaching on students' subject interest in physics. As path analysis indicates, this result can be traced back to opposing paths: Lower scientistic beliefs of students attenuate subject interest while lower presumed scientistic beliefs that they hold of physicists foster subject interest. This finding is in accordance with the self-to-prototype matching theory that predicts an impact of the overlap between students' self-image and their prototypical image on subject interest in physics.
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael
2013-08-01
General scientific literacy includes understanding the grounds on which scientific claims are based. The measurements scientists make and the data that they produce from them generally constitute these grounds. However, the nature of data generation has received relatively little attention from those interested in teaching science through inquiry. To inform curriculum designers about the process of data generation and its relation to the understanding of patterns as these may arise from graphs, this 5-year ethnographic study in one advanced research laboratory was designed to investigate how natural scientists make decisions about the inclusion/exclusion of certain measurements in/from their data sources. The study shows that scientists exclude measurements from their data sources even before attempting to mathematize and interpret the data. The excluded measurements therefore never even enter the ground from and against which the scientific phenomenon emerges and therefore remain invisible to it. I conclude by encouraging science educators to squarely address this aspect of the discovery sciences in their teaching, which has both methodological and ethical implications.
Wukong Sharpens Its Eyes and Unveils the Nature of Dark Matter
NASA Astrophysics Data System (ADS)
Cong, Kun-Lin
2016-07-01
Dark matter does not emit light or reflect electromagnetic radiation, but its existence can be inferred from the effects of measurements such as gravity and mass. Unveiling the nature of dark matter is one of the biggest mysteries of modern science. Exploration of dark matter could give scientists a clearer understanding of the past and future of galaxies and the universe. Chinese scientists have been engaged actively in dark matter research in recent years, and made some significant achievements in theoretical studies, numerical simulations, and experimental investigation. The Dark Matter Particles Explorer Satellite (DAMPE) was launched by LM launch vehicle on 17th December 2015. It was constructed as a scientific satellite that has four major parts - a plastic scintillator array detector, a silicon array detector, a BGO calorimeter and a neutron detector - together comprising about 76,000 minor detectors. The main scientific purpose of DAMPE is to investigate dark matter particle from deep space, via high resolution observation of gamma-rays and electrons spectra, and its space distribution. It will also help scientists study the transportation and acceleration of cosmic rays in the galaxy by measuring the energy spectra of heavy ions. DAMPE was dubbed Wukong after the Monkey King character from the Chinese classic legend Journey to the West. "Wu" means becoming aware of through the senses, and "Kong" refers to the space. The figurative meaning of "Wukong" is to know and comprehend the nature of the space. DAMPE is the most sensitive and accurate detectors designed for dark matter with the highest performance among the similar explorers. It will find the evidence that can certify the existence of dark matter.
Gender differences in publication output: towards an unbiased metric of research performance.
Symonds, Matthew R E; Gemmell, Neil J; Braisher, Tamsin L; Gorringe, Kylie L; Elgar, Mark A
2006-12-27
We examined the publication records of a cohort of 168 life scientists in the field of ecology and evolutionary biology to assess gender differences in research performance. Clear discrepancies in publication rate between men and women appear very early in their careers and this has consequences for the subsequent citation of their work. We show that a recently proposed index designed to rank scientists fairly is in fact strongly biased against female researchers, and advocate a modified index to assess men and women on a more equitable basis.
ERIC Educational Resources Information Center
Park, Jongwon; Jang, Kyoung-Ae; Kim, Ikgyun
2009-01-01
Investigation of scientists' actual processes of conducting research can provide us with more realistic aspects of scientific inquiry. This study was performed to identify three aspects of scientists' actual research: their motivations for scientific inquiry, the scientific inquiry skills they used, and the main types of results obtained from…
What Do Scientist and Non-Scientist Teachers Notice about Biology Diagrams?
ERIC Educational Resources Information Center
Topsakal, Unsal Umdu; Oversby, John
2013-01-01
In the present study, we have explored an aspect of teachers' perceptions of biology diagrams. The research was performed in Turkey. The data were gathered from 50 (25 female, 25 male) teachers of primary and secondary schools and 34 (18 female, 16 male) academic staff of different universities in Turkey. Some of the participants are science…
ERIC Educational Resources Information Center
Monastersky, Richard
2007-01-01
For the past three years, leading scientists from more than 40 countries have been conducting a physical of the planet. They have monitored its vital signs, probed its parts, taken its temperature, measured its bodily fluids. This article deals with the global-warming report for the United Nations released by a panel of 1,200 scientists at a news…
Gait Analysis by High School Students
ERIC Educational Resources Information Center
Heck, Andre; van Dongen, Caroline
2008-01-01
Human walking is a complicated motion. Movement scientists have developed various research methods to study gait. This article describes how a high school student collected and analysed high quality gait data in much the same way that movement scientists do, via the recording and measurement of motions with a video analysis tool and via…
2004-03-17
NASA DC-8 Ground Support Technicians Mark Corlew and Mike Lakowski perform routine maintenance on the aircraft at Carlos Ibanez del Campo International Airport in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR will collect imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is decreasing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.
2004-03-17
NASA DC-8 Ground Support Technician Joe Niquette performs routine maintenance on the DC-8 aircraft at Carlos Ibanez del Campo International Airport in Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR will collect imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is decreasing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.
Turkish Contribution to Journal of Neurosurgery and Acta Neurochirurgica.
Altinors, Nur; Comert, Serhat; Sonmez, Erkin; Altinel, Faruk
2017-01-01
To evaluate the contribution of Turkish scientists to four journals published by Journal of Neurosurgery (JNS) Publishing Group and to Acta Neurochirurgica (AN) and to its Supplement (ANS). We reviewed every issue of those journals to December 2015 for the total number of articles, articles produced from studies performed entirely in Turkey, and for publications overseas co-authored by the Turkish scientists using the websites of these journals. Citations were searched using "Web of Science" and "Google Scholar" databases. The total number of articles published was 19822 for JNS, 3227 for JNS Spine, 2526 for JNS Pediatrics and 2997 for Neurosurgical Focus. Turkish contribution was 556 articles. 337 (60.61%) articles were the products of studies performed entirely in Turkey, while 219 (39.38%) articles came from overseas, co-authored by Turkish scientists. Overall contribution was 1.94%. A total of 6469 articles were published in AN. 340 papers were the products of studies performed entirely in Turkey. Turkish scientists working overseas co-authored 37 articles. Total contribution was 377 articles (5.82%). 4134 papers had been published in ANS. Contribution was 69 articles (1.66%). Turkish contribution to these journals has started late. The gap has been compensated with publications in the last two decades. Manuscripts of higher scientific level with greater number of citations are needed to increase Turkish contribution to such journals.
NASA Ground-Truthing Capabilities Demonstrated
NASA Technical Reports Server (NTRS)
Lopez, Isaac; Seibert, Marc A.
2004-01-01
NASA Research and Education Network (NREN) ground truthing is a method of verifying the scientific validity of satellite images and clarifying irregularities in the imagery. Ground-truthed imagery can be used to locate geological compositions of interest for a given area. On Mars, astronaut scientists could ground truth satellite imagery from the planet surface and then pinpoint optimum areas to explore. These astronauts would be able to ground truth imagery, get results back, and use the results during extravehicular activity without returning to Earth to process the data from the mission. NASA's first ground-truthing experiment, performed on June 25 in the Utah desert, demonstrated the ability to extend powerful computing resources to remote locations. Designed by Dr. Richard Beck of the Department of Geography at the University of Cincinnati, who is serving as the lead field scientist, and assisted by Dr. Robert Vincent of Bowling Green State University, the demonstration also involved researchers from the NASA Glenn Research Center and the NASA Ames Research Center, who worked with the university field scientists to design, perform, and analyze results of the experiment. As shown real-time Hyperion satellite imagery (data) is sent to a mass storage facility, while scientists at a remote (Utah) site upload ground spectra (data) to a second mass storage facility. The grid pulls data from both mass storage facilities and performs up to 64 simultaneous band ratio conversions on the data. Moments later, the results from the grid are accessed by local scientists and sent directly to the remote science team. The results are used by the remote science team to locate and explore new critical compositions of interest. The process can be repeated as required to continue to validate the data set or to converge on alternate geophysical areas of interest.
NASA Astrophysics Data System (ADS)
Anderson, E. R.; Griffin, R.; Markert, K. N.
2017-12-01
Scientists, practitioners, policymakers, and citizen groups, share a role in ensuring "that all sectors have access to, understand and can use scientific information for better informed decision-making" (Sendai Framework 2015-2030). When it comes to understanding hazards and exposure, inventories on disaster events are often limited. Thus, there are many opportunities for citizen scientists to engage in improving the collective understanding—and ultimately reduction—of disaster risk. Landslides are very difficult to forecast on spatial and temporal scales meaningful for early warning and evacuation. Heuristic hazard mapping methods are very common in regional hazard zonation and rely on expert knowledge of previous events and local conditions, but they often lack a temporal component. As new data analysis packages are becoming more open and accessible, probabilistic approaches that consider high resolution spatial and temporal dimensions are becoming more common, but this is only possible when rich inventories of landslide events exist. The work presented offers a proof of concept on incorporating crowd-sourced data to improve landslide hazard model performance. Starting with a national inventory of 90 catalogued landslides in El Salvador for a study period of 1998 to 2011, we simulate the addition of over 600 additional crowd-sourced landslide events that would have been identified through human interpretation of high resolution imagery in the Google Earth time slider feature. There is a noticeable improvement in performance statistics between static heuristic hazard models and probabilistic models that incorporate the events identified by the "crowd." Such a dynamic incorporation of crowd-sourced data on hazard events is not so far-fetched. Given the engagement of "local observers" in El Salvador who augment in situ hydro-meteorological measurements, the growing access to Earth observation data to the lay person, and immense interest behind connecting citizen scientists to remote sensing data through hackathons such as the NASA Space Apps Challenges, we envision a much more dynamic, collective understanding of landslide hazards. Here we present a better scenario of what we could have known had data from the crowd been incorporated into probabilistic hazard models on a regular basis.
NASA Technical Reports Server (NTRS)
1985-01-01
The most promising new technology for scientific research is America's Space Transportation System; the space shuttle and its companion facility, Spacelab. Spacelab is a versatile laboratory designed specifically to accommodate scientists and their instruments in low-Earth orbit. In a space laboratory, scientists can perform experiments that are impossible on Earth. They can also use very large instruments aboard the Shuttle, with the added benefit of bringing all their equipment, experiment samples, and data home for analysis. Spacelab 2 is one in a series of missions that gives the world's scientists a chance to do research in a well-equipped laboratory in space.
Usmani, Adnan Mahmmood; Meo, Sultan Ayoub
2011-01-01
Scientific achievement by publishing a scientific manuscript in a peer reviewed biomedical journal is an important ingredient of research along with a career-enhancing advantages and significant amount of personal satisfaction. The road to evaluate science (research, scientific publications) among scientists often seems complicated. Scientist's career is generally summarized by the number of publications / citations, teaching the undergraduate, graduate and post-doctoral students, writing or reviewing grants and papers, preparing for and organizing meetings, participating in collaborations and conferences, advising colleagues, and serving on editorial boards of scientific journals. Scientists have been sizing up their colleagues since science began. Scientometricians have invented a wide variety of algorithms called science metrics to evaluate science. Many of the science metrics are even unknown to the everyday scientist. Unfortunately, there is no all-in-one metric. Each of them has its own strength, limitation and scope. Some of them are mistakenly applied to evaluate individuals, and each is surrounded by a cloud of variants designed to help them apply across different scientific fields or different career stages [1]. A suitable indicator should be chosen by considering the purpose of the evaluation, and how the results will be used. Scientific Evaluation assists us in: computing the research performance, comparison with peers, forecasting the growth, identifying the excellence in research, citation ranking, finding the influence of research, measuring the productivity, making policy decisions, securing funds for research and spotting trends. Key concepts in science metrics are output and impact. Evaluation of science is traditionally expressed in terms of citation counts. Although most of the science metrics are based on citation counts but two most commonly used are impact factor [2] and h-index [3].
Measuring mumbo jumbo: A preliminary quantification of the use of jargon in science communication.
Sharon, Aviv J; Baram-Tsabari, Ayelet
2014-07-01
Leaders of the scientific community encourage scientists to learn effective science communication, including honing the skill to discuss science with little professional jargon. However, avoiding jargon is not trivial for scientists for several reasons, and this demands special attention in teaching and evaluation. Despite this, no standard measurement for the use of scientific jargon in speech has been developed to date. Here a standard yardstick for the use of scientific jargon in spoken texts, using a computational linguistics approach, is proposed. Analyzed transcripts included academic speech, scientific TEDTalks, and communication about the discovery of a Higgs-like boson at CERN. Findings suggest that scientists use less jargon in communication with a general audience than in communication with peers, but not always less obscure jargon. These findings may lay the groundwork for evaluating the use of jargon.
Science versus (?) Art: Human Perception of Other Worlds
NASA Astrophysics Data System (ADS)
Hartmann, William K.
1998-09-01
At the time of the Renaissance, science and art were mixed together as a way to understand the human relation to the larger cosmos. Leonardo da Vinci exemplifies this approach. In modern times, the two have become separate, and even antagonistic, ``two cultures." Scientists have increasingly been satisfied to present quantitative measures of phenomena, without ever asking what the measures mean in human terms. Examples include the nature of the lunar surface, asteroid colors and brightness of the Io aurora, as will be discussed. However, in presenting the "big picture" to the public, and even to other working scientists, it is useful to revisit the Renaissance paradigm. Artists are increasingly working with scientists to translate the understanding of other worlds to the public, and this creates many opportunities for education projects in schools, and for careers in public outreach and science journalism.
Citizen Science Air Monitoring in the Ironbound Community ...
The Environmental Protection Agency’s (EPA) mission is to protect human health and the environment. To move toward achieving this goal, EPA is facilitating identification of potential environmental concerns, particularly in vulnerable communities. This includes actively supporting citizen science projects and providing communities with the information and assistance they need to conduct their own air pollution monitoring efforts. The Air Sensor Toolbox for Citizen Scientists1 was developed as a resource to meet stakeholder needs. Examples of materials developed for the Toolbox and ultimately pilot tested in the Ironbound Community in Newark, New Jersey are reported here. The Air Sensor Toolbox for Citizen Scientists is designed as an online resource that provides information and guidance on new, low-cost compact technologies used for measuring air quality. The Toolbox features resources developed by EPA researchers that can be used by citizens to effectively collect, analyze, interpret, and communicate air quality data. The resources include information about sampling methods, how to calibrate and validate monitors, options for measuring air quality, data interpretation guidelines, and low-cost sensor performance information. This Regional Applied Research Effort (RARE) project provided an opportunity for the Office of Research and Development (ORD) to work collaboratively with EPA Region 2 to provide the Ironbound Community with a “Toolbox” specific for c
Clinician-scientists in Canada: barriers to career entry and progress.
Lander, Bryn; Hanley, Gillian E; Atkinson-Grosjean, Janet
2010-10-04
Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR) databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3) than non-clinical scientists (3.2), potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001) suggesting that clinician-scientists may be shifting their attention to other research domains. While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of this group, however, it may be prudent to adopt specific policy and funding incentives to ensure the ongoing viability of the career path.
Clinician-Scientists in Canada: Barriers to Career Entry and Progress
Lander, Bryn; Hanley, Gillian E.; Atkinson-Grosjean, Janet
2010-01-01
Background Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. Methods Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR) databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. Results Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3) than non-clinical scientists (3.2), potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001) suggesting that clinician-scientists may be shifting their attention to other research domains. Conclusion While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of this group, however, it may be prudent to adopt specific policy and funding incentives to ensure the ongoing viability of the career path. PMID:20957175
For the Love of Science: Learning Orientation and Physical Science Success
NASA Astrophysics Data System (ADS)
Hazari, Zahra; Potvin, Geoff; Tai, Robert; Almarode, John
2010-02-01
An individual's motivational orientation serves as a drive to action and can influence their productivity. This study examines how the goal orientation of students towards the pursuit of their graduate degree in physics and chemistry influences their future success outcomes as practicing scientists. Two main orientations are focused on: performance (or ego/ability) orientation and learning (or task/mastery) orientation. The data was obtained as part of Project Crossover, which applied a mixed methodological approach to studying the transition from graduate student to scientist in the physical sciences. Using regression analysis on survey data from 2353 PhD holders in physics and chemistry, we found that individuals exhibiting a learning orientation were more productive than those exhibiting a performance orientation in terms of first-author publications and grant funding. Furthermore, given equal salary, learning-oriented physical scientists produced more first-author publications than average. )
Preparing Earth Data Scientists for 'the sexiest job of the 21st century'
NASA Astrophysics Data System (ADS)
Kempler, S. J.
2014-12-01
What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, and/or have varied in approach. This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.
An array processing system for lunar geochemical and geophysical data
NASA Technical Reports Server (NTRS)
Eliason, E. M.; Soderblom, L. A.
1977-01-01
A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.
NASA Astrophysics Data System (ADS)
Akerson, Valarie L.; Buzzelli, Cary A.; Eastwood, Jennifer L.
2012-02-01
This study explored preservice teachers' views of their own cultural values, the cultural values they believed scientists hold, and the relationships of these views to their conceptions of nature of science (NOS). Parallel assignments in a foundations of early childhood education and a science methods course required preservice teachers to explore their own cultural backgrounds and their perceptions of the cultural backgrounds of scientists. The Schwartz Values Inventory was used to measure preservice teachers' personal cultural values and those they perceived of scientists. The Views of Nature of Science version B questionnaire and interviews assessed teachers' conceptions of NOS. Copies of student work were collected and sought for themes indicating how preservice teachers perceived scientists' cultural values and how those perceptions changed over time. We found that from the beginning to the end of the semester, preservice teachers perceived fewer differences between their own cultural values and those they perceived scientists held, though they did not change their own cultural values. We found that preservice teachers' NOS conceptions improved, and that they were related to both their cultural values and those they perceived scientists held. Preservice teachers who indicated the fewest differences between their own cultural values and those they perceived scientists held the most informed conceptions of NOS.
Energy-Efficient High-Performance Routers
2012-02-01
award, the PI Dr. Sartaj Sahni, AFRL research scientist Dr. Gunasekaran Seetharaman, and University of Florida Ph.D. student Ms. Tania Banerjee...Sartaj Sahni, AFRL research scientist Dr. Gunasekaran Seetharaman, and University of Florida Ph.D. student Ms. Tania Banerjee-Mishra...Searching and Shift Redundancy Architecture, IJSSC, 40, 1, Jan 2005, 245-253. PC-DUOS+: A TCAM Architecture for Packet Classifiers Tania Banerjee
ERIC Educational Resources Information Center
Pueyo, Natalie C.; Raub, Andrew G.; Jackson, Sean; Metz, Madalyn M.; Mount, Allegra C.; Naughton, Kyle L.; Eaton, Ashley L.; Thomas, Nicole M.; Hastings, Peter; Greaves, John; Blumberg, Bruce; Collins, Terrence J.; Sogo, Steven G.
2013-01-01
A chemical research program at a public high school has been developed. The full-year Advanced Chemical Research class (ACR) in the high school enrolls 20-30 seniors each year, engaging them in long-term experimental projects. Through partnerships involving university scientists, ACR high school students have had the opportunity to explore a…
ERIC Educational Resources Information Center
Korte, Stefan; Berger, Roland; Hänze, Martin
2017-01-01
We assessed the impact of teaching methodological aspects of physics on students' scientistic beliefs and subject interest in physics in a repeated-measurement design with a total of 142 students of upper secondary physics classes. Students gained knowledge of methodological aspects from the pre-test to the post-test and reported reduced…
The IT in Secondary Science Book. A Compendium of Ideas for Using Computers and Teaching Science.
ERIC Educational Resources Information Center
Frost, Roger
Scientists need to measure and communicate, to handle information, and model ideas. In essence, they need to process information. Young scientists have the same needs. Computers have become a tremendously important addition to the processing of information through database use, graphing and modeling and also in the collection of information…
Pelvimetry and the persistance of racial science in obstetrics.
O'Brien, Elizabeth
2013-03-01
In the late nineteenth century, Mexican scientists became fixated on pelvic structure as an indicator of racial difference and hereditary worth. Forty years later, in his 1931 dissertation, medical student Gustavo Aldolfo Trangay proposed the implementation of a eugenic sterilization campaign in Mexico. He even reported performing clandestine sterilizations in public clinics, despite federal laws that prohibited doctors from doing so. Trangay reasoned that his patients were unfit for motherhood, and he claimed that their small pelvic cavities were a sign of biological inferiority. His focus on anatomical measurements--and especially pelvic measurements--was not novel in Mexico, but his work shows how doctors used nineteenth century racial science to rationalize eugenic sterilization. Copyright © 2012 Elsevier Ltd. All rights reserved.
Technical and commerical challenges in high Tc SQUIDs and their industrial applications
NASA Technical Reports Server (NTRS)
Lu, D. F.
1995-01-01
A SQUID is the most sensitive device for measuring changes in magnetic flux. Since its discovery in the sixties, scientists have made consistent efforts to apply SQUID's to various applications. Instruments that are the most sensitive in their respective categories have been built, such as SQUID DC susceptometer that is now manufactured by Quantum Design, pico-voltmeter which could measure 10(exp -14) volts, and gravitational wave detectors. One of the most successful applications of SQUID's is in magnetoencephalography, a non-invasive technique for investigating neuronal activity in the living human brain. This technique employs a multi-channel SQUID magnetometer that maps the weak magnetic field generated by small current when information is processed in brain, and its performance is marvelous.
A critical evaluation of science outreach via social media: its role and impact on scientists
McClain, Craig; Neeley, Liz
2015-01-01
The role of scientists in social media and its impact on their careers are not fully explored. While policies and best practices are still fluid, it is concerning that discourse is often based on little to no data, and some arguments directly contradict the available data. Here, we consider the relevant but subjective questions about science outreach via social media (SOSM), specifically: (1) Does a public relations nightmare exist for science?; (2) Why (or why aren’t) scientists engaging in social media?; (3) Are scientists using social media well?; and (4) Will social media benefit a scientist’s career? We call for the scientific community to create tangible plans that value, measure, and help manage scientists’ social media engagement. PMID:25866620
NASA Astrophysics Data System (ADS)
Walker, C. E.; Pompea, S. M.
2008-12-01
GLOBE at Night is an international citizen-science event encouraging everyone, students, the general public, scientists and non-scientists, to measure local levels of light pollution and contribute observations online to a world map. This program is part of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) in 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at UCAR and the National Optical Astronomy Observatory, as well as Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in February or March, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how" and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more information, visit http://www.globe.gov/GaN/.
Institute for Sustained Performance, Energy, and Resilience (SuPER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagode, Heike; Bosilca, George; Danalis, Anthony
The University of Tennessee (UTK) and University of Texas at El Paso (UTEP) partnership supported the three main thrusts of the SUPER project---performance, energy, and resilience. The UTK-UTEP effort thus helped advance the main goal of SUPER, which was to ensure that DOE's computational scientists can successfully exploit the emerging generation of high performance computing (HPC) systems. This goal is being met by providing application scientists with strategies and tools to productively maximize performance, conserve energy, and attain resilience. The primary vehicle through which UTK provided performance measurement support to SUPER and the larger HPC community is the Performance Applicationmore » Programming Interface (PAPI). PAPI is an ongoing project that provides a consistent interface and methodology for collecting hardware performance information from various hardware and software components, including most major CPUs, GPUs and accelerators, interconnects, I/O systems, and power interfaces, as well as virtual cloud environments. The PAPI software is widely used for performance modeling of scientific and engineering applications---for example, the HOMME (High Order Methods Modeling Environment) climate code, and the GAMESS and NWChem computational chemistry codes---on DOE supercomputers. PAPI is widely deployed as middleware for use by higher-level profiling, tracing, and sampling tools (e.g., CrayPat, HPCToolkit, Scalasca, Score-P, TAU, Vampir, PerfExpert), making it the de facto standard for hardware counter analysis. PAPI has established itself as fundamental software infrastructure in every application domain (spanning academia, government, and industry), where improving performance can be mission critical. Ultimately, as more application scientists migrate their applications to HPC platforms, they will benefit from the extended capabilities this grant brought to PAPI to analyze and optimize performance in these environments, whether they use PAPI directly, or via third-party performance tools. Capabilities added to PAPI through this grant include support for new architectures such as the lastest GPU and Xeon Phi accelerators, and advanced power measurement and management features. Another important topic for the UTK team was providing support for a rich ecosystem of different fault management strategies in the context of parallel computing. Our long term efforts have been oriented toward proposing flexible strategies and providing building boxes that application developers can use to build the most efficient fault management technique for their application. These efforts span across the entire software spectrum, from theoretical models of existing strategies to easily assess their performance, to algorithmic modifications to take advantage of specific mathematical properties for data redundancy and to extensions to widely used programming paradigms to empower the application developers to deal with all types of faults. We have also continued our tight collaborations with users to help them adopt these technologies to ensure their application always deliver meaningful scientific data. Large supercomputer systems are becoming more and more power and energy constrained, and future systems and applications running on them will need to be optimized to run under power caps and/or minimize energy consumption. The UTEP team contributed to the SUPER energy thrust by developing power modeling methodologies and investigating power management strategies. Scalability modeling results showed that some applications can scale better with respect to an increasing power budget than with respect to only the number of processors. Power management, in particular shifting power to processors on the critical path of an application execution, can reduce perturbation due to system noise and other sources of runtime variability, which are growing problems on large-scale power-constrained computer systems.« less
Women Share in Science and Technology Education and Their Job Performance in Nigeria
NASA Astrophysics Data System (ADS)
Osezuah, Simon; Nwadiani, C. O.
2012-10-01
This investigation focused on womenís share in Science and Technology education and their job performance in Nigeria. The investigation was conducted with two questions that were raised as a guide. A sample of 4886 was drawn through the questionnaire method. Analysis of the data was conducted through the use of frequency count. Findings obtained indicated that there was disparity between male and female gender in access to Science and Technology education in Nigeria, and also that there were no differences between women and men scientists and technologists in job performance. The conclusion was therefore reached that women do not have equal share with men in Science and Technology education even though the male and female scientists and technologists perform jobs equally in Nigeria. Recommendation was therefore made accordingly.
Skel: Generative Software for Producing Skeletal I/O Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, J.; Klasky, S.; Lofstead, J.
2011-01-01
Massively parallel computations consist of a mixture of computation, communication, and I/O. As part of the co-design for the inevitable progress towards exascale computing, we must apply lessons learned from past work to succeed in this new age of computing. Of the three components listed above, implementing an effective parallel I/O solution has often been overlooked by application scientists and was usually added to large scale simulations only when existing serial techniques had failed. As scientists teams scaled their codes to run on hundreds of processors, it was common to call on an I/O expert to implement a set ofmore » more scalable I/O routines. These routines were easily separated from the calculations and communication, and in many cases, an I/O kernel was derived from the application which could be used for testing I/O performance independent of the application. These I/O kernels developed a life of their own used as a broad measure for comparing different I/O techniques. Unfortunately, as years passed and computation and communication changes required changes to the I/O, the separate I/O kernel used for benchmarking remained static no longer providing an accurate indicator of the I/O performance of the simulation making I/O research less relevant for the application scientists. In this paper we describe a new approach to this problem where I/O kernels are replaced with skeletal I/O applications automatically generated from an abstract set of simulation I/O parameters. We realize this abstraction by leveraging the ADIOS middleware's XML I/O specification with additional runtime parameters. Skeletal applications offer all of the benefits of I/O kernels including allowing I/O optimizations to focus on useful I/O patterns. Moreover, since they are automatically generated, it is easy to produce an updated I/O skeleton whenever the simulation's I/O changes. In this paper we analyze the performance of automatically generated I/O skeletal applications for the S3D and GTS codes. We show that these skeletal applications achieve performance comparable to that of the production applications. We wrap up the paper with a discussion of future changes to make the skeletal application better approximate the actual I/O performed in the simulation.« less
AAAS Communicating Science Program: Reflections on Evaluation
NASA Astrophysics Data System (ADS)
Braha, J.
2015-12-01
The AAAS Center for Public Engagement (Center) with science builds capacity for scientists to engage public audiences by fostering collaboration among natural or physical scientists, communication researchers, and public engagement practitioners. The recently launched Leshner Leadership Institute empowers cohorts of mid-career scientists to lead public engagement by supporting their networks of scientists, researchers, and practitioners. The Center works closely with social scientists whose research addresses science communication and public engagement with science to ensure that the Communicating Science training program builds on empirical evidence to inform best practices. Researchers ( Besley, Dudo, & Storkdieck 2015) have helped Center staff and an external evaluator develop pan instrument that measures progress towards goals that are suggested by the researcher, including internal efficacy (increasing scientists' communication skills and confidence in their ability to engage with the public) and external efficacy (scientists' confidence in engagement methods). Evaluation results from one year of the Communicating Science program suggest that the model of training yields positive results that support scientists in the area that should lead to greater engagement. This talk will explore the model for training, which provides a context for strategic communication, as well as the practical factors, such as time, access to public engagement practitioners, and technical skill, that seems to contribute to increased willingness to engage with public audiences. The evaluation program results suggest willingness by training participants to engage directly or to take preliminary steps towards engagement. In the evaluation results, 38% of trained scientists reported time as a barrier to engagement; 35% reported concern that engagement would distract from their work as a barrier. AAAS works to improve practitioner-researcher-scientist networks to overcome such barriers.
Study Of Phase Separation In Glass
NASA Technical Reports Server (NTRS)
Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.
1989-01-01
Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.
Statistical regularities in the rank-citation profile of scientists.
Petersen, Alexander M; Stanley, H Eugene; Succi, Sauro
2011-01-01
Recent science of science research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate production and impact using the rank-citation profile c(i)(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper rank r, we fit each c(i)(r) to a common distribution function. Since two scientists with equivalent Hirsch h-index can have significantly different c(i)(r) profiles, our results demonstrate the utility of the β(i) scaling parameter in conjunction with h(i) for quantifying individual publication impact. We show that the total number of citations C(i) tallied from a scientist's N(i) papers scales as [Formula: see text]. Such statistical regularities in the input-output patterns of scientists can be used as benchmarks for theoretical models of career progress.
On the Predictability of Future Impact in Science
Penner, Orion; Pan, Raj K.; Petersen, Alexander M.; Kaski, Kimmo; Fortunato, Santo
2013-01-01
Correctly assessing a scientist's past research impact and potential for future impact is key in recruitment decisions and other evaluation processes. While a candidate's future impact is the main concern for these decisions, most measures only quantify the impact of previous work. Recently, it has been argued that linear regression models are capable of predicting a scientist's future impact. By applying that future impact model to 762 careers drawn from three disciplines: physics, biology, and mathematics, we identify a number of subtle, but critical, flaws in current models. Specifically, cumulative non-decreasing measures like the h-index contain intrinsic autocorrelation, resulting in significant overestimation of their “predictive power”. Moreover, the predictive power of these models depend heavily upon scientists' career age, producing least accurate estimates for young researchers. Our results place in doubt the suitability of such models, and indicate further investigation is required before they can be used in recruiting decisions. PMID:24165898
Conflict of interest, tailored science, and responsibility of scientific institutions and journals.
Ruff, Kathleen; Mirabelli, Dario
2014-11-01
Recent revelations have raised concerns on how conflicts of interest may involve even leading scientists and prestigious institutions and lead to bias in reporting and assessing scientific evidence. These have highlighted the need for action to safeguard scientific integrity and public health. The Italian Epidemiology Association has declared that the "biased and deliberately tailored use of the scientific evidence" by scientists with a conflict of interest serves to delay needed measures to prevent harm to public health from a polluting Italian steel plant's continuing chemical emissions. In France, unresolved concerns over conflict of interest forced the Centre for Research in Epidemiology and Public Health to cancel its imminent appointment of a prominent scientist as its Director. These negative events demonstrate the necessity for scientific institutions and journals to implement rigorous measures regarding conflict of interest and the safeguarding of scientific integrity and public health.
CosmoQuest: A Glance at Citizen Science Building
NASA Astrophysics Data System (ADS)
Richardson, Matthew; Grier, Jennifer; Gay, Pamela; Lehan, Cory; Buxner, Sanlyn; CosmoQuest Team
2018-01-01
CosmoQuest is a virtual research facility focused on engaging people - citizen scientists - from across the world in authentic research projects designed to enhance our knowledge of the cosmos around us. Using image data acquired by NASA missions, our citizen scientists are first trained to identify specific features within the data and then requested to identify those features across large datasets. Responses submitted by the citizen scientists are then stored in our database where they await for analysis and eventual publication by CosmoQuest staff and collaborating professional research scientists.While it is clear that the driving power behind our projects are the eyes and minds of our citizen scientists, it is CosmoQuest’s custom software, Citizen Science Builder (CSB), that enables citizen science to be accomplished. On the front end, CosmoQuest’s CSB software allows for the creation of web-interfaces that users can access to perform image annotation through both drawing tools and questions that can accompany images. These tools include: using geometric shapes to identify regions within an image, tracing image attributes using freeform line tools, and flagging features within images. Additionally, checkboxes, dropdowns, and free response boxes may be used to collect information. On the back end, this software is responsible for the proper storage of all data, which allows project staff to perform periodic data quality checks and track the progress of each project. In this poster we present these available tools and resources and seek potential collaborations.
NASA Technical Reports Server (NTRS)
Strybel, Thomas Z.; Vu, Kim-Phuong L.; Battiste, Vernol; Dao, Arik-Quang; Dwyer, John P.; Landry, Steven; Johnson, Walter; Ho, Nhut
2011-01-01
A research consortium of scientists and engineers from California State University Long Beach (CSULB), San Jose State University Foundation (SJSUF), California State University Northridge (CSUN), Purdue University, and The Boeing Company was assembled to evaluate the impact of changes in roles and responsibilities and new automated technologies, being introduced in the Next Generation Air Transportation System (NextGen), on operator situation awareness (SA) and workload. To meet these goals, consortium members performed systems analyses of NextGen concepts and airspace scenarios, and concurrently evaluated SA, workload, and performance measures to assess their appropriateness for evaluations of NextGen concepts and tools. The following activities and accomplishments were supported by the NRA: a distributed simulation, metric development, systems analysis, part-task simulations, and large-scale simulations. As a result of this NRA, we have gained a greater understanding of situation awareness and its measurement, and have shared our knowledge with the scientific community. This network provides a mechanism for consortium members, colleagues, and students to pursue research on other topics in air traffic management and aviation, thus enabling them to make greater contributions to the field
Communicating about bioenergy sustainability.
Dale, Virginia H; Kline, Keith L; Perla, Donna; Lucier, Al
2013-02-01
Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the effects of bioenergy can be assessed and compared to other energy alternatives to foster sustainability.
ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
This report analyzes data on research and development (R&D) performed by industry during 1979, examines historical trends for key R&D funding variables, and presents information on industry-employed R&D scientists and engineers. Areas addressed in the first section on R&D funds include: major R&D industries (aircraft/missiles,…
Soulard, Christopher E.; Bogle, Rian
2011-01-01
Emerging technologies provide scientists with methods to measure Earth processes in new ways. One of these technologies--ultra-high-resolution, ground-based light detection and ranging (lidar)--is being used by USGS Western Geographic Science Center scientists to characterize the role of wind and fire processes in shaping desert landscapes of the Southwest United States.
Measurements, datasets and preliminary results from the RxCADRE project-2008, 2011 and 2012
Roger D. Ottmar; J. Kevin Hiers; Bret W. Butler; Craig B. Clements; Matthew B. Dickinson; Andrew T. Hudak; Joseph O' Brien; Brian E. Potter; Eric M. Rowell; Tara M. Strand; Thomas J. Zajkowski
2016-01-01
The lack of independent, quality-assured field data prevents scientists from effectively evaluating and advancing wildland fire models. To rectify this, scientists and technicians convened in the southeastern United States in 2008, 2011 and 2012 to collect wildland fire data in six integrated core science disciplines defined by the fire modelling community. These were...
ERIC Educational Resources Information Center
Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.
2014-01-01
This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a…
ERIC Educational Resources Information Center
Sevian, Hannah; Gonsalves, Lisa
2008-01-01
The present article presents a rubric we developed for assessing the quality of scientific explanations by science graduate students. The rubric was developed from a qualitative analysis of science graduate students' abilities to explain their own research to an audience of non-scientists. Our intention is that use of the rubric to characterise…
Science, technology and inventions: Children draw their own visions
NASA Astrophysics Data System (ADS)
D'Addezio, G.; Rubbia, G.; Marsili, A.
2013-12-01
Italian primary schools participated with enthusiasm to the drawing competition 'I'm a scientist too! Science and scientists from the children point of view' organized by the Laboratorio di Didattica e Divulgazione Scientifica of Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome, Italy. The best drawings were awarded and published in the 2011 school calendar. Children were asked to realize a drawing, choosing among three suggestions: 1) How do you imagine a scientist, and how do you imagine the daily activities of a researcher? 2) What invention do you consider the most important among all those you know? 3) What would you invent? The topic 'invention' (#3) was the most successful. In fact, among the collected 1,000 drawings, 400 drawings depict scientists, nearly 150 depict scientists with their inventions, and other 350 depict inventions alone. A classification scheme was designed in order to synthetically describe this set of images and analyze it. The Draw-A-Scientist scheme, known from literature, was maintained but modified in order to characterize both inventors and inventions. A preliminary analysis about scientists reveals a persistent gender stereotype, since most of depicted persons were male and nearly half of girls draw men scientists. The image of 'mad scientist' is still present but it is mainly related to men. Women scientists are drawn by girls; they are represented as young, not crazy, usually good-looking. There are no particular differences between boys and girls in assigning research fields to scientists. Women scientists are often depicted as assistants, but when alone they are self-confident enough to give their name to an invention or to aspire for Nobel Prize. In this work we present the preliminary analysis performed on drawings containing inventions. What do girls and boys 6 to 11 years old invent? Robots, helping in housekeeping or in doing homework; rockets, space vehicles and time machines, but also fictional machines and hybridized animals, devices helping in human caring or having impact on the environment, for a better quality of life. In general, preferred subjects refer to something useful with respect to things we do in everyday life but also fancy devices, for which imagination runs wild. Inventions can include something useful to individuals or to a community, being something totally new, or already existing, but improved, combined or transformed; being a device or part of the natural environment or of the human body; they can involve several dimensions of living like eating, transporting, entertainment or work. Do girls and boys conceive different inventions? What do they invent with respect to Earth Sciences and natural environment? Which are the relationships with the outreach programs organized and performed by INGV? What arises from children's drawings provides us a direct and unconventional approach to point out how we convey our science - a strategic topic for a suitable future of the humanity - to the players of the world of tomorrow.
What is "good reasoning" about global warming? A comparison of high school students and specialists
NASA Astrophysics Data System (ADS)
Adams, Stephen Thomas
This study compares the knowledge and reasoning about global warming of 10 twelfth grade students and 6 specialists, including scientists and policy analysts. The study uses global warming as a context for addressing the broad objective of formulating goals for scientific literacy. Subjects evaluated a set of articles about global warming and evaluated policies proposed to ameliorate global warming, including a gasoline tax and a "feebate" system of fees and rebates on automobiles. All students and one scientist participated in a full treatment involving interviews and activities with a computer program (discussed below), averaging about 3.75 hours. In addition, five specialists participated in interviews only, averaging one hour. One line of analysis focuses on knowledge content, examining how subjects applied perspectives from both natural and social sciences. This analysis is positioned as an empirical component to the movement to develop content standards for science education, as exemplified by the recommendations of Science for All Americans (SFAA). Some aspects of competent performance in the present study hinged upon knowledge and skills advocated by SFAA (e.g., fluency with themes of science such as scale). Other aspects involved such skills as evaluating economic interests behind a scientific argument in the media or considering hidden costs in a policy area. By characterizing a range of approaches to how students and specialists performed the experimental tasks, the present study affords a view of scientific literacy not possible without this type of information. Another line of analysis investigates a measure of coherent argumentation from a computer program, Convince Me, in relation to policy reasoning. The program is based on a connectionist model, ECHO. Subjects used the program to create arguments about the aforementioned policies. The study compares Convince Me's Model's Fit argumentation measure to other measures, including ratings of 6 human judges about the quality of the arguments, a measure of the stability of subjects' views, and the number of statements in subjects' arguments. The pattern of significant correlations among several of these measures, plus interview findings, help to clarify cognitive and educational issues involved with using Convince Me (or related programs) in this area.
NASA Astrophysics Data System (ADS)
Crane, N. L.
2004-12-01
Experiential learning, engaging students in the process of science, can not only teach students important skills and knowledge, it can also help them become connected with the process on a personal level. This study investigates the role that Inquiry-Driven Field-Based (IDFB) experiences (primarily field classes) in ocean science have on undergraduate science students' development as ocean scientists. Both cognitive (knowledge-based) and affective (motivation and attitude) measures most important to students were used as indicators of development. Major themes will be presented to illustrate how IDFB science experiences can enhance the academic and personal development of students of science. Through their active engagement in the process of science, students gain important skills and knowledge as well as increased confidence, motivation, and ability to plan for their future (in particular their career and educational pathways). This growth is an important part of their development as scientists; the IDFB experience provides them a way to build a relationship with the world of science, and to better understand what science is, what scientists do, and their own future role as scientists. IDFB experiences have a particularly important role in affective measures of development: students develop an important personal connection to science. By doing science, students learn to be scientists and to understand science and science concepts in context. Many underrepresented students do not have the opportunity to take IDFB classes, and addressing this access issue could be an important step towards engaging more underrepresented students in the field. The nature of IDFB experiences and their impact on students makes them a potentially important mechanism for retaining students in the geo-science `pipeline'.
The effect of head protection on the hearing of rugby players.
Kieran, S M; Dunne, J; Hughes, J P; Fenton, J E
2008-09-01
Professional rugby players utilise various methods of head protection to prevent against the development of a pinna haematoma. This study tests the hypothesis that these measures, whilst preventing injury, decrease the wearers' hearing threshold and therefore their performance. Eight patients had free field audiometry performed in a soundproof room, with warble tones. All patients were young men (mean 24.75 years (range 22-34)). No participant had ear symptomatology or a past history of ear surgery. Three separate audiological assessments were performed on each patient: normal free field audiometry in a sound field room, following application of adhesive tape and whilst wearing a scrum cap. All measurements were performed by a single audiological scientist. A significant clinical drop in hearing threshold was defined as an increase of 10 dB. No patient demonstrated a significant drop in hearing threshold following the application of either tape or a scrum cap, nor was there a significant difference in the mean (SD) warble tone average: air 7.03 (5.47); tape 7.19 (6.40); scrum cap 6.56 (5.58). Theoretical concerns that "ear taping" and scrum caps affect hearing of rugby players are unfounded and should not discourage their use.
Scientists Delivering EPO Content - Lessons Learned and Advice from the Trenches
NASA Astrophysics Data System (ADS)
Petro, N. E.
2012-12-01
The need for scientists to participate in Education and Public Outreach events has perhaps never been greater than it is now. Between the need for schools to provide accurate science content to their students, the prevalence of misconceptions in the public regarding science issues, and communicating to the tax paying public what is being done on federally funded projects, it critically important that scientists be engaged in communicating with the public. However, the demand on a scientist's time to perform such activities, which are typically outside the scope of work for many professionals, can be taxing and presents roadblocks to performing such activities. While there may not be an optimal method for how to address the conflict between the time and demand to perform EPO activities, there are several possible approaches that may both reduce the impact on the scientist and provide maximum impact to the EPO community. One, do you really want to participate in EPO activities, knowing that it will require an amount of time and effort to perform and are there ways to ensure that the effort will be recognized as part of your job? In both cases, if the answer is no, it is probably not wise to continue, unless the scope of your job can be expanded. Two, it is vitally important to work with an EPO professional (if one exists at your location) and set realistic expectations for how much you are willing to do over a month/year. It is also important to work with an EPO professional to develop appropriate content for the audiences you'd work with. Ultimately, identifying an EPO professional that you can work with to both structure your involvement and develop an approach to EPO is vital. In the case where no such support is available, it is critical that you understand your audience and what they expect and need in order to understand the message. Three, funding opportunities often exist where EPO content can be developed in partnership with an EPO professional and present an excellent opportunity to engage the community directly. Such opportunities may need a detailed knowledge of EPO requirements that are specific to that community. Ultimately, direct scientist involvement in EPO activities is an excellent opportunity to be on the front-line of contact with the public and students, and affords the scientist a chance to reflect on the big picture aspects of their work. Attempting to tie interesting and focused work to what the public as a whole cares about, or may care about, is a good exercise in relating one's work to larger goals and interests.
Factor Analysis of Drawings: Application to college student models of the greenhouse effect
NASA Astrophysics Data System (ADS)
Libarkin, Julie C.; Thomas, Stephen R.; Ording, Gabriel
2015-09-01
Exploratory factor analysis was used to identify models underlying drawings of the greenhouse effect made by over 200 entering university freshmen. Initial content analysis allowed deconstruction of drawings into salient features, with grouping of these features via factor analysis. A resulting 4-factor solution explains 62% of the data variance, suggesting that 4 archetype models of the greenhouse effect dominate thinking within this population. Factor scores, indicating the extent to which each student's drawing aligned with representative models, were compared to performance on conceptual understanding and attitudes measures, demographics, and non-cognitive features of drawings. Student drawings were also compared to drawings made by scientists to ascertain the extent to which models reflect more sophisticated and accurate models. Results indicate that student and scientist drawings share some similarities, most notably the presence of some features of the most sophisticated non-scientific model held among the study population. Prior knowledge, prior attitudes, gender, and non-cognitive components are also predictive of an individual student's model. This work presents a new technique for analyzing drawings, with general implications for the use of drawings in investigating student conceptions.
Guerrero, Lourdes R; Nakazono, Terry; Davidson, Pamela L
2014-12-01
To identify and disseminate the organizational characteristics of "top performing" National Institute of Health (NIH) Clinical and Translational Science Awards (CTSA) institutions in regards to career development, using the number of new K awards received per year to rank institutions and comparing these with non-CTSA institutions. The authors analyzed the organizational characteristics of all 61 CTSA institutions from 2006 to 2013 using the American Association of Medical Colleges Organizational Characteristics Database and K Award funding details using NIH RePORT. Five of the "top 10 performing" institutions are in the western region, and six out of the ten are public schools. Three of the "top 10 performing" institutions receive most of their K awards through two funding mechanisms-the K08 (mentored clinical scientist research award) and K23 (mentored patient-oriented research career development awards). Notably, these three institutions lack a KL2 program. The CTSA network of institutions is committed to developing the next generation of physician scientists in order to meet the pressing health needs of society. Educators and evaluators within this network may need to provide training to junior investigators beyond the traditional KL2 programs in order to advance their career development as physician scientists and clinical translational researchers. © 2014 Wiley Periodicals, Inc.
Quantifying the evolution of individual scientific impact.
Sinatra, Roberta; Wang, Dashun; Deville, Pierre; Song, Chaoming; Barabási, Albert-László
2016-11-04
Despite the frequent use of numerous quantitative indicators to gauge the professional impact of a scientist, little is known about how scientific impact emerges and evolves in time. Here, we quantify the changes in impact and productivity throughout a career in science, finding that impact, as measured by influential publications, is distributed randomly within a scientist's sequence of publications. This random-impact rule allows us to formulate a stochastic model that uncouples the effects of productivity, individual ability, and luck and unveils the existence of universal patterns governing the emergence of scientific success. The model assigns a unique individual parameter Q to each scientist, which is stable during a career, and it accurately predicts the evolution of a scientist's impact, from the h-index to cumulative citations, and independent recognitions, such as prizes. Copyright © 2016, American Association for the Advancement of Science.
Experimental Words: sharing science through poetry
NASA Astrophysics Data System (ADS)
Goodwin, G.; Illingworth, S. M.; Simpson, D.; Bravenec, A.; Calder, E.; Palmer, P. I.; Payen, F.; Ailes, K.; Alexander, F.; Garry, D.; McLean, K.; Wilson, C.
2017-12-01
Scientific outreach is often understood as the dissemination of results to a wide audience: press conferences and articles are a common example thereof. Despite their significant reach, these productions fail to generate public engagement; conversely, scientific and artistic collaborations, while they touch fewer people, may generate more impact."Experimental Words" explores the exchanges between scientific practice and performing arts. Coordinated by Dr. Sam Illingworth and funded by the National Environment Research Council, this project brought together four duos composed each of a poet from the Loud Poets company and a scientist from the University of Edinburgh. Duos were formed after a four-hour workshop and given a month to create a 10-minute piece representing the scientist's work. Pieces were then sown into a two-hour show by a series of poems and interventions by Dr. Illingworth and poet Dan Simpson; audience members was also offered to write poems of their own. Two promotional videos were uploaded to YouTube® before and after the event. The show itself was performed on June 14th, 2017 at the Scottish Storytelling Centre for an audience of 45 people. The scientific themes included the exploration of atmospheric boundary layers, topographic laser scanning on coastal marshes, the cultural challenges of volcanology in South America, and the various methods used to trace early water. Through a combination of theatre, spoken word poetry and sketching, the performances brought scientists, laboratory experiments, communication technology and even the audience to the stage. The audience, mostly composed of scientists and poetry enthusiasts, was exposed to their familiar interest and to novelty in a show that humanised science and anchored poetry. The performers were similarly enthused: poets acclaimed the inspiration they received from learning about the natural environment, while scientists discovered that seeing their work the poets' eyes changed their perception of their subject and gave them ideas for future research. All were open to renew the experience.Ultimately, this experience demonstrated that scientific outreach and artistic production can combine to do more than disseminate knowledge and oeuvres: it can also serve to share passion for both science and art.
Hybrid 2-D and 3-D Immersive and Interactive User Interface for Scientific Data Visualization
2017-08-01
visualization, 3-D interactive visualization, scientific visualization, virtual reality, real -time ray tracing 16. SECURITY CLASSIFICATION OF: 17...scientists to employ in the real world. Other than user-friendly software and hardware setup, scientists also need to be able to perform their usual...and scientific visualization communities mostly have different research priorities. For the VR community, the ability to support real -time user
2009-08-11
CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, is moved, or gimbaled, during performance testing. All of the spacecraft science instruments are being tested in their last major evaluation before launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Liftoff on an Atlas V rocket is scheduled for Dec. 4. Photo credit: NASA/Jack Pfaller
Pearson, R A; Lawrence, P R; Smith, A J
1996-02-01
Draught animal research carried out by scientists at the Centre for Topical Veterinary Medicine (CTVM) in Edinburgh and overseas is reviewed and the major findings are reported. The remit for the work has been to provide basic information on draught animals which can be applied by researchers and extension workers to their own geographic situations. Instrumentation is described which has been designed and manufactured to assist in the measurement of draught animal performance, particularly work output and energy consumption. Energy requirements of cattle, buffaloes and equids for work and ways in which these can be met from feed intake and body reserves reported. Studies on heat stress and diseases, 2 of the constraints to work performance, are also described.
Gabbett, Tim J
2013-08-01
The physical demands of rugby league, rugby union, and American football are significantly increased through the large number of collisions players are required to perform during match play. Because of the labor-intensive nature of coding collisions from video recordings, manufacturers of wearable microsensor (e.g., global positioning system [GPS]) units have refined the technology to automatically detect collisions, with several sport scientists attempting to use these microsensors to quantify the physical demands of collision sports. However, a question remains over the validity of these microtechnology units to quantify the contact demands of collision sports. Indeed, recent evidence has shown significant differences in the number of "impacts" recorded by microtechnology units (GPSports) and the actual number of collisions coded from video. However, a separate study investigated the validity of a different microtechnology unit (minimaxX; Catapult Sports) that included GPS and triaxial accelerometers, and also a gyroscope and magnetometer, to quantify collisions. Collisions detected by the minimaxX unit were compared with video-based coding of the actual events. No significant differences were detected in the number of mild, moderate, and heavy collisions detected via the minimaxX units and those coded from video recordings of the actual event. Furthermore, a strong correlation (r = 0.96, p < 0.01) was observed between collisions recorded via the minimaxX units and those coded from video recordings of the event. These findings demonstrate that only one commercially available and wearable microtechnology unit (minimaxX) can be considered capable of offering a valid method of quantifying the contact loads that typically occur in collision sports. Until such validation research is completed, sport scientists should be circumspect of the ability of other units to perform similar functions.
A survey and evaluations of histogram-based statistics in alignment-free sequence comparison.
Luczak, Brian B; James, Benjamin T; Girgis, Hani Z
2017-12-06
Since the dawn of the bioinformatics field, sequence alignment scores have been the main method for comparing sequences. However, alignment algorithms are quadratic, requiring long execution time. As alternatives, scientists have developed tens of alignment-free statistics for measuring the similarity between two sequences. We surveyed tens of alignment-free k-mer statistics. Additionally, we evaluated 33 statistics and multiplicative combinations between the statistics and/or their squares. These statistics are calculated on two k-mer histograms representing two sequences. Our evaluations using global alignment scores revealed that the majority of the statistics are sensitive and capable of finding similar sequences to a query sequence. Therefore, any of these statistics can filter out dissimilar sequences quickly. Further, we observed that multiplicative combinations of the statistics are highly correlated with the identity score. Furthermore, combinations involving sequence length difference or Earth Mover's distance, which takes the length difference into account, are always among the highest correlated paired statistics with identity scores. Similarly, paired statistics including length difference or Earth Mover's distance are among the best performers in finding the K-closest sequences. Interestingly, similar performance can be obtained using histograms of shorter words, resulting in reducing the memory requirement and increasing the speed remarkably. Moreover, we found that simple single statistics are sufficient for processing next-generation sequencing reads and for applications relying on local alignment. Finally, we measured the time requirement of each statistic. The survey and the evaluations will help scientists with identifying efficient alternatives to the costly alignment algorithm, saving thousands of computational hours. The source code of the benchmarking tool is available as Supplementary Materials. © The Author 2017. Published by Oxford University Press.
Workshop on Explosive and Propellant Combustion Mechanisms
1991-07-01
Trubert, Decomposition and Combustion Measurements 30 R.S. Miller and A.W. Miziolek, High Energy Density Materials Combustion 56 T.B. Brill...arranging this activity came from Dr. R.S. Miller , Chief Scientist, Mechanics Division, ONR, and Dr. Bernard Finck, Head, New Molecules Section, Defense...34. Armstrong, in consultation with R.S. Miller , J. Boileau, and SNPE colleagues, arranged for the participation of U.S. scientists, especially
Physician Scientist Training in the United States: A Survey of the Current Literature.
Kosik, R O; Tran, D T; Fan, Angela Pei-Chen; Mandell, G A; Tarng, D C; Hsu, H S; Chen, Y S; Su, T P; Wang, S J; Chiu, A W; Lee, C H; Hou, M C; Lee, F Y; Chen, W S; Chen, Q
2016-03-01
The declining number of physician scientists is an alarming issue. A systematic review of all existing programs described in the literature was performed, so as to highlight which programs may serve as the best models for the training of successful physician scientists. Multiple databases were searched, and 1,294 articles related to physician scientist training were identified. Preference was given to studies that looked at number of confirmed publications and/or research grants as primary outcomes. Thirteen programs were identified in nine studies. Eighty-three percent of Medical Scientist Training Program (MSTP) graduates, 77% of Clinician Investigator Training Program (CI) graduates, and only 16% of Medical Fellows Program graduates entered a career in academics. Seventy-eight percent of MSTP graduates succeeded in obtaining National Institute of Health (NIH) grants, while only 15% of Mayo Clinic National Research Service Award-T32 graduates obtained NIH grants. MSTP physician scientists who graduated in 1990 had 13.5 ± 12.5 publications, while MSTP physician scientists who graduated in 1975 had 51.2 ± 38.3 publications. Additionally, graduates from the Mayo Clinic's MD-PhD Program, the CI Program, and the NSRA Program had 18.2 ± 20.1, 26.5 ± 24.5, and 17.9 ± 26.3 publications, respectively. MSTP is a successful model for the training of physician scientists in the United States, but training at the postgraduate level also shows promising outcomes. An increase in the number of positions available for training at the postgraduate level should be considered. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Bowman, Catherine Dodds Dunham
Unease about declining U.S. science literacy and inquiry skills drives much innovation in science education, including the quest for authentic science experiences for students. One response is student-scientist partnerships (SSP), involving small numbers of students in scientific investigations with scientist mentors. Alternatively, science inquiry programs provide large numbers of students with opportunities to pursue their own investigations but without extensive access to experts, potentially limiting the possible cognitive and affective gains. This mixed methods study investigates whether it is possible to replicate some of SSPs' benefits on a larger scale through use of a computerized agent designed as a "virtual" scientist mentor. Middle school students (N=532) were randomly assigned to two versions of an agent (or to a control group) providing either content-only or content and interpersonal mentoring while they participated in a three-week curriculum. Results indicate that, on average, students gained in content knowledge but there was no statistically significant difference between the three conditions. In terms of motivation, students exhibited no change, on average, with no statistically significant difference between the three conditions. These data indicate that the treatment conditions neither facilitate nor inhibit student learning and motivation. Interviews with a subsample (n=70), however, suggest that students believe the agents facilitated their learning, eased the workload, provided a trusted source of information, and were enjoyable to use. Teachers reported that the agents provided alternative views of scientists and science, generated class discussion, and met the needs of high and low-achieving students. This difference between measured and perceived benefits may result from measures that were not sufficiently sensitive to capture differences. Alternatively, a more sophisticated agent might better replicate mentoring functions known to produce cognitive and affective gains. Even without established learning or motivational gains, practitioners may want to employ agents for their ability to provide reliable information, expanded perspectives on science and scientists, and a non-intimidating setting for students to ask questions. For computerized agent researchers, this study provides a first step in exploring the affordances and challenges of sustained use of agents in real school settings with the goal of improving science education.
eGY-Africa: addressing the digital divide for science in Africa
NASA Astrophysics Data System (ADS)
Barton, C.; Petitdidier, M.; Cottrell, L.; Fox, P.
2009-04-01
The digital divide is worse in Africa than in the rest of the world, the gap is growing, and in many sub-Saharan African countries the education and research sector suffers some of the worst deficiencies in access to the Internet. By contrast, it is widely acknowledged in policy statements from the African Union, the UN, and others that this very sector provides the key to meeting and sustaining Millenium Development Goals. Developed countries with effective cyber-capabilities wax eloquent about the equal benefits to rich and poor alike arising from the Information Revolution. This is but a dream for many (most?) scientists in African institutions; as the world of science becomes increasingly Internet-dependent, so they become increasingly isolated. eGY-Africa is a bottom-up initiative by African scientists and their collaborators to try to reduce this digital divide by a campaign of advocacy for better institutional facilities. The present status of Internet services, problems, and plans are being mapped via a combination of a survey questionnaire-based survey and direct measurement of Internet performance (the PingER Project). Information is being gathered on policy statements and initiatives aimed at reducing the Digital Divide. eGY-Africa is establishing National groups of concerned scientists and engaging with those initiatives with related goals. The expectation is that informed opinion from the scientific community at the institutional, national, and international levels can be used to influence the decision makers and donors who are in a position to deliver better capabilities.
openBEB: open biological experiment browser for correlative measurements
2014-01-01
Background New experimental methods must be developed to study interaction networks in systems biology. To reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches. The measurement of several correlative physical properties would further improve data consistency. Accordingly, a considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent analysis. Results We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition, coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules. An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in sync with a central repository. Conclusions The versatility, the simple deployment and update mechanism, and the scalability in terms of module integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will inherently benefit from the “house keeping” abilities of the core program. We report the use of openBEB to combine live cell microscopy, microfluidic control and visual proteomics. In this example, measurements from diverse complementary techniques are combined and correlated. PMID:24666611
NASA Astrophysics Data System (ADS)
O'Brien, K.; Hapgood, K.
2012-12-01
While universities are often perceived within the wider population as a flexible family-friendly work environment, continuous full-time employment remains the norm in tenure track roles. This traditional career path is strongly re-inforced by research metrics, which typically measure accumulated historical performance. There is a strong feedback between historical and future research output, and there is a minimum threshold of research output below which it becomes very difficult to attract funding, high quality students and collaborators. The competing timescales of female fertility and establishment of a research career mean that many women do not exceed this threshold before having children. Using a mathematical model taken from an ecological analogy, we demonstrate how these mechanisms create substantial barriers to pursuing a research career while working part-time or returning from extended parental leave. The model highlights a conundrum for research managers: metrics can promote research productivity and excellence within an organisation, but can classify highly capable scientists as poor performers simply because they have not followed the traditional career path of continuous full-time employment. Based on this analysis, we make concrete recommendations for researchers and managers seeking to retain the skills and training invested in female scientists. We also provide survival tactics for women and men who wish to pursue a career in science while also spending substantial time and energy raising their family.
Art, Science, and the Choreography of Creative Process
NASA Astrophysics Data System (ADS)
Lomask, Jodi
2010-03-01
Through my performance company, Capacitor, I have designed a novel conceptual space - ``the Capacitor Lab'' - where artists and scientists exchange ideas and information about a concept that underlies my next performance piece. In 2000, I invited astronomers to advise my company on Earth's relationship to outer space. In 2003, we invited geophysicists into the dance studio to advise us about the layers of the Earth. In 2006, we invited an ecologist to the Monteverde Cloud forest to advise us on the on the quiet interactions among animals and plants in the forest. Currently we are working on a piece about ocean exploration, marine ecology, and the physics of sound underwater. Each of these Capacitor Labs results in a conceptually-rich dance piece which we perform in cities nationally and internationally. In my talk, I take a deeper look at the creative process that scientists and artists share. In the Capacitor labs, the process serves not only our creative team, but also our participating scientists by giving them an opportunity to view their own work in a new light. These collaborations are part of my ongoing research into creative problem solving and my belief that it is essentially the same process regardless of its application.
Do "Brain-Training" Programs Work?
Simons, Daniel J; Boot, Walter R; Charness, Neil; Gathercole, Susan E; Chabris, Christopher F; Hambrick, David Z; Stine-Morrow, Elizabeth A L
2016-10-01
In 2014, two groups of scientists published open letters on the efficacy of brain-training interventions, or "brain games," for improving cognition. The first letter, a consensus statement from an international group of more than 70 scientists, claimed that brain games do not provide a scientifically grounded way to improve cognitive functioning or to stave off cognitive decline. Several months later, an international group of 133 scientists and practitioners countered that the literature is replete with demonstrations of the benefits of brain training for a wide variety of cognitive and everyday activities. How could two teams of scientists examine the same literature and come to conflicting "consensus" views about the effectiveness of brain training?In part, the disagreement might result from different standards used when evaluating the evidence. To date, the field has lacked a comprehensive review of the brain-training literature, one that examines both the quantity and the quality of the evidence according to a well-defined set of best practices. This article provides such a review, focusing exclusively on the use of cognitive tasks or games as a means to enhance performance on other tasks. We specify and justify a set of best practices for such brain-training interventions and then use those standards to evaluate all of the published peer-reviewed intervention studies cited on the websites of leading brain-training companies listed on Cognitive Training Data (www.cognitivetrainingdata.org), the site hosting the open letter from brain-training proponents. These citations presumably represent the evidence that best supports the claims of effectiveness.Based on this examination, we find extensive evidence that brain-training interventions improve performance on the trained tasks, less evidence that such interventions improve performance on closely related tasks, and little evidence that training enhances performance on distantly related tasks or that training improves everyday cognitive performance. We also find that many of the published intervention studies had major shortcomings in design or analysis that preclude definitive conclusions about the efficacy of training, and that none of the cited studies conformed to all of the best practices we identify as essential to drawing clear conclusions about the benefits of brain training for everyday activities. We conclude with detailed recommendations for scientists, funding agencies, and policymakers that, if adopted, would lead to better evidence regarding the efficacy of brain-training interventions. © The Author(s) 2016.
Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks
2017-09-28
In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, left, of Stinger-Ghaffarian Technologies performs a sharp edge inspection of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. Hardcastle is joined by Dwayne Swieter, right, a TSIS-1 payload team member from the Laboratory for Atmospheric and Space Physics, a Research Institute at the University of Colorado (Boulder). TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.
Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks
2017-09-28
In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, right, of Stinger-Ghaffarian Technologies performs a sharp edge inspection of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. Hardcastle is joined by Norm Perish, left, a TSIS-1 payload team member from the Laboratory for Atmospheric and Space Physics, a Research Institute at the University of Colorado (Boulder). TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.
NASA Technical Reports Server (NTRS)
1995-01-01
George Nauck of ENCORE!!! invented and markets the Advanced Range Performance (ARPM) Video Golf System for measuring the result of a golf swing. After Nauck requested their assistance, Marshall Space Flight Center scientists suggested video and image processing/computing technology, and provided leads on commercial companies that dealt with the pertinent technologies. Nauck contracted with Applied Research Inc. to develop a prototype. The system employs an elevated camera, which sits behind the tee and follows the flight of the ball down range, catching the point of impact and subsequent roll. Instant replay of the video on a PC monitor at the tee allows measurement of the carry and roll. The unit measures distance and deviation from the target line, as well as distance from the target when one is selected. The information serves as an immediate basis for making adjustments or as a record of skill level progress for golfers.
Towards Development of Robotic Aid for Rehabilitation of Locomotion-Impaired Subjects
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.
2000-01-01
Manual assistance of therapists to help movement of legs of spinal cord injured (SCI) subjects during stepping on a treadmill for locomotion rehabilitation has severe economic and technical limitations. Scientists at the Department of Physiological Science at the University of California Los Angeles (UCLA) and roboticists at the Jet Propulsion Laboratory (JPL) initiated a joint effort to develop a robotic mechanism capable of performing controlled motions equivalent to the arm and hand motions of therapists assisting the stepping of locomotion impaired subjects on a treadmill, while the subjects' body weight is partially supported by an overhead harness. A first necessary technical step towards this development is to measure and understand the kinematics and dynamics of the therapists' arm and hand motions as they are reflected on the subjects' leg movement. This paper describes an initial measurement system developed for this purpose together with the related measurement results, and outlines the planned future technical work.
Bridging the Gap between Scientific Data Producers and Consumers: A Provenance Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephan, Eric G.; Pinheiro da Silva, Paulo; Kleese van Dam, Kerstin
2013-06-03
Despite the methodical and painstaking efforts made by scientists to record their scientific findings and protocols, a knowledge gap problem continues to persist today between producers of scientific results and consumers because technology is performing the exchange of data as opposed to scientists making direct contact. Provenance is a means to formalize how this knowledge is transferred. However, for it to be meaningful to scientists, the provenance research community needs continued contributions from the scientific community to extend and leverage provenance-based vocabularies and technology from the provenance community. Going forward the provenance community must also be vigilant to meet scalabilitymore » needs of data intensive science« less
Keswani, Sundeep G; Moles, Chad M; Morowitz, Michael; Zeh, Herbert; Kuo, John S; Levine, Matthew H; Cheng, Lily S; Hackam, David J; Ahuja, Nita; Goldstein, Allan M
2017-06-01
The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.
Initial Scientific Assessment of the EOS Data and Information System (EOSDIS)
NASA Technical Reports Server (NTRS)
1989-01-01
Crucial to the success of the Earth Observing System (Eos) is the Eos Data and Information System (EosDIS). The goals of Eos depend not only on its instruments and science investigations, but also on how well EosDlS helps scientists integrate reliable, large-scale data sets of geophysical and biological measurements made from Eos data, and on how successfully Eos scientists interact with other investigations in Earth System Science. Current progress in the use of remote sensing for science is hampered by requirements that the scientist understand in detail the instrument, the electromagnetic properties of the surface, and a suite of arcane tape formats, and by the immaturity of some of the techniques for estimating geophysical and biological variables from remote sensing data. These shortcomings must be transcended if remote sensing data are to be used by a much wider population of scientists who study environmental change at regional and global scales.
Enhance Your Science With Social Media: No ... Really
NASA Astrophysics Data System (ADS)
Goss, H.; Aiken, A. C.; Sams, A.
2016-12-01
The ability to communicate the societal value of basic research to nonacademic audiences is morphing from an optional soft skill to a crucial tool for scientists who are competing over finite or shrinking resources for research. Former National Academy of Sciences President Ralph Cicerone argued as early as 2006 that "scientists themselves must do a better job of communicating directly to the public," taking advantage of "new, non-traditional outlets" on the Internet. Findings suggest that scientists have begun to embrace social media as a viable tool for communicating research and keeping abreast of advancements in their fields. Social media is changing the way that scientists are interacting with each other and with the global community. Scientists are taking to popular social media (Twitter, Facebook, etc.) to challenge weak research, share replication attempts in real time, and counteract hype. Incorporating social media into the different stages of a scientific publication: Accelerates the pace of scientific communication and collaboration Facilitates interdisciplinary collaboration Makes it possible to communicate results to a large and diverse audience Encourages post-publication conversations about findings Accelerates research evaluation Makes science more transparent Amplifies the positive effects of scientists' interactions with more traditional media Our presentation will demonstrate how scientists can use social media as a tool to support their work, collaborate with peers around the world, and advance the cause of science. Information will be presented by communications experts and research librarians in collaboration with scientists who are already active on social media. Content will focus on pragmatic best practices for engaging peers, other stakeholders, promoting science and scientific research, and measuring success.
McPherson, Erin; Park, Bernadette; Ito, Tiffany A
2018-06-01
Self-to-prototype matching is a strategy of mental comparisons between the self-concept and the typical or "representative" member of a group to make some judgment. Such a process might contribute to interest in pursuing a science career and, relatedly, women's underrepresentation in physical science, technology, engineering, and mathematics (pSTEM) fields. Across four studies, we measured self-scientist discrepancies on communal, agentic, and scientific dimensions, and assessed participants' interest in a science career. The most consistent predictor of science interest was the discrepancy between self and scientist on the scientific dimension (e.g., intelligent, meticulous). Study 4 established that students with larger self-scientist discrepancies also had less accurate perceptions of students pursuing science, and that inaccuracy was related to lower science interest. Thus, students with lower science interest do not just perceive scientists differently from themselves but also erroneously. Discrepancy and inaccuracy together explained a significant portion of the gender gap in pSTEM interest.
Developing School-Scientist Partnerships: Lessons for Scientists from Forests-of-Life
NASA Astrophysics Data System (ADS)
Falloon, Garry; Trewern, Ann
2013-02-01
The concept of partnerships between schools and practicing scientists came to prominence in the United States in the mid 1980s. The call by government for greater private sector involvement in education to raise standards in science achievement saw a variety of programmes developed, ranging from short-term sponsorships through to longer-term, project-based interactions. Recently, school-scientist partnerships (SSPs) have been rekindled as a means of assisting schools to motivate and inspire students in science, improve levels of teachers' science knowledge, and increase awareness of the type and variety of career opportunities available in the sciences (Rennie and Howitt, 2009). This article summarises research that used an interpretive case study method to examine the performance of a two-year SSP pilot between a government-owned science research institute, and 200 students from two Intermediate (years 7 and 8) schools in New Zealand. It explored the experiences of scientists involved in the partnerships, and revealed difficulties in bridging the void that existed between the outcomes-driven, commercially-focused world of research scientists, and the more process-oriented, tightly structured, and conservative world of teachers and schools. Findings highlight the pragmatic realities of establishing partnerships, from the perspective of scientists. These include acute awareness of the nature of school systems, conventions and environments; the science, technological and pedagogical knowledge of teachers; teacher workload issues and pressures, curriculum priorities and access to science resources. The article identifies areas where time and effort should be invested to ensure successful partnership outcomes.
The Evolution of the Data Scientist.
NASA Astrophysics Data System (ADS)
Parsons, M. A.
2011-12-01
When did the data scientist come into being? The National Science Board formally defined the term in 2005. Prior to that, the term was used sporadically, but typically to refer to statisticians or analysts. Nevertheless, the data scientist function has existed for a long time. Those who performed the function were called data managers or librarians or curators. Their role with digital data was critical but ill defined and poorly understood, especially by outsiders. Today, the tem data scientist is gaining currency and the discipline is gaining prominence, but it is a very dynamic field. And while it may be better defined, the term is still poorly understood. This lack of understanding can partly be attributed to the dynamic and evolutionary nature of the field. Domain scientists have developed new expectations for technology and services that enhance their ability to handle massive and complex data and present new challenges to data scientists. In response, data scientists are redefining and adapting their role to these rapidly changing demands of data-driven science and the fourth paradigm. In this paper, I explore the recent evolution of the field of data science as a socio-technical discipline. I discuss what has changed as well as what has remained the same and how some things that seem new may be a recasting of old problems. I take the view that data science is necessarily an evolutionary field that will need to continue to adapt in response to known and unknown challenges in order to ensure a healthy data ecosystem.
NASA Astrophysics Data System (ADS)
Delene, D. J.
2014-12-01
Research aircraft that conduct atmospheric measurements carry an increasing array of instrumentation. While on-board personnel constantly review instrument parameters and time series plots, there are an overwhelming number of items. Furthermore, directing the aircraft flight takes up much of the flight scientist time. Typically, a flight engineer is given the responsibility of reviewing the status of on-board instruments. While major issues like not receiving data are quickly identified during a flight, subtle issues like low but believable concentration measurements may go unnoticed. Therefore, it is critical to review data after a flight in near real time. The Airborne Data Processing and Analysis (ADPAA) software package used by the University of North Dakota automates the post-processing of aircraft flight data. Utilizing scripts to process the measurements recorded by data acquisition systems enables the generation of data files within an hour of flight completion. The ADPAA Cplot visualization program enables plots to be quickly generated that enable timely review of all recorded and processed parameters. Near real time review of aircraft flight data enables instrument problems to be identified, investigated and fixed before conducting another flight. On one flight, near real time data review resulted in the identification of unusually low measurements of cloud condensation nuclei, and rapid data visualization enabled the timely investigation of the cause. As a result, a leak was found and fixed before the next flight. Hence, with the high cost of aircraft flights, it is critical to find and fix instrument problems in a timely matter. The use of a automated processing scripts and quick visualization software enables scientists to review aircraft flight data in near real time to identify potential problems.
ERIC Educational Resources Information Center
Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.
2013-01-01
Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…
Goddard Visiting Scientist Program for the Space and Earth Sciences Directorate
NASA Technical Reports Server (NTRS)
Kerr, Frank
1992-01-01
A visiting scientist program was conducted in the space and earth sciences at GSFC. Research was performed in the following areas: astronomical observations; broadband x-ray spectral variability; ground-based spectroscopic and photometric studies; Seyfert galaxies; active galactic nuclei (AGN); massive stellar black holes; the differential microwave radiometer (DMR) onboard the cosmic background explorer (COBE); atmospheric models; and airborne and ground based radar observations. The specific research efforts are detailed by tasks.
Advantage, Absence of Advantage, and Disadvantage Among Scientists and Engineers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nancy DiTomaso
2008-09-23
DiTomaso talks about survey data on the career experiences of 3,200 scientists and engineers from 24 major companies. Her survey findings indicate that most people who do well in their careers and make significant contributions to their organizations get assistance from others in their workplace in many forms, including offering opportunities such as good projects, providing resources that make good performance more likely, and opening up networking possibilities.
Herrmann-Lingen, Christoph; Brunner, Edgar; Hildenbrand, Sibylle; Loew, Thomas H; Raupach, Tobias; Spies, Claudia; Treede, Rolf-Detlef; Vahl, Christian-Friedrich; Wenz, Hans-Jürgen
2014-01-01
The evaluation of medical research performance is a key prerequisite for the systematic advancement of medical faculties, research foci, academic departments, and individual scientists' careers. However, it is often based on vaguely defined aims and questionable methods and can thereby lead to unwanted regulatory effects. The current paper aims at defining the position of German academic medicine toward the aims, methods, and consequences of its evaluation. During the Berlin Forum of the Association of the Scientific Medical Societies in Germany (AWMF) held on 18 October 2013, international experts presented data on methods for evaluating medical research performance. Subsequent discussions among representatives of relevant scientific organizations and within three ad-hoc writing groups led to a first draft of this article. Further discussions within the AWMF Committee for Evaluation of Performance in Research and Teaching and the AWMF Executive Board resulted in the final consented version presented here. The AWMF recommends modifications to the current system of evaluating medical research performance. Evaluations should follow clearly defined and communicated aims and consist of both summative and formative components. Informed peer reviews are valuable but feasible in longer time intervals only. They can be complemented by objective indicators. However, the Journal Impact Factor is not an appropriate measure for evaluating individual publications or their authors. The scientific "impact" rather requires multidimensional evaluation. Indicators of potential relevance in this context may include, e.g., normalized citation rates of scientific publications, other forms of reception by the scientific community and the public, and activities in scientific organizations, research synthesis and science communication. In addition, differentiated recommendations are made for evaluating the acquisition of third-party funds and the promotion of junior scientists. With the explicit recommendations presented in the current position paper, the AWMF suggests enhancements to the practice of evaluating medical research performance by faculties, ministries and research funding organizations.
Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN
Hammond, G E; Lichtner, P C; Mills, R T
2014-01-01
[1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted. PMID:25506097
Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN.
Hammond, G E; Lichtner, P C; Mills, R T
2014-01-01
[1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted.
Risky business: perceived behavior of local scientists and community support for their research.
McComas, Katherine A; Besley, John C; Yang, Zheng
2008-12-01
Attracting new technologies to a region can mean significant economic growth, so understanding why some communities may not favor becoming "the next Silicon Valley" merits consideration. This study investigates the relationship among the perceived behavior of local scientists and community members' attitudes toward their research. Drawing on theories from organizational justice, it hypothesizes that when local residents consider scientists as more just in their behavior, they will also have more favorable attitudes toward the scientists and their research. Just, in this sense, refers to whether scientists are perceived as fair in terms of outcomes, procedures, interpersonal treatment, and explanations in their dealings with the community. Favorable attitudes are measured in terms of concern about new technologies and satisfaction with research. Data were collected via a mail survey of residents in two upstate New York counties (N= 1,306) that host substantial technology research facilities. Controlling for demographics, media use, basic science knowledge, and technology awareness, the results show that distributive justice (i.e., fairness of outcomes) had a consistent, negative relationship with technology concern. In comparison, all four justice variables were positively related with research satisfaction. The findings suggest that the perceived behavior of local scientists may indeed impact community support for their research.
Accelerating Commercialization of Algal Biofuels Through Partnerships (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-10-01
This brochure describes National Renewable Energy Laboratory's (NREL's) algal biofuels research capabilities and partnership opportunities. NREL is accelerating algal biofuels commercialization through: (1) Advances in applied biology; (2) Algal strain development; (3) Development of fuel conversion pathways; (4) Techno-economic analysis; and (5) Development of high-throughput lipid analysis methodologies. NREL scientists and engineers are addressing challenges across the algal biofuels value chain, including algal biology, cultivation, harvesting and extraction, and fuel conversion. Through partnerships, NREL can share knowledge and capabilities in the following areas: (1) Algal Biology - A fundamental understanding of algal biology is key to developing cost-effective algal biofuelsmore » processes. NREL scientists are experts in the isolation and characterization of microalgal species. They are identifying genes and pathways involved in biofuel production. In addition, they have developed a high-throughput, non-destructive technique for assessing lipid production in microalgae. (2) Cultivation - NREL researchers study algal growth capabilities and perform compositional analysis of algal biomass. Laboratory-scale photobioreactors and 1-m2 open raceway ponds in an on-site greenhouse allow for year-round cultivation of algae under a variety of conditions. A bioenergy-focused algal strain collection is being established at NREL, and our laboratory houses a cryopreservation system for long-term maintenance of algal cultures and preservation of intellectual property. (3) Harvesting and Extraction - NREL is investigating cost-effective harvesting and extraction methods suitable for a variety of species and conditions. Areas of expertise include cell wall analysis and deconstruction and identification and utilization of co-products. (4) Fuel Conversion - NREL's excellent capabilities and facilities for biochemical and thermochemical conversion of biomass to biofuels are being applied to algal biofuels processes. Analysts are also testing algal fuel properties to measure energy content and ensure compatibility with existing fueling infrastructure. (5) Cross-Cutting Analysis - NREL scientists and engineers are conducting rigorous techno-economic analyses of algal biofuels processes. In addition, they are performing a full life cycle assessment of the entire algae-to-biofuels process.« less
How to measure the internationality of scientific publications.
Buela-Casal, Gualberto; Zych, Izabela
2012-01-01
Although the term "internationality" has never been defined by consensus, it is commonly used as a synonym of quality. Even though its meaning has never been established, internationality is frequently used to evaluate scientists, publications, or universities in many different countries. The present investigation is based on the opinion about the meaning of the concept "internationality" of the members of scientific community, represented by a broad sample of 16,056 scientists from 109 countries working in all the fields of knowledge defined by UNESCO. The sample was randomly selected from the Web of Science database from the scientists who have published at least one article in one of the journals indexed by the database. A questionnaire based on eleven criteria was designed for the purpose of the study. As a result, the first measure of internationality has been obtained. The most important criteria of internationality are: the publication language, online access, and international publication standards. There are significant differences among geographic zones and fields of knowledge.
2009-07-10
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., the shipping container cover removed from NASA's Solar Dynamics Observatory (right), or SDO, is moved away. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Tim Jacobs
2009-07-11
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., an overhead cable moves NASA's Solar Dynamics Observatory, or SDO, toward the work stand in the foreground. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston
2009-07-10
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers secure an overhead crane to the shipping container that holds NASA's Solar Dynamics Observatory, or SDO. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Tim Jacobs
Gujski, Mariusz; Juńczyk, Tomasz; Pinkas, Jaroslaw; Owoc, Alfred; Bojar, Iwona
2016-09-01
The aging of the population generates a number of very interesting research questions in the fields of medicine, psychology, sociology, demography, and many others. One of the issues subject to both intensive research by scientists and exploration by practitioners is associated with cognitive functions. The article presents current knowledge regarding practical actions in the field of promoting cognitive function using diagnostic programmes and training using modern technologies. An important aspect presented in this study is also related to the welfare of the maintenance or improvement of cognitive function. Information and communication technologies will contribute to the dissemination of computerized cognitive training, also personalized.
Women as a resource for the flexibility required for high technology innovation
NASA Technical Reports Server (NTRS)
Marlaire, Ruth Dasso
1994-01-01
What do women scientists need to know for career advancement into senior level positions? Our declining economic conditions have been the cause for major political and technological changes. The U.S. Congress is turning toward technology to increase our competitive edge in the world. Allowing women scientists, and women engineers in particular, more voice in the decision making process may be an innovative alternative for the diversity and flexibility needed for the unknown technological problems of the future. But first women scientists need to know how the system measures scientific achievement and how to identify the processes needed to increase our technological capability in order for them to formidably compete and win higher ranking positions.
Seismic Data Archive Quality Assurance -- Analytics Adding Value at Scale
NASA Astrophysics Data System (ADS)
Casey, R. E.; Ahern, T. K.; Sharer, G.; Templeton, M. E.; Weertman, B.; Keyson, L.
2015-12-01
Since the emergence of real-time delivery of seismic data over the last two decades, solutions for near-real-time quality analysis and station monitoring have been developed by data producers and data stewards. This has allowed for a nearly constant awareness of the quality of the incoming data and the general health of the instrumentation around the time of data capture. Modern quality assurance systems are evolving to provide ready access to a large variety of metrics, a rich and self-correcting history of measurements, and more importantly the ability to access these quality measurements en-masse through a programmatic interface.The MUSTANG project at the IRIS Data Management Center is working to achieve 'total archival data quality', where a large number of standardized metrics, some computationally expensive, are generated and stored for all data from decades past to the near present. To perform this on a 300 TB archive of compressed time series requires considerable resources in network I/O, disk storage, and CPU capacity to achieve scalability, not to mention the technical expertise to develop and maintain it. In addition, staff scientists are necessary to develop the system metrics and employ them to produce comprehensive and timely data quality reports to assist seismic network operators in maintaining their instrumentation. All of these metrics must be available to the scientist 24/7.We will present an overview of the MUSTANG architecture including the development of its standardized metrics code in R. We will show examples of the metrics values that we make publicly available to scientists and educators and show how we are sharing the algorithms used. We will also discuss the development of a capability that will enable scientific researchers to specify data quality constraints on their requests for data, providing only the data that is best suited to their area of study.
Globe At Night: A Dark-skies Awareness Campaign During The International Year Of Astronomy
NASA Astrophysics Data System (ADS)
Walker, Constance E.; Isbell, D.; Pompea, S. M.; Smith, D. A.; Baker, T.
2009-01-01
GLOBE at Night is an international citizen-science event encouraging everyone, scientists, non-scientists, students and the general public, to measure local levels of light pollution and contribute the observations online to a world map. This program is a centerpiece of the Dark Skies Awareness Global Cornerstone Project for the International Year of Astronomy (IYA) as well as the US IYA "Dark Skies are a Universal Resource” theme for 2009. Its goal is to raise public awareness of the impact of artificial lighting on local environments by getting people involved. Utilizing the international networks of its hosts, the GLOBE program at the National Optical Astronomy Observatory, the University Corporation for Atmospheric Research and the Environmental Systems Research Institute, along with the Astronomical Society of the Pacific, the Association of Science and Technology Centers, the Astronomical League and the International Dark-Sky Association, GLOBE at Night is able to engage people from around the world. Data collection and online reporting is simple and user-friendly. During a 13-day campaign in each spring, citizen-scientists take data on light pollution levels by comparing observations with stellar maps of limiting magnitudes toward the constellation, Orion. For more precise measurements, citizen-scientists use digital sky brightness meters. During the campaign period over the last 3 years, 20,000 measurements from 100 countries have been logged. The collected data is available online in a variety of formats and for comparison with data from previous years, Earth at Night satellite data and population density data. We will discuss how students and scientists worldwide can explore and analyze these results. We will provide the "know-how” and the means for session participants to become community advocates for GLOBE at Night in their hometowns. We will also discuss lessons learned, best practices and campaign plans during IYA (March 16-28, 2009). For more information, visit http://www.globe.gov/GaN/.
Gollan, John; de Bruyn, Lisa Lobry; Reid, Nick; Wilkie, Lance
2012-11-01
Having volunteers collect data can be a cost-effective strategy to complement or replace those collected by scientists. The quality of these data is essential where field-collected data are used to monitor progress against predetermined standards because they provide decision makers with confidence that choices they make will not cause more harm than good. The integrity of volunteer-collected data is often doubted. In this study, we made estimates of seven vegetation attributes and a composite measure of six of those seven, to simulate benchmark values. These attributes are routinely recorded as part of rehabilitation projects in Australia and elsewhere in the world. The degree of agreement in data collected by volunteers was compared with those recorded by professional scientists. Combined results showed that scientists collected data that was in closer agreement with benchmarks than those of volunteers, but when data collected by individuals were analyzed, some volunteers collected data that were in similar or closer agreement, than scientists. Both groups' estimates were in closer agreement for particular attributes than others, suggesting that some attributes are more difficult to estimate than others, or that some are more subjective than others. There are a number of ways in which higher degrees of agreement could be achieved and introducing these will no doubt result in better, more effective programs, to monitor rehabilitation activities. Alternatively, less subjective measures should be sought when developing monitoring protocols. Quality assurance should be part of developing monitoring methods and explicitly budgeted for in project planning to prevent misleading declarations of rehabilitation success.
Twa, David D W; Skinnider, Michael A; Squair, Jordan W; Lukac, Christine D
2017-01-01
Although MD/PhD programs require considerable commitment on behalf of students and learning institutions, they serve as an integral means of training future physician-scientists; individuals who engage in translational medicine. As attrition from these programs has longstanding effects on the community of translational medicine and comes at substantial cost to MD/PhD programs, we aimed to identify determinants that were associated with satisfaction among MD/PhD graduates, a feature that might inform on limiting program attrition. Anonymized data from a national survey of 139 Canadian MD/PhD alumni was analyzed. Factor analysis was conducted to evaluate the reliability of three questions that measured satisfaction and logistic regression was used to assess the association of outcomes with 17 independent determinants. Eighty-one percent of graduates were satisfied with MD/PhD training. Factor analysis confirmed the reliability of the questions measuring satisfaction. Determinants of self-reported satisfaction with physician-scientist training included co-authorship of more than six manuscripts during MD/PhD training. Additionally, protected research time at the place of current appointment was strongly associated with agreement that MD/PhD training had helped career progression. Demographic variables were not associated with any satisfaction indicator. Taken together, the majority of Canadian MD/PhD graduates are satisfied with their physician-scientist training. Project collaboration leading to co-authorships and protected research time were strongly associated with training satisfaction among graduates. If the value of collaboration can be realized among current and future physician-scientist trainees who are dissatisfied with their training, this might ultimately reduce program attrition.
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...
2015-02-19
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
2014-01-01
Background The use of genetically modified mosquitoes (GMMs) for the control of malaria and other mosquito-borne diseases has been proposed in malaria-endemic countries, such as Nigeria, which has the largest burden in Africa. Scientists are major stakeholders whose opinions and perceptions can adversely affect the success of the trials of GMMs if they are not involved early. Unfortunately, information on the awareness of Nigerians scientists and their overall perception of the GMMs is practically non-existent in the literature. Therefore, this study aimed at understanding how receptive Nigerian scientists are to a potential release of GMMs for the control of malaria. Methods The sample consisted of 164 scientists selected from academic and research institutions in Nigeria. Data were collected from participants using a semi-structured, self-administered questionnaire. Questions were asked about the cause and prevention of malaria, genetic modification and biotechnology. Specific questions on perception and acceptable conditions for the potential release of GM mosquitoes in Nigeria were also covered. Results All participants cited mosquitoes as one of several causes of malaria and used various methods for household control of mosquitoes. The main concerns expressed by the scientists were that GMMs can spread in an uncontrolled way beyond their release sites (89%) and will mate with other mosquito species to produce hybrids with unknown consequences (94.5%). Most participants (92.7%) agreed that it was important that before approving the release of GMMs in Nigeria, there had to be evidence of contingency measures available to remove the GMMs should a hazard become evident during the course of the release. In general, a majority (83.5%) of scientists who participated in this study were sceptical about a potential release in Nigeria, while 16.5% of the participants were in support. Conclusions Although a majority of the participants are sceptical about GMMs generally, most encourage the use of genetic modification techniques to make mosquitoes incapable of spreading diseases provided that there are contingency measures to remove GMMs if a hazard becomes evident during the course of the release. PMID:24758165
Okorie, Patricia N; Marshall, John M; Akpa, Onoja M; Ademowo, Olusegun G
2014-04-23
The use of genetically modified mosquitoes (GMMs) for the control of malaria and other mosquito-borne diseases has been proposed in malaria-endemic countries, such as Nigeria, which has the largest burden in Africa. Scientists are major stakeholders whose opinions and perceptions can adversely affect the success of the trials of GMMs if they are not involved early. Unfortunately, information on the awareness of Nigerians scientists and their overall perception of the GMMs is practically non-existent in the literature. Therefore, this study aimed at understanding how receptive Nigerian scientists are to a potential release of GMMs for the control of malaria. The sample consisted of 164 scientists selected from academic and research institutions in Nigeria. Data were collected from participants using a semi-structured, self-administered questionnaire. Questions were asked about the cause and prevention of malaria, genetic modification and biotechnology. Specific questions on perception and acceptable conditions for the potential release of GM mosquitoes in Nigeria were also covered. All participants cited mosquitoes as one of several causes of malaria and used various methods for household control of mosquitoes. The main concerns expressed by the scientists were that GMMs can spread in an uncontrolled way beyond their release sites (89%) and will mate with other mosquito species to produce hybrids with unknown consequences (94.5%). Most participants (92.7%) agreed that it was important that before approving the release of GMMs in Nigeria, there had to be evidence of contingency measures available to remove the GMMs should a hazard become evident during the course of the release. In general, a majority (83.5%) of scientists who participated in this study were sceptical about a potential release in Nigeria, while 16.5% of the participants were in support. Although a majority of the participants are sceptical about GMMs generally, most encourage the use of genetic modification techniques to make mosquitoes incapable of spreading diseases provided that there are contingency measures to remove GMMs if a hazard becomes evident during the course of the release.
Uniform Peanut Performance Tests 2012
USDA-ARS?s Scientific Manuscript database
The Uniform Peanut Performance Tests (UPPT) were established in 1973 through an informal arrangement among cooperating scientists involving seven major peanut-producing states. In 1995, plant material transfer agreements were also accepted among all cooperators in the UPPT. The year 2012 completed...
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
Enabling Earth Science: The Facilities and People of the NCCS
NASA Technical Reports Server (NTRS)
2002-01-01
The NCCS's mass data storage system allows scientists to store and manage the vast amounts of data generated by these computations, and its high-speed network connections allow the data to be accessed quickly from the NCCS archives. Some NCCS users perform studies that are directly related to their ability to run computationally expensive and data-intensive simulations. Because the number and type of questions scientists research often are limited by computing power, the NCCS continually pursues the latest technologies in computing, mass storage, and networking technologies. Just as important as the processors, tapes, and routers of the NCCS are the personnel who administer this hardware, create and manage accounts, maintain security, and assist the scientists, often working one on one with them.
Developing future clinician scientists while supporting a research infrastructure.
Holsti, Maija; Adelgais, Kathleen M; Willis, Leah; Jacobsen, Kammy; Clark, Edward B; Byington, Carrie L
2013-04-01
Supporting clinical research is a national priority. Clinician scientists are rare and clinical trials in academic medical centers (AMC) often fail to meet enrollment goals. Undergraduate students interested in biomedical careers often lack opportunities to perform clinical research. Describe an innovative undergraduate course that supports clinical research in an AMC. The course, Clinical Research Methods and Practice, offers undergraduate students the opportunity to learn clinical research through didactic and practical experiences. The students in turn support clinician scientists' conduct of clinical studies in an AMC. Clinician scientists receive research support and participate in mentoring sessions for students. Over seven semesters, 128 students have assisted in 21 clinical studies located in outpatient and inpatient units of two hospitals. Students identified and screened eligible patients, collected clinical data, assisted in obtaining informed consent, and transported specimens. Many of the clinician scientists have met their enrollment goals and several have been top-enrollers in multicenter clinical trials as a result of student support. The Clinical Research Methods and Practice class addresses barriers to clinical research in AMC. This may be a model for institutions committed to mentoring students early in their career and to developing infrastructures for clinical research. © 2013 Wiley Periodicals, Inc.
Sutton, Madeline Y; Lanier, Yzette A; Willis, Leigh A; Castellanos, Ted; Dominguez, Ken; Fitzpatrick, Lisa; Miller, Kim S
2013-12-01
We reviewed data for the Minority HIV/AIDS Research Initiative (MARI), which was established in 2003 to support underrepresented minority scientists performing HIV prevention research in highly affected communities. MARI was established at the Centers for Disease Prevention and Control as a program of competitively awarded, mentored grants for early career researchers conducting HIV prevention research in highly affected racial/ethnic and sexual minority communities. We have described progress from 2003 to 2013. To date, MARI has mentored 27 scientist leaders using low-cost strategies to enhance the development of effective HIV prevention interventions. These scientists have (1) developed research programs in disproportionately affected communities of color, (2) produced first-authored peer-reviewed scientific and programmatic products (including articles and community-level interventions), and (3) obtained larger, subsequent funding awards for research and programmatic work related to HIV prevention and health disparities work. The MARI program demonstrates how to effectively engage minority scientists to conduct HIV prevention research and reduce racial/ethnic investigator disparities and serves as a model for programs to reduce disparities in other public health areas in which communities of color are disproportionately affected.
Lanier, Yzette A.; Willis, Leigh A.; Castellanos, Ted; Dominguez, Ken; Fitzpatrick, Lisa; Miller, Kim S.
2013-01-01
Objectives. We reviewed data for the Minority HIV/AIDS Research Initiative (MARI), which was established in 2003 to support underrepresented minority scientists performing HIV prevention research in highly affected communities. Methods. MARI was established at the Centers for Disease Prevention and Control as a program of competitively awarded, mentored grants for early career researchers conducting HIV prevention research in highly affected racial/ethnic and sexual minority communities. We have described progress from 2003 to 2013. Results. To date, MARI has mentored 27 scientist leaders using low-cost strategies to enhance the development of effective HIV prevention interventions. These scientists have (1) developed research programs in disproportionately affected communities of color, (2) produced first-authored peer-reviewed scientific and programmatic products (including articles and community-level interventions), and (3) obtained larger, subsequent funding awards for research and programmatic work related to HIV prevention and health disparities work. Conclusions. The MARI program demonstrates how to effectively engage minority scientists to conduct HIV prevention research and reduce racial/ethnic investigator disparities and serves as a model for programs to reduce disparities in other public health areas in which communities of color are disproportionately affected. PMID:24134360
A visiting scientist program in atmospheric sciences for the Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Davis, M. H.
1989-01-01
A visiting scientist program was conducted in the atmospheric sciences and related areas at the Goddard Laboratory for Atmospheres. Research was performed in mathematical analysis as applied to computer modeling of the atmospheres; development of atmospheric modeling programs; analysis of remotely sensed atmospheric, surface, and oceanic data and its incorporation into atmospheric models; development of advanced remote sensing instrumentation; and related research areas. The specific research efforts are detailed by tasks.
2016-09-01
Sciences Group 6% 1550s Computer Scientists Group 5% Other 1500s ORSAa, Mathematics, & Statistics Group 3% 1600s Equipment & Facilities Group 4...Employee removal based on misconduct, delinquency , suitability, unsatisfactory performance, or failure to qualify for conversion to a career appointment...average of 10.4% in many areas, but over double the average for the 1550s (Computer Scientists) and other 1500s (ORSA, Mathematics, and Statistics ). Also
Useful measures and models for analytical quality management in medical laboratories.
Westgard, James O
2016-02-01
The 2014 Milan Conference "Defining analytical performance goals 15 years after the Stockholm Conference" initiated a new discussion of issues concerning goals for precision, trueness or bias, total analytical error (TAE), and measurement uncertainty (MU). Goal-setting models are critical for analytical quality management, along with error models, quality-assessment models, quality-planning models, as well as comprehensive models for quality management systems. There are also critical underlying issues, such as an emphasis on MU to the possible exclusion of TAE and a corresponding preference for separate precision and bias goals instead of a combined total error goal. This opinion recommends careful consideration of the differences in the concepts of accuracy and traceability and the appropriateness of different measures, particularly TAE as a measure of accuracy and MU as a measure of traceability. TAE is essential to manage quality within a medical laboratory and MU and trueness are essential to achieve comparability of results across laboratories. With this perspective, laboratory scientists can better understand the many measures and models needed for analytical quality management and assess their usefulness for practical applications in medical laboratories.
Freedom to Tweet? Opportunities and Barriers for Federal Scientists on Social Media
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Bailin, D.; Rogerson, P.; Renaud, A.; Halpern, M.; Grifo, F.
2013-12-01
The recent explosion of social media represents a fundamental shift in how scientists can share their work with the world, and federal scientists are taking advantage of these new tools. A 2009 report by the Chief Information Officers (CIO) Council--an interagency forum on federal information-technology management convened under the E-Government Act of 2002--recommends that all federal agencies develop a social media policy to address security concerns and provide guidance to employees on how they should identify themselves in these venues. In response to this report, and to the changing media landscape in general, many federal agencies have since developed polices to clarify how their employees may engage in social media. But how effective are such policies for federal scientists? Past analysis has looked at agency social media policies with an eye on performance metrics or on security and privacy of government information. Here, we assess the policies from a different angle: Do they provide sufficient guidance to government scientists and other technical experts? Do they adequately guide employees in a way that promotes responsible use while also affording them the freedom to use these tools to share their work? And how do different agencies compare? We analyzed policies, conducted a survey of federal scientists, and utilized Freedom of Information Act requests to assess how well federal policies and practices provide guidance and freedom for federal scientists using social media at 17 federal agencies. We found that some agencies have very thorough policies and practices that clearly guide and encourage their employees' use of social media outlets; while others provide minimal to no guidance to their scientists or discourage use of these tools. From this analysis, we identify opportunities for communication of federal science on social media, as well as barriers currently inhibiting federal scientists from using these tools. Finally, we offer recommendations for steps that agencies can take in order to continue progress toward providing freedom for their technical experts to fully utilize social media tools.
Promoting Science Software Best Practices: A Scientist's Perspective (Invited)
NASA Astrophysics Data System (ADS)
Blanton, B. O.
2013-12-01
Software is at the core of most modern scientific activities, and as societal awareness of, and impacts from, extreme weather, disasters, and climate and global change continue to increase, the roles that scientific software play in analyses and decision-making are brought more to the forefront. Reproducibility of research results (particularly those that enter into the decision-making arena) and open access to the software is essential for scientific and scientists' credibility. This has been highlighted in a recent article by Joppa et al (Troubling Trends in Scientific Software Use, Science Magazine, May 2013) that describes reasons for particular software being chosen by scientists, including that the "developer is well-respected" and on "recommendation from a close colleague". This reliance on recommendation, Joppa et al conclude, is fraught with risks to both sciences and scientists. Scientists must frequently take software for granted, assuming that it performs as expected and advertised and that the software itself has been validated and results verified. This is largely due to the manner in which much software is written and developed; in an ad hoc manner, with an inconsistent funding stream, and with little application of core software engineering best practices. Insufficient documentation, limited test cases, and code unavailability are significant barriers to informed and intelligent science software usage. This situation is exacerbated when the scientist becomes the software developer out of necessity due to resource constraints. Adoption of, and adherence to, best practices in scientific software development will substantially increase intelligent software usage and promote a sustainable evolution of the science as encoded in the software. We describe a typical scientist's perspective on using and developing scientific software in the context of storm surge research and forecasting applications that have real-time objectives and regulatory constraints. This include perspectives on what scientists/users of software can contribute back to the software development process and examples of successful scientist/developer interactions, and the competition between "getting it done" and "getting it done right".
NASA Astrophysics Data System (ADS)
Robinson, D. Q.
2001-05-01
Hampton University, a historically black university, is leading the Education and Public Outreach (EPO) portion of the PICASSO-CENA satellite-based research mission. Currently scheduled for launch in 2004, PICASSO-CENA will use LIDAR (LIght Detection and Ranging), to study earth's atmosphere. The PICASSO-CENA Outreach program works with scientists, teachers, and students to better understand the effects of clouds and aerosols on earth's atmosphere. This program actively involves students nationwide in NASA research by having them obtain sun photometer measurements from their schools and homes for comparison with data collected by the PICASSO-CENA mission. Students collect data from their classroom ground observations and report the data via the Internet. Scientists will use the data from the PICASSO-CENA research and the student ground-truthing observations to improve predications about climatic change. The two-band passive remote sensing sun photometer is designed for student use as a stand alone instrument to study atmospheric turbidity or in conjunction with satellite data to provide ground-truthing. The instrument will collect measurements of column optical depth from the ground level. These measurements will not only give the students an appreciation for atmospheric turbidity, but will also provide quantitative correlative information to the PICASSO-CENA mission on ground-level optical depth. Student data obtained in this manner will be sufficiently accurate for scientists to use as ground truthing. Thus, students will have the opportunity to be involved with a NASA satellite-based research mission.
Oceans Melting Greenland OMG 2017 Media Reel
2017-12-05
The Oceans Melting Greenland mission seeks to understand how ocean water is contributing to ice loss in Greenland. In October 2017, mission scientists and crew dropped 240 ocean probes from a C-130 aircraft into the waters around Greenland to measure ocean temperature and salinity. Footage includes aerial shots of Greenland landscapes, interior and exterior shots of the aircraft with crew and scientists at work, and shots from a chase plane showing the probes dropping.
American and Greek Children's Visual Images of Scientists
NASA Astrophysics Data System (ADS)
Christidou, Vasilia; Bonoti, Fotini; Kontopoulou, Argiro
2016-08-01
This study explores American and Greek primary pupils' visual images of scientists by means of two nonverbal data collection tasks to identify possible convergences and divergences. Specifically, it aims to investigate whether their images of scientists vary according to the data collection instrument used and to gender. To this end, 91 third-grade American ( N = 46) and Greek ( N = 45) pupils were examined. Data collection was conducted through a drawing task based on Chambers (
Scientist impact factor (SIF): a new metric for improving scientists' evaluation?
Lippi, Giuseppe; Mattiuzzi, Camilla
2017-08-01
The publication of scientific research is the mainstay for knowledge dissemination, but is also an essential criterion of scientists' evaluation for recruiting funds and career progression. Although the most widespread approach for evaluating scientists is currently based on the H-index, the total impact factor (IF) and the overall number of citations, these metrics are plagued by some well-known drawbacks. Therefore, with the aim to improve the process of scientists' evaluation, we developed a new and potentially useful indicator of recent scientific output. The new metric scientist impact factor (SIF) was calculated as all citations of articles published in the two years following the publication year of the articles, divided by the overall number of articles published in that year. The metrics was then tested by analyzing data of the 40 top scientists of the local University. No correlation was found between SIF and H-index (r=0.15; P=0.367) or 2 years H-index (r=-0.01; P=0.933), whereas the H-index and 2 years H-index values were found to be highly correlated (r=0.57; P<0.001). A highly significant correlation was also observed between the articles published in one year and the total number of citations to these articles in the two following years (r=0.62; P<0.001). According to our data, the SIF may be a useful measure to complement current metrics for evaluating scientific output. Its use may be especially helpful for young scientists, wherein the SIF reflects the scientific output over the past two years thus increasing their chances to apply to and obtain competitive funding.
2009-08-11
CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., the Solar Dynamics Observatory, or SDO, is undergoing performance testing. The high-gain antenna seen at center left will be moved, or gimbaled. All of the spacecraft science instruments are being tested in their last major evaluation before launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Liftoff on an Atlas V rocket is scheduled for Dec. 4. Photo credit: NASA/Jack Pfaller
Is It More Thrilling to Ride at the Front or the Back of a Roller Coaster?
NASA Astrophysics Data System (ADS)
Alberghi, Stefano; Foschi, Alessandro; Pezzi, Giovanni; Ortolani, Fabio
2007-12-01
An activity called "Project Physics, a Classroom Without Walls" was started during the spring of 2003 at the amusement park in Mirabilandia (Italy). Many thousands of students from Italian middle and high schools are today participating in the initiative. Under the guidance of trained tutors, they perform physics experiments on some of the attractions at the park such as the roller coaster, the Ferris wheel, and the launch towers. The students involved in the experiments can enjoy learning how to observe reality through the eyes of a scientist and to apply classroom concepts to real situations. They discuss the sensations experienced on the rides, perform measurements with traditional and computer-interfaced instruments, analyze collected data, and discuss the results in an open-air physics laboratory. This paper describes the results of one such activity.
Laboratory Evaluation of Energy Recovery Ventilators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosar, D.
Over the years, building scientists have characterized the relationship between building airtightness, exhaust-only appliances airflows, and building depressurization. Now, as the use of deep retrofit measures and new construction practices is growing to realize lower infiltration levels in increasingly tighter envelopes, performance issues can arise with the operation of exhaust-only appliances in a depressurized home. As the depressurization levels climb in tighter homes, many of these exhaust-only appliances see their rated airflows reduced and other related performance issues arise as a result. If sufficiently depressurized, atmospherically vented combustion appliances that may be present in the home can backdraft as well.more » Furthermore, when exhaust-only appliances operate and the tight home becomes depressurized, water vapor intrusion from outdoors can raise additional issues of mold in the building envelope in more humid climates.« less
Team Synergies in Sport: Theory and Measures
Araújo, Duarte; Davids, Keith
2016-01-01
Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual’s behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group behaviors, team sport performance, ecological dynamics, performance analysis. PMID:27708609
Team Synergies in Sport: Theory and Measures.
Araújo, Duarte; Davids, Keith
2016-01-01
Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual's behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group behaviors, team sport performance, ecological dynamics, performance analysis.
Parallel computing in genomic research: advances and applications
Ocaña, Kary; de Oliveira, Daniel
2015-01-01
Today’s genomic experiments have to process the so-called “biological big data” that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801
The Canadian clinician-scientist training program must be reinstated.
Twa, David D W; Squair, Jordan W; Skinnider, Michael A; Ji, Jennifer X
2015-11-03
Clinical investigators within the Canadian and international communities were shocked when the Canadian Institutes of Health Research (CIHR) announced that their funding for the MD/PhD program would be terminated after the 2015-2016 academic year. The program has trained Canadian clinician-scientists for more than two decades. The cancellation of the program is at odds with the CIHR's mandate, which stresses the translation of new knowledge into improved health for Canadians, as well as with a series of internal reports that have recommended expanding the program. Although substantial evidence supports the analogous Medical Scientist Training Program in the United States, no parallel analysis of the MD/PhD program has been performed in Canada. Here, we highlight the long-term consequences of the program's cancellation in the context of increased emphasis on translational research. We argue that alternative funding sources cannot ensure continuous support for students in clinician-scientist training programs and that platform funding of the MD/PhD program is necessary to ensure leadership in translational research.
Parallel computing in genomic research: advances and applications.
Ocaña, Kary; de Oliveira, Daniel
2015-01-01
Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.
In-situ gamma-ray assay of the west cell line in the 235-F plutonium fuel form facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, A. H.; Diprete, D.
On August 29th, 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 6-9 on the west line of the PuFF facility using an uncollimated, highpurity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells. The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the Westmore » Cell Line of PuFF. The results of the assay measurements are found in the table below along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are given as 1σ. The total holdup in the West Cell Line was 2.4 ± 0.7 grams. This result is 0.6 g higher than the previous estimate, a 0.4σ difference.« less
Green, Michael F; Horan, William P
2015-09-01
Effort-based decision making requires one to decide how much effort to expend for a certain amount of reward. As the amount of reward goes up most people are willing to exert more effort. This relationship between reward level and effort expenditure can be measured in specialized performance-based tasks that have only recently been applied to schizophrenia. Such tasks provide a way to measure objectively motivational deficits in schizophrenia, which now are only assessed with clinical interviews of negative symptoms. The articles in this theme provide reviews of the relevant animal and human literatures (first 2 articles), and then a psychometric evaluation of 5 effort-based decision making paradigms (last 2 articles). This theme section is intended to stimulate interest in this emerging area among basic scientists developing paradigms for preclinical studies, human experimentalists trying to disentangle factors that contribute to performance on effort-based tasks, and investigators looking for objective endpoints for clinical trials of negative symptoms in schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
At what age do biomedical scientists do their best work?
Falagas, Matthew E; Ierodiakonou, Vrettos; Alexiou, Vangelis G
2008-12-01
Several human characteristics that influence scientific research performance, including set goals, mental and physical abilities, education, and experience, may vary considerably during the life cycle of scientists. We sought to answer the question of whether high-quality research productivity is associated with investigator's age. We randomly selected 300 highly cited scientists (50 from each of 6 different biomedical fields, specifically immunology, microbiology, neuroscience, psychology-psychiatry, clinical medicine, and biology-biochemistry). Then, we identified the top 5 highly cited articles (within 10 yr after publication adjusted for the expansion of the literature) as first author of each of them. Subsequently, we plotted the distribution of the 1500 analyzed articles of the 300 studied scientists in the eight 5-year intervals of investigator's age during the year of article publication (21-25 to 55-60 yr of age), adjusted for person-years of contribution of each scientist in the various age groups. Highly cited research productivity plotted a curve that peaked at the age group of 31-35 yr of age and then gradually decreased with advancing age. However, a considerable proportion of this highly cited research was produced by older scientists (in almost 20% of the analyzed articles, researchers were older than 50 yr). The results were similar in another analysis of the single most cited article of each studied scientist. In conclusion, high-quality scientific productivity in the biomedical fields as a function of investigator's age plots an inverted U-shaped curve, in which significant decreases take place from around 40 yr of age and beyond.
Analytical and Clinical Performance Evaluation of the Abbott Architect PIVKA Assay.
Ko, Dae-Hyun; Hyun, Jungwon; Kim, Hyun Soo; Park, Min-Jeong; Kim, Jae-Seok; Park, Ji-Young; Shin, Dong Hoon; Cho, Hyoun Chan
2018-01-01
Protein induced by vitamin K absence (PIVKA) is measured using various assays and is used to help diagnose hepatocellular carcinoma. The present study evaluated the analytical and clinical performances of the recently released Abbott Architect PIVKA assay. Precision, linearity, and correlation tests were performed in accordance with the Clinical Laboratory Standardization Institute guidelines. Sample type suitability was assessed using serum and plasma samples from the same patients, and the reference interval was established using sera from 204 healthy individuals. The assay had coefficients of variation of 3.2-3.5% and intra-laboratory variation of 3.6-5.5%. Linearity was confirmed across the entire measurable range. The Architect PIVKA assay was comparable to the Lumipulse PIVKA assay, and the plasma and serum samples provided similar results. The lower reference limit was 13.0 mAU/mL and the upper reference limit was 37.4 mAU/mL. The ability of the Architect PIVKA assay to detect hepatocellular carcinoma was comparable to that of the alpha-fetoprotein test and the Lumipulse PIVKA assay. The Architect PIVKA assay provides excellent analytical and clinical performance, is simple for clinical laboratories to adopt, and has improved sample type suitability that could broaden the assay's utility. © 2018 by the Association of Clinical Scientists, Inc.
NASA Technical Reports Server (NTRS)
Abhiraman, A.; Collard, D.; Cardelino, B.; Bhatia, S.; Desai, P.; Harruna, I.; Khan, I.; Mariam, Y.; Mensah, T.; Mitchell, M.
1992-01-01
The NASA funding allowed Clark Atlanta University (CAU) to establish a High Performance Polymers And Ceramics (HiPPAC) Research Center. The HiPPAC Center is consolidating and expanding the existing polymer and ceramic research capabilities at CAU through the development of interdepartmental and interinstitutional research in: (1) polymer synthesis; (2) polymer characterization and properties; (3) polymer processing; (4) polymer-based ceramic synthesis; and (5) ceramic characterization and properties. This Center has developed strong interactions between scientists and materials scientists of CAU and their counterparts from sister institutions in the Atlanta University Center (AUC) and the Georgia Institute of Technology. As a component of the center, we have started to develop strong collaborations with scientists from other universities and the HBCU's, national and federal agency laboratories, and the private sector during this first year. During this first year we have refined the focus of the research in the HiPPAC Center to three areas with seven working groups that will start programmatic activities on January 1, 1993, as follows: (1) nonlinear optical properties of chitosan derivatives; (2) polymeric electronic materials; (3) nondestructive characterization and prediction of polyimide performance; (4) solution processing of high-performance materials; (5) processable polyimides for composite applications; (6) sol-gel based ceramic materials processing; and (7) synthetic based processing of pre-ceramic polymers.
NASA Technical Reports Server (NTRS)
Prosser, William H.; Madaras, Eric I.
2011-01-01
As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment
Total and Spectral Solar Irradiance Sensor (TSIS) EVA Fitchecks
2017-09-28
In the high bay of Kennedy Space Center's Space Station Processing Facility, Chris Hardcastle, center, of Stinger-Ghaffarian Technologies performs a sharp edge inspection of the integrated Total and Spectral Solar Irradiance Sensor-1 (TSIS-1) payload and the EXPRESS Pallet Adapter. Hardcastle is joined by Dwayne Swieter, left, and Norm Perish, right, TSIS-1 payload team members from the Laboratory for Atmospheric and Space Physics, a Research Institute at the University of Colorado (Boulder). TSIS-1 is designed to measure the Sun's energy input into Earth by seeing how it is distributed across different wavelengths of light. These measurements help scientists establish Earth's total energy and how our planet's atmosphere responds to changes in the Sun's energy output. TSIS-1 will launch on SpaceX's 13th commercial resupply mission to the International Space Station.
Citizen Environmental Science in Support of Educatio
NASA Astrophysics Data System (ADS)
Butler, D. M.; Cavalier, D.; Potter, S.; Wagner, R.; Wegner, K.; Hammonds, J.
2016-12-01
Through two grants, a partnership among SciStarter, ECO-Schools, the GLOBE Program, and Youth Learning as Citizen Environmental Scientists has recruited, trained, and equipped over 100 US schools, youth groups and other citizen scientists to take several environmental measurements - surface soil moisture and temperature, precipitation, and clouds. Implementation by some has begun but many more will start implementation in the fall. These local measurements may be compared with data from the Soil Moisture Active Passive (SMAP), Global Precipitation Measurement (GPM), and other satellite missions. The measurement protocols of GLOBE specify how these data are collected so as to produce reliable data that are intercomparable across space and time. GLOBE also provides the information infrastructure for storing these data and making them openly available. This presentation will examine the initial results of this effort in terms of participation, student and professional data use, and educational benefits.
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Mayorga, E.; Tarboton, D. G.; Sazib, N. S.; Horsburgh, J. S.; Cheetham, R.
2016-12-01
The Model My Watershed Web app (http://wikiwatershed.org/model/) was designed to enable citizens, conservation practitioners, municipal decision-makers, educators, and students to interactively select any area of interest anywhere in the continental USA to: (1) analyze real land use and soil data for that area; (2) model stormwater runoff and water-quality outcomes; and (3) compare how different conservation or development scenarios could modify runoff and water quality. The BiG CZ Data Portal is a web application for scientists for intuitive, high-performance map-based discovery, visualization, access and publication of diverse earth and environmental science data via a map-based interface that simultaneously performs geospatial analysis of selected GIS and satellite raster data for a selected area of interest. The two web applications share a common codebase (https://github.com/WikiWatershed and https://github.com/big-cz), high performance geospatial analysis engine (http://geotrellis.io/ and https://github.com/geotrellis) and deployment on the Amazon Web Services (AWS) cloud cyberinfrastructure. Users can use "on-the-fly" rapid watershed delineation over the national elevation model to select their watershed or catchment of interest. The two web applications also share the goal of enabling the scientists, resource managers and students alike to share data, analyses and model results. We will present these functioning web applications and their potential to substantially lower the bar for studying and understanding our water resources. We will also present work in progress, including a prototype system for enabling citizen-scientists to register open-source sensor stations (http://envirodiy.org/mayfly/) to stream data into these systems, so that they can be reshared using Water One Flow web services.
Science experiences of citizen scientists in entomology research
NASA Astrophysics Data System (ADS)
Lynch, Louise I.
Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and the value of qualitative methodologies in citizen science research. Citizen science is championed for its ability to extend the geographic, temporal and spatial reach of a research team. It can also extend the educational reach through citizen scientists that have acquired the role of expert.
Reliability and validity of current physical examination techniques of the foot and ankle.
Wrobel, James S; Armstrong, David G
2008-01-01
This literature review was undertaken to evaluate the reliability and validity of the orthopedic, neurologic, and vascular examination of the foot and ankle. We searched PubMed-the US National Library of Medicine's database of biomedical citations-and abstracts for relevant publications from 1966 to 2006. We also searched the bibliographies of the retrieved articles. We identified 35 articles to review. For discussion purposes, we used reliability interpretation guidelines proposed by others. For the kappa statistic that calculates reliability for dichotomous (eg, yes or no) measures, reliability was defined as moderate (0.4-0.6), substantial (0.6-0.8), and outstanding (> 0.8). For the intraclass correlation coefficient that calculates reliability for continuous (eg, degrees of motion) measures, reliability was defined as good (> 0.75), moderate (0.5-0.75), and poor (< 0.5). Intraclass correlations, based on the various examinations performed, varied widely. The range was from 0.08 to 0.98, depending on the examination performed. Concurrent and predictive validity ranged from poor to good. Although hundreds of articles exist describing various methods of lower-extremity assessment, few rigorously assess the measurement properties. This information can be used both by the discerning clinician in the art of clinical examination and by the scientist in the measurement properties of reproducibility and validity.
GPM Microwave Imager Design, Predicted Performance and Status
NASA Technical Reports Server (NTRS)
Krimchansky, Sergey; Newell, David
2010-01-01
The Global Precipitation Measurement (GPM) Microwave Imager (GMI) Instrument is being developed by Ball Aerospace and Technology Corporation (BATC) for the GPM program at NASA Goddard. The Global Precipitation Measurement (GPM) mission is an international effort managed by the National Aeronautics and Space Administration (t.JASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and more frequent precipitation measurements. The GPM Microwave Imager (GMI) will be used to make calibrated, radiometric measurements from space at multiple microwave frequencies and polarizations. GMI will be placed on the GPM Core Spacecraft together with the Dual-frequency Precipitation Radar (DPR). The DPR is two-frequency precipitation measurement radar, which will operate in the Ku-band and Ka-band of the microwave spectrum. The Core Spacecraft will make radiometric and radar measurements of clouds and precipitation and will be the central element of GPM's space segment. The data products from GPM will provide information concerning global precipitation on a frequent, near-global basis to meteorologists and scientists making weather forecasts and performing research on the global energy and water cycle, precipitation, hydrology, and related disciplines. In addition, radiometric measurements from GMI and radar measurements from the DPR will be used together to develop a retrieval transfer standard for the purpose of calibrating precipitation retrieval algorithms. This calibration standard will establish a reference against which other retrieval algorithms using only microwave radiometers (and without the benefit of the DPR) on other satellites in the GPM constellation will be compared.
Psychological Measurement Needs Units, Ratios, and Real Quantities: A Commentary on Humphry
ERIC Educational Resources Information Center
Kyngdon, Andrew
2011-01-01
Behavioral scientists have struggled with units of measurement for as long as they have struggled with measurement itself. Psychology's sole attempt at an explicit unit of measurement--the Lexile Framework for Reading (Stenner, Burdick, Sanford, & Burdick, 2006)--has been and continues to be ignored by the psychometric "cognoscenti."…
Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud
NASA Astrophysics Data System (ADS)
Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.
2014-12-01
The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations that require high performance computing solutions and provides the NCCS with the agility required to meet our customers' rapidly increasing and evolving requirements.
Scientists are From Venus, Journalists are From Mars: Bridging the Two Worlds
NASA Astrophysics Data System (ADS)
Baron, N.
2006-12-01
Media coverage of issues ranging from climate change to evolution often shapes public awareness and opinions about these topics and the science behind them. While scientists can play a critical social role as a resource for journalists and as a valuable information source for the public, they are often frustrated with how their work is portrayed in the press or choose to avoid public discussions completely. In order for science-based policy measures to succeed, scientists must engage in these public discussions and learn how to communicate more effectively - not only with each other, but also with the media, the public, and policy makers. This requires being able to put themselves in the shoes of their audiences. This presentation will provide insights into the world of journalism and offer practical steps that scientists can take to ensure that their research will register on the public's radar screen. Presenter Nancy Baron, Lead Communications Trainer for the Aldo Leopold Program (ALLP) and Ocean Science Outreach Director for COMPASS works closely with leading scientists to help them communicate the contents and importance of their work more effectively and make their science "news" without compromising scientific integrity or credibility.
Systematically evaluating interfaces for RNA-seq analysis from a life scientist perspective.
Poplawski, Alicia; Marini, Federico; Hess, Moritz; Zeller, Tanja; Mazur, Johanna; Binder, Harald
2016-03-01
RNA-sequencing (RNA-seq) has become an established way for measuring gene expression in model organisms and humans. While methods development for refining the corresponding data processing and analysis pipeline is ongoing, protocols for typical steps have been proposed and are widely used. Several user interfaces have been developed for making such analysis steps accessible to life scientists without extensive knowledge of command line tools. We performed a systematic search and evaluation of such interfaces to investigate to what extent these can indeed facilitate RNA-seq data analysis. We found a total of 29 open source interfaces, and six of the more widely used interfaces were evaluated in detail. Central criteria for evaluation were ease of configuration, documentation, usability, computational demand and reporting. No interface scored best in all of these criteria, indicating that the final choice will depend on the specific perspective of users and the corresponding weighting of criteria. Considerable technical hurdles had to be overcome in our evaluation. For many users, this will diminish potential benefits compared with command line tools, leaving room for future improvement of interfaces. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Taming of a Wild Research Well in Yellowstone National Park during November 1992
Fournier, Robert O.; Moore, Michael M.
2008-01-01
Much of our current understanding of Yellowstone's geothermal areas comes from research drilling by the USGS during 1967 and 1968. Thirteen wells were drilled in thermal areas around the park. Scientists collected waters and rocks, measured temperatures and pressures and performed other tests to characterize the shallow subsurface at Yellowstone. Most wells were plugged and abandoned, but a few were left open for future scientific tests and sampling. One of those wells, the Y8, was located at Biscuit Basin, 2 miles north of Old Faithful. In November 1992, a valve at the ground surface failed, leading to a blowout, an uncontrolled eruption of steam and hot water. The USGS and Yellowstone National Park worked with a drilling contractor to control the flow and plug the well. The lead scientist, Robert Fournier, used video taken by the drilling contractor, Tonto Services, to create this fascinating 28-minute-long film. It is followed by a short news story by CNN, also from November 1992. Fifteen years later, we felt that the video was of sufficient scientific and historical interest that it was worth publishing as a USGS Open-file report, where it can be accessed into the future. Enjoy!
California Drought Effects on Sierra Trees Mapped by NASA
2016-06-27
California, reveals the devastating effect of California's ongoing drought on Sierra Nevada conifer forests. The map will be used to help the U.S. Forest Service assess and respond to the impacts of increased tree mortality caused by the drought, particularly where wildlands meet urban areas within the Sierra National Forest. After several years of extreme drought, the highly stressed conifers (trees or bushes that produce cones and are usually green year-round) of the Sierra Nevada are now more susceptible to bark beetles (Dendroctonus spp.). While bark beetles killing trees in the Sierra Nevada is a natural phenomenon, the scale of mortality in the last couple of years is far greater than previously observed. The U.S. Forest Service is using recent airborne spectroscopic measurements from NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument aboard NASA's ER-2 aircraft, together with new advanced algorithms, to quantify this impact over this large region of rugged terrain. The high-altitude ER-2 aircraft is based at NASA's Armstrong Flight Research Center, Edwards, California. The image was created by scientists at the USFS's Pacific Southwest Region Remote Sensing Lab, McClellan, California, by performing a time series analysis of AVIRIS images. Scientists evaluated baseline tree mortality on public lands in the summer of 2015 using a machine learning algorithm called "random forest." This algorithm classifies the AVIRIS measurements as dominated by either shrubs, healthy trees or newly dead conifer trees. To quantify how much the amount of dead vegetation increased during the fall of 2015, the Forest Service scientists conducted an advanced spectral mixture analysis. This analysis evaluates each spectrum to determine the fraction of green vegetation, dead vegetation and soil. The full spectral range of AVIRIS is important to separate the signatures of soil and dead vegetation. To produce this comprehensive Sierra National Forest tree mortality map, the result from the summer of 2015 was evaluated to look for increases of more than 10 percent in dead vegetation during the fall of 2015. AVIRIS measures spectra of the Earth system to conduct advanced science research. These western U.S. AVIRIS measurements were acquired as part of NASA's Hyperspectral Infrared Imager (HyspIRI) preparatory airborne campaign. HyspIRI was one of the space missions suggested to NASA by the National Academy of Sciences in its 2007 decadal survey for Earth Science. In the future, HyspIRI could provide spectral and thermal measurements of this type globally for ecosystem research and additional science objectives. http://photojournal.jpl.nasa.gov/catalog/PIA20717
Cruz, Taylor M
2017-02-01
How do we make a difference? This paper traces the connections made between quantified knowledge, population health, and social justice by examining the efforts of population scientists to assess sexuality as a point of difference within population-based data systems, including on national health and social surveys, electronic medical records, and the Census. Population scientists emphasize the importance of measuring social difference in order to identify and remedy structural disadvantage. This evaluation requires the assessment of difference and the comparison of distinct groups across standardized outcome measures. In quantifying social difference, however, population scientists obscure or minimize several difficulties in creating comparable populations. I explore some of these challenges by highlighting three central tensions: the separation of difference from other aspects and categories of social experience, the reduction of difference through the use of one over several possible measures, and the enactment of difference as quantified knowledge loops back into society. As a theoretical inquiry into the form of social difference as it is conceptualized, operationalized, and materialized across the science-society nexus, this paper identifies the various commitments made during processes of scientific evaluation. By attending to the values and priorities that exist within and through practices of quantification, I aim to address the problem of measuring social difference as it pertains to the issues of social justice and health equity. Copyright © 2016 Elsevier Ltd. All rights reserved.
For good measure: Origins and prospects of exposure science (2007 Wesolowski Award Lecture).
Fenske, Richard A
2010-09-01
Measurement is the foundation of exposure science. Associations between illness and environmental agents have been observed for millennia, but the ability to quantify exposure and dose has been possible only in the last century. Improved means of measurement and refined concepts of who, what, when, where, and why to measure have been the seminal contributions of exposure science to the study of disease causation and prevention. This paper examines critical advancements in exposure assessment associated with workplace health and safety, and the groundbreaking work of the US Public Health Service. Many of the key concepts of modern exposure science have their origin in these early studies. Occupational hygiene scientists have conducted receptor-based exposure analyses for more than 80 years, evaluating indoor air, defining microenvironments, and developing personal sampling techniques. Biological monitoring of community populations including children, dermal exposure monitoring, duplicate diet studies, and multi-pathway, aggregate exposure assessments can be traced to early public health studies. As we look to the future, we see that new technologies and techniques are expanding the scope of exposure science dramatically. We need to ensure that the highest of scientific standards are maintained, make a greater effort to include occupational hygiene scientists, microbiologists, and behavioral scientists in the field, and promote new sources of training and research support. Exposure science has a critical role to play in the prevention strategy that is central to public health.
Suprayitno, Nano; Narakusumo, Raden Pramesa; von Rintelen, Thomas; Hendrich, Lars; Balke, Michael
2017-01-01
Taxonomy and biogeography can benefit from citizen scientists. The use of social networking and open access cooperative publishing can easily connect naturalists even in more remote areas with in-country scientists and institutions, as well as those abroad. This enables taxonomic efforts without frontiers and at the same time adequate benefit sharing measures. We present new distribution and habitat data for diving beetles of Bali island, Indonesia, as a proof of concept. The species Hydaticus luczonicus Aubé, 1838 and Eretes griseus (Fabricius, 1781) are reported from Bali for the first time. The total number of Dytiscidae species known from Bali is now 34.
Suprayitno, Nano; Narakusumo, Raden Pramesa; von Rintelen, Thomas; Hendrich, Lars
2017-01-01
Abstract Background Taxonomy and biogeography can benefit from citizen scientists. The use of social networking and open access cooperative publishing can easily connect naturalists even in more remote areas with in-country scientists and institutions, as well as those abroad. This enables taxonomic efforts without frontiers and at the same time adequate benefit sharing measures. New information We present new distribution and habitat data for diving beetles of Bali island, Indonesia, as a proof of concept. The species Hydaticus luczonicus Aubé, 1838 and Eretes griseus (Fabricius, 1781) are reported from Bali for the first time. The total number of Dytiscidae species known from Bali is now 34. PMID:29104436
ERIC Educational Resources Information Center
Alden, John D.
Contained in this booklet are the speeches given at the annual joint meeting of the Engineering Manpower Commission and the Scientific Manpower Commission. Each dealt with some problem aspect of the engineer-scientist interface. The presentation by Rear Admiral W. C. Hushing of the U. S. Navy was entitled "The Impact of High Performance Science…
ERIC Educational Resources Information Center
Leighton, Fran
2009-01-01
This article discusses the dilemmas encountered by non-disabled performance researchers and practitioners working with learning-disabled people. I demonstrate how the "accounts" of empirical social scientists informed my PARIP [practice-as-research-in-performance] project, "BluYesBlu," and how Judith Butler's reformulation of the concept of…
2015-12-09
A group of scientists from NASA's Dawn mission suggests that when sunlight reaches Ceres' Occator Crater, a kind of thin haze of dust and evaporating water forms there. This haze only becomes dense enough to be seen by looking at it laterally, as in this image, the scientists wrote in the journal Nature in December 2015. Occator measures about 60 miles (90 kilometers) wide, and contains the brightest material seen on Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA20181
Crowdsourcing Austrian data on decomposition with the help of citizen scientists
NASA Astrophysics Data System (ADS)
Sandén, Taru; Berthold, Helene; Schwarz, Michael; Baumgarten, Andreas; Spiegel, Heide
2017-04-01
Decay of organic material, decomposition, is a critical process for life on earth. Through decomposition, food becomes available for plants and soil organisms that they use in their growth and maintenance. When plant material decomposes, it loses weight and releases the greenhouse gas carbon dioxide (CO2) into the atmosphere. Terrestrial soils contain about three times more carbon than the atmosphere and, therefore, changes in the balance of soil carbon storage and release can significantly amplify or attenuate global warming. Many factors affecting the global carbon cycle are already known and mapped; however, an index for decomposition rate is still missing, even though it is needed for climate modelling. The Tea Bag Index (TBI) measures decomposition in a standardised, achievable, climate-relevant, and time-relevant way by burying commercial nylon tea bags in soils for three months (Keuskamp et al., 2013). In the summer of 2016, TBI (expressed as decomposition rate (k) and stabilisation index (S)) was measured with the help of Austrian citizen scientists at 7-8 cm soil depth in three different land uses (maize croplands, grasslands and forests). In total ca. 2700 tea bags were sent to the citizen scientists of which ca. 50% were returned. The data generated by the citizen scientists will be incorporated into an Austrian as well as a global soil map of decomposition. This map can be used as input to improve climate modelling in the future.
Activating social strategies: Face-to-face interaction in technology-mediated citizen science.
Cappa, Francesco; Laut, Jeffrey; Nov, Oded; Giustiniano, Luca; Porfiri, Maurizio
2016-11-01
The use of crowds in research activities by public and private organizations is growing under different forms. Citizen science is a popular means of engaging the general public in research activities led by professional scientists. By involving a large number of amateur scientists, citizen science enables distributed data collection and analysis on a scale that would be otherwise difficult and costly to achieve. While advancements in information technology in the past few decades have fostered the growth of citizen science through online participation, several projects continue to fail due to limited participation. Such web-based projects may isolate the citizen scientists from the researchers. By adopting the perspective of social strategy, we investigate within a measure-manipulate-measure experiment if motivations to participate in a citizen science project can be positively influenced by a face-to-face interaction with the scientists leading the project. Such an interaction provides the participants with the possibility of asking questions on the spot and obtaining a detailed explanation of the citizen science project, its scientific merit, and environmental relevance. Social and cultural factors that moderate the effect brought about by face-to-face interactions on the motivations are also dissected and analyzed. Our findings provide an exploratory insight into a means for motivating crowds to participate in online environmental monitoring projects, also offering possible selection criteria of target audience. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.
1992-01-01
A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases.
NASA Astrophysics Data System (ADS)
Lewis, N.; Thome, K. J.; Bounoua, L.; Owen, T.
2014-12-01
Leaping advances in the capability to accurately measure global atmospheric and surficial conditions from space have created an abundance of educationally relevant images, discoveries, and products. In attempt to fully utilize these abundant resources, TERRA has allocated a portion of its mission toward education and public outreach. From highly interactive websites allowing users to view the latest satellite images and discoveries, to partnerships with museums encouraging enhanced primary and secondary scholastic experiences, TERRA has successfully applied a multifaceted range of tools to aid in the furthering of education for students, educators, scientists, and the general public. This presentation aims to increase publicity regarding these many methods of outreach, and to highlight particular outreach success stories. With the increasing emphasis on STEM education in current school systems, the invaluable resources and opportunities that TERRA provides for young scientists have become a necessity and will continue to help inspire the next generation of Earth Scientists.
Contrasting Methods for Measuring Evapotranspiration in Soybean
USDA-ARS?s Scientific Manuscript database
Crop scientists are often interested in canopy rather than leaf water fluxes. Canopy measurements are difficult to obtain because instrumentation is expensive, investigations require a high level of comprehension in micrometeorological methods, and treatment comparisons are usually limited. The obje...
Checking Trace Nitrate in Water and Soil Using an Amateur Scientist's Measurement Guide.
ERIC Educational Resources Information Center
Baker, Roger C. Jr.
1995-01-01
Presents a test that can measure nitrate nitrogen ions at about 0.1 mg/L using concentration. Uses inexpensive accessible materials and can be used by amateur environmentalists for monitoring water nitrate levels. (JRH)
How do scientists respond to anomalies? Different strategies used in basic and applied science.
Trickett, Susan Bell; Trafton, J Gregory; Schunn, Christian D
2009-10-01
We conducted two in vivo studies to explore how scientists respond to anomalies. Based on prior research, we identify three candidate strategies: mental simulation, mental manipulation of an image, and comparison between images. In Study 1, we compared experts in basic and applied domains (physics and meteorology). We found that the basic scientists used mental simulation to resolve an anomaly, whereas applied science practitioners mentally manipulated the image. In Study 2, we compared novice and expert meteorologists. We found that unlike experts, novices used comparison to address anomalies. We discuss the nature of expertise in the two kinds of science, the relationship between the type of science and the task performed, and the relationship of the strategies investigated to scientific creativity. Copyright © 2009 Cognitive Science Society, Inc.
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Desert , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Desert , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-27
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/
Ten thousand cloud makers: Is airplane exhaust altering earth`s climate?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monastersky, R.
1996-07-06
The small Saberliner jet carrying Bruce E. Anderson rolled almost completely upside down, when his plane entered the wake of a DC-8 jet just a few miles ahead. The backwash-a tight horizontal tornado whirling at more than 100 miles per hour-spun the light Saberliner 140{degrees} and sent it into a dive, causing Anderson, his food, and everything else in the plane to go temporarily weightless. When they recovered, they nosed up behind the DC-8 for some more punishment. Although it sounds like military flight training, Anderson and his colleagues were actually conducting a high-tech emissions check-measuring the gases and particlesmore » spewing out of jet engines. Their mission resembles the pollution tests that states routinely perform on cars, except that the NASA-run experiment happened at 400 miles per hour, 40,000 feet above the ground. And whereas car emissions are well understood, scientists have little information on the pollution from jet engines. Toward that end, NASA gathered four planes and 120 scientists in Kansas during April and May to make the most detailed measurements yet of jet engine exhaust at cruising altitude. This project and future ones are addressing the question of whether aircraft emissions are increasing the number of clouds and are perturbing atmospheric chemistry, both of which could affect weather on earth. This article describes the project, what lead to it, what has been learned and where it is going in the future.« less
NASA Astrophysics Data System (ADS)
Silvestri, Malvina; Musacchio, Massimo; Fabrizia Buongiorno, Maria; Doumaz, Fawzi; Andres Diaz, Jorge
2017-04-01
Monitoring natural hazards such as active volcanoes requires specific instruments to measure many parameters (gas emissions, surface temperatures, surface deformation etc.) to determine the activity level of a volcano. Volcanoes in most cases present difficult and dangerous environment for scientists who need to take in situ measurements. Remote Sensing systems on board of satellite permit to measure a large number of parameters especially during the eruptive events but still show large limits to monitor volcanic precursors and phenomena at local scale (gas species emitted by fumarole or summit craters degassing plumes and surface thermal changes of few degrees) for their specific risk. For such reason unmanned aircraft systems (UAS) mounting a variety of multigas sensors instruments (such as miniature mass spectrometer) or single specie sensors (such as electrochemical and IR sensors) allow a safe monitoring of volcanic activities. With this technology, it is possible to perform monitoring measurements of volcanic activity without risking the lives of scientists and personnel performing analysis during the field campaigns in areas of high volcanic activity and supporting the calibration and validation of satellite data measurements. These systems allowed the acquisition of real-time information such as temperature, pressure, relative humidity, SO2, H2S, CO2 contained in degassing plume and fumaroles, with GPS geolocation. The acquired data are both stored in the sensor and transmitted to a computer for real time viewing information. Information in the form of 3D concentration maps can be returned. The equipment used during the campaigns at Solfatara Volcano (in 2014, 2015 and 2016) was miniaturized instruments allowed measurements conducted either by flying drones over the fumarolic sites and by hand carrying into the fumaroles. We present the results of the field campaign held in different years at the Solfatara of Pozzuoli, near Naples, concerning measurements of CO2, H2S and SO2. The campaigns were carried out in collaboration with the University of Costa Rica and Jet Propulsion Laboratory of the California Institute of Technology (Pasadena, California) and has allowed the acquisition of a number of measures through scientific miniaturized multi-gas, thermal cameras and spectro-radiometer. The acquired measurements have also permitted the calibration and validation of satellite data as ASTER and LANDSAT8 (in collaboration with USGS). We believe that the rapid increasing of technology developments will permit the use UAS to integrate geophysical measurements and contribute to the necessary calibration and validation of current and future satellite missions dedicated to the measurements of surface temperatures and gas emissions in volcanic areas.
Development of a Field-Deployable Methane Carbon Isotope Analyzer
NASA Astrophysics Data System (ADS)
Dong, Feng; Baer, Douglas
2010-05-01
Methane is a potent greenhouse gas, whose atmospheric surface mixing ratio has almost doubled compared with preindustrial values. Methane can be produced by biogenic processes, thermogenic processes or biomass, with different isotopic signatures. As a key molecule involved in the radiative forcing in the atmosphere, methane is thus one of the most important molecules linking the biosphere and atmosphere. Therefore precise measurements of mixing ratios and isotopic compositions will help scientists to better understand methane sources and sinks. To date, high precision isotope measurements have been exclusively performed with conventional isotope ratio mass spectrometry, which involves intensive labor and is not readily field deployable. Optical studies using infrared laser spectroscopy have also been reported to measure the isotopic ratios. However, the precision of optical-based analyses, to date, is typically unsatisfactory without pre-concentration procedures. We present characterization of the performance of a portable Methane Carbon Isotope Analyzer (MCIA), based on cavity enhanced laser absorption spectroscopy technique, that provides in-situ measurements of the carbon isotope ratio (13C/12C or del_13C) and methane mixing ratio (CH4). The sample is introduced to the analyzer directly without any requirement for pretreatment or preconcentration. A typical precision of less than 1 per mill (< 0.1%) with a 10-ppm methane sample can be achieved in a measurement time of less than 100 seconds. The MCIA can report carbon isotope ratio and concentration measurements over a very wide range of methane concentrations. Results of laboratory tests and field measurements will be presented.
Measuring human-induced land subsidence from space
Bawden, Gerald W.; Sneed, M.; Stork, S.V.; Galloway, D.L.
2003-01-01
Satellite Interferometric Synthetic Aperture Radar (InSAR) is a revolutionary technique that allows scientists to measure and map changes on the Earth's surface as small as a few millimeters. By bouncing radar signals off the ground surface from the same point in space but at different times, the radar satellite can measure the change in distance between the satellite and ground (range change) as the land surface uplifts or subsides. Maps of relative ground-surface change (interferograms) are constructed from the InSAR data to help scientists understand how ground-water pumping, hydrocarbon production, or other human activities cause the land surface to uplift or subside. Interferograms developed by the USGS for study areas in California, Nevada, and Texas are used in this fact sheet to demonstrate some of the applications of InSAR to assess human-induced land deformation
ERIC Educational Resources Information Center
Bornmann, Lutz; Haunschild, Robin
2017-01-01
Bibliometrics is successful in measuring impact because the target is clearly defined: the publishing scientist who is still active and working. Thus, citations are a target-oriented metric which measures impact on science. In contrast, societal impact measurements based on altmetrics are as a rule intended to measure impact in a broad sense on…
NASA Astrophysics Data System (ADS)
Guy, Breonte Stephan
The scant literature on persistence of African American males in science typically takes a deficits-based approach to encapsulate the myriad reasons this population is so often underrepresented. Scientist Identity, Mentoring, and Campus Climate have, individually, been found to be related to the persistence of African American students. However, the unified impact of these three variables on the persistence of African American students with science interests has not been evaluated, and the relationship between the variables, the students' gender, and markers of academic achievement have not been previously investigated. The current study takes a strengths-based approach to evaluating the relationship between Scientist Identity, Mentoring, and Campus climate with a population of African American students with science interests who were studying at six Minority Serving Institutions and Predominantly White Institutions in the Southern United States. Multiple regression analyses were conducted to determine the impact of Scientist Identity, Mentoring, and Campus Climate on Intention to Persist of African American males. The results indicate that Scientist Identity predicts Intention to Persist, and that gender, academic performance, and institution type moderate the relationship between Scientist Identity and Intention to Persist. These results lend credence to the emerging notion that, for African American men studying science, generating a greater depth and breadth of understanding of the factors that lead to persistence will aid in the development of best practices for supporting persistence among this perpetually underrepresented population.
2009-07-11
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers ensure the smooth rotation of NASA's Solar Dynamics Observatory, or SDO. After rotation, the SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston
2009-07-11
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers move a work stand into position to hold NASA's Solar Dynamics Observatory, or SDO, in the background. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston
2009-07-11
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers maneuver the position of NASA's Solar Dynamics Observatory, or SDO, after its rotation. The SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston
2009-07-11
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers ensure the smooth rotation of NASA's Solar Dynamics Observatory, or SDO. After rotation, the SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., lower the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin lowering the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., the lowered high-gain antenna on the Solar Dynamics Observatory will allow engineers access to the battery compartment in order to install the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., support the high-gain antenna lowered to allow access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., lower the high-gain antenna on the Solar Dynamics Observatory to gain access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
Coastal zone environment measurements at Sakhalin Island using autonomous mobile robotic system
NASA Astrophysics Data System (ADS)
Tyugin, Dmitry; Kurkin, Andrey; Zaytsev, Andrey; Zeziulin, Denis; Makarov, Vladimir
2017-04-01
To perform continuous complex measurements of environment characteristics in coastal zones autonomous mobile robotic system was built. The main advantage of such system in comparison to manual measurements is an ability to quickly change location of the equipment and start measurements. AMRS allows to transport a set of sensors and appropriate power source for long distances. The equipment installed on the AMRS includes: a modern high-tech ship's radar «Micran» for sea waves measurements, multiparameter platform WXT 520 for weather monitoring, high precision GPS/GLONASS receiver OS-203 for georeferencing, laser scanner platform based on two Sick LMS-511 scanners which can provide 3D distance measurements in up to 80 meters on the AMRS route and rugged designed quad-core fanless computer Matrix MXE-5400 for data collecting and recording. The equipment is controlled by high performance modular software developed specially for the AMRS. During the summer 2016 the experiment was conducted. Measurements took place at the coastal zone of Sakhalin Island (Russia). The measuring system of AMRS was started in automatic mode controlled by the software. As result a lot of data was collected and processed to database. It consists of continuous measurements of the coastal zone including different weather conditions. The most interesting for investigation is a period of three-point storm detected on June, 2, 2016. Further work will relate to data processing of measured environment characteristics and numerical models verification based on the collected data. The presented results of research obtained by the support of the Russian president's scholarship for young scientists and graduate students №SP-193.2015.5
EPA scientists develop Federal Reference & Equivalent Methods for measuring key air pollutants
EPA operates a nationwide air monitoring network to measure six primary air pollutants: carbon monoxide, lead, sulfur dioxide, ozone, nitrogen dioxide, and particulate matter as part of its mission to protect human health and the environment.
ERIC Educational Resources Information Center
Walker, Jearl
1983-01-01
Three physics experiments are described, minimizing difficulties for amateur experimenters. One experiment demonstrates the Doppler shift of light, converting the phenomenon into sound. The second measures Planck's constant. The third measures the universal gravitational constant, which does the same in Newton's theory of gravitation. (Author/JN)
Puljak, Livia; Vukojević, Katarina; Lovrić Kojundžić, Sanja; Sapunar, Damir
2008-01-01
Aim To evaluate publications of clinical and life scientists from research institutions in Split, Croatia, and the publication output from government-funded research projects of the University of Split School of Medicine. Methods We analyzed the number of publications from research institutions in Split, Croatia, in the 2000-2006 period, relative impact factors, predominant research fields, output of researchers from the University of Split School of Medicine receiving government research grants, and the average price of published article. Results From 2000 to 2006, clinical and life scientists published 350 articles indexed in Thomson Scientific database Current Contents. The number of articles increased from 30 in 2000 to 76 in 2006, and the average impact factor of journals where these articles were published increased from 2.03 in 2000 to 2.89 in 2006. Twenty percent of articles (72/350) were published in the Croatian Medical Journal. Principal investigators of the 12 research projects receiving government grants published 0 to 8 articles related to the project topic in the 2002-2006 research grant cycle. The research grantees published 78 original research articles, with an average price per article of € 29.210. Conclusion Although the number and impact factor of research articles published by clinical and life scientists from Split, Croatia, is increasing, it is still low when the number of scientists is taken into account. There should be better mechanisms of control and evaluation of research performance of government-funded research projects. PMID:18461671
Puljak, Livia; Vukojević, Katarina; Lovrić Kojundzić, Sanja; Sapunar, Damir
2008-04-01
To evaluate publications of clinical and life scientists from research institutions in Split, Croatia, and the publication output from government-funded research projects of the University of Split School of Medicine. We analyzed the number of publications from research institutions in Split, Croatia, in the 2000-2006 period, relative impact factors, predominant research fields, output of researchers from the University of Split School of Medicine receiving government research grants, and the average price of published article. From 2000 to 2006, clinical and life scientists published 350 articles indexed in Thomson Scientific database Current Contents. The number of articles increased from 30 in 2000 to 76 in 2006, and the average impact factor of journals where these articles were published increased from 2.03 in 2000 to 2.89 in 2006. Twenty percent of articles (72/350) were published in the Croatian Medical Journal. Principal investigators of the 12 research projects receiving government grants published 0 to 8 articles related to the project topic in the 2002-2006 research grant cycle. The research grantees published 78 original research articles, with an average price per article of euro 29.210 euros. Although the number and impact factor of research articles published by clinical and life scientists from Split, Croatia, is increasing, it is still low when the number of scientists is taken into account. There should be better mechanisms of control and evaluation of research performance of government-funded research projects.
NASA Astrophysics Data System (ADS)
Fowler, R. A.; Repa, J.
2010-12-01
In this presentation we discuss the impetus for, the results of the short and long term effects, and the impacts of the Keller BLOOM Program, hosted by Bigelow Laboratory for Ocean Sciences of West Boothbay Harbor, Maine. Each May, for the last 21 years, 16 bright high school juniors, one from each county in Maine, have been invited to spend five days with the research scientists at the lab conducting and reporting research on the bottom layers of the ocean’s food chain: phytoplankton and zooplankton. Bigelow has chosen to evaluate BLOOM through a series of questionnaires delivered during the program, and long term tracking of participants after the program, in order to better understand the impact of the program on participants. The short term effect of the experience, measured at the end of the week, found that participants are able to: 1) develop testable research questions, 2) collect multiple water samples from a local estuary, 3) measure various characteristics of those samples with the sophisticated instruments in Bigelow’s labs assisted by their research scientists, 4) analyze and integrate the results from the various labs, and 5) present their findings to a non-scientific audience. To measure long term participation effects, a random sample of 40 of the 332 participants were interviewed resulting in the following findings: 100% attend college; 62% have STEM majors; 88% graduate from college; 57% pursue STEM careers; and 60% live and work in Maine. Bigelow scientists include a description of the BLOOM Program and the evaluation results in their NSF Broader Impacts statements to demonstrate that their research activities are being integrated into a successful STEM education program. Evaluation results are also used by Bigelow scientists and program administrators to refine program content and delivery, to promote the program to potential applicants, and to strengthen proposals to funding agencies when seeking financial support for BLOOM.
Scientists feature their work in Arctic-focused short videos by FrontierScientists
NASA Astrophysics Data System (ADS)
Nielsen, L.; O'Connell, E.
2013-12-01
Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus on presenting what they're passionate about, not get bogged down by basic groundwork. Vlogs and short video bios showcase the enthusiasm and personality of the scientists, an important ingredient in crafting compelling videos. Featured scientists become better communicators, and learn to bring their research to life. When viewers see that genuine wonder, they can be motivated to ask questions and pursue more information about the topic, broadening community participation. The website interface opens the door to audience discussion. Digital media is a community builder, an inclusive tool that lets people continents-apart engage with compelling stories and then interact. Internet videos have become a means of supplementing face-to-face education; video reaches people, it's informal self-education from the comfort of one's own computer screen. FS uses videos and social media as part of an education outreach effort directed at lifelong learners. We feature not only scientists, but also teachers who've gone into the field to add to their own science knowledge, and to bring back new lessons for their students. Students who are exposed to FS videos see science in action in the professional world, which might inspire them in a STEM academic and career path, encouraging the next generation of researchers, as well as scientific and environmental literacy.
Communicating risk information and warnings
Mileti, D. S.
1990-01-01
Major advances have occurred over the last 20 years about how to effectively communicate risk information and warnings to the public. These lessons have been hard won. Knowledge has mounted on the finding from social scientific studies of risk communication failures, successes and those which fell somewhere in between. Moreover, the last 2 decades have borne witness to the brith, cultivation, and blossoming of information sharing between those physical scientists who discover new information about risk and those communcation scientists who trace its diffusion and then measure pbulic reaction.
2009-08-11
CAPE CANAVERAL, Fla. – At the Astrotech Space Operations facility in Titusville, Fla., workers in the control room monitor the data on computer screens from the movement of the high-gain antenna on the Solar Dynamics Observatory, or SDO. The SDO is undergoing performance testing. All of the spacecraft science instruments are being tested in their last major evaluation before launch. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Liftoff on an Atlas V rocket is scheduled for Dec. 4. Photo credit: NASA/Jack Pfaller
2012-06-23
CAPE CANAVERAL, Fla. – Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians line up the Radiation Belt Storm Probes, or RBSP, spacecraft A over an electromagnetic source in order to perform a magnetic swing test. The magnetic swing test is performed to characterize the magnetic signature of the spacecraft so that when it is taking measurements with its sensors in space scientists can subtract out background noise from the spacecraft itself. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-06-23
CAPE CANAVERAL, Fla. – Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians line up the Radiation Belt Storm Probes, or RBSP, spacecraft A over an electromagnetic source in order to perform a magnetic swing test. The magnetic swing test is performed to characterize the magnetic signature of the spacecraft so that when it is taking measurements with its sensors in space scientists can subtract out background noise from the spacecraft itself. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-06-23
CAPE CANAVERAL, Fla. – Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians line up the Radiation Belt Storm Probes, or RBSP, spacecraft A over an electromagnetic source in order to perform a magnetic swing test. The magnetic swing test is performed to characterize the magnetic signature of the spacecraft so that when it is taking measurements with its sensors in space scientists can subtract out background noise from the spacecraft itself. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-06-23
CAPE CANAVERAL, Fla. – Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians line up the Radiation Belt Storm Probes, or RBSP, spacecraft A over an electromagnetic source in order to perform a magnetic swing test. The magnetic swing test is performed to characterize the magnetic signature of the spacecraft so that when it is taking measurements with its sensors in space scientists can subtract out background noise from the spacecraft itself. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-06-23
CAPE CANAVERAL, Fla. – Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians line up the Radiation Belt Storm Probes, or RBSP, spacecraft A over an electromagnetic source in order to perform a magnetic swing test. The magnetic swing test is performed to characterize the magnetic signature of the spacecraft so that when it is taking measurements with its sensors in space scientists can subtract out background noise from the spacecraft itself. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard a United Launch Alliance Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
The National Enforcement Investigation Center (NEIC) Environmental Forensic Library partners with NEIC's forensic scientists to retrieve, validate and deliver information to develop methods, defensible regulations, and environmental measurements.
Oxygen - Enemy or Friend for Microbial Fuel Cell Anode Performance?
USDA-ARS?s Scientific Manuscript database
Until recently, scientists and engineers have held a strong belief that oxygen intrusion into the anode chamber of a bioelectrochemical system (BES) is detrimental to microbial fuel cell (MFC) performance because oxygen acts as an alternate electron acceptor. This would, according to recent beliefs...
Modern Replication of Eratosthenes' Measurement of the Circumference of Earth
ERIC Educational Resources Information Center
Longhorn, Morgana; Hughes, Stephen
2015-01-01
Twenty-two hundred years ago, the Greek scientist Eratosthenes measured the circumference of the Earth. This paper describes an experiment to replicate Eratosthenes' experiment with observers located in Australia and New Zealand. The most accurate circumference produced in the experiment described in this paper is 38,874?km, measured at Rosebud,…
A Unified Approach to Measurement Error and Missing Data: Overview and Applications
ERIC Educational Resources Information Center
Blackwell, Matthew; Honaker, James; King, Gary
2017-01-01
Although social scientists devote considerable effort to mitigating measurement error during data collection, they often ignore the issue during data analysis. And although many statistical methods have been proposed for reducing measurement error-induced biases, few have been widely used because of implausible assumptions, high levels of model…
A tutorial on the use of ROC analysis for computer-aided diagnostic systems.
Scheipers, Ulrich; Perrey, Christian; Siebers, Stefan; Hansen, Christian; Ermert, Helmut
2005-07-01
The application of the receiver operating characteristic (ROC) curve for computer-aided diagnostic systems is reviewed. A statistical framework is presented and different methods of evaluating the classification performance of computer-aided diagnostic systems, and, in particular, systems for ultrasonic tissue characterization, are derived. Most classifiers that are used today are dependent on a separation threshold, which can be chosen freely in many cases. The separation threshold separates the range of output values of the classification system into different target groups, thus conducting the actual classification process. In the first part of this paper, threshold specific performance measures, e.g., sensitivity and specificity, are presented. In the second part, a threshold-independent performance measure, the area under the ROC curve, is reviewed. Only the use of separation threshold-independent performance measures provides classification results that are overall representative for computer-aided diagnostic systems. The following text was motivated by the lack of a complete and definite discussion of the underlying subject in available textbooks, references and publications. Most manuscripts published so far address the theme of performance evaluation using ROC analysis in a manner too general to be practical for everyday use in the development of computer-aided diagnostic systems. Nowadays, the user of computer-aided diagnostic systems typically handles huge amounts of numerical data, not always distributed normally. Many assumptions made in more or less theoretical works on ROC analysis are no longer valid for real-life data. The paper aims at closing the gap between theoretical works and real-life data. The review provides the interested scientist with information needed to conduct ROC analysis and to integrate algorithms performing ROC analysis into classification systems while understanding the basic principles of classification.
A Comprehensive Career-Success Model for Physician-Scientists
Rubio, Doris M.; Primack, Brian A.; Switzer, Galen E.; Bryce, Cindy L.; Seltzer, Deborah L.; Kapoor, Wishwa N.
2011-01-01
With today’s focus on the translation of basic science discoveries into clinical practice, the demand for physician-scientists is growing. Yet, physicians have always found it challenging to juggle the demands of clinical care with the time required to perform research. The Research on Careers Workgroup of the Institute for Clinical Research Education at the University of Pittsburgh developed a comprehensive model for career success that would address, and allow for the evaluation of, the personal factors, organizational factors, and their interplay that contribute to career success. With this model, leaders of training programs could identify early opportunities for intervening with potential physician-scientists to ensure career success. Through an iterative process described in this article, the authors identified and examined potential models for career success from the literature, added other elements determined to be significant, and developed a comprehensive model to assess factors associated with career success for physician-scientists. The authors also present examples of ways in which this model can be adapted and applied to specific situations to assess the effects of different factors on career success. PMID:22030759
A comprehensive career-success model for physician-scientists.
Rubio, Doris M; Primack, Brian A; Switzer, Galen E; Bryce, Cindy L; Seltzer, Deborah L; Kapoor, Wishwa N
2011-12-01
With today's focus on the translation of basic science discoveries into clinical practice, the demand for physician-scientists is growing. Yet, physicians have always found it challenging to juggle the demands of clinical care with the time required to perform research. The Research on Careers Workgroup of the Institute for Clinical Research Education at the University of Pittsburgh developed a comprehensive model for career success that would address, and allow for the evaluation of, the personal factors, organizational factors, and their interplay that contribute to career success. With this model, leaders of training programs could identify early opportunities for intervening with potential physician-scientists to ensure career success. Through an iterative process described in this article, the authors identified and examined potential models for career success from the literature, added other elements determined to be significant, and developed a comprehensive model to assess factors associated with career success for physician-scientists. The authors also present examples of ways in which this model can be adapted and applied to specific situations to assess the effects of different factors on career success.
The iPlant Collaborative: Cyberinfrastructure for Plant Biology.
Goff, Stephen A; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B S; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M; Cranston, Karen A; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J; White, Jeffery W; Leebens-Mack, James; Donoghue, Michael J; Spalding, Edgar P; Vision, Todd J; Myers, Christopher R; Lowenthal, David; Enquist, Brian J; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan
2011-01-01
The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services.
The iPlant Collaborative: Cyberinfrastructure for Plant Biology
Goff, Stephen A.; Vaughn, Matthew; McKay, Sheldon; Lyons, Eric; Stapleton, Ann E.; Gessler, Damian; Matasci, Naim; Wang, Liya; Hanlon, Matthew; Lenards, Andrew; Muir, Andy; Merchant, Nirav; Lowry, Sonya; Mock, Stephen; Helmke, Matthew; Kubach, Adam; Narro, Martha; Hopkins, Nicole; Micklos, David; Hilgert, Uwe; Gonzales, Michael; Jordan, Chris; Skidmore, Edwin; Dooley, Rion; Cazes, John; McLay, Robert; Lu, Zhenyuan; Pasternak, Shiran; Koesterke, Lars; Piel, William H.; Grene, Ruth; Noutsos, Christos; Gendler, Karla; Feng, Xin; Tang, Chunlao; Lent, Monica; Kim, Seung-Jin; Kvilekval, Kristian; Manjunath, B. S.; Tannen, Val; Stamatakis, Alexandros; Sanderson, Michael; Welch, Stephen M.; Cranston, Karen A.; Soltis, Pamela; Soltis, Doug; O'Meara, Brian; Ane, Cecile; Brutnell, Tom; Kleibenstein, Daniel J.; White, Jeffery W.; Leebens-Mack, James; Donoghue, Michael J.; Spalding, Edgar P.; Vision, Todd J.; Myers, Christopher R.; Lowenthal, David; Enquist, Brian J.; Boyle, Brad; Akoglu, Ali; Andrews, Greg; Ram, Sudha; Ware, Doreen; Stein, Lincoln; Stanzione, Dan
2011-01-01
The iPlant Collaborative (iPlant) is a United States National Science Foundation (NSF) funded project that aims to create an innovative, comprehensive, and foundational cyberinfrastructure in support of plant biology research (PSCIC, 2006). iPlant is developing cyberinfrastructure that uniquely enables scientists throughout the diverse fields that comprise plant biology to address Grand Challenges in new ways, to stimulate and facilitate cross-disciplinary research, to promote biology and computer science research interactions, and to train the next generation of scientists on the use of cyberinfrastructure in research and education. Meeting humanity's projected demands for agricultural and forest products and the expectation that natural ecosystems be managed sustainably will require synergies from the application of information technologies. The iPlant cyberinfrastructure design is based on an unprecedented period of research community input, and leverages developments in high-performance computing, data storage, and cyberinfrastructure for the physical sciences. iPlant is an open-source project with application programming interfaces that allow the community to extend the infrastructure to meet its needs. iPlant is sponsoring community-driven workshops addressing specific scientific questions via analysis tool integration and hypothesis testing. These workshops teach researchers how to add bioinformatics tools and/or datasets into the iPlant cyberinfrastructure enabling plant scientists to perform complex analyses on large datasets without the need to master the command-line or high-performance computational services. PMID:22645531
ArrayBridge: Interweaving declarative array processing with high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros
Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less
NASA Astrophysics Data System (ADS)
Skinner, Ellen; Saxton, Emily; Currie, Cailin; Shusterman, Gwen
2017-11-01
As part of long-standing efforts to promote undergraduates' success in science, researchers have investigated the instructional strategies and motivational factors that promote student learning and persistence in science coursework and majors. This study aimed to create a set of brief measures that educators and researchers can use as tools to examine the undergraduate motivational experience in science classes. To identify key motivational processes, we drew on self-determination theory (SDT), which holds that students have fundamental needs - to feel competent, related, and autonomous - that fuel their intrinsic motivation. When educational experiences meet these needs, students engage more energetically and learn more, cumulatively contributing to a positive identity as a scientist. Based on information provided by 1013 students from 8 classes in biology, chemistry, and physics, we constructed conceptually focused and psychometrically sound survey measures of three sets of motivational factors: (1) students' appraisals of their own competence, autonomy, and relatedness; (2) the quality of students' behavioural and emotional engagement in academic work; and (3) students' emerging identities as scientists, including their science identity, purpose in science, and science career plans. Using an iterative confirmatory process, we tested short item sets for unidimensionality and internal consistency, and then cross-validated them. Tests of measurement invariance showed that scales were generally comparable across disciplines. Most importantly, scales and final course grades showed correlations consistent with predictions from SDT. These measures may provide a window on the student motivational experience for educators, researchers, and interventionists who aim to improve the quality of undergraduate science teaching and learning.
Interactive information processing for NASA's mesoscale analysis and space sensor program
NASA Technical Reports Server (NTRS)
Parker, K. G.; Maclean, L.; Reavis, N.; Wilson, G.; Hickey, J. S.; Dickerson, M.; Karitani, S.; Keller, D.
1985-01-01
The Atmospheric Sciences Division (ASD) of the Systems Dynamics Laboratory at NASA's Marshall Space Flight Center (MSFC) is currently involved in interactive information processing for the Mesoscale Analysis and Space Sensor (MASS) program. Specifically, the ASD is engaged in the development and implementation of new space-borne remote sensing technology to observe and measure mesoscale atmospheric processes. These space measurements and conventional observational data are being processed together to gain an improved understanding of the mesoscale structure and the dynamical evolution of the atmosphere relative to cloud development and precipitation processes. To satisfy its vast data processing requirements, the ASD has developed a Researcher Computer System consiting of three primary computer systems which provides over 20 scientists with a wide range of capabilities for processing and displaying a large volumes of remote sensing data. Each of the computers performs a specific function according to its unique capabilities.
Braginsky, V. B.
2007-01-01
It is reasonable to regard the experiments performed by C. Coulomb and H. Cavendish in the end of the 18th century as the beginning of laboratory experimental physics. These outstanding scientists have measured forces (accelerations) produced by electric charges and by gravitational “charges” on probe masses that were attached to torque balance. Among the variety of different research programs and projects existing today, experiments with probe masses are still playing an important role. In this short review, the achieved and planned sensitivities of very challenging LIGO (Laser Interferometer Gravitational wave Observatory) and LISA (Laser Interferometer Space Antennae) projects are described, and a list of nonsolved problems is discussed as well. The role of quantum fluctuations in high precision measurements is also outlined. Apart from these main topics, the limitations of sensitivity caused by cosmic rays and the prospects of clock frequency stability are presented. PMID:17296944
Quality Control and Calibration of the Dual-Polarization Radar at Kwajalein, RMI
NASA Technical Reports Server (NTRS)
Marks, David A.; Wolff, David B.; Carey, Lawrence D.; Tokay, Ali
2010-01-01
Weather radars, recording information about precipitation around the globe, will soon be significantly upgraded. Most of today s weather radars transmit and receive microwave energy with horizontal orientation only, but upgraded systems have the capability to send and receive both horizontally and vertically oriented waves. These enhanced "dual-polarimetric" (DP) radars peer into precipitation and provide information on the size, shape, phase (liquid / frozen), and concentration of the falling particles (termed hydrometeors). This information is valuable for improved rain rate estimates, and for providing data on the release and absorption of heat in the atmosphere from condensation and evaporation (phase changes). The heating profiles in the atmosphere influence global circulation, and are a vital component in studies of Earth s changing climate. However, to provide the most accurate interpretation of radar data, the radar must be properly calibrated and data must be quality controlled (cleaned) to remove non-precipitation artifacts; both of which are challenging tasks for today s weather radar. The DP capability maximizes performance of these procedures using properties of the observed precipitation. In a notable paper published in 2005, scientists from the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) at the University of Oklahoma developed a method to calibrate radars using statistically averaged DP measurements within light rain. An additional publication by one of the same scientists at the National Severe Storms Laboratory (NSSL) in Norman, Oklahoma introduced several techniques to perform quality control of radar data using DP measurements. Following their lead, the Topical Rainfall Measuring Mission (TRMM) Satellite Validation Office at NASA s Goddard Space Flight Center has fine-tuned these methods for specific application to the weather radar at Kwajalein Island in the Republic of the Marshall Islands, approximately 2100 miles southwest of Hawaii and 1400 miles east of Guam in the tropical North Pacific Ocean. This tropical oceanic location is important because the majority of rain, and therefore the majority of atmospheric heating, occurs in the tropics where limited ground-based radar data are available.
Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.
NASA Technical Reports Server (NTRS)
Caplan, R. D.
1971-01-01
It is hypothesized that organizational stresses, such as high quantitative work load, responsibility for persons, poor relations with role senders, and contact with alien organizational territories, may be associated with high levels of psychological and physiological strain which are risk factors in coronary heart disease. It is further hypothesized that persons with coronary-prone Type A personality characteristics are most likely to exhibit strain under conditions of organizational stress. Measures of these stresses, personality traits, and strains were obtained from 205 male NASA administrators, engineers, and scientists. Type A personality measures included sense of time urgency, persistence, involved striving, leadership, and preference for competitive and environmentally overburdening situations.
Mixed Methods: Incorporating multiple learning styles into a measurements course
NASA Astrophysics Data System (ADS)
Pallone, Arthur
2010-03-01
The best scientists and engineers regularly combine creative and critical skill sets. As faculty, we are responsible to provide future scientists and engineers with those skills sets. EGR 390: Engineering Measurements at Murray State University is structured to actively engage students in the processes that develop and enhance those skills. Students learn through a mix of traditional lecture and homework, active discussion of open-ended questions, small group activities, structured laboratory exercises, oral and written communications exercises, student chosen team projects, and peer evaluations. Examples of each of these activities, the skill set addressed by each activity, outcomes from and effectiveness of each activity and recommendations for future directions in the EGR 390 course as designed will be presented.
Measurement of Scientific Productivity in R&D Sector: Changing paradigm.
Kumar, Abhishek; Srivastava, Alpana; Kumar, R P Jeevan; Tiwari, Rajesh K
2017-01-01
Scientific Productivity is a demand of policy makers for a judicious utilization of massive R&D budget allocated and utilized. A huge mass of intellectual assets is employed, which after investing manpower, infrastructure and lab consumables demand for a major outcome which contributes towards building nation's economy. Scientific productivity was only measured through publications or patents. Patents, earmarked as a strong parameter for innovation generation, where, Word Intellectual Property Organisation generated a data on applications for the top 20 offices for patents, where Australia, Brazil and Canada occupied top 3 positions. India ranked 9th with the total patent applications rising from 39762 (2010) to 42854 (2014) i.e. 15%, whereas, it contributes around 2% Patents (innovative productivity) on global scale. Many studies have come forward interestingly within scientific and academic domains in the form of measurement of scientific performance, however, development of productivity indicators and calculation of Scientific Productivity (SP) as a holistic evaluation system is a significant demand. SP, a herculean task is envisaged for productivity analysis and would submit significant factors towards fabricating an effective measurement engine in a holistic manner viable for an individual and organization, being supplementary to each other. This review projects the significance of performance measurement system in R&D through identification and standardization of key parameters. It also includes emphasis on inclusion of standardized parameters, effective for performance measurement which is applicable for scientists, technical staff as well as lab as a facility. This review aims at providing an insight to the evaluators, policy makers, and high level scientific panels to stimulate the scientific intellects on identified indicators so that their work proceeds to generate productive outcome contributing to the economic growth. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Scientists' opinions on the global status and management of biological diversity.
Rudd, Murray A
2011-12-01
The large investments needed if loss of biological diversity is to be stemmed will likely lead to increased public and political scrutiny of conservation strategies and the science underlying them. It is therefore crucial to understand the degree of consensus or divergence among scientists on core scientific perceptions and strategies most likely to achieve given objectives. I developed an internet survey designed to elucidate the opinions of conservation scientists. Conservation scientists (n =583) were unanimous (99.5%) in their view that a serious loss of biological diversity is likely, very likely, or virtually certain. Scientists' agreement that serious loss is very likely or virtually certain ranged from 72.8% for Western Europe to 90.9% for Southeast Asia. Tropical coral ecosystems were perceived as the most seriously affected by loss of biological diversity; 88.0% of respondents familiar with that ecosystem type agreed that a serious loss is very likely or virtually certain. With regard to conservation strategies, scientists most often viewed understanding how people and nature interact in certain contexts and the role of biological diversity in maintaining ecosystem function as their priorities. Protection of biological diversity for its cultural and spiritual values and because of its usefulness to humans were low priorities, which suggests that many scientists do not fully support the utilitarian concept of ecosystem services. Many scientists expressed a willingness to consider conservation triage, engage in active conservation interventions, and consider reframing conservation goals and measures of success for conservation of biological diversity in an era of climate change. Although some heterogeneity of opinion is evident, results of the survey show a clear consensus within the scientific community on core issues of the extent and geographic scope of loss of biological diversity and on elements that may contribute to successful conservation strategies in the future. ©2011 Society for Conservation Biology.
Chemical and Isotopic Exploration: A Tale of Two Telepresence-Enabled Cruises
NASA Astrophysics Data System (ADS)
Wankel, S. D.; Michel, A.
2016-02-01
Ocean exploration has traditionally required a large team of shipboard scientists for quick decision-making as well as for sample handling and processing tasks. However, with the development of new field-going in situ sensors for chemical oceanography, comes the capability of making measurements in the deep ocean without the need for sample collection, processing and laboratory analysis. Through our participation in two cruises aboard the E/V Nautilus, we tested a new model for ocean exploration using Telepresence technology for making chemical analyses in the deep ocean with a laser spectrometer designed for in situ analyses of methane and carbon dioxide. In 2014, we used the E/V Nautilus and ROV Hercules to explore the chemical and isotopic composition of fluids and bubbles in the crater of the Kick `Em Jenny volcano ( 180m depth) just northwest off the island of Grenada. In 2015, we carried out exploration of a mud volcano/brine pool in the western Gulf of Mexico ( 1300m depth). For our focused chemical explorations in 2014, one scientist was shipboard while two were ashore at the Inner Space Center at the University of Rhode Island. Decisions concerning instrument parameters, sampling strategies and data collection and management were all carried out through this two-way remote operation scheme, while the shipboard scientist was responsible for all deployments, maintenance, and troubleshooting technical issues with instrumentation. In comparison, in 2015, two scientists were shipboard. Here we compare the successes and challenges of using Telepresence for chemical exploration. In addition, we detail our interactions with scientists, educators, and interested citizens ashore. The use of Telepresence enhanced both science communication, by enabling direct scientist-to-scientist interactions and decision-making, and science education, through broad participation of a global audience. As in situ chemical sensing advances, telepresence promises to increase engagement of a broader team of scientists ashore.
NASA Astrophysics Data System (ADS)
Vincent, E. M.
2016-12-01
The public remains largely unaware of the pervasive impacts of climate change and this has been commonly attributed to the often inaccurate or misleading reporting of climate issues by mainstream media. Given the large influence of the media, using scientists' outreach time to try and improve the accuracy of climate news is an impactful leverage towards supporting science-based policies about climate change. Climate Feedback is a worldwide network of scientists who are working with journalists and editors to improve the accuracy of climate reporting. When a breaking climate news gets published, Climate Feedback invites scientists to collectively review the scientific credibility of the story using a method based on critical thinking theory that measures its accuracy, reasoning and objectivity. The use of web-annotation allows scientists with complementary expertise to collectively review the article and allows readers and authors to see precisely where and why the coverage is -or is not- based on science. Building on these reviews, we highlight best practices to help journalists and editors create more accurate content and share pedagogical resources to help readers identify claims that are consistent with current scientific knowledge and find the most reliable sources of information. In this talk, we will present the results we have obtained so far, which includes 1) identifying the most common pitfalls scientists have reported in climate coverage and 2) identifying the first trends and impacts of our actions. Beyond the publication of simply inaccurate information, we identified more subtle issues such as misrepresenting sources (either scientists or studies), lack of context or understanding of scientific concepts, logical flaws, over-hyping results/exaggeration... Our results increasingly allow to highlight that certain news sources (outlets, journalists, editors) are generally more trustworthy than others and we will show how some news outlets now take scientists' advices into account.
'Contact' in Space Leads to New Lenses
NASA Technical Reports Server (NTRS)
2004-01-01
While gravity has its advantages in keeping us balanced and grounded here on Earth, scientists often find that they are at a disadvantage when trying to conduct research under its powerful, pulling influence. In these instances, the scientists prefer performing their studies in the weightless atmosphere of microgravity, where gravity is greatly reduced and solids, liquids, and gases behave differently. In 1993, Paragon Vision Sciences, Inc., of Mesa, Arizona, participated in a research project with NASA's Langley Research Center to perfect a process for developing contact lenses. The project called for three experiments that would fly onboard the Space Shuttle over the course of three separate missions, from 1993 to 1996. By unleashing contact lens materials to the microgravity settings of space, scientists from NASA and Paragon hoped to better understand how polymers - large molecules that make up plastics - are formed.
Drug discovery management, small is still beautiful: Why a number of companies get it wrong.
Knutsen, Lars J S
2011-06-01
This review provides an account of why more companies involved in drug discovery fail than succeed at releasing the creative energy of gifted scientists, whose invention of new drugs they rely upon to remain at the forefront of the biopharma industry. Initiatives aimed at improving output of new chemical entities often have the opposite effect from that intended and scientists become demotivated. Those with drive, vision and enthusiasm may move to smaller companies to rediscover the spirit of discovery. Some executives fail to understand the psyche of researchers; an applied understanding of the intrinsic motivation of scientists would improve research performance. Entities that focus on smaller autonomous units and sound ethical values will discover the most innovative and successful new drugs. Copyright © 2011 Elsevier Ltd. All rights reserved.
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/ shown here: Monika Kress, Professor of Astronomy at San Jose State University
[Project HRANAFINA--Croatian anatomical and physiological terminology].
Vodanović, Marin
2012-01-01
HRANAFINA--Croatian Anatomical and Physiological Terminology is a project of the University of Zagreb School of Dental Medicine funded by the Croatian Science Foundation. It is performed in cooperation with other Croatian universities with medical schools. This project has a two-pronged aim: firstly, building of Croatian anatomical and physiological terminology and secondly, Croatian anatomical and physiological terminology usage popularization between health professionals, medical students, scientists and translators. Internationally recognized experts from Croatian universities with medical faculties and linguistics experts are involved in the project. All project activities are coordinated in agreement with the National Coordinator for Development of Croatian Professional Terminology. The project enhances Croatian professional terminology and Croatian language in general, increases competitiveness of Croatian scientists on international level and facilitates the involvement of Croatian scientists, health care providers and medical students in European projects.
[The role of world opinion in rescuing Krakow scientists involved in the "Sonderaktion Krakau"].
Bolewski, A
1998-01-01
The Author, participant and victim of the "Sonderaktion Krakau", remembers circumstances of insidious imprisonment of Krakow professors performed on November 6, 1939 by SS Operation Group under command of SS-Stumbannführer Bruno Müller. Based on archival research and relations of the participants of this action, he reconstructs fate of the imprisoned scientists and he analyses activities of political, governmental and diplomatic centers in Poland and particularly abroad towards liberation of the prisoners. A significant role in this international action was played by foreign scientific centers and universities as well as world press agencies. Due to this multinational solidarity, only 20 person out of 183 scientists imprisoned in the Sachsenhausen and Dachau Nazi camps lost their lives. The article is supplemented by a list of publications on the "Sonderaktion Krakau" written by ex-prisoners.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Barclay, Rebecca O.; Glassman, Myron; Oliu, Walter E.
1990-01-01
This paper is based on the premise that scientific and technical information (STI), its use by aerospace engineers and scientists, and the aerospace research and development (R&D) process are related. We intend to support this premise with data gathered from numerous studies concerned with STI, the relationship of STI to the performance and management of R&D activities, and the information use and seeking behavior of engineers in general and aerospace engineers and scientists in particular. We intend to develop and present a synthesized appreciation of how aerospace R&D managers can improve the efficacy of the R&D process by understanding the role and value of STI in this process.
Teaching method validation in the clinical laboratory science curriculum.
Moon, Tara C; Legrys, Vicky A
2008-01-01
With the Clinical Laboratory Improvement Amendment's (CLIA) final rule, the ability of the Clinical Laboratory Scientist (CLS) to perform method validation has become increasingly important. Knowledge of the statistical methods and procedures used in method validation is imperative for clinical laboratory scientists. However, incorporating these concepts in a CLS curriculum can be challenging, especially at a time of limited resources. This paper provides an outline of one approach to addressing these topics in lecture courses and integrating them in the student laboratory and the clinical practicum for direct application.
Live from Antarctica: Then and now
NASA Astrophysics Data System (ADS)
This real-time educational video series, featuring Camille Jennings from Maryland Public Television, includes information from Antarctic scientists and interactive discussion between the scientists and school children from both Maryland and Hawaii. This is part of a 'Passport to Knowledge Special' series. In this part of the four part Antarctic series, the history of Antarctica from its founding to the present, its mammals, plants, and other life forms are shown and discussed. The importance of Antarctica as a research facility is explained, along with different experiments and research that the facilities there perform.
Live from Antarctica: Then and Now
NASA Technical Reports Server (NTRS)
1994-01-01
This real-time educational video series, featuring Camille Jennings from Maryland Public Television, includes information from Antarctic scientists and interactive discussion between the scientists and school children from both Maryland and Hawaii. This is part of a 'Passport to Knowledge Special' series. In this part of the four part Antarctic series, the history of Antarctica from its founding to the present, its mammals, plants, and other life forms are shown and discussed. The importance of Antarctica as a research facility is explained, along with different experiments and research that the facilities there perform.
Accessible microscopy workstation for students and scientists with mobility impairments.
Duerstock, Bradley S
2006-01-01
An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for undergraduate science courses to graduate-level research. An accessible microscope is necessary for students and scientists with mobility impairments to be able to use a microscope independently to better understand microscopical imaging concepts and cell biology. This knowledge is not always apparent by simply viewing a catalog of histological images. The ability to operate a microscope independently eliminates the need to hire an assistant or rely on a classmate and permits one to take practical laboratory examinations by oneself. Independent microscope handling is also crucial for graduate students and scientists with disabilities to perform scientific research. By making a personal computer as the user interface for controlling AccessScope functions, different upper limb mobility impairments could be accommodated by using various computer input devices and assistive technology software. Participants with a range of upper limb mobility impairments evaluated the prototype microscopy workstation. They were able to control all microscopy functions including loading different slides without assistance.
Guarner, Jeannette; Street, Cassandra; Matlock, Margaret; Cole, Lisa; Brierre, Francoise
2017-03-01
Consolidation of laboratories has left many hospitals and satellite laboratories with minimal microbiologic testing. In many hospitals and satellite laboratories, Gram stains on primary specimens are still performed despite difficultly in maintaining proficiency. To maintain Gram stain proficiency at a community 450-bed hospital with an active emergency room we designed bimonthly challenges that require reporting Gram staining and morphology of different organisms. The challenges consist of five specimens prepared by the reference microbiology laboratory from cultures and primary specimens. Twenty to 23 medical laboratory scientists participate reading the challenges. Results from the challenges are discussed with each medical laboratory scientists. In addition, printed images from the challenges are presented at huddle to add microbiology knowledge. On the first three challenges, Gram staining was read correctly in 71%-77% of the time while morphology 53%-66%. In the last six challenges correct answers for Gram stain were 77%-99% while morphology 73%-96%. We observed statistically significant improvement when reading Gram stains by providing frequent challenges to medical laboratory scientists. The clinical importance of Gram stain results is emphasized during huddle presentations increasing knowledge and motivation to perform the test for patients.
What do primary students know about science, scientists and how they do their work?
NASA Astrophysics Data System (ADS)
Bartels, Selina L.
The teaching of scientific literacy is the primary goal of elementary science education. Scientific literacy is composed of the overall understanding of what science is and how scientific knowledge is developed. The purpose of this study was to see if elementary students' understandings of science, scientists and how scientists do their work changes from grade one to grade five of elementary school. Furthermore, the study attempts to determine whether there is a difference in scientific literacy between students taught using a textbook curriculum versus a kit-based curriculum. The study draws on a sample of 338 students from 18 different classrooms situated in six different schools in both urban and suburban areas of a large Midwestern city. Students' understandings of science, scientists and how they do their work was measured through a valid and reliable oral protocol entitled Young Children's Views of Science (YCVS) (Lederman, J., Bartels, Lederman, & Ganankkan, 2014). The YCVS assesses students' understandings of the aspects of scientific inquiry (SI) and the nature of science (NOS) that young elementary students are able to understand. These aspects are; science, scientists, multiple methods, observation/inference, begins with a question, empirical, subjectivity, tentativeness and creativity. The YCVS was administered orally for grade one students, and a paper-and-pencil version was given to grades three and five. Results indicated that there are very few gains in NOS and SI understandings between grades one and five in the schools included in this study. None of the schools in this study made significant gains for all of the nine aspects measured in this study. Examining curriculum's affect on NOS and SI understandings, understanding of only one aspect was significantly impacted by curriculum differences. Subjectivity understanding was impacted by kit-based instruction. Overall, students' understandings of science, scientists and how they do their work did not significantly change from grade one to grade five regardless of what type of curriculum they followed. This study shows that students' scientific literacy is not being developed throughout elementary school. Therefore, the teaching of scientific literacy in an explicit and reflective manner should be the focus of preservice elementary school education.
Analysis of Publications and Citations from a Geophysics Research Institute.
ERIC Educational Resources Information Center
Frohlich, Cliff; Resler, Lynn
2001-01-01
Performs an analysis of all 1128 publications produced by scientists during their employment at the University of Texas Institute for Geophysics, thus assessing research performance using as bibliometric indicators such statistics as publications per year, citations per paper, and cited half-lives. Evaluates five different methods for determining…
Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide
This study reports on the performance of electrochemical-based low-cost sensors and their use in a community application. CairClip sensors were collocated with federal reference and equivalent methods and operated in a network of sites by citizen scientists (community members) in...
Development of Performance Assessments in Science: Conceptual, Practical, and Logistical Issues.
ERIC Educational Resources Information Center
Solano-Flores, Guillermo; Shavelson, Richard J.
1997-01-01
Conceptual, practical, and logistical issues in the development of science performance assessments (SPAs) are discussed. The conceptual framework identifies task, response format, and scoring system as components, and conceives of SPAs as tasks that attempt to recreate conditions in which scientists work. Developing SPAs is a sophisticated effort…
Key Principles of Open Motor-Skill Training for Peak Performance
ERIC Educational Resources Information Center
Wang, Jin
2016-01-01
Motor-skill training is an imperative element contributing to overall sport performance. In order to help coaches, athletes and practitioners to capture the characteristics of motor skills, sport scientists have divided motor skills into different categories, such as open versus closed, serial or discrete, outcome- or process-oriented, and…
... ctrl+c to copy Additional Drug Facts NIDA Science Spotlight- Cannabis Effects on Driving Performance View the ... to First FDA-Approved Medication for Opioid Withdrawal Science Highlight Scientists discover path to better pain medicines ...
Atoms to Ecosystems: A Workshop for Science Journalists
NASA Astrophysics Data System (ADS)
Saltzman, J.; Bowman, C.; Brown, G. E.; Foster, A. L.; Nilsson, A.; Spormann, A. M.
2006-12-01
The Stanford Environmental Molecular Environmental Institute (EMSI) hosted a two-day workshop entitled "Atoms to Ecosystems: Effects of Contaminants on Humans & the Environment" for thirteen science journalists in June 2006. Reporters from local newspapers, freelance writers, and writers from university publications learned about the innovative research of four EMSI scientists and discussed the challenges of reporting on cutting-edge research. Through lectures, a lab tour, and discussions, the journalists and scientists had a very positive experience of learning from each other. The main topics were mercury, arsenic, and water, and the different approaches to understanding these important chemicals in our lives. The sessions on measuring the effect of cooking time on the concentration of mercury in ahi tuna and the challenges of creating a paradigm shift about the structure of water in the water community generated the most questions and conversations. Discussions focused on the challenges of reporting new discoveries; details, complexity, and generalities; reluctance and fears of scientists; and deadlines and the "so what?" factor in publishing. Scientists learned about that it is not always the importance of the story, but competition with other stories that can impact whether an editor chooses to publish a story. Press releases are very important, since most journalists don't have time to browse the science journals. Scientists are sometimes reluctant to talk with journalists because the reports often play out one angle, leave out the complexity of the issue, and may cause conflict with other scientists in the field. Journalists were asked to write a one-paragraph nugget at the end of the first day to assess their understanding of workshop material presented and to potentially submit to NSF. One day after the workshop, one participant published her writing sample in an online magazine. Overall, the journalists wrote that they were pleased with the workshop. They came to learn and talk to scientists, to learn more about mercury and arsenic, and to connect with other journalists. They all felt workshops like this are valuable for the content and background for future stories and interactions with scientists to establish relationships. Some journalists were impressed by the openness of the scientists to spend two days with journalists.
Some pitfalls in measuring memory in animals.
Thorpe, Christina M; Jacova, Claudia; Wilkie, Donald M
2004-11-01
Because the presence or absence of memories in the brain cannot be directly observed, scientists must rely on indirect measures and use inferential reasoning to make statements about the status of memories. In humans, memories are often accessed through spoken or written language. In animals, memory is accessed through overt behaviours such as running down an arm in a maze, pressing a lever, or visiting a food cache site. Because memory is measured by these indirect methods, errors in the veracity of statements about memory can occur. In this brief paper, we identify three areas that may serve as pitfalls in reasoning about memory in animals: (1) the presence of 'silent associations', (2) intrusions of species-typical behaviours on memory tasks, and (3) improper mapping between human and animals memory tasks. There are undoubtedly other areas in which scientists should act cautiously when reasoning about the status of memory.
NASA Astrophysics Data System (ADS)
Steill, Jason Scott
The long term reliability of polymer-based thermal interface materials (TIM) is essential for modern electronic packages which require robust thermal management. The challenge for today's materials scientists and engineers is to maximize the heat flow from integrated circuits through a TIM and out the heat sink. Thermal cycling of the electronic package and non-uniformity in the heat flux with respect to the plan area can lead to void formation and delamination which re-introduces inefficient heat transfer. Measurement and understanding at the nano-scale is essential for TIM development. Finding and documenting the evolution of the defects is dependent upon a full understanding of the thermal probes response to changing environmental conditions and the effects of probe usage. The response of the thermal-displacement measurement technique was dominated by changes to the environment. Accurate measurement of the thermal performance was hindered by the inability to create a model system and control the operating conditions. This research highlights the need for continued study into the probe's thermal and mechanical response using tightly controlled test conditions.
Uses of tethered atmospheric research probes
NASA Technical Reports Server (NTRS)
Deloach, Richard
1991-01-01
In situ measurements in the lower thermosphere are rare because of the difficulty of reaching these altitudes with conventional instrument platforms. The emerging technology of tethered satellites as a means to probe these altitudes from above has matured to the point that a flight program is planned to verify the operational performance of a low-cost deployer mechanism for tethered satellites, and to demonstrate a basic understanding of the dynamics of tethered satellite deployment. With such operational developments at hand, it is appropriate to review some of the potential applications of tethered measurement platforms for acquiring in situ data in the upper atmosphere. This paper focuses on downward-deployed tethered satellite measurements of interest to atmospheric scientists and to hypersonic aerodynamicists, and discusses ways in which this technology may be able to support selected long-range research programs currently in progress or in various stages of pre-flight development. The intent is to illustrate for the potential user community some of the unique advantages of tethered measurement platform technology now under development, and to stimulate creative thinking about ways in which this new capability may be used in support of future research programs.
Measuring Growth on a Museum Field Trip: Dinosaur Bones and Tree Cross Sections
ERIC Educational Resources Information Center
Sedzielarz, Maija; Robinson, Christopher
2007-01-01
The MathPacks program at the Science Museum of Minnesota provides students with in-depth understanding of real-world applications of mathematics and science. Students measure museum specimens and investigate ratios, patterns, and mapping while simulating the work of scientists.
Ginning efficiency - research progress
USDA-ARS?s Scientific Manuscript database
In the past few years, there has been a consorted effort between cotton geneticists/breeders, ginning engineers and molecular scientists to understand ‘ginning efficiency’ in upland cotton. Ginning efficiency includes ginning rate (measured in g lint sec-1) and net gin stand energy (measured in Wh k...
Teaching Soil Science in Primary and Secondary Schools
NASA Technical Reports Server (NTRS)
Levine, Elissa R.
1998-01-01
Earth's thin layer of soil is a fragile resource, made up of minerals, organic materials, air, water, and billions of living organisms. Soils plays a variety of critical roles that sustain life on Earth. If we think about soil, we tend to see it first as the source of most of the food we eat and the fibers we use, such as wood and cotton. Few students realize that soils also provide the key ingredients to many of the medicines (including antibiotics), cosmetics, and dyes that we use. Fewer still understand the importance of soils in integrating, controlling, and regulating the movement of air, water, materials, and energy between the hydrosphere, lithosphere, atmosphere, and biosphere. Because soil sustains life, it offers both a context and a natural laboratory for investigating these interactions. The enclosed poster, which integrates soil profiles with typical landscapes in which soils form, can also help students explore the interrelationships of Earth systems and gain an understanding of our soil resources. The poster, produced jointly by the American Geological Institute and the Soil Science Society of America, aims to increase awareness of the importance of soil, as does the GLOBE (Global Learning and Observations To Benefit the Environment) Program. Vice President Al Gore instituted the GLOBE Program on Earth Day of 1993 to increase environmental awareness of individuals throughout the world, contribute to a better scientific understanding of the Earth, and help all students reach higher levels of achievement in science and mathematics. GLOBE functions as a partnership between scientists, students, and teachers in which scientists design protocols for specific measurements they need for their research that can be performed by K-12 students. Teachers are trained in the GLOBE protocols and teach them to their students. Students make the measurements, enter data via the Internet to a central data archive, and the data becomes available to scientists and the general community. Students benefit by having a "hands-on"experience in science, math, and technology, using their local environment as a learning laboratory, as well as contact with scientists and other students around the world. Soil investigations have become an essential component of GLOBE. The protocols that have been developed so far within the GLOBE program include GPS Location, Atmosphere/Climate, Soil Characterization, Soil Moisture and Temperature, Land Cover/Biometry, Hydrology, and Satellite Image Classification. For the GLOBE Soil Characterization Protocol, students explore the physical. chemical, and morphological properties of the soil at their study site. They are asked to dig a pit or use an auger to about 1 meter at at least 2 sites.
Low-Turnover Drug Molecules: A Current Challenge for Drug Metabolism Scientists.
Hutzler, J Matthew; Ring, Barbara J; Anderson, Shelby R
2015-12-01
In vitro assays using liver subcellular fractions or suspended hepatocytes for characterizing the metabolism of drug candidates play an integral role in the optimization strategy employed by medicinal chemists. However, conventional in vitro assays have limitations in their ability to predict clearance and generate metabolites for low-turnover (slowly metabolized) drug molecules. Due to a rapid loss in the activity of the drug-metabolizing enzymes, in vitro incubations are typically performed for a maximum of 1 hour with liver microsomes to 4 hours with suspended hepatocytes. Such incubations are insufficient to generate a robust metabolic response for compounds that are slowly metabolized. Thus, the challenge of accurately estimating low human clearance with confidence has emerged to be among the top challenges that drug metabolism scientists are confronted with today. In response, investigators have evaluated novel methodologies to extend incubation times and more sufficiently measure metabolism of low-turnover drugs. These methods include plated human hepatocytes in monoculture, and a novel in vitro methodology using a relay of sequential incubations with suspended cryopreserved hepatocytes. In addition, more complex in vitro cellular models, such as HepatoPac (Hepregen, Medford, MA), a micropatterned hepatocyte-fibroblast coculture system, and the HµREL (Beverley Hills, CA) hepatic coculture system, have been developed and characterized that demonstrate prolonged enzyme activity. In this review, the advantages and disadvantages of each of these in vitro methodologies as it relates to the prediction of clearance and metabolite identification will be described in an effort to provide drug metabolism scientists with the most up-to-date experimental options for dealing with the complex issue of low-turnover drug candidates. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geveci, Berk
The purpose of the SDAV institute is to provide tools and expertise in scientific data management, analysis, and visualization to DOE’s application scientists. Our goal is to actively work with application teams to assist them in achieving breakthrough science, and to provide technical solutions in the data management, analysis, and visualization regimes that are broadly used by the computational science community. Over the last 5 years members of our institute worked directly with application scientists and DOE leadership-class facilities to assist them by applying the best tools and technologies at our disposal. We also enhanced our tools based on inputmore » from scientists on their needs. Many of the applications we have been working with are based on connections with scientists established in previous years. However, we contacted additional scientists though our outreach activities, as well as engaging application teams running on leading DOE computing systems. Our approach is to employ an evolutionary development and deployment process: first considering the application of existing tools, followed by the customization necessary for each particular application, and then the deployment in real frameworks and infrastructures. The institute is organized into three areas, each with area leaders, who keep track of progress, engagement of application scientists, and results. The areas are: (1) Data Management, (2) Data Analysis, and (3) Visualization. Kitware has been involved in the Visualization area. This report covers Kitware’s contributions over the last 5 years (February 2012 – February 2017). For details on the work performed by the SDAV institute as a whole, please see the SDAV final report.« less
An economic and financial exploratory
NASA Astrophysics Data System (ADS)
Cincotti, S.; Sornette, D.; Treleaven, P.; Battiston, S.; Caldarelli, G.; Hommes, C.; Kirman, A.
2012-11-01
This paper describes the vision of a European Exploratory for economics and finance using an interdisciplinary consortium of economists, natural scientists, computer scientists and engineers, who will combine their expertise to address the enormous challenges of the 21st century. This Academic Public facility is intended for economic modelling, investigating all aspects of risk and stability, improving financial technology, and evaluating proposed regulatory and taxation changes. The European Exploratory for economics and finance will be constituted as a network of infrastructure, observatories, data repositories, services and facilities and will foster the creation of a new cross-disciplinary research community of social scientists, complexity scientists and computing (ICT) scientists to collaborate in investigating major issues in economics and finance. It is also considered a cradle for training and collaboration with the private sector to spur spin-offs and job creations in Europe in the finance and economic sectors. The Exploratory will allow Social Scientists and Regulators as well as Policy Makers and the private sector to conduct realistic investigations with real economic, financial and social data. The Exploratory will (i) continuously monitor and evaluate the status of the economies of countries in their various components, (ii) use, extend and develop a large variety of methods including data mining, process mining, computational and artificial intelligence and every other computer and complex science techniques coupled with economic theory and econometric, and (iii) provide the framework and infrastructure to perform what-if analysis, scenario evaluations and computational, laboratory, field and web experiments to inform decision makers and help develop innovative policy, market and regulation designs.
48 CFR 1819.001 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... research and/or development efforts that are within or advance the state-of-the-art in a technology discipline and are performed primarily by professional engineers, scientists, and highly skilled and trained...
Performance Analysis, Modeling and Scaling of HPC Applications and Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatele, Abhinav
2016-01-13
E cient use of supercomputers at DOE centers is vital for maximizing system throughput, mini- mizing energy costs and enabling science breakthroughs faster. This requires complementary e orts along several directions to optimize the performance of scienti c simulation codes and the under- lying runtimes and software stacks. This in turn requires providing scalable performance analysis tools and modeling techniques that can provide feedback to physicists and computer scientists developing the simulation codes and runtimes respectively. The PAMS project is using time allocations on supercomputers at ALCF, NERSC and OLCF to further the goals described above by performing research alongmore » the following fronts: 1. Scaling Study of HPC applications; 2. Evaluation of Programming Models; 3. Hardening of Performance Tools; 4. Performance Modeling of Irregular Codes; and 5. Statistical Analysis of Historical Performance Data. We are a team of computer and computational scientists funded by both DOE/NNSA and DOE/ ASCR programs such as ECRP, XStack (Traleika Glacier, PIPER), ExaOSR (ARGO), SDMAV II (MONA) and PSAAP II (XPACC). This allocation will enable us to study big data issues when analyzing performance on leadership computing class systems and to assist the HPC community in making the most e ective use of these resources.« less
NASA Technical Reports Server (NTRS)
Diskin, Glenn S.; DiGangi, Joshua P.; Yang, Melissa; Slate, Thomas A.; Rana, Mario
2015-01-01
Carbon dioxide (CO2) is well known for its importance as an atmospheric greenhouse gas, with many sources and sinks around the globe. Understanding the fluxes of carbon into and out of the atmosphere is a complex and daunting challenge. One tool applied by scientists to measure the vertical flux of CO2 near the surface uses the eddy covariance technique, most often from towers but also from aircraft flying specific patterns over the study area. In this technique, variations of constituents of interest are correlated with fluctuations in the local vertical wind velocity. Measurement requirements are stringent, particularly with regard to precision, sensitivity to small changes, and temporal sampling rate. In addition, many aircraft have limited payload capability, so instrument size, weight, and power consumption are also important considerations. We report on the development and preliminary application of an airborne sensor for the measurement of atmospheric CO2. The instrument, modeled on the successful DLH (Diode Laser Hygrometer) series of instruments, has been tested in the laboratory and on the NASA DC-8 aircraft. Performance parameters such as accuracy, precision, sensitivity, specificity, and temporal response are discussed in the context of typical atmospheric variability and suitability for flux measurement applications. On-aircraft, in-flight data have been obtained and are discussed as well. Performance of the instrument has been promising, and continued flight testing is planned during 2016.
Measuring Constructs in Family Science: How Can Item Response Theory Improve Precision and Validity?
ERIC Educational Resources Information Center
Gordon, Rachel A.
2015-01-01
This article provides family scientists with an understanding of contemporary measurement perspectives and the ways in which item response theory (IRT) can be used to develop measures with desired evidence of precision and validity for research uses. The article offers a nontechnical introduction to some key features of IRT, including its…
Measurement Sets and Sites Commonly Used for Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.
Measurement Sets and Sites Commonly used for Characterizations
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.
A short course on measure and probability theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe Pierre
2004-02-01
This brief Introduction to Measure Theory, and its applications to Probabilities, corresponds to the lecture notes of a seminar series given at Sandia National Laboratories in Livermore, during the spring of 2003. The goal of these seminars was to provide a minimal background to Computational Combustion scientists interested in using more advanced stochastic concepts and methods, e.g., in the context of uncertainty quantification. Indeed, most mechanical engineering curricula do not provide students with formal training in the field of probability, and even in less in measure theory. However, stochastic methods have been used more and more extensively in the pastmore » decade, and have provided more successful computational tools. Scientists at the Combustion Research Facility of Sandia National Laboratories have been using computational stochastic methods for years. Addressing more and more complex applications, and facing difficult problems that arose in applications showed the need for a better understanding of theoretical foundations. This is why the seminar series was launched, and these notes summarize most of the concepts which have been discussed. The goal of the seminars was to bring a group of mechanical engineers and computational combustion scientists to a full understanding of N. WIENER'S polynomial chaos theory. Therefore, these lectures notes are built along those lines, and are not intended to be exhaustive. In particular, the author welcomes any comments or criticisms.« less
USDA-ARS?s Scientific Manuscript database
Micrometeorological methods and ecosystem-scale energy and mass flux density measurements have become increasingly important in soil, agricultural, and environmental sciences. For many scientists without formal training in atmospheric science, these techniques are relatively inaccessible. Eddy cov...
Gibbs, Kenneth D.; Griffin, Kimberly A.
2013-01-01
Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs between 2006 and 2011, including 23 women and 18 individuals from underrepresented minority (URM) backgrounds. Objective performance and quality of advisor relationships were not significantly different between scientists with high versus low interest in faculty careers. Career interests were fluid and formed in environments that generally lacked structured career development. Vicarious learning shaped similar outcome expectations about academic careers for all scientists; however, women and URMs recounted additional, distinct experiences and expectations. Scientists pursuing faculty careers described personal values, which differed by social identity, as their primary driver. For scientists with low interest in faculty careers, a combination of values, shared across social identity, and structural dynamics of the biomedical workforce (e.g., job market, grant funding, postdoc pay, etc.) played determinative roles. These findings illuminate the complexity of career choice and suggest attracting the best, most diverse academic workforce requires institutional leaders and policy makers go beyond developing individual skill, attending to individuals’ values and promoting institutional and systemic reforms. PMID:24297297
None
2017-12-09
Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house to use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Learn what it will take to create tomorrow's net-zero energy home as scientists reveal the secrets of cool roofs, smart windows, and computer-driven energy control systems. The net-zero energy home: Scientists are working to make tomorrow's homes more than just energy efficient -- they want them to be zero energy. Iain Walker, a scientist in the Lab's Energy Performance of Buildings Group, will discuss what it takes to develop net-zero energy houses that generate as much energy as they use through highly aggressive energy efficiency and on-site renewable energy generation. Talking back to the grid: Imagine programming your house tomore » use less energy if the electricity grid is full or price are high. Mary Ann Piette, deputy director of Berkeley Lab's building technology department and director of the Lab's Demand Response Research Center, will discuss how new technologies are enabling buildings to listen to the grid and automatically change their thermostat settings or lighting loads, among other demands, in response to fluctuating electricity prices. The networked (and energy efficient) house: In the future, your home's lights, climate control devices, computers, windows, and appliances could be controlled via a sophisticated digital network. If it's plugged in, it'll be connected. Bruce Nordman, an energy scientist in Berkeley Lab's Energy End-Use Forecasting group, will discuss how he and other scientists are working to ensure these networks help homeowners save energy.« less
Gibbs, Kenneth D; Griffin, Kimberly A
2013-01-01
Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs between 2006 and 2011, including 23 women and 18 individuals from underrepresented minority (URM) backgrounds. Objective performance and quality of advisor relationships were not significantly different between scientists with high versus low interest in faculty careers. Career interests were fluid and formed in environments that generally lacked structured career development. Vicarious learning shaped similar outcome expectations about academic careers for all scientists; however, women and URMs recounted additional, distinct experiences and expectations. Scientists pursuing faculty careers described personal values, which differed by social identity, as their primary driver. For scientists with low interest in faculty careers, a combination of values, shared across social identity, and structural dynamics of the biomedical workforce (e.g., job market, grant funding, postdoc pay, etc.) played determinative roles. These findings illuminate the complexity of career choice and suggest attracting the best, most diverse academic workforce requires institutional leaders and policy makers go beyond developing individual skill, attending to individuals' values and promoting institutional and systemic reforms.
Atmospheric ionization and cosmic rays: studies and measurements before 1912
NASA Astrophysics Data System (ADS)
de Angelis, Alessandro
2014-01-01
The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterized by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.
Cosmic Rays: studies and measurements before 1912
NASA Astrophysics Data System (ADS)
De Angelis, Alessandro
2013-06-01
The discovery of cosmic rays, a milestone in science, was based on the work by scientists in Europe and the New World and took place during a period characterised by nationalism and lack of communication. Many scientists that took part in this research a century ago were intrigued by the penetrating radiation and tried to understand the origin of it. Several important contributions to the discovery of the origin of cosmic rays have been forgotten; historical, political and personal facts might have contributed to their substantial disappearance from the history of science.
Orbiting Carbon Observatory-2 (OCO-2) Briefing
2014-06-29
Ken Jucks, OCO-2 program scientist, NASA Headquarters, left, Dave Crisp, OCO-2 science team leader, JPL, and Annmarie Eldering, OCO-2 deputy project scientist, JPL, right, give a science briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)
NASA Astrophysics Data System (ADS)
Espinoza, Fernando
2009-10-01
Mass media, particularly television, influence public conceptions and attitudes toward learning science. The discovery of an original method that does not rely on self-reported viewing habits to measure the impact of television on students' performance in science arose from a study of a unit on electricity in a Physics course. In determining the number of television sets at home and the number of hours of operation, data emerged that allowed an investigation of associations between each of these variables and student performance in physics. A negative impact on performance was found in its consistent decrease as both the number of sets and the time the sets are on increase. These results provide dramatic independent confirmation of the negative impact of television viewing on achievement determined through meta-analysis of many studies, and are also consistent with those in the literature at large, particularly from the Third International Mathematics and Science Study, and the National Assessment of Educational Progress. Furthermore, the totally `blind' participation of the subjects lends a degree of authenticity rarely found in a classically designed study. The findings impact scientific literacy, since performance in science and conceptions of science and scientists, are all inextricably linked.
Distributed memory parallel Markov random fields using graph partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, C.; Perciano, T.; Ushizima, D.
Markov random fields (MRF) based algorithms have attracted a large amount of interest in image analysis due to their ability to exploit contextual information about data. Image data generated by experimental facilities, though, continues to grow larger and more complex, making it more difficult to analyze in a reasonable amount of time. Applying image processing algorithms to large datasets requires alternative approaches to circumvent performance problems. Aiming to provide scientists with a new tool to recover valuable information from such datasets, we developed a general purpose distributed memory parallel MRF-based image analysis framework (MPI-PMRF). MPI-PMRF overcomes performance and memory limitationsmore » by distributing data and computations across processors. The proposed approach was successfully tested with synthetic and experimental datasets. Additionally, the performance of the MPI-PMRF framework is analyzed through a detailed scalability study. We show that a performance increase is obtained while maintaining an accuracy of the segmentation results higher than 98%. The contributions of this paper are: (a) development of a distributed memory MRF framework; (b) measurement of the performance increase of the proposed approach; (c) verification of segmentation accuracy in both synthetic and experimental, real-world datasets« less
Using High-Altitude Pseudo Satellites as an innovative technology platform for climate measurements
NASA Astrophysics Data System (ADS)
Coulon, A.; Johnson, S.
2017-12-01
Climate scientists have been using for decades either remotely observed data, mainly from (un)manned aircraft and satellites, or ground-based measurements. High-Altitude Pseudo Satellites (HAPS) are emerging as a disruptive technology that will be used for various "Near Space" applications at altitudes between 15 and 23 km (i.e. above commercial airlines). This new generation of electric solar-powered unmanned aerial vehicles flying in the stratosphere aim to persistently monitor regional areas (with high temporal, spatial and spectral resolution) as well as perform in-situ Near Space observations. The two case studies presented will highlight the advantages of using such an innovative platform. First, calculations were performed to compare the use of a constellation of Low Earth Orbit satellites and a fleet of HAPS for surface monitoring. Using stratospheric drones has a clear advantage for revisiting a large zone (10'000km2 per day) with higher predictability and accuracy. User is free to set time over a location, avoid cloud coverage and obtain Ground Sampling Distance of 30cm using commercially of the shelf sensors. The other impact study focuses on in-situ measurements. Using HAPS will indeed help to closely observe stratospheric compounds, such as aerosols or volcano plumes. Simulations were performed to show how such a drone could collect samples and provide high-accuracy evaluations of compounds that, so far, are only remotely observed. The performed impact studies emphasize the substantial advantages of using HAPS for future stratospheric campaigns. Deploying month-long unmanned missions for monitoring stratospheric aerosols will be beneficial for future research projects such as climate engineering.
NASA Technical Reports Server (NTRS)
2002-01-01
With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)
Conceptualizing and communicating ecological river restoration: Chapter 2
Jacobson, Robert B.; Berkley, Jim
2011-01-01
We present a general conceptual model for communicating aspects of river restoration and management. The model is generic and adaptable to most riverine settings, independent of size. The model has separate categories of natural and social-economic drivers, and management actions are envisioned as modifiers of naturally dynamic systems. The model includes a decision-making structure in which managers, stakeholders, and scientists interact to define management objectives and performance evaluation. The model depicts a stress to the riverine ecosystem as either (1) deviation in the regimes (flow, sediment, temperature, light, biogeochemical, and genetic) by altering the frequency, magnitude, duration, timing, or rate of change of the fluxes or (2) imposition of a hard structural constraint on channel form. Restoration is depicted as naturalization of those regimes or removal of the constraint. The model recognizes the importance of river history in conditioning future responses. Three hierarchical tiers of essential ecosystem characteristics (EECs) illustrate how management actions typically propagate through physical/chemical processes to habitat to biotic responses. Uncertainty and expense in modeling or measuring responses increase in moving from tiers 1 to 3. Social-economic characteristics are shown in a parallel structure that emphasizes the need to quantify trade-offs between ecological and social-economic systems. Performance measures for EECs are also hierarchical, showing that selection of measures depend on participants’ willingness to accept uncertainty. The general form is of an adaptive management loop in which the performance measures are compared to reference conditions or success criteria and the information is fed back into the decision-making process.
Climate Science: An Empirical Example of Postnormal Science.
NASA Astrophysics Data System (ADS)
Bray, Dennis; von Storch, Hans
1999-03-01
This paper addresses the views regarding the certainty and uncertainty of climate science knowledge held by contemporary climate scientists. More precisely, it addresses the extension of this knowledge into the social and political realms as per the definition of postnormal science. The data for the analysis is drawn from a response rate of approximately 40% from a survey questionnaire mailed to 1000 scientists in Germany, the United States, and Canada, and from a series of in-depth interviews with leading scientists in each country. The international nature of the sample allows for cross-cultural comparisons.With respect to the relative scientific discourse, similar assessments of the current state of knowledge are held by the respondents of each country. Almost all scientists agreed that the skill of contemporary models is limited. Minor differences were notable. Scientists from the United States were less convinced of the skills of the models than their German counterparts and, as would be expected under such circumstances, North American scientists perceived the need for societal and political responses to be less urgent than their German counterparts. The international consensus was, however, apparent regarding the utility of the knowledge to date: climate science has provided enough knowledge so that the initiation of abatement measures is warranted. However, consensus also existed regarding the current inability to explicitly specify detrimental effects that might result from climate change. This incompatibility between the state of knowledge and the calls for action suggests that, to some degree at least, scientific advice is a product of both scientific knowledge and normative judgment, suggesting a socioscientific construction of the climate change issue.
NASA Astrophysics Data System (ADS)
Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.
2014-10-01
This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a scientist. Since finding a valid instrument is critical, the study involved (1) determining the validity of the commonly administered Draw-A-Scientist Test (DAST) against a newly designed six-question survey and (2) using a combination of both instruments to determine what stereotypes are currently held by children. A pretest-posttest design was used on 485 students, grades 3-11, attending 6 different schools in suburban and rural Maine communities. A significant but low positive correlation was found between the DAST and the survey; therefore, it is imperative that the DAST not be used alone, but corroboration with interviews or survey questions should occur. Pretest results revealed that the children held common stereotypes of scientists, but these stereotypes were neither as extensive nor did they increase with the grade level as past research has indicated, suggesting that a shift has occurred with children having a broader concept of who a scientist can be. Finally, the presence of an STEM Fellow corresponded with decreased stereotypes in middle school and high school, but no change in elementary age children. More research is needed to determine whether this reflects resiliency in elementary children's perceptions or limitations in either drawing or in writing out their responses.
Co-production of knowledge: recipe for success in land-based climate change adaptation?
NASA Astrophysics Data System (ADS)
Coninx, Ingrid; Swart, Rob
2015-04-01
After multiple failures of scientists to trigger policymakers and other relevant actors to take action when communicating research findings, the request for co-production (or co-creation) of knowledge and stakeholder involvement in climate change adaptation efforts has rapidly increased over the past few years. In particular for land-based adaptation, on-the-ground action is often met by societal resistance towards solutions proposed by scientists, by a misfit of potential solutions with the local context, leading to misunderstanding and even rejection of scientific recommendations. A fully integrative co-creation process in which both scientists and practitioners discuss climate vulnerability and possible responses, exploring perspectives and designing adaptation measures based on their own knowledge, is expected to prevent the adaptation deadlock. The apparent conviction that co-creation processes result in successful adaptation, has not yet been unambiguously empirically demonstrated, but has resulted in co-creation being one of basic principles in many new research and policy programmes. But is co-creation that brings knowledge of scientists and practitioners together always the best recipe for success in climate change adaptation? Assessing a number of actual cases, the authors have serious doubts. The paper proposes additional considerations for adaptively managing the environment that should be taken into account in the design of participatory knowledge development in which climate scientists play a role. These include the nature of the problem at stake; the values, interests and perceptions of the actors involved; the methods used to build trust, strengthen alignment and develop reciprocal relationships among scientists and practitioners; and the concreteness of the co-creation output.
Pienaar, Cindy; Coetzee, Ben
2013-02-01
The purpose of this study was to determine the effects of a microcycle (4 weeks) combined rugby conditioning plyometric compared with a nonplyometric rugby conditioning program on selected physical and motor performance components and anthropometric measurements of university-level rugby players. Players (18.94 ± 0.40 years) were assigned to either a control (n = 16) or experimental group (n = 19) from the U/19 rugby teams of the North-West University (South Africa). Twenty-six direct and indirect anthropometric measurements were taken, and the players performed a battery of 5 physical and motor performance tests before and after a microcycle (4 week) combined rugby conditioning plyometric (experimental group) and a nonplyometric rugby conditioning program (control group). The dependent t-test results showed that the control group's upper-body explosive power decreased significantly, whereas the stature, skeletal mass, and femur breadth increased significantly from pre- to posttesting. The experimental group showed significant increases in wrist breadth, speed over 20 m, agility, and power and work measurements of the Wingate anaerobic test (WAnT). Despite these results, the independent t-test revealed that speed over 20 m, average power output at 20 seconds, relative work of the WAnT, and agility were the only components of the experimental group that improved significantly more than the control group. A microcycle combined rugby conditioning plyometric program therefore leads to significantly bigger changes in selected physical and motor performance components of university-level rugby players than a nonplyometric rugby conditioning program alone. Based on these findings, coaches and sport scientists should implement 3 weekly combined rugby conditioning plyometric programs in rugby players' training regimens to improve the players' speed, agility, and power.
Conference report: a hitchhiker's guide to outsourcing ADME studies: the inside of outsourcing.
Pritchard, J Fred; Anderson, Shelby R; Breuckner, Claudia; Premkumar, Noel D; Polli, Joseph W
2013-02-01
This report gives a summary of the key points raised during a roundtable discussion convened at the American Association of Pharmaceutical Scientists 2012 Annual Meeting and Exposition held in Chicago on 17 October 2012. The science of ADME continues to grow, as does the impact of these studies on drug development. Understanding ADME requires efforts from several scientific specialties. With reductions in pharmaceutical company R&D staff there has been a corresponding growth in CROs with the capabilities and expertise to perform ADME work. This roundtable explored the challenges inherent in understanding ADME and the issues that arise when ADME studies shift from in-house study directors to external scientists working within the business model of a CRO. Pharmaceutical industry scientists and procurement specialists can satisfy their expectations by awareness of the growing expertise within CROs and the need for open communication among all partners involved in outsourced work.
The Training and Work of Ph.D. Physical Scientists
NASA Astrophysics Data System (ADS)
Smith, S. J.; Schweitzer, A. E.
2003-05-01
Doctoral education has often been viewed as the pinnacle of the formal education system. How useful is doctoral training in one's later career? In an NSF-funded project, we set out to perform a study of the training, careers, and work activities of Ph.D. physical scientists. The study included both in-depth interviews and a survey sent out to a sample of Ph.D. holders 4-8 years after graduation. Come and find out the results of this study: What skills are most Ph.D. physical scientists using? What should graduate programs be teaching? Are Ph.D.'s who are working in their specific field of training happier than their counterparts working different jobs? What skills and preparation lead to future job satisfaction, perhaps the most important indicator of the "success" of graduate education? A preprint and further details can be found at the project web site at: spot.colorado.edu/ phdcarer.
Bud, Robert
2014-01-01
This paper uses a case study from the Cold War to reflect on the meaning at the time of the term 'Pure Science'. In 1961, four senior scientists from Britain's biological warfare centre at Porton Down visited Moscow both attending an International Congress and visiting Russian microbiological and biochemical laboratories. The reports of the British scientists in talking about a limited range of topics encountered in the Soviet Union expressed qualities of openness, sociologists of the time associated with pure science. The paper reflects on the discourses of "Pure Science", secrecy and security in the Cold War. Using Bakhtin's approach, I suggest the cordial communication between scientists from opposing sides can be seen in terms of the performance, or speaking, of one language among several at their disposal. Pure science was the language they were allowed to share outside their institutions, and indeed political blocs.
Analyzing task-based user study data to determine colormap efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashton, Zoe Charon Maria; Wendelberger, Joanne Roth; Ticknor, Lawrence O.
2015-07-23
Domain scientists need colormaps to visualize their data and are especially useful for identifying areas of interest, like in ocean data to identify eddies or characterize currents. However, traditional Rainbow colormap performs poorly for understanding details, because of the small perceptual range. In order to assist domain scientists in recognizing and identifying important details in their data, different colormaps need to be applied to allow higher perceptual definition. Visual artist Francesca Samsel used her understanding of color theory to create new colormaps to improve perception. While domain scientists find the new colormaps to be useful, we implemented a rigorous andmore » quantitative study to determine whether or not the new colormaps have perceptually more colors. Color count data from one of these studies will be analyzed in depth in order to determine whether or not the new colormaps have more perceivable colors and what affects the number of perceivable colors.« less
Communicating through humour: A project of stand-up comedy about science.
Pinto, Bruno; Marçal, David; Vaz, Sofia G
2015-10-01
A study of a project on science stand-up comedy developed in Portugal between 2009 and 2013 is presented, in which thirteen scientists, coordinated by a science communicator and a professional actor, created and presented comedy acts. Eleven of these scientists were asked about their motivations to participate, the process of performance development and the perceived value of the project. Personal motivations were highly important, but professional reasons were also mentioned. Working in a group with the guidance of coordinators, testing and re-writing the texts and gradually gaining confidence on stage were considered fundamental in the development of the shows. Additionally, a questionnaire revealed that the audience, most of whom were young adults, and held a higher education degree, were satisfied with the show. Overall, both participating scientists and audience members considered that stand-up comedy has potential for science communication. © The Author(s) 2013.
Perfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment
NASA Astrophysics Data System (ADS)
Jabro, A.; Jabro, J.
2012-04-01
PPerfecting Scientists' Collaboration and Problem-Solving Skills in the Virtual Team Environment Numerous factors have contributed to the proliferation of conducting work in virtual teams at the domestic, national, and global levels: innovations in technology, critical developments in software, co-located research partners and diverse funding sources, dynamic economic and political environments, and a changing workforce. Today's scientists must be prepared to not only perform work in the virtual team environment, but to work effectively and efficiently despite physical and cultural barriers. Research supports that students who have been exposed to virtual team experiences are desirable in the professional and academic arenas. Research supports establishing and maintaining established protocols for communication behavior prior to task discussion provides for successful team outcomes. Research conducted on graduate and undergraduate virtual teams' behaviors led to the development of successful pedagogic practices and assessment strategies.
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/ shown here are Dr Chris McKay and Monika Kress, Professor of Astronomy at San Jose State University
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/ shown here are Dr Chris McKay and Monika Kress, Professor of Astronomy at San Jose State University
2007-03-26
Spaceward Bound event in the Mojave Deser , CA (an outreach exercise) with Dr Chris McKay and Ames Education department personnel Brian Day, Barbara Bazar and a accompaning (learning for the the classroom) team of teachers will be studying side-by-side with NASA scientists who search for life in extreme environments, closely approximating what they expect to find on other planets. Why the Mojave -- an inhospitable, sun-drenched spot in the California Desert? This natural setting presents scientists with opportunities to study environments that are analogous to what explorers will find on the Moon and Mars. Teachers and scientists will perform scientific fieldwork in lunar geology, Mars astrobiology, Mars geology, and issues of temperature and solar inundation and radiation. for additional information and Outreach projects see http://quest.arc.nasa.gov/ shown here are Dr Chris McKay and Monika Kress, Professor of Astronomy at San Jose State University
Martinello wins 2018 IEEE PAST Doctoral Student Award November 28, 2017 PAST has awarded Fermilab scientist Martina Martinello the 2018 IEEE PAST Doctoral Student Award. Performance recognition awards go to
The effects of using guided notes and review of science achievement for male and female students
NASA Astrophysics Data System (ADS)
Tyrrell, Diann Marie
2000-11-01
The National Science Foundation predicts a shortage of scientists and engineers within the next 15 years. Some agree that the participation of women in science will be required to help meet the future demand for scientists (Malcom, 1990). Consequently, conscientious teachers search for learning strategies that provide opportunities for young women to achieve success with others in their science classes. This research concerns a note taking and teaching strategy that involves seventh grade science students. The investigation measured student achievement under three prescribed conditions. The treatment conditions were reviewing, guided notes, and guided notes with reviewing. For this experiment, the Solomon four-group design was utilized. This 2 x 2 factorial design tested for treatment effect and pretest sensitivity. Data was collected on seventh grade boys (n = 119) and seventh grade girls (n = 139) in science. Comparisons were made between the boys and girls groups. The results showed that achievement improved significantly when reviewing car using guided notes independently. The results also shower that significant improvements in achievement were not observed when participants used guided notes and reviewing together. Analysis was completed to measure how well the participants performed according to gender. This research showed that both boys and girls significantly improved their achievement in science equally well for all treatment conditions. This research went a step further by factoring in cognitive ability test scores and comparing them to the treatment results. This provided the researcher with information on which treatment condition worked best for high or low achieving students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racah, Evan; Ko, Seyoon; Sadowski, Peter
Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. Here in this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networksmore » can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.« less
2009-07-11
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers check the fittings of the hoist supporting NASA's Solar Dynamics Observatory, or SDO, after its rotation. The SDO will be moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston
2009-07-11
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., a hoist begins rotating NASA's Solar Dynamics Observatory, or SDO. After rotation, the SDO will be moved to a work stand. SDO will be rotated and moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston
2009-07-11
CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., workers stand by as a hoist moves NASA's Solar Dynamics Observatory, or SDO, from its transporter. SDO will be rotated and moved to a work stand. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Cory Huston
Analyzing Water's Optical Absorption
NASA Technical Reports Server (NTRS)
2002-01-01
A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – The Solar Dynamics Observatory sits on a stand at Astrotech Space Operations in Titusville, Fla. Engineers will lower the high-gain antenna to access the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
2009-07-15
CAPE CANAVERAL, Fla. – Engineers at Astrotech Space Operations in Titusville, Fla., begin work to lower the high-gain antenna on the Solar Dynamics Observatory. Lowering the antenna will provide access to the battery compartment for installation of the flight battery. SDO is the first space weather research network mission in NASA's Living With a Star Program. The spacecraft's long-term measurements will give solar scientists in-depth information about changes in the sun's magnetic field and insight into how they affect Earth. In preparation for its anticipated November launch, engineers will perform a battery of comprehensive tests to ensure SDO can withstand the stresses and vibrations of the launch itself, as well as what it will encounter in the space environment after launch. Photo credit: NASA/Jack Pfaller
NASA Astrophysics Data System (ADS)
Prusti, T.
2018-04-01
Gaia is an ESA cornerstone mission conducting a full sky survey over its 5 year operational period. Gaia performs astrometric, photometric and spectroscopic measurements. The data processing is entrusted to scientists and engineers who have formed the Gaia Data Processing and Analysis Consortium (DPAC). The photometric science alerts started in 2014. The first intermediate data release (Gaia DR1) took place 14 September 2016 and it has been extensively used by the community. Gaia DR2 is scheduled for April 2018. Gaia is expected to be able to continue observations roughly for another 5 years after the nominal phase. The procedure to grant funding for the extension period has been initiated. In case funding is granted, the total operational time of Gaia may be 10 years.
Large-scale quantitative analysis of painting arts.
Kim, Daniel; Son, Seung-Woo; Jeong, Hawoong
2014-12-11
Scientists have made efforts to understand the beauty of painting art in their own languages. As digital image acquisition of painting arts has made rapid progress, researchers have come to a point where it is possible to perform statistical analysis of a large-scale database of artistic paints to make a bridge between art and science. Using digital image processing techniques, we investigate three quantitative measures of images - the usage of individual colors, the variety of colors, and the roughness of the brightness. We found a difference in color usage between classical paintings and photographs, and a significantly low color variety of the medieval period. Interestingly, moreover, the increment of roughness exponent as painting techniques such as chiaroscuro and sfumato have advanced is consistent with historical circumstances.
Boekeloo, Bradley; Randolph, Suzanne; Timmons-Brown, Stephanie; Wang, Min Qi
2014-08-01
Measures are needed to assess youth perceptions about health science careers to facilitate research aimed at increasing youth pursuit of health science. Although the Indiana Instrument provides an established measure of perceptions regarding nursing and ideal careers, we were interested in learning how high-achieving 10th graders from relatively low socioeconomic areas who identify as black/African American (black) perceive health science and ideal careers. The Indiana Instrument was modified, administered to 90 youth of interest, and psychometrically analyzed. Reliable subscales were identified that may facilitate parsimonious, theoretical, and reliable study of youth decision-making regarding health science careers. Such research may help to develop and evaluate strategies for increasing the number of minority health scientists.
Staff | Computational Science | NREL
develops and leads laboratory-wide efforts in high-performance computing and energy-efficient data centers Professional IV-High Perf Computing Jim.Albin@nrel.gov 303-275-4069 Ananthan, Shreyas Senior Scientist - High -Performance Algorithms and Modeling Shreyas.Ananthan@nrel.gov 303-275-4807 Bendl, Kurt IT Professional IV-High
Test-Taking Strategy as a Mediator between Race and Academic Performance
ERIC Educational Resources Information Center
Dollinger, Stephen J.; Clark, M. H.
2012-01-01
The issue of race differences in standardized test scores and academic achievement continues to be a vexing one for behavioral scientists and society at large. Ellis and Ryan (2003) suggested that a portion of the cognitive-ability test performance differences between White/Caucasian-American and Black/African-American college students could be…
A Research and Development Strategy for High Performance Computing.
ERIC Educational Resources Information Center
Office of Science and Technology Policy, Washington, DC.
This report is the result of a systematic review of the status and directions of high performance computing and its relationship to federal research and development. Conducted by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET), the review involved a series of workshops attended by numerous computer scientists and…
Human Performance on the Traveling Salesman and Related Problems: A Review
ERIC Educational Resources Information Center
MacGregor, James N.; Chu, Yun
2011-01-01
The article provides a review of recent research on human performance on the traveling salesman problem (TSP) and related combinatorial optimization problems. We discuss what combinatorial optimization problems are, why they are important, and why they may be of interest to cognitive scientists. We next describe the main characteristics of human…
A review of the bioretention system for sustainable storm water management in urban areas
NASA Astrophysics Data System (ADS)
Shafique, Muhammad
2016-10-01
Bioretention basins/rain garden is a very suitable low-impact development (LID) practice for storm water management around the globe. By using this practice in urban areas, flash flooding problems can be decreased and the environment of an area can be improved. The concept of bioretention was introduced a few decades ago and has been proven to be the best management practice (BMP) for storm water in urban areas. Due to urbanisation, natural surface areas are converted into hard surfaces such as roads, through which water cannot infiltrate into the ground. Due to this, infiltration decreases and surface run-off increases, which causes depletion of ground water continuously. In this study, we mainly explain the bioretention concept and its function as derived from different studies. This review includes different scientists' results for the performance of the bioretention system at different locations. A summary of the research findings by different scientists on the performance of bioretention systems is also provided, including the hydrologic and water quality performances. Finally, future work necessary to enhance the performance and widespread use of bioretention systems is also explained.
Development of a comprehensive performance-testing protocol for competitive surfers.
Sheppard, Jeremy M; Nimphius, Sophia; Haff, Greg G; Tran, Tai T; Spiteri, Tania; Brooks, Hedda; Slater, Gary; Newton, Robert U
2013-09-01
Appropriate and valid testing protocols for evaluating the physical performances of surfing athletes are not well refined. The purpose of this project was to develop, refine, and evaluate a testing protocol for use with elite surfers, including measures of anthropometry, strength and power, and endurance. After pilot testing and consultation with athletes, coaches, and sport scientists, a specific suite of tests was developed. Forty-four competitive junior surfers (16.2 ± 1.3 y, 166.3 ± 7.3 cm, 57.9 ± 8.5 kg) participated in this study involving a within-day repeated-measures analysis, using an elite junior group of 22 international competitors (EJG), to establish reliability of the measures. To reflect validity of the testing measures, a comparison of performance results was then undertaken between the EJG and an age-matched competitive junior group of 22 nationally competitive surfers (CJG). Percent typical error of measurement (%TEM) for primary variables gained from the assessments ranged from 1.1% to 3.0%, with intraclass correlation coefficients ranging from .96 to .99. One-way analysis of variance revealed that the EJG had lower skinfolds (P = .005, d = 0.9) than the CJG, despite no difference in stature (P = .102) or body mass (P = .827). The EJG were faster in 15-m sprint-paddle velocity (P < .001, d = 1.3) and had higher lower-body isometric peak force (P = .04, d = 0.7) and superior endurance-paddling velocity (P = .008, d = 0.9). The relatively low %TEM of these tests in this population allows for high sensitivity to detect change. The results of this study suggest that competitively superior junior surfers are leaner and possess superior strength, paddling power, and paddling endurance.
Television Program Complexity and Ratings.
ERIC Educational Resources Information Center
Krull, Robert; Watt, James H., Jr.
This paper applied findings from studies using the kind of viewing measures used by social scientists, to the relationship between programing and viewership when viewership is measured by means used by producers. Total aggregate viewership and the relationship of viewers' ages to viewership was concentrated on. Effects of competing programs on…
Measured and Calculated Volumes of Wetland Depressions
Measured and calculated volumes of wetland depressionsThis dataset is associated with the following publication:Wu, Q., and C. Lane. Delineation and quantification of wetland depressions in the Prairie Pothole Region of North Dakota. WETLANDS. The Society of Wetland Scientists, McLean, VA, USA, 36(2): 215-227, (2016).
Controlling Atomic, Solid-State and Hybrid Systems for Quantum Information Processing
2013-09-04
PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT Massachusetts Institute of Technology (MIT NUMBER 77 Massachusetts...for the graphene macro-atom. . . . . . . . . . . . . . 67 4.3 Performance of the graphene based single photon switch. . . . . . . . 68 5.1 All-optical...community of scientists, as well as the occasional pick up basketball, softball , volleyball, hockey and tennis team. Both past and present members have
Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 5: Study analysis report
NASA Technical Reports Server (NTRS)
1989-01-01
The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at the Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be on-board the Freedom Space Station. The further analysis performed on the SCS study as part of task 2-Perform Studies and Parametric Analysis-of the SCS study contract is summarized. These analyses were performed to resolve open issues remaining after the completion of task 1, and the publishing of the SCS study issues report. The results of these studies provide inputs into SCS task 3-Develop and present SCS requirements, and SCS task 4-develop SCS conceptual designs. The purpose of these studies is to resolve the issues into usable requirements given the best available information at the time of the study. A list of all the SCS study issues is given.